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Abstract: In geography, the concept of “rhizome” provides a theoretical tool to conceive the way
people move in space in terms of “mobility networks”: the space lived by people is delimited and
characterized on the basis of both the places they visited and the sequences of their transfers from
place to place. Researchers are now wondering whether in the new era of data-driven geography
it is possible to give a concrete shape to the concept of rhizome, by analyzing big data describing
movement of people traced through social media. This paper is a first attempt to give a concrete
shape to the concept of rhizome, by interpreting it as a problem of “itemset mining”, which is a
well-known data mining technique. This technique was originally developed for market-basket
analysis. We studied how the application of this technique, if supported by adequate visualization
strategies, can provide geographers with a concrete shape for rhizomes, suitable for further studies.
To validate the ideas, we chose the case study of tourists visiting a city: the rhizome can be conceived
as the set of places visited by many tourists, and the common transfers made by tourists in the area
of the city. Itemsets extracted from a real-life data set were used to study the effectiveness of both a
topographic representation and a topological representation to visualize rhizomes. In this paper, we
study how three different interpretations are actually able to give a concrete and visual shape to the
concept of rhizome. The results that we present and discuss in this paper open further investigations
on the problem.

Keywords: mobility networks of people; geo-located tweets; itemset mining; concrete shapes for rhi-
zomes

1. Introduction

The massive production of personal data, thanks to the diffusion of the Internet, social
media and location-based services, could be exploited in order to gather information about
mobility of citizens. This is made possible by mobile apps for social media, such as Twitter,
that allow users to post geo-located messages. Consequently, a completely new possibility
is offered to researchers, if compared with the past: it is possible to collect data sets about
traveling (or simply moving) people, obtaining possibly large data sets that could become
precious for analysts. Similarly, a plethora of data sets concerned with people habits could
be extracted from social media, which could be very useful for any kind of human science;
in practice, Big Data [1] are bridging all sciences to adopt the same data-driven approach
that has characterized studies in physics for a long time (observations provide data, which
inspire theories that are verified by means of data collected by making new observations).
Geographical studies are touched by this paradigmatic change as well [2]: in fact, they
have started recently the transition from a data-scarce context to a data-rich context. As an
example, if geographers and spatial analysts were provided with traces of tourists that
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visited a given city or territory, derived from geo-located messages that tourists posted on
social media, they could try to understand how tourists experienced the territory, so as
to reveal important drivers that are able to attract tourists. This kind of analysis is quite
important for small and tourist-oriented cities, whose administrators would like to increase
the number of tourists.

Geographers developed theoretical frameworks to perform such an analysis. In our
opinion, currently the most interesting concept for understanding mobility of people is the
concept of rhizome [3]: it characterizes the space lived by people, following a networked
approach. The concept of rhizome is a theoretical framework, thought to provide a key to
read a modern society based on mobility; to the best of our knowledge, no one has tried
to use it in a data-driven analysis of geo-located messages (posted on Twitter) concerning
mobility of people, based on the places people visited, and on transfers they made from one
place to another; in other words, mobility networks can be derived and further analyzed,
allowing important connections between places to emerge. On this basis, considering again
the case of tourist-oriented cities, geographers could wish to “discover mobility networks
of tourists, to let (possibly virtual) connections concerning touristic destinations emerge”.
This is clearly a multi-disciplinary work, where geographers and computer scientists have
to jointly contribute to address the problem.

Can informatics provide the right tools to validate the concept of rhizome in the
data-rich context, in order to give a concrete shape to the concept of rhizomes? Is it possible
to move from the theoretical intuition to a visualization of it? The attempt to address this
research problem is the main goal of this paper.

The research problem reminded us of the well-known technique for data mining called
itemset mining [4], that is the basis for mining association rules: the goal of this technique
is to extract frequent associations of items, i.e., groups of items that frequently appear
together in transactions (the technique originated as a tool for market-basket analysis in
the retail market). If we think of transactions as trips and we think of items either as
visited places or as transfers from one visited place to another, it appears that this technique
could be applied to give a practical interpretation to the concept of rhizome. Nevertheless,
visualization techniques are necessary to make rhizomes “visible”: in fact, the concept of
rhizome (in botany, the rhizome is the way roots of plants tangle) is a “visual” concept. We
argued that, in this context, visualization is essential to give results obtained by itemset
mining the shape of rhizome.

The research problem has emerged during the multi-disciplinary research project
named Urban Nexus [5], which has investigated how to define “a data-driven methodology
to study mobility of city users based on data coming from Social Media sources, to let
(possibly virtual) connections among places emerge”. In fact, in this project we argued
that geo-located messages posted by city users could provide an unexpected source of
information and an unexpected perspective about mobility, in a way that traditional
statistical methodologies are not able to do.

In the project, we identified the case study of “studying mobility networks of tourists
in a city and its surrounding area”, and we built the case-study data set.

We defined the following methodological approach. First of all, we defined three
practical interpretations of the concept of rhizome by means of the technique for itemset
mining, coupled with both topographic and topological representations. Second, we
applied them to the case-study data set. Third, we analyzed what it is possible to obtain
and whether these representations are actually able to give a concrete and visual shape to
the concept of rhizome.

We discovered that three different interpretations of the concept of rhizome (based on
itemset mining) highlight different aspects that characterize mobility. We also observed
that the topographic and topological representations of itemsets jointly contribute to give
a concrete and visual shape to rhizomes: the former one is able to put their physical
boundaries in evidence; the latter is able to show the strength of connections and the
poly-centric nature of rhizomes.
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It is very important to clarify the exact contributions of the paper. First of all, the aim of
this paper is not to provide a definite solution to the problem of studying mobility networks
by means of social-media data, as well as its goal is not to provide a comprehensive pool
of techniques to pre-process and geo-code data from social media. The main contribution
is the following: provided that analysts have a data set containing traces of moving
people, which they consider of satisfactory quality, it provides a a practical application
of the concept of rhizome based on itemset mining and visualization techniques; this is a
(little but possibly crucial) first step towards the application of this concept to data-driven
analysis of mobility networks, which could inspire further discussions and investigations.

Nevertheless, we do not forget that the transition to a data-driven approach is en-
abled by the availability of data that can be obtained from social media. In fact, these
considerations inspired us to associate the concepts of rhizome and itemset mining, while
working on the problem of studying mobility networks of tourists detected through Twitter.
Consequently, we can consider a kind of “secondary contribution” of the paper: showing
how the application of the concept of rhizome to traces of people gathered through Twitter
can provide geographers with novel sources and tools. In fact, this way we show how the
joint contributions of computer science and geography can foster the exploitation of these
novel data sources.

The paper is organized as follows. Section 2 introduces the background of our
research; in particular, in Section 2.1 we introduce the concept of rhizome interpreted as
mobility networks of people; in Section 2.2, we shortly present the technique for itemset
mining; in Section 2.3, we present the related literature as far as analysis of Twitter messages
for studying mobility is concerned. In Section 3, we investigate how to apply rhizomes
and itemset mining to study how tourists experienced a given city and its surrounding
regional area. Specifically, Section 3.1 briefly presents the research project and details
the case study that we considered for this research, along with the data set we built to
validate the approach; Section 3.2 explains the methodological approach; Sections 3.3–3.5
provide three different specific interpretations of the concept of rhizome based on itemset
mining and investigate how discovered itemsets should be visualized, both by adopting a
topographic representation and a topological one, to let mobility networks visually emerge.
Section 4 presents the application of two of the three discussed interpretations to a large
data set of traces, in order to show the potential application of the presented approach
to study traces of people gathered through social media (in particular, through Twitter).
Finally , Section 5 draws the conclusions, by discussing learned lessons and open issues.

2. Background

In this section, we describe the multidisciplinary background of our work. In fact,
the research activity is across geography and computer science. For this reason, we need to
present both the basic geographic concept we are investigating (Section 2.1) and the notion
of itemset mining (Section 2.2).

2.1. From the Actor-Network Theory (ANT) to the Concept of Rhizome

The Actor-Network Theory (ANT), elaborated by Bruno Latour [6,7], can be considered
the first approach adopted in a multidisciplinary way by sociology, geography and other
disciplines, making networks the focus of attention for the study of spatialities. Geogra-
phers have adopted ANT because it goes much further than traditional absolute analysis
of space; through ANT, geographers promote a relational approach, based on networks
and relations among humans and non-humans. Bruno Latour claimed that this division
needs to be overcome; the perspective is the world as it presents itself to us in the form of
networks, relations and hybrids that cross the artificial boundaries drawn between culture
and nature, and between the worlds of people and of things (for a clear analysis of the
Actor-Network Theory, see [8–12]).

