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1 Introduction

Multistage stochastic programs (see for instance [6,30,36]) bring computa-
tional complexity which increases exponentially with the size of the scenario
tree, representing a discretization of the underlying random process. For this
reason bounding techniques are very useful in practice.

In the two-stage case, several approaches and bounds on the optimal ob-
jective value have been adopted in the literature. The standard measure is
given by the Value of the Stochastic Solution, VSS, [4,22], which indicates
the expected gain from solving a stochastic model rather than its determin-
istic counterpart, in which the random parameters are replaced with their
expected values. Other approaches (see for instance [9,10,11,12]) generalize
Jensen’s inequality [14] for lower bounding and the Edmundson-Madansky
[7,20,21] inequality for upper bounding. An alternative method is to aggre-
gate constraints and variables in the extensive-form and solve the resulting
problem [5,29]. Other bounds were introduced in [4] by means of the Sum
of Pairs Expected Values Solutions, SPEV and Expectation of Pairs Expected
Value, EPEV which can be calculated by solving pairs of subproblems which
are much less complex than the general recourse problem. Among the papers
mentioned above, the work in [4] applies also to general two-stage stochastic
mixed integer programs and it has been extended in [31] by considering an
alternative way of forming the group subproblems and merging their results.

Multistage stochastic mixed integer linear programs are among the most
challenging optimization problems combining stochastic programs and discrete
optimization problems (see [15,28,34] for some major results in this area).
Most papers in the literature have focused on the two-stage case and various
decomposition algorithms combining branch and bound method to deal with
integrality restrictions have been proposed, see [1,33,35,38,39]. However, mul-
tistage stochastic mixed integer linear problems have been much less studied
and getting new bounds on the optimal objective function value has been very
challenging. Exact solution methods are in general based on branch and bound
type algorithms or branch and price method [19].

The aim of this paper is to propose a bounding methodology for multi-
stage stochastic problems which works for general multistage linear stochastic
programs as well as for stochastic mixed integer multistage linear programs.
The general idea behind construction of bounds, is that for every optimization
problem of minimization type, lower bounds on the optimal value can be found
by relaxation of some constraints and upper bound to the optimal value can
be found by inserting feasible solutions.

An extension to multistage of the classical V SS defined for the two-stage
setting, has been introduced in [8] and in [13] for a general class of capac-
ity planning problems. In [17,18] upper and lower bounds on the optimal
value of the original problem have been extensively elaborated by means of an
integrated stage-aggregation and space-discretization scheme that applies to
convex multistage stochastic programs and in [16] generalized bounds based
on barycentric approximation scheme are investigated. Bounds for multistage
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convex problems with concave risk functionals as objective are also provided
in [24]. In [23], approximations of the optimal stochastic solution for multi-
stage linear stochastic programs have been quantified by the introduction of
new measures of information, where the same problem is solved and compared
with and without a piece of available information on the future, measures of
the quality of the deterministic solution and rolling horizon measures which
update the estimation and add more information at each stage.

In this paper we propose a bounding approach which extends that of [4,
23,31], and works for general multistage linear stochastic program as well as
for stochastic mixed integer multistage linear programs. We solve group sub-
problems using a subset of reference scenarios, and a subset of scenarios from
the support in the multistage setting. We construct a chain of lower bounds,
called Multistage Expected value of the Group Subproblem Objective function
MEGSO(k,R), less complex than the original problem, by solving sets of
group subproblems with k scenarios in each group and R fixed scenarios, and
taking an expectation across scenario groups. We prove that MEGSO(k,R)
is:

1. monotonically nondecrasing in the cardinality of scenarios from the support
k with R fixed;

2. monotonically nondecrasing in the number of reference scenarios R with k
fixed.

To construct upper bounds on the optimal total cost, we generalize the mea-
sures introduced in [23] with an optimal first-stage solution of a group sub-
problem and the expectation taken across scenario groups. In this way we
introduce the Multistage Expectation of Group Subproblems MEGS(k,R).

The most significant advantage of the proposed approach is to divide a
given problem into independent subproblems which may take advantage of
parallel based machine architecture. Consequently, multistage problems, which
are typically computationally complex and most of the time not solvable by
commercial solvers, can now be faced by the proposed bounding technique.
Furthermore, if we have information about the underlying distribution, the
proposed procedure allows us to take a large number of reference scenarios R,
decreasing the number of group subproblems to be solved and consequently
the computational complexity.

While finalizing a preliminar version [26] of this paper, we became aware
of two recently submitted papers [32,40] where some of the results are similar
to part of the ones we present here. The bounding approaches have been
developed independently.

The paper is organized as follows: the notation and basic definitions are
introduced in Section 2. Section 3 introduces lower bounds for multistage
problems and chain of inequalities among the new measures. Section 4 devel-
ops upper bounds for the optimal multistage objective value. Section 5 deals
with complexity considerations and Section 6 briefly describes the algorithmic
procedure to use the suggested lower and upper bounds. Section 7 reports
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numerical results on a transportation problem and Section 8 concludes the
paper.

2 Preliminaries

We consider the following nested formulation of a multistage linear stochastic
program (see [6,37]):

RP := min
x
EξH−1z(x, ξH−1)

= min
x1

c1x1 +

+Eξ1

[
min
x2

c2
(
ξ1
)
x2
(
ξ1
)

+ Eξ2

[
· · ·+ EξH−1

[
min
xH

cH
(
ξH−1

)
xH
(
ξH−1

)]]]
s.t. Ax1 = h1 ,

T 1(ξ1)x1 +W 2(ξ1)x2(ξ1) = h2(ξ1) , (1)

...

TH−1(ξH−1)xH−1(ξH−2) +WH(ξH−1)xH(ξH−1) = hH(ξH−1);

where c1 ∈ Rn1 and h1 ∈ Rm1 are known vectors, A ∈ Rm1×n1 is a known
matrix and x := (x1, x2, . . . , xH) is the decision vector with xt ∈ Rnt−dt

+ ×
Ndt , t = 1, . . . ,H. In the following, for a simpler presentation, the feasibility
condition on xt will be omitted even if assumed to be satisfied. The random
process ξt, t = 1, . . . ,H − 1, is revealed gradually over time in H periods and
ξt := (ξ1, . . . , ξt), t = 1, . . . ,H − 1 denotes the history of the process up to
time t. ξt is defined on a probability space (Ξt,A t, p) with support Ξt ∈ Rnt

and given probability distribution p on the σ−algebra A t (with A t ⊆ A t+1)
and Eξt denotes the expectation with respect to ξt. The uncertain parameter
vectors and matrices affected by the random process ξt are then given by
ht ∈ Rmt , ct ∈ Rnt , T t−1 ∈ Rmt×nt−1 , W t ∈ Rmt×nt , t = 2, . . . ,H. The
two-stage case is obtained for H = 2.

The decision process xt, t = 1, . . . ,H is nonanticipative which means it
depends on the information up to time t. The solution obtained by solving
problem (1) is denoted with x∗, which is called the here and now solution.

In order to proceed with numerical computations, it is useful to have a dis-
cretization of the underlying random process. This is obtained by considering
a finite number of realizations of the random process ξ1, . . . , ξH−1.
So, if we assume that ξH−1 := (ξ1, . . . , ξH−1) is a random parameter evolving
as a discrete-time stochastic process with finite support, then the information
structure can be described in the form of a scenario tree T where at each stage
t there is a discrete number of atoms (nodes) |`t| where a specific realization of
the uncertain parameters takes place. There are H levels (stages) in the tree,
that correspond to specific time periods. The final |`H | nodes are called the
leaves. Let N t be the set of ordered nodes of the tree at stage t = 1, . . . ,H. Let
c`, h`, W `, T ` be vectors and matrices at node `. If ` ∈ N 1 we assume T ` = A
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and W ` = 0 (i.e., the null matrix). Each node at stage t, except the root, is
connected to a unique node at stage t−1 called ancestor and to nodes at stage
t+ 1 called successors. For each node ` at stage t, we denote its ancestor with
a(`) and with πa(`),` the conditional probability of the random process at node
` given its history up to the ancestor node a(`). A scenario is a path through
nodes from the root node to a leaf node. We indicate with πs the probability
of scenario s passing through nodes `1, `2, . . . , `H (where `t, t = 1, . . . ,H is
the generic node at stage t) defined as πs := π`1,`2 · π`2,`3 · . . . · π`H−1,`H . We
also indicate with p` the probability of node ` (at stage t): if node ` at stage t
is reachable through node `1 at stage 1, node `2 at stage 2, . . ., node `t−1 at
stage t− 1, then p` := π`1,`2 ·π`2,`3 · . . . ·π`t−1,`t . Moreover,

∑
`∈N t p` = 1. Let

ξ1, . . . , ξ`H , be the possible realizations (or scenarios) of ξH−1, Ξ the support
of possible scenarios and ξts the history of the s-realization, s = 1, . . . , |`H |, up
to stage t, t = 1, . . . ,H − 1.
Using this scenario notation the multistage linear stochastic program (1) can
be expressed as:

RP = min
x
EξH−1z(x, ξH−1)

= min
x1,...,xH

c1x1 +

|`H |∑
s=1

πs
(
c2
(
ξ1s
)
x2(ξs) + · · ·+ cH

(
ξH−1s

)
xH(ξs)

)
s.t. Ax1 = h1 ,

T 1(ξ1s )x1(ξs) +W 2(ξ1s )x2(ξs) = h2(ξ1s ) , s = 1, . . . , |`H | , (2)

...

