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Abstract The explicit consideration of uncertainty is essential in address-
ing most planning and operation issues encountered in the management of
complex systems. Unfortunately, the resulting stochastic programming formu-
lations, integer ones in particular, are generally hard to solve when applied
to realistically-sized instances. A common approach is to consider the sim-
pler deterministic version of the formulation, even if it is well known that the
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solution quality could be arbitrarily bad. In this paper, we aim to identify
meaningful information, which can be extracted from the solution of the de-
terministic problem, in order to reduce the size of the stochastic one. Focusing
on two-stage formulations, we show how and under which conditions the re-
duced costs associated to the variables in the deterministic formulation can be
used as an indicator for excluding/retaining decision variables in the stochastic
model. We introduce a new measure, the Loss of Reduced Costs-based Variable
Fixing (LRCVF ), computed as the difference between the optimal values of
the stochastic problem and its reduced version obtained by fixing a certain
number of variables. We relate the LRCVF with existing measures and show
how to select the set of variables to fix. We then illustrate the interest of the
proposed LRCVF and related heuristic procedure, in terms of computational
time reduction and accuracy in finding the optimal solution, by applying them
to a wide range of problems from the literature.

Keywords Stochastic programming · value of stochastic solution · skeleton
solution · reduced costs based variable fixing solution · expected value
solution.

1 Introduction

The explicit consideration of uncertainty is essential in addressing most man-
agement problems, particularly for the planning and operations of complex
systems in transportation, logistics, finance, marketing, energy, health care,
production, to name but a few important areas (Prékopa, 1995; Kall and Wal-
lace, 1994; Gaivoronski, 2005; Birge and Louveaux, 2011; King and Wallace,
2012).

Two-stage stochastic programs offer a classical modelling framework for
those problems, strategic and tactical planning formulations, see in particu-
lar Birge and Louveaux (2011). In such programs, the first stage groups all
decisions to be implemented before the realization of the random variables
representing the stochastic parameters of the problem. In the second stage,
all random information becomes known and a set recourse actions are taken
to adjust the decisions made in the previous stage. The two-stage stochas-
tic model then optimizes (without loss of generality, we use minimization in
the following) a total system cost combining the cost of the first stage deci-
sions, plus the expected cost of the recourse over all possible realizations of
the random variables (the developments in this paper may be extended to the
multistage case, but for simplicity of presentation we focus on the two-stage
case).

Stochastic programs, in particular stochastic integer ones, are known to be
generally very difficult, if not close to impossible, to address for realistically-
sized instances. A formulation approximating the original stochastic model is
then often used. This approximation generally takes the form of a determinis-
tic formulation, such as the expected-value problem, obtained by replacing the
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random parameters with their expected values (or with other single-point fore-
cast) or the extensive form of the equivalent deterministic problem obtained
through sampling of a finite number of scenarios (Birge and Louveaux, 2011).
Due to its generally very large dimensions produced by the scenario approxi-
mation, the latter is generally not much easier to address than the stochastic
one, particularly for formulations involving integer-valued decision variables.
As for the former, it is known that the use of single-point forecasts can lead
to finding arbitrarily bad solutions when compared to the optimal solution of
the stochastic program, e.g., (Lium et al., 2009).

But what insights can be derived from an optimal expected-value solution
even if its single-point forecast defines an inaccurate estimator of the stochastic
parameters of the considered problem? Specifically, two important questions
then arise: 1) what can be inferred about the optimal stochastic solution from
this optimal deterministic solution even when it is not of high quality and 2)
can we use this information to reduce the computational effort of the stochastic
program without affecting the stochastic solution quality?

We proceed in two steps: the first aims to achieve a deeper understanding
of the relation between the expected-value and the stochastic solutions. What
could be identified as “inherited” from the former to the latter? Can we identify
a subset of variables with zero value in the deterministic solution to fix at zero
in the stochastic formulation in order to guide the search toward the optimal
stochastic solution? In the affirmative, are the reduced costs of the optimal
solution of the (continuous relaxation of, in the case of integer formulations)
deterministic problem a good estimation of bad/good variables to include into
the stochastic solution? Can we infer a general trend from the several cases
considered or is the behavior of the deterministic solution problem dependent?

To achieve these goals, we introduce the Loss of Reduced Costs-based Vari-
able Fixing LRCVF, a measure of the badness/goodness of deterministic so-
lutions based on the information offered by the reduced costs of the solution
of the (continuous relaxation of the) deterministic formulation. We relate LR-
CVF to other measures present in the literature, the Value of the Stochastic
Solution (VSS ) (Birge, 1982) and the Loss Using the Skeleton Solution (LUSS)
(Maggioni and Wallace, 2012). We then show experimentally that the LRCVF
helps to identify the “good” variables that the stochastic solution should in-
herit from the expected-value deterministic solution and thus, provides better
insights into what defines the structure of the solution to the stochastic pro-
gramming model than VSS and LUSS.

We analyze, in the second step, the general trends observed during the
Step 1 of the experimental campaign. This analysis aims to identify how the
reduced costs associated to the non basic variables in the expected-value deter-
ministic solution can be used to guide the selection of the variables to exclude
from the stochastic formulation, making it solvable for larger instances, while
preserving the quality of the final solution. The skeleton of a first heuristic pro-
cedure implementing the hints provided by this analysis is then experimentally
evaluated on a large set of problems from the literature, including some large-
sized stochastic Traveling Salesman Problem (TSP) instances (Ahmed et al.,
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2015). The results illustrate the performance and interest of LRCVF and the
heuristic idea.

To sum up, the main contributions of this paper are to:

1. Provide a more comprehensive understanding of the structure of the opti-
mal solution of two-stage stochastic problems and its links to the optimal
solution of the expected-value corresponding deterministic version (its lin-
ear relaxation for integer formulations);

2. Define LRCVF, a new measure of goodness/badness of the deterministic
solution with respect to the stochastic formulation;

3. Show, using LRCVF, how the reduced costs in the deterministic solution
lead, under certain conditions, to the identification of the variables to re-
tain/exclude in the stochastic solution;

4. Show, by means of an extensive experimental campaign, the interest of the
proposed LRCVF, and how the reduced-costs rules may yield a heuristic
effective in terms of computational time reduction and accurate in the
approximation of the optimal solution.

5. Define new and more realistic standard benchmark for Stochastic Program-
ming. It should be noted that our experimental campaign was conducted
using the instances available in the SIPLIB library. In addition, numeri-
cal tests were also conducted using a set of larger stochastic programming
problems that represent more realistic settings. These additional instances
have been added to the SIPLIB library to complement the overall bench-
mark set available to the stochastic programming community.

The paper is organized as follows. The problem statement and literature re-
view are presented in Section 2, while Section 3 defines the LRCVF measure.
The experimental plan is described in Section 4, including how we use LR-
CVF and the problems and formulations considered in the experimentation.
Numerical results are presented and analyzed in the same section. We sum up
the highlights and general trends observed from this experiments in Section
5. Given the trends identified, we derive and algorithmic procedure based on
LRCVF and we test it on a wide set of highly combinatorial instances taken
from the literature. We conclude in Section 6.

2 Literature Review and Problem Statement

We focus our brief literature review on the characterization of the solutions
of deterministic versions of stochastic formulations in relation to the solutions
to the latter. A main concern is the identification of structures that might
migrate from the deterministic solution to the stochastic one.

As already mentioned, stochastic programs, in particular integer ones, are
generally very difficult to address for realistically-sized instances. Bounding
techniques are therefore quite useful in practice, and several approaches and
bounds on the optimal objective-function value have thus been proposed.

The standard measure of the expected gain from solving a stochastic model
rather than its deterministic counterpart is given by the Value of the Stochastic
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Solution, (VSS ) (Birge (1982); Maggioni and Wallace (2012); Escudero et al.
(2007)), computed by comparing the solution values of the stochastic and
expected-value deterministic variants of the problem. A high VSS indicates
that stochastic programming models are necessary despite the computational
efforts involved.

Other approaches (e.g., Frauendorfer (1988); Hausch and Ziemba (1983);
Huang et al. (1977a,b)) generalize the Edmundson-Madansky inequality (Madan-
sky (1960)) for upper bounding and Jensen’s inequality (Jensen (1906)) for
lower bounding. Bounds have been proposed in Birge (1985) and Rosa and
Takriti (1999) by aggregating constraints and variables in the extensive-form,
while bounds based on the barycentric approximation scheme are investi-
gated in Kuhn (2005). Bounds for convex multistage stochastic programs have
been extensively elaborated in Kuhn (2008) by means of an integrated stage-
aggregation and space-discretization. Other bounds for multistage linear pro-
grams have been analyzed in Maggioni et al. (2014a) by means of measures
of information, measures of quality of the expected value solution, and rolling
horizon measures. Maggioni and Pflug (2016) also provides bounds and ap-
proximations for multistage convex problems with concave risk functionals as
objective. Maggioni et al. (2016) proposed a bounding approach, extending
that of Birge (1982); Maggioni et al. (2014a) and Sandıkçı et al. (2013), which
works for multistage stochastic mixed integer linear programs. The latter con-
siders an alternative way of forming sub-problems and merging their results,
with the significant advantage of dividing a given problem into independent
sub-problems, which may take advantage of parallel-machine architectures.
Worst-case analysis of approximated solutions in a stochastic setting has been
performed in Bertazzi and Maggioni (2015) for a capacitated traveling sales-
men location problem and in Bertazzi and Maggioni (2017) for a fixed charge
transportation problem.

The main drawback of all these methodologies is that they measure, in
different ways, the quality of the approximating solution in terms of objective-
function values, but they do not provide any information on the structure of
the stochastic solution. An open research question is then the following: can we
learn from an approximating formulation solution, irrespective of its quality,
measured in terms of objective function value?

It is well known that, in general, the expected-value solution can behave
very badly in a stochastic environment. The structural differences between the
two solutions within the context of particular combinatorial optimization prob-
lems have been studied in Lium et al. (2009); Thapalia et al. (2011, 2012a,b);
Wang and Wallace (2016), observing both the general bad behavior of the
expected value solution and hinting that some structures from the determin-
istic solution find their way into the stochastic one. An approach proposed
in the literature to assess the value of a given solution is to approximate its
relative gap to the optimum value of the stochastic problem. For example, a
Monte Carlo sampling-based procedure was proposed in Mak et al. (1999) and
Bayraksan and Morton (2006). Escudero et al. (2007) proposed to use the



6 Teodor G. Crainic et al.

expected value solution in a multistage setting by solving subsets of scenarios
and testing the obtained solution in a dynamic way.

However, from all these experiments, it is still generally not clear where
the badness of the expected value solution comes from: is it because the wrong
variables are fixed at non-zero levels or because they have been assigned wrong
values?

