
applied
sciences

Article

Towards the Discovery of Influencers to Follow in
Micro-Blogs (Twitter) by Detecting Topics in Posted
Messages (Tweets)

Mubashir Ali 1, Anees Baqir 2, Giuseppe Psaila 1,* and Sayyam Malik 2

1 Department of Management, Information and Production Engineering, University of Bergamo,
24129 Bergamo, Italy; mubashir.ali@unibg.it

2 Faculty of Computing & IT, University of Sialkot, Sialkot 51040, Pakistan; anees.baqir@uskt.edu.pk (A.B.);
sayyam.malik@uskt.edu.pk (S.M.)

* Correspondence: giuseppe.psaila@unibg.it; Tel.: +39-035-205-2355

Received: 8 July 2020; Accepted: 12 August 2020; Published: 18 August 2020
����������
�������

Abstract: Micro-blogs, such as Twitter, have become important tools to share opinions and
information among users. Messages concerning any topic are daily posted. A message posted
by a given user reaches all the users that decided to follow her/him. Some users post many
messages, because they aim at being recognized as influencers, typically on specific topics. How a
user can discover influencers concerned with her/his interest? Micro-blog apps and web sites
lack a functionality to recommend users with influencers, on the basis of the content of posted
messages. In this paper, we envision such a scenario and we identify the problem that constitutes
the basic brick for developing a recommender of (possibly influencer) users: training a classification
model by exploiting messages labeled with topical classes, so as this model can be used to classify
unlabeled messages, to let the hidden topic they talk about emerge. Specifically, the paper reports
the investigation activity we performed to demonstrate the suitability of our idea. To perform the
investigation, we developed an investigation framework that exploits various patterns for extracting
features from within messages (labeled with topical classes) in conjunction with the mostly-used
classifiers for text classification problems. By means of the investigation framework, we were able
to perform a large pool of experiments, that allowed us to evaluate all the combinations of feature
patterns with classifiers. By means of a cost-benefit function called “Suitability”, that combines
accuracy with execution time, we were able to demonstrate that a technique for discovering topics
from within messages suitable for the application context is available.

Keywords: social media; micro-blogs (Twitter); towards recommending influencers based on topic
classification; investigation framework; comparison of various techniques for topic classification;
cost-benefit function

1. Introduction

Micro-blogs have become widely-used online platforms for sharing ideas, political views,
emotions and so on. One very famous micro-blog is Twitter: it is an online social network that
allows users to publish short sentences; every day, millions of messages (also called tweets) concerning
a very large variety of topics are published (or posted) by users. According to [1], Twitter is a famous
micro-blogging site where more than 313 million users from all over the world are active monthly.

Due to the importance it has gained, Twitter inspired novel researches concerned with many areas
of computer science, in particular data mining [2], sentiment analysis [3], text mining [4], discovering
mobility of people [5–7] and so on. For example, tweets are analyzed to find out political friends [8],
so this implies that texts are analyzed to detect their political polarity. Another interesting application

Appl. Sci. 2020, 10, 5715; doi:10.3390/app10165715 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/10/16/5715?type=check_update&version=1
http://dx.doi.org/10.3390/app10165715
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 5715 2 of 28

is detecting communities from networks of users [9], in which sentiment analysis plays an important
role; sentiment analysis and opinion mining can be also adopted to study the general sentiment of a
given country [10], in order to detect the degree of support to terrorists. We can summarize that most of
works concerned with the analysis of tweets are focused on sentiment analysis and opinion extraction;
thus, the common perspective is that tweets posted by users are collected and queried to provide useful
information about users. We can say that users are analyzed from outside the micro-blog; the results of
the analysis are not used to provide a service or a functionality to users of the micro-blog itself.

Nevertheless, many users post a lot of messages, because they wish to influence other users.
In fact, when a followed user posts a new tweet, all her/his followers receive it. Typically, users post
many messages because they would like to be recognized as influencers in a specific topic. This goal
requires a user to have many followers, that are interested in the same topic. Consequently, it is
critical, for an influencer, to be interesting for other users and easily found by them. On the contrary,
non influencer users would like to easily find interesting influencers to follow.

How to find users to follow? The reasons to decide to follow other users can be various; typically,
one reason is affinity of interests: a user would like to follow other users with similar interests.
However, currently it is quite hard to find out users that show the same interests, because micro-blog
platforms in general (and Twitter in particular) do not provide any end-user functionality or service
that recommends users with similar interests; consequently, we are envisioning a new scenario for
micro-blog platforms.

This new scenario can become reality only if it is technically possible to realize it. This is the goal of
this paper, i.e., addressing the basic problem at the basis of the envisioned functionality: we show that
it is effective and efficient to classify messages with topics they talk about. In practice, we demonstrate
that it is possible to define a technique that allows for characterizing user interests (in terms of topics)
by analyzing their posted messages, that will open the way to build a sort of recommender system
that recommends one user with other users having similar interests. At the best of our knowledge,
very limited work has appeared in literature concerning this topic.

In this paper, we investigate the definition of an approach based on supervised learning,
to discover topics that messages posted by micro-blog users talk about. To this end, we devised
an investigation framework whose goal is to apply various combinations of feature patterns
(extracted from within posted messages) and classification techniques: this framework has enabled us
to identify the best combination to address the problem. In this work, basic and combined n-grams,
weighted with a “Term Frequency-Inverse Document Frequency” (TF-IDF)-like metric, are used
to extract features from messages to train four of the mostly-used classifiers for text classification,
i.e., Naive Bayes (NB), Support Vector Machine (SVM), K- Nearest Neighbors (kNN) and Random
Forest (RF). By means of the investigation framework, we performed a comparative analysis of accuracy
and execution times; to identify the most suitable solution, we defined a cost-benefit function called
Suitability, able to balance the benefit of a technique in terms of accuracy with the computational cost
of using that technique. We will show that the comparative analysis yielded the solution that we think
suitable for discovering topics messages talk about: this is the preliminary step to extend micro-blog
user interfaces with functionalities able to suggest influencers to follow. This comparative analysis,
that considers both accuracy and execution time, is the distinctive contribution of this paper: in fact,
at the best of our knowledge, a similar approach has not been proposed yet.

The rest of the paper is organized as follows. Section 2 gives a brief review of the existing
approaches used for text mining applications on micro-blog data sets. Section 3 depicts the envisioned
application scenario and defines the specific problem addressed by the paper. Section 4 presents the
investigation framework, by discussing the dimensions of the investigation. Section 5 reports about
the experimental analysis conducted by means of the investigation framework; by means of results,
we perform a comparative analysis of techniques, by considering both their effectiveness (in terms
of accuracy) and their computational cost. By means of the cost-benefit function called Suitability,

Appl. Sci. 2020, 10, 5715 3 of 28

we rank the techniques and we identify the most suitable solution for the application scenario depicted
in Section 3. Finally, Section 6 draws the conclusions.

2. Literature Review

To the best of our knowledge, the problem of discovering topics from messages in micro-blogs
has not been significantly addressed yet, specifically if the goal is to introduce new functionalities
in the micro-blogs interface. Nevertheless, micro-blogs have become precious for many application
fields, and many techniques have been developed. In this sense, the related literature is so vast that it
is impossible to be exhaustive. In the rest of this section, we propose a brief overview of techniques
developed for application areas that are somehow related to our paper.

2.1. Sentiment Analysis and Opinion Mining

Topic discovery is somewhat close to sentiment analysis and opinion mining. Various approaches
to perform sentiment analysis and opinion mining on micro-blogs (and Twitter in particular) have
been proposed. Their application context is very different with respect to the context and the goal
considered in this paper. Nevertheless, it is useful to give an overview of these techniques.

Kanavos et al. [11] proposed an algorithm to exploit the emotions of Twitter users by considering
a very large data-set of tweets for sentiment analysis. They proposed a distributed framework to
perform sentiment classification. They used Apache Hadoop and Apache Spark to take the benefits
of big data technology. They partitioned tweets into three classes, i.e., positive, negative and neutral
tweets. The proposed framework is composed of four stages: (i) feature extraction (ii) feature vector
construction (iii) distance computation, and (iv) sentiment classification. They utilized hashtags and
emoticons as sentiment labels, while they performed classification by adopting the AkNN method
(specifically designed for Map-Reduce frameworks).

The study [12] by Hassan et al. evaluated the impact of research articles on individuals, based on
the sentiments expressed on them within tweets citing scientific papers. The authors defined three
categories of tweets, i.e., positive, negative, and neutral. They observed that articles which were cited in
positive or neutral tweets have more impact if compared to articles cited in negative tweets or not cited
at all. To perform sentiment analysis, a data-set of 6,482,260 tweets linking to 1,083,535 publications
was used.

Twitter data are also very important for companies, so as to exploit them to improve their
understanding about the perception by customers of the quality of their products. In [13] authors
proposed an approach to process the comments of the customers about a popular food brand, by using
tweets from customers. A Binary Tree Classifier was used for discovering the polarity lexicon of
English tweets, i.e., positive or negative. To group similar words in tweets, a K-means clustering
algorithm was employed.

2.2. Sociological Analysis

The area of sociological analysis is the target of many classification techniques on micro-blog messages.
The paper [14] presents a technique to understand the emotional reactions of supporters of two

Super Bowl 50 teams, i.e., Panthers and Broncos. The author applied a lexicon-based text mining
approach. About 328,000 tweets were posted during the match by supporters, in which they expressed
their emotions regarding different events during the match. For instance, supporters expressed positive
emotions when their team scored; on the other hand, they expressed negative emotions when their
team conceded a goal. It was concluded that results supported sociological theories of affective
disposition and opponent process.

The work [15] shows how the authors used tweets to monitor the opinion of citizens regarding
vaccination in Italy, i.e., in favor, not in favor and neutral. For improving the proposed system,
different combinations of text representations and classification approaches were used, and the
best accuracy was achieved by the combination scheme of bag-of-words, with stemmed n-grams

Appl. Sci. 2020, 10, 5715 4 of 28

as tokens, and Support Vector Machines (SVM) for classification. The proposed approach fetched
and pre-processed tweets related to vaccine and applied SVM to perform classification of tweets and
achieved an accuracy of 64.84% , that is acceptable but not very good. The investigation approach is
similar to the one adopted in our research, i.e., various combinations of techniques are tested to find
the most effective combination.

Geetha et al. [16] aimed to analyze the state of mind expressed on Twitter through emoticons
and text in tweets. They developed FPAEC—Future Prediction Architecture Based on Efficient
Classification; it incorporates different classification algorithms, including Fisher’s linear discriminant
classifier, artificial neural networks, Support Vector Machines (SVM), Naive Bayes and balanced
iterative reducing; it also incorporates a hierarchical clustering algorithm. In fact, they propose
a two-step approach, where clustering follows a preliminary classification step, to aggregate
classified data.

2.3. Politics

Politics is an interesting application field of sentiment analysis and opinion mining on micro-blogs.
Here, we report a few works.