TH−1(ξH−1s )xH−1(ξs)+WH(ξH−1s )xH(ξs)=hH(ξH−1s ) , s=1,. . . ,|`H | ,
xt(ξj′) = xt(ξj′′),∀j′, j′′ ∈ {1, . . . , |`H |} for which ξtj′=ξtj′′ , t = 2, . . . ,H ,

where the nonanticipativity of the decision process is enforced by the last set
of constraints.

Another equivalent formulation of problem (1) is given by the node formu-
lation which can be expressed as follows:

RP = min
x
EξH−1z(x, ξH−1)

= min
{x`}`∈N t,t=1,...,H

H∑
t=1

∑
`∈N t

p`c`x`

s.t. Ax` = h` , ` ∈ N 1, (3)

T `xa(`) +W `x` = h` , ` ∈ N t, t = 2, . . . ,H .

The main principle to obtain lower bounds of problem (1) is given by
the relaxation of some constraints. This is the case of the multistage wait-
and-see problem (WS), where this relaxation is obtained by removing the
nonanticipativity constraints. Consequently, the realizations of all the random



6 Francesca Maggioni et al.

parameters are known at the first stage. In the scenario notation the multistage
wait-and-see problem can be expressed as follows:

WS=

|`H |∑
s=1

πs minx1(ξs),...,xH(ξs) c
1x1(ξs) + c2(ξ1s )x1(ξs) +. . .+ cH(ξH−1s )xH(ξs)

s.t. Ax1(ξs) = h1 ,

T 1(ξ1s )x1(ξs) +W 2(ξ1s )x2(ξs) = h2(ξ1s ) , (4)

...

TH−1(ξH−1s )xH−1(ξs) +WH(ξH−1s )xH(ξs)=hH(ξH−1s ) .

The Expected Value problem EV is obtained by replacing all random pa-
rameters by their expected values and solving the deterministic program, with
ξ̄ :=(ξ̄1, ξ̄2, . . . , ξ̄H−1)=(Eξ1, Eξ2, . . . , EξH−1):

EV := min
x
z(x, ξ̄)

= min
x1,...,xH

c1x1 + c2(ξ̄1)x2 + · · ·+ cH(ξ̄H−1)xH

s.t. Ax1 = h1 ,

T 1(ξ̄1)x1 +W 2(ξ̄1)x2 = h2(ξ̄1) , (5)

...

TH−1(ξ̄H−1)xH−1 +WH(ξ̄H−1)xH = hH(ξ̄H−1) .

The following theorems hold true:

Theorem 2.1 [21] For two-stage (H = 2) stochastic linear programs of the
form (1), the following inequalities hold true

WS ≤ RP ≤ EEV , (6)

where EEV denotes the solution value of the RP model, having the first stage
decision variables fixed at the optimal values obtained by using the expected
value of coefficients.

The proof of Theorem 2.1 can be easily extended from the two-stage case to
the multistage case.

Theorem 2.2 For multistage linear stochastic programs with deterministic
objective random parameters and constraint matrices, random parameters in
the right hand side h2(ξ1), . . . , hH(ξH−1), the following inequality is satisfied

EV ≤WS . (7)
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3 Lower Bounds in Multistage Mixed-Integer Linear Programs

In this section we present lower bounds for stochastic multistage linear pro-
grams. We suppose to fix a number 1 ≤ R < S = |`H | of reference scenarios
among the possible S scenarios. Let R = {1, . . . , R} be the index set of fixed
scenarios. Without loss of generality we suppose they are the first R scenarios
among the available S ones.

In order to obtain bounds on RP problem one can solve smaller problems
than the original one: we can choose among the K = S −R scenarios (ξi, i =
R+ 1, . . . S) a subgroup of cardinality k = 1, . . . ,K. Let K = {R+ 1, . . . , S}
be the index set of scenarios excluding those belonging to the fixed scenario
set R. Let P(K ) the power set of K excluding the empty set. Let Pk(K )
the set of all subset of P(K ) with cardinality k. For any subset Ψk ∈ Pk(K ),
let π(Ψk) =

∑
i∈Ψk

πi be the probability assigned to scenarios group Ψk.
Let us now define the group subproblem MGR(Ψk, R) in a multistage set-

ting as follows: for any given scenario group Ψk, MGR(Ψk, R) is defined as
min zR(Ψk) :=

min
x1,...,xH

(
c1x1+

R∑
r=1

(
πr

H∑
t=2

ct(ξt−1r )xt(ξr)

)
+(1−

R∑
r=1

πr)
∑
i∈Ψk

πi
π(Ψk)

H∑
t=2

ct(ξt−1i )xt(ξi)

)
s.t. Ax1 = h1 ,

T t−1(ξt−1r )xt−1(ξr) +W t(ξt−1r )xt(ξr) = ht(ξt−1r ) , r ∈ R, t = 2, . . . ,H (8)

T t−1(ξt−1i )xt−1(ξi) +W t(ξt−1i )xt(ξi) = ht(ξt−1i ) , i ∈ Ψk, t = 2, . . . ,H

xt(ξj′) = xt(ξj′′),∀j′, j′′ ∈ R ∪ Ψk for which ξtj′ = ξtj′′ t = 2, . . . ,H.

Given an integer k ∈ {1, . . . ,K}, and R fixed scenarios, the Multistage
Expected value of the Group Subproblem Objective function with k scenarios
in each group and R fixed scenarios, MEGSO(k,R) is defined as

MEGSO(k,R) :=
1(

K − 1
k − 1

)
(1−

∑R
r=1 πr)

 ∑
Ψk∈Pk(K )

π(Ψk) min zR(Ψk)

 . (9)

Observe that∑
Ψk∈Pk(K )

π(Ψk) =
∑

Ψk∈Pk(K )

∑
i∈Ψk

πi =

S∑
i=R+1

(
K − 1
k − 1

)
πi=

(
K − 1
k − 1

)
(1−

R∑
r=1

πr) . (10)

The binomial coefficient refers to the number of group scenarios of dimension k
within the S−R = K scenarios, where a given scenario index i = R+1, . . . , S,

is contained in

(
K − 1
k − 1

)
subgroups Ψk of cardinality k. This observation

follows from the fact that given K values to fill in a k-tuple if we fix one of
the elements to a particular value, we are left with K − 1 values from which
to choose for the remaining k − 1 positions.
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Notice that MGR(Ψ1, 1) reduces to the definition of PAIRS subproblem
introduced in [23] in a multistage setting and the Multistage Sum of Pairs
Expected Values, MSPEV reduces to MEGSO(1, 1) as follows

MSPEV = MEGSO(1, 1) =
1

1− πa

∑
Ψ1∈P1(K )

π(Ψ1) min zP (Ψ1) . (11)

Furthermore, for any R value MEGSO(K,R) is equivalent to RP .

3.1 Properties of MEGSO(k,R)

In this subsection we prove that MEGSO(k,R) is monotonically nondecreas-
ing in k with R fixed, monotonically nondecrasing in the number of reference
scenarios R with k fixed and provides a lower bound on RP .

Lemma 3.1 Given an integer k, 1 ≤ k < K, set of reference scenarios R and
a scenario group Ψk ∈ Pk(K ) the following relation holds

k · π(Ψk+1) min zR(Ψk+1) ≥
∑

Ψk∈Pk(Ψk+1)

π(Ψk) min zR(Ψk) . (12)

Proof Consider Ψk+1 = {i1, . . . , ik, ik+1} with R+1 ≤ i1 ≤ i2 ≤ . . . ≤ ik+1 ≤ S
and let (x̃1, x̃t(ξ1), . . . , x̃t(ξR), x̃t(ξi1), . . . , x̃t(ξik+1

)), t = 2, . . . ,H be an opti-
mal solution for MGR(Ψk+1, R) subproblem.
Let (x̃1, x̃t(ξ1), . . . , x̃t(ξR), x̃t(ξi1), . . . , x̃t(ξik)), t = 2, . . . ,H be a feasible so-
lution to MGR(Ψk, R) for any scenario group Ψk = {i1, . . . , ik} ∈ Pk(Ψk+1)
and let (x̂1, x̂t(ξ1), . . . , x̂t(ξR), x̂t(ξi1), . . . , x̂t(ξik)), t = 2, . . . ,H be an optimal
solution to MGR(Ψk, R). For Ψk ∈ Pk(Ψk+1) we have

c1x̃1 +

R∑
r=1

(
πr

H∑
t=2

ct(ξr)x̃
t(ξr)

)
+ (1−

R∑
r=1

πr)
∑
i∈Ψk

πi
π(Ψk)

H∑
t=2

ct(ξi)x̃
t(ξi)

≥ c1x̂1 +

R∑
r=1

(
πr

H∑
t=2

ct(ξr )̂x
t(ξr)

)
+(1−

R∑
r=1

πr)
∑
i∈Ψk

πi
π(Ψk)

H∑
t=2

ct(ξi)x̂
t(ξi)

= min zR(Ψk) .