ANT is an ideal framework to deal with spatiality, because it clearly directs our
attention to the effects produced by the fluidity of spatial configurations of a variety
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of actors. However, from our perspective, ANT is also important for understanding
the effects of their connections in movement. Thus, ANT is an excellent framework to
describe the complex and mutable composition of networks of heterogeneous actors,
especially in movement. In this respect, Sheppard argued [9] that networks are non-
hierarchical spaces, that is, spaces that are not important for quantitative reasons, such
as the area, the population or the metric distance (the largest regions, the most inhabited
places, the nearest places to cities and so on) that can be analyzed in a vertical way.
In contrast, networks are spaces that are important for their connectivity and networking
in a horizontal way. This means that all the involved human and non-human actors have
the same importance, producing a lack of attention to their internal differentiation. On the
contrary, relations in a network are not all the same, and their differences produce different
spatialities [10].

On the basis of the network perspective introduced by ANT, Jacques Lévyi and
Michel Lussault in [12] have proposed a more specific approach that focuses on networked
spaces produced by humans and things in their movement. The two French geographers
have started an important phase of social sciences of space, based on the importance of
movement in the globalized world. In particular, they claimed that “contemporary urban”
assumes a poly-centric and reticular configuration: it is no longer divided into center
and periphery; rather, it is viewed as an “osmotic-centered system” of mobility; in fact,
contemporary urban is inserted into a globalized network, where local scale and global scale
interact by reconfiguring centrality and axes, and internal and external connections of the
city [13]. The creation of networks among the multiple places of contemporary urban is one
of the processes that characterize the mobility of inhabitants, and more in general, of any
kinds of city users: a new reticular dimension emerges, based on connections activated
among places, exploited by individuals in their life experience; connections could be either
real (transportation infrastructures) or virtual (information published either on the web or
on social media about places, possibly produced by citizens). Such networking, produced
by experience of individuals in urban space, is termed rhizomatic, by resuming a concept
born in the field of botany and then re-elaborated in the philosophical field: “Compared
to centric (even poly-centric) systems, hierarchical communication and predetermined
connections, a rhizome is an a-centric, non-hierarchical and not meaningful system” ([3],
page 33). The concept of rhizome was refined in spatial terms by Jacques Lévy: “A rhizome
is the space of individual action in mobility, but also in the multiform relationship with
other individuals” ([14], page 19). A further definition could be the following: “A rhizome is
a family of networks, characterized by the absence of identifiable boundaries and a meeting
between topological metric inside and topographic metrics outside” ([14], pages 18–19).
In other words, a rhizome belongs to the topology metric that is to a discontinuous space,
based on nodes and connections that produce a network without beginning, without end
and without well-defined boundaries, because it is the result of the experience in space
of individuals.

In order to explain our view of the concept of rhizome, consider three cities denoted
as A, B and C. First of all, notice that the concept of distance is not only a matter of metric
distance, but it is also a matter of accessibility. Suppose that the distance between the city
centers of A and B is 30 km, but there is a train connection with fast and frequent trains
that allow people to move from A to B and vice versa in 20 min every 15 min. Suppose
now that the distance between the centers of A and C is only 10 km, but only a mountain
road connects them, without public transportation: people without cars cannot reach A
from C. Thus, the availability of an efficient transportation infrastructure makes cities A
and B "closer" than cities A and C. Consequently, transfers from A to B and vice versa are
more frequent than transfers from A to C and vice versa; thus we expect that, by analyzing
data of moving people, cities A and B should be more frequently associated together than
cities A and C. Thus, a metric distance is not always a valid parameter because accessibility
is more important.

Figure 1 depicts the situation: on the left-hand side, the topographic representation



Informatics 2021, 8, 1 5 of 31

shows that cities A and B are farer than cities A and C (based on their metric distance).
On the right-hand side, the topological representation shows that cities A and B are much
more connected than cities A and C: the points representing cities A and B are closer than
the points representing cities A and C; furthermore, the line connecting cities A and B
is thicker than the line connecting cities A and C. Thus, the reader can have a concrete
shape to what was argued by Levy ([14], pages 18–19): the rhizome is topographic outside-,
i.e., places lived by people are physically located in the space; nevertheless, the rhizome
is topological inside, because the strength of connections does not depend only on the
physical distance between the connected places. If we consider connections between many
places, both the topographic and the topological representations assume a reticular shape,
where some place can be more attractive than the other ones, but no center clearly emerges;
the reader can find examples in Section 3.

Figure 1. A topographic representation of connections among cities A, B and C (left side) and a topological representation
of connections among the same three cities based on strength of connections (right side).

Another aspect of interest is related to the fact that connections are not only related
to physical accessibility but also to virtual connectivity. One example is related to pro-
motional activities: suppose that in city A there is a restaurant whose fame is increasing,
because some people living in city B are promoting it through social networks; friends of
promoting people (living in city B too), could decide to go to that restaurant as well. This
consideration has an impact on the visualization strategy to adopt for visually analyzing
connections. Again, it appears that a topographic representation is necessary but it is
not enough to enhance the strength of connections; a topological representation in which
two very connected cities are depicted closer than two loosely connected cities (as in the
right-hand side of Figure 1) could provide a very useful visualization perspective, able to
help analysts understand networks of connections.

By moving from the above considerations, it is possible to guess that “a rhizome is the
space with a set of places frequently lived by a single person and by many people, on the
basis of material and virtual connections among them”.

2.2. Mining Itemsets and Association Rules

Since the 1990s, a large number of data mining techniques have been developed to
address a large variety of problems. One of the most famous data mining techniques is
called mining of association rules [4]. Born for market-basket analysis, its original goal was
to find frequent associations of (sold) items, i.e., items that frequently appear together
in (commercial) transactions. An association rule has the form {A, B, C} −→ D, meaning
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that when a customer buys products A, B and C, he/she also buys product D. Each rule
has two numerical weights, called support and confidence. The support is the percentage
of transactions that contain the rule. The confidence is the conditional probability that the
whole rule is found in a transaction having found the body (in the sample rule, the body
is {A, B, C}, while D is the head). Since the number of rules could be extremely high,
it is necessary to prune the search space, in order to get only rules that could be really
meaningful; pruning is done by setting a minimum threshold for support.

{A, B, C}, {A, B, C, D} and so on are called itemsets; in particular, {A, B, C} is called
3-itemset because it contains three items, while {A, B, C, D} is called a 4-itemset because
it contains four items. Notice that the rule {A, B, C} → D is obtained from itemset
{A, B, C, D}; this means that both the itemset {A, B, C, D} and the rule {A, B, C} −→ D
have the same support. Given a minimum threshold for support named minsupp, itemsets
having support greater than or equal to minsupp are called large itemsets.

The basic step to compute association rules is called itemset mining: an algorithm
extracts those sets of items that frequently appear together in transactions (large itemsets).
This problem is not so easy to solve, particularly when the data set is very large and the
number of items per transaction is large too. The reader can refer to [15,16] for some
well-known algorithms developed to efficiently mine large itemsets. In this work, we used
the implementation developed within the Hints from the Crowd project [17], which is a
main memory algorithm able to deal with generic items. A reader willing to experiment
the approach can exploit any algorithm available on the Internet for mining itemsets or
association rules; a few lines of code written in some procedural programming language
will usually be enough to pre-process the data set, so as to transform it into a format that is
suitable for the specific implementation of the algorithm.

In order to detach from the context of commercial transactions, we can give the
following generic formulation of the problem of itemset mining, originated from the
semantics of the MINE RULE operator introduced for relational databases [18] and for XML
databases [19].

Definition 1 (Data set and items). Consider a data set D. This is a set of groups; i.e., D =
{g1, g2, . . . , gn}. Each group gi is, in turn, a finite set of items, i.e., gi = {a(i,1), a(i,2), . . . }. Groups
are not disjoint; i.e., they can share items.

As an example, in the case of market-basket analysis, items are products, while groups
are single commercial transactions.

Definition 2 (Large itemset). An itemset h = {a1, a2, . . . } is a finite set of items that appear
together in some group in D. The support of h is the number of groups in D that contain the whole
itemset, divided by the total number of groups in D. Formally,

supp(h) = |{g ∈ D | g ∩ h = h ∧ h 6= ∅}|/|D|.