In [17], the authors proposed a framework to predict the popularity of political parties in Pakistan
in 2013 public election, by finding the sentiments of Twitter users. The proposed framework is based
on the following steps: (1) collection of tweets; (2) pre-processing of tweets; (3) manual annotation of
the corpus. Then, to perform sentiment classification, supervised machine learning techniques such
as Naive Bayes (NB), k Nearest Neighbors (kNN), Support Vector Machines (SVM) and Naive Bayes
Multinomial (NBMN) were used to categorize the tweets into the predefined labels.

In [18], authors utilized tweets to reveal the views of the leaders of two democratic parties in
India. The tweet data-set was collected by using the public twitter accounts, and Opinion Lexicon [19]
was used to compute the number of positive, negative and neutral tweets. They proposed a “Twitter
Sentiment Analysis” framework, which, after pre-processing of the crawled data-set from Twitter,
accumulated opinion lexicon along with classification of tweets into three classes, i.e., positive, negative
and neutral, for the evaluation of sentiments of users.

To discover the sentiments of Twitter users, with the aim of exploring their opinions regarding
political activities during election days, the authors of [20] proposed a methodology and compared the
performance of three sentiment lexicons, i.e., W-WSD, SentiWordNet, TextBlob and two well known
machine learning classifiers, i.e., Support Vector Machines (SVM) and Naive Bayes. They achieved
better classification results with the W-WSD sentiment lexicon.

In [10], authors utilized tweets to predict the sentiment about Islamic State of Iraq and Syria (ISIS);
opinions are organized based on their geographical location. To perform the experimental evaluation,
they collected tweets for a period of three days and used Jeffrey Breen’s algorithm with data mining
algorithms such as Support Vector Machine, Random Forest, Bagging, Decision Trees and Maximum
Entropy to classify tweets related to ISIS.

The paper [8] presents a study where the authors exploit tweets to find out political friends.
They named their approach a “Politic Ally” which identifies the friends having the same political interest.

2.4. Phishing and Spamming

Aspects related to phishing and spamming can be addressed by analyzing micro-blogs as well,
and are close to the problem of topic discovery.

The work [21] proposed an effective security alert mechanism to contrast phishing attacks which
targeted users on social networks such as Twitter, Facebook and so on. The proposed methodology
is based on a supervised machine learning technique. Eleven critical features in messages were
identified: URL length, SSL connection, Hexadecimal, Alexa rank, Age of domain-Year, Equal Digit in
host, Host length, Path length, Registrar and Number of dots in host name. Based on these features,
messages were classified, to build a classification model able to identify phishing.

Appl. Sci. 2020, 10, 5715 5 of 28

Similarly, to deal with spam content being shared on twitter by spammers, Washha et al. [22]
introduced a framework called Spam Drift, which combined various classification algorithms, such as
Random Forest, Support Vector Machines (SVM) and J48 [23]. In short, they developed an unsupervised
framework that dynamically retrains classifiers, used during the on-line classification of new tweets to
detect spam.

2.5. Frameworks for Topic Discovery (Interest Mining)

As far as topic discovery (or user interest mining) is concerned, the work [24] proposed a
framework for “Tweets Classification, Hashtags Suggestion and Tweet Linking”. The framework
performs seven activities: (i) data-set selection; (ii) pre-processing of data-set; (iii) separation of
hashtags; (iv) finding relevant domain of tweets; (v) suggestion of possible interesting hashtags;
(vi) indexing of tweets; (vii) linking of tweets. Thus, topics are represented by hashtags, that are
suggested to users. With respect to our approach, discovered topics are very fine grained (at the level
of hashtags), because the idea is to suggest hashtags to follow, not users.

In a similar study [25], to detect user interests by automatically categorizing data on the basis
of data collected from Twitter and Reddit, authors proposed a methodology comprised of two steps.
(i) multi-label text classification model by using Word2vec [26], a predictive model and (ii) topic
detection by using Latent Dirichlet Allocation (LDA) [27], a statistical topic detection model based
on counting word frequency from a set of documents. A pool of 42,100 documents collected from
Redit and manually labeled was used to train the model; then, a pool of 1,573,000 tweets (posted by
1573 users) was used as training set. This work is interesting because it uses Reddit to build the
classification model to classify unlabeled tweets from Twitter. However, the scenario is quite different
with respect to our paper: in fact, we propose that users wishing to be influencers voluntarily label
their posts, with the goal to be recognized as influencers.

The work [28] presents a web-based application to classify tweets into predefined categories of
interest. These classes are related to health, music, sport, and technology. The system performs various
activities. First of all, they fetch tweets from Twitter and pre-process them; second of all, feature
selection from texts is performed; finally, the machine learning algorithm is applied. Although, from a
general point of view, it is an interesting system, it is designed to perform analysis of messages from
outside the micro-blog. In contrast, our goal is to find out the best technique suitable to discover topics
within the micro-blog application.

So, we can say that our envisioned application scenario is quite novel; furthermore, the specific
goal of the investigation framework presented in this paper is not to be the end-user solution, but a
tool to discover the technique that is most suitable to be executed within the micro-blog application to
discover topics.

2.6. Recommendation Techniques

Recommendation techniques have been proposed in the social network world by a multitude of
papers. They are so many that it is impossible to report them all. Hereafter, we report those that we
consider representative of most recent developments.

The Reference [29] proposed a Recommendation System for Podcast (RSPOD). The system
recommends podcasts, i.e., audios, to listen to. The system utilizes the intimacy between social
network users, i.e., how well they virtually communicate with each other. RSPOD works (i) by
crawling podcast information, (ii) by extracting data from social network services and (iii) by applying
a recommendation module for podcasts.

To predict user’s rating for several items, [30] considers social trust and user influence. In fact, it is
argued that social trust and influence of users can play a vital role to overcome the negative impact on
the quality of recommendation caused by sparsity of data. The phenomenon of social trust is based on
the sociology theory called “Six Degrees of Separation” [31]: the authors proposed a framework that
jointly adopts user similarity, trust and influence, by balancing preferences of users, trust between them

Appl. Sci. 2020, 10, 5715 6 of 28

and ratings from influential users for recommending shops, hotels and other services. The proposed
framework was applied on a data set collected from dianping.com, a Chinese platform that allows
users to rate the aforementioned services.

According to Chen et al. [32], previous recommendation systems mainly focus on recommendations
based on users’ preference and overlook the significance of users’ attention. Influence of trust relation
dwells more on users’ attention rather than users’ preference. Therefore, an item of a user’s interest can
be skipped if it does not get his attention. To counter this, they proposed a probabilistic model called
Hierarchical Trust-Based Poisson Factorization, which utilizes both users’ attention and preferences
for social recommendation of movies, music, software, television shows and so on.

Similarly, [33] aimed at accurately predicting users’ preferences and relevant products
recommendation on social networks by integrating interaction, trust relationships and popularity
of products. The key focus of the proposed model is on performing analysis of users’ interaction
behavior to infer users’ latent interaction relationships, based on product ratings and comments.
Moreover, the popularity of product is considered as well, to help support decision making for
purchasing products.

By emphasizing on the importance of social interaction on recommendation systems [34],
presented an approach based on mapping the weighted social interaction for representing interactions
among users of a social network, by including historical information about users’ behavior.
This information is further mined by using an algorithm called Complete Path Mining, which helps
find similar social neighbors possessing similar tastes as of the target user. To predict the final ratings
of unrated items (such as software, music, movie and so on), the proposed model uses social similar
tendencies of the users on complete paths.

To summarize, the reader can see that recommendation techniques are thought to recommend
single items (such as posts, podcasts or products) to users, based on the existing relationships among
users. Li et al. [35] address the same general problem that we envision in our application scenario,
i.e., recommending users to follow: they propose a framework to recommend the 50 users that are more
similar to a specific user; they jointly exploit user features (such as ID, gender, region, job, education
and so on) and user relationships. In contrast, in our envisioned scenario, we propose a different
approach, i.e., recommending other users to establish a relationship with (e.g., to follow) on the basis
topics their posts talk about. At the best of our knowledge, this problem has not been addressed yet
in literature.

3. Scenario and Problem Statement

In this section, we illustrate the application scenario we are considering, in order to define the
problem we address in the rest of the paper.

Suppose a user of a micro-blog platform wants to look for other users to follow, in order to receive
their posts. How to find them? Currently, both micro-blog apps and the web sites provide a search
functionality to search for users on the basis of a keyword-based search. So, the activity a user has
to perform to find out interesting users to follow, that is depicted in the right-hand side of Figure 1
(the block titled Current Scenario), can be summarized as follows.

• User u performs a keyword-based search, hoping that the specified keywords find out actually
interesting users. The search provides the list of users denoted as R = 〈u1, . . . , un〉.

• For each user ui ∈ R (or for many of them), user u opens ui’s profile and looks at it and at
messages posted by ui; if u finds that ui is interesting, u asks to follow ui.

Such a process is quite tedious and boring, so probably user u could miss interesting users
to follow.

In contrast, we envision a novel functionality for micro-blog apps and web sites: suggesting users
based on similar interests. Let us clarify our vision:

• User u starts posting some messages, possibly re-posting messages received from followed users.

Appl. Sci. 2020, 10, 5715 7 of 28

• At a given time, the application suggests u with a list S = 〈s1, . . . , sm〉 of users potentially having
the same interests.

• User u looks at the profile of some user sj ∈ S and, if u finds that sj is interesting, decides to start
following sj.

Clearly, it is necessary to devise a technique able to learn about user interests. This must necessarily
be a multi-label classification technique, that based on the analysis of features extracted from posted
messages, builds a model of user interests on the basis of these features.

So, the application scenario we envision, that is illustrated in the left-hand side of Figure 1
(the block titled Proposed Scenario), can be described as follows.

Follow interesting
users?

Proposed Scenario

 User posted labeled
 tweets

 Model Training

Expert User

C l a s s i f i c a t i o n M o d e l

Novice User

 Unlabeled tweets

 Recommended
 users

 Tweet Classification

 Selecting interesting
 users

 Follow selected
 user

Current Scenario

Keyword-based search

 List of users

Similar interests?
No

Yes

 Inspect user profile

 Follow inspected
 user

Figure 1. Application scenario.

• Mobile app and web site of a micro-blog should be extended, in order to provide two new
functionalities: Associating Topics to Posted Messages and Suggesting Users with Similar Interests.

• The functionality named Associating Topics to Posted Messages should allow users to associate topics
to each single post, at the moment they are posting it. A topic will play the role of classification
label for the post. This functionality should be not mandatory, and could be appreciated by
influencers, i.e., users that are able to (or would like to) influence other users.

• A classification model for topics should be built by analyzing posts that are labeled with topics,
on the basis of features extracted from within posted messages.

• The functionality named Suggesting Users with Similar Interests applies the classification model
to unlabeled messages posted by a user, in order to automatically associate topics to unlabeled

Appl. Sci. 2020, 10, 5715 8 of 28

messages. Once the most frequent topics in unlabeled messages posted by user u are collected,
the application suggests the list S = 〈s1, . . . , sm〉 of users possibly posting messages concerning
the same topics of interest for u.