Multiplying the last inequality by π(Ψk) for Ψk ∈ Pk(Ψk+1) we have

π(Ψk)

(
c1x̃1 +

R∑
r=1

(
πr

H∑
t=2

ct(ξr)x̃
t(ξr)

))
+(1−

R∑
r=1

πr)
∑
i∈Ψk

πi

H∑
t=2

ct(ξi)x̃
t(ξi)

≥ π(Ψk) min zR(Ψk) . (13)

If we sum inequalities (13) for Ψk ∈ Pk(Ψk+1) we get
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∑
Ψk∈Pk(Ψk+1)

π(Ψk)

(
c1x̃1 +

R∑
r=1

(
πr

H∑
t=2

ct(ξr)x̃
t(ξr)

))

+(1−
R∑
r=1

πr)

 ∑
Ψk∈Pk(Ψk+1)

∑
i∈Ψk

πi

H∑
t=2

ct(ξi)x̃
t(ξi)

 (14)

≥
∑

Ψk∈Pk(Ψk+1)

π (Ψk) min zR(Ψk) .

From (10) we observe that∑
Ψk∈Pk(Ψk+1)

π(Ψk) = k · π(Ψk+1) ,

and that

∑
Ψk∈Pk(Ψk+1)

∑
i∈Ψk

πi

H∑
t=2

ct(ξi)x̃
t(ξi) = k

 ∑
i∈Ψk+1

πi

H∑
t=2

ct(ξi)x̃
t(ξi)

 .

Inequality (14) can be written as

k · π(Ψk+1)

(
c1x̃1 +

R∑
r=1

(
πr

H∑
t=2

ct(ξr)x̃
t(ξr)

))

+(1−
R∑
r=1

πr)k

 ∑
i∈Ψk+1

πi

H∑
t=2

ct(ξi)x̃
t(ξi)


≥

∑
Ψk∈Pk(Ψk+1)

π (Ψk) min zR(Ψk) . (15)

Therefore

k · π(Ψk+1)

[
c1x̃1 +

R∑
r=1

(
πr

H∑
t=2

ct(ξr)x̃
t(ξr)

)]

+k · π(Ψk+1)

(1−
R∑
r=1

πr)

 ∑
i∈Ψk+1

πi
π(Ψk+1)

H∑
t=2

ct(ξi)x̃
t(ξi)


≥

∑
Ψk∈Pk(Ψk+1)

π (Ψk) min zR(Ψk) . (16)

The sum of the terms in the two square brackets is min zR(Ψk+1) and the
result is proved. ut
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Theorem 3.1 For any chosen fixed R, 1 ≤ R < S, the following chain of
inequalities holds true

WS≤MEGSO(1, R)≤MEGSO(2, R)≤ . . .≤MEGSO(K,R)=RP . (17)

Proof We prove the theorem in three steps:

(i) WS ≤MEGSO(1, R);
(ii) MEGSO(k,R) ≤MEGSO(k + 1, R), for k = 1, . . . ,K − 1;
(iii) MEGSO(K,R) = RP .

(i) When R = 1, MEGSO(1, 1) = MSPEV , where the inequality
WS ≤MSPEV was proved in [23] (see Proposition 3.2 pag. 210). Notice
that the proof also holds for stochastic mixed integer programs.
Now, letR > 1, for Ψ1 = {i1} whereR+1 ≤ i1 ≤ S, let (x̃1, x̃t(ξ1), . . . , x̃t(ξR), x̃t(ξi1)),
t = 2, . . . ,H be an optimal solution for MGR(Ψ1, R) subproblem, given by
min zR(Ψ1) :=

min
x1,x2,...,xH

(
c1x1 +

R∑
r=1

(
πr

H∑
t=2

ct(ξr)x
t(ξr)

)
+ (1−

R∑
r=1

πr)

H∑
t=2

ct(ξi1)xt(ξi1)

)
s.t. Ax1 = h1 ,

T t−1(ξt−1r )xt−1(ξr) +W t(ξt−1r )xt(ξr) = ht(ξt−1r ) , r ∈ R, t = 2, . . . ,H ,

T t−1(ξt−1i1
)xt−1(ξi1) +W t(ξt−1i1

)xt(ξi1) = ht(ξt−1i1
), t = 2, . . . ,H , (18)

xt(ξj′)=xt(ξj′′),∀j′,j′′∈R ∪ Ψ1 for which ξtj′=ξtj′′ , t = 2, . . . ,H.

The Multistage Expected value of the Group subproblem objective func-
tions with one scenario in each group Ψ1 andR fixed scenarios, MEGSO(1,R)
is

1

(1−
∑R
r=1 πr)

 ∑
Ψ1∈P1(K )

π(Ψ1) min zR(Ψ1)

 (19)

=
1

(1−
∑R
r=1 πr)

 ∑
Ψ1∈P1(K )

π(Ψ1)

(
c1x̃1 +

R∑
r=1

(
πr

H∑
t=2

ct(ξr)x̃
t(ξr)

))
+

1

(1−
∑R
r=1 πr)

 ∑
Ψ1∈P1(K )

π(Ψ1)(1−
R∑
r=1

πr)

H∑
t=2

ct(ξi)x̃
t(ξi)


=

1

(1−
∑R
r=1 πr)

[
S∑

i=R+1

πi

(
c1x̃1+

R∑
r=1

(
πr

H∑
t=2

ct(ξr)x̃
t(ξr)

))]

+
1

(1−
∑R
r=1 πr)

[
S∑

i=R+1

πi(1−
R∑
r=1

πr)

H∑
t=2

ct(ξi)x̃
t(ξi)

]
.
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Adding and subtracting
∑R
r=1 πr(c

1x̃1) and (1−
∑R
r=1 πr)c

1x̃1, we obtain
that MEGSO(1, R) becomes

1

(1−
∑R
r=1 πr)

[
S∑

i=R+1

πi

(
R∑
r=1

πr

(
c1x̃1 +

H∑
t=2

ct(ξr)x̃
t(ξr)

))]

+
1

(1−
∑R
r=1 πr)

[
S∑

i=R+1

πi

(
(1−

R∑
r=1

πr)(c
1x̃1 +

H∑
t=2

ct(ξi)x̃
t(ξi))

)]

and being (x̃1, x̃t(ξ1), . . . , x̃t(ξR)), t = 2, . . . ,H a feasible solution for the
problems z(ξr), r = 1, . . . , R, MEGSO(1, R) is bounded by

MEGSO(1, R)≥
∑S
i=R+1 πi

∑R
r=1 πr min z(ξr)

(1−
∑R
r=1 πr)

+ (20)

+

S∑
i=R+1

πi

(
c1x̃1+

H∑
t=2

ct(ξi)x̃
t(ξi)

)
.

