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Abstract

Let (M, g) be a d-dimensional compact connected Riemannian manifold and let
{@m};fo be a complete sequence of orthonormal eigenfunctions of the Laplace—
Beltrami operator on M. We show that there exists a positive constant C such that for
all integers N and X and for all finite sequences of N points in M, {x(j )}?’zl, and

positive weights {aj}?’:l we have

2

x | N 2 v N
SIS ajenc(p| = max fex Y [Ya
m=0 = =

j=1
Mathematics Subject Classification 41A55 - 11K38

Let (M, g) be a d-dimensional compact connected Riemannian manifold, with nor-
malized Riemannian measure p such that u(M) = 1, and Riemannian distance
d(x,y). Let {A%l };o:oo be the sequence of eigenvalues of the (positive) Laplace—
Beltrami operator A, listed in increasing order with repetitions, and let {¢,, };’10:00 be an
associated sequence of orthonormal eigenfunctions. In particular 99 = 1 and A9 = 0.
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This allows to define the Fourier coefficients of L' (M) functions as
FOm) = /M F @) Pm(X)dp(x)

and the associated Fourier series
+00
> FOm)om (x).
m=0
The main result of this paper is the following theorem.

Theorem 1 There exists a positive constant C such that for all integers N and X and
for all finite sequences of N points in M, {x(j))}Y_,, and positive weights {aj}AI/V:1 we

=
have
X | N 2 N N 2
YD ajenx()| =max{Cx > at [y a;| t. (1)
m=0 | j=1 j=1 j=1
Notice that the estimate
X N 2 N 2
S ajemxGn| = | D a;
m=0|j=1 j=1

is immediately obtained since for m = 0 one has ¢g(x) = 1 for all x in M. The
essential part of the theorem is therefore the estimate

2

X N N
ZO > ajen(x(j))| =CX Y al. )
m=0 | j=1

=1

Since for any m the expected value of |Z ajom(x(j)) |2 is > ajz (see the proof of
Proposition 2 below) the above estimate means that independently of how the points
are chosen, there is a positive proportion of values of m between 0 and X for which
|Z ajem(x(j)) |2 cannot be essentially smaller than its expected value.

When M is the one-dimensional torus, the above theorem is classical and goes
back to the work of Cassels [5]. He was interested in estimates on exponential sums,
and their relation to Dirichlet’s approximation theorem. More precisely, as part of the
proof of a slightly weaker version of Dirichlet’s theorem, in [5, page 288] he showed

that for any choice of N real numbers x(1), ..., x(N) and for any integer p > 1,
X ’ 1 1
S erimi > S X +DC =N, 3)
m=1|j=1
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On a sharp lemma of Cassels and Montgomery on manifolds

where C is the sum of the squares of the coefficients in the usual multinomial expansion
of (x(1)4+---+x(N))?. When p = 1, we have C = N and Cassels estimate reduces
to a version of our estimate (1) for the torus and for a; = 1.1In [14, Theorem 8, Chapter
5], Montgomery gave a version of (3) (with p = 1) with positive weights,

2 2
N

x | ¥ ) Yoo
Z Zaje imx(j) ZE(X—FI)ZCI/'—E Zaj
j=1 j=1

m=1|j=1

He also proved the following version of Cassels inequality on the two dimensional
torus T2 ([14, Theorem 12 in Chapter 5]). For any x(1), ...x(N) in T? and for any
X1, X»

N 2
> Y Ml > NX Xy — N2 4)

[m1]<X1, lm2|<X2, m#0 | j=1

The proof of these results was inspired by Siegel’s analytic proof of Minkowski’s
convex body theorem [15]. Indeed, given a symmetric convex body C, there exists a
non-negative trigonometric polynomial 7" such that T is also non- negative, the support
of T is contained in C,T(0) > area(C)/4 and T(O) = 1. It follows that