• User u can inspect the profiles of users in S and choose the ones to follow, if any.

In order to avoid misunderstandings, we clearly state that we do not consider two different types
of users, i.e., influencers and regular users: any user is equal to other users. However, if a users wishes
to be recognized as an influencer, she/he can better succeed if the micro-blog platform provides a tool
that helps achieve this aim. In fact, the basic condition for a user to be considered as an influencer is
that the number of followers is significantly high; thus, a tool that recommends potential interesting
users is the solution. Such a tool could integrate classical text-based search: in fact, we can envision that
the micro-blog platform is pro-active in suggesting users; furthermore, text search could be too fine
grained to be successful. In other words, we explore the possibility to improve the service provided by
micro-blog platforms to users, both those who wish to become influencers and those who wish to find
out possibly interesting and emerging influencers.

Clearly, the basic brick to be able to develop the envisioned functionalities is to be able to assign
the proper topic to unlabeled messages. The main goal of this paper is to investigate if there exists
a classification technique that is suitable for this task, both in terms of effectiveness and in terms of
efficiency. The specific problem that must be addressed by the wished technique is defined as follows.

Problem 1. Consider a set LP = {lp1, . . . , lpn} of labeled posts; each lpi = 〈mti, ati〉 denotes a labeled post,
where mti is the message text and ati is the assigned topic.

Consider a second set UM = {umt1, . . . , umtm} of unlabeled messages umtj. Based on the set of
labeled posts LP, a classification model C(umt) must be built, such that given a message text umtj ∈ UM,
C(umtj) = tpj, i.e., the classification model C provides the topic tpj of the umtj message.

In the rest of the paper, we will address Problem 1, looking for the technique based on text
classification that provides the best compromise between accuracy (as far as topic detection is
concerned) and efficiency. In fact, if we are able to demonstrate that there exists a technique suitable
to solve Problem 1, the way to further investigate how to rank influencers to suggest to users can
be taken.

4. The Investigation Framework

In this section, we introduce the framework we built to investigate how to discover topics
messages talk about, as reported in Problem 1. First of all, we discuss the dimensions of investigation
we considered (Section 4.1); then, we present technical aspects of the framework in details.

4.1. Dimensions of the Investigation

Problem 1 is a multi-label text classification problem. Thus, through the investigation framework,
two dimensions must be investigated.

• Feature extraction. Message texts must be represented by means of a pool of features, that denote
texts at a level of granularity that makes the classifier effective. However, many patterns of features
can be adopted to represent texts: so effectiveness and efficiency of classifiers are significantly
affected by the specific feature pattern adopted to represent texts.

• Classification technique. Different classification techniques behave differently, so it is necessary to
evaluate the behavior of a pool of classification techniques.

Figure 2 graphically reports the dimensions of the investigation: the reader can see that the
two dimensions are orthogonal. Thus, the goal of the investigation framework is to experiment all
combinations, in order to find the best one to solve Problem 1. Hereafter, we separately discuss
each dimension.

Appl. Sci. 2020, 10, 5715 9 of 28

U B T Q U,B

R F

S V M

N B

K N N

B,T T,Q U,B,T

C
la

ss
if

ic
at

io
n

Te
ch

ni
qu

e

U,B,T,Q

Feature Patterns

Figure 2. Dimensions of the investigation.

4.1.1. Feature Extraction

In order to apply the classification technique, we need to extract features to classify from texts,
in order to obtain a different representation of texts. We decided to adopt the n-gram model, that is
widely adopted in text classification.

Hereafter, we shortly introduce the four basic n-gram patterns we adopted in our investigation.

• Uni-gram patterns. In our model, a uni-gram is a single word (or token) that is present in the text.
Uni-gram patterns are singleton patterns, i.e., a single word is a pattern itself (i.e., n-grams with
n = 1).
Uni-gram patterns do not consider the relative position of words in the text.

• Bi-gram patterns. A bi-gram is a sequence of two consecutive uni-grams (n-grams with n = 2),
i.e., two consecutive words in the text.

• Tri-gram patterns. A tri-gram is a sequence of three consecutive uni-grams (n-grams with n = 3),
i.e., three consecutive words in the text.

• Quad-gram patterns. A quad-gram is a sequence of four consecutive uni-grams (n-grams with
n = 4), i.e., four consecutive words in the text.

With these premises, we can represent a document d (a message text, in our context) as a vector
of terms, i.e., d[j] is the j-th term in the document. When we consider n-grams, the document is
represented as a vector of n-grams, i.e., d[j] is the n-gram whose first word is in position j in the
original document (of course, if n = 1, the vector of uni-grams and the vector of words coincide.).

Table 1 reports four different ways of representing a sample document, based on uni-grams,
bi-grams, tri-grams and quad-grams, by reporting the different vectors that represent the same
document. For example, if we consider the case n = 3 in Table 1, d contains only two items, i.e., d[1]
and d[2].

Appl. Sci. 2020, 10, 5715 10 of 28

Table 1. An example of n-gram patterns for the string "this is a sentence".

N-Grams Feature Vectors

Uni-grams: n = 1 d[1] ="this", d[2] ="is", d[3] ="a", d[4] ="sentence"
Bi-grams: n = 2 d[1] ="this is", d[2] ="is a", d[3] ="a sentence"
Tri-grams: n = 3 d[1] ="This is a", d[2] =is a sentence"
Quad-grams: n = 4 d[1] ="This is a sentence"

Moving from the methodology proposed in [36], we consider also combined features, i.e., features
obtained by combining basic features (i.e., uni-grams, bi-grams, tri-grams and quad-grams).

Given z sets of basic features BFi, with 1 ≤ i ≤ z, a set CF of complex features is obtained by
means of the Cartesian product of sets BFi, i.e., CF = BF1 × BF2 × · · · × BFz. Thus, a feature in CF is a
tuple of z basic features (n-grams).

As an example, consider Table 1. A feature obtained by combining a uni-gram and a bi-gram is
the tuple 〈"this", "a sentence"〉.

In our framework, we considered the four basic feature patterns and five complex feature patterns.
In Table 2, we report them and the corresponding abbreviation we will use throughout the paper.

Table 2. Basic and complex feature patterns computed by the investigation framework.

Abbreviation Pattern

U Uni-grams
B Bi-grams
T Tri-grams
Q Quad-grams

U,B Product of uni-grams and bi-grams
B,T Product of bi-grams and tri-grams
T,Q Product of tri-grams and quad-grams
U,B,T Product of uni-grams, bi-grams and tri-grams
U,B,T,Q Product of uni-grams, bi-grams, tri-grams and quad-grams

Feature weight. In order to help the construction of the classification model, features are weighted.
Typically, in text classification the most-frequently adopted metric is Term Frequency-Inverse Document
Frequency (TF-IDF) [37]. It is a numerical score which denotes the importance of a term in a collection
of documents. TF-IDF is the combination of two scores which are called Term Frequency and Inverse
Document Frequency. The comparative analysis in [38] demonstrated that TF-IDF significantly improves
the effectiveness of classifiers.

The score balances the importance of a term for a given document with respect to its capability of
characterizing a small number of documents. The rationale is that if a term is highly frequent in the
collection, it does not characterize a subset of documents; thus, terms that appear in many documents
cannot be considered relevant features for any document.

Consider a set D = {d1,dn} of documents, where each document di ∈ D is a vector of terms
(in the broadest sense, i.e., terms can be either n-grams or tuples of n-grams). The Term Frequency
T f (t, d) of a term t in a document d is the number of times t appears within d on the total number of
terms in d (see [39]). It is defined as:

T f (t, d) =
|{j|d[j] = t}|

|d| .

The Inverse Document Frequency Id f (t, D) of a term t in the collection (of documents) D measures
the capability of t of denoting a small set of documents in D: the lower the number of documents in
which t appears, the greater its Id f score [39]. It is defined as:

Appl. Sci. 2020, 10, 5715 11 of 28

Id f (t, D) = loge
|D|

|{d ∈ D|(∃j|d[j] = t)}| .

By combining T f and Id f , we obtain the overall T f Id f (t, d, D) score of a term t within a document
d belonging to a collection of documents D, as follows:

T f Id f (t, d, D) = T f (t, d)× Id f (t, D).

In our model, terms are either basic n-grams (basic feature patterns denoted as U, B, T and Q),
or combined n-grams, such as U,B and so on (see Table 2): thus, we apply the T f Id f metric to rank
these features. However, we do not compute TF-IDF on a document basis, but on a class basis:
the frequency of a term is the number of documents in the class that contain the term; the inverse
document frequency should be properly called Inverse Class Frequency, because we count the number
of classes that contain the term on the total number of classes. Formula 1 formally defines the weight.

Weight(t, c, C) =
|{d|(d.class = c ∧ ∃j|(d[j] = t))}|

|{d|d.class = c}| × loge
|C|

|{ci ∈ C|(∃j|d[j] = t ∧ d.class = ci)}|
(1)

in other words, the weight of a term t in a class c ∈ C is the frequency of t within the documents that
belong to that class, multiplied by the inverse frequency of t among all classes in C. Notice that with
d.class we denote the class which document d belongs to.

In Section 5.2, we perform experiments with the full set of features and with the strongest 80%,
65% and 50% features, on the basis of function Weight(t, c, C) defined in Formula 1.

4.1.2. Classification Techniques

The second dimension of investigation is to find out the classification technique that demonstrates
to be more suitable for the application scenario. Recall from Problem 1 that the classifier has to discover
the topic tpj that an unlabeled message umtj talks about. Hereafter, we briefly introduce the four
classification techniques we considered in our investigation framework.

• Naive Bayes (NB). The Naive Bayes classifier [40] is a simple, fast, efficient, easy to implement
and popular classification technique for texts: in fact, this technique is quite efficient as far as
computation time is concerned; however, it performs well when features behave as statistically
independent variables.
In short, it is a probabilistic classification technique, which completely depends on the probabilistic
value of features. For each single feature, the probability that it falls into a given class is calculated.
It is widely used to address many different problems, such as for predicting social events,
for denoting personality traits, for analyzing social crime, and so on.

• Support Vector Machine (SVM). Support Vector Machine classifiers are widely used for
classification of short texts. This classification technique is based on the principle of structured risk
minimization [41]: given the hyper-space of features, in which each point represents a document,
it creates a hyper-plane h that divides the data into two sets (i.e., the hyper-space is divided
into two semi-spaces by the hyper-place); the algorithm tries to identify the hyper-plane that
maximizes the distance from each point (the distance is called margin) because the greater the
margin, the lower the risk that a point falls into the wrong semi-space. In the test phase, a data
point is categorized depending on the semi-space it falls into. The technique has been extended
and adapted to support multi-label classification [42].

