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Abstract
Let (M, g) be a d-dimensional compact connected Riemannian manifold and let
{ϕm}+∞

m=0 be a complete sequence of orthonormal eigenfunctions of the Laplace–
Beltrami operator onM. We show that there exists a positive constant C such that for
all integers N and X and for all finite sequences of N points in M, {x( j)}Nj=1, and

positive weights {a j }Nj=1 we have
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a j
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2
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⎪⎭
.
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Let (M, g) be a d-dimensional compact connected Riemannian manifold, with nor-
malized Riemannian measure μ such that μ(M) = 1, and Riemannian distance
d(x, y). Let {λ2m}+∞

m=0 be the sequence of eigenvalues of the (positive) Laplace–
Beltrami operator�, listed in increasing order with repetitions, and let {ϕm}+∞

m=0 be an
associated sequence of orthonormal eigenfunctions. In particular ϕ0 ≡ 1 and λ0 = 0.
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This allows to define the Fourier coefficients of L1(M) functions as

f̂ (λm) =
∫

M
f (x)ϕm(x)dμ(x)

and the associated Fourier series

+∞∑

m=0

f̂ (λm)ϕm(x).

The main result of this paper is the following theorem.

Theorem 1 There exists a positive constant C such that for all integers N and X and
for all finite sequences of N points inM, {x( j)}Nj=1, and positive weights {a j }Nj=1 we
have
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Notice that the estimate
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is immediately obtained since for m = 0 one has ϕ0(x) = 1 for all x in M. The
essential part of the theorem is therefore the estimate

X∑

m=0
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N∑

j=1

a jϕm(x( j))
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2

≥ CX
N∑

j=1

a2j . (2)

Since for any m the expected value of
∣∣∑ a jϕm(x( j))

∣∣2 is
∑

a2j (see the proof of
Proposition 2 below) the above estimate means that independently of how the points
are chosen, there is a positive proportion of values of m between 0 and X for which∣∣∑ a jϕm(x( j))

∣∣2 cannot be essentially smaller than its expected value.
When M is the one-dimensional torus, the above theorem is classical and goes

back to the work of Cassels [5]. He was interested in estimates on exponential sums,
and their relation to Dirichlet’s approximation theorem. More precisely, as part of the
proof of a slightly weaker version of Dirichlet’s theorem, in [5, page 288] he showed
that for any choice of N real numbers x(1), . . . , x(N ) and for any integer p ≥ 1,
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On a sharp lemma of Cassels and Montgomery on manifolds

whereC is the sumof the squares of the coefficients in the usualmultinomial expansion
of (x(1) + · · · + x(N ))p. When p = 1, we have C = N and Cassels estimate reduces
to a version of our estimate (1) for the torus and for a j = 1. In [14, Theorem 8, Chapter
5], Montgomery gave a version of (3) (with p = 1) with positive weights,
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He also proved the following version of Cassels inequality on the two dimensional
torus T2 ([14, Theorem 12 in Chapter 5]). For any x(1), . . . x(N ) in T

2 and for any
X1, X2

∑

|m1|≤X1, |m2|≤X2,m �=0

∣∣∣∣∣∣

N∑

j=1

e2π im·x( j)
∣∣∣∣∣∣

2

≥ N X1X2 − N 2. (4)

The proof of these results was inspired by Siegel’s analytic proof of Minkowski’s
convex body theorem [15]. Indeed, given a symmetric convex body C, there exists a
non-negative trigonometric polynomial T such that T̂ is also non-negative, the support
of T̂ is contained in C, T (0) ≥ area(C)/4 and T̂ (0) = 1. It follows that

∑

m∈C
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2

=
N∑

j=1

N∑

k=1

∑

m∈C
T̂ (m)e2π im·(x( j)−x(k)) =

N∑

j=1

N∑

k=1

T (x( j) − x(k))

≥ NT (0) ≥ Narea(C)/4. (5)

The construction of the trigonometric polynomial T is the following. Let x such
that �(( 12C − x) ∩ Z

2) ≥ area(C)/4. Then one can simply take

T (x) = 1

�
(( 1

2C − x
) ∩ Z2

)
∑

m,k∈ 1
2C−x

e2π i(m−k)·x. (6)

The applications that Montgomery had in mind for this type of inequalities was to
the theory of irregularities of distribution (see [14, Chapter 6]. See also [20]). Let C be a
subset of T2 and for any collection of N points x(1), . . . , x(N ) define the discrepancy
function

DC(x) =
N∑

j=1

χC(x + x( j)) − area(C).
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By Parseval’s identity, its L2 norm is

∫

T2
|DC(x)|2dx =

∑

m�=0

|χ̂C(m)|2
∣∣∣∣∣∣

N∑

j=1

e2π im·x( j)
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2

.

The idea is now to estimate this quantity from below by means of inequality (4).
In general, due to the zeros of the function χ̂C , a lower bound for |χ̂C(m)|2 is not
available. However, it is sometimes possible to let C vary in some class of subsets
of T2, in such a way that the average of the Fourier coefficients |χ̂C(m)| over this
collection is bounded below by some decreasing function of |m|. For example, one
can take two disks of radius 1/4 and 1/2, or one can take dilations of a square, or
rotations and dilations of a smooth convex set. In the case of two disks C1 and C2 of
radius 1/4 and 1/2 respectively, Montgomery showed that

|χ̂C1(m)|2 + |χ̂C2(m)|2 ≥ c
1

|m|3 .

Thus,

∫

T2
|DC1(x)|2dx +

∫

T2
|DC2(x)|2dx ≥ c

∑

m �=0

1

|m|3
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e2π im·x( j)
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2

.

Applying now inequality (4) with X1 = X2 = (2N )1/2, this is bounded below by
cN X1X2(

√
2X1)

−3 = cN 1/2. This means that for any choice of N points there is a
disk of radius 1/4 or 1/2 for which the discrepancy is greater than cN 1/4.

This type of arguments have a straightforward extension to the higher dimensional
torus.

If the collection of points {x( j)}Nj=1 in T
d is not evenly distributed, one has to

expect that the lower bound in (5) is not achieved (e.g., let all points be the same).
This suggests that the exponential sums

∑

m∈C
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N∑

j=1

e2π im·x( j)
∣∣∣∣∣∣

2

can be used as a measure of the regularity of the collection of points. See [13] where
this is related with Riesz type energy functionals for the torus.

A spherical analog of Cassels–Montgomery inequality has also been used by Bilyk
and Dai [2, formula (4.9)] to prove a lower bound for the discrepancy in the d-
dimensional sphere.