An attempt to answer this question has been proposed in Maggioni and
Wallace (2012). Starting from the solution of the expected value problem, it
assesses whether 1) the deterministic model produced the right non-zero vari-
ables, but possibly was off on the values of the basic variables; and 2) the
deterministic solution is upgradable to become good (if not optimal) in the
stochastic setting. The resulting measures, called Loss Using the Skeleton So-
lution (LUSS) and the Loss of Upgrading the Deterministic Solution (LUDS)
in Maggioni and Wallace (2012) (see Maggioni et al., 2014a, for the extension
to the multistage setting), are obtained by restricting the values of the first
stage variables based on the solution of the expected-value problem. LUSS is
obtained by fixing at zero (or at the lower bound) the first stage variables
which are at zero (or at the lower bound) in the expected value solution (i.e.,
for linear programs, the non basic variables), solving the stochastic program,
and contrasting it to the solution of the original stochastic model. LUDS is
measured by first solving a restricted stochastic model obtained by fixing the
lower bound of all variables to their corresponding values in the expected value
solution, and contrasting it to the solution of the original stochastic model.
Unfortunately, this approach leads to suboptimal solutions, in particular when
large combinatorial stochastic problems must be solved. We compare in our
experimental-results section the performance of LRCVF, the new measure we
propose, to that of LUSS and LUDS.

Notice also that, approaches were proposed in the literature on determin-
istic combinatorial optimization to fix to zero the largest part of the non
basic variables in the continuous relaxation of the problem in order to reduce
the computational time (Angelelli et al., 2010; Perboli et al., 2011). Then, to
identify the appropriate core set of non basic variables to be included in the
restricted problem, the search is performed starting from the ones with the
smallest reduced cost Perboli et al. (2011).

One may conclude from this brief review of previous work that a systematic
way to identify the structure of the stochastic solution out of the expected-
value deterministic one is still missing. The goal of this paper is to fill this
gap providing a tool to analyze and compare the expected value solution with
respect to the stochastic one. In the next section, we introduce the concepts
and a procedural way to compute the Reduced Costs-based Variable Fixing
(RCVF ) and the Loss of Reduced Costs-based Variable Fixing (LRCVF ). LR-
CVF will provide the means to investigate, even in the case of a large VSS,
what can be inherited from the structure of the expected value solution in
its stochastic counterpart, by taking into account the information on reduced
costs associated to the variables at zero (or lower bound) in the expected value
solution.
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3 The Value of Variable Fixing

We first define the standard notation used in this paper, and then move to
introduce RCVF and LRCVF.

3.1 Notation and definitions

The following mathematical model represents a general formulation of a stochas-
tic program in which a decision maker needs to determine x in order to min-
imize (expected) costs or outcomes (Kall and Wallace, 1994; Birge and Lou-
veaux, 2011):

min
x∈X

Eξz (x, ξ) = min
x∈X

{
f1(x) + Eξ [h2 (x, ξ)]

}
, (1)

where x is a first-stage decision vector restricted to the set X ⊆ Rn+, with Rn+
is the set of non negative real vectors of dimension n, and Eξ stands for the

expectation with respect to a random vector ξ, defined on some probability
space (Ω,A , p) with support Ω and given probability distribution p on the
σ−algebra A . The function h2 is the value function of another optimization
problem defined as

h2 (x, ξ) = min
y∈Y (x,ξ)

f2 (y;x, ξ) , (2)

which is used to reflect the costs associated with adapting to information
revealed through a realization ξ of the random vector ξ. The term Eξ [h2 (x, ξ)]

in (1) is referred to as the recourse function. We make the assumption in this
paper that functions f1 and f2 are linear in their unknowns. The solution x∗

obtained by solving problem (1), is called the here and now solution and

RP = Eξz(x
∗, ξ), (3)

is the optimal value of the associated objective function.
A simpler approach is to consider the Expected Value Problem, where the

decision maker replaces all random variables by their expected values and
solves a deterministic program:

EV = min
x∈X

z(x, ξ̄), (4)

where ξ̄ = E(ξ). Let x̄(ξ̄) be an optimal solution to (4), called the Expected
Value Solution and let EEV be the expected cost when using the solution
x̄(ξ̄):

EEV = Eξ
(
z
(
x̄(ξ̄), ξ

))
. (5)

The Value of the Stochastic Solution is then defined as

V SS = EEV −RP, (6)
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measuring the expected increase in value when solving the simpler determin-
istic model rather than its stochastic version. Relations and bounds on EV ,
EEV and RP can be found for instance in Birge (1982) and Birge and Lou-
veaux (2011).

Let J = {1, . . . , J} be the set of indices for which the components of the
expected value solution x̄(ξ̄) are at zero or at their lower bound (non basic
variables). Then let x̂ be the solution of:

minx∈X Eξz (x, ξ)

s.t. xj = x̄j(ξ̄), j ∈ J . (7)

We then compute the Expected Skeleton Solution Value

ESSV = Eξ (z (x̂, ξ)) , (8)

and we compare it with RP by means of the Loss Using Skeleton Solution

LUSS = ESSV −RP. (9)

A LUSS close to zero means that the variables chosen by the expected value
solution are the correct ones but their values may be off. We have:

RP ≤ ESSV ≤ EEV, (10)

and consequently,

V SS ≥ LUSS ≥ 0. (11)

Notice that the case LUSS = 0 corresponds to the perfect skeleton solution
in which the condition xj = x̄j(ξ̄), j ∈ J , is satisfied by the stochastic solution
x∗ even without being enforced by a constraint (i.e., x̂ = x∗); on the other
hand, if there exists j ∈ J such that x∗j 6= x̄j(ξ̄) in any optimal stochastic
solutions x∗, then 0 < LUSS < V SS. Finally, one observes LUSS = V SS, if
the x̂ = x̄(ξ̄).

3.2 Defining the LRCVF

We now define RCVF and LRCVF, together with a procedural way to compute
them.

Let R = {r1, . . . , rj , . . . , rJ} be the set of reduced costs, with respect to the
recourse function, of the components x̄j(ξ̄), j ∈ J , of the expected-value so-
lution x̄(ξ̄) at zero or at their lower bound (i.e., non basic variables). We recall
that a reduced cost is the amount by which an objective function coefficient
would have to improve (increase, for maximization problems and decrease for
minimization ones) before it would be possible for the corresponding variable
to assume a positive value in the optimal solution and become a basis vari-
able. Since the reduced costs of all basis variables (also the ones at the related
upper bounds) are zero, they will be not fixed. In the following, we make the
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assumption that in the case of a problem with first stage integer variables, we
compute the reduced costs on the continuous relaxation.

Let rmax = maxj∈J {rj : rj ∈ R} and rmin = minj∈J {rj : rj ∈ R}
be respectively the maximum and the minimum of the reduced costs of the
variables x̄j(ξ̄), j ∈ J . We divide the difference rmax − rmin into N classes

R1, . . . ,RN of constant width rmax−rmin

N such that the p−class is defined as
follows

Rp=

{
rj :rmin+(p− 1)· (r

max−rmin)

N
≤rj≤rmin+p · (rmax−rmin)

N

}
, (12)

with p = 1, . . . , N . Let Jp be the set of indices associated to the variables
x̄j(ξ̄) with reduced costs rj ∈ Rp. Then let x̃p be the solution of

minx∈X Eξz (x, ξ)

s.t. xj = x̄j(ξ̄), j ∈ Jp, . . . ,JN , (13)

where we fix at zero or lower bounds only the variables with indices belonging
to the last p classes Jp, . . . ,JN , i.e., with the highest reduced costs.

We then compute the Reduced Costs-based Variables Fixing

RCV F (p,N) = Eξ (z (x̃p, ξ)) , p = 1, . . . , N, (14)

and we compare it with RP by means of the Loss of Reduced Costs-based
Variable Fixing

LRCV F (p,N) = RCV F (p,N)−RP , p = 1, . . . , N. (15)

Notice that RCV F (1, N) = ESSV and consequently LRCV F (1, N) =
LUSS.

Furthermore, considering that both RCV F and LRCV F are defined on
the basis of restricting only a subset of the N classes that partition the non
basic variables according to their respective values, these boundsRCV F (p,N),
p = 1, . . . , N can be improved (as is clearly stated in the two propositions
that will follow). Also, as will be described in the subsequent section of this
paper, by varying the values of parameters p and N , a systematic search can
be performed to both assess the quality of the obtained bounds and inferring
what the actual restriction to be applied on the overall stochastic model should
be. We now prove that the following inequalities hold true:

Proposition 3.1 For a fixed N ∈ N\ {0, 1} (where N is the set of natural
numbers),

LRCV F (p,N) ≥ LRCV F (p+ 1, N) , p = 1, . . . , N − 1. (16)

Proof
Any feasible solution of problem RCV F (p,N) is also a solution of problem
RCV F (p+1, N), since the former is more restricted than the latter, and so, the
relation (16) holds true. If LRCV F (p,N) =∞, the inequality is automatically
satisfied. ut
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Proposition 3.2 For a given N ∈ N\ {0} and a fixed p ∈ N\ {0} such that
p = 1, . . . , N ,

LRCV F (p,N + 1) ≥ LRCV F (p,N). (17)

Proof
If p = 1 then LRCV F (p,N + 1) = LRCV F (p,N) = LUSS. Furthermore,
any feasible solution of problem RCV F (p,N + 1) is also a solution of problem
RCV F (p,N), since the former is more restricted than the latter, and so,
the relation (17) holds true. If LRCV F (p,N + 1) = ∞, the inequality is
automatically satisfied. ut

The two previous properties can be generalized in the following corollary:

Corollary 3.1 For given N1, N2 ∈ N\ {0} and p1, p2 ∈ N\ {0}, with p1 =
1, . . . , N1, p2 = 1, . . . , N2 and such that p1

N1
≤ p2

N2

LRCV F (p1, N1) ≥ LRCV F (p2, N2). (18)

Proof
If p1 = p2 = 1 then LRCV F (p1, N1) = LRCV F (p2, N2) = LUSS. Fur-
thermore, if p1

N1
≤ p2

N2
then the number of variables at zero with highest re-

duced cost to be fixed is respectively N1−p1
N1
|R| ≥ N2−p2

N2
|R|. Consequently

RCV F (p1, N1) is more restricted than RCV F (p2, N2), and the relation (18)
holds true. ut

Notice that, variables are unbounded in the minimization problem setting
considered (1). One might, however, consider problem settings where the vari-
ables have limited upper bounds. In these cases, non basic variables might be
at zero (or at their lower bound values) with positive reduced cost or at their
upper bounds with negative reduced costs (Ahuja et al., 1993). The variable
fixing procedure we propose implicitly considers this case, as non basic vari-
ables at their upper bounds correspond, due to their negative reduced costs,
to the sets Rp with the lowest reduced cost values. Therefore, such variables
are unlikely to be fixed to 0 by the procedure.

LRCVF measures how much we lose in terms of solution quality when we
consider the reduced costs-based variable fixing solution. But how can one use
it in order to analyze and derive the structure of the stochastic solution? How
should we choose the number of classes N and p? We answer these questions in
the following sections, by presenting a procedure using LRCVF and applying
it to a wide set of problems from the literature.

4 Experimental Plan and Results

This section describes the experimental plan and the instance sets considered.
Our goal is to assess the validity of LRCVF for extracting information about
the skeleton of the stochastic solution from the reduced costs of the expected-
value solution (or its linear relaxation for integer formulations). We therefore
performed an experimental analysis to explore the behavior of RCVF and
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LRCVF, compared to LUSS, while varying the values of p and N , according
to three axes:

– Computational effort. What number of variables can we fix in order to
drastically reduce the effort of the stochastic solution computation?