• K-Nearest Neighbors (kNN). K-Nearest Neighbors (kNN) classifiers are widely used for
classification of short texts. During the test phase, given a new document d, the distance between
document d and all the documents in the training corpus is measured, by employing a similarity
or a dissimilarity measure. Then, the set N(d) that contains the K nearest neighbors among the
entire training corpus is obtained; the class label having the largest number of documents in N(d)

Appl. Sci. 2020, 10, 5715 12 of 28

becomes the class of d [43]. For example, if N(d) contains 15 nearest neighbors to document d,
where seven documents are labeled with the "politics" class, four documents are labeled with
the "sports" class, three documents are labeled with the "weather" class and one document is
labeled with the "health" class, then d is labeled with the "politics" class.

• Random Forest (RF). It is a known supervised learning method for classification devised by
Ho [44]. It is an evolution of classical tree-based classifiers. The name of the technique is
motivated by the fact that, during the training phase, many classification trees are generated:
we can say that the classification model is a forest of classification trees. During the test phase,
all the classification tress are independently used to classify the unclassified case: the class
assigned by the majority of trees is chosen as class label assigned to the unclassified case.
This technique is very general and widely used in many application contexts, not only for text
classification [45].

4.2. Framework Overview

The investigation framework is composed of many modules. First of all, we give a high-level
overview of them, describing the task performed by each single module.

• Module M1-Pre-processor. The module named Pre-processor performs many pre-processing
activities on the data set, i.e., the set of labeled messages that constitutes the input data set
for the investigation framework. Specifically, it performs tokenization, stop-word removal,
special symbol elimination, and stemming (that are typical pre-processing techniques adopted in
information retrieval). Specifically, stemming is important to reduce dimensionality of features:
in fact, natural languages provide many different forms for the same word (for instance, singular
and plural); stemming reduces words to the root form.
The result of the Pre-processor module is the corpus of messages, where each document is
represented as an array of stems.

• Module M2-Feature Extractor. After the Pre-processor is executed, the module named Feature
Extractor extracts features that represent messages. In this module, messages are translated into
vectors of basic and combined feature patterns, as reported in Table 2. The Weight(t, c, C) score
defined in Formula 1 is computed for each term (i.e., feature) belonging to the training set.

• Module M3-Multi-Classifier. The final module is called Multi-Classifier, because it has to apply
all the four different classification techniques we discussed in Section 4.1.2. In fact, the goal of the
investigation framework is to understand which is the best combination of feature pattern and
classification technique (recall Figure 2). Thus, for each feature pattern, the module builds four
classification models and tests them to evaluate the accuracy of classification.

Figure 3 reports the organization of the framework, by illustrating data flows between and inside
modules. They are discussed in details hereafter.

The framework is implemented in the Python programming languages, by exploiting the libraries
nltk for pre-processing, sklearn for feature extraction, generation of n-gram combinations, training
and testing of classifiers.

4.2.1. External Module EM1-Message Collector

This module is responsible to gather messages from the source micro-blog (in our case, Twitter)
and support researchers to label messages with class labels denoting topics.

Since our investigation framework is designed to be independent of the specific source micro-blog,
we decided to consider it as an external module that can be replaced with a different one, suitable to
gather data from a different micro-blog.

Appl. Sci. 2020, 10, 5715 13 of 28

Generate n-gram representation

Module

Steps

M1

M2

Tokenization Special Symbols
Removals Stop-word Removing

Stemming

M3

Message
Extraction

Message
Labelling

Dataset

EM1

Pre-processed
MessagesSplitting

TE TR

FVfp

Data Set

Document

EM2

Accuracy
Evaluation Report

Calculate frequency of n-grams w.r.t their classes

Select n-grams with maximum probability across classes

Create Feature Vectors based on n-grams

RF Classifier Training

RF Model

RF Test

RF Classified Test Set

Naïve Bayes Classifier
Training KNN Classifier Training SVM Classifier Training

KNN ModelNaïve Bayes Model SVM Model

Naïve Bayes Test SVM TestKNN Test

Naïve Bayes Classified
Test Set SVM Classified Test SetKNN Classified Test Set

Accuracy Evaluation

Figure 3. The Investigation Framework.

4.2.2. Module M1-Pre-Processor in Details

When users write messages, they write punctuation, single characters and stop-words that are
not useful for topic classification (and even decrease the accuracy of classification). So, before features
are extracted, messages must be pre-processed in order to be cleaned from noise. Specifically, module
Pre-processor performs text tokenization, special symbol removal, stop-words filtering and stemming.
Hereafter, we describe these activities in more details.

Let us denote the input data set as T = {lp1, lp2, . . . , }, where each lpi is a labeled message,
such that lpi = 〈mti, ati〉, i.e., mti is the message text and ati is the label class or topic associated to
the message.

For each message lp ∈ T, on its message text lp.mt the module performs the following processing
steps, in order to generate the set Tp of pre-processed messages.

1. The lp.mt message is tokenized, in order to represent it as a vector d1 of terms, where a term is a
token found within the message text.

Appl. Sci. 2020, 10, 5715 14 of 28

2. From vector d1, we obtain vector d2 by removing special symbols, punctuation marks, numbers
and special characters.

3. Stop-word removal is performed, by comparing each term in d2 with NLTK [46], a static list of
stop-words. We formalize this process by defining the recursive function RemoveSW hereafter.

RemoveSW(d, pos) =

=

RemoveSW(remove(d, pos), pos) if (1 ≤ pos ≤ |d|) ∧ (|d[pos]| ≤ 2∨ d[pos] ∈ SL))

RemoveSW(d, pos + 1) if (1 ≤ pos ≤ |d|) ∧ ¬(|d[pos]| ≤ 2∨ d[pos] ∈ SL))

d if ¬(1 ≤ pos ≤ |d|)

where d is the message represented as a vector of terms, |d| is the size of the vector, pos denotes a
position index, d[pos] denotes the term (string within vector d in position pos), |d[pos]| denotes
the length of the term (string) in position pos in vector d. Furthermore, SL is the list of stop-words,
while function remove(d, pos) removes the item in position pos from vector d. The function is
defined by the following formula.

remove(d, pos) =

d[1, (pos− 1)] • d[(pos + 1), |d|] if 1 < pos < |d|
d[2, |d|] if pos = 1
d[1, (pos− 1)] if pos = |d|

where with d[i, j] we denote the sub-vector with items from position i to position j and the •
denotes an operator that concatenates two vectors.

The d3 vector representing the message without stop-words is obtained by calling the RemoveSW
function as d3 = RemoveSW(d2, 1).

4. After stop-word removal, stemming is performed on vector d3 by applying the Porter stemming
algorithm [47]; we obtain the final d4 vector, i.e., the vector of terms that represent the lp.mt
message text after pre-processing. The d4 vector is paired with the class label lp.at, obtaining the
pair lmp = 〈d4, lp.at〉 that is inserted into Tp, the set of pre-processed messages.
Tp is the final output of this module: the source data set T has been transformed into Tp,
where instead of strings, message texts are represented by vectors of terms.

4.2.3. External Module EM2-Data Splitter

The pre-processed data set Tp is now split into training set TR and test set TE. The training
set becomes the input of module M2-Feature Extractor, while the test set TE will be used by module
M3-Multi-classifier, for computing the accuracy. Notice that TE contains labeled messages: this is
necessary for validating classification and compute the accuracy, by computing true positives,
false positives, true negatives and false negatives simply by comparing the topic assigned by the
classifier to the message and the label originally associated with the message.

This is an external module of the investigation framework, if compared to modules M1, M2 and
M3, that are the core modules of the framework. This choice is motivated by the need for flexibility.
In fact, different techniques for splitting could be used; this way, the investigation framework is
parametric with respect to data splitting.

4.2.4. Module M2-Feature Extractor in Details

Module M2-Feature Extractor receives the training set TR extracted from the overall set of
pre-processed messages Tp. Its goal is to give different representations of each labeled message
lmp ∈ TR, based on the basic and combined feature patterns reported in Table 2.

The module generates nine different versions of the training set TR, one for each feature pattern,
denoted as TRU , TRB, TRT , TRQ, TRU,B, TRB,T , TRT,Q, TRU,B,T and TRU,B,T,Q. These are intermediate
results, necessary to generate the actual output of the module, i.e., a pool of feature vectors FV f p

(where f p denotes the feature pattern, as in Table 2): each FV f p contains a feature vector for each
topical class. Let us start by describing the generation of TR f p.

Appl. Sci. 2020, 10, 5715 15 of 28

• First, TRU = TR, because uni-grams coincide with single terms in vectors lmp.d4 representing
message texts (i.e., lmU .d = lmp.d4).

• Each lmB ∈ TRB derives from the corresponding basic version lmp ∈ TR, where lmB.d is a vector
of bi-grams.
Similarly, training sets TRT and TRQ contains descriptions lmT and lmQ of messages whose
vectors lmT .d and lmQ.d are vectors of tri-grams and quad-grams, respectively.

• Training sets based on combined feature patterns are derived from training sets based on
basic patterns.
Given a message lmp, its representations based on combined feature patterns are obtained
as follows:

– for lmU,B ∈ TRU,B, lmU,B.d = lmU .d× lmB.d;
– for lmB,T ∈ TRB,T , lmB,T .d = lmB.d× lmT .d;
– for lmT,Q ∈ TRT,Q, lmT,Q.d = lmT .d× lmQ.d;
– for lmU,B,T ∈ TRU,B,T , lmU,B,T .d = lmU .d× lmB.d× lmT .d;
– for lmU,B,T,Q ∈ TRU,B,T,Q, lmU,B,T,Q.d = lmU .d× lmB.d× lmT .d× lmQ.d.

Once the training sets are prepared, for each of them (that generically we will denote as TR f p) the
module performs the following activities.

1. For each message lm f p
i ∈ TR f p, a set of terms s f p

i is derived from the vector of terms lm f p
i .d:

s f p
i = {t|∃pos(1 ≤ pos ≤ |lm f p

i .d| ∧ lm f p
i .d[pos] = t)}

so that duplicate occurrences of a term in lm f p
i .d becomes a unique occurrence in s f p

i .
2. The frequency matrix Freq f p[t, c] is built, where t is a term and c is a class (or topic). To obtain the

Freq f p matrix, first of all the module builds tc f p
i , a set of (term, class, message identifier) triples

(t, c, i) obtained as

tc f p
i = s f p

i × {lm
f p
i .at} × {i}

that is, by performing the Cartesian product among the set s f p
i of terms in the message,

the singleton set of the class label (topic) lm f p
i .at associated to the message and the singleton

set containing i (i.e., the identifier of the message). All the tc f p
i sets are united into the TC f p set,

i.e., TC f p = ∪∀lm f p
i ∈TR f p(tc

f p
i).

Each single item of the Freq f p matrix is then computed as follows:

Freq f p[t, c] = |{(tj, cJ , ij) ∈ TC f p|tj = t ∧ cj = c}|
where we count, for each term t and each class c, the number of different documents, associated
to class c, which term t occurs in (the third element ij in triples is necessary to distinguish term
occurrences coming from different messages).