Recently,Bilyk,Dai, Steinerberger [3] extendedCassels–Montgomery inequality to
the case of smooth compact d-dimensional Riemannian manifolds without boundary.
More precisely they showed that there exists a positive constant C such that for all
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integers N and X and for all finite sequences of N points inM, {x( j)}Nj=1, and positive

weights {a j }Nj=1,

X∑

m=0
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a jϕm(x( j))
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a2j .

This result should be compared with the following simple proposition.

Proposition 2 Let X and N be positive integers. For all positive weights {a j }Nj=1, there

exists a sequence of points {x( j)}Nj=1 inM such that

X∑
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Proof Let

�(y1, . . . , yN ) =
X∑

m=1

∣∣∣∣∣∣

N∑

j=1

a jϕm(y j )
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=
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N∑
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a jakϕm(y j )ϕm(yk).

Since for m �= 0

∫

M
ϕm(y j )dy j = 0,

if j �= k we have

∫

M
· · ·

∫

M
ϕm(y j )ϕm(yk)dy1 · · · dyN =

∫

M

∫

M
ϕm(y j )ϕm(yk)dy jdyk = 0,

while

∫

M
· · ·

∫

M
ϕm(y j )ϕm(y j )dy1 · · · dyN =

∫

M
|ϕm(y j )|2dy j = 1.

Hence,

∫

M
· · ·

∫

M
�(y1, . . . , yN )dy1 · · · dyN

=
X∑

m=1

N∑

j=1

a2j

∫

M
|ϕm(y j )|2dy j = X

N∑

j=1

a2j .
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Therefore there exist points {x( j)}Nj=1 such that

�(x(1), . . . , x(N )) ≤ X
N∑

j=1

a2j .


�

Our goal is therefore to remove the logarithmic loss in the above result of Bilyk,
Dai and Steinerberger, thus obtaining a sharp estimate.

The original proof by Montgomery in the case of the torus uses the Fejér kernel,
or more in general a trigonometric polynomial as the one described in (6). A direct
adaptation of this proof to the case of a general manifold would require to construct a
positive kernel of the form

X∑

m=0

cmϕm(x)ϕm(y),

but unfortunately this type of kernel is not available in a general manifold. One could
therefore withdraw, for example, the requirement that the spectrum of the kernel be
contained in the set {λ20, . . . , λ2X }. This is the strategy followed by Bilyk, Dai and
Steinerberger which use the heat kernel. Our strategy here is on the contrary to use a
kernel which is positive up to a negligible error, without dropping the spectrum con-
dition. The existence of such type of kernel can be proved by means of the Hadamard
parametrix for the wave operator on the manifold. In the next section we introduce
this construction.

A simple consequence of Theorem 1 is the following estimate on the maximum
degree X of linear combinations of eigenfunctions of theLaplacian up to the eigenvalue
λX that a quadrature rule can integrate exactly. This is a well known result for equal
weights, see e.g. [8, Proposition 1], or [18, Theorem 2] where one can find an estimate
of the constant C that depends only on the dimension of the manifold. See also [18,
Theorem 1] for a result with general weights.

Corollary 3 Let X be a positive integer and assume there exist points {x( j)}Nj=1 and

weights {a j }Nj=1 such that for every polynomial

P(x) =
X∑

m=0

cmϕm(x)

we have ∫

M
P(x)dx =

N∑

j=1

a j P(x( j)). (7)
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Then there exists a constant C > 0 independent of X and N such that

1 ≥ CX
N∑

j=1

a2j .

In particular

CX � N .

Proof Since ϕ0(x) ≡ 1 we must have
∑N

i=1 ai = 1. Let

P(x) =
X∑

m=0

N∑

i=1

aiϕm(x(i))ϕm(x),

then

∫

M
P(x)dx =

∫

M

X∑

m=0

N∑

i=1

aiϕm(x(i))ϕm(x)dx

=
X∑

m=0

N∑

i=1

aiϕm(x(i))
∫

M
ϕm(x)dx =

N∑

i=1

ai = 1.

On the other hand

N∑

j=1

a j P(x( j)) =
N∑

j=1

a j

X∑

m=0

N∑

i=1

aiϕm(x(i))ϕm(x( j))

=
X∑

m=0

∣∣∣∣∣∣

N∑

j=1

a jϕm(x( j))

∣∣∣∣∣∣

2

≥ CX
N∑

j=1

a2j .

Hence

1 ≥ CX
N∑

j=1

a2j .

Applying Cauchy–Schwarz inequality to 1 = ∑N
i=1 ai we easily obtain

N∑

j=1

a2j � 1/N

and therefore N ≥ CX . 
�
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When the manifoldM is the d dimensional sphere and the weights a j are all equal,

the existence of point distributions (spherical designs) {x( j)}N (X)
j=1 for which (7) holds

for some N (X) ≤ cX is the famous conjecture of Korevaar and Meyers [12], recently
proved by Bondarenko, Radchenko, Viazovska [4]. The analogous result for a general
manifold has been proved in [8]. See also [6] for the case of general weights.

1 The Hadamard parametrix for the wave equation

Following [11, III, §17.4], for ν = 0, 1, 2, . . ., let us call Eν(t, x) the distribution
defined as the inverse Fourier-Laplace transform on R

d+1 of ν!(|ξ |2 − τ 2)−ν−1,

Eν(t, x) = ν!(2π)−d−1
∫

Im τ=c<0
ei(x ·ξ+tτ)(|ξ |2 − τ 2)−ν−1dξdτ.

Note that for ν = 0, this is exactly the fundamental solution of thewave operator, see
[11, I, §6.2]. The next Proposition (see [11, III, Lemma17.4.2]) givesmore information
about the distributions Eν .

Proposition 4 (i) Eν is a homogeneous distribution of degree 2ν − d + 1 supported
in the forward light cone {(t, x) ∈ R

1+d : t > 0, t2 ≥ |x |2}.
(ii) Moreover

Eν(t, x) = 2−2ν−1π(1−d)/2χ
ν+(1−d)/2
+ (t2 − |x |2), t > 0,

and Eν(t, x) can be regarded as a smooth function of t > 0with values inD′(Rd).
In particular if ψ ∈ C∞

0 (R1+d) then

〈Eν, ψ〉 = 2−2ν−1π(1−d)/2
∫ +∞

0
〈χν+(1−d)/2

+ (t2 − | · |2), ψ(t, ·)〉dt .

Also

∂kt Eν(0
+, ·) = 0 for k ≤ 2ν

and

∂2ν+1
t Eν(0

+, ·) = ν!δ0.

(iii) Finally, setting

〈Ěν, ϕ〉 := 〈Eν, ϕ̌〉,

where

ϕ̌(t, x) = ϕ(−t, x),
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On a sharp lemma of Cassels and Montgomery on manifolds

the distributions (Eν − Ěν)(t, x) and ∂t (Eν − Ěν)(t, x) can be regarded as
continuous radial functions of x with values in D′(R). With a small abuse of
notation we will write (Eν − Ěν)(·, |x |) and ∂·(Eν − Ěν)(·, |x |).