We simplify the first term and bound
(
c1x̃1 +

∑H
t=2 c

t(ξi)x̃
t(ξi)

)
by min z(ξi)

in the second term since (x̃1, x̃t(ξi)), t = 2, . . . ,H is feasible for min z(ξi).
Thus

MEGSO(1, R) ≥
R∑
r=1

πr min z(ξr) +

S∑
i=R+1

πi min z(ξi) = WS . (21)

(ii) Let k ∈ N such that 1 ≤ k ≤ K − 1. Proposition 3.1 implies that, for any
Ψk+1 ∈ Pk+1(K ),

k · π (Ψk+1) min zR(Ψk+1) ≥
∑

Ψk∈Pk(Ψk+1)

π (Ψk) min zR(Ψk) . (22)

If we sum inequalities (22) over all Ψk+1 ∈ Pk+1(K ) we obtain

∑
Ψk+1∈Pk+1(K )

[
kπ (Ψk+1) min zR(Ψk+1)

]
≥
∑

Ψk+1∈Pk+1(K )

 ∑
Ψk∈Pk(Ψk+1)

π (Ψk) min zR(Ψk)

 . (23)

The left-hand side of inequality (23) can be rewritten as∑
Ψk+1∈Pk+1(K )

[
kπ (Ψk+1) min zR(Ψk+1)

]
=k

(
K − 1
k

)(
1−

R∑
r=1

πr

)
MEGSO(k + 1, R) . (24)
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Furthermore, the right-hand side of inequality (23) is equivalent to

∑
Ψk+1∈Pk+1(K )

 ∑
Ψk∈Pk(Ψk+1)

π (Ψk) min zR(Ψk)


=(K − k)

∑
Ψk∈Pk(K )

π (Ψk) min zR(Ψk)

=(K − k)

(
K − 1
k − 1

)(
1−

R∑
r=1

πr

)
MEGSO(k,R) . (25)

Substituting the right-hand sides of equalities (24) and (25) into inequality
(23) yields

k ·
(
K − 1
k

)(
1−

R∑
r=1

πr

)
MEGSO(k + 1, R)

≥ (K − k)

(
K − 1
k − 1

)(
1−

R∑
r=1

πr

)
MEGSO(k,R) , (26)

and the thesis is proved.
(iii) By definition, MEGSO(K,R) = min zR(ΨK) = RP . ut

Theorem 3.2 Given an integer k, 1 ≤ k ≤ K, the following chain of inequal-
ities holds true

MEGSO(k, 1) ≤MEGSO(k, 2) ≤ · · · ≤MEGSO(k, S − k) = RP . (27)

Proof We prove the theorem in two steps by showing

(i) MEGSO(k,R) ≤MEGSO(k,R+ 1), for R = 1, . . . , S − k − 1;
(ii) MEGSO(k, S − k) = RP .

(i) Let Ψk = {i1, . . . , ik} ∈ Pk(K ) the scenario group with R+ 1 ≤ i1 ≤ i2 ≤
. . . ≤ ik ≤ S. We have:∑

Ψk∈Pk(K )

π (Ψk) min zR(Ψk)

=
∑

Ψk∈Pk(K \{R+1})

π (Ψk) min zR(Ψk) +
∑

Ψk∈Pk(K |i1=R+1)

π (Ψk) min zR(Ψk) .(28)

The left-hand side of equality (28) can be rewritten as∑
Ψk∈Pk(K )

π (Ψk) min zR(Ψk)

=

(
K − 1
k − 1

)(
1−

R∑
r=1

πr

)
MEGSO(k,R) . (29)
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Furthermore, the right-hand side of equality (28) is equivalent to

∑
Ψk∈Pk(K \{R+1})

π (Ψk) min zR(Ψk) +
∑

Ψk∈Pk(K |i1=R+1)

π (Ψk) min zR(Ψk)

=

(
K − 2
k − 1

)(
1−

R+1∑
r=1

πr

)
MEGSO(k,R+ 1)+

+

(
K − 2
k − 2

)(
1−

R+1∑
r=1

πr

)
MEGSO(k − 1, R+ 1). (30)

Substituting the right-hand sides of equalities (29) and (30) into equality
(28) we get:

(
K − 1
k − 1

)(
1−

R∑
r=1

πr

)
MEGSO(k,R)

=

(
K − 2
k − 1

)(
1−

R+1∑
r=1

πr

)
MEGSO(k,R+ 1)

+

(
K − 2
k − 2

)(
1−

R+1∑
r=1

πr

)
MEGSO(k − 1, R+ 1) . (31)

Modyfing the second term of (31) as follows

=

(
K − 2
k − 1

)(
1−

R+1∑
r=1

πr

)
MEGSO(k,R+ 1)+

(
K − 2
k − 1

)
k − 1

K − k

(
1−

R+1∑
r=1

πr

)
MEGSO(k − 1, R+ 1) , (32)

we obtain

(
K − 1
k − 1

)(
1−

R∑
r=1

πr

)
MEGSO(k,R)

=

(
K − 2
k − 1

)(
1−

R+1∑
r=1

πr

)
MEGSO(k,R+ 1)+

(
K − 2
k − 1

)
k − 1

K − k

(
1−

R+1∑
r=1

πr

)
MEGSO(k − 1, R+ 1) . (33)
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Since

(
K − 1
k − 1

)
=
K − 1

K − k

(
K − 2
k − 1

)
, dividing both the sides of equation

(33) by

(
K − 2
k − 1

)
, we have:

K − 1

K − k

(
1−

R∑
r=1

πr

)
MEGSO(k,R)

=

(
1−

R+1∑
r=1

πr

)
MEGSO(k,R+ 1)+

k − 1

K − k

(
1−

R+1∑
r=1

πr

)
MEGSO(k − 1, R+ 1) . (34)

Dividing both the sides of equation (34) by
(

1−
∑R+1
r=1 πr

)
≥ 0 we have:

K − 1

K − k

(
1−

∑R
r=1 πr

)
(

1−
∑R+1
r=1 πr

)MEGSO(k,R)

= MEGSO(k,R+ 1)+
k − 1

K − k
MEGSO(k − 1, R+ 1) . (35)

Because of Theorem 3.1, for fixed R+ 1 scenarios

MEGSO(k − 1, R+ 1) ≤MEGSO(k,R+ 1) .

Consequently the second term of equation (35) satisfies the following in-
equality:

MEGSO(k,R+ 1)+
k − 1

K − k
MEGSO(k − 1, R+ 1)

≤ K − 1

K − k
MEGSO(k,R+ 1) . (36)

Combining the first term of equation (35) with the second term of (36) we
have

K − 1

K − k

(
1−

∑R
r=1 πr

)
(

1−
∑R+1
r=1 πr

)MEGSO(k,R) ≤ K − 1

K − k
MEGSO(k,R+1) . (37)

which yields the desired result after canceling out the identical terms on

both sides and taking into account that

(
1−

∑R
r=1 πr

)
(

1−
∑R+1
r=1 πr

) ≥ 1.

(ii) By definition, MEGSO(k, S − k) = min zS−k(Ψk) = RP . This includes
also the case K = 1.

ut
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4 Upper Bounds from Multistage Group Subproblems

In this section we first revise classical upper bounds for multistage stochastic
programs; then we propose an extension to upper bounds introduced in [23]
and [31].

Upper bounds on problem (1) can be obtained by inserting feasible solu-
tions from other problems. This is the case of the Expected result at stage t
by using the Expected Value solution EEV t, (t = 1, . . . ,H − 1) introduced
in [23]. It is given by the solution value of the RP model where the decision
variables until stage t, xt = (x1, x2, . . . , xt), are fixed at the optimal values

obtained by the average scenario ξ̄
t

= (ξ̄1, ξ̄2, . . . , ξ̄t), t = 1, . . . ,H − 1. See in
[8] an alternative definition. It is worth to point out that the problems EEV t,
t = 1, . . . ,H − 1 could be infeasible since too many variables are fixed to their
deterministic solution values.
The Value of the Stochastic Solution at stage t, V SSt is then defined as follows

V SSt := EEV t −RP, t = 1, . . . ,H − 1 . (38)

Theorem 4.1 [23] For multistage stochastic linear programs with determin-
istic objective coefficients and constraint matrices, random parameters in the
right hand side h2(ξ1), . . . , hH(ξH−1), the following inequalities are satisfied

V SSt ≤ EEV t − EV, t = 1, . . . ,H − 1 . (39)

In [23] we have defined the sequence of Multistage Expected Value of the
Reference Scenario, MEV RS1, MEV RS2, . . . ,MEV RSt where MEV RSt

is obtained by taking the optimal solution until stage t of the deterministic
problem under any reference scenario r. This can be formally expressed as
follows:

MEV RSt := EξH−1 min
x(t+1,H)

z(x̌tr,x
(t+1,H), ξH−1) , t = 1, . . . ,H − 1 , (40)

where x̌tr is the optimal solution until stage t of the deterministic problem
minx z(x, ξr) under scenario r and x(t+1,H) := (xt+1, xt+2, . . . , xH) is
At-measurable. The multistage value of stochastic solution at stage t is

MV SSt := MEV RSt −RP, t = 1, . . . H − 1 . (41)

We first extend MEV RS1 definition to a group of R fixed scenarios in R
as follows:

MEV RS1,R := EξH−1 min
x(2,H)

z(x̌1
R,x

(2,H), ξH−1) , (42)

where x̌1
R is the optimal first stage solution of the stochastic problem

min
x
z(x, ξ1, . . . , ξR) ,

and x(2,H) := (x2, . . . , xH) is At-measurable.
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Secondly, we introduce the measure MEGS(k,R), which represents the
minimum optimal value among those obtained by solving the original stochas-
tic program (1), using the optimal first stage solution of each group subprob-
lem. This can be expressed as follows: let x̂1Ψk,R

be the optimal first stage
solution of (8). The Multistage Expectation of Group Subproblems is defined
as

MEGS(k,R) := min
Ψk∈Pk(K )∪R

(EξH−1 min
x(2,H)

z(x̂1Ψk,R
,x(2,H), ξH−1)) . (43)

The following inequality holds.

