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Abstract Multistage mixed-integer stochastic programs are among the most chal-
lenging optimization problems combining stochastic programs and discrete op-
timization problems. Approximation techniques which provide lower and upper
bounds to the optimal value are very useful in practice. In this paper we present
a critic summary of the results in [6] and in [7] where we consider bounds based
on the assumption that a sufficiently large discretized scenario tree describing the
problem uncertainty is given but is unsolvable. Bounds based on group subprob-
lems, quality of the deterministic solution and rolling-horizon approximation will
be then discussed and compared.
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1 Introduction

In general the uncertainty of multistage stochastic programs is defined by means
of a scenario process which may take uncountable infinite values. In order to solve
it, is possible to consider a sufficiently large discretized scenario tree describing
the uncertainty and considering it as benchmark. However in most of the real cases
this problem is unsolvable requiring the inclusion of a large number of samples.
Bounding its solution is then of practical interests.
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The aim of the paper is to present a brief and critic summary of bounds in mul-
tistage mixed-integer stochastic programs introduced in [6] and [7] based on the
assumption that a sufficiently large discretized scenario tree describing the problem
uncertainty is given but is unsolvable. Chain of lower bounds less complex than the
original problem are solved by solving sets of group subproblems made by fixed
and free scenarios, and taking an expectation across scenario groups. Monotonicity
results are provided. Other approximations of the optimal stochastic solution have
been quantified by the introduction of measures of the quality of the deterministic
solution and rolling horizon measures which update the estimation and add more
information at each stage. The general idea behind construction of the proposed
bounds, is that for every optimization problem of minimization type, lower bounds
to the optimal solution can be found by relaxation of constraints and upper bound by
inserting feasible solutions. Bounds for multistage convex problems with concave
risk functionals based on scenario tree approaches are also provided in [8]. Other
approaches bounding the infinite problem are presented in [9].

The paper is organized as follows: Section 2 introduces the notation and basic
definitions. Lower bounds based on solving group subproblems are in Section 3 and
upper bounds for the optimal multistage objective value are in Section 4. Section 5
concludes the paper.

2 Preliminaries

We consider the following scenario formulation of a multistage mixed-integer
stochastic program (see [11]):

RP = min
x

E
ξξξ

H−1z(x,ξξξ H−1
)
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x1,...,xH
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S
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)
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T 1(ξ 1
s )x
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s )x
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s ) , s = 1, . . . ,S , (1)

...
T H−1(ξ H−1

s )xH−1(ξs)+W H(ξ H−1
s )xH(ξs)=hH(ξ H−1

s ) , s=1,. . . ,S ,

xt(ξ j′) = xt(ξ j′′),∀ j′, j′′ ∈ {1, . . . ,S} for which ξ
t
j′=ξ

t
j′′ , t = 2, . . . ,H ,

where c1 ∈ Rn1 and h1 ∈ Rm1 are known vectors, A ∈ Rm1×n1 is a known matrix,
ht ∈ Rmt , ct ∈ Rnt , T t−1 ∈ Rmt×nt−1 , W t ∈ Rmt×nt , t = 2, . . . ,H are the uncertain
parameter vectors and matrices. The random process ξ t , t = 1, . . . ,H−1, is revealed
gradually over time in H periods and ξξξ

t := (ξ 1, . . . ,ξ t), t = 1, . . . ,H−1 denotes the
history of the process up to time t. ξ t is defined on a probability space (Ξ t ,A t , p)
with support Ξ t ∈ Rnt and given probability distribution p on the σ−algebra A t



Bounding Multistage Stochastic Programs: a Scenario Tree Based Approach 3

(with A t ⊆A t+1) and Eξ t denotes the expectation with respect to ξ t . Let ξ1, . . . ,ξS,
be the possible realizations (or scenarios) of ξξξ

H−1, Ξ the finite support of possible
scenarios and ξ t

s the history of the s-realization, s = 1, . . . ,S, up to stage t, t =
1, . . . ,H − 1 . Let πs the probability of scenario s, s = 1, . . . ,S. See Figure 1 for a
scenario tree visualization of the scenario process with approximate distribution.
The decision vector x := (x1,x2, . . . ,xH), with xt ∈ Rnt−dt

+ ×Ndt , t = 1, . . . ,H, is
nonanticipative which means it depends on the information up to time t. The last
set of constraints enforce this condition. In the following, for a simpler presentation,
the feasibility condition on xt will be omitted even if assumed to be satisfied.

Fig. 1 Scenario tree representation of the random process ξξξ
H−1 with approximate distribution.