Given a minimum threshold minsupp such that 0 ≤ minsupp ≤ 1, the itemset h is said to be large
if its support is greater than or equal to the minimum threshold, i.e., if supp(h) ≥ minsupp.

After these premises, we can say that the problem of large itemset mining is to compute
all large itemsets from within a data setD, given a minimum threshold for support denoted
as minsupp.

As an example, consider the data set reported in Table 1. If we set minsupp = 3/5 =
0.6, we obtain the large itemsets reported in Table 2. Notice itemset h8, with support
3/5 = 0.6, that appears in three groups, i.e., groups g2, g4 and g5. This is the itemset with
the largest cardinality (number of items) that we can extract from the data set: itemsets
having a larger number of items have no sufficient support.
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Table 1. Sample data set D, organized in groups and items.

Group ID Items

g1 C, D, E, G, H
g2 A, B, C, E, F, G
g3 E, G, H
g4 B, C, F, G
g5 B, C, G

Table 2. Large itemsets, con minsupp = 3/5 = 0.6.

Itemset ID Items Support

h1 B 3/5
h2 C 5/5
h3 E 3/5
h4 G 5/5
h5 B, C 3/5
h6 B, G 3/5
h7 C, G 4/5
h8 B, C, G 3/5

2.3. Related Work on Analysis of Twitter Messages for Studying Mobility

To complete the background of the paper, we consider the secondary contribution of
the paper, i.e., how social media can push data-driven approaches to study mobility of
people. Notice that we focus on works made on data gathered from Twitter, which are
numerous: this is due to the fact that Twitter API does not pose any obstacle to gather data,
while the other social media usually do.

Many studies have been published concerning analysis of tweets, particularly for
studying mobility. In fact, researchers of many human sciences consider now micro-blogs
(such as Twitter) a precious source of information for their studies. In fact, as stated
in [20], people blog to provide a record of their life to share with followers. Obviously, it
is necessary to be aware of doubts concerning the representativeness of data obtained by
analyzing traces of Twitter users [21], because they represent only Twitter users, which are
a subset of all moving people, and they are a subset of social media users.

Anyway, traces of Twitter users can complement other sources of information, in order
to let a possibly unexpected perspective about studied phenomena emerge. Furthermore,
often traces of Twitter users are the only source of information that describes paths of
moving people, as in the context of tourism [22,23]. Notice that many researchers are
interested in exploiting social-media sources to study how people move. For example,
in [24] the authors studied how cities influence mobility, by defining statistical metrics of
centrality that they applied to data produced by Twitter users. In [25], the authors analyzed
digital footprints, such as data produced by phone networks, by cross analyzing them with
geo-referenced photos posted on micro-blogs, to study the movement of tourists during
their visit to Rome (Italy).

On a world-wide scale, geo-located posts by Twitter users can be also used to study
global mobility patterns. In [26], statistical approaches were proposed to study country-
to-country patterns, by considering several aspects, such as country-to-country networks,
temporal patterns of mobility and so on. Furthermore, mobility patterns could be very
useful to analyze migrations as well. In [27], the authors addressed the problem of un-
derstanding which countries migrants to the EU actually come from. They adopted a
clustering algorithm with the goal of discovering the provenance of migrants, in spite of
the (possibly false) countries they declared they came from.

The evolution of a city to become a smart city can be significantly fostered by analyzing
Big Data (in general) and traces of Twitter users (more specifically). In [28], the authors
tried to relate the choices made by tourists in the pre-trip phase with the experiences they
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shared on social media (post-trip). In [29], the authors tried to create value by analyzing
social media: by estimating kernel density and latent Dirichlet allocation, they showed
that it is possible to investigate how social media can provide a platform to develop smart
services for urban tourism. Always through social media analysis, in [30] the authors
explained that Big-Data analysis can help improve decision-making processes, and create
marketing strategies with more personalized offers. Additionally, in [31], the authors
explored how the use of intelligent tourism technologies such as travel-related websites,
social media and smartphones in travel planning, can improve traveler satisfaction. Micro-
blogs can be effective also to influence tourists when they form their perceptions of the
chosen destination; in [32], the authors tried to demonstrate, through the use of Sina Weibo,
a Chinese micro-blogging site, how the choice of a touristic destination is influenced by
information published on the social network.

Traces generated by Twitter users were used to analyze flows of people. For example,
in [33] the authors exploited traces of Twitter users to study flows within a city. They relied
on a topographic representation of flows, and applied clustering techniques to identify
places that were more active, i.e., where Twitter users mostly posted tweets. However, they
did not exploit a topological representation and did not use itemset mining. At a regional
scale, traces of Twitter users were used to analyze traffic [34], in order to study critical areas
and routes on a spatio-temporal basis, i.e., correlating traffic jams, routes and time. In this
work, the authors adopted clustering techniques and topographic representations.

An interesting paper that proposed an approach significantly related to our approach
is [35]. The idea of the authors was to study mobility of individuals by clustering them
instead of locations, in order to discover moving patterns. They adopted a method that
clusters individuals having similar visitation rates for each location. Our approach is similar,
since we try to associate places and transfers that frequently appear together in traces of
Twitter users; however, the adoption of itemset mining provides a different perspective.

A paper that addresses the study of urban characterization is [36]. The authors
partitioned the space by adopting a clustering method that exploits density of tweets
posted in the different areas. Then, numerical features based on the number of tweets in the
different areas and the number of moving users were computed and temporally evaluated.
With respect to our approach, it can be considered complementary, although focused on
similar themes.

We also want to highlight that many approaches can be adopted for studying traces of
Twitter users. One choice could be to develop automatic clustering techniques. However,
specific techniques must be developed in this respect, because traces are sequences of
visited places. In [37–39], a clustering technique for traces of Twitter users (or trips) is
proposed: the idea is to evaluate different similarity metrics between trips that were
previously geo-partitioned on the basis of categorical coding systems (such as ZIP code)
of the area containing coordinates denoting geo-coding of messages. Then, a multi-level
fuzzy-clustering algorithm is applied to discover clusters of most popular trips. In those
works, the reticular view of lived space is not considered, whereas that is the goal of this
paper.

The technique of itemset mining was used in other works to analyze micro-blogs.
For example, in [40], the authors used this technique to extract patterns from messages,
in order to use frequent itemsets for query expansion, when users formulate queries to find
posts of interest. Similarly, in [41] the authors adopted itemset mining for opinion mining
and sentiment analysis of micro-blogs. Specifically, they proposed an opinion-descriptive
model, that is the basis for an opinion mining method. This way, posts in the micro-blogs
are classified on the basis of their sentiment.

To the best of our knowledge, itemset mining has been rarely used to study how
people live space. We found only [42], where the authors adopted itemset mining to
address the problem of geo-social co-location. Suppose that people that are found in the
same place in a given time slice are described by features such as the university they are
studying in, the course and so on; the itemset-mining approach is used to find out the most



Informatics 2021, 8, 1 9 of 31

frequent associations of personal features that characterize people that frequently are in
the same places. For example, if data describe students of universities, features are the
names of the universities; thus, the results are the set of university names whose students
are often found in the same places. In our work, we adopt the opposite approach: we want
to obtain places that are often visited in the same trip by many tourists.

The work in [43] addressed the problem of analyzing micro-blogs for business appli-
cations, namely, context-aware service profiling. To do that, they introduced the notion of
strong generalized flipping itemset that is able to highlight the existence of outliers in terms of
the polarity of a relationship between concepts extracted from messages. In fact, the idea is
that, given a generalized itemset (obtained, given a taxonomy, at a level higher than the
leaf level) and its polarity (positive, negative or neutral), if one or more of its descendant
itemsets (i.e., extracted at a lower level) shows a different polarity, this means that an
anomaly is occurring. Again, they did not work with geo-location of messages to study
mobility of users.

Another study that applied itemset mining to micro-blogs was [44]. Specifically,
the authors addressed the problem named WTF (who to follow): the idea is to recommend
to users, other users to follow, on the basis of the topical users (popular users such as
singers or politicians) and the semantic categories topical users belong to. The authors
exploited itemset mining to profile users on the basis of semantic categories associated
with topical users they follow. The work is quite interesting, but they considered neither
posted messages nor geo-location.

3. Rhizomes as a Data-Driven Approach to Discover Mobility Networks

In this section, we present the main contribution of the paper. In Section 3.1, we
preliminarily present the research project in which we had the ideas discussed in this paper,
and the case study we considered to experiment the approach. In Section 3.2, we introduce
the methodological approach we identified. Then, in Sections 3.3–3.5 we separately discuss
three different interpretations of the problem.