Proposition 4.1 For a fixed number R of reference scenarios and any 1 ≤
k ≤ K we have

RP ≤MEGS(k,R) ≤MEV RS1,R . (44)

Proof Let us denote by Z := {x|xt ∈ Zt, t = 1, . . . ,H − 1} the feasibility set
of RP where

Zt :=

{
xt(ξt−1) T t−1(ξt−1)xt−1(ξt−1) +W t(ξt−1)xt(ξt−1) = ht(ξt−1)

Eξt

[
Qt+1(xt, ξt)

]
< +∞

}
,

andQt+1 the cost-to-go function at stage t+1. The feasibility set ofMEGS(k,R)
is Z ∩

{
x̂1Ψk,R

|Ψk ∈ Pk(K ) ∪R
}

and

Z ∩ x̌1
R = x̂1Ψk,R

the one of MEV RS1,R. These feasibility sets are obviously
smaller and smaller, the thesis is therefore proved. ut

5 Computational Complexity of MEGSO

In this section we investigate the relation between the complexity of bounding
approach based on solving subproblems (8) of smaller size and then computing
MEGSO(k,R) versus the initial full RP problem (1). To illustrate this, as-
sume that κ(|`1|+ |`2|+ . . . |`H |) denotes the worst case execution complexity
of the tree T associated with the problem (3) with |`1|+ |`2|+ . . .+ |`H | nodes
and |`H | scenarios. If we assume that bt is the number of branches of T at
stage t = 1, . . . ,H−1, then the number of scenarios |`H | = b1 ·b2 ·. . .·bH−1 and
the number of nodes |`1|+ |`2|+ · · ·+ |`H | = 1+b1+b1 ·b2+ . . .+b1 · . . . ·bH−1 =∑H−1
t=1

∏t
τ=1 bτ+1. On the other hand subproblem (8) is based on k+R scenar-

ios and has at most (R+k)(H−1)+1 nodes. The complexity of MEGSO(k,R)
under the assumption that each subproblem MGR(Ψk, R) is solved in parallel,
is then given by

κ(MEGSO(k,R)) = κ((R+ k)(H − 1) + 1) .

The ratio between the worst case complexities of MEGSO(k,R) and the
one of the full stochastic problem RP is

κ(MEGSO(k,R))

κ(RP )
=
κ((R+ k)(H − 1) + 1)

κ(
∑H−1
t=1

∏t
τ=1 bτ + 1)

. (45)



Monotonic bounds in multistage mixed-integer stochastic programming 17

For simplicity if we assume that the initial full stochastic problem is linear,
has one decision variable and one linking constraint per node, then using the
complexity function (see [2])

κ(n) = O(L · n3/log(n)) , (46)

where n is the number of nodes and L is the data bit size, we get the re-
sults shown in Figure 1 obtained with L = 1 and different values of branching
parameters. The graphic shows the advantage of the bounding procedure es-
pecially for large values of the time horizon H. However, this is no longer the

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of stages H

w
or

st
 c

om
pl

ex
it

y 
ra

ti
o 

un
de

r 
pa

ra
ll

el
 c

om
pu

ti
ng

 

 

b
t
=2, t=1,…,H−1

b
t
=5, t=1,...,H−1

b
t
=4, t=1,...,H−1

b
t
=3, t=1,…,H−1

Fig. 1 Worst case complexity ratio (45) for different values of constant branching bt versus
the number of stages H of T .

case when the subproblems are solved sequentially: the ratio (45) becomes

κ(MEGSO(k,R))

κ(RP )
=
κ((R+ k)(H − 1) + 1) ·

(
b1 · b2 · . . . · bH−1 −R

k

)
κ(
∑H−1
t=1

∏t
τ=1 bτ + 1)

. (47)

Better results in terms of computational complexity performance of bound-
ing versus the full problem are shown in [24] where the assumption of parallel
computing is no longer required.

6 Using MEGSO and MEGS in Multistage Mixed-Integer
Stochastic Programming

We now briefly describe the algorithmic usage of lower bounds MEGSO(k,R)
and upper bounds MEGS(k,R) in case we are not able to solve the full
stochastic problem (1).

Among the S available scenarios, we fix R reference scenarios (1 ≤ R < S)
and we construct lower bounds on the original RP problem by solving smaller
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subproblems by choosing, among the K = S − R scenarios, subgroups of
cardinality k. We first fix a sufficiently small gap ε̄ > 0 and letting k = 1
we compute MEGSO(1, R) and MEGS(1, R). We know, from Theorem 3.1
that, for a fixed R, MEGSO(k,R) can only increase when k increases. There-
fore, parameter k is iteratively increased as long as ε = MEGS(k,R) −
MEGSO(k,R) ≥ ε̄, the subproblems are small enough to be able to com-
pute the corresponding lower and upper bounds in a finite CPU time γ̄ < +∞
(CPU(MEGSO(k,R)) < γ̄ ∧ CPU(MEGS(k,R)) < γ̄). We introduce a
boolean variable out of memory = False/True to control the memory in
the algorithm. This process is stopped when parameter k reaches a certain
value k such that the prescribed tolerance is obtained: ε = MEGS(k̄, R) −
MEGSO(k̄, R) = ε̄. If ε̄ = 0 then MEGS(k̄, R) = MEGSO(k̄, R) = RP .
The process to obtain lower and upper bounds on RP is summarized in Algo-
rithm 1. The procedure begins by initializing parameter k and ε (lines: 1 and
2). In the main loop (lines: 3 to 6), lower and upper bounds are updated until at
least one of the following conditions is observed: CPU(MEGSO(k,R)) = γ̄,
CPU(MEGS(k,R)) = γ̄, ε = ε̄, out of memory = True or, parameter k
reaches the value K.
It is important to realize that the value to which parameters R and k are
fixed greatly influences the overall numerical effort involved in Algorithm 1.
Higher is the number of reference scenarios R, lower is the number of group

subproblems to be solved, which is
(
S −R
k

)
. For large R, each group subprob-

lem will be more time consuming as R + k scenarios are included in each of
them. Therefore, a careful analysis should be applied to find the appropriate
value of reference scenarios R for the specific problem being solved.

Algorithm 1 Using MEGSO(k,R) and MEGS(k,R)
Require: S, R < S, K = S −R, ε̄, γ̄, out of memory = False
1: k = 1
2: ε = MEGS(k,R)−MEGSO(k,R)
3: while k < K ∧ CPU(MEGSO(k,R)) < γ̄ ∧ CPU(MEGS(k,R)) < γ̄ ∧ ε ≥
ε̄ ∧ out of memory = False do

4: k = k + 1
5: ε = MEGS(k,R)−MEGSO(k,R)
6: end while
7: return ε, MEGS(k,R), MEGSO(k,R)

7 Numerical Results

7.1 Problem description

This subsection presents a multistage stochastic mixed-integer transportation
problem adopted to test the bounds introduced before. We model the problem
according to the node formulation (3). This problem is inspired by a real case
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of gypsum replenishment in Italy, provided by the primary Italian cement pro-
ducer. The logistic system is organized as follows: a set F of suppliers, each
of them composed by a set of plants Of , f ∈ F (origins) located all around
Italy, has to satisfy the demand of gypsum of a set D of cement factories (des-
tinations) belonging to the same cement company producer. The demand d`j of
gypsum at cement factory j ∈ D at node ` of the scenario tree T is considered
as a stochastic parameter. Each stage of the scenario tree is represented by
a week. We assume a uniform fleet of vehicles with capacity q each and al-
low only full-load shipments. Shipments are performed by capacitated vehicles
which have to be booked in advance, before the demand is revealed. When the
demand becomes known, there is an option to discount vehicles booked but
not actually used. The cancellation fee is given as a proportion α, 0 ≤ α ≤ 1,
of the transportation costs tij per unit, so the transportation cost of each ve-
hicle from the supplier i to destination j is qtij if the vehicle is booked and
then used, or αqtij if the vehicle is booked, but later cancelled. If the quantity
shipped from the suppliers using the booked vehicles is not enough to satisfy
the demand, the residual vehicles are purchased from an external company at
higher prices bj , j ∈ D . The problem is to determine the number of vehicles
x`ij to book from each plant i ∈ Of , of each supplier f ∈ F , at each node
` ∈ T to replenish gypsum at cement factory j ∈ D in order to minimize the
total cost, given by the sum of the transportation costs tij from origin i to
destination j (including the discount α for vehicles booked but not used) and
the costs of extra-vehicles y`j purchased if necessary.
We assume the following notation. Sets:

F = {f : f = 1, . . . , F} , set of suppliers;

Of = {i : i = 1, . . . , Of} , set of plant locations of supplier f ∈ F ;

D = {j : j = 1, . . . , D} , set of destination plants;

N t = {` : ` = 1, . . . , `t} , set of ordered nodes of the tree at stage t = 1, . . . ,H,

where `t is the number of nodes at stage (week) t. Deterministic parameters:

tij , unit transportation costs of supplier i ∈ Of , f ∈ F to plant j ∈ D ;

bj , buying cost from an external source for plant j ∈ D ;

q , vehicle capacity;

gj , unloading capacity at the customer j ∈ D ;

vi , production capacity of supplier plant i ∈ Of , f ∈ F ;

ri , minimum requirement capacity of supplier plant i ∈ Of , f ∈ F ;

rf , minimum requirement capacity of supplier f ∈ F ;

lmax , fixed storage capacity at the destinations;

α , cancellation fee;

N 1 = {0} , root of the tree;

a(`) , ancestor of the node ` ∈ N t, t = 2, . . . ,H in the scenario tree.
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Stochastic parameters:

p` , probability of node ` ∈ N t, t = 1, . . . ,H;

d`j , demand of customer j at node ` ∈ N t, t = 2, . . . ,H.