3. For each term t in each class c, the module computes the Weight(t, c, C) score (defined in
Formula 1), where C is the set of all class labels. We denote the weight for the feature pattern f p
as w f p; it is defined as:

W f p(t, c) = Weight(t, c, C) =
Freq f p[t, c]

∑∀tj
Freq f p(tj, c)

× loge

(
|C|

|{ck|Freq f p[t, ck] > 0}|

)
(2)

where C is the overall set of class labels. In the product on the right-hand side of the
formula, the first operand is the term frequency, while the second operand is the inverse
document frequency.

Appl. Sci. 2020, 10, 5715 16 of 28

4. Finally, for each class ck ∈ C, the feature vector f f p(ck) for the given feature pattern is built,
where each item is a pair (t, w), where t is the term and w = w(t, ck) is the weight.
The sets FV f p of feature vectors f f p(ck), where f p denotes the feature pattern (as in Table 2),
are the final output of module M2.

4.2.5. Module M3-Multi-Classifier in Details

Module M3-Multi-classifier performs the last step of the investigation process, i.e., it builds the
classification models by training the classifiers, then exploits the classification models to label the test
set. It is called multi-classifier because it uses all the four classification techniques shortly presented in
Section 4.1.2, to train a classification model and label the test set.

Let us describe the process performed by Module M3 in details. The module receives two inputs:
the pool of feature vector sets FVU , FVB, FVT , FVQ, FVU,B, FVB,T , FVT,Q, FVU,B,T and FVU,B,T,Q,
generated by module M2, and the test set TE, generated by the external module EM2. For each
one of the training sets and for each one of the classification techniques, the module performs the
following activities.

• The specific classification technique (Naive Bayes, SVM, kNN and Random Forest) is applied,
to obtain a classification model cm f p,ct (where f p is the feature pattern and ct is the classification
technique) for each feature pattern, using the corresponding FV f p as training set.

• For each classification model cm f p,ct, the messages in the test set TE are labeled accordingly.
The classified test sets so far obtained contain both the labels provided by the classifier and the
labels assigned by humans that prepared the overall data set.

At this point, the module performs the accuracy evaluation, i.e, it evaluates accuracy of
classification for all the classified test sets, in order to produce a final report, that is the outcome
of the investigation framework.

5. Experimental Evaluation

The investigation framework was run on a data set specifically collected. In Section 5.1, we present
both the way we collected and prepared the data set, as well as the metrics we adopted to evaluate the
classification results. In Section 5.2, we present the experiments and discuss the results, as far as the
effectiveness of classification is concerned, while in Section 5.3 we present the sensitivity analysis of
classifiers.. Then, Section 5.4 considers execution times and introduces the metric called Suitability.

5.1. Data Preparation and Evaluation Metrics

To perform the experimental evaluation through the proposed investigation framework,
we performed data collection and labeling. Data collection is the process of collecting messages
(from Twitter) that are relevant to the problem domain. It is a crucial step, because it strongly
determines the results obtained by classifiers. Messages were collected from Twitter by using Tweepy
API [48]; 133,306 messages were collected from different accounts.

The next step was to manually label the messages with a pool of predefined topics. In this process,
we involved five volunteer students of the Masters degree at University of Sialkot (Pakistan), to label
messages. Each message was labeled by two different students, that worked separately: in the case
two different labels were assigned to the same message, the message was discarded from the data
set. This way, only messages labeled with the same class by two different students were considered:
messages that did not clearly talk about one of the selected topics were not considered.

Hereafter, we list the topics considered as classes and the criteria adopted for labeling messages
with each single topic.

• Business: Messages talk about stocks, business activities, oil prices, Wall Street and companies’ shares.

Appl. Sci. 2020, 10, 5715 17 of 28

• Health: Messages that talk about disease, medicine, surgeries, viruses, hospitals and related
arguments are included in this topic.

• Politics: Messages regarding elections, democracy, government and its policies are included in
this topic.

• Entertainment: Messages regarding show business, movies, music, TV shows and similar arguments
belong to this topic.

• Sports: Messages regarding all kinds of sports, athletes, matches and sports tournaments belong
to this topic.

• Technology: Messages talk about new tech, gadgets, software and related information.
• Weather: Messages talk about weather, rains, storms and weather forecasting.

The list of topics was inspired by [49], that proposed a list of categories for classifying sensitive
tweets; we did not consider all the list proposed in [49], because some of the proposed categories did
not denote topics that users would use to label messages (e.g., racism); we selected and integrated
those that, presumably, could be often used by users. Table 3 provides a sample message for each one
of the topical classes.

Table 3. Chosen topics with example messages.

Topics Example Messages

Business Strong growth and rare profits make Veeva’s stock worth the sky-high valuation
Profit at the Canadian bank’s U.S. retail segment rose 13% in its latest quarter.

Health CDC recommends that boys and girls get vaccinated for HPV between 11 & 12 years of age
Obesity now affects 17% of all children and adolescents in the U.S

Politics Joe Biden holds town hall event in Greenville, SC
Britain faces no deal on Brexit as Boris Johnson handles this crisis

Entertainment ’Ford v Ferrari’, ’Uncut Gems’, ’Judy’ Headed to Telluride Film Festival
Dwayne Johnson is returning to ’WWE Smackdown’ for Fox launch

Sports Uganda’s Nakaayi wins the women’s 800 metres final in 1:58.04
It’s Man Utd’s worst start to a league season in 30 years

Technology Gatwick Airport commits to facial recognition tech at boarding
Facebook to create VR world called Horizon

Weather Tropical Storm ’Narda’ made landfall near Lazaro Cardenas, Mexico
Feisty thunderstorms have formed and are tracking through the Dakotas tonight

In order to have a homogeneous distribution among classes, the training set TR contained
3500 messages for each class, while the test set TE contained 1500 messages for each class. Consequently,
the training set TR contained 24,500 messages, while the test set TE contained 10,500 messages; the
total number of messages was 35,000, that constitute the input for the investigation framework.
All messages were written in English.

Remember that messages in the test set TE were labeled by hand as well, in order to allow module
M3 to automatically compute accuracy.

To evaluate the results, the investigation framework computed accuracy, precision, recall and
F1-measure. These measures are typical metrics adopted in information retrieval. Since we operated in
a context of multi-label classification, we adopted the definitions reported in [50,51].

Given a set C = {c1, c2, . . . , cn} of class labels, for each class cj we define the following counts:

• TPj (true positives) is the number of items correctly assigned to class cj;
• FPj (false positives) is the number of items incorrectly assigned to class cj;
• FNj (false negatives) is the number of items incorrectly not assigned to class cj;
• TNj (true negatives) is the number of items correctly not assigned to class cj.

For each class cj, we can define the four above-mentioned metrics.

Appl. Sci. 2020, 10, 5715 18 of 28

• Accuracyj is the number of messages properly associated and properly not associated with class cj

on the total number of messages, i.e., Accuracyj =
TPj+TNj

TPj+TNj+FPj+FNj
.

• Precisionj is the fraction of messages correctly labeled with class cj on the total number of messages

labeled with cj by the classifier, i.e., Precisionj =
TPj

TPj+FPj
.

• Recallj is the fraction of messages properly labeled with class cj on the total number of messages

that have to be labeled with cj, i.e., Recallj =
TPj

TPj+FNj
.

• F1-measurej is a synthetic measure that combines precision and recall, i.e.,

F1-measurej =
Precisionj×Recallj
Precisionj+Recallj

× 2.

Since we are in a context of multi-label classification, we have to compute a general global version
of each measure. This is usually done by averaging the values computed for each class. Consequently,
Accuracy = (∑cj∈C Accuracyj)/|C|, Precision = (∑cj∈C Precisionj)/|C|, Recall = (∑cj∈C Recallj)/|C|,
F1-measure= (∑cj∈C F1-measurej)/|C|.

We are now ready to discuss the results of our investigation, based on the two dimensions
discussed in Section 4.1.

5.2. Experiments and Comparison of Classifiers

Based on the dimensions of investigation discussed in Section 4.1, we performed a large number
of experiments, that involved the four classification techniques presented in Section 4.1.2.

Let us start considering the results obtained by the Naive Bayes classifier. Table 4 is organized as
follows: for each basic n-gram pattern, i.e., U, B, T and Q, as well as for each combined feature pattern
U,B, B,T, T,Q, U,B,T and U,B,T,Q, the full set of features (100%) and the most relevant 80%, 65% and
50% of features, on the basis of their weight defined in Formula 1 are used to perform experiments.

Table 4. Experimental results for Naïve Bayes classifier.

Feature Pattern No. of Features Accuracy Precision Recall F1-Measure

U

24,961 (100%) 83.88 84.39 83.88 83.86
19,969 (80%) 83.93 84.39 83.93 83.91
16,225 (65%) 83.99 84.41 83.99 83.96
12,481 (50%) 83.79 84.16 83.79 83.76

B

165,704 (100%) 70.36 76.82 70.36 70.82
132,563 (80%) 68.62 76.48 68.62 69.23
107,708 (65%) 67.24 75.87 67.24 67.92
82,852 (50%) 65.92 75.45 65.92 66.75

T

181,514 (100%) 44.28 81.2 44.28 46.92
145,211 (80%) 42.73 81.09 42.73 45.21
117,984 (65%) 41.61 80.94 41.61 43.9
90,757 (50%) 40.45 80.89 40.45 42.6

Q

168,482 (100%) 30.68 84.46 30.68 30.94
134,786 (80%) 29.86 84.82 29.86 29.78
109,513 (65%) 29.1 84.76 29.1 28.77
84,241 (50%) 28.48 84.83 28.48 27.92

U,B

190,665 (100%) 84.3 85.07 84.3 84.28
152,532 (80%) 84.48 85.21 84.48 84.46
123,932 (65%) 84.35 85.06 84.35 84.33
95,333 (50%) 84.53 85.15 84.53 84.51

B,T

347,218 (100%) 70.42 76.87 70.42 70.88
277,774 (80%) 68.73 76.41 68.73 69.32
225,692 (65%) 67.39 75.86 67.39 68.06
173,609 (50%) 66.15 75.56 66.15 66.96

Appl. Sci. 2020, 10, 5715 19 of 28

Table 4. Cont.

Feature Pattern No. of Features Accuracy Precision Recall F1-Measure

T,Q

349,996 (100%) 44.26 81.19 44.26 46.9
279,997 (80%) 42.77 81.14 42.77 45.26
227,497 (65%) 41.56 81.06 41.56 43.83
174,998 (50%) 40.51 80.9 40.51 42.7

U,B,T

372,179 (100%) 84.5 85.22 84.5 84.49
297,743 (80%) 84.61 85.3 84.61 84.59
241,916 (65%) 84.48 85.17 84.48 84.47
186,090 (50%) 84.44 85.06 84.44 84.41

U,B,T,Q

540,661 (100%) 84.6 85.28 84.6 84.59
432,529 (80%) 84.8 85.43 84.8 84.78
351,430 (65%) 84.61 85.25 84.61 84.6
270,331 (50%) 84.67 85.23 84.67 84.65

Similarly, Table 5 shows the results obtained by applying the kNN classification technique to the
same feature patterns previously discussed; in the same way, we report the sensitivity analysis for
each feature pattern. Table 6 reports the results obtained by applying the SVM classification technique,
while Table 7 reports the results obtained by applying the Random-Forest classification technique.