The main principle to obtain lower bounds of problem (1) is given by the relax-
ation of some constraints. This is the case of the multistage wait-and-see problem
(WS), where the nonanticipativity constraints are relaxed. WS is then obtained by
averaging the total costs of the S deterministic programs:

WS=
S

∑
s=1

πs minx1(ξs),...,xH (ξs)
c1x1(ξs)+ c2(ξ 1

s )x
1(ξs)+. . .+ cH(ξ H−1

s )xH(ξs)

s.t. Ax1(ξs) = h1 ,

T 1(ξ 1
s )x

1(ξs)+W 2(ξ 1
s )x

2(ξs) = h2(ξ 1
s ) , (2)

...
T H−1(ξ H−1

s )xH−1(ξs)+W H(ξ H−1
s )xH(ξs)=hH(ξ H−1

s ) .

The Expected Value problem EV is obtained by replacing all random parameters by
their expected values and solving the deterministic program, with
ξ̄ξξ :=(ξ̄ 1, ξ̄ 2, . . . , ξ̄ H−1)=(Eξ 1,Eξ 2, . . . ,Eξ H−1):

EV := min
x

z(x, ξ̄ξξ ) . (3)
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2.1 Basic Bounds

The following relations between RP, WS and EV have been proved in [3].

Theorem 1. For multistage stochastic mixed-integer programs of the form (1), the
following inequalities hold true

WS≤ RP≤ EEV , (4)

where EEV denotes the solution value of the RP model, having the first stage de-
cision variables fixed at the optimal values obtained by using the expected value of
coefficients.

Similarly EEV t , t = 1, . . . ,H − 1 (see [2] and [6]), is defined by fixing the de-
cision variables up to stage t of RP at the optimal values obtained by using the
problem EV . The Value of the Stochastic Solution at stage t, V SSt is then defined as
V SSt := EEV t −RP, t = 1, . . . ,H−1.

However, in several problems of practical interest the difference between EEV t

and WS is quite large. In the next sections we will discuss how to solve simpler
problems for finding lower and upper bounds and proceed to find tighter and tighter
bounds to RP.

3 Lower Bounds by Group Subproblems

In order to obtain lower bounds on RP problem which improve the left-hand side
inequality in (4), one can solve smaller problems than the original one. The pro-
posed approach (see [7]) divides a given problem into independent subproblems.
We suppose to fix a number 1 ≤ R < S of reference scenarios among the possible
S scenarios. Let R = {1, . . . ,R} be the index set of fixed scenarios. Without loss of
generality we suppose they are the first R scenarios among the available S ones. We
choose among the K = S−R scenarios (ξi, i = R+1, . . .S) a subgroup of cardinality
k = 1, . . . ,K. Let K = {R+1, . . . ,S} be the index set of scenarios excluding those
belonging to the fixed scenario set R. Let P(K ) the power set of K excluding the
empty set. Let Pk(K ) the set of all subset of P(K ) with cardinality k. For any
subset Ψk ∈Pk(K ), let π(Ψk) = ∑i∈Ψk

πi be the probability assigned to scenarios
group Ψk.

Definition 1. For any given scenario group Ψk, the group subproblem MGR(Ψk,R)
is defined as minzR(Ψk) :=
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∑
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T t−1(ξ t−1
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r )xt(ξr) = ht(ξ t−1
r ) , r ∈R, t = 2, . . . ,H (5)

T t−1(ξ t−1
i )xt−1(ξi)+W t(ξ t−1

i )xt(ξi) = ht(ξ t−1
i ) , i ∈Ψk, t = 2, . . . ,H

xt(ξ j′) = xt(ξ j′′),∀ j′, j′′ ∈R ∪Ψk for which ξ
t
j′ = ξ

t
j′′ t = 2, . . . ,H.

Remark 1. MGR(Ψ1,1) reduces to the definition of PAIRS subproblem (see [6]).

Fig. 2 Representation of the Group Subproblem MGR(Ψ4,2) with R = 2 reference scenarios (in
red) and one subset Ψ4 (in blue).

A representation of MGR(Ψ4,2) is shown in Figure 2 with R = 2 reference sce-
narios (in red) and one subset Ψ4 (in blue).