– Feasibility. What are the effects of fixing a subset of the variables from
the expected-value solution with regards to the feasibility of the stochastic
model?

– Optimality. How to use the LRCVF to find an optimal or near optimal
stochastic solution?

We used instances corresponding to stochastic optimization models related
to three real-case applications: a single-sink transportation problem, a power
generation scheduling case, and a supply transportation problem. All numeri-
cal experiments were conducted on a 64-bit machine with 12 GB of RAM and
a Intel Core i7-3520M CPU 2.90 GHz processor, using CPLEX 12.5 as MIP
solver.

Section 4.1 presents our methodology for computing the two measures,
including a proposed approach to set up the number of classes N and the class
parameter p of LRCV F (p,N). Section 4.2 gives a short description of the test
instances, while computational results are discussed in Section 4.3.

4.1 Computing RCVF and LRCVF

We computed V SS, LUSS and LRCV F (p,N) for each instance set. The
optimal solutions of the stochastic formulations were either taken from the
literature, when available, or computed, otherwise. We now briefly describe the
procedure we developed, which can be applied and extended to any stochastic
programming problem.

Recall that parameter N defines the number of classes, or sets, in which
the non basic variables of x̄(ξ̄) are grouped, and that these sets provide a
characterization of the variables with respect to their reduced costs. Thus,
the higher the value of N , the closer the reduced-cost values of the variables
included in each set. We therefore start by considering a rough characteri-
zation given by three classes, N = 3, where the non basic variables of x̄(ξ̄)
are included in a high, low or medium-range reduced-cost set. Finally, the
size of the “supply transportation” problem allowed us to test other values of
N (N = 3, 10, 50, 100) and to analyze the sensitivity of the results when N
increases.

For a given valueN , our objective while generating sets R1, . . . ,RN and the
partition of the variables J1, . . . ,JN , is to identify which non basic variables
of x̄(ξ̄) should be fixed in the stochastic model to produce an optimal, or
near-optimal, solution. To do so, the parameter p is first fixed to its upper
limit (i.e., p = N) to compute LRCV F (N,N). Parameter p is then iteratively
decreased by a value of one as long as the following condition is verified:
LRCV F (p,N) = LRCV F (p−1, N). In fact, from Property 3.1, we have that,
for a fixed N , LRCV F (p,N) can only increase when p decreases.
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4.2 Test instances

The instances used in this experimental phase are taken from the literature:

– Power generation scheduling based on an economic scheduling model for-
mulated in Williams (2013) and Garver (1962) as a deterministic mixed
integer program and extended in Maggioni and Wallace (2012) as a stochas-
tic optimization problem; Power generation scheduling involves the selec-
tion of generating units to be put into operation and the allocation of the
stochastic power demand among the units over a set of time periods;

– Supply transportation problem inspired by a real case of gypsum replen-
ishment in Italy, provided by the primary Italian cement producer. The
logistics system is organized as follows: 24 suppliers, each of them having
several plants located all around Italy, are used to satisfy the demand for
gypsum of 15 cement factories belonging to the same company; the de-
mands for gypsum at the 15 cement factories are considered stochastic;
See Maggioni et al. (2017) for more details.

In order to ensure the fluidity of the paper, the problem descriptions and
the two-stage models as reported in the literature are included in Annex A,
while their corresponding numerical data are summarized in Annex B. No-
tice that annexes A and B, include also the description and numerical results
of a Single-sink transportation problem, inspired by a real case of clinker re-
plenishment, provided by the largest Italian cement producer located in Sicily
(Maggioni et al., 2009).

4.3 Numerical results

We now present and analyze the results obtained by applying the LRCV F (p,N)
measure to the problems described above. We followed the procedure described
in 4.1, computing each time V SS, LUSS and LRCV F (p,N), p = 1, . . . , N .
Detailed solutions of the different instances for the first three test problems
may be found at: http://www.francescamaggioni.it/index.php?id=lrcvf.

4.3.1 The power generation problem

The power generation problem (PGP) (Annex A.2) selects power units of type
1 or 2 to operate and allocates the power demand among the selected units.
We run the model for 10 different instances with demand randomly generated
in the interval

[
dmin, dmax

]
, where dmin = 33 and dmax = 687 are respectively

the minimum and maximum demand observed in the historical data. The
number of scenarios is 20. Summary statistics of the adjusted problem derived
for our test case are reported in Table 1. Columns 3-4-5-6 display the total
number of variables and the total number of integer variables, respectively.
Notice that presolve eliminates 68 constraints and 2 variables.

Results are reported in Tables 2 and 3. The former reports the devia-
tions (in %) with respect to RP for V SS, LRCV F (p, 3), p = 1, . . . , 3, and
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Table 1 Summary statistics for the PGP

CPU time # simplex # variables # constraints
(ss) iterations 1-stage v. 2-stage v. Int. 1-stage v. Int. 2-stage v. ineq. eq.

0.015625 46 8 120 4 80 152 0

LRCV F (p, 4). The latter illustrates the discussion that follows with the re-
sults obtained for the first instance, displaying the first stage solutions of
generating units u2i , the number of started up generators s2i , total output rate
x2i (i ∈ I ) and the total cost.

Table 2 Results for the PGP (% deviation from RP )

Instance V SS LRCV F (p, 3) LRCV F (p, 4)
1 2 3 1 2 3 4

1 10.17 10.17 0 0 10.17 0 0 0
2 10.03 10.03 0 0 10.03 0 0 0
3 7.05 0 0 0 0 0 0 0
4 10.66 10.66 0 0 10.66 0 0 0
5 10.07 10.07 0 0 10.07 0 0 0
6 6.78 0 0 0 0 0 0 0
7 6.14 0 0 0 0 0 0 0
8 5.93 0 0 0 0 0 0 0
9 6.84 6.84 0 0 6.84 0 0 0
10 7.44 7.44 0 0 7.44 0 0 0
Mean 8.11 5.44 0 0 5.44 0 0 0

We evaluated the expected value solution under the mean scenario D̄ in
the stochastic model. As illustrated in the case of instance 1, Table 3, the
deterministic model closes down as many units as possible to simply cover
the considered demand, ending up with only four units of type 1. Because the
deterministic solution only keeps 4 units running, instead of the 8 (4 units
of type 1 and 4 of type 2) included in the stochastic solution, the associated
total cost reduces to 104 285 e compared to 117 927.5 e for the stochastic
counterpart. However, the 4 units working in the deterministic solution are
not enough to satisfy the high demand scenarios, yielding

V SS = 129 927.5− 117 927.5 = 12 000, (19)

causing a loss of 10.17% given the need to restart some units at the second
stage. We now investigate why the deterministic solution is bad by means of
LUSS and LRCVF.

According to the LUSS, we follow the skeleton solution from the deter-
ministic model and close the units of type 2 that are not required to satisfy the
deterministic demand. The stochastic model reacts by opening units of type 2
at the second stage at higher cost. As a consequence, the associated Expected
Skeleton Solution Value ESSV is the same as EEV and LUSS is V SS. It
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Table 3 Optimal solutions for different problem types for PGP instance 1

Problem type u21 u22 s21 s22 x21 x22 Objective value (e)
EV 4 0 0 0 300 0 104 285
RP 4 4 0 0 180 120 117 927.5
EEV 4 0 0 0 300 0 129 927.5
ESSV 4 0 0 0 300 0 127 877.5
RCV F (p,N) = RP , p = 2, . . . , N 4 4 0 0 180 120 117 927.5
RCV F (1, N) = ESSV 4 0 0 0 300 0 129 927.5

confirms that deterministic solution has a bad structure (required units for
the stochastic environment that are closed in the deterministic case).

Applying LRCV F (p,N) idea, the reduced costs of the decision variables
at zero in the skeleton solution from the deterministic model are computed.
It closes the units of type 2, u22 = 0, yielding x22 = 0, and do not start up any
generator, s2i = 0; thus ru2

2
= 500 and rs21 = 14000, rs22 = 16000 and rx2

2
= 50.

Let define rmax = rs22 = 16000 and rmin = rx2
2

= 50.

Notice that, since the number of variables at zero in the deterministic solu-
tion is 4, the maximum number of classes to consider is N = 4. We computed
two measures, dividing the difference rmax − rmin into N = 3 and N = 4
classes of constant width, respectively. With the two values of N we have that
LRCV F (p,N) = 0, with p ∈ {2, . . . , N}, while the percentage gap between
LRCVF and RP becomes 10.17 % when p = 1. It shows how the wrong choice
from the deterministic solution is in the selection of variable u22.

The results obtained on instances 3, 6, 7 and 8 show a different behavior
since LRCV F (1, N) = LUSS = 0 while the V SS is around 6.5% (Table
2). This means that, in these instances, the EV problem is able to identify
the appropriate structure in terms of zero and non-zero variables, but fails in
providing the correct first-stage non zero values.

In conclusion, the deterministic solution is bad because it tends to follow
in every period the market profile, thus closing units that could be needed in
the following time periods. However, we again obtain the optimal stochastic
solution by applying the new measure and procedure, that is, by following the
skeleton of the deterministic solution with highest reduced costs (i.e., do not
starting up any generator, s2i = 0).

4.3.2 The supply transportation problem

V SS, LUSS and LRCV F (p,N), p = 1, . . . , N were computed for the supply
transportation problem (STP) (Annex A.3), which identifies the number of ve-
hicles to book for each plant of each supplier, for the replenishment of gypsum
at minimum total cost. Data represents the first week of March 2014. We run
the model for 10 different instances with demand randomly generated in the
interval

[
dminj , dmaxj

]
, where dminj and dmaxj are the minimum and maximum
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demand observed in the historical data, respectively in destination j ∈ D (see
Table 5).

The number of scenarios is 48. Summary statistics of the adjusted problem
derived for our test case are reported in Table 4. Columns 3-4-5-6 display the
total number integer variables. Notice that in this problem all the decision
variables are integer, and presolve eliminates 1261 constraints.

Table 4 Summary statistics for the STP

CPU time # simplex # variables # constraints
(ss) iterations Int. 1-stage v. Int. 2-stage v. inequality equality

1.8125 9156 480 23760 23954 0

Table 5 Minimum and maximum observed demand (second and third columns) over all
the destinations j ∈ D . Fourth and fifth columns report the total number of booked vehicles
at each destination respectively in deterministic and stochastic solution. These values are
averaged and rounded over 10 instances

Demand Solution
Destination Minimum Maximum Deterministic Stochastic
j ∈ D dmin

j dmax
j

∑
k∈K

∑
i∈Ok

x̄ij
∑

k∈K

∑
i∈Ok

xij
1 27.45 298.43 6 9
2 202.01 1479.89 29 26
3 171.78 680.16 14 21
4 0 216.96 4 7
5 0 101.26 2 3
6 0 196.93 4 6
7 0 216.20 4 7
8 0 200.43 4 6
9 0 545.19 10 15
10 0 234.37 4 7
11 0 318.89 6 9
12 0 430.36 7 11
13 0 199.42 4 6
14 0 223.50 4 7
15 0 723.46 12 20

The cost values associated to the solutions of the deterministic, the EV
model (4), and stochastic formulations are reported in Table 6 for the 10 in-
stances. The deterministic model will always book the exact number of vehicles
x̄ij needed for the next period for each plant i ∈ Ok of supplier k ∈ K , to
destination j ∈ D ; it sorts the suppliers and their plants according to the
transportation costs and books a full production capacity from the cheapest
one, followed by the next-cheapest, and so on. As long as there is sufficient
transportation capacity, the model will never purchase extra gypsum from ex-
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ternal sources, i.e. yj = 0, ∀j ∈ D . The total cost then reduces to the booking
cost at the first stage.