Let us clarify the meaning of the objects that appear in this proposition. Let α ∈ C

be such that Re α > −1 and for every test function ϕ ∈ C∞
0 (R) define the distribution

χα+ as

〈χα+, ϕ〉 = 1

�(α + 1)

∫ +∞

0
xαϕ(x)dx .

Integration by parts immediately gives

〈χα+, ϕ〉 = −〈χα+1+ , ϕ′〉

so that χα+ can be extended to all α with Re α > −2, and, repeating the argument, to
the whole complex plane (see [11, I, §3.2] for the details).

Also, since the function f (x, t) = t2−|x |2 is a submersion ofRd+1 \{0} inR, then
the pull-back χα+(t2 − |x |2) := f ∗(χα+) ∈ D′(Rd+1 \ {0}) is defined by the identity

〈 f ∗(χα+), ϕ〉 := 〈χα+,

∫

f −1(·)
ϕ(x, t)

‖∇ f (x, t)‖dσ(x, t)〉.

We observe that by [11, I, Theorem 3.23] the distribution χ
ν+(1−d)/2
+ (t2−|x |2) can

be uniquely extended to D′(Rd+1) for ν = 0, 1, . . ..
Recall that distributions in D′(M) can always be written as u = ∑+∞

m=0 cmϕm ,
where the sequence {cm} is slowly increasing. Their action on smooth functions is
given by

〈u, φ〉 =
+∞∑

m=0

cm

∫
φϕm .

Consider the continuous linear map Kt : D(M) → D′(M) defined by

φ �→ Ktφ =
∑

m

cos(λmt)φ̂(λm)ϕm .

Observe thatKtφ is in fact a smooth function and it is the solution of the following
Cauchy problem for the wave equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
∂2

∂t2
+ �x

)
w(t, x) = 0

w(0, x) = φ(x)
∂w

∂t
(0, x) = 0.
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By the Schwartz kernel Theorem (see [11, I, Theorem 5.2.1]), there exists one and
only one distribution cos(t

√
�)(x, y) ∈ D′(M × M), called kernel of the map Kt ,

such that

〈cos(t√�)(x, y), η(x)φ(y)〉 = 〈Ktφ, η〉 =
∑

m

cos(λmt)φ̂(λm)〈ϕm, η〉

=
∑

m

cos(λmt)
∫

φ(y)ϕm(y)dy
∫

η(x)ϕm(x)dx .

This immediately implies that

cos(t
√

�)(x, y) =
∑

m

cos(λmt)ϕm(x)ϕm(y),

and the identity is of course in the sense of distributions in D′(M × M).
Hadamard’s construction of the parametrix for the wave operator allows to describe

for small values of time t the singularities of cos(t
√

�)(x, y).

Theorem 5 (see [16, Theorem 3.1.5]) Given a d-dimensional Riemannian manifold
(M, g), there exists ε > 0 and functions αν ∈ C∞(M × M), so that if Q > d + 3
the following holds. Let

KQ(t, x, y) =
Q∑

ν=0

αν(x, y)∂t (Eν − Ěν)(t, d(x, y))

and

RQ(t, x, y) = cos(t
√

�)(x, y) − KQ(t, x, y),

then RQ ∈ CQ−d−3([−ε, ε] × M × M) and

|∂β
t,x,y RQ(t, x, y)| ≤ C |t |2Q+2−d−|β|.

Furthermore α0(x, y) > 0 inM × M.

Observe that KQ(t, x, y), by Proposition 4 (iii), defines a distribution on R×M×
M via the identity

〈KQ, ϕ〉 =
∫∫

M×M
〈KQ(·, x, y), ϕ(·, x, y)〉dxdy.

However this distribution describes the singularities of the kernel cos(t
√

�)(x, y)
only for small time.
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2 Notations and Fourier transforms

Let us introduce some notation. If f and g are integrable functions on R
d , we shall

denote their convolution by

f ∗d g(x) =
∫

Rd
f (x − y)g(y)dy.

We define the cosine transform of smooth even functions on R as

C f (t) =
∫ ∞

0
f (s) cos(st)ds

with inverse

C−1 f (s) = 2

π

∫ ∞

0
f (t) cos(st)dt .

For smooth functions on Rd we will use a slightly different normalization, and we
define the Fourier transform and its inverse as

Fd f (ξ) =
∫

Rd
f (x)e−2π i x ·ξdx,

F−1
d f (x) =

∫

Rd
f (ξ)e2π i x ·ξdξ.

For radial functions f (x) = f0(|x |), the above Fourier transform reduces essen-
tially to the Hankel transform, given by (see [17, Chapter 4, Theorem 3.3])

Fd f (ξ) = 2π |ξ |− d−2
2

∫ ∞

0
f0(s)Jd−2

2
(2π |ξ |s)s d

2 ds,

F−1
d f (x) = 2π |x |− d−2

2

∫ ∞

0
f0(s)Jd−2

2
(2π |x |s)s d

2 ds. (8)

In the future, with an abuse of notation, we will identify the function f with its
radial profile f0 and write Fd f (|ξ |) instead of Fd f (ξ). One can easily show that

F1 f (t) = 2C f (2π t).

In the proof of Theorem 1 we need the inverse cosine transform of the distribution
∂t (Eν − Ěν). By Proposition 4 (iii), ∂t (Eν − Ěν)(t, z) can be seen as a continuous
function of z into D′(R). In the following Lemma we compute for every fixed z the
inverse cosine transform of this distribution.
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Lemma 6 Let 0 ≤ ν < d/2. For every z ∈ R
d , C−1(∂·(Eν − Ěν)(·, z)) is a function

and for all t ∈ R

C−1(∂·(Eν − Ěν)(·, z))(t) = π−d/22−ν−d/2|t |−2ν−1+d J−ν+d/2−1(t |z|)
(t |z|)−ν+d/2−1 . (9)

Proof Since by Proposition 4 (i) and (iii)

Eν(t, z) = 2−2ν−1π(1−d)/2χ
ν+(1−d)/2
+ (t2 − |z|2) t > 0,

if (d − 1)/2 < ν < d/2, then

∂t (Eν − Ěν)(t, z)

is an even, locally integrable function in t , vanishing at∞, so that its cosine transform
is (see [7, Formula 11, Table 1.3, Chapter 1, page 12]),

C−1(∂·(Eν − Ěν)(·, z))(s)
= 2

π

∫ +∞

0
∂t Eν(t, z) cos(st)dt

= 2−2ν+1

π(d+1)/2

1

�(ν + (1 − d)/2)

∫ +∞

|z|
t(t2 − |z|2)ν+(1−d)/2−1 cos(st)dt

= π−d/22−ν−d/2|s|−2ν−1+d J−ν+d/2−1(s|z|)
(s|z|)−ν+d/2−1 .