Z Z 2mim-x(j) > ZT(m) Z 2mim-x(j)

meC |j=I meC

N N N
> TmyePmm =) = Z T(x(j) = x(k)
k=1

j=1 k=1 meC Jj=1
T(0) > Narea(C)/4. ©)

Il
M= 7

v

The construction of the trigonometric polynomial 7 is the following. Let X such
that ﬁ((%C —X) NZ?) > area(C)/4. Then one can simply take

1 .
T — 2m(m—k)-x' 6
©= Gy = ¢ ©

m,ke%C—i

The applications that Montgomery had in mind for this type of inequalities was to
the theory of irregularities of distribution (see [ 14, Chapter 6]. See also [20]). Let C be a
subset of T2 and for any collection of N points x(1), ..., x(N) define the discrepancy
function

N
De(x) =) xe(x+ x(j)) — area(C).

J=1
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By Parseval’s identity, its L norm is

2
N
/ IDe))*dx =Y |zem)|* |y x|
T2 ;
j=1

m7#0

The idea is now to estimate this quantity from below by means of inequality (4).
In general, due to the zeros of the function ¥¢, a lower bound for |xc(m)|? is not
available. However, it is sometimes possible to let C vary in some class of subsets
of T2, in such a way that the average of the Fourier coefficients |x¢(m)| over this
collection is bounded below by some decreasing function of |m|. For example, one
can take two disks of radius 1/4 and 1/2, or one can take dilations of a square, or
rotations and dilations of a smooth convex set. In the case of two disks C; and C> of
radius 1/4 and 1/2 respectively, Montgomery showed that

[Fe ()P +[Re,(m)* 2 ¢ 0.

Thus,

N

1 ) ]
2d 2d > 2rim-x(j)
/7;2|Dcl<x>| x+/Tz|Dc2<x>| x_cm§¢0ﬁ T | 2=

j=l1

Applying now inequality (4) with X; = X» = (2N)!/?, this is bounded below by
cNXng(ﬁXl)_3 = ¢N/2, This means that for any choice of N points there is a
disk of radius 1/4 or 1/2 for which the discrepancy is greater than ¢N'1/4.

This type of arguments have a straightforward extension to the higher dimensional
torus.

If the collection of points {x(j )}9’: | in T is not evenly distributed, one has to
expect that the lower bound in (5) is not achieved (e.g., let all points be the same).
This suggests that the exponential sums

2
Z ieﬁrim-x(/‘)

meC |j=1

can be used as a measure of the regularity of the collection of points. See [13] where
this is related with Riesz type energy functionals for the torus.

A spherical analog of Cassels—Montgomery inequality has also been used by Bilyk
and Dai [2, formula (4.9)] to prove a lower bound for the discrepancy in the d-
dimensional sphere.

Recently, Bilyk, Dai, Steinerberger [3] extended Cassels—Montgomery inequality to
the case of smooth compact d-dimensional Riemannian manifolds without boundary.
More precisely they showed that there exists a positive constant C such that for all
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On a sharp lemma of Cassels and Montgomery on manifolds

integers N and X and for all finite sequences of N points in M, {x(j)}Y =1 and positive
weights {a]}J s
X | N 2 N
YD ajemx()| = Clioe )7 )d/z >k,
m=0 | j=1 j=1

This result should be compared with the following simple proposition.

Proposition 2 Let X and N be positive integers. For all positive weights {a j}j.V: |» there
exists a sequence of points {x(j )}jy:1 in M such that

2
Z Za,gom(x(n) <XZa + Za,
m=0 |j=1
Proof Let
X N 2 X N
(i, IN) = DY aiemGD| =D Y ajakpn(y)em (0)-
m=1|j=1 m=1 j,k=1

Since for m # 0
/ om(yj)dy; =0,
M
if j # k we have

/ / (ﬂm()’j)§0m()7k)d)’1"'d)’N=/ / Om(¥j)om (yr)dyjdyr =0,
M M M IM
while

/ f ‘Pm()’j)(ﬂm(Yj)dYI"'dyN:/ lom ()12dy; = 1.