Table 5. Experimental results for kNN classifier.

Feature Pattern No. of Features Accuracy Precision Recall F1-Measure

U

24,961 (100%) 79.08 79.68 79.08 79.21
19,969 (80%) 75.37 78.26 75.37 75.73
16,225 (65%) 38.9 84.77 38.9 36.53
12,481 (50%) 20.43 68.05 20.43 14.89

B

165,704 (100%) 17.64 56.32 17.64 11.67
132,563 (80%) 17.6 54.71 17.6 11.33
107,708 (65%) 16.93 45.3 16.93 13.31
82,852 (50%) 19.83 51.72 19.83 14.65

T

181,514 (100%) 16.28 29.99 16.28 9.51
145,211 (80%) 12.08 39.05 12.08 7.13
117,984 (65%) 17.61 57.99 17.61 10.29
90,757 (50%) 16.99 47.62 16.99 11.98

Q

168,482 (100%) 15.34 34.68 15.34 5.81
134,786 (80%) 14.71 49.57 14.71 6.33
109,513 (65%) 15.82 32.81 15.82 7.86
84,241 (50%) 15.66 56.46 15.66 6.29

U,B

190,665 (100%) 78.95 79.25 78.95 79.03
152,532 (80%) 78.51 79.32 78.51 78.71
123,932 (65%) 76.34 78.76 76.34 76.81
95,333 (50%) 75.72 78.49 75.72 76.16

B,T

347,218 (100%) 16.16 26.71 16.16 10.41
277,774 (80%) 16.87 56.63 16.87 11.31
225,692 (65%) 16.08 43.69 16.08 11.79
173,609 (50%) 16 44.39 16 13.2

T,Q

349,996 (100%) 15.7 27.41 15.7 8.64
279,997 (80%) 16.43 41.75 16.43 8.44
227,497 (65%) 15.28 48.77 15.28 8.99
174,998 (50%) 16.69 43.51 16.69 11.05

Appl. Sci. 2020, 10, 5715 20 of 28

Table 5. Cont.

Feature Pattern No. of Features Accuracy Precision Recall F1-Measure

U,B,T

372,179 (100%) 78.59 79.1 78.59 78.72
297,743 (80%) 77.95 79.1 77.95 78.22
241,916 (65%) 75.25 78.31 75.25 75.83
186,090 (50%) 75.28 78.43 75.28 75.77

U,B,T,Q

540,661 (100%) 78.19 78.99 78.19 78.36
432,529 (80%) 77.28 78.93 77.28 77.62
351,430 (65%) 74.23 78.02 74.23 74.91
270,331 (50%) 74.36 77.82 74.36 74.86

Table 6. Experimental results for Support Vector Machines (SVM) classifier.

Feature Pattern No. of Features Accuracy Precision Recall F1-Measure

U

24,961 (100%) 85.29 85.67 85.29 85.36
19,969 (80%) 85.46 85.85 85.46 85.52
16,225 (65%) 85.33 85.73 85.33 85.4
12,481 (50%) 85.36 85.73 85.36 85.42

B

165,704 (100%) 66.21 74.62 66.21 68.05
132,563 (80%) 66.35 74.28 66.35 68,34
107,708 (65%) 66.34 74.17 66.34 68.31
82,852 (50%) 66.39 74.11 66.39 68.26

T

181,514 (100%) 42.14 73.48 42.14 45.66
145,211 (80%) 42.08 73.23 42.08 45.47
117,984 (65%) 42.73 73.62 42.73 45.96
90,757 (50%) 43.94 76.51 43.94 47.19

Q

168,482 (100%) 30.39 72.93 30.39 30.95
134,786 (80%) 30.53 81.22 30.53 30.57
109,513 (65%) 30.26 81.8 30.26 30.25
84,241 (50%) 29.99 82.4 29.99 30.08

U,B

190,665 (100%) 84.98 85.28 84.98 85.02
152,532 (80%) 85.14 85.43 85.14 85.17
123,932 (65%) 85.26 85.53 85.26 85.29
95,333 (50%) 85.3 85.57 85.3 85.34

B,T

347,218 (100%) 64.39 74.26 64.39 66.53
277,774 (80%) 64.82 74.37 64.82 67.18
225,692 (65%) 64.9 74.13 64.9 67.18
173,609 (50%) 65.62 73.93 65.62 67.66

T,Q

349,996 (100%) 39.3 73 39.3 42.65
279,997 (80%) 39.68 73.01 39.68 43.04
227,497 (65%) 41.09 73.27 41.09 44.31
174,998 (50%) 43.36 79.93 43.36 46.24

U,B,T

372,179 (100%) 84.02 84.35 84.02 84.05
297,743 (80%) 84.45 84.74 84.45 84.47
241,916 (65%) 84.61 84.91 84.61 84.64
186,090 (50%) 84.97 85.26 84.97 85.01

U,B,T,Q

540,661 (100%) 83.48 83.88 83.48 83.52
432,529 (80%) 83.39 83.68 83.39 83.39
351,430 (65%) 84.37 84.67 84.37 84.4
270,331 (50%) 83.85 84.13 83.85 83.86

Appl. Sci. 2020, 10, 5715 21 of 28

Table 7. Experimental results for Random-Forest classifier.

Feature Pattern No. of Features Accuracy Precision Recall F1-Measure

U

24,961 (100%) 78.29 78.74 78.29 78.36
19,969 (80%) 78.69 79.3 78.69 78.83
16,225 (65%) 78.64 79.07 78.64 78.71
12,481 (50%) 78.14 78.67 78.14 78.25

B

165,704 (100%) 60.37 73.73 60.37 62.75
132,563 (80%) 60.42 75.13 60.42 63.17
107,708 (65%) 60.66 74.7 60.66 63.33
82,852 (50%) 60.69 74.67 60.69 63.35

T
181,514 (100%) 39.79 81.8 39.79 42.27
145,211 (80%) 39.08 82.16 39.08 41.49
117,984 (65%) 39.53 81.79 39.53 42.16
90,757 (50%) 39.48 81.18 39.48 42.11

Q

168,482 (100%) 28.25 83.95 28.25 27.39
134,786 (80%) 28.09 83.59 28.09 27.13
109,513 (65%) 28.16 83.94 28.16 27.26
84,241 (50%) 28.4 82.66 28.4 27.58

U,B

190,665 (100%) 77.03 77.88 77.03 77.17
152,532 (80%) 77.79 78.49 77.79 77.92
123,932 (65%) 77.95 78.79 77.95 78.11
95,333 (50%) 78.3 79.1 78.3 78.43

B,T

347,218 (100%) 59.41 74.29 59.41 62.03
277,774 (80%) 59.78 75.74 59.78 62.66
225,692 (65%) 59.72 75.16 59.72 62.59
173,609 (50%) 60.19 75.39 60.19 63.03

T,Q

349,996 (100%) 38.95 82.91 38.95 41.28
279,997 (80%) 37.95 82.65 37.95 40.08
227,497 (65%) 38.41 82.92 38.41 40.74
174,998 (50%) 38.32 82.07 38.32 40.67

U,B,T

372,179 (100%) 76.12 77.28 76.12 76.3
297,743 (80%) 76.6 77.63 76.6 76.78
241,916 (65%) 77.58 79.03 77.58 77.82
186,090 (50%) 77.23 78.34 77.23 77.42

U,B,T,Q

540,661 (100%) 76.03 77.36 76.03 76.18
432,529 (80%) 75.45 77.64 75.45 75.61
351,430 (65%) 76.87 78.29 76.87 77.09
270,331 (50%) 76.94 78.53 76.94 77.06

Figure 4 depicts the results obtained by each classifier for all feature patterns by using the full
set of features extracted from the training set. The blue line depicts the results obtained by the
Naïve Bayes classifier; the red line depicts the results obtained by the kNN classifier; the brown line
depicts the results obtained by the SVM classifier, the black line depicts the results obtained by the
Random-Forest classifier.

We can notice that the Naïve Bayes classifier (blue line) always performed as the best classifier,
always obtaining the highest accuracy. The SVM classifier (brown line) performed only a little bit
worse, but results were comparable. The Random Forest classifier still showed comparable accuracy,
even though a little bit less than Naïve Bayes and SVM classifiers.

In contrast, the inability of the kNN classifier to exploit most of feature patterns was evident.
In details, we noticed that for U, U,B, U,B,T and U,B,T,Q feature patterns, the kNN classifiers obtained
results that were comparable with the other classifiers. Instead, for feature patterns that did not include
uni-grams, the kNN classifier obtained very poor results.

Appl. Sci. 2020, 10, 5715 22 of 28

Nevertheless, notice that the other three tested classification techniques suffered for the absence
of uni-grams in the feature sets as well, even though they behaved better than the kNN classifier.

If we focus on results obtained by each classifier for feature patterns that contain uni-grams,
it clearly appears that no advantage was obtained by combining uni-grams with other features. Looking
at Table 4, we see that the Naïve Bayes classifier obtained a very slight improvement; in contrast,
looking at Tables 5–7, we can see a slight deterioration of accuracy, when comparing the U pattern
with U,B, U,B,T and U,B,T,Q combined patterns.

U B T Q U,B B,T T,Q U,B,T U,B,T,Q

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Feature Patterns

A
cc

ur
ac

y

NB
kNN
SVM
RF

Figure 4. Comparing accuracy of classifiers for different feature patterns with 100% features.

5.3. Sensitivity Analysis

We can now consider the sensitivity analysis we performed. Recall that, apart from the full set of
features, we also considered the best 80%, 65% and 50% of features, on the basis of the weight defined
in Formula 1.

Figures 5–7 depict the results so far obtained, respectively, with the 80%, 65% and 50% of features.
In the 80% case (Figure 5), no significant variations appeared: the performances obtained by all
classifiers were, more or less the same. This is also confirmed by looking at the tables, that show very
small reductions of accuracy. Nevertheless, the general behavior of the four classifiers remained exactly
the same as for the full set of features. Consequently, we could argue that it was not the case to use the
full set of features for training the classifiers, so as to save time and computational power.

U B T Q U,B B,T T,Q U,B,T U,B,T,Q

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Feature Patterns

A
cc

ur
ac

y

NB
kNN
SVM
RF

Figure 5. Comparing accuracy of classifiers for different feature patterns with 80% features.