3.1. Research Project and Case Study

The research work presented in this paper is part of a research project led by Uni-
versity of Bergamo (Italy) called Urban Nexus [5]. The goal of the project is to develop a
methodology and tools for studying mobility of city users. The novelty of the approach
is the exploitation of geo-tagged messages posted on Twitter, to discover movements of
city users.

Since the project involved universities and city councils of three tourist-oriented cities,
i.e., Cambridge (UK), Lausanne (Switzerland) and Bergamo (Italy), we decided to define a
case study related to tourism. In fact, city councils of tourist-oriented cities lack tools to
study mobility of tourists, in order to comprehend and create territorial assets capable of
attracting tourists.

Geo-tagged tweets possibly posted by tourists were gathered through the FollowMe
suite [45,46]. It is a software tool that we developed to gather data of moving people from
Twitter. By exploiting Twitter API, it detected possibly traveling people by looking for
messages posted in an airport area; then, such Twitter users were tracked for the next 8
days, by gathering their geo-located posts by directly accessing their timelines, i.e., the
history of their posted messages.

We started gathering traces on May 1st, 2015, to the end of studying people visiting
EXPO 2015 held in Milan (Italy). Gathering was stopped at the end of 2018; we collected
around 3,000,000 messages, describing people traveling all over the world.

We collected geo-located posts only from Twitter, because it is the only social network
that does not provide a privacy mechanism: in fact, through Twitter API, any application
can collect messages posted by any user. Other social media pose obstacles to do that: some
require applications to be explicitly approved; others ask for an explicit consensus by users
to share their messages.
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During the project, we developed many tools for analyzing the gathered data. In par-
ticular, we built a tool for visual analysis of traces and messages, called Treets (see [5]), a
fuzzy clustering algorithm to aggregate traces based on ZIP codes [37–39], and a framework
for manipulating collections of geo-tagged JSON data sets (named J-CO, see [47,48]).

In order to have a concrete case study, we considered the city of Bergamo (Italy).
Bergamo is a city with 100,000 inhabitants, located 40 km north-east from Milan (Italy). We
chose Bergamo because we know the city (we work and live in Bergamo), so it is the perfect
choice to validate results. Thus, the case study can be formulated precisely as “studying
mobility networks of tourists that experienced the area of Bergamo and the surrounding
regional area”.

By means of the above-mentioned tools, we built the case-study data set. We decided
to keep its size compact, so that it is easy to understand what the itemset-mining technique
produces. In fact, the relatively small size allowed us to easily inspect the results and
the data set jointly, to validate results. Starting from the whole set of 3,000,000 posts that
describe 400,000 world-wide trips, we selected trips that involved Bergamo. Among all
these trips, we selected those trips that contain significant text in messages, in order to
validate them: in fact, it was important for our research project to be able to characterize
messages with respect to the location they were posted from (for example, whether the
message tells something about a place close to the geo-location of the message, whether the
message provides meaningful information or details and so on and so forth). This way, we
were able to extract traces of real tourists.

After this filtering activity, we obtained the case-study data set, which contains 38 trips;
the total number of places (locations) in trips is 711; the average number of places per trip is
19. Places are not only in the Bergamo area, but also in Milan, and some easily reachable cities,
such as Verona. We consider this a good size for the case-study’s data set. Table 3 reports the
most popular places among the 38 trips, i.e., places that occurred in at least 4 trips. We can
see that, in spite of the relatively small size of the data set, we can get a significant number of
itemsets to validate our practical interpretations of the concept of rhizome.

Table 3. Places the appear in the case-study data set, with the number of trips in which they occur.

Place Number of Trips

Bergamo Railway Station 30
Bergamo Cathedral 24

Orio al Serio Airport 23
Milan 21

Città Alta 16
Milan Malpensa airport 16

San Vigilio Hill 15
Bergamo 11

Piazza Vecchia 10
Basilica di Santa Maria Maggiore 10

Funicolar Città Bassa 8
Colleoni Chapel 7

Dome Square 6
Berlin 6

Pontida Square 6
Campanone 6

Fornaio 5
Funicolar San Vigilio 5

Vineria Cozzi 4
London 4

Porta San Giacomo 4
Meina - Lago Maggiore 4

Lorenzo Mascheroni Square 4
Birreria di Città Alta 4

Il Maialino di Giò 4
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The size of the case-study data set is good for proving the concept, which is the goal
of the paper. Obviously, in order to provide geographers with significant information to
study how tourists live the city, the size of the data set to study should be larger; a larger
data set will be considered in Section 4.

Before continuing, we want to highlight some critical issues concerning the data.
The first issue concerns the capability of messages posted by traveling people to

describe all places they visited. This is due to the fact that they do not post geo-located
messages in every single visited place; in contrast, we can expect that they post messages
from places that they find particularly interesting to their eyes. Thus, it is clear that collected
traces are incomplete by nature; anyway, we can figure out that this is not a problem but a
positive aspect, for analysts that are interested in discovering virtual connections among
places that were judged as interesting by tourists.

Another issue to consider is the size of the case-study data set, in relation to itemset
mining. Itemset mining was born to extract frequent association rules from large data sets,
so it can appear strange to adopt it on a data set that contains only 38 trips. Nevertheless,
we do not think that the outcomes from this data set could be considered relevant for
analysts or for decision makers. The data set was built to prove our ideas about the concept
of rhizome interpreted by means of itemsets. Much larger data sets would not allow for
deeply understanding the effectiveness of the three interpretations, because there would
be too many itemsets to validate on thousands of places. Remember that the focus of the
paper is not to give decision makers indications to make decisions; the goal of the paper is
to validate a concept, to further apply it on larger and/or different data sets.

3.2. Methodology

In the Urban Nexus project, we built the case-study data set as previously described,
because we had to focus on movement of tourists. Specifically, we defined a methodology
to discover how tourists experienced the territory, in order to discover (possibly virtual)
connections between places both inside and outside the observed territory.

We understood that the network-based approach introduced by the Actor-Network
Theory (ANT) and declined as rhizome was promising. However, we realized that a practi-
cal interpretation of the concept of rhizome was missing: although the concept is intuitively
a visual concept, a concrete shape for it has not been provided yet. Consequently, we
decided to investigate how to give a concrete shape to the concept of rhizome, by applying
it to study mobility of tourists, which is the contribution of the paper.

In particular, one specific aspect had to be addressed: how to evaluate the strength
of connections between places. To solve this problem, we had the intuition of adopting
itemset mining, which provides associations of items often present together in groups (see
Section 2.2), by applying it to trips of tourists. The intuition is that the reticular view behind
the concept of rhizome should let associations of places that are common among tourists
emerge, and common associations of transfers made by tourists from one place to another.
However, this is the same idea behind itemset mining applied to commercial transactions;
by using the generic formulation of the problem of itemset mining reported in Section 2.2,
if groups are viewed as trips and items are viewed either as places or as transfers, we can
discover the most frequent associations of them; in fact, if one single tourist visits three
places during the trip, this can be an outlier, originated by his/her particular interests; in
contrast, if many tourists visited the same three places, this is not a case and can reveal a
virtual connection among places. Consequently, the greater the number of itemsets a pair
of places appears in, the stronger their connection.

Thus, the research question we addressed can be summarized as follows: “can itemset
mining be effectively used, together with proper visualization techniques (topographic and
topological representations) to give a concrete visual shape to rhizomes, applied to give a
methodology for discovering the mobility networks of tourists by analyzing geo-located
tweets posted during their trips?”
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The methodological approach we followed to address the research question is the
following one:

1. We identified three different interpretations for the concept of rhizome on the basis of
itemset mining;

2. For each interpretation, we applied the algorithm for itemset mining and visual-
ized the results both by means of a topographic representation and a topological
representation;

3. We studied the effectiveness of each interpretation, based on both the topographic rep-
resentation and the topological representation for letting the rhizome of tourists emerge.

Each interpretation is tied to a specific perspective we can adopt to inspect the data
set: by associating visited places (Interpretation 1, presented in Section 3.3); by associ-
ating transfers from one place to another (Interpretation 2, presented in Section 3.4); by
associating transitive transfers from one place to another (Interpretation 3, presented in
Section 3.5).