M M M

Hence,

// O(y1,..., yn)dyr---dyn
M M

X N N
=230 | tontoPary = X 3
m=1j=1 ‘M =1
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Therefore there exist points {x ( j)}jy: | such that

N
O(x(1),...., x(N) <X ) aj.

j=l1
O

Our goal is therefore to remove the logarithmic loss in the above result of Bilyk,
Dai and Steinerberger, thus obtaining a sharp estimate.

The original proof by Montgomery in the case of the torus uses the Fejér kernel,
or more in general a trigonometric polynomial as the one described in (6). A direct
adaptation of this proof to the case of a general manifold would require to construct a
positive kernel of the form

X —
Z CmPm (X)Pm (¥),

m=0

but unfortunately this type of kernel is not available in a general manifold. One could
therefore withdraw, for example, the requirement that the spectrum of the kernel be
contained in the set {)%, cee )&}. This is the strategy followed by Bilyk, Dai and
Steinerberger which use the heat kernel. Our strategy here is on the contrary to use a
kernel which is positive up to a negligible error, without dropping the spectrum con-
dition. The existence of such type of kernel can be proved by means of the Hadamard
parametrix for the wave operator on the manifold. In the next section we introduce
this construction.

A simple consequence of Theorem 1 is the following estimate on the maximum
degree X of linear combinations of eigenfunctions of the Laplacian up to the eigenvalue
MAx that a quadrature rule can integrate exactly. This is a well known result for equal
weights, see e.g. [8, Proposition 1], or [18, Theorem 2] where one can find an estimate
of the constant C that depends only on the dimension of the manifold. See also [18,
Theorem 1] for a result with general weights.

Corollary 3 Let X be a positive integer and assume there exist points {x(j )}j.\/:l and
weights {a j}?/: | such that for every polynomial

X
P(x) =) cmpm(x)
m=0

we have

N
fM P(x)dx =Y a;P(x())). (7

j=1
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On a sharp lemma of Cassels and Montgomery on manifolds

Then there exists a constant C > 0 independent of X and N such that

N
1>CX Zaf
j=1

In particular
CX <N.

Proof Since ¢o(x) = 1 we must have Z,N=1 a; = 1. Let

X N
P() =YY aign(x)pn(x),
m=0i=1
then
X N
/M (x)dx Mn;;w (@) pm (x)dx
X N N
=Y Zammu(i))/ om(x)dx =Y ai = 1.
m=0 i—1 M im1
On the other hand
N N X N
D aiPx( = "a; Y > aignxD)enx ()
j=1 j=1 m=0 i=1
X N 2 N
=Y 1> ajenx(j)| =CX D d].
m=0 | j=1 j=1
Hence

N
1>CX Zaf
=1

Applying Cauchy—Schwarz inequality to 1 = Z,N:1 a; we easily obtain

> a; = 1/N
j=1

and therefore N > CX. O
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When the manifold M is the d dimensional sphere and the weights a; are all equal,

the existence of point distributions (spherical designs) {x (j )}?/:()1() for which (7) holds
for some N (X) < cX is the famous conjecture of Korevaar and Meyers [12], recently
proved by Bondarenko, Radchenko, Viazovska [4]. The analogous result for a general
manifold has been proved in [8]. See also [6] for the case of general weights.

1 The Hadamard parametrix for the wave equation

Following [11, III, §17.4], forv = 0, 1, 2, ..., let us call E, (¢, x) the distribution
defined as the inverse Fourier-Laplace transform on R?*! of v!(|€|?> — ¢2)~"~ 1,

Ey(t,x) = v!(2r) "¢} / ETD (g2 — ¢V lgedr.

Imt=c<0

Note that for v = 0, this is exactly the fundamental solution of the wave operator, see
[11,1, §6.2]. The next Proposition (see [11, III, Lemma 17.4.2]) gives more information
about the distributions E,,.