The last two columns of Table 5 show the total number of booked vehicles
at each cement factory averaged and rounded over the 10 instances, for the
expected value solution and the optimal solution of the stochastic problem,
respectively.

The headings of Table 6 are as follows: Instance code in column 1; EV1 and
RP1 give in columns 2 and 3 the objective function terms (i.e., cost) related to
the first stage in the deterministic model and stochastic model, respectively;
EV and RP give in columns 4 and 5 the total cost of the solution of the
deterministic and stochastic models, respectively.

The deterministic model books much fewer vehicles than the stochastic one,
resulting in a solution costing only 83% of the stochastic counterpart (Table
6). The EEV is infeasible, however, resulting in V SS =∞, which shows that
the expected value solution is not appropriate in a stochastic setting.

Table 6 Optimal solution values for STP

Instance EV1 (e) RP1 (e) EV (e) RP (e)
1 79 709.30 123 673.00 79 709.30 95 738.53
2 76 768.80 119 626.00 76 768.79 93 468.32
3 77 386.50 121 147.00 77 386.50 93 297.18
4 74 332.00 122 054.00 74 332.00 90 734.68
5 76 101.30 119 638.00 76 101.30 93 014.14
6 75 066.10 118 657.00 75 066.10 91 661.99
7 76 992.00 119 004.00 76 992.00 94 066.06
8 78 859.30 123 980.00 78 859.30 94 306.65
9 75 111.80 119 033.00 75 111.80 91 966.36
10 80 344.30 123 781.00 80 344.30 96 296.00
Mean 77 067.14 121 059.35 77 067.14 93 454.99

Why is the deterministic solution bad? Is it because of an overly optimistic
guess on the randomness, leading to too few booked vehicles from the plants i ∈
Ok of suppliers K , or is it because of wrong choices being made regarding the
suppliers and plants? LUSS and LRCVF are used to answer these questions.

To compute the LUSS, we follow the skeleton solution from the deter-
ministic model, not allowing to book vehicles from the plants i ∈ Ok (for all
suppliers k ∈ K ), such that x̄ij(ξ̄) = 0, j ∈ D , in the expected value solu-
tion. The Expected Skeleton Solution Value ESSV is still infeasible and then,
the associated Loss Using the Skeleton Solution LUSS = ∞. Therefore, the
chosen suppliers and associated plants, derived from the solution to the de-
terministic model, are unsuited for the stochastic case. We can thus conclude
that the deterministic solution is inappropriate because a wrong number of
vehicles are booked from the wrong suppliers and plants.

We then turn to LRCV F (p,N) and analyze the reduced costs of the vari-
ables at zero in the deterministic solution, illustrated in Figure 1 for the first
instance. The range of reduced costs, from rmin = 131 to rmax = 683, is
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Fig. 1 Reduced costs of the variables at zero in the EV solution of STP instance 1

sufficiently broad to allow testing the sensitivity of the results with a large
number of classes N . We therefore divide the difference rmax − rmin = 552
into N = 3, 10, 50, 100, classes R1, . . . ,RN of constant width, respectively.
Results are reported in Tables 8, 9 and 10, respectively.

Contrary to the V SS and LUSS, LRCV F (p,N) is able to find optimal re-
sults when a limited subset of variables are fixed. In the case of LRCV F (p, 3),
for p = 1, 2, 3, the appropriate variables from the deterministic solution are

identified as the ones included in the last two classes (i.e.,
[
rmin + rmax−rmin

3 , rmax

]
),

considering that LRCV F (2, 3) = LRCV F (3, 3) = 0. On the other hand,
fixing at zero in the stochastic model all the variables at zero in the deter-
ministic solution yielding LRCV F (1, 3) = ∞. It should also be noticed that
LRCV F (p, 3), p = 2, 3 is able to replicate the optimal values of the stochastic
problem while reducing the computational effort by 50% when p = 3 and by
75% when p = 2; see Table 7.

More refined information on the wrong variables from the deterministic
solution is obtained by increasing the number of classes to N = 10, and
identifying the good variables to fix as the ones belonging to the classes in

the interval
[
rmin + 3(rmax−rmin)

10 , rmax
]
. These results are displayed in Ta-

ble 8. Furthermore, by also fixing the variables belonging to the interval[
2(rmax−rmin)

10 , 3(rmax−rmin)
10

]
, a nearly optimal solution can be obtained.

Adding class p = 2, results in LRCV F (2, 10) =∞ and consequently
LRCV F (1, 10) = ∞. As previously observed, LRCV F (4, 10) is able to repli-
cate the optimal values of the stochastic problem while reducing the compu-
tational effort by a significant margin (i.e., 80%), see Table 7.

Increasing the number of classes to N = 50, see Table 9, further refines
the information deduced from the deterministic-model solution regarding the
good variables to fix, as LRCV F (p, 50) = 0, with p = 15, . . . , 50. In terms of
the computational effort, the observed gains increase to 84% with p = 15. By
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Table 7 CPU time (seconds) and optimal objective values for the computation of EV , RP ,
LRCV F (p, 3), p = 1, . . . , 3 and LRCV F (p, 10), p = 1, . . . , 10, for the STP instance 1

Measure CPU time (ss) Objective value
EV 0.07 79 709.27
RP 3.07 95 738.53
LRCV F (3, 3) 1.49 95 738.53
LRCV F (2, 3) 0.74 95 738.53
LRCV F (1, 3) 0.14 ∞
Total LRCV F (p, 3) 2.24 −
LRCV F (10, 10) 1.79 95 738.53
LRCV F (9, 10) 1.80 95 738.53
LRCV F (8, 10) 1.48 95 738.53
LRCV F (7, 10) 1.35 95 738.53
LRCV F (6, 10) 1.29 95 738.53
LRCV F (5, 10) 0.92 95 738.53
LRCV F (4, 10) 0.60 95 738.53
LRCV F (3, 10) 0.39 95 744.87
LRCV F (2, 10) 0.14 ∞
LRCV F (1, 10) 0.15 ∞
Total LRCV F (p, 10) 9.95 −

Table 8 Results of LRCV F (p, 3) and LRCV F (p, 10) for STP as % from RP

Instance V SS LRCV F (p, 3) LRCV F (p, 10)
1 2 3 1 2 3 4 5 6 7 8 9 10

1 ∞ ∞ 0 0 ∞ ∞ 0.006 0 0 0 0 0 0 0
2 ∞ ∞ 0 0 ∞ ∞ 0.006 0 0 0 0 0 0 0
3 ∞ ∞ 0 0 ∞ ∞ 0.008 0 0 0 0 0 0 0
4 ∞ ∞ 0 0 ∞ ∞ 0.084 0 0 0 0 0 0 0
5 ∞ ∞ 0 0 ∞ ∞ 0.001 0 0 0 0 0 0 0
6 ∞ ∞ 0 0 ∞ ∞ 0 0 0 0 0 0 0 0
7 ∞ ∞ 0 0 ∞ ∞ 0.01 0 0 0 0 0 0 0
8 ∞ ∞ 0 0 ∞ ∞ 0.006 0 0 0 0 0 0 0
9 ∞ ∞ 0 0 ∞ ∞ 0.002 0 0 0 0 0 0 0
10 ∞ ∞ 0 0 ∞ ∞ 0.002 0 0 0 0 0 0 0
Mean ∞ ∞ 0 0 ∞ ∞ 0.012 0 0 0 0 0 0 0

setting N = 100, two extra variables at zero from the deterministic solution
can be detected, LRCV F (p, 100) = 0, with p = 28, . . . , 100, see Table 10. In
this case, the gain in computational effort is 81% with p = 28.

Regarding the distribution of the reduced costs in the expected-value deter-
ministic solution, one idea is to compute them, and plot or pass them through
a statistical package, to see if one can observe a trend referable to a known
probability distribution. Unfortunately, the answer appears to be “no”, even
though the distribution seems to have a certain regularity for low values of
the number of classes N . For larger numbers of classes, this regularity is less
evident. We illustrate this phenomenon with the results obtained for instance
1.
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Table 9 Results of LRCV F (p, 50) for STP as % from RP

Instance V SS LRCV F (p, 50)
1 ∞ p ≤ 10 : ∞ 11 ≤ p ≤ 14 : 0.006 p ≥ 15 : 0
2 ∞ p ≤ 8 : ∞ 9 ≤ p ≤ 10 : 0.164 11 ≤ p ≤ 14 : 0.006 p ≥ 15 : 0
3 ∞ p ≤ 10 : ∞ 11 ≤ p ≤ 14 : 0.008 p ≥ 15 : 0
4 ∞ p ≤ 10 : ∞ 11 ≤ p ≤ 14 : 0.084 p ≥ 15 : 0
5 ∞ p ≤ 10 : ∞ 11 ≤ p ≤ 14 : 0.001 p ≥ 15 : 0
6 ∞ p ≤ 10 : ∞ p ≥ 11 : 0
7 ∞ p ≤ 10 : ∞ 11 ≤ p ≤ 14 : 0.010 p ≥ 15 : 0
8 ∞ p ≤ 10 : ∞ 11 ≤ p ≤ 14 : 0.006 p ≥ 15 : 0
9 ∞ p ≤ 10 : ∞ 11 ≤ p ≤ 14 : 0.002 p ≥ 15 : 0
10 ∞ p ≤ 10 : ∞ 11 ≤ p ≤ 14 : 0.002 p ≥ 15 : 0

Table 10 Results of LRCV F (p, 100) for STP as % from RP

Instance V SS LRCV F (p, 100)
1 ∞ p ≤ 19 : ∞ p = 20 : 0.035 21 ≤ p ≤ 27 : 0.006 p ≥ 28 : 0
2 ∞ p ≤ 15 : ∞ p = 16 : 0.173 17 ≤ p ≤ 19 : 0.164 p = 20 : 0.039

21 ≤ p ≤ 27 : 0.006 p ≥ 28 : 0
3 ∞ p ≤ 19 : ∞ p = 20 : 0.021 21 ≤ p ≤ 27 : 0.008 p ≥ 28 : 0
4 ∞ p ≤ 19 : ∞ p = 20 : 0.188 21 ≤ p ≤ 27 : 0.084 p ≥ 28 : 0
5 ∞ p ≤ 19 : ∞ p = 20 : 0.017 21 ≤ p ≤ 27 : 0.001 p ≥ 28 : 0
6 ∞ p ≤ 19 : ∞ p = 20 : 0.027 p ≥ 21 : 0
7 ∞ p ≤ 19 : ∞ p = 20 : 0.042 21 ≤ p ≤ 27 : 0.010 p ≥ 28 : 0
8 ∞ p ≤ 19 : ∞ p = 20 : 0.049 21 ≤ p ≤ 27 : 0.006 p ≥ 28 : 0
9 ∞ p ≤ 19 : ∞ p = 20 : 0.020 21 ≤ p ≤ 27 : 0.002 p ≥ 28 : 0
10 ∞ p ≤ 19 : ∞ p = 20 : 0.027 21 ≤ p ≤ 27 : 0.002 p ≥ 28 : 0

Figure 2 displays the histograms of the distribution of the reduced costs.
The graphs show how, up to N=10, the distribution has almost a Gumbel
shape. Its behavior becomes very irregular when increasing the number of
classes to 50 and then to 100, and a probability distribution is difficult to be
identified. Similar observations were made for other instances and problem
classes.