Considering the 65% case (depicted in Figure 6), and the 50% case (depicted i Figure 7), we still
observed a very slight reduction of accuracy. Only the kNN classifier behaved significantly worse
with uni-gram patterns in the 50% case; nevertheless, looking at Figure 7, we notice that with patterns

Appl. Sci. 2020, 10, 5715 23 of 28

U,B,T and U,B,T,Q, the combined feature patterns that contained uni-grams helped the classifier to
obtain good results.

U B T Q U,B B,T T,Q U,B,T U,B,T,Q

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Feature Patterns

A
cc

ur
ac

y

NB
kNN
SVM
RF

Figure 6. Comparing accuracy of classifiers for different feature patterns with 65% features.

U B T Q U,B B,T T,Q U,B,T U,B,T,Q

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Feature Patterns

A
cc

ur
ac

y

NB
kNN
SVM
RF

Figure 7. Comparing accuracy of classifiers for different feature patterns with 50% features.

In effect, looking at Table 5, we can see that both precision and recall strongly penalized the kNN
classifier, with respect to the other competitors. This happened with all feature patterns.

5.4. Execution Times and Suitability Metric

Based on accuracy, the kNN classifier was not suitable for the investigated application context,
while the other classifiers showed comparable performance. However, the cost of computation is an
important issue, thus we also gathered execution times both for training and testing.

We performed experiments on a PC powered by Processor Intel(R) Core(TM) i7-5600U, with clock
frequency of 2.60 GHz, equipped with 8 GB RAM; the operating system was Windows 10 Pro (64 bit).

Table 8 reports the execution times shown by the four classifiers on the full set of features, for the
most promising feature patterns, i.e., U, U,B, U,B,T and U,B,T,Q. Specifically, we evaluated execution
times during the training phase and during the test phase; notice that we also measured the execution
times concerned with feature extraction, so as to understand how heavy the computation of Cartesian
products of features was.

The first thing we can notice is that feature extraction was performed in a negligible time,
if compared with the actual training performed by the classifier; even in the case of the most
complicated feature pattern (i.e., U,B,T,Q), this time was negligible. Nonetheless, to obtain a given
feature pattern, experiments confirmed that the library we adopted was deterministic, since the
execution time was independent of the specific attempt.

Appl. Sci. 2020, 10, 5715 24 of 28

Table 8. Execution times (in seconds) for the most promising feature patterns.

NB

Feature Pattern Feature Extraction Time Model Building Time Total Training Time Testing Time

U 0.0028 0.3626 0.3654 0.1572
U,B 0.0162 1.2932 1.3094 0.2905
U,B,T 0.0299 2.3124 2.3423 0.4124
U,B,T,Q 0.0434 3.2504 3.2938 0.4971

kNN

Feature Pattern Feature Extraction Time Model Building Time Total Training Time Testing Time

U 0.0028 0.3339 0.3367 5.1004
U,B 0.0162 1.2770 1.2932 5.0536
U,B,T 0.0299 2.2337 2.2636 5.7653
U,B,T,Q 0.0434 3.2577 3.3011 5.3663

SVM

Feature Pattern Feature Extraction Time Model Building Time Total Training Time Testing Time

U 0.0028 137.9433 137.9461 30.2422
U,B 0.0162 201.2421 201.2583 45.3217
U,B,T 0.0299 247.0215 247.0514 57.4804
U,B,T,Q 0.0434 281.5109 281.5543 62.1898

RF

Feature Pattern Feature Extraction Time Model Building Time Total Training Time Testing Time

U 0.0028 56.5771 56.5799 1.4356
U,B 0.0162 219.9926 220.0088 2.0941
U,B,T 0.0299 399.2106 399.2405 2.4720
U,B,T,Q 0.0434 617.9247 617.9681 2.6590

In contrast, looking at the execution time for model building, the reader can see that there were
significant differences. Consequently, in order to choose the best classifier, the cost of computation
should be considered. For this reason, we defined a cost-benefit metric, in such a way accuracy
represents the benefit, while execution time represents the cost. We called this metric Suitability,
because by means of it we wanted to rank classifiers in order to find out the one that was suitable for
our context.

Consider a pool of experiments E = {e1, e2, . . . , eh}, where for an experiment ei we refer to its
accuracy as ei.Accuracy, to its training execution times as ei.trtime (the execution time shown during
the training phase) and to the test execution times as ei.tetime (the execution time shown during the
test phase). The Training Suitability of an experiment is defined as

TrainingSuitability(ei) = ei.Accuracy× mintrtime
mintrtime + (ei.trtime−mintrtime)× β

(3)

where mintrtime = min∀ei∈E(ei.trtime) (i.e., the minimum training execution time). β is a importance
weight of the difference between the training execution time of the ei experiment and the minimum
training execution time; we decided to set it to 50%, in order to mitigate the effect of execution times
on the final score; in fact, with β = 1, the penalty effect would be excessive.

Similarly, we can define the Testing Suitability, defined in Formula 4.

TestingSuitability(ei) = ei.Accuracy× mintetime
mintetime + (ei.tetime−mintetime)× γ

(4)

where mintetime = min∀ei∈E(ei.tetime) (i.e., the minimum testing execution time among the
experiments). Similarly to β, γ is the relevance of the difference between execution time of the
ei experiment and the minimum testing time. We decided to set it to 50% as well.

Appl. Sci. 2020, 10, 5715 25 of 28

Training Suitability and Testing Suitability ranked experiments by keeping the two phases (training
and testing) separated.

In Formula 5, we propose a unified Suitability metric.

Suitability(ei) = α× TrainingSuitability(ei) + (1− α)× TestingSuitability(ei) (5)

i.e., the unified suitability is the weighted average of Training Suitability and Testing Suitability,
where α ∈ [0, 1] balances the two contributions.

Table 9 reports the values of training suitability, testing suitability and unified suitability for the
same experiments considered in Table 8. Figure 8 depicts the results, by using the same convention as
in Figure 4, by using the unified suitability. The reader can see that the Naive Bayes classifier had the
highest suitability values, due to its ability to combine high accuracy and very low execution times.
Surprisingly, the kNN classifier obtained the second position; in fact, in spite of the fact that it obtained
the worst accuracy values, it obtained the lowest execution times. Finally, the SVM classifier and the
Random-Forest classifier were strongly penalized by their execution times.

Table 9. Suitability for the most promising feature patterns.

Feature Pattern Classifier TrainingSuitability TestingSuitability Suitability

U

NB

80.4512 83.8872 82.1692
U,B 34.4861 59.1987 46.8424
U,B,T 21.2401 46.6448 33.9425
U,B,T,Q 15.6920 40.6500 28.1710

U

kNN

79.0800 4.7289 41.9044
U,B 32.6185 4.7653 18.6910
U,B,T 20.3525 4.1720 12.2622
U,B,T,Q 14.4739 4.4506 9.4623

U

SVM

0.4153 0.8821 0.6487
U,B 0.2839 0.5875 0.4357
U,B,T 0.2287 0.4583 0.3435
U,B,T,Q 0.1994 0.4210 0.3102

U

RF

0.9263 15.4535 8.1899
U,B 0.2354 10.7576 5.4965
U,B,T 0.1283 9.1025 4.6154
U,B,T,Q 0.0828 8.4880 4.2854

Consequently, on the basis of Table 9 and Figure 8, we can clearly say that the Naive Bayes
classifier applied to the feature pattern of uni-grams clearly emerged as the most suitable solution for
our application context (presented in Section 3) and specifically to solve Problem 1.

U U,B U,B,T U,B,T,Q
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Feature Patterns

A
cc

ur
ac

y

NB
kNN
SVM
RF

Figure 8. Suitability for the most promising feature patterns.

Appl. Sci. 2020, 10, 5715 26 of 28

6. Conclusions and Future Work

In this paper, we have posed the basic brick towards the extension of micro-blog user interfaces
with a new functionality: a tool to recommend users with other users to follow (influencers) on the
basis of topics their message talk about. The basic brick is a text classification technique applied to a
given feature pattern that provides good accuracy by requiring limited execution times. To identify
it, we built an investigation framework, that allowed us to perform experiments, by measuring
effectiveness (accuracy) and execution times. A cost-benefit function, called Suitability, has been
defined: by means of it, we discovered that the best solution to address the problem is to apply a
Naive Bayes classifier to uni-grams extracted from within messages, both to train the model and to
classify unlabeled messages. We considered execution times because, in our opinion, the envisioned
application scenario asks for fast functionalities; thus execution times emerge as critical factors. At the
best of our knowledge, this comparative study of performances shown by classifiers, based on both
accuracy and execution times, is a unique contribution of this paper.

The next steps towards the more ambitions goal of building a recommender system for influencers
is to develop the surrounding methodology that actually enables to recommend influencers: in fact,
once messages are labeled with topics, it is necessary to rank potential influencers, on the basis of the
frequency with which they post messages about a given topic. This methodology will be the next step
of our work.

Author Contributions: Conceptualization and methodology, G.P.; software, M.A., A.B.; writing—original draft
preparation, M.A.; writing—review and editing, G.P.; Data collection and annotation, S.M., A.B. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Twitter. About(Twitter). 2019. Available online: https://about.twitter.com/company (accessed on
26 July 2019)

2. Sharma, R.; Uniyal, S.; Gera, V. Performing Interest Mining on Tweets of Twitter Users for Recommending
Other Users with Similar Interests. In Progress in Advanced Computing and Intelligent Engineering; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 593–603.

3. Kiruthika, M.; Woonna, S.; Giri, P. Sentiment analysis of twitter data. Int. J. Innov. Eng. Technol. 2016, 6,
264–273.

4. Zhao, Y. Twitter Data Analysis with R-Text Mining and Social Network Analysis. In Short Course on R and
Data Mining; University of Canberra: Canberra, Australia, 2016.

5. Cuzzocrea, A.; Psaila, G.; Toccu, M. An innovative framework for effectively and efficiently supporting
big data analytics over geo-located mobile social media. In Proceedings of the 20th International Database
Engineering & Applications Symposium, Montreal, QC, Canada, 12–14 July 2016; pp. 62–69.

6. Bordogna, G.; Frigerio, L.; Cuzzocrea, A.; Psaila, G. An effective and efficient similarity-matrix-based
algorithm for clustering big mobile social data. In Proceedings of the 2016 15th IEEE International Conference
on Machine Learning and Applications (ICMLA), Anaheim, CA, USA, 18–20 December 2016; pp. 514–521.

7. Bordogna, G.; Cuzzocrea, A.; Frigerio, L.; Psaila, G.; Toccu, M. An interoperable open data framework for
discovering popular tours based on geo-tagged tweets. Int. J. Intell. Inf. Database Syst. 2017, 10, 246–268.
[CrossRef]

8. Jain, S.; Sharma, V.; Kaushal, R. PoliticAlly: Finding political friends on twitter. In Proceedings of the
2015 IEEE International Conference on Advanced Networks and Telecommuncations Systems (ANTS),
Kolkata, India, 15–18 December 2015; pp. 1–3.