Proposition4 (i) E, is a homogeneous distribution of degree 2v — d + 1 supported
in the forward light cone {(t,x) € Rt .t > 0,1% > |x|?}.
(i1) Moreover

Ey(t, x) = 2721;7]n(lfd)/2X1+(l—d)/2([2 . |x|2), r>0,

and E, (t, x) can be regarded as a smooth function of t > 0 with values in D’ (R,
In particular if y € C§° R+ then

“+o00
(Ey, ) = 27271 (1=D/2 /0 TR @2 P, g, ).

Also
OFE, 0T, ) =0 fork <2v
and
32 HLE,L (0T, ) = v!.
(iii) Finally, setting
(Eyv, 9) := (Ey, §),
where

¢(t’ x) = (p(_ta x)7
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On a sharp lemma of Cassels and Montgomery on manifolds

the distributions (E, — EVU)(t,x) and 0;(E, — EU)(I, x) can be regarded as
continuous radial functions of x with values in D’(RV). With a small abuse of
notation we will write (E,, — E,) (-, |x|) and 0.(E, — E,)(-, |x]).

Let us clarify the meaning of the objects that appear in this proposition. Let « € C
be such that Re @ > —1 and for every test function ¢ € C§°(R) define the distribution

x§ as

o 1 +Oo o
xXi,0) = m/() x“p(x)dx.

Integration by parts immediately gives

(x% @) = =4t o))

so that xj’ﬁ can be extended to all @ with Rea > —2, and, repeating the argument, to
the whole complex plane (see [11, I, §3.2] for the details).

Also, since the function f (x, t) = 1> —|x|? is a submersion of RI+! \ {0} in R, then
the pull-back x% (12 — |x|?) := f*(x%) € D'(RY*!\ {0}) is defined by the identity

p(x, 1)
), ) = <x°‘,f D (e, 1y).
* T o IVFG
We observe that by [11, 1, Theorem 3.23] the distribution x "' =72 (12 — |x|2) can

be uniquely extended to D'(R4*+!) forv =0, 1, .. ..

Recall that distributions in D’(M) can always be written as u = Z;fo Cn®Pms
where the sequence {c,,} is slowly increasing. Their action on smooth functions is
given by

+00
(. ¢) = > cm f S@m-
m=0
Consider the continuous linear map K; : D(M) — D’(M) defined by

¢ > Kip = cos(nt)P(m)pm-

Observe that /C;¢ is in fact a smooth function and it is the solution of the following
Cauchy problem for the wave equation

82
<m + Ax> U)([,)C) =0

w(0, x) = ¢(x)
M 06y =0
az( T
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By the Schwartz kernel Theorem (see [11, I, Theorem 5.2.1]), there exists one and
only one distribution cos(tv/A) (x, y) € D'(M x M), called kernel of the map K,
such that

(cos(t/A) (x, ). n(x) () = (Ksp. 1) = Y c08Cumt) () (@m- 1)

= cos(Amt) / ¢ ()¢ (Mdy / N ()@ (x)dx.

This immediately implies that

cos(tV/A)(x, y) = Y cos(hmt)m ()9 (1),

and the identity is of course in the sense of distributions in D'(M x M).
Hadamard’s construction of the parametrix for the wave operator allows to describe

for small values of time ¢ the singularities of cos(tv/A)(x, y).

Theorem 5 (see [16, Theorem 3.1.5]) Given a d-dimensional Riemannian manifold

(M, g), there exists ¢ > 0 and functions a, € C*°(M x M), so thatif Q > d + 3
the following holds. Let

0
Ko(t,x,y) =Y ay(x, ) (Ey — EN (1, d(x, )
v=0
and
Ro(t, x,y) = cos(tv/A)(x,y) — Ko(t, x, y),

then Rgp € C243([—¢, 6] x M x M) and

10/

t,x,yRQ(t’ X, Y)| S C|t|2Q+2_d_|ﬂ“

Furthermore ap(x, y) > 0in M x M.