We observed feasibility issues when fixing subsets of variables from the de-
terministic solution, following the computation of LRCV F (1, 3), LRCV F (p, 10),
with p = 1, 2, LRCV F (p, 50) with p = 1, . . . , 10 and LRCV F (p, 100) with
p = 1, . . . , 19. We therefore performed a sensitivity analysis on the values of
a number of parameters, the stochastic demand dsj and the minimum capac-
ity requirement capacity ak of supplier k ∈ K , aiming to obtain the largest
set of variables from the deterministic solution that causes infeasibility in the
stochastic one.

The results of this analysis show that the infeasibility comes out in classes
LRCV F (p, 100), with p = 1, . . . , 19, for ak < 16.13% vk, k = 4, 6, 10, 11, 15, 16
and a1 < 2000 (Table 24), since too large a number of variables were fixed
not allowing to satisfy the constraint on the minimum capacity requirement.
For ak = 16.13% vk, k = 4, 6, 10, 11, 15, 16 and a1 = 2000, the stochastic
problem itself becomes infeasible and, consequently, also all LRCV F (p, 100),
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Fig. 2 Absolute frequency of reduced costs of out of basis variables in the EV solution for
the STP instance 1, for N = 3, 10, 50, 100

p = 1, . . . , 100. The reason of the infeasibility is that when the value of the min-
imum capacity requirement ak is increased, the model decides to transport at
least for the required quantity. Consequently, for a scenario with low demand,
the constraint limiting the maximum storage capacity at the customers is no
longer satisfied, generating the infeasibility. On the other hand, high demand
scenarios will not bring infeasibility since the model includes the possibility to
acquire extra product from external sources at a higher price.

Histograms of the distributions of the reduced costs are plotted in Figure
3 for N = 3, 10, 50, 100. First, one may notice how, when considering higher
values of N , the classes containing the largest number of variables become the
ones in the middle and the left tail, i.e., the classes characterized by the lowest
reduced costs. Moreover, the results show empirical evidence that the LRCVF
is stable also from the point of view of feasibility, if one does not try to fix p
close to 1, i.e., one fixes to 0 the largest part of non basic variables.

5 General Trends and Skeleton of a Heuristic Procedure

The detailed results presented in Section 4.3 show how the LRCVF can be
used to derive the structure of the stochastic solution (or a good part of it,
at least) starting from data extracted from the continuous relaxation of the
expected-value solution. We summarize in this section the lessons learned from
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Fig. 3 Absolute frequency of reduced costs of out of basis variables in the EV solution
for the STP instance 1, for N = 3, 10, 50, 100, with a1 = 2000 and ak = 16.13% vk,
k = 4, 6, 10, 11, 15, 16.

our experiments applying LRCVF to different problems, considering the issues
of computational effort, feasibility and optimality. We then sketch in Section
5.1 the skeleton of a heuristic method to use LRCVF in an iterative way and
an algorithmic procedure. The method is applied to a wide set of additional in-
stances normally used in the literature to test stochastic programming solvers
(Sections 5.2 and 5.3). Trends and perspectives are also highlighted (Section
5.4).

5.1 Toward an algorithmic procedure for stochastic programming

We derive a hint from the cases studied above on how to proceed when we want
to apply LRCVF to a new problem. The core heuristic idea is the following:

– Solve the (continuous relaxation of the) deterministic version of the original
problem;

– Divide the resulting reduced costs in N intervals and fix in the stochastic
formulation, the first stage variables belonging to the last class only, i.e.,
the non basic variables with highest reduced costs;

– If feasibility issues appear, split the interval again into N sub-intervals;
then fix in the stochastic formulation, to zero only the first stage variables
belonging to the new N class and so on.
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When feasibility issues do not appear, the process to obtain the variables to fix
in the stochastic problem is summarized in Algorithm 1. The procedure begins
by solving the expected value problem EV , finding its first stage solution
x̄(ξ̄), with minimum and maximum reduced costs rmin and rmax associated
to the non basic variables. It initializes parameters p = N = N0 (line: 1)
and computes the corresponding LRCV F (p,N) (line: 2). In the main loop
(lines: 3 to 12), LRCV F (p,N) is updated until it is equal to 0 or, parameter
p reaches the value 1. The algorithm provides the variables to fix to zero in
the stochastic solution, i.e. the ones with indices belonging to Jp, . . . ,JN . It
is important to realize that the value to which parameter N is fixed greatly
influences the overall numerical effort involved.

Algorithm 1 Using LRCV F (p,N)

Require: RP , x̄(ξ̄), N0 ∈ N, rmin, rmax,
1: p = N = N0,
2: LRCV F (p,N) := RCV F (p,N)−RP ,
3: while 1 < p ≤ N do
4: if LRCV F (p,N) = 0 then
5: p = p− 1,
6: LRCV F (p,N) = RCV F (p,N)−RP ,
7: else
8: N = N ·N0, p = p ·N0,
9: LRCV F (p,N) = RCV F (p,N)−RP ,

10: end if
11: end while
12: return Jp, . . . ,JN .
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We illustrate this heuristic idea on a wide set of SIPLIB problems (Ahmed
et al., 2015).

5.2 SIPLIB instances

The widely-available SIPLIB library is a collection of test problems used to
facilitate computational and algorithmic research in stochastic integer pro-
gramming. We use the problems characterized by a two-stage formulation and
the presence of integer, or binary, variables in the first stage:

DCAP test set is a collection of stochastic integer programs arising in dy-
namic capacity acquisition and allocation under uncertainty. All problem
instances have complete recourse, mixed-integer first-stage variables, pure
binary second-stage variables, and discrete distributions.

SSLP test set consists of two-stage stochastic mixed-integer programs aris-
ing in server location under uncertainty. The problems have pure binary
first-stage variables, mixed-binary second-stage variables, and discrete dis-
tributions.

SEMI test set consists of instances of a two-stage multi-period stochastic in-
teger problem arising in the planning of semiconductor tool purchases. The
instances have mixed-integer first-stage variables and continuous second-
stage variables.

mpTSPs test set are instances of the multi-path Traveling Salesman Problem
with stochastic travel times (mpTSPs), a variant of the deterministic TSP,
where each pair of nodes is connected by several paths and each path en-
tails a stochastic travel time. The problem, arising in the domain of City
Logistics, aims to find an expected minimum Hamiltonian tour connecting
all nodes (Maggioni et al., 2014b; Tadei et al., 2014). These problems are
large and highly combinatorial, reaching easily more than 1000 binary vari-
ables (fixing the 1st-stage variables still leaves binary 2nd-stage variables).
Moreover, the continuous relaxation is highly degenerated.

Table 11 details the instance sizes, where the Type indicates the range in
terms of number of integer/binary variables: S, between 0 and 100; M, between
100 and 1000; and L, greater than 1000. Columns 4-5 and 6-7 display for the
first and second stages the total number of variables and the total number of
integer variables, respectively. The last column gives the number of scenarios.

Table 11 SIPLIB instance set description

Problem Inst # Type 1-stage v. 2-stage v. Int. 1-stage v. Int. 2-stage v. |S|
DCAP 12 S 12 [25,35] 6 [25,35] [200,500]
SSLP 10 M [5,15] [100,700] [5,15] [100,700] [5,2000]
SEMI 3 M 614 9800 612 0 [2,4]
mpTSPs 5 L [2500,10000] [7500, 30000] [2500,10000] [7500, 30000] 100
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Table 12 Results of SIPLIB DCAP instances

Instance % VSS % LRCVF Time RP (ss) Time LRCVF (ss) p
dcap233.200 12.6 0 18.15 5.56 3
dcap233.500 44.2 0 15.89 29.85 3
dcap243.200 32.9 1.28 51.68 3.03 3
dcap243.300 1.6 0.01 23.48 46.38 3
dcap243.500 17.4 0.86 83.84 24.68 3
dcap332.200 57.3 7.16 133.34 5.4 3
dcap332.300 28.9 3.84 141.32 14.39 3
dcap332.500 24.7 8.82 199.67 48.2 3
dcap342.200 35.4 9.41 131.94 8.15 3
dcap342.300 48.6 6.96 493.15 15.68 3
dcap342.500 61.5 6.5 349.98 25.1 3

Mean 33.17 4.08 149.31 20.58

5.3 SIPLIB computational results

We discuss in the following the results of LRCV F (p,N) with respect to LUSS
and V SS for the set of SIPLIB library instances. The results obtained on the
SIPLIB problems have been integrated to the SIPLIB library.

Results were obtained using the best known solutions of the RP , i.e., the
proven optima for all the instances. Table 12 summarizes the results obtained
for the DCAP instances, where Column 1 gives the instance name, Columns
2-3 show the gaps (in %) relative to the optimal values of the stochastic for-
mulation (the RP ) for the V SS and the LRCVF at the end of the heuristic
idea presented in Section 5.1, while Columns 3-4 display the corresponding
computational times in CPU seconds. Finally, Column 5 gives the value of the
class p = 1, . . . , N at the end of the process. Notice that a value of p = N0 = 3
means that the heuristic idea in Section 5.1 stopped at the first iteration with-
out feasibility issues. The reason of our choice relies in the tests performed
on the other problems.

The results illustrate how the first-stage solution obtained by solving the
expected-value problem fails to provide a good solution in the stochastic case,
with a V SS mean error of 31%. With the proposed measure and procedure, we
obtain a deviation from the proven optima of 4% and p = 3. We also obtain a
large reduction of the computational effort (about 7 times on average). These
reductions reach one order of magnitude on the largest instances.