Variables defined at each node of the scenario tree:

x`i(f)j ∈ N , number of vehicles booked from supplier i ∈ Of , f ∈ F ,

to plant j ∈ D , for ` ∈ N t, t = 1,. . . ,H − 1;

z`i(f)j ∈ N , number of vehicles actually used from supplier i ∈ Of , f ∈ F

to plant j ∈ D , for ` ∈ N t, t = 2,. . . ,H;

y`j ∈ R , volume of product to purchase from an external source

for plant j ∈ D , for ` ∈ N t, t = 2,. . . ,H;

l`j ∈ R , inventory level of the customer j at node ` :

l`j = l
a(`)
j + q

F∑
f=1

Of∑
i=1

z`i(f)j + y`j − d`j ` ∈ N t, j ∈ D , t = 1, . . . ,H .

The multistage mixed-integer linear risk-neutral stochastic model is formulated
as follows:

min

H−1∑
t=1

`t∑
`=1

p`

q F∑
f=1

Of∑
i=1

D∑
j=1

tijx
`
i(f)j

+

+

H∑
t=2

`t∑
`=1

p`

 D∑
j=1

bj y
`
j−(1−α)q

F∑
f=1

Of∑
i=1

D∑
j=1

tij

(
x
a(`)
i(f)j−z

`
i(f)j

) (48)
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subject to

q

F∑
f=1

Of∑
i=1

x`i(f)j ≤ gj , j ∈ D , ` ∈ N t, t 6= H (49)

l
a(`)
j + q

F∑
f=1

Of∑
i=1

z`i(f)j + y`j − d`j ≥ 0, j ∈ D , ` ∈ N t, t 6= 1 (50)

l
a(`)
j + q

F∑
f=1

Of∑
i=1

z`i(f)j + y`j − d`j ≤ lmax, j ∈ D , ` ∈ N t, t 6= 1 (51)

z`i(f)j≤x
a(`)
i(f)j , i ∈ Of , f ∈ F , j ∈ D , ` ∈ N t, t 6= 1 (52)

q

D∑
j=1

z`i(f)j ≤ vi, i ∈ Of , f ∈ F , ` ∈ N t, t 6= 1 (53)

q

D∑
j=1

z`i(f)j ≥ ri, i ∈ Of , k ∈ F , ` ∈ N t, t 6= 1 (54)

q
∑
i∈Of

D∑
j=1

z`i(f)j ≥ rf , f ∈ F , ` ∈ N t, t 6= 1 (55)

x`i(f)j ∈ N, i ∈ Of , f ∈ F , j ∈ D , ` ∈ N t, t 6= H (56)

y`j ≥ 0, j ∈ D , ` ∈ N t, t 6= 1 (57)

l0j = 0, j ∈ D (58)

z`i(f)j ∈ N, i ∈ Of , f ∈ F , j ∈ D , ` ∈ N t, t 6= 1. (59)

The first sum in the objective function (48) denotes the expected booking cost
of the vehicles, while the second sum represents the expected cost of recourse
actions, consisting of buying gypsum from external sources and canceling un-
wanted vehicles. Constraints (49) guarantee that the number of booked ve-
hicles is not greater than the gj/q, j ∈ D , inducing an upper bound on the
total number of booked vehicles. Constraints (50) and (51) ensure that the
j-customer’s storage levels are between zero and lmax. Constraints (52) guar-
antee that the number of vehicles serving supplier i is at most equal to the
number booked in advance and (53) implies that its production capacity vi is
not exceed. Constraints (54) ensure that the quantity of good delivered from
supplier plant i ∈ Of , f ∈ F is greater than a requirement capacity estab-
lished in the contract and the same in constraints (55) for supplier f ∈ F .
Finally, (56)–(59) define the decision variables of the problem.

7.2 Computational tests

This section presents computational tests on the bounds presented in Sec-
tions 3 and 4 applied to the transportation problem (48)–(59). We consider
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several multistage scenario trees defined by the user based on the historical
data of the demand d`j of customer j ∈ D at node `. In order to consider
larger trees, scenarios have been generated by sampling at each stage from a
uniform distribution in the interval [dminj , dmaxj ], j ∈ D where dminj and dmaxj

are respectively the minimum and maximum demand in the historical data,
respectively. Notice that bj , j ∈ D , is assumed to be greater than the fifth
largest transportation cost of the set of possible suppliers of plant j ∈ D . For
this purpose, we consider scenario trees of increasing size.

First we consider a scenario tree with 3 branches from the root, 3 from
each of the second-stage nodes, 3 from each of the third-stage nodes, 3 from
each of the fourth-stage and 2 from each of the fifth-stage resulting in S =
3× 3× 3× 2 = 54 scenarios and 94 nodes. Secondly we built a larger scenario
tree with 7 branches from the root, 6 from each of the second-stage nodes and
5 from each of the third-stage nodes resulting in S = 7×6×5 = 210 scenarios
and 260 nodes. Finally we construct a scenario tree with 7 branches from the
root, 6 from each of the second-stage nodes, 5 from each of the third-stage
nodes and 4 from each of the fourth-stage resulting in S = 7× 6× 5× 4 = 840
scenarios and 1100 nodes.

We use the three scenario trees of increasing size as benchmark instances to
evaluate the cost of optimal solutions obtained using lower and upper bound
measures. We refer to [25] for the data used in the simulation. The case-studies
considered are characterized by mixed-integer variables in all the stages.

We use Ampl environment along with the callable library of CPLEX 12.5.1.0
to solve the mixed integer problem derived from our case study.
All the computations have been done under the supercomputer PLX of the
High Performance Computing Department SCAI (SuperComputing Appli-
cations and Innovation) of CINECA, the largest computing center in Italy
(http://www.hpc.cineca.it/). PLX Architecture is an IBM Hybrid Cluster,
Processor type Intel Xeon Westmere @ 2.4 GHz, composed by 274 computing
nodes, each of them has 12 cores, 48 GB of RAM and 2 GPUs. Computing
cores are 3.288 with a total RAM of 14 TByte. Each computation uses a full
node with 12 cores and 47 GB of RAM.

Summary statistics of the adjusted problems derived for our test cases are
reported in Table 1.

S = 54 S = 210 S = 840
number of stages 5 4 5
number of nodes 94 260 1100
number of variables 66431 156105 685305
number of integer variables 63840 148320 652320
number of linear constraints 2591 140625 597375
CPU time (s) 12.6 52.3409 557.013

Table 1 Summary statistics of the three benchmark scenario trees respectively with 54,
210 and 840 scenarios.
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We arbitrarily choose the first R scenarios in the set of available scenarios
as fixed scenarios for all instances. Choosing alternative reference scenarios
can potentially change the values of bounds but not the monotonic chains.

Figures 2 and 3 provide results obtained by using formulas (9) and (43) re-
spectively applied to the multistage transportation problem with 54 scenarios.
Detailed results are reported in Tables 2, 3, 4, 5, 6 in the Annex.

Figure 2 shows lower and upper bounds on RP (MEGSO(k, 40) and
MEGS(k, 40), respectively), for an increasing number k (k = 1, . . . , 14) of free
scenarios (see the horizontal axis) and R = 40 fixed scenarios. The correspond-
ing percentage deviations from RP are reported in Table 5. Since the number
of reference scenarios R = 40 is high, the worst lower bound in the chain,
MEGSO(1, 40), is already very good, underestimating RP of only 0.83%. In-
creasing the group size R+k significantly improves the bounds, monotonically
reaching lower values of percentage deviation. Theorem 3.1 is then verified.