Observe that K (¢, x, y), by Proposition 4 (iii), defines a distribution on Rx M x
M via the identity

<KQ’ §0> = // (KQ(',X, )’), QD(',X, y)>d-xdy
MxM

However this distribution describes the singularities of the kernel cos(t\/K) (x,y)
only for small time.
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On a sharp lemma of Cassels and Montgomery on manifolds

2 Notations and Fourier transforms

Let us introduce some notation. If f and g are integrable functions on R?, we shall
denote their convolution by

f*a g(x) = /Rd fx=y)gydy.
We define the cosine transform of smooth even functions on R as
o0
Cf(t)= / f(s)cos(st)ds
0
with inverse
2 o0
Clrs) == / £ (1) cos(st)dr.
7 Jo

For smooth functions on R? we will use a slightly different normalization, and we
define the Fourier transform and its inverse as

Fuf @) = / Fe vy,
]Rd

Frlf(x) = /R NG

For radial functions f(x) = fp(|x]), the above Fourier transform reduces essen-
tially to the Hankel transform, given by (see [17, Chapter 4, Theorem 3.3])

Faf @ =2mle| 2 fooo fol5) a2 s )5 ds,

Frl @) =2mlx~ T f h fos)Juzz e x]s)s 3 ds. ®)
0

In the future, with an abuse of notation, we will identify the function f with its
radial profile fj and write F, f(|€]) instead of F; f (£). One can easily show that

Fift) = 2CfQ2nt).

In the proof of Theorem 1 we need the inverse cosine transform of the distribution
o (E, — Ev). By Proposition 4 (iii), 9;(E, — EU)(I, z) can be seen as a continuous
function of z into D’(R). In the following Lemma we compute for every fixed z the
inverse cosine transform of this distribution.
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Lemma6 Let 0 < v < d/2. Forevery z € RY, C~V(8.(E, — EU)(-, z)) is a function
and forallt € R

_ >, _ —v— —ou— J—y —1(tlzl)
CTH@O(Ey — BN, 2)(1) = w2270 272 ”d(”;lff#/zl_k ©)

Proof Since by Proposition 4 (i) and (iii)
E,(t, 7) = 2—2u—1n(1—d)/2xi+(1fd)/2(t2 _ |z|2) t>0,
if d—1)/2 <v <d/2,then
0 (Ey — E))(t, 2)

is an even, locally integrable function in ¢, vanishing at co, so that its cosine transform
is (see [7, Formula 11, Table 1.3, Chapter 1, page 12]),

CYB.(Ey — Ey) (- 2)(s)

2 [to°

—/ 0, E\,(t, z) cos(st)dt

T Jo

272v+1 1 +o00
C o r@ED2TO+ 1 —d)/2) Jiy

112 = |z TI=D2=1 cog(st)dt

_ —d/2g=v=d/2 g -2v=1+d Jvtajp1G12)
(S|Z|)_”+d/2_1

Observe now that the distribution Xj_+(17d)/ Zin D/ (R) is entire in the variable v,
and so is the distribution 0;(E, — E W(t, z) in D' (R) for fixed z. This implies that also

the cosine transform
M @(Ey — E)) (- 2)(s)

can be analytically extended to all complex values of v (see [9, Note 1, page 171]). This
analytic extension coincides therefore with the analytic extension of the distribution

J_ —1(s]z
nfd/227v7d/2|s|72v71+d V+d£2 +1d( 2|—|1)'
(slz)—v+d/

Observe that this is the product of the locally integrable function |s| =2~ 1% (recall

that v < d/2) with the smooth function 7z ~4/22-V—4/2 %ﬂ )
inv € C.