The SSLP results are reported in Table 13 (same column definitions as the
previous table). The V SS is very high (47% on average). This means that, the
EV problem preserves the structure in terms of basic and non basic variables,
but fails in providing the correct first-stage basic values. Our procedure is
able to find the same RP solution while reducing the computational time by
a factor of 3. This is far from marginal considering that, when the size of
the instances increases, solving the full stochastic formulation reaches 10 000
seconds, while we find the optimal solution within a computational time that,
in the instances with the largest RP CPU times, is reduced 5 times.
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Table 13 Results for SIPLIB SSLP instances

Instance % VSS % LRCVF Time RP (ss) Time LRCVF (ss) p
sslp5.25.50 43.36 0 0.8 0.6 3
sslp5.25.100 42.83 0 1.5 1.5 3
sslp10.50.50 30.43 0 920.8 498.6 3
sslp10.50.100 31.64 0 3608.9 2711.8 3
sslp10.50.500 32.24 0 3620 2702.2 3
sslp10.50.1000 32.16 0 10936 2705.2 3
sslp10.50.2000 32.93 0 40683 4618.4 3

sslp15.45.5 78.68 0 3.8 9.8 3
sslp15.45.10 74.24 0 8.5 6.3 3
sslp15.45.15 73.48 0 262.2 83.1 3

Mean 47.19 0 6004.6 1333.7

A similar behavior is observed for the SEMI instances, as displayed in
Table 14 (same organization as the previous table). The V SS is providing
a relatively good gap (close to 5% on average). Again, we find the optimal
results at the first iteration. In this case, the gain in terms of computational
effort is somewhat limited, being reduced by a factor of 2 only.

Table 14 Results for SIPLIB SEMI instances

Instance % VSS % LRCVF Time RP (ss) Time LRCVF (ss) p
semi2 3.59 0 2164 1701.1 3
semi3 4.38 0 8914 5568 3
semi4 5.68 0 27519 15923 3
Mean 4.55 0 12865.67 7730.62 3

Up to now, we examined the effect of our algorithm on small and medium-
sized instances. What about larger-sized instances? Are we able to replicate
optimal or near optimal values while reducing the computational effort? The
answer is “yes” to both questions, as can be seen in Table 15 for the SIPLIB
mpTSPs instances. Once again, we replicate the optimal values. In this case,
the computational effort is reduced by a full order of magnitude. This means
that problems usually not solvable by a MIP solver in a reasonable computa-
tional time can be solved giving optimal or near optimal solutions.

Table 15 Results for SIPLIB mpTSPs instances

Instance % VSS % LRCVF Time RP (ss) Time LRCVF (ss) p
D0.50 4.22 0 473.3 265.05 3
D1.50 4.88 0 137.4 127 3
D2.50 2.05 0 655.5 411.1 3
D3.50 3.75 0 2069.1 567.8 3
D1.100 4.22 0 12376 256.1 3
Mean 3.82 0 3142.26 325.41 3
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To conclude, it is clear how the LRCVF can be effectively used to find
high quality solutions to stochastic problems by starting from the EV solu-
tions. Furthermore, when compared to the effort needed to find the optimal
solution to the full stochastic formulation, LRCVF considerably reduces the
computational times. Finally, it might be incorporated in an iterative heuris-
tic algorithm providing high quality solutions. As a further heuristic insight,
when one desires a greater precision and the number of non basic variables
appearing in the continuous relaxation of the deterministic approximation is
sufficiently large, the set of non basic variables may be split into 10 bids and
the values p = 2, 3, and 4 seem appropriate.

5.4 General trends

One of the main issues that emerges when using LRCVF is how to choose
the number N of classes dividing the reduced costs of non-basic variables.
On the one hand, it would be preferable to fix the largest possible number of
variables in order to reduce the problem size, and, on the other hand, fixing
too large a number may result in errors in terms of feasibility and optimality.
The general trend emerging from the empirical observations is that fixing to 0
about a third of the non-basic variables with the highest reduced costs is a good
compromise. Indeed, applying this policy, we reached the optimal stochastic
solutions without feasibility issues and reducing the computational time up to
two orders of magnitude for the largest instance (Table 15).

From the point of view of problem optimality, it seems that, as already
noted for deterministic combinatorial models (Perboli et al. (2011)), the re-
duced costs of the deterministic solution give an hint on the variables to make
inactive in the stochastic program. Moreover, the results show that, even when
the V SS is high and the objective function of the expected-value deterministic
model far from the one of the stochastic problem, the expected-value deter-
ministic solution provides correct information about the optimal stochastic
solution. On the other hand, problems with just a few variables with posi-
tive reduced costs in their deterministic solution (e.g., the DCAP instances in
SIPLIB, Table 12) highlight the need to extend the LRCVF approach by defin-
ing a measure for ranking also the basic variables associated to the continuous
relaxation of the expected value deterministic problem.

It is interesting to note that the LRCVF idea of fixing to 0 the non basic
variables with the highest reduced costs in the solution to the deterministic
version, which appears to perform so well, is the complete opposite of what
may be seen in a number of approaches for deterministic combinatorial op-
timization, where the search for the variables to fix starts with the smallest
reduced costs. A possible explanation is that one has to remove a lot of vari-
ables in order to obtain a substantial reduction in computational effort in the
deterministic combinatorial case, while removing just a small subset of non
basicvariables from a stochastic program, pays a lot in terms of computational
effort (see the results in Table 15).
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6 Conclusions and Future Directions

In this paper, we analyzed the quality of the expected value solution with
respect to the stochastic one, in particular the part of its structure that could
be relevant for the solution to the original stochastic formulation.

We introduced the Loss of Reduced Costs-based Variable Fixing, LRCVF,
a new measure of goodness/badness of the deterministic solution that goes
beyond the standard measures. LRCVF takes into account the information on
the reduced costs of non basic variables in the deterministic solution. These
costs are sorted, grouped into homogeneous classes, and, then, those in classes
with the highest reduced costs are fixed in the associated stochastic formu-
lation, significantly reducing its size and, thus, the associated computational
effort. We examined the relations between the new measure and traditional
ones, and provided the procedure to compute it, as well as the skeleton of a
heuristic method using it to address two-stage combinatorial stochastic opti-
mization problems.

We performed a wide range of experiments on instances drawn both from
the Stochastic Programming literature and from real cases. The experiments
provided the opportunity of a deeper understanding of the relations between
the deterministic and stochastic solutions, of the main causes of goodness in
the variables with highest reduced cost in the deterministic solution, measured
by 0 = LRCV F (p,N) ≤ LUSS ≤ V SS. The results also showed that the
LRCVF can help identify the good and bad variables from the deterministic
solution to fix in the stochastic formulation. In all the cases considered, fixing
the variables with high reduced costs when solving the RP allowed us to reach
exactly the stochastic solution.

The proposed LRCVF measure and algorithmic procedure can hence be
effectively used both for problems actually solvable but that must be run very
often, and for intractable real-world problems, to reduce the computational
time of solving the stochastic problem, without loosing in terms of solution
quality.

The proposed methodology and the results obtained also point to how a
smart usage of the information coming from the linear programming theory can
be effectively incorporated in a Stochastic Programming resolution approach
in order to build accurate solutions. The introduction of the LRCVF thus
opens a number of interesting future research directions, including how to
extend and incorporate this idea into various algorithmic frameworks, such as
progressive hedging, diving procedures, etc.

The computational analysis performed in this paper points to a second
avenue: when classifying the non basic variables according to their reduced
costs, the ones with the highest values can be hard-fixed to zero without af-
fecting the stochastic solution. On the other side, the variables with the lowest
reduced costs should be present in the stochastic model. But what about the
variables which are in between these two extreme classes? Can we define a
way to identify those hedging variables and to incorporate this? What is the
appropriate number N of classes needed and their usage (which ones to be
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fixed and which ones not)? A related, but different research avenue concerns
the case, studied within the branch-and-bound literature for deterministic for-
mulations, of identifying a measure of the willingness to fix a basic variable
and how to fix it. We expect to report on some of these issues in the near
future.
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tic solution in multistage problems. TOP, 15(1):48–64, 2007. ISSN 1863-
8279. doi: 10.1007/s11750-007-0005-4. URL http://dx.doi.org/10.1007/

s11750-007-0005-4.
K. Frauendorfer. Solving slp recourse problems with binary multivariate dis-

tributions̈ı¿½the dependent case. Math Oper Res, 13(3):377–394, 1988.
A. A. Gaivoronski. Stochastic optimization problems in telecommunications.

In S. W. Wallace and W. T. Ziemba, editors, Applications of Stochastic
Programming, volume 5 of MPS/SIAM Series on Optimization, pages 669–
704. SIAM, Philadelphia, PA, 2005.

L. Garver. Power generation scheduling by integer programming-development
of theory. Power Apparatus and Systems, Part III. Transactions of the
American Institute of Electrical Engineers, 81(3):730–734, April 1962. ISSN
0097-2460. doi: 10.1109/AIEEPAS.1962.4501405.

D. Hausch and W. Ziemba. Bounds on the value of information in uncertain
decision problems ii. Stochastics, 10:181–217, 1983.

C. Huang, I. Vertinsky, and W. Ziemba. Sharp bounds on the value of perfect
information. Oper Res, 25(1):128–139, 1977a.

C. Huang, W. Ziemba, and B.-T. A. Bounds on the expectation of a convex
function of a random variable: with applications to stochastic programming.
Oper Res, 25(2):315–325, 1977b.

J. Jensen. Sur les fonctions convexes et les in̈ı¿½galiẗı¿½s entre les valeurs
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Annex

A Test Problem Description

A.1 A single-sink transportation problem

This problem is inspired by a real case of clinker replenishment, provided by the largest
Italian cement producer located in Sicily Maggioni et al. (2009). The logistics system is
organized as follows: clinker is produced by four plants located in Palermo (PA), Agrigento
(AG), Cosenza (CS) and Vibo Valentia (VV) and the warehouse to be replenished is in
Catania. The production capacities of the four plants, as well as the demand for clinker at
Catania, are considered stochastic.

All the vehicles are leased from an external transportation company, which we assume
to have an unlimited fleet. The vehicles must be booked in advance, before the demand
and production capacities are revealed. Only full-load shipments are allowed. When the
demand and the production capacity become known, there is an option to cancel some of
the bookings against a cancellation fee α. If the quantity delivered from the four suppliers
using the booked vehicles is not enough to satisfy the demand in Catania, the residual
quantity is purchased from an external company at a higher price b. The problem is to
determine, for each supplier, the number of vehicles to book in order to minimize the total
costs, given by the sum of the transportation costs (including the cancellation fee for vehicles
booked but not used) and the costs of the product purchased from the external company.
The notation adopted is:

I = {i : i = 1, . . . , I} : set of suppliers (AG, CS, PA, VV) ;

S = {s : s = 1, . . . , S} : set of scenarios.

ti : unit transportation costs of supplier i ∈ I ;

ci : unit production costs of supplier i ∈ I ;

b : buying cost from an external source (we assume that b > maxi(ti + ci)) ;

q : vehicle capacity ;

g : maximum capacity that can be booked ;

l0 : initial inventory level at the customer ;

lmax : storage capacity at the customer ;

ps : probability of scenario k ∈ S ;

asi : production capacity of supplier i ∈ I in scenario s ∈ S ;

ds : customer demand at scenario s ∈ S ;

α : cancellation fee ;

with the decision variables

xi ∈ N : number of vehicles booked from supplier i ∈ I ;

zsi ∈ N : number of vehicles actually used from i ∈ I in s ∈ S ;

ys : product to purchase from an external source in scenario s ∈ S ;

In the two-stage (one-period) case, we get the following mixed-integer stochastic pro-
gramming model with recourse:

min q

I∑
i=1

tixi +

S∑
s=1

ps
[
b ys − (1− α)q

I∑
i=1

ti (xi − zsi )
]

(20)
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s.t. q

I∑
i=1

xi ≤ g, (21)

l0 +

I∑
i=1

qzsi + ys − ds ≥ 0 , s ∈ S , (22)

l0 +

I∑
i=1

qzsi + ys − ds ≤ lmax , s ∈ S , (23)

zsi ≤ xi , i ∈ I , s ∈ S , (24)

qzsi ≤ asi , i ∈ I , s ∈ S , (25)

xi ∈ N , i ∈ I , (26)

ys ≥ 0 , s ∈ S , (27)

zsi ∈ N , i ∈ I , s ∈ S . (28)

The first sum in the objective function (20) is the booking costs of the vehicles, while
the second sum represents the expected cost associated to the recourse actions, consisting
of buying extra clinker (ys) and canceling unwanted vehicles. Constraint (21) guarantees
that the number of booked vehicles from the suppliers to the customer is not greater than
g/q. Constraints (22) and (23) ensure that the second-stage storage level is between zero
and lmax. Constraints (24) guarantee that the number of vehicles serving supplier i is at
most equal to the number of vehicles booked in advance, and constraints (25) control that
the quantity of clinker delivered from supplier i does not exceed its production capacity asi .
Finally, (26)–(28) define the decision variables of the problem (both for the first and second
stages).