To let virtual connections emerge (recall Section 2.1), locations outside the surrounding
regional area of the city of interest are collapsed either to the center of the city whose area
contains the location, or to a specific point of interest near the location (such as an airport).
This mixed focus of the analysis has the following rationale: we want to simulate a typical
interest of local administrators, i.e., understanding connections of specific places in the
administrated city with respect to the surrounding territory. Obviously, the mixed focus
stresses the capability of the approach.

Specifically, we performed geo-coding of tweets as reported hereafter.

• Geo-coding with specific places. Depending on the specific points where a post is sent
from, coordinates of points sent from the same place are different; furthermore, errors
performed by GPS antennas could also affect precision. Consequently, it is not the case
to refer to pure coordinates: it is necessary to geo-code tweets, by associating them to
places they were posted from.
Not only, not necessarily tweets concerning a given place are posted from the place
they refer to: they can be posted form a street or square close by the place, for example,
a picture of a building is taken and posted from the square in front of it. Thus, the place
the post talks about is the building, not the square.

• Airports and stations. These are places with large areas; it is not at all relevant in what
part of an airport or station a person posted a tweet. What really matters, as far as the
analysis is concerned, is the fact that the user was in the airport/station.

• Default coordinates. If the geo-location service is disabled on the smartphone, the Twitter
app associates default coordinates to geo-located tweets, i.e., coordinates of the city
center. In this case, it happens that many posts are conventionally located in the city
centers; if their texts do not mention any specific place, it is not possible to associate
them to a specific point of interest.

• Geo-coding with city center (and city name). In our experiments, tweets posted from cities
outside the area of interest were geo-coded with the name of the city, without distin-
guishing with respect to the places they actually referred to. Of course, we are aware
that this choice affects the results of the analysis, but it is coherent with the method-
ological goal of our work, i.e., studying connections of places in the area of interest
with cities in the surrounding areas. In case an analyst were interested in studying
connections with specific places, it would be enough to change the label assigned to
tweets actually posted from or talking about this place and repeat the analysis.

Notice that the above-mentioned activities could be performed in an automatic way,
in case of very large data sets containing, e.g., millions of geo-located messages, by ex-
ploiting thesauri about public places. Of course, in this case we can expect some case of
wrong geo-coding, that should be compensated by the size of the data set and by suitable
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minimum thresholds for extracting large itemsets. The contribution of the paper is not
concerned with gathering, pre-processing, completeness and quality of data, but with
proving the concept of rhizome.

Nevertheless, it is worth noticing that every decision about the way messages are geo-
coded affects the outcomes of the analysis. However, it is not possible to give a unique and
definite guideline, because this depends on specific needs. As far as the specific decision
we made to prepare the case-study data set, they were motivated by the need to understand
the potentiality of our ideas, i.e., the adoption of itemset mining to give a concrete shape to
the concept of rhizome. In other words, given geo-coded traces of moving people, whose
completeness and quality are accepted by analysts, the approach can be applied to study
their common movements.

3.3. Associating Visited Places (Interpretation 1)

A trip is a finite sequence of places ti = 〈p(i,1), p(i,2), . . . 〉 (where p(i,j) denotes a place).
We look at it as a finite set of visited places, irrespective of the temporal factor. By applying
itemset mining, it is possible to formulate the problem as follows: we want to extract all
significant associations of places, such that associated places are visited by the same tourists.

We can formalize the itemset mining problem as follows:

• The data set D1 is a set of groups, i.e., D1 = {g1, g2, . . . }.
• A group gi = {a(i,1), a(i,2), . . . } corresponds to a trip ti = 〈p(i,1), p(i,2), . . . 〉; an item

a(i,j) in gi is a place visited by trip ti, i.e., a(i,j) = p(i,k), with p(i,k) ∈ ti.
• Set a minimum threshold for support that provides a representative set of itemsets.

This way, an itemset describes places visited together by a few tourists. The greater the
cardinality of an itemset and its support, the higher the relevance of the itemset. The pool
of extracted itemsets is an interpretation of the concept of mobility network.

Expectations. By means of this interpretation, mobility networks of tourists are seen as
the frequent associations of places visited by tourists; this means that the association is
relevant for tourists and characterizes the way they visit a city.

From the visual analysis of extracted itemsets, we expect to obtain the following out-
comes:

• We expect the topographic representation to provide a clear delimitation of the areas
covered by mobility networks;

• We expect the topological representation to provide the strength of the interconnections
between single places.

In Section 3.3.1, we discuss whether the expectations were confirmed in the case study.

3.3.1. Case Study: Topographic and Topological Representations

We ran the algorithm for itemset mining on the case-study data set with the minimum
threshold for support set as: minsupp = 2/|D1|; we obtained 1284 itemsets, distributed
as reported in Table 4. This choice, which allows for extracting itemsets shared by at
least two tourists, is determined by the limited number of trips in the case-study data set.
If the analyzed data set had thousands of trips, the choice could be at least 100 tourists
(i.e., minsupp = 100/|D1|). The right threshold can be obtained only by starting with a
very high threshold value and by progressively reducing it, stopping when a reasonable
number of itemsets (not too few and not too many) is obtained. What do we mean with “a
reasonable number of itemsets”? It is difficult to provide an absolute number. Certainly,
too many itemsets do not provide information, because many itemsets would have low
support and low significance; too few itemsets would let only very strong associations
emerge. The investigation necessarily requires one to perform several attempts, so as
to tune the minimum threshold for support, not only based on the number of extracted
itemsets but also based on the informativeness of representations.
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Table 4. Distribution of itemsets for interpretation 1.

# of Items in the Itemset Support (# of Tourists) # of Itemsets

2 2 184
2 3 48
2 4 19
2 5 3
2 6 2
2 7 1
2 8 2
2 10 1
3 2 342
3 3 26
3 4 2
4 2 303
4 3 2
5 2 199
6 2 102
7 2 38
8 2 9
9 2 1

Figures 2 and 3 adopt the topographic representation to provide a network view of
associations: each place (point) in an itemset is connected with all other places in the
same itemset; each itemset is depicted with a different color. The thickness of the itemset,
i.e., the support in terms of number of tourists that share the same association of places,
corresponds to different thickness: the greater the number of tourists sharing the same
places, the greater the thickness of the lines depicting the same itemset. From Figure 2, we
focus at the level of regional territory surrounding Bergamo area. Recall that all places in
Milan and, in general, other cities outside Bergamo area, were geo-coded with the same
place, i.e., either the center of cities or the center of airports, in order to constitute a single
item. In Figure 3 we focus on the city of Bergamo.

Figure 2. Topographic representation for discovered itemsets associating places (Interpretation 1), focused at the level of
surrounding regional territory of Bergamo.
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Figure 3. Topographic representation for discovered itemsets associating places (Interpretation 1), focused at the level of
Bergamo area.

The topological representation depicting itemsets is shown in Figure 4. The goal is
to let the strength of associations between places emerge clearly. In this representation,
the sizes of points and lines are proportional to their relevance. In particular, the size of
a point, which depicts a place, is proportional to the number of tourists that visited that
place. The strength of a line is proportional to the support of the itemset; the support
is the number of tourists that share the association of places. Positions of places are not
casual: we adopted a tool called D3.js (URL: https://d3js.org/), which is an off-the-shelf
generic JavaScript library, which determines the position of two points on the basis of the
strength of their connection: the stronger the connection, the closer they are. In practice,
two points attract themselves if they are strongly connected. This way, the analyst can get
a visualization of connections that clearly put strongly connected places together.

Outcomes from the case-study data set. Consider the topographic representation reported
in Figure 2: The map covers Bergamo area (on the right-hand side) and Milan area (on
the left-hand side), but a few trips involve also the city of Verona (east side), which is
not reported in the map. It is possible to see how many tourists visited several places in
Bergamo and visited Milan too: this is an example of virtual connection emerged from
the data.

From Figure 3 (obtained by zooming in Figure 2 on the Bergamo area), we focus on the
local area of Bergamo. It is possible to see that not all tourists in Bergamo posted messages
concerning the same places (notice the different lines having different colors). We can argue
that tourists are interested in different touristic attractions. Notice that the alignment of
places of interest in Bergamo (from south-east to north-west) does not help in visualizing
associations on the map.

https://d3js.org/
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Figure 4. Topological representation depicting the itemsets obtained by running the itemset-mining algorithm on the
case-study data set with Interpretation 1.