Thus, the identity

which is analytic

2v—14d J—v+d/2—1(s]z])

~1 Y _ o —d[2y—v—d/2| |~
CT(0(Ey — EV)(, 2))(s) =972 Is| sla]) AT
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On a sharp lemma of Cassels and Montgomery on manifolds

holds for all v < d/2. O

3 Proof of the main result

It suffices to show the main inequality (2) for any positive integer N and for any integer
X sufficiently large. Indeed, if 1 < X < X

2 N 2 2

X | N N
S aen@(i| = D] =D a;
m=0 | j=1 j=1

v

v

Jj=1

N 1 N

doaiz XY at
J 0 J

j=1 j=1

Let « be a positive integer that we will choose later and let Y = «X. By [10,
Theorem 2], we can split the manifold M into Y disjoint regions {R; } l.y:] with measure
|R;| = 1/Y and such that each region contains a ball of radius ¢ ¥ ~!/¢ and is contained
in a ball of radius ¢, Y ~!/¢, for appropriate values of ¢ and ¢, independent of Y.
Let us call {Br}f: | the sequence of all the regions of the above collection {R,-}l.y: h
which contain at least one of the points x(j). We call K, the cardinality of the set
{/j=1,...,N : x(j) € B/} and S, the sum of the weights {a;} corresponding to
points x(j) € B,. Without loss of generality we can assume that

S1>8>...>8>0.

We rename the sequence {x(j )}ﬁ.vz1 as

{xr,j} r=1,...,R
j:17~~-> r
with x, ; € B, forall j =1, ..., K,, and the sequence {aj}jyzl as

Observe that

Inequality (2) is an immediate consequence of the following

R K, 2 R 2

X K,
Y anjembe )| ZCXY A an| - (10)

m=0 [r=1 j=1 r=1 \j=1
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Let ¢ be a smooth radial function on R compactly supported in the ball
B(0,1/2) = {x € R? : |x| < 1/2} such that ||[/|» = 1 and ft/f > 0, and set
H(x) = ¥ %4 ¥(x). Then clearly H is radial, compactly supported in B(0, 1),
H(x) < 1 for all x € R?, and H (0) = 1. Moreover its Fourier transform is
FaH(E) = (Fay(£))? > 0 for all & € RY, and has fast decay at infinity with all
its derivatives.

If we now identify H (x) with its radial profile, we can write

2
x | R k.

Z Zzar,j(pm(xr,j)

m=0 [r=1 j=1
2

+o0 A R K,

=50 H (72) | e o)
m=0 X =1 =1

R K, R

K +o0
=Y D0 arjasi (Z H (i—”;) gom(xr,,-)som(xs,,-)> .an

r=1 j=1s=1i=1 m=0

Let us define the kernel

+00

Jom S
Fx(x,y):=Y H (E) O () Pm (). (12)

m=0
We will estimate Fx (x, y) using the parametrix for the wave operator described
in the previous section. For this, one would need that the Fourier cosine transform of
H (E) have small support. This of course cannot be achieved, having H itself compact

support. For this reason we pick n = F4¢ where ¢ (§) is a nonnegative smooth radial
function supported in B(0, ¢/2m) and such that ¢ (§) = 1 in B(0, ¢/4m) and define

ﬁ(x) =H (A_) *q N(X).
X

The reason for taking a d-dimensional convolution will be clarified in Lemma 8
where we use the fact thaL FqsH > 0.

Observe that supp F¢H C B(0, ¢/27). It is remarkable that the cosine transform
of H has support in [0, €] and is nonnegative.
Lemma 7 C’lﬁ(p) > 0 forp > OandCilﬁ(p) =0forp > e.