The goal is to find, for each supplier, the number of vehicles to book at the beginning
of the first period.

A.2 Power generation scheduling

This real-case problem is based on an economic scheduling model formulated in Williams
(2013) and Garver (1962) as a deterministic mixed integer program. Power generation
scheduling involves the selection of generating units to be put into operation and the al-
location of the power demand among the units over a set of time periods. In the problem
considered, there are two types of generating units available (i.e., four units of type 1 and
four units of type 2). Each type is defined according to specific technical characteristics and
operational costs. Therefore, a generating unit will run at a level that is between a mini-
mum and a maximum threshold, these threshold values being type specific. When a unit is
used, there is a base hourly cost that is charged for running it at the minimum level. In the
case where a unit runs above the minimum threshold, an extra hourly cost is applied for
each additional megawatt. There is also a starting up cost that is charged each time a new
generating unit is used. Once again, all specific cost values vary according to the unit types.

At any considered time period, there must be a sufficient number of operating generators
to meet a possible increase in the overall demand of up to 15%. In the event of an increase, the
running levels of the used units are simply adjusted to meet the new demand requirements.
In the present problem, two time periods are considered. While the demands of the first
time period are assumed known, the demands in the second time period are stochastic.
Therefore, the problem is formulated as a two-stage stochastic model. In the first stage, a
set of generating units are chosen and their operating levels are fixed for the two time periods
defined in the problem (an estimate is used here for the demands in the second period). In
the second stage, the actual values of the demands in the second period are observed and
the number units and their operating levels are adjusted accordingly. Production decisions
are thus made after the demands have been revealed. Instead of writing the model in terms
of scenarios, we consider a node formulation defined on the structure of the scenario tree
(see Table 20 in Annex). Therefore, nodes n = 1, 2 represent the first stage of the model,
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while nodes n = 3, . . . , 22 define the 20 considered scenarios that can be observed in the
second stage. For each node n in the scenario tree, value pa(n) defines its predecessor.

We now define the model that is considered. To do so, let us first define the general
notation that is used:

I = {i : i = 1, . . . , I} : types of generating units;

N = {n : n = 1, . . . , N} : ordered set of nodes of the scenario tree;

mi : minimum output level for generator of type i ∈ I ;

Mi : maximum output level for generator of type i ∈ I ;

Dn : demand in node n ∈ N ;

pn : probability of node n ∈ N ;

Ci : cost per hour per megawatt (mw) of unit i ∈ I for operating above minimum level;

Ei : cost per hour per megawatt (mw) of unit i ∈ I for operating at minimum level;

Fi : start-up cost of unit i ∈ I ;

ui,max : upper bound on the total number of generators of type i ∈ I ;

u0i : starting value of open units of type i ∈ I ;

The decision variables are:

uni : number of generating units of type i ∈ I working in node n ∈ N ;

sni : number of generators of type i ∈ I started up in node n ∈ N \ {1} ;

xni : total output rate from generators of type i ∈ I in node n ∈ N ;

The formulation of the generator scheduling problem as an integer program including start-
up costs is now defined as follows:

min
∑

n∈N

pn

∑
i∈I

Ci (xni −miu
n
i ) +

∑
i∈I

Eiu
n
i +

∑
i∈I

Fis
n
i

 (29)

s.t.
∑
i∈I

xni ≥ Dn, n ∈ N , (30)

xni ≥ miu
n
i , i ∈ I , n ∈ N , (31)

xni ≤ Miu
n
i , i ∈ I , n ∈ N , (32)∑

i∈I

Miu
n
i ≥

115

110
Dn , n ∈ N , (33)

sni ≥ uni − u
pa(n)
i , i ∈ I , n ∈ N \ {1} , (34)

u1i = u0i , i ∈ I , (35)

uni ≤ ui,max , i ∈ I , n ∈ N , (36)

xni ≥ 0 , i ∈ I , n ∈ N , (37)

sni ∈ N , i ∈ I , n ∈ N \ {1}, (38)

uni ∈ N , i ∈ I , n ∈ N . (39)

The objective function (29) consists in the minimization of the total costs, which include
the starting up costs of units and their operational costs (both at the minimum level and
above it) for each period. Constraints (30) guarantee that the demand in each period is
met, whereas (31) and (32) make sure that the output lies within the limits of the operating
generators at all times. Constraints (33) guarantee that, for each period, the additional
load requirement of 15% is met without the need to resort to additional generators, while
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constraints (34) ensure that the number of generators that are started up in node n be equal
to the increase in the number of operating units with respect to the node pa(n). Finally,
constraints (35)-(36) define the starting values and upper bounds for the number of started
up units and (37)-(39) impose the necessary non-negativity and integrality requirements on
the decision variables of the problem.

A.3 Supply transportation problem

This problem is inspired by a real case of gypsum replenishment in Italy, provided by the
primary Italian cement producer, see Maggioni et al. (2017) for more details. The logistic
system is organized as follows: 24 suppliers, each of them having several plants located all
around Italy, are used to satisfy the demand for gypsum of 15 cement factories belonging
to the same company. The demands for gypsum at the 15 cement factories are considered
stochastic. As in the first problem considered, shipments are performed by capacitated
vehicles, which have to be booked in advance, before the demand is revealed. When the
demands become known, there is the option to discount vehicles that were booked but not
actually used. However, if the quantity shipped from the suppliers using the booked vehicles
is not enough to satisfy the observed demands, vehicle services to transport the extra demand
of gypsum directly to the factories can be purchased from an external company at a premium
price. The problem is to determine for each of the supplier plants, the number of vehicles to
book to replenish in gypsum the factories in order to minimize the total cost. The total cost
is defined as the sum of the booking costs for the vehicles used to perform the distribution
operations between the plants and the factories (including the discount for vehicles booked
but not used), and the costs of the extra vehicles added to satisfy the observed demand. It
should be noted that, in all cases, the cost of a vehicle is obtained by multiplying its capacity
by a unit cost that either reflects the transportation cost between a plant and a factory (for
the vehicles booked in advance), or, the premium rate charged by the external company for
a direct transportation service to a factory. Regarding the discount for the vehicles booked
but not used, it is expressed as a fixed percentage of the cost associated to the number of
unused vehicles.

The notation adopted is the following:

K = {k : k = 1, . . . ,K} : set of suppliers;

Ok = {i : i = 1, . . . , Ok} : set of plant locations of supplier k ∈ K ;

D = {j : j = 1, . . . , D} : set of cement factories (destinations);

S = {s : s = 1, . . . , S} : set of scenarios;

tij : unit transportation cost from plant i ∈ Ok, k ∈ K to factory j ∈ D ;

bj : the premium rate charged by the external company for a vehicle assigned to factory j ∈ D ;

q : the capacity of a vehicle;

gj : maximum capacity which can be booked for the factory j ∈ D ;

vk : maximum requirement capacity of supplier k ∈ K ;

ak : minimum requirement capacity of supplier k ∈ K ;

lmax : storage capacity at the factories;

α : discount;

ps : probability of scenario s ∈ S ;

dsj : demand of factory j in scenario s ∈ S .
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The decision variables are

xij ∈ N : number of vehicles booked between plant i ∈ Ok, k ∈ K and factory j ∈ D ;

zsij ∈ N : number of vehicles actually used between plant i ∈ Ok, k ∈ K and factory j ∈ D ,

for scenario s ∈ S ;

ysj ∈ N : number of extra vehicles used from the external company for factory j ∈ D ,

for scenario s ∈ S .

The two-stage integer stochastic programming model with recourse can now be defined as
follows:

min q

K∑
k=1

Ok∑
i=1

D∑
j=1

tijxij+

S∑
s=1

ps

 D∑
j=1

qbj y
s
j− αq

K∑
k=1

Ok∑
i=1

D∑
j=1

tij
(
xij−zsij

) (40)

s.t. q
K∑

k=1

Ok∑
i=1

xij ≤ gj , j ∈ D , (41)

0 ≤ l0j + q
( K∑

k=1

Ok∑
i=1

zsij + ysj

)
− dsj ≤ lmax , j ∈ D , s ∈ S , (42)

zsij ≤ xij , i ∈ Ok, k ∈ K , j ∈ D , s ∈ S , (43)

ak ≤ q
Ok∑
i=1

D∑
j=1

zsij ≤ vk , k ∈ K , s ∈ S , (44)

xij ∈ N , i ∈ Ok, k ∈ K , j ∈ D , (45)

ysj ∈ N , j ∈ D , s ∈ S , (46)

zsij ∈ N , i ∈ Ok, k ∈ K , j ∈ D , s ∈ S . (47)

The first sum in the objective function (40) denotes the booking costs of the vehicles
between the plants and the factories, while the second sum represents the expected recourse
costs, which include the cost of the extra vehicles provided by the external company and the
discount for the unused booked vehicles. Constraints (41) guarantee that, for each factory
j ∈ D , the number of booked vehicles from the suppliers to the factory does not exceed
gj/q. Constraints (42) ensure that the storage levels of factories j ∈ D are between zero and
lmax. Constraints (43) guarantee that the number of vehicles used by the suppliers are at
most equal to the number vehicles booked in advance. Constraints (44) ensure that, for all
suppliers k ∈ K , the number of vehicles used allow the volume of product transported to be
between the minimum (i.e., ak) and maximum (i.e., vk) established requirements. Finally,
(45)–(47) define the decision variables of the problem.

B Numerical Data

B.1 A single-sink transportation problem

Problem data are presented in Tables 16–17. Table 16 presents the production and trans-
portation costs for each supplier, together with its distance from the customer in Catania,
while Table 17 reports the monthly production capacity of each supplier in the considered
period (zero entries represent production site closures due to equipment failure or mainte-
nance).