Consider now the topological representation reported in Figure 4. Notice that the
point corresponding to Milan (on the left-hand side) is one of the three biggest points,
because we collapsed all locations in Milan to one single point (see Table 3). Similarly, two
airports clearly emerge, i.e., Milan Malpensa Airport (on the left-hand side) and Bergamo
Orio al Serio Airport (in the center of the figure): in fact, many tourists posted messages
while they were at the airport. Notice two places labeled as “Bergamo” and “Città Alta”:
the first one is associated with any message that does not characterize any specific place in
Bergamo, but was posted in Bergamo; the second one characterizes all messages posted in
the ancient area of Bergamo (called “Città Alta”, i.e., “Upper Town”, because it is on the
top of a hill) that were clearly posted in that area but do not refer to any specific place.

Notice the very thick line between Milan and Milan Malpensa Airport, which we
expected because Milan Malpensa Airport is the most important airport for Milan; another
important connection is between Bergamo Orio al Serio Airport and Milan, meaning that
many visitors of Milan landed at Bergamo Airport to reach Milan (Bergamo Airport is
served by Ryanair). Another important connection is between Milan and the generic place
associated with Bergamo, meaning that many tourists visited both Milan and Bergamo.
The reader can notice the thin connection with London (on the bottom and left-hand side
corner), meaning that a few tourists came from the area of London (UK).

Furthermore, the fact that lines with different colors are overlapped (see, in particular,
the two lines connecting Milan and Bergamo) allows analyst to get information about the
variety of different itemsets that involve the two places.

3.3.2. Summary of Interpretation 1

We can now summarize what we obtained by experimenting Interpretation 1.

• As far as visualization is concerned, topographic representations are good at getting
the spatial focus of connections, because they give evidence of the relative positions
of connected places. For example, adding information layers describing roads and
railways could help the analysts highlight infrastructures that motivate the strength
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of connections. In contrast, the topological representation actually reveals virtual
connections, their strength and the mobility networks.

• Interpretation 1 is good at revealing places that are central in many mobility networks
of tourists.

• Connections between places emerge (in the topological representation), but neither
order nor time are considered.

• Imprecision of geo-coding in tweets affects the meaning of results (note the generic
point labeled as "Bergamo", in which we collapsed tweets which are not specifically
related to any place in the city).

• The network of connections appears to be quite intricate, especially in the topological
representation. This appearance strongly recall the botanic rhizome. Thus, we can say
that a mobility network is actually “rhizomatic”, so the geographic concept of rhizome
clearly assumes a concrete and visual shape.

3.4. Associating Direct Transfers (Interpretation 2)

With Interpretation 2, we look at a trip as a finite set of transfers from one visited
place to the next one. By applying itemset mining, it is possible to formulate the problem as
follows: we want to extract all significant associations of direct transfers from one place to another
place, such that associated direct transfers are performed by the same tourists.

We can formalize the itemset mining problem as follows:

• The data set D2 is a set of groups, i.e., D2 = {g1, g2, . . . }.
• A group gi = {a(i,1), a(i,2), . . . } corresponds to a trip ti = 〈p(i,1), p(i,2), . . . 〉; an item

a(i,j) in gi is a transfer a(i,j) = ( f rom(i,j), to(i,j)) from place f rom(i,j) to place to(i,j) such
that f rom(i,j) is the k-th place p(i,k) ∈ ti visited in trip ti and to(i,j) is the (k + 1)-th place
p(i,k+1) ∈ ti. If a trip ti contains multiple occurrences of the same transfer, this appears
only once in gi.

Expectations. This way, an itemset describes common transfers performed by a few tourists.
The greater the cardinality of an itemset and its support, the higher the relevance of the
itemset. The idea is the following: with Interpretation 2, the network is the characterization
of how people move through the territory. In case of tourists, we can say that networks
of tourists are the frequent direct transfers from one place to another place, which should
reveal how tourists move through the territory.

As far as the graphical representations of the itemsets are concerned, we expect that:

• The topographic representation should clearly show frequent direct transfers from
one place to another;

• The topological representation should clearly show direct virtual interconnections
between places.

3.4.1. Case Study: Topographic and Topological Representations

As for Interpretation 1, we set the minimum threshold for support as minsupp =
2/|D2| to run the algorithm for itemset mining on the case-study data set. We obtained the
itemset distribution reported in Table 5. Figures 5 and 6 adopt a topographic representation
to depict the obtained itemsets. This time, items are arrows, so that arrows having the same
color are associated together in the same itemset. The size of points is proportional to the
number of itemsets that share the point, and the thickness of arrows is proportional to the
number of tourists that share the same set of transfers. Figure 7 presents the topological
representation of the itemsets discovered on the basis of Interpretation 2. With respect to
Figure 4, lines become arrows, because we now represent direct transfers.
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Table 5. Distribution of itemsets for Interpretation 2.

# of Items in the Itemset Support (# of Tourist) # of Itemsets

2 2 12
2 3 4
2 4 1
3 2 4

Figure 5. Topographic representation for discovered itemsets associating direct transfers (Interpretation 2).

Outcomes from the case-study data set. Let us analyze what it is possible to obtain by
adopting Interpretation 2. First of all, the reader certainly noticed that Interpretation 2 gives
rise to a smaller number of itemsets with smaller cardinality, if compared with itemsets
obtained for Interpretation 1 (associations of places); in fact, the maximum number of items
in an itemset is three, while for Interpretation 1 it was nine. When depicting these itemsets
on the map, the effects become more evident. In fact, from Figure 5 (surrounding territory
of Bergamo area), the reader can see that now Milan emerges to be strongly connected
with Milan Malpensa Airport (green line from the top and left-hand side of the figure),
meaning that many tourists that visited Milan arrived at Milan Malpensa Airport. Bergamo
(right-hand side of the map) is also well connected with Milan, meaning that a significant
number of tourists transferred from Milan to Bergamo, and once in Bergamo, moved within
the city.

Focusing on Bergamo area (Figure 6), it is possible to see how tourists moved in the
city. Again, recall that we considered only direct transfers, so the number of tourists that
made the same direct moves is low.

Considering the topological representation (Figure 7), notice that now the graph is
fragmented, places are connected with fewer other places. Again, the connection between
Milan and Milan Malpensa Airport emerges, along with the connection between Milan
and Bergamo Railway Station: the consequence is that the train connection between the
two cities is effective. In contrast, Bergamo Orio al Serio Airport (on the top and left-hand
side of Figure 7) emerges to be exploited by tourists who landed in Bergamo Airport and
visited Bergamo and its ancient town (Città Alta).
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Figure 6. Topographic representation for discovered itemsets associating direct transfers, focused on Bergamo area.

Figure 7. Topological representation for discovered itemsets associating direct transfers (Interpretation 2).
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3.4.2. Summary of Interpretation 2

We can now summarize what we obtained by experimenting Interpretation 2.

• With respect to Interpretation 1, now the time dimension of trips is somehow consid-
ered, because transfers are ordered on the basis of posting time.

• In the visualization, lines have become arrows, because now itemsets represent a very
different concept, i.e., not just associations of places but common transfers from one
place to another.

• The number of specific direct transfers commonly performed by single tourists is not
high, at least if we maintain the focus at the local area.

• Consequently, Interpretation 2 promises to be effective to reveal mobility networks
where nodes are cities, not specific places in cities, i.e., all locations are geo-coded with
the center of the city whose area contains the location.

The above-mentioned considerations suggested us to modify the interpretation,
by considering not only direct transfers, but also indirect (transitive) transfers.

3.5. Associating Transitive Transfers (Interpretation 3)

Interpretation 2 (presented in Section 3.4) considers only direct transfers, i.e., a transfer
from a place p(i,k) to place p(i,k+1) in a trip ti. However, it is possible to guess that such
specific transfers could be not particularly frequent in trips. For this reason, in Interpre-
tation 3 we consider all transitive transfers (obtained by composing direct transfers) in
a trip. The itemset-mining problem can be formulated as follows: we want to extract all
significant associations of (either direct or indirect) transfers from one place to another place, such
that associated transfers are performed by the same tourists. This way, we expect common
visiting paths to emerge from trips.

We formalize the itemset-mining problem as follows:

• The data set D3 is a set of groups, i.e., D3 = {g1, g2, . . . }.
• A group gi = {a(i,1), a(i,2), . . . } corresponds to a trip ti = 〈p(i,1), p(i,2), . . . 〉; an item

a(i,j) ∈ gi is a transfer a(i,j) = ( f rom(i,j), to(i,j)) from place f rom(i,j) to place to(i,j) such
that f rom(i,j) = p(i,k) is the k-th place p(i,k) ∈ ti visited in trip ti and to(i,j) = p(i,k+h)
is the (k + h)-th place p(i,k+h) ∈ ti (with h ≥ 1) in the same trip, such that there are h
direct transfers. If the same transitive transfer A→ D appears more than once in the
trip, it appears only once in the group.