Observe now that the distribution χ
ν+(1−d)/2
+ in D′(R) is entire in the variable ν,

and so is the distribution ∂t (Eν − Ěν)(t, z) inD′(R) for fixed z. This implies that also
the cosine transform

C−1(∂·(Eν − Ěν)(·, z))(s)

can be analytically extended to all complex values of ν (see [9, Note 1, page 171]). This
analytic extension coincides therefore with the analytic extension of the distribution

π−d/22−ν−d/2|s|−2ν−1+d J−ν+d/2−1(s|z|)
(s|z|)−ν+d/2−1 .

Observe that this is the product of the locally integrable function |s|−2ν−1+d (recall

that ν < d/2) with the smooth functionπ−d/22−ν−d/2 J−ν+d/2−1(s|z|)
(s|z|)−ν+d/2−1 , which is analytic

in ν ∈ C.
Thus, the identity

C−1(∂·(Eν − Ěν)(·, z))(s) = π−d/22−ν−d/2|s|−2ν−1+d J−ν+d/2−1(s|z|)
(s|z|)−ν+d/2−1
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holds for all ν < d/2. 
�

3 Proof of themain result

It suffices to show themain inequality (2) for any positive integer N and for any integer
X sufficiently large. Indeed, if 1 ≤ X < X0

X∑

m=0

∣∣∣∣∣∣

N∑

j=1

a jϕm(x( j))

∣∣∣∣∣∣

2

≥
∣∣∣∣∣∣

N∑

j=1

a jϕ0(x( j))

∣∣∣∣∣∣

2

=
⎛

⎝
N∑

j=1

a j

⎞

⎠
2

≥
N∑

j=1

a2j ≥ 1

X0
X

N∑

j=1

a2j .

Let κ be a positive integer that we will choose later and let Y = κX . By [10,
Theorem 2], we can split themanifoldM into Y disjoint regions {Ri }Yi=1 withmeasure
|Ri | = 1/Y and such that each region contains a ball of radius c1Y−1/d and is contained
in a ball of radius c2Y−1/d , for appropriate values of c1 and c2 independent of Y .
Let us call {Br }Rr=1 the sequence of all the regions of the above collection {Ri }Yi=1
which contain at least one of the points x( j). We call Kr the cardinality of the set
{ j = 1, . . . , N : x( j) ∈ Br } and Sr the sum of the weights {a j } corresponding to
points x( j) ∈ Br . Without loss of generality we can assume that

S1 ≥ S2 ≥ . . . ≥ SR > 0.

We rename the sequence {x( j)}Nj=1 as

{xr , j } r=1,...,R
j=1,...,Kr

with xr , j ∈ Br for all j = 1, . . . , Kr , and the sequence {a j }Nj=1 as

{ar , j } r=1,...,R
j=1,...,Kr

.

Observe that

Sr =
Kr∑

j=1

ar , j .

Inequality (2) is an immediate consequence of the following

X∑

m=0

∣∣∣∣∣∣

R∑

r=1

Kr∑

j=1

ar , jϕm(xr , j )

∣∣∣∣∣∣

2

≥ CX
R∑

r=1

⎛

⎝
Kr∑

j=1

ar , j

⎞

⎠
2

. (10)
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Let ψ be a smooth radial function on R
d compactly supported in the ball

B(0, 1/2) = {x ∈ R
d : |x | � 1/2} such that ‖ψ‖2 = 1 and

∫
ψ > 0, and set

H(x) = ψ ∗d ψ(x). Then clearly H is radial, compactly supported in B(0, 1),
H(x) ≤ 1 for all x ∈ R

d , and H(0) = 1. Moreover its Fourier transform is
Fd H(ξ) = (Fdψ(ξ))2 ≥ 0 for all ξ ∈ R

d , and has fast decay at infinity with all
its derivatives.

If we now identify H(x) with its radial profile, we can write

X∑

m=0

∣∣∣∣∣∣

R∑

r=1

Kr∑

j=1

ar , jϕm(xr , j )

∣∣∣∣∣∣

2

≥
+∞∑

m=0

H

(
λm

λX

) ∣∣∣∣∣∣

R∑

r=1

Kr∑

j=1

ar , jϕm(xr , j )

∣∣∣∣∣∣

2

=
R∑

r=1

Kr∑

j=1

R∑

s=1

Ks∑

i=1

ar , j as,i

(+∞∑

m=0

H

(
λm

λX

)
ϕm(xr , j )ϕm(xs,i )

)
. (11)

Let us define the kernel

FX (x, y) :=
+∞∑

m=0

H

(
λm

λX

)
ϕm(x)ϕm(y). (12)

We will estimate FX (x, y) using the parametrix for the wave operator described
in the previous section. For this, one would need that the Fourier cosine transform of
H( ·

λX
) have small support. This of course cannot be achieved, having H itself compact

support. For this reason we pick η = Fdφ where φ(ξ) is a nonnegative smooth radial
function supported in B(0, ε/2π) and such that φ(ξ) = 1 in B(0, ε/4π) and define

H̃(x) = H

( ·
λX

)
∗d η(x).

The reason for taking a d-dimensional convolution will be clarified in Lemma 8
where we use the fact that Fd H̃ ≥ 0.

Observe that suppFd H̃ ⊂ B(0, ε/2π). It is remarkable that the cosine transform
of H̃ has support in [0, ε] and is nonnegative.

Lemma 7 C−1 H̃(ρ) ≥ 0 for ρ ≥ 0 and C−1 H̃(ρ) = 0 for ρ > ε.