In terms of upper bounds Figure 2 shows MEGS(k, 40) for increasing
k = 1, . . . , 14. Each of black dots represents the minimum optimal value among
those obtained by solving the original stochastic program, using the optimal
first stage solution of each group subproblem MGR(Ψk, 40) defined in formula
(8). Results show that the worst upper bound in terms of percentage deviation
is given by MEGS(1, 40) overestimating the optimal value by 0.006% instead
of 2% of the classical EEV 1 (see second line of Table 7). Proposition 4.1 is
then verified. However MEGS(k, 40) = RP for k = 2, . . . , 14, which means
that among all the subproblems MGR(Ψk, 40) considered for the computation
of MEGS(k, 40), there exists at least one subproblem with an optimal first-
stage solution equal to an optimal first-stage solution of problem RP .

In terms of the algorithmic procedure described in Section 6, if the pa-
rameter ε̄ ≥ 0.8367 = ε = MEGS(1, 40) −MEGSO(1, 40), we can stop the
Algorithm already with k = 1. If we are not satisfied we can increase k until
we reach the desired tolerance.

Lower and upper bounds on RP for different values of R of fixed scenarios
are plotted in Figure 3. Grey dots refer to upper bounds MEGS(1, R) defined
in formula (43) with k = 1, grey empty dots to lower bounds MEGSO(3, R),
black dots to lower bounds MEGSO(2, R) and empty dots to MEGSO(1, R)
defined by formula (9) respectively with k = 3, k = 2 and k = 1. The cor-
responding percentage deviation from RP of lower bounds MEGSO(1, R),
MEGSO(2, R) and MEGSO(3, R) are reported in Tables 2, 3 and 4, re-
spectively for increasing values of complexity of calculation measured in CPU
seconds. For a fixed R, looking at the results vertically, MEGSO(k,R) im-
proves monotonically with the number k = 1, 2, 3 of free scenarios, as proved
in Theorem 3.1.
The monotonicity of MEGSO(k,R) with respect to the number R of fixed
scenarios proved in Theorem 3.2 is also satisfied (see also Figure 5 where
MEGSO(1, R) is plotted for an increasing number R (R = 500, . . . , 840) of
fixed scenarios for a larger tree with 840 scenarios). The worst lower bound is
given by MEGSO(1, 1) which underestimates the optimal value by 5.16% but
requires the lowest CPU time per subproblem (0.23 CPU seconds over 30 runs).
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Fig. 2 Lower and upper bounds MEGSO(k, 40) and MEGS(k, 40) applied to the multi-
stage transportation problem with 54 scenarios, for an increasing number k (k = 1, . . . , 14)
of free scenarios and R = 40 fixed scenarios. The monotonically nondecreasing behavior in
k with R fixed given by Theorem 3.1 is verified.

However MEGSO(1, 1) is a better lower bound than WS = 257317.60 <
257472.82 = MEGSO(1, 1). Increasing the group size R + k and keeping the
relative number of free scenarios fixed (for instance k = 1, 2, 3) significantly
improves the bounds, monotonically reaching lower values of percentage devi-
ation. Furthermore, the time required to solve the subproblems monotonically
increases with the dimension of each subproblem (R+ k) reaching the highest
value for the biggest scenario tree considered R+ k = 54.

Upper bounds on RP for the tree with 54 scenarios are reported in Tables
6 and 7. Results show that the worst upper bound in terms of percentage
deviation is given by MEGS(3, 1) overestimating the optimal value by 1.38%
instead of 2% of EEV 1. Notice that a monotonic behavior of MEGS(k,R)
in R does not occur. From Table 6 we observe that MEGS(1, R) = RP for
R = 44, . . . , 53. This means that among all the subproblems MGR(Ψk, 1) con-
sidered for the computation of MEGS(1, R), there exists at least one with
optimal first-stage solution equal to the optimal first-stage stochastic solution
of problem RP . However such approaches have a high computational cost, due
to the comparison of the objective function value of the full stochastic prob-
lem with first-stage solution fixed from each of the subproblems considered.
Finally, Table 7 shows the percentage deviation from RP (for the tree with
54 scenarios) of the Expected Value problem EV and of the Expected result
at stage t by using the Expected Value solution EEV t obtained by fixing the
stochastic variables until stage t to be equal to the expected value solution.
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Fig. 3 Bound measures reported in Tables 2, 3, 4 and 6 for the multistage transporta-
tion problem with 54 scenarios, for an increasing number R (R = 1, . . . , 53) of fixed
scenarios. Grey dots refer to upper bounds MEGS(1, R), grey empty dots to lower
bounds MEGSO(3, R), black dots to lower bounds MEGSO(2, R), and empty dots to
MEGSO(1, R). The monotonically nondecreasing behaviors given by Theorems 3.1 and 3.2
are verified.

Results show that upper bounds EEV t, t = 2, 3, 4 are infeasible since too
many variables are fixed to their deterministic solution values. Similar results
are obtained also for larger scenario trees.
Figure 4 reports lower bounds MEGSO(k, 190) applied to the multistage
transportation problem with 210 scenarios, for an increasing number k (k =
1, . . . , 20) of free scenarios and R = 190 fixed scenarios. The monotonically
nondecreasing behavior in k with R fixed given by Theorem 3.1 is again ver-
ified. The worst lower bound is given by MEGSO(1, 190) obtained solving
20 subproblems composed by 191 scenarios instead of 210. MEGSO(1, 190)
underestimates RP of 0.8367%.

8 Conclusions

We develop lower and upper bounds for general multistage linear stochastic
programs. This includes the case of stochastic multistage mixed integer linear
programs where the use of bounds can be of great help from a computational
point of view.

The general idea behind construction of the adopted bounds, is that for
every optimization problem of minimization type, lower bounds on the optimal
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Fig. 4 Lower bounds MEGSO(k, 190) applied to the multistage transportation problem
with 210 scenarios, for an increasing number k (k = 1, . . . , 20) of free scenarios and R =
190 fixed scenarios. The monotonically nondecreasing behavior in k with R fixed given by
Theorem 3.1 is verified.
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Fig. 5 Lower bound measures MEGSO(1, R), applied to the multistage transportation
problem with 840 scenarios, for an increasing number R (R = 500, . . . , 840) of fixed scenarios.
Theorem 3.2 is verified.
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value can be found by relaxation of constraints and upper bound to the optimal
value can be found by inserting feasible solutions.

We solve group subproblems using a subset of reference scenarios and a
subset of scenarios from the support. Chains of lower bounds, called Multistage
Expected value of the Group Subproblem Objective function MEGSO(k,R) are
built. MEGSO(k,R), is obtained by solving sets of group subproblems, less
complex than the original one, with k scenarios in each group and R fixed
scenarios and taking an expectation across scenario groups. MEGSO(k,R) is
monotonically nondecreasing in the cardinality of scenarios from the support
k with R fixed and monotonically nondecreasing in the number of reference
scenarios R with k fixed.

Tighter upper bounds are introduced by means of the Multistage Expecta-
tion of Group Subproblems MEGS(k,R) where the first stage solution is fixed
to an optimal one of a group subproblem and the expectation taken across
scenario groups.

The proposed approach has the important advantage to split a given prob-
lem into independent subproblems allowing to face problems where the linear
relaxations leave large optimality gaps, problems lacking special structure and
large scale multistage problems typically computationally complex and most
of the time not solvable by commercial solvers. The independent subproblems
structure may take advantage of parallel computations. Furthermore, the pro-
posed bounds allows to fix a large number of reference scenarios R, decreasing
the number of group subproblems to be solved and consequently the compu-
tational complexity of the procedure. The computational complexity of the
proposed lower and upper bounds with respect to the full stochastic problem
is discussed and the algorithmic use of MEGSO(k,R) and MEGS(k,R) is
provided.