We used in our computational experiment, the vehicle capacity q = 30 tonnes (t), the
storage capacity lmax = 35 kilotonnes (kt) and the daily unloading capacity of 1800 t, giving
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Table 16 Production costs ci and transportation costs ti from Catania.

Supplier ci (e/t) ti (e/t)
Porto Empedocle (AG) 18.79 11.40

Castrovillari (CS) 9.55 33.00
Isola d. Femmine (PA) 11.00 14.10

Vibo Valentia (VV) 11.54 18.50

Table 17 Monthly production capacity ai of suppliers i ∈ I, January 2003 to May 2007,
in kilotonnes (kt).

i Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
’03 9.1 4.0 11.1 14.6 21.7 14.2 17.4 8.4 24.9 17.4 12.3 13.0
’04 0.0 4.1 9.0 10.5 9.3 12.2 11.6 13.6 9.4 11.0 9.7 0.0

AG ’05 0.0 9.1 8.3 21.1 15.0 15.1 12.1 13.2 11.3 13.0 7.1 1.2
’06 1.7 9.5 4.5 14.0 12.5 15.2 11.3 15.9 6.2 11.9 7.2 9.0
’07 13.0 13.0 19.0 4.0 10.0
’03 10.9 14.0 13.9 19.1 14.1 13.0 4.5 0.0 4.0 13.7 9.1 4.5
’04 8.3 6.3 3.0 0.0 16.2 14.2 12.3 14.4 19.8 19.3 20.0 15.2

CS ’05 15.1 10.8 21.9 19.7 15.3 10.8 6.3 0.0 9.1 23.2 11.7 0.9
’06 18.7 0.0 8.9 16.0 17.6 13.9 4.8 5.0 14.1 24.3 14.5 8.1
’07 17.0 8.0 0.0 0.0 10.0
’03 15.5 18.1 23.3 12.4 0.5 5.7 12.5 13.5 12.3 10.2 8.3 12.0
’04 27.1 10.0 12.8 13.8 13.7 14.0 10.6 1.4 10.3 12.6 11.5 16.9

PA ’05 16.0 3.8 10.6 16.6 23.0 27.7 16.7 13.4 16.8 11.1 19.0 22.4
’06 27.5 21.5 18.6 20.4 0.0 14.0 14.3 11.2 18.4 16.9 9.4 11.1
’07 11.0 9.0 7.0 6.0 10.0
’03 4.9 1.2 12.7 2.7 19.3 11.9 5.4 3.0 14.6 3.4 15.2 2.5
’04 4.0 9.4 18.3 10.5 13.9 8.6 6.2 4.3 7.2 12.4 9.5 0.0

VV ’05 3.5 21.1 20.8 13.0 23.5 19.1 8.2 8.6 4.6 9.2 16.2 16.0
’06 8.5 22.3 21.7 15.1 7.4 10.3 0.0 2.5 4.3 5.2 18.3 6.3
’07 0.0 0.0 0.0 0.0 10.0

us the monthly unloading capacity g = 21× 1800 t = 37.8 kt, or 1260 full vehicles. The cost
of clinker from an external source was set to b =e 45/t and the cancellation fee to α = 0.5.
For the initial inventory level l0 at the customer, we have taken the value at the beginning
of January 2007, that is l0 = 2000 t.

We run the model for 10 different instances with a demand randomly generated in the
interval

[
dmin, dmax

]
, where dmin = 20000 and dmax = 30000 are respectively the minimum

and maximum demand observed in the historical data.

The deviations (in %) from the optimal solutions of the stochastic model are reported in
Table 18. Table 19 displays for instance 9 the optimal solution (optimal number of booked
vehicles for each supplier and total optimal cost) for the deterministic and the stochastic
models, as well as for the various problem types (similar observations and arguments apply
to the other instances).

The deterministic model, EV , always books the exact numbers of vehicles needed
(x̄i = z̄ki , i ∈ I , k ∈ K ); it sorts the suppliers according to the transportation costs
and books a full production capacity from the cheapest one (AG), followed by the next-
cheapest (PA). The deterministic model thus books much fewer vehicles than the stochastic
one, RP , resulting in a solution costing two-thirds of the stochastic counterpart. The EEV
is much higher ( it is 481 484.25 e instead of the predicted cost 287 874 e). So,

V SS = 481 484.25− 410 573 = 70910.36, (48)

which shows that we can save about 17% of the cost by using the stochastic model, compared
to the deterministic one.
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Table 18 Results for the SSTP

Instance % from RP
V SS LRCV F (p, 2)

p = 1 p = 2
1 12.28 5.41 0
2 16.18 6.95 0
3 12.93 6.03 0
4 13.40 6.05 0
5 18.11 4.37 0
6 14.27 7.32 0.17
7 17.46 9.13 0.03
8 12.97 4.95 0
9 17.27 8.11 0
10 13.91 3.95 0
Mean 14.88 6.23 0.02

Table 19 Optimal solutions for different problem types of SSTP instance 9

Instance Problem Type AG CS PA VV Objective value (e)
9 EV 206 0 514 0 287 874

RP 377 0 533 200 410 573
EEV 206 0 514 0 481 484.25
RCV F (1, 2) = ESSV 390 0 633 0 443 881.93
RCV F (2, 2) 377 0 533 200 410 573

Why is the deterministic solution bad? Is it due to a shortsighted guess on the random-
ness (leading to too few booked vehicles for the four suppliers) or, can it be explained by the
fact that the wrong suppliers were chosen? We compute the LUSS following the skeleton
solution from the deterministic model and, thus, not allowing vehicles to be booked from
both CS and VV. The Expected Skeleton Solution Value ESSV is then e 443 88.93, still
higher than RP with a consequent Loss Using the Skeleton Solution of

LUSS = 443 881.93− 410 573 = 33 308.04, (49)

which measures the loss when vehicles are booked exclusively from suppliers AG and PA as
suggested by the deterministic model. We can thus conclude that the deterministic solution
is bad because it books the wrong number of vehicles from the wrong suppliers. It should be
noted that this approach simply requires solving a MIP of smaller dimension when compared
to the original problem.

Could we infer from the deterministic solution the variables to fix? Since the skeleton
solution from the deterministic model sets to zero only the number of vehicles from CS
and VV (formulation (13)), we compute their reduced costs in the continuous relaxation,
rCS = 495 and rV V = 277.5. Set R1 = {rV V } and R2 = {rCS}. Then, fixing at zero only
the variables at zero in the stochastic model in the expected-value solution with the highest
reduced cost, we obtain R2 = {rCS}, so that, the Reduced Costs-based Variable Fixing
RCV F (2, N) = 410 573 with a consequent Loss of Reduced Costs-based Variable Fixing:

LRCV F (2, N) = RCV F (2, N)−RP = 0. (50)

Not allowing vehicles to be booked both from CS and VV (i.e., fixing at zero the variables
at zero in the expected-value solution, with associated reduced costs R1 = {rV V }, and
R2 = {rCS}), we again compute the Expected Skeleton Solution Value RCV F (1, N) =
ESSV = 443 881.93 and

LRCV F (1, N) = LUSS = 33 308.04. (51)
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It should be noticed that, since the number of variables at zero in the deterministic solution
is 2, the maximum number of classes is N = 2.

We can conclude from the measures computed above hat the deterministic solution does
not perform well in a stochastic environment. This is explained by the insufficient number
of vehicles that are booked in the first stage (720 instead of 1110) from the suppliers AG
and PA. We reach the stochastic solution, however, by following the proposed approach and
focusing on the skeleton variable with highest reduced costs (i.e., not booking vehicles from
CS). However, the optimality of the solution is not detected with the elements considered
above. So in Section 5 a proposed procedure for identifying the potential good variables to
be inherited by the stochastic model is presented.

B.2 Power generation scheduling

Table 20 reports energy demands at the nodes n ∈ N of the scenario tree, while the
characteristics of the two types of generators are shown in Table 21. Value D̄ is the mean
demand considered in the deterministic model. We assume that the number of running units
as we enter the modelling period is u0i , i ∈ I . These units have a capacity of 800 mw, which
is well above the expected need of D̄ = 300 mw during the first time period. Consequently,
no generators are started up in period one (s1i = 0, i ∈ I ) independently of the considered
start up cost. The aim of the model is to select and allocate the power demands among an
optimal number of operating units of types 1 and 2.

Table 20 Predecessor pa(n), energy demand Dn and probability pn at node n ∈ N of the
two-period scenario tree.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
pa(n) - 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Dn 300 300 605 630 580 650 600 520 100 180 130 100 120 102 50 41 100 102 125 69 600 596

pn 1 1
1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20

1

20
D̄ 300 300 300

Table 21 Costs and production characteristics for generators of type i ∈ I .

Ci (e) Ei (e) Fi (e) mi (mw) Mi (mw) u0i ui,max

i = 1 100 2500 14000 20 80 4 4
i = 2 150 5000 16000 30 120 4 4

B.3 Supply transportation problem

Deterministic and stochastic parameter values are reported below. Table 22 lists the set
of suppliers K and the sets of their plants Ok, k ∈ K . The list of destinations (cement
factories) is shown in Table 23 with the premium rates charged by the external company
and the unloading capacities (expressed in tons of gypsum). Table 24 provides the minimum
and maximum requirements for suppliers k ∈ K (again expressed in tons of gypsum). It is
assumed that an initial inventory level of l0j = 0 is available for all the destinations j ∈ D .
The capacity for all vehicles is fixed to q = 31 tons. The discount α is set to the value
0.7. The values of the transportation costs tij over all origins and destinations are in the
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following range: [tmin
ij , tmax

ij ] = [10.80, 73.52]. Finally, the demand scenarios were obtained
using historical data. Scenarios were built using the weekly demand values for the months
of March, April, May and June of 2011, 2012 and 2013. Thus, a set of 48 weekly demand
scenarios were obtained and assumed to be equiprobable.

Table 22 Set of suppliers K with their sets of plants Ok, k ∈ K .

Supplier k ∈ K Plant i ∈ Ok

1 1, . . . , 6
2 7
3 8
4 4
5 9
6 6, 10
7 1
8 1, 2
9 11
10 12
11 13
12 14
13 15
14 12
15 8
16 16
17 17
18 9
19 5, 15
20 5
21 18
22 19
23 7
24 12

Table 23 List of destinations (cement factories) with emergency costs bj and unloading
capacities gj , j ∈ D .

Destination j ∈ D emergency cost bj Unloading capacity gj
1 72.61 422.95
2 70.58 2054.55
3 68.01 1330.67
4 64.94 453.64
5 73.52 613.41
6 58.57 695.24
7 69.83 443.14
8 66.32 815.36
9 62.63 933.33
10 68.22 319.79
11 48.92 443.11
12 50.04 760.11
13 73.07 381.20
14 59.93 498.33
15 55.63 232411.75
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Table 24 Minimum ak and maximum vk requirement capacity of supplier k ∈ K .

Supplier k ∈ K ak vk
1 1057.69 -
4 0 96.15
6 0 576.92
10 0 194.23
11 0 480.76
15 0 192.30
16 0 384.61
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