Proof It is known (see [19, eq. (3.9)] ) that for d > d ′ ≥ 1,

Fd ′(Fdg)(s) = cd,d ′
∫ +∞

s
(r2 − s2)(d−d ′)/2−1rg(r)dr . (13)
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On a sharp lemma of Cassels and Montgomery on manifolds

Let now g(r) = Fd H̃(r). Since H̃(s) = Fdg(s) and the cosine transform is
essentially F1 we obtain

C−1 H̃(ρ) = 1

π
F1Fdg

( ρ

2π

)

and the thesis follows immediately from (13), the fact that g(r) ≥ 0 and the fact that
g(r) = 0 for r > ε/2π . 
�

Let us go back to the kernel FX ,

FX (x, y) =
+∞∑

m=0

H

(
λm

λX

)
ϕm(x)ϕm(y)

=
+∞∑

m=0

H̃(λm)ϕm(x)ϕm(y) +
+∞∑

m=0

(
H

(
λm

λX

)
− H̃(λm)

)
ϕm(x)ϕm(y)

Since

H̃(λ) =
∫ +∞

0
C−1 H̃(t) cos(λt)dt,

and C−1 H̃(t) is supported in [−ε, ε], by Theorem 5, we can write

+∞∑

m=0

H̃(λm)ϕm(x)ϕm(y)

=
+∞∑

m=0

∫ +∞

0
C−1 H̃(t) cos(λmt)dtϕm(x)ϕm(y)

= 1

2

+∞∑

m=0

〈
cos(λm ·)ϕm(x)ϕm(y), C−1 H̃

〉

= 1

2

〈
cos(·√�)(x, y), C−1 H̃

〉

= 1

2

Q∑

ν=0

αν(x, y)�ν(x, y) +
∫ ε

0
RQ(t, x, y)C−1 H̃(t)dt

where we set

�ν(x, y) =
〈
∂t (Eν − Ěν)(·, d(x, y)), C−1 H̃

〉
.

We can therefore decompose the kernel FX as follows

FX (x, y) =
5∑

n=1

Fn(x, y),
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where

F1(x, y) = 1

2
α0(x, y)�0(x, y),

F2(x, y) = 1

2

∑

1≤ν<d/2

αν(x, y)�ν(x, y),

F3(x, y) = 1

2

∑

d/2≤ν≤Q

αν(x, y)�ν(x, y),

F4(x, y) =
∫ ε

0
RQ(t, x, y)C−1 H̃(t)dt,

F5(x, y) =
+∞∑

m=0

(
H

(
λm

λX

)
− H̃(λm)

)
ϕm(x)ϕm(y).

Recalling (11) and (12) we have

X∑

m=0

∣∣∣∣∣∣

R∑

r=1

Kr∑

j=1

ar , jϕm(xr , j )

∣∣∣∣∣∣

2

=
R∑

r=1

Kr∑

j=1

R∑

s=1

Ks∑

i=1

ar , j as,i FX (xr , j , xs,i )

=
5∑

n=1

R∑

r=1

Kr∑

j=1

R∑

s=1

Ks∑

i=1

ar , j as,i Fn(xr , j , xs,i ).

We start estimating the term with F1 which is the positive part of the kernel and
gives the main contribution.

Lemma 8 For κ large enough there exist X0 > 0 and C > 0 such that for every
X > X0

R∑

r=1

Kr∑

j=1

R∑

s=1

Ks∑

i=1

ar , j as,i F1(xr , j , xs,i ) ≥ CX
R∑

r=1

⎛

⎝
Kr∑

j=1

ar , j

⎞

⎠
2

.

Proof First of all we show that �0(x, y) is positive. Indeed, by Lemma 6 and (8), for
every x, y ∈ M,

�0(x, y) =
〈
C−1

(
∂t

(
E0 − Ě0

)
(·, d (x, y))

)
, H̃

〉

= 2
∫ +∞

0
C−1

(
∂t (E0 − Ě0)(·, d(x, y))

)
(t)H̃(t)dt

= 2

d(x, y)d/2−1(2π)d/2

∫ +∞

0
Jd/2−1

(
2π

d(x, y)

2π
t

)
H̃(t)td/2dt
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= 2

(2π)d
Fd H̃

(
d(x, y)

2π

)

= 2

(2π)d
λdXFd H

(
λXd(x, y)

2π

)
Fdη

(
d(x, y)

2π

)
≥ 0.

Since also α0(x, y) is positive, we can disregard off-diagonal terms,

R∑

r=1

Kr∑

j=1

R∑

s=1

Ks∑

i=1

ar , j as,i F1(xr , j , xs,i )

= 1

2

R∑

r=1

Kr∑

j=1

R∑

s=1

Ks∑

i=1

ar , j as,iα0(xr , j , xs,i )�0(xr , j , xs,i )

� 1

2

R∑

r=1

Kr∑

j=1

Kr∑

i=1

ar , j ar ,iα0(xr , j , xr ,i )�0(xr , j , xr ,i )

= λdX

(2π)d

R∑

r=1

Kr∑

j=1

Kr∑

i=1

ar , j ar ,iα0(xr , j , xr ,i )Fd H

(
λXd(xr , j , xr ,i )

2π

)
Fdη

(
d(xr , j , xr ,i )

2π

)
.

ByWeyl’s estimate (see e.g. [11, III, Corollary 17.5.8]) λX ∼ X1/d . Thus, if x, y ∈ Br

then

λXd(x, y) ≤ λX2c2(κX)−1/d ≤ c3κ
−1/d .

Let κ large enough so that if x, y ∈ Br

Fd H

(
λXd(x, y)

2π

)
= (Fdψ)2

(
λXd(x, y)

2π

)
≥ (Fdψ)2(0)

2
> 0

and

d(x, y)

2π
≤ ε

4π
,

so that

Fdη

(
d(x, y)

2π

)
= 1.
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Finally,

R∑

r=1

Kr∑

j=1

R∑

s=1

Ks∑

i=1

ar , j as,i F1(xr , j , xs,i )

≥ CX
R∑

r=1

Kr∑

j=1

Kr∑

i=1

ar , j ar ,i = CX
R∑

r=1

⎛

⎝
Kr∑

j=1

ar , j

⎞

⎠
2

.


�
The following lemmas show that the contributions given by the terms with F2, F3,

F4, F5 are negligible.

Lemma 9 There exist C > 0 and X0 > 0 such that for every X > X0

∣∣∣∣∣∣

R∑

r=1

Kr∑

j=1

R∑

s=1

Ks∑

i=1

ar , j as,i F2(xr , j , xs,i )

∣∣∣∣∣∣
≤ CX1−2/d

R∑

r=1

⎛

⎝
Kr∑

j=1

ar , j

⎞

⎠
2

.

Proof We will show that for every integer ν, 1 ≤ ν < d/2,

∣∣∣∣∣∣

R∑

r=1

Kr∑

j=1

R∑

s=1

Ks∑

i=1

ar , j as,iαν(xr , j , xs,i )�ν(xr , j , xs,i )

∣∣∣∣∣∣
≤ CX1−2ν/d

R∑

r=1

⎛

⎝
Kr∑

j=1

ar , j

⎞

⎠
2

.

By Lemma 6, for every x, y ∈ M,

�ν(x, y) =
〈
C−1

(
∂·(Eν − Ěν)(·, d(x, y))

)
, H̃

〉

= 2
∫ +∞

0
π−d/22−ν−d/2 |t |−2ν−1+d J−ν+d/2−1(d(x, y)t)

(d(x, y)t)−ν+d/2−1 H̃(t)dt

= πν−d21−dFd−2ν H̃

(
d(x, y)

2π

)

= πν−d21−dFd−2ν

(
H

( ·
λX

)
∗d η

) (
d(x, y)

2π

)
.