For illustration, numerical results on a mixed-integer multistage trans-
portation problem have been presented.
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Table 2 Percentage deviation from RP of lower boundsMEGSO(1, R) (see fourth column),
with R fixed scenarios R = 1, . . . , 53 (second column) and cardinality of each subproblem
R + 1 (first column). In the third column are reported the number of subproblems to be
solved for each bound and relative CPU seconds per subproblem in the last column. Results
refer to the tree with 54 scenarios.

k + R R # subproblems % deviation from RP CPU s. per subproblem

2 1 53 - 5.161 0.236
3 2 52 - 5.013 0.315
4 3 51 - 4.954 0.428
5 4 50 - 4.837 0.520
6 5 49 - 4.777 0.646
7 6 48 - 4.667 0.735
8 7 47 - 4.606 0.925
9 8 46 - 4.427 1.115
10 9 45 - 4.359 1.385
11 10 44 - 4.191 1.510
12 11 43 - 4.109 1.707
13 12 42 - 3.933 1.792
14 13 41 - 3.852 1.943
15 14 40 - 3.682 2.128
16 15 39 - 3.568 2.183
17 16 38 - 3.391 2.284
18 17 37 - 3.289 2.630
19 18 36 - 3.136 2.743
20 19 35 - 3.076 2.898
21 20 34 - 2.927 2.943
22 21 33 - 2.849 2.988
23 22 32 - 2.713 3.121
24 23 31 - 2.615 3.305
25 24 30 - 2.467 3.491
26 25 29 - 2.393 3.635
27 26 28 - 2.240 4.014
28 27 27 - 2.167 4.046
29 28 26 - 2.034 4.163
30 29 25 - 1.956 4.424
31 30 24 - 1.830 4.255
32 31 23 - 1.719 4.387
33 32 22 - 1.585 4.969
34 33 21 - 1.481 5.358
35 34 20 - 1.342 5.011
36 35 19 - 1.268 4.966
37 36 18 - 1.153 5.025
38 37 17 - 1.106 5.101
39 38 16 - 1.017 5.157
40 39 15 - 0.938 5.373
41 40 14 - 0.830 5.493
42 41 13 - 0.764 5.353
43 42 12 - 0.663 5.689
44 43 11 - 0.611 5.643
45 44 10 - 0.514 5.636
46 45 9 - 0.453 5.101
47 46 8 - 0.349 5.124
48 47 7 - 0.297 5.206
49 48 6 - 0.235 5.241
50 49 5 - 0.191 5.306
51 50 4 - 0.113 5.252
52 51 3 - 0.073 5.548
53 52 2 - 0.045 5.684
54 53 1 0 5.757
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Table 3 Percentage deviation from RP of lower boundsMEGSO(2, R) (see fourth column),
with R fixed scenarios R = 1, . . . , 52 (second column) and cardinality of each subproblem
R + 2 (first column). In the third column are reported the number of subproblems to be
solved for each bound and relative CPU seconds per subproblem in the last column. Results
refer to the tree with 54 scenarios.

k + R R # subproblems % deviation from RP CPU s. per subproblem

3 1 1378 -3.995 0.432
4 2 1326 -3.874 0.580
5 3 1275 -3.839 0.787
6 4 1225 -3.747 0.891
7 5 1176 -3.711 1.095
8 6 1128 -3.626 1.269
9 7 1081 -3.589 1.522
10 8 1035 -3.440 1.674
11 9 990 -3.406 1.920
12 10 946 -3.279 2.050
13 11 903 -3.235 2.114
14 12 861 -3.101 2.198
15 13 820 -3.059 2.388
16 14 780 -2.930 2.455
17 15 741 -2.858 2.614
18 16 703 -2.724 2.770
19 17 666 -2.663 2.861
20 18 630 -2.542 2.957
21 19 595 -2.489 3.153
22 20 561 -2.352 3.289
23 21 528 -2.285 3.380
24 22 496 -2.157 3.518
25 23 465 -2.068 3.738
26 24 435 -1.926 3.827
27 25 406 -1.876 3.934
28 26 378 -1.746 4.076
29 27 351 -1.693 4.314
30 28 325 -1.583 4.381
31 29 300 -1.525 4.787
32 30 276 -1.420 4.825
33 31 253 -1.341 5.129
34 32 231 -1.228 5.461
35 33 210 -1.152 5.096
36 34 190 -1.032 5.103
37 35 171 -0.966 4.468
38 36 153 -0.862 4.606
39 37 136 -0.823 4.636
40 38 120 -0.751 4.709
41 39 105 -0.687 4.872
42 40 91 -0.602 4.775
43 41 78 -0.551 4.790
44 42 66 -0.466 4.877
45 43 55 -0.425 4.982
46 44 45 -0.348 5.055
47 45 36 -0.304 5.105
48 46 28 -0.217 5.156
49 47 21 -0.182 5.193
50 48 15 -0.137 5.294
51 49 10 -0.107 5.365
52 50 6 -0.060 5.471
53 51 3 -0.034 5.635
54 52 1 0 5.803
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Table 4 Percentage deviation from RP of lower boundsMEGSO(3, R) (see fourth column),
with R fixed scenarios R = 1, . . . , 51 (second column) and cardinality of each subproblem
R + 1 (first column). In the third column are reported the number of subproblems to be
solved for each bound. Results refer to the tree with 54 scenarios.

k + R R # subproblems % deviation from RP

4 1 23426 -3.528
5 2 22100 -3.418
6 3 20825 -3.390
7 4 19600 -3.306
8 5 18424 -3.277
9 6 17296 -3.201
10 7 16215 -3.171
11 8 15180 -3.032
12 9 14190 -3.000
13 10 13244 -2.940
14 11 12341 -2.877
15 12 11480 -2.813
16 13 10660 -2.670
17 14 9880 -2.550
18 15 9139 -2.488
19 16 8436 -2.369
20 17 7770 -2.319
21 18 7140 -2.210
22 19 6545 -2.153
23 20 5984 -2.024
24 21 5456 -1.968
25 22 4960 -1.850
26 23 4495 -1.773
27 24 4060 -1.639
28 25 3654 -1.592
29 26 3276 -1.472
30 27 2925 -1.424
31 28 2600 -1.322
32 29 2300 -1.269
33 30 2024 -1.174
34 31 1771 -1.107
35 32 1540 -1.011
36 33 1330 -0.951
37 34 1140 -0.847
38 35 969 -0.790
39 36 816 -0.696
40 37 680 -0.663
41 38 560 -0.606
42 39 455 -0.558
43 40 364 -0.489
44 41 286 -0.443
45 42 220 -0.367
46 43 165 -0.329
47 44 120 -0.264
48 45 84 -0.228
49 46 56 -0.157
50 47 35 -0.127
51 48 20 -0.094
52 49 10 -0.064
53 50 4 -0.026
54 51 1 0

Table 5 Percentage deviation from RP of lower boundsMEGSO(k, 40) (see fourth column)
and MEGS(k, 40) (see fifth column) with 40 fixed scenarios (second column) and k free
scenarios where k = 1, . . . , 14. The cardinality of each subproblem is 40 + k (first column).
In the third column the number of subproblems to be solved for each bound is reported.
Results refer to the tree with 54 scenarios.

k + R R # subproblems MEGSO(k, 40) % deviation from RP MEGS(k, 40) % deviation from RP

41 40 14 -0.83 0.006
42 40 91 -0.60 0
43 40 364 -0.48 0
44 40 1001 -0.40 0
45 40 2002 -0.33 0
46 40 3003 -0.28 0
47 40 3432 -0.23 0
48 40 3003 -0.19 0
49 40 2002 -0.15 0
50 40 1001 -0.12 0
51 40 364 -0.09 0
52 40 91 -0.05 0
53 40 14 -0.02 0
54 40 1 0 0
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Table 6 Percentage deviation from RP of upper bounds MEGS(1, R) (see fourth column),
with R fixed scenarios R = 1, . . . , 53 (second column) and cardinality of each subproblem
R+ 1 (first column). Results refer to the tree with 54 scenarios.

k + R R % deviation from RP CPU seconds

2 1 1.33 303.51
3 2 1.03 290.85
4 3 1.38 272.07
5 4 1.27 268.11
6 5 1.33 277.83
7 6 1.23 262.96
8 7 1.23 248.63
9 8 1.27 244.29
10 9 1.27 235.68
11 10 1.37 239.67
12 11 1.36 225.73
13 12 1.31 208.68
14 13 1.20 205.19
15 14 1.21 207.13
16 15 1.14 200.46
17 16 1.25 198.97
18 17 0.84 196.18
19 18 0.39 201.48
20 19 0.68 186.41
21 20 0.63 180.63
22 21 0.63 168.57
23 22 0.54 174.11
24 23 0.66 156.20
25 24 0.38 152.79
26 25 0.20 146.59
27 26 0.17 142.096
28 27 0.14 137.96
29 28 0.14 128.03
30 29 0.14 132.14
31 30 0.14 139.41
32 31 0.14 116.12
33 32 0.006 113.61
34 33 0.005 103.95
35 34 0.01 100.98
36 35 0.01 98.21
37 36 0.01 88.66
38 37 0.01 84.63
39 38 0.004 79.79
40 39 0.004 73.99
41 40 0.004 69.24
42 41 0.004 64.57
43 42 0.017 58.65
44 43 0.017 54.47
45 44 0 49.35
46 45 0 42.93
47 46 0 37.40
48 47 0 33.05
49 48 0 28.66
50 49 0 23.67
51 50 0 18.90
52 51 0 14.64
53 52 0 9.42
54 53 0 5.8

Table 7 Percentage deviation from RP of the Expected Value problem EV and of the
Expected result at stage t by using the Expected Value solution EEV t. Results refer to the
tree with 54 scenarios.

% deviation from RP

EV -5.24
EEV 1 2
EEV 2 ∞
EEV 3 ∞
EEV 4 ∞