9. Deitrick, W.; Valyou, B.; Jones, W.; Timian, J.; Hu, W. Enhancing sentiment analysis on twitter using
community detection. Commun. Netw. 2013, 5, 192.

https://about.twitter.com/company
http://dx.doi.org/10.1504/IJIIDS.2017.087255

Appl. Sci. 2020, 10, 5715 27 of 28

10. Mirani, T.B.; Sasi, S. Sentiment analysis of ISIS related Tweets using Absolute location. In Proceedings of the
2016 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas,
NV, USA, 15–17 December 2016; pp. 1140–1145.

11. Kanavos, A.; Nodarakis, N.; Sioutas, S.; Tsakalidis, A.; Tsolis, D.; Tzimas, G. Large scale implementations for
twitter sentiment classification. Algorithms 2017, 10, 33. [CrossRef]

12. Hassan, S.U.; Aljohani, N.R.; Idrees, N.; Sarwar, R.; Nawaz, R.; Martínez-Cámara, E.; Ventura, S.; Herrera, F.
Predicting literature’s early impact with sentiment analysis in Twitter. Knowl. Based Syst. 2019, 192,
105383.[CrossRef]

13. Halibas, A.S.; Shaffi, A.S.; Mohamed, M.A.K.V. Application of text classification and clustering of Twitter
data for business analytics. In Proceedings of the 2018 Majan International Conference (MIC), Muscat, Oman,
19–20 March 2018; pp. 1–7.

14. Chang, Y. Spectators’ emotional responses in tweets during the Super Bowl 50 game. Sport Manag. Rev.
2019, 22, 348–362.[CrossRef]

15. D’Andrea, E.; Ducange, P.; Bechini, A.; Renda, A.; Marcelloni, F. Monitoring the public opinion about the
vaccination topic from tweets analysis. Expert Syst. Appl. 2019, 116, 209–226. [CrossRef]

16. Geetha, S.; Kumar, K.V. Tweet Analysis Based on Distinct Opinion of Social Media Users’. In Advances in Big
Data and Cloud Computing; Springer: Singapore, 2019; pp. 251–261.

17. Razzaq, M.A.; Qamar, A.M.; Bilal, H.S.M. Prediction and analysis of Pakistan election 2013 based on
sentiment analysis. In Proceedings of the 2014 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM 2014), Beijing, China, 17–20 August 2014; pp. 700–703.

18. Dubey, G.; Chawla, S.; Kaur, K. Social media opinion analysis for indian political diplomats. In Proceedings
of the 2017 7th International Conference on Cloud Computing, Data Science & Engineering-Confluence,
Noida, India, 12–13 January 2017; pp. 681–686.

19. Liu, B.; Hu, M.; Cheng, J. Opinion observer: analyzing and comparing opinions on the web. In Proceedings
of the 14th international conference on World Wide Web, Chiba, Japan, 10–14 May 2005; pp. 342–351.

20. Hasan, A.; Moin, S.; Karim, A.; Shamshirband, S. Machine learning-based sentiment analysis for twitter
accounts. Math. Comput. Appl. 2018, 23, 11.

21. Liew, S.W.; Sani, N.F.M.; Abdullah, M.T.; Yaakob, R.; Sharum, M.Y. An effective security alert mechanism for
real-time phishing tweet detection on Twitter. Comput. Secur. 2019, 83, 201–207. [CrossRef]

22. Washha, M.; Qaroush, A.; Mezghani, M.; Sedes, F. Unsupervised Collective-based Framework for
Dynamic Retraining of Supervised Real-Time Spam Tweets Detection Model. Expert Syst. Appl. 2019,
135, 129–152.[CrossRef]

23. Bhargava, N.; Sharma, G.; Bhargava, R.; Mathuria, M. Decision tree analysis on j48 algorithm for data mining.
Proc. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2013, 3, 1114–1119.

24. Ghaly, R.S.; Elabd, E.; Mostafa, M.A. Tweets classification, hashtags suggestion and tweets linking in social
semantic web. In Proceedings of the 2016 SAI Computing Conference (SAI), London, UK, 13–15 July 2016;
pp. 1140–1146.

25. Fiallos, A.; Jimenes, K. Using Reddit Data for Multi-Label Text Classification of Twitter Users Interests.
In Proceedings of the 2019 Sixth International Conference on eDemocracy & eGovernment (ICEDEG),
Quito, Ecuador, 24–26 April 2019; pp. 324–327.

26. Azam, N.; Yao, J. Comparison of term frequency and document frequency based feature selection metrics in
text categorization. Expert Syst. Appl. 2012, 39, 4760–4768. [CrossRef]

27. Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022.
28. Indra, S.; Wikarsa, L.; Turang, R. Using logistic regression method to classify tweets into the selected

topics. In Proceedings of the 2016 International Conference on Advanced Computer Science and Information
Systems (ICACSIS), Malang, Indonesia, 15–16 October 2016; pp. 385–390.

29. Jeong, O.R. SNS-based recommendation mechanisms for social media. Multimed. Tools Appl. 2015,
74, 2433–2447. [CrossRef]

30. Li, W.; Ye, Z.; Xin, M.; Jin, Q. Social recommendation based on trust and influence in SNS environments.
Multimed. Tools Appl. 2017, 76, 11585–11602. [CrossRef]

31. Milgram, S. The small world problem. Psychol. Today 1967, 2, 60–67.
32. Chen, J.; Wang, C.; Shi, Q.; Feng, Y.; Chen, C. Social recommendation based on users’ attention and preference.

Neurocomputing 2019, 341, 1–9. [CrossRef]

http://dx.doi.org/10.3390/a10010033
http://dx.doi.org/10.1016/j.knosys.2019.105383
http://dx.doi.org/10.1016/j.smr.2018.04.008
http://dx.doi.org/10.1016/j.eswa.2018.09.009
http://dx.doi.org/10.1016/j.cose.2019.02.004
http://dx.doi.org/10.1016/j.eswa.2019.05.052
http://dx.doi.org/10.1016/j.eswa.2011.09.160
http://dx.doi.org/10.1007/s11042-014-1884-7
http://dx.doi.org/10.1007/s11042-015-2732-0
http://dx.doi.org/10.1016/j.neucom.2019.02.045

Appl. Sci. 2020, 10, 5715 28 of 28

33. Lai, C.H.; Lee, S.J.; Huang, H.L. A social recommendation method based on the integration of social
relationship and product popularity. Int. J. Hum. Comput. Stud. 2019, 121, 42–57. [CrossRef]

34. Li, Y.; Liu, J.; Ren, J. Social recommendation model based on user interaction in complex social networks.
PLoS ONE 2019, 14, e0218957. [CrossRef]

35. Li, W.; Ni, Y.; Wu, M.; Ye, Z.; Jin, Q. Social recommendation algorithm dynamically adaptable to user
profiling for SNS. In Proceedings of the 2014 Second International Conference on Advanced Cloud and Big
Data, Huangshan, China, 20–22 November 2014; pp. 261–266.

36. Tripathy, A.; Agrawal, A.; Rath, S.K. Classification of sentiment reviews using n-gram machine learning
approach. Expert Syst. Appl. 2016, 57, 117–126. [CrossRef]

37. Salton, G.; Buckley, C. Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 1988,
24, 513–523. [CrossRef]

38. Kadhim, A.I. Term Weighting for Feature Extraction on Twitter: A Comparison Between BM25 and TF-IDF.
In Proceedings of the 2019 International Conference on Advanced Science and Engineering (ICOASE),
Duhok, Iraq, 2–4 April 2019; pp. 124–128.

39. Wu, H.C.; Luk, R.W.P.; Wong, K.F.; Kwok, K.L. Interpreting tf-idf term weights as making relevance decisions.
ACM Trans. Inf. Syst. 2008, 26, 1–37. [CrossRef]

40. Kantardzic, M. Data Mining: Concepts, Models, Methods, and Algorithms; John Wiley & Sons: Hoboken,
NJ, USA, 2011.

41. Alsaleem, S.; others. Automated Arabic Text Categorization Using SVM and NB. Int. Arab J. Technol. 2011,
2, 124–128.

42. Lee, Y.; Lin, Y.; Wahba, G. Multicategory Support Vector Machines, Theory, and Application to the
Classification of Microarray Data and Satellite Radiance Data. J. Atmos. Ocean. Technol. 2003, 99, 67–81.

43. Al-Shalabi, R.; Obeidat, R. Improving kNN Arabic text classification with n-grams based document
indexing. In Proceedings of the Sixth International Conference on Informatics and Systems, Cairo, Egypt,
27–29 March 2008; pp. 108–112.

44. Ho, T.K. Random Decision Forests. In Proceedings of the 3rd International Conference on Document
Analysis and Recognition, Montreal, QC, 14–16 August 1995; pp. 278–282.

45. Psaila, G.; Toccu, M. A Fuzzy Technique for On-Line Aggregation of POIs from Social Media: Definition and
Comparison with Off-Line Random-Forest Classifiers. Information 2019, 10, 388. [CrossRef]

46. Python. NLTK. 2019. Available online: https://www.nltk.org/ (accessed on 1 September 2019).
47. Porter, M.F.; others. An algorithm for suffix stripping. Program 1980, 14, 130–137. [CrossRef]
48. Twitter. Twitter Apps. 2019. Available online: http://www.tweepy.org (accessed on 25 August 2019).
49. Wang, Q.; Bhandal, J.; Huang, S.; Luo, B. Content-based classification of sensitive tweets. Int. J. Semant. Comput.

2017, 11, 541–562. [CrossRef]
50. Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks.

Inf. Process. Manag. 2009, 45, 427–437. [CrossRef]
51. Zhang, M.L.; Zhou, Z.H. A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 2013,

26, 1819–1837. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ijhcs.2018.04.002
http://dx.doi.org/10.1371/journal.pone.0218957
http://dx.doi.org/10.1016/j.eswa.2016.03.028
http://dx.doi.org/10.1016/0306-4573(88)90021-0
http://dx.doi.org/10.1145/1361684.1361686
http://dx.doi.org/10.3390/info10120388
https://www.nltk.org/
http://dx.doi.org/10.1108/eb046814
http://www.tweepy.org
http://dx.doi.org/10.1142/S1793351X17400220
http://dx.doi.org/10.1016/j.ipm.2009.03.002
http://dx.doi.org/10.1109/TKDE.2013.39
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Sentiment Analysis and Opinion Mining
	Sociological Analysis
	Politics
	Phishing and Spamming
	Frameworks for Topic Discovery (Interest Mining)
	Recommendation Techniques

	Scenario and Problem Statement
	The Investigation Framework
	Dimensions of the Investigation
	Feature Extraction
	Classification Techniques

	Framework Overview
	External Module EM1-Message Collector
	Module M1-Pre-Processor in Details
	External Module EM2-Data Splitter
	Module M2-Feature Extractor in Details
	Module M3-Multi-Classifier in Details

	Experimental Evaluation
	Data Preparation and Evaluation Metrics
	Experiments and Comparison of Classifiers
	Sensitivity Analysis
	Execution Times and Suitability Metric

	Conclusions and Future Work
	References