Expectations. An itemset describes common transfers performed by a few tourists. The greater
the cardinality of an itemset and its support, the higher the relevance of the itemset. The
idea is the same as for Interpretation 2, but since now we consider indirect transfers too,
hidden connections between places should be revealed in a better way.

By depicting the itemsets on the map, we expect to obtain the following outcomes:

• From the topographic representation, we expect to get a clear reticular view of the
space visited by tourists, in such a way each network clearly delimits the lived space;

• From the topological representation, we expect to obtain strong evidence of virtual
interconnections among places.

3.5.1. Case Study: Topographic and Topological Representations

We ran the itemset-mining algorithm on the case-study data set with Interpretation
3 by setting the minimum threshold for support as minsupp = 3/|D3|, to contrast the
explosion of large itemsets. We obtained a larger number of itemsets with more items
(Table 6 reports the distribution of itemsets) than in the case of Interpretation 2 (see Table 5).
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Table 6. Distribution of itemsets for Interpretation 3.

# of Items in the Itemset Support (# of Tourist) # of Itemsets

2 3 59
2 4 9
2 5 1
2 6 2
2 7 1
2 8 1
3 3 30
3 4 5
4 3 6
4 4 1
5 3 1

Figures 8 and 9 adopt the topographic representation to depict the discovered itemsets:
as for Interpretation 2, items are arrows from one place to another. Figure 10 reports the
topological representation for the discovered itemsets: items are still arrows from one place
to another.

Figure 8. Topographic representation for discovered itemsets associating indirect transfers (Interpretation 3), focused at the
level of surrounding regional territory of Bergamo.

Outcomes from the case-study data set. The larger number of itemsets obtained by Inter-
pretation 3 (with respect to Interpretation 2) was due to the fact that groups contained a
much larger number of items than in the case of Interpretation 2, i.e., all indirect transfers
obtained by composing direct transfers.

Figures 8 and 9 report the topographic representations of the itemsets obtained for
Interpretation 3. In particular, Figure 8 is focused at the level of surrounding territory of
Bergamo area, while Figure 9 is focused at the level of Bergamo area. Now, the analyst is
provided with much richer information, because many tourists made common indirect
transfers. In fact, this way we are able to let the following situation be revealed: consider
two tourists; the first one made the direct transfers (A, B) and (B, D), while the second
tourist made the direct transfers (A, C) and (C, D); with Interpretation 3, the fact that both
tourists moved from place A to place D emerges. This is why, in Figure 8, the number of
depicted itemsets is much larger than those depicted in Figure 5.
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Figure 9. Topographic representation for discovered itemsets associating indirect transfers (Interpretation 3), focused at the
level of the Bergamo area.

Figure 10. Topological representation for discovered itemsets associating indirect transfers.

While Figure 8 confirms what emerged with Interpretation 2, Figure 9 (focused at the
level of local area) is able to show how tourists visited the different places in the city. We
do not want to go into a deep analysis of the map, since it is related to the specificities of
the territory and is outside the scope of the paper. Nevertheless, it is clear that a network
view, based on movements of tourists, emerges and could be the starting point for further
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analysis, based either on automatic (such as the Node Rank algorithm presented in [49]) or
manual and visual analysis tools to develop.

Figure 10 shows the topological representation of the itemsets obtained for Interpreta-
tion 3. Notice that now the network structure of interconnections among places is clear.
Now it is possible to study (since indirect transfers are represented as arrows) common
moving paths.

Furthermore, strongly connected places attract themselves, so that they are shown
close each other. Specifically, the reader can see that while the connection between Milan
and Bergamo is confirmed, and the connection between Milan and Milan Malpensa Airport
(top and left-hand side of the figure), the connection between Milan and Bergamo Orio
al Serio Airport clearly emerges, meaning that many people reached Milan from Berg-
amo (Orio al Serio) Airport, passing through intermediate destinations possibly located
in Bergamo.

Finally, notice that many apparently-satellite places emerge: now, the directed arrows
clearly show the paths they belong to, i.e., the paths followed by tourists to visit the local
area. This kind of information could be very important for further analyses.

3.5.2. Summary of Interpretation 3

We can now summarize what we obtained by experimenting Interpretation 3.

• Deriving all transitive transfers from direct transfers overcomes the limitation of
Interpretation 2, giving now a means to study common paths of tourists, in particular
with the focus at the level of local area.

• The large number of items that now are in groups has a negative effect; i.e., a very
large number of itemsets could be extracted.

• Since itemsets to extract may be too many, making the algorithm unable to compute
them, it is necessary to determine a higher and suitable value for minimum support
that strongly depends on the data set.

• Interpretation 3 strongly enhances the mobility network of people, as is shown by the
topological representation.

• Interpretation 3 is able to deal with the mixed focus during the analysis, i.e., main-
taining detailed places in the local area and collapsing places outside: this way, it is
possible to reveal connections between single places in the local area and connections
between single places in the local area and cities in the surrounding regional area.

4. Sample Application to a Large Data Set

In Section 3, we presented the methodological approach and investigated the poten-
tiality of the concept of rhizome to study mobility networks. In this section, we want to
show its application to the large data set from which the case-study data set was extracted.

This data set was built by monitoring users who posted at least one tweet from a
pool of 30 airports, chosen because they were directly connected to Bergamo International
Airport. Among all traces, we selected those that posted at least one tweet from Bergamo
area. These traces are 1129 and the total number of tweets is 47,290 associated with 4765
different locations; the average size of each trace is 42. Geo-coding was performed by
means of “Nominatim” (URL: https://wiki.openstreetmap.org/wiki/Nominatim), which
relies on OpenStreetMap. The geo-coding service provided address, city and country of
each position.

After geo-coding, we observed that most of trips had tweets posted from abroad Italy,
so we decided to apply Interpretation 2 in order to let international interconnections with
Bergamo and surrounding area emerge. For such a kind of analysis, addresses provided by
geo-coding tools are not relevant: consequently, we used city names as place labels.

We ran the algorithm for itemset mining with a minimum support threshold minsupp =
0.005: this way, we extracted common transfers that appear in at least 5 trips. Table 7 reports
the number of itemsets having cardinality greater than 1; the total number of extracted
itemsets is 1446, which we thought to be the right size for obtaining significant visualizations.

 https://wiki.openstreetmap.org/wiki/Nominatim
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Table 7. Distribution of itemsets for Interpretation 2 applied to the large data set.

# of Items in the Itemset # of Itemsets

2 552
3 500
4 270
5 102
6 21
7 1

Figure 11 shows the topological representation we obtained. Notice that it is possible to
discover the European cities that are mostly connected with Orio al Serio (the municipality
whose territory hosts Bergamo International Airport). In contrast, with the bare geo-coding
provided by external tools, without additional knowledge, it is not possible to identify
Milan Malpensa Airport, because its area is distributed on the territory of four different
municipalities. Clearly, we do not want to discuss about specific connections depicted
in the figure; in contrast, we want to point out that we obtained a Europe-wide rhizome,
based on traces of Twitter users: even though they represent only partially moving people,
they actually are a mine of new data for geographers and spatial analysts, previously not
available, that strongly contributes to foster a data-driven approach to geography and
spatial analysis.

Figure 11. Topological representation for discovered itemsets from the large data set by applying Interpretation 2.

Figure 12 reports the topographic representation of discovered associations of direct
transfers, on a zoom level that partly covers the east coast of the USA (on the west side
notice “Newark”, that hosts a very large international airport), centered on Bergamo area:
this way, it is possible to have a clear evidence of provenances/destinations of tourists
that visited Bergamo area. However, if we zoom in, we can discover some interesting
details: Figure 13 is centered on the area of Amsterdam (The Netherlands) and highlights
how people moved from the city of Amsterdam to its airport and vice-versa. This is an
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interesting example of what it is possible to obtain by analyzing social media data by
adopting the rhizomatic approach.

Figure 12. Topographic representation of discovered itemsets from the large data set by adopting Interpretation 2.

Figure 13. Topographic representation for discovered itemsets from the large data set by applying Interpretation 2, focused
on Amsterdam area.
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What happens if we apply Interpretation 1 by keeping the same minimum threshold
for support, i.e., minsupp = 0.005? Table 8 reports the distribution of itemsets on the basis
of their cardinality. Notice that they increased significantly, but the largest cardinality is the
same, i.e., seven items. The total number of itemsets is now 4240, that is about four times
the itemsets obtained for Interpretation 2.