Definition 2. Given an integer k ∈ {1, . . . ,K}, and R fixed scenarios, the Multistage
Expected value of the Group Subproblem Objective function with k scenarios in each
group and R fixed scenarios, MEGSO(k,R) is defined as

MEGSO(k,R) :=
1(

K−1
k−1

)
(1−∑

R
r=1 πr)

[
∑

Ψk∈Pk(K )

π(Ψk)minzR(Ψk)

]
. (6)

Remark 2. The Multistage Sum of Pairs Expected Values, MSPEV [6] reduces to
MEGSO(1,1) as follows

MSPEV = MEGSO(1,1) =
1

1−πa
∑

Ψ1∈P1(K )

π(Ψ1)minzP(Ψ1) . (7)

Theorem 2. Given an integer R, 1≤R< S and an integer k, 1≤ k≤K the following
chains of inequalities hold true
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WS≤MEGSO(1,R)≤MEGSO(2,R)≤ . . .≤MEGSO(K,R) = RP , (8)
MEGSO(k,1)≤MEGSO(k,2)≤ ·· · ≤MEGSO(k,S− k) = RP . (9)

Theorem 2 says that MEGSO is monotonically nondecrasing in the cardinality k
of scenarios of the subsets Ψk with R fixed and monotonically nondecrasing in the
number of reference scenarios R with k fixed. The proof can be found in [7].

4 Upper Bounds

In this section we discuss and compare some types of upper bounds for multistage
mixed-integer programs. We focus on bounds based on solving group subproblems,
quality measures of the deterministic solution and on rolling horizon measures.

4.1 Upper Bounds from Multistage Group Subproblems

In this section we recall upper bounds for multistage stochastic programs based on
solving group subproblems (see [10] for the two-stage case and [7] for the mul-
tistage one). Given x̌1

R the optimal first stage solution of the stochastic problem
minx z(x,ξ1, . . . ,ξR) , based only on the R reference scenarios, then a possible upper
bound of RP is:

MEV RS1,R := E
ξξξ

H−1 min
x(2,H)

z(x̌1
R,x

(2,H),ξξξ
H−1

) . (10)

A tighter upper bound to RP is the Multistage Expectation of Group Subproblems
MEGS(k,R), which represents the minimum optimal value among those obtained
by solving the original stochastic program (1), using the optimal first stage solution
x̂1

Ψk,R
of each group subproblem (5). This can be expressed as follows:

MEGS(k,R) := min
Ψk∈Pk(K )∪R

(E
ξξξ

H−1 min
x(2,H)

z(x̂1
Ψk,R,x

(2,H),ξξξ
H−1

)) . (11)

The following inequality holds (see [7]).

Proposition 1. For a fixed number R of reference scenarios and any 1 ≤ k ≤ K we
have

RP≤MEGS(k,R)≤MEV RS1,R . (12)
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4.2 Upper Bounds based on the Expected Value Skeleton Solution

Measures of the structure (skeleton) of the deterministic solution such as the Multi-
stage Loss Using the Skeleton Solution MLUSS has been introduced in [6], in rela-
tion to the standard V SS (see in [5] the definition in the two-stage case). The aim of
these measures is to identify meaningful information, which can be extracted from
the solution of the deterministic problem, in order to reduce the size of the stochas-
tic one. MLUSSt are computed as the difference between the optimal values of the
stochastic problem RP and its reduced version MESSV t obtained by fixing the out-
of-basis variables up to stage in the expected value solution. Having a MLUSSt close
to zero suggests that the out-of-basis variables chosen by the expected value model
until stage t are correct also in a stochastic environment. The following relations
hold true (see [6]):

Proposition 2.

MLUSSt+1 ≥ MLUSSt , t = 1, . . . ,H−2 , (13)
RP ≤ MESSV t ≤ EEV t , t = 1, . . . ,H−1 . (14)

In these lines, other measures of the goodness of deterministic solutions based on
reduced costs of the deterministic solution are proposed in [1].

4.3 Upper bounds based on Rolling Horizon approaches

Multistage problems such as EEV t are often infeasible since they require to fix
many variables to their value obtained via the expected value model. An alternative
approach to consider is the rolling time horizon procedure taking into account the
arrival of new information at each stage. This is obtained by solving a sequence of
H scenario trees with random parameters in periods t, . . . ,H−1 replaced with their
expected value and solve the associated model with fixing the solutions obtained in
the previous steps (see Figure 3). The Rolling Horizon Value of the Expected Value
Solution is then given by the difference with respect to RP. In similar way other
rolling horizon measures are defined in [6].

5 Conclusions

In this paper lower and upper bounds for mixed-integer multistage stochastic pro-
grams have been discussed and compared. The bounds are based on the assumption
that a sufficiently large scenario-tree process is given as approximation of the gen-
eral infinite problem and it is considered as a benchmark. The lower and upper
bounds proposed are based on groups subproblems, quality of deterministic solu-
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Fig. 3 Procedure to compute the Rolling Horizon Value of the Expected Value Solution.

tion and rolling horizon approaches. The approach discussed is both of theoretical
and practical importance arising when solving problems of large instances where it
is fundamental to have approximations of the optimal solution.
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