Using (13) and the fast decay at infinity of Fdψ , for any positive M there exist
positive constants C and G such that for every ρ ≥ 0

∣∣∣∣Fd−2ν

(
H

( ·
λX

)
∗d η

)
(ρ)

∣∣∣∣ = λdX

∣∣∣Fd−2ν

(
Fd

(
(Fdψ)2 (λX ·)Fdη

))
(ρ)

∣∣∣

= cd,d−2νλ
d
X

∫ +∞

ρ

(r2 − ρ2)ν−1r (Fdψ(λXr))
2 Fdη(r)dr
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≤ CλdX

∫ +∞

ρ

(r2 − ρ2)ν−1r (Fdψ(λXr))
2 dr

≤ CλdX

∫ +∞

ρ

(r2 − ρ2)ν−1r
C

(1 + λXr)G
dr

≤ Cλd−2ν
X

∫ +∞

λXρ

(
u2 − (λXρ)2

)ν−1
u

C

(1 + u)G
du ≤ Cλd−2ν

X

(1 + |λXρ|)M .

Therefore, using the symmetry of �ν(x, y), for any integer ν with 1 ≤ ν < d/2
we obtain

∣∣∣∣∣∣

R∑

r=1

Kr∑

j=1

R∑

s=1

Ks∑

i=1

ar , j as,iαν(xr , j , xs,i )�ν(xr , j , xs,i )

∣∣∣∣∣∣

≤ 2C
R∑

r=1

Kr∑

j=1

R∑

s=r

Ks∑

i=1

ar , j as,i
∣∣�ν(xr , j , xs,i )

∣∣

≤ C
R∑

r=1

Kr∑

j=1

R∑

s=r

Ks∑

i=1

ar , j as,iλ
d−2ν
X

1
(
1 + λXd(xr , j , xs,i )

)M .

In order to estimate the above sum recall that every region Br is contained in a
ball centered at a point zr ∈ Br of radius c2Y−1/d and let c3 = 10c2. For every fixed
r = 1, . . . , R we will consider separately the contribution of those values of s for
which the Bs is near Br , in the sense that Bs is contained in the ball centered at zr and
with radius c3Y−1/d , and the contribution of the remaining values of s, for which we
will say that Bs is far from Br . Notice that there are at most

∣∣B(zr , c3Y−1/d)
∣∣

Y−1 ≤ C(c3Y−1/d)d

Y−1 ≤ Ccd3

regions Bs near Br . Thus, using again that λX ∼ X1/d and that for r � s we have∑Kr
j=1 ar , j ≥ ∑Ks

i=1 as,i , we obtain

R∑

r=1

Kr∑

j=1

R∑

s=r

Ks∑

i=1

ar , j as,iλ
d−2ν
X

1
(
1 + λXd(xr , j , xs,i )

)M

≤ CX1−2ν/d
R∑

r=1

R∑

s=r
Bs near Br

Kr∑

j=1

ar , j

Ks∑

i=1

as,i

+ CX1−2ν/d
R∑

r=1

R∑

s=r
Bs far from Br

Kr∑

j=1

ar , j

Ks∑

i=1

as,i
(
λXd(xr , j , xs,i )

)−M
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≤ CX1−2ν/d
R∑

r=1

⎛

⎝
Kr∑

j=1

ar , j

⎞

⎠
2

+ CX1−2ν/d
R−1∑

r=1

R∑

s=r+1
Bs far from Br

Kr∑

j=1

ar , j

Ks∑

i=1

as,i
(
X1/dd(xr , j , xs,i )

)−M
.

Using again that for r ≤ s we have
∑Kr

j=1 ar , j ≥ ∑Ks
i=1 as,i ,

R−1∑

r=1

R∑

s=r+1
Bs far from Br

Kr∑

j=1

ar , j

Ks∑

i=1

as,i
(
X1/dd(xr , j , xs,i )

)−M

=
R−1∑

r=1

Kr∑

j=1

ar , j

∞∑

�=0

∑

s>r :
2�−1c3Y−1/d≤d(zr ,zs )≤2�c3Y−1/d

Ks∑

i=1

as,i
(
X1/dd(xr , j , xs,i )

)−M

≤ C
R−1∑

r=1

Kr∑

j=1

ar , j

∞∑

�=0

2−�M
∑

s>r :
d(zr ,zs )≤2�c3Y−1/d

Ks∑

i=1

as,i

≤ C
R−1∑

r=1

Kr∑

j=1

ar , j

∞∑

�=0

2−�M

(
2�Y−1/d

)d

Y−1

Kr∑

j=1

ar , j

≤ C
R−1∑

r=1

⎛

⎝
Kr∑

j=1

ar , j

⎞

⎠
2 ∞∑

�=0

2−�(M−d) ≤ C
R−1∑

r=1

⎛

⎝
Kr∑

j=1

ar , j

⎞

⎠
2

.


�
Lemma 10 There exist C > 0 and X0 such that for every X > X0

∣∣∣∣∣∣

R∑

r=1

Kr∑

j=1

R∑

s=1

Ks∑

i=1

ar , j as,i F3(xr , j , xs,i )

∣∣∣∣∣∣
≤ C

R∑

r=1

⎛

⎝
Kr∑

j=1

ar , j

⎞

⎠
2

.

Proof We will show that for every integer ν ≥ d/2,

∣∣∣∣∣∣

R∑

r=1

Kr∑

j=1

R∑

s=1

Ks∑

i=1

ar , j as,iαν(xr , j , xs,i )�ν(xr , j , xs,i )

∣∣∣∣∣∣

≤ CX1−2ν/d
R∑

r=1

⎛

⎝
Kr∑

j=1

ar , j

⎞

⎠
2

.
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Observe that for ν ≥ d/2, the distribution ∂t (Eν − Ěν) (t, d(x, y)) can be identified
with the locally integrable function

Cν |t |
(
t2 − d(x, y)2

)ν−1+(1−d)/2

+ ,

for an appropriate value of Cν . Therefore, using the symmetry of �ν(x, y),

∣∣∣∣∣∣

R∑

r=1

Kr∑

j=1

R∑

s=1

Ks∑

i=1

ar , j as,iαν(xr , j , xs,i )�ν(xr , j , xs,i )

∣∣∣∣∣∣

≤ C
R∑

r=1

Kr∑

j=1

R∑

s=r

Ks∑

i=1

ar , j as,i

∫ +∞

d(xr , j ,xs,i )
t
(
t2 − d(xr , j , xs,i )

2)ν−1+(1−d)/2 C−1 H̃(t)dt,

where we use the fact that C−1 H̃(t) ≥ 0, by Lemma 7.
Assume first that d = 1 and let D = d(xr , j , xs,i ), then

∫ +∞

D
t(t2 − D2)ν−1+(1−d)/2C−1 H̃(t)dt

=
∫ +∞

D
t(t2 − D2)ν−1 1

π
F1 H̃

(
t

2π

)
dt

= λX

∫ +∞

D
t(t2 − D2)ν−1 1

π

(
F1ψ

(
λX

t

2π

))2

F1η

(
t

2π

)
dt

≤ cλX

∫ +∞
D
2π

uν

(
u − D

2π

)ν−1

(F1ψ (λXu))2 F1η(u)du.