Remember that the representation strategy we adopted for Interpretation 1 depicts a
line for each pair of items in an itemset (see Section 3.3.1). However, this strategy, combined
with the large number of itemsets we obtained (more than 4000), would produce a useless
topological representation, in which edges would form a substantially uniform mixture of
colors. For this reason, we decided to consider only itemsets having seven items in Figure
14: notice that the most relevant aspect is the size of a point, which corresponds with the
degree of interconnection with other places.

Table 8. Distribution of itemsets for Interpretation 1 applied to the large data set.

# of Items in the Itemset # of Itemsets

2 1000
3 1494
4 1151
5 492
6 97
7 6

Figure 14. Topological representation for discovered itemsets from the large data set by applying Interpretation 1.

In Figure 15, we depict the topographic representation of the overall set of more
than 4000 extracted itemsets, zoomed at a world-wide scale. Notice how the topographic
representation helps us understand how areas are virtually connected; in particular, some
more connections that were not discovered by Interpretation 2 emerge (notice, in particular,
the west coast of the American continent).
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Figure 15. Topographic representation for discovered itemsets from the large data set by applying Interpretation 1.

However, by zooming in on specific places, even this representation can give inter-
esting highlights. Figure 16 is focused on the London (UK) area: the reader can notice the
poly-centric structure of connections that concern that area. This is due to the fact that
geo-coding tools provide several names as city names and not only “London” (probably,
this is due to the administrative structure of municipalities). The poly-centric structure that
emerges from the topographic representation clearly reveals this situation, and can provide
significant insights about movements of people.

This section has shown the secondary contribution of the paper: rhizomes and itemset
mining can be very powerful to study mobility by analyzing traces of people gathered through
social media and Twitter in particular. However, several issues concerned with visualization
of possibly numerous itemsets must be further investigated, so as to provide effective tools.

Figure 16. Topographic representation for discovered itemsets from the large data set by applying Interpretation 1, focused
on London (UK) area.
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5. Conclusions

In this paper, we showed how a classical data mining technique, namely, itemset
mining, can be applied to give a data-driven interpretation to the concept of rhizome,
defined by geographers.

We built a case-study data set in order to test the approach: traces of geo-located
tweets posted by tourists that visited the area of Bergamo (city in the north of Italy) were
gathered, filtered and analyzed. The reduced size of the case-study data set, united with
our knowledge of the territory, helped us understand the outcomes of the mining technique,
so as to prove the concept.

We considered three different interpretations of the problem, corresponding to three
different formulations of the mining task. Since the bare application of itemset mining
is not sufficient to view the mobility networks, it is essential to visualize itemsets on the
map; specifically, two different representations (topographic and topological) are necessary,
because they highlight different aspects. Thus, the analysis can be performed only by
jointly adopting the proper interpretation and the proper visualization. Nevertheless, they
give a concrete and data-driven shape of the concept of rhizome.

Furthermore, in order to show the potential application of rhizomes and itemset
mining to study large data sets containing numerous traces of moving people, we presented
a sample application to the overall set of traces of potential tourists that posted at least
one tweet in Bergamo area, from which we extracted the case-study data set. This sample
application highlights the potential usefulness of traces coming from social media (an
Twitter in particular) for geographers, enabling novel data-driven investigations.

Hereafter, we summarize the lessons that we have learned.

• The application of itemset mining without a proper support for visualizing discov-
ered itemsets is substantially useless; i.e., only the joint contribution of mining and
visualization is effective.

• As argued in the definition of the concept of rhizome (Section 2.1), the topographic rep-
resentation and the topological representation jointly characterize mobility networks.
In particular, while the topographic representation shows the mobility networks as
they could be seen and imagined from outside the networks, the topological represen-
tation is actually able to show insights of the networks, in some sense giving a look at
the intimate structure of the networks.

• Depending on the interpretation we give to the problem, the proposed approach is
able to reveal different aspects of mobility networks, suitable for different focuses
of the analysis. Interpretation 1 is good for getting preliminary insights about the
mobility networks, without considering the time dimension. Interpretation 2 is good
for studying mobility networks at the level of interconnected cities. Interpretation 3 is
good for studying mobility networks at different focuses at the same time, i.e., local
area and surrounding regional area.

• Finally, both the topographic and the topological representations show a “rhizomatic
shape”. Consequently, we can claim that we have found concrete interpretations for
the concept of rhizome that has assumed practical and concrete shapes.

Several open issues to be investigated in the future can be identified (we list the
main ones).

• In this work, we focused on mobility networks of groups of people. However, mobile
applications provide owners of mobile devices with the possibility to continuously
trace their movements (such as Google Timeline). Could the presented approach be
used to study personal mobility networks, on the basis of traces voluntarily provided
by people?

• Some readers could have concerns about the ethics of using tweets for studying the
mobility of users. In this respect, our opinion is that Twitter users should be aware of
the fact that Twitter has no privacy mechanism; thus, everything they post can be seen
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by everybody. However, often, this is exactly what Twitter users want. We were able
to gather traces simply because Twitter APIs allowed us to do that. We did not collect
data from other social media, such as Facebook, because their privacy models ask for a
direct action by users, who have to explicitly agree to share their data.

• An issue that emerges from Interpretation 1 is the fact that n-itemsets may include
k-itemsets, with 2 ≤ k < n, which certainly have support greater than or equal to
the n-itemset. Their visualization grows up common edges. Thus, it is legitimate to
wonder whether this effect makes connections artificially stronger than they are.
A possible solution could be to explore the adoption of closed itemsets [50]: an itemset
y is closed if it is not contained in another itemset z, such that y and z have the
same support. Thus, if we extract only closed itemsets, the generated itemsets are
significantly less than those obtained by the classical technique. What happens if we
visualize only closed itemsets instead of all itemsets? We plan to investigate this issue
as future work.

• An important limitation of the visualization techniques we experimented is the fact that
they render pair-wise connections. In fact, it is true that different itemsets are depicted
with different colors; however, the overlapping effect hides associations of more than
two places. This is an important issue to solve, by exploring novel approaches for
visualizing itemsets.
Along the same lines, we can consider the issue emerged by applying Interpretation 1 to
the large data set (Section 4): in order to obtain a meaningful topological representation,
we had to depict only itemsets containing seven items. As a consequence, we guess
that a practical visualization tool should allow analysts to select the cardinality of
itemsets to visualize.

• The number of places visited during a trip that we can discover strongly depends
on the attitude of the user regarding posting messages in a frequent way. Clearly, it
appears from our data set that Twitter users are not so active in posting geo-located
messages. What would happen if they were more active?
It is hard to say. Certainly, their traces would be richer and their movements could be
traced more accurately. Clearly, the extraction of itemsets would be strongly affected,
resulting in an exponential increase of itemsets, in particular in the case of Inter-
pretation 3, because the number of transitive transfers would dramatically increase.
Anyway, the number of extracted itemsets can be taken under control by increasing
the minimum threshold for support, and by adopting the technique to extract only
closed itemsets.
However,this is outside the scope of the paper. In fact, its main contribution is to give,
for the first time, a data-driven interpretation of the concept of rhizome, provided that
a pool pf traces (possibly gathered thorough social media) is available.

We want to remark that the contribution of the paper is neither how to collect data
sets with traces of moving people from social media nor how to pre-possess these traces in
a possibly automatic way. The main contribution is a first step towards the definition of a
practical interpretation of the concept of rhizome (which, until now, was only theoretical)
based on itemset mining and visualization techniques, provided that a data set with traces
of moving people is available and whose quality is accepted by analysts and geographers.
In fact, the outcomes from the case-study data set are not meant to be the contribution
of the paper (to be helpful, for instance, for decision makers); they are only a means to
understand the potentiality of the approach. Nonetheless, the secondary contribution of
the paper is to show how social media (and Twitter in particular) could become precious
sources of information for studying mobility of people by applying rhizomes and itemset
mining, provided that flexible tools for dealing with the analysis are provided.

Consequently, the future work can continue in two different directions: the first one
concerns the tuning of the application of the itemset-mining technique to larger data sets,
in particular as far as tuning of the minimum threshold for support is concerned. The sec-
ond direction concerns the development of new tools to better inspect discovered itemsets
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(for example, by providing filtering panels and inspection functionalities), and the devel-
opment of further algorithms to perform a second-stage analysis on discovered itemsets.
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