A similar estimate can be obtained for d ≥ 2. Indeed, by formula (13)

C−1 H̃(t) = 2

π
C H̃(t)

= 1

π
F1FdFd H̃

(
t

2π

)

= c
∫ +∞

t
2π

(
u2 −

(
t

2π

)2
)(d−1)/2−1

uFd H̃(u)du

= cλdX

∫ +∞
t
2π

(
u2 −

(
t

2π

)2
)(d−1)/2−1

u (Fdψ(λXu))2 Fdη(u)du,
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so that, by Fubini’s theorem,

∫ +∞

D
t(t2 − D2)ν−1+(1−d)/2C−1 H̃(t)dt

= cλdX

∫ +∞
D
2π

u (Fdψ(λXu))2 Fdη(u)

×
⎛

⎝
∫ 2πu

D
2t(t2 − D2)ν−d/2−1/2

(
u2 −

(
t

2π

)2
)(d−3)/2

dt

⎞

⎠ du.

Since

∫ U

D
t(t2 − D2)ν−d/2−1/2

(
U 2 − t2

)(d−3)/2
dt

≤ CU (d−3)/2
∫ U

D
tν−d/2+1/2(t − D)ν−d/2−1/2(U − t)(d−3)/2dt

≤ CU (d−3)/2U ν−d/2+1/2

×
∫ 1

0
(z(U − D))ν−d/2−1/2 ((1 − z)(U − D))(d−3)/2 (U − D)dz

= CU ν−1(U − D)ν−1
∫ 1

0
zν−d/2−1/2(1 − z)(d−3)/2dz,

we obtain

∫ +∞

D
t(t2 − D2)ν−1+(1−d)/2C−1 H̃(t)dt

≤ cλdX

∫ +∞
D
2π

uν

(
u − D

2π

)ν−1

(Fdψ(λXu))2 Fdη(u)du.

Thus, for all d ≥ 1,

∫ +∞

D
t(t2 − D2)ν−1+(1−d)/2C−1 H̃(t)dt

≤ cλdX

∫ +∞
D
2π

uν

(
u − D

2π

)ν−1

(Fdψ(λXu))2 Fdη(u)du

≤ cλd−1
X

∫ +∞

λX
D
2π

(
v

λX

)ν (
v

λX
− D

2π

)ν−1

(Fdψ(v))2 Fdη

(
v

λx

)
dv

≤ cλd−2ν
X

∫ +∞

λX
D
2π

vν

(
v − DλX

2π

)ν−1

(Fdψ(v))2 dv
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≤ cλd−2ν
X

∫ +∞

λX
D
2π

v2ν−1 (Fdψ(v))2 dv

≤ cλd−2ν
X

1

(1 + λX D)M
.

Finally, arguing as in the previous lemma,

R∑

r=1

Kr∑

j=1

R∑

s=r

Ks∑

i=1

ar , j as,i

∫ +∞

d(xr , j ,xs,i )
t
(
t2 − d(xr , j , xs,i )

2
)ν−1+(1−d)/2 C−1 H̃(t)dt

≤ C
R∑

r=1

Kr∑

j=1

R∑

s=r

Ks∑

i=1

ar , j as,iλ
d−2ν
X

1
(
1 + λXd(xr , j , xs,i )

)M

≤ CX1−2ν/d
R∑

r=1

⎛

⎝
Kr∑

j=1

ar , j

⎞

⎠
2

.


�
Lemma 11 There exist C > 0 and X0 > 0 such that for every X > X0

∣∣∣∣∣∣

R∑

r=1

Kr∑

j=1

R∑

s=1

Ks∑

i=1

ar , j as,i F4(xr , j , xs,i )

∣∣∣∣∣∣
≤ C

R∑

r=1

⎛

⎝
Kr∑

j=1

ar , j

⎞

⎠
2

.

Proof Recall that for every x, y ∈ M,

F4(x, y) =
∫ ε

0
RQ(t, x, y)C−1 H̃(t)dt .

As before, if d = 1, then

C−1 H̃(t) = 1

π
F1 H̃

(
t

2π

)
= λX

π

(
F1ψ

(
λX

t

2π

))2

F1η

(
t

2π

)

and, by Theorem 5,

|F4(x, y)| ≤ λX

π

∫ ε

0

∣∣RQ(t, x, y)
∣∣
(
F1ψ

(
λX

t

2π

))2

F1η

(
t

2π

)
dt

≤ cλ1−2Q−2
X

∫ +∞

0
t2Q+1 (F1ψ(t))2 dt .

A similar estimate holds for d ≥ 2. Indeed, as in the previous lemma,

C−1 H̃(t) = cλdX

∫ +∞
t
2π

(
u2 −

(
t

2π

)2
)(d−1)/2−1

u (Fdψ(λXu))2 Fdη(u)du
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so that, again by Theorem 5,

|F4(x, y)|

= c

∣∣∣∣∣∣
λdX

∫ ε

0
RQ(t, x, y)

∫ +∞
t
2π

(
u2 −

(
t

2π

)2
)(d−1)/2−1

u (Fdψ(λXu))2 Fdη(u)dudt

∣∣∣∣∣∣

≤ cλdX

∫ +∞

0
u (Fdψ(λXu))2 Fdη(u)

×
∫ min(2πu,ε)

0

∣∣RQ(t, x, y)
∣∣
(
u2 −

(
t

2π

)2
)(d−1)/2−1

dtdu

≤ cλdX

∫ +∞

0
u (Fdψ(λXu))2 Fdη(u)

∫ 2πu

0
t2Q+2−d

(
u2 −

(
t

2π

)2
)(d−1)/2−1

dtdu

≤ cλdX

∫ +∞

0
(Fdψ(λXu))2 Fdη(u)u2Q+1du.

≤ cλd−2Q−2
X

∫ +∞

0
(Fdψ(v))2 v2Q+1dv.

Finally, for all d ≥ 1, since R ≤ Y = κX ,

∣∣∣∣∣∣

R∑

r=1

Kr∑

j=1

R∑

s=1

Ks∑

i=1

ar , j as,i

∫ ε

0
RQ(t, xr , j , xs,i )C−1 H̃(t)dt

∣∣∣∣∣∣

≤ cλd−2Q−2
X

R∑

r=1

Kr∑

j=1

R∑

s=1

Ks∑

i=1

ar , j as,i

≤ cX1−(2Q+2)/d
R∑

r=1

R∑

s=1

Kr∑

j=1

ar , j

Ks∑

i=1

as,i

≤ cX1−(2Q+2)/d
R∑

r=1

R∑

s=r

⎛

⎝
Kr∑

j=1

ar , j

⎞

⎠
2

≤ cX1−(2Q+2)/d
R∑

r=1

(R − r + 1)

⎛

⎝
Kr∑

j=1

ar , j

⎞

⎠
2

≤ cκX2−(2Q+2)/d
R∑

r=1

⎛

⎝
Kr∑

j=1

ar , j

⎞

⎠
2

,

and since Q > d + 3, the exponent 2− (2Q + 2)/d is negative and the result follows.

�
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Lemma 12 There exist C > 0 and X0 > 0 such that for every X > X0

∣∣∣∣∣∣

R∑

r=1

Kr∑

j=1

R∑

s=1

Ks∑

i=1

ar , j as,i F5(xr , j , xs,i )

∣∣∣∣∣∣
≤ C

R∑

r=1

⎛

⎝
Kr∑

j=1

ar , j

⎞

⎠
2

.

Proof We need to estimate
∣∣∣∣∣∣

R∑

r=1

Kr∑

j=1

R∑

s=1

Ks∑

i=1

ar , j as,i

+∞∑

m=0

(
H

(
λm

λX

)
− H̃(λm)

)
ϕm(xr , j )ϕm(xs,i )

∣∣∣∣∣∣

≤ 2
R∑

r=1

Kr∑

j=1

R∑

s=r

Ks∑

i=1

+∞∑

m=0

ar , j as,i

∣∣∣∣H
(

λm

λX

)
− H̃(λm)

∣∣∣∣
∣∣ϕm(xr , j )

∣∣ ∣∣ϕm(xs,i )
∣∣ .

Let us first study the term

I (x) = H

(
x

λX

)
− H̃(x) =

∫

Rd

[
H

(
x

λX

)
− H

(
x − y

λX

)]
η(y)dy.

Since η(y) has rapid decay at infinity and H(x) is supported in B(0, 1), if |x | ≥ 2λX

we have

|I (x)| ≤
∫

Rd

∣∣∣∣H
(
x − y

λX

)
η(y)

∣∣∣∣ dy ≤
∫

{|x−y|≤λX }

∣∣∣∣H
(
x − y

λX

)
η(y)

∣∣∣∣ dy

≤ c
∫

{|y|≥|x |−λX }
|η(y)| dy ≤ C (1 + |x | − λX )−M .

Assume |x | < 2λX . By Taylor’s theorem with integral reminder we can write

H

(
x

λX
− y

λX

)

= H

(
x

λX

)
+

∑

1≤|α|≤M−1

1

α!
∂ |α|H
∂xα

(
x

λX

)(
− y

λX

)α

+
∑

|α|=M

M

α!
(

− y

λX

)α ∫ 1

0
(1 − t)M−1 ∂ |α|H

∂xα

(
x

λX
− t

y

λX

)
dt

so that

H

(
x

λX
− y

λX

)
= H

(
x

λX

)
+

∑

1≤|α|≤M−1

1

α!
∂ |α|H
∂xα

(
x

λX

) (
− y

λX

)α

+O

(∣∣∣∣−
y

λX

∣∣∣∣
M

)
.
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It follows that

I (x) =
∫

Rd

[
H

(
x

λX

)
− H

(
x − y

λX

)]
η(y)dy

= −
∑

1≤|α|≤M−1

1

α!
∂ |α|H
∂xα

(
x

λX

)∫

Rd

(
− y

λX

)α

η(y)dy

+
∫

Rd
O

(
|y|M
λM
X

)
η(y)dy

and since

∫

Rd
yαη(y)dy = Fd

(
yαη(y)

)
(0) = (−2π i)−|α| ∂ |α|Fdη

∂ξα
(0) = 0

we obtain

|I (x)| ≤ cλ−M
X .

Using Hormander’s estimates on the L∞ norm of the eigenfunctions (see [16,
(3.2.2), page 48])

‖ϕm‖∞ ≤ C(1 + λm)
d−1
2 ,

we obtain

R∑

r=1

Kr∑

j=1

R∑

s=r

Ks∑

i=1

+∞∑

m=0

ar , j as,i

∣∣∣∣H
(

λm

λX

)
− H̃(λm)

∣∣∣∣
∣∣ϕm(xr , j )

∣∣ ∣∣ϕm(xs,i )
∣∣

≤ cλ−M
X

∑

λm≤2λX

(1 + λm)d−1
R∑

r=1

R∑

s=r

Kr∑

j=1

ar , j

Ks∑

i=1

as,i

+ c
∑

λm≥2λX

(1 + λm − λX )−Mλd−1
m

R∑

r=1

R∑

s=r

Kr∑

j=1

ar , j

Ks∑

i=1

as,i

≤ c

⎛

⎝λ−M
X

∑

λm≤2λX

(1 + λm)d−1 +
∑

λm≥2λX

λ−M+d−1
m

⎞

⎠
R∑

r=1

(R − r + 1)

⎛

⎝
Kr∑

j=1

ar , j

⎞

⎠
2

≤ cκX

⎛

⎝λ−M
X

∑

λm≤2λX

(1 + λm)d−1 +
∑

λm≥2λX

λ−M+d−1
m

⎞

⎠
R∑

r=1

⎛

⎝
Kr∑

j=1

ar , j

⎞

⎠
2

.
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ByWeyl’s estimates, which say that the number of eigenvalues λ2m ≤ T 2 is asymp-
totic to cT d ,

λ−M
X

∑

λm≤2λX

(1 + λm)d−1 +
∑

λm≥2λX

λ−M+d−1
m

≤ cλ−M
X λdXλd−1

X +
+∞∑

k=1

∑

2kλX≤λm≤2k+1λX

λ−M+d−1
m

≤ cλ−M+2d−1
X + c

+∞∑

k=1

2d(k+1)λdX (2kλX )−M+d−1

≤ cλ−M+2d−1
X + cλ−M+2d−1

X

+∞∑

k=1

2(2d−M−1)k

and taking M such that −M + 2d − 1 < −d gives the result. 
�
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