Proof Tt is known (see [19, eq. (3.9)] ) that ford > d’ > 1,

+00
Fa(Fag)(s) = cau / (r? — sH A= g (r)dr. (13)
N
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On a sharp lemma of Cassels and Montgomery on manifolds

Let now g(r) = _7-'d1-7 (r). Since H (s) = Fag(s) and the cosine transform is
essentially F; we obtain

i = Rz (L)

and the thesis follows immediately from (13), the fact that g(r) > 0 and the fact that
g(r)y=0forr > ¢/2m. O

Let us go back to the kernel Fy,

+o00 )tm _
Fx(x,y)=) H (g) O ()P (V)

+00

m=0
+0o0
=3 Ao + Y (H <@) - ﬁ(M)) on () om )
m=0 m=0 )\X
Since
H) =/ C~YH (1) cos(rr)dt,
0

and C_lﬁ(t) is supported in [—¢, €], by Theorem 5, we can write

+00
> HOwm () ()

m=0

10 400 - -
=3 [ e 0 sttt 07
m=0"0

+00

l —_— ~
T2 > <C°S(Km-)<pm )em (), C‘1H>
m=0
1 -
= 3 <cos(-«/K)(x, y),C H>
1< e R
=52 ol . y) +f Ro(t.x,y)C™ H(t)dt
v=0 0

where we set
2,0, ) = (0(Ey = B, ), €7 ).

We can therefore decompose the kernel F as follows
5
Fx(x,y) =Y Fu(x.y),
n=1

@ Springer



L. Brandolini et al.

where

1
Fi(x,y) = EQO(X’ V)Qo(x, y),

1
B(oy) =5 3 el ), y),

1<v<d/2

1
F3x,y) =3 D Q. ),
d/2<v=Q

Fa(x,y) = /8 Ro(t, x, y)C ' H(t)dt,
0
+00 A - .
Fs(x,y) =) (H (i) - H(/\m)> O () pm ().
m=0

Recalling (11) and (12) we have

2
x | R K R K,
2|22 anintar)) ZZZZarﬂstﬂxrﬂsJ
m=0 |r=1 j=1 r=1 j=1s=1i=I
K, R K
_ZzzzzarjaAan(xr]’xst)
n=1r=1 j=1s=1i=1

We start estimating the term with F7 which is the positive part of the kernel and
gives the main contribution.

Lemma 8 For k large enough there exist Xo > 0 and C > 0 such that for every
X > Xo

K

arjastl(xr]’xsz) >CXZ Zar]
1

r=1 \j=1

K, R
r=1 j=1s=1i=

Proof First of all we show that Q2(x, y) is positive. Indeed, by Lemma 6 and (8), for
every x,y € M,

Qo(x,y) = (¢! (& (Eo— £o) ¢.d (x.y0) . )
=2 /0 e (20(Eo = Eo).dx.y)) (0 H (0)ds

- 2 ™ 2 ( y) H()td%d
= AT amydr ), e\ JHOd
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B 2 ~ (d(x,y)
‘(h)df"H( 21 )

Axd(x, d(x,
= 3 FH (%”) Fan (%) > 0.

T end
Since also ag(x, y) is positive, we can disregard off-diagonal terms,

R K R K

Z Z Z Zar,jas.iFl (X j» X5.,i)

r=1 j=1s=1i=I
R K R K;

72222‘% jas, lao(xrj Xs l)QO(xr] Xs, i)

r=1 j=1s=1i=1
R K. K,
Zzzar ;a”fxo(xr; xrt)Q()(xr/ Xr.i)
r=1 j=1i=1
Ro& & )\Xd(xr] Xri) d(xr‘j,xr,i)
(Zﬂ)d ;]Zl;ar /arzao(xrj xri)FaH (7> Fan <T>

By Weyl’s estimate (see e.g. [11, III, Corollary 17.5.8]) Ax ~ X'/ Thus, if x, y € B,
then

Axd(x, y) < Ax2c2(k X) V4 < ez,

Let « large enough so thatif x, y € B,

2
o <xxd(x, y)) _ <xxd(x, y)) _ FEO

2 2 2
and
dix,y) _ &
2r T 4x’
so that
d(x,
fdﬁ( (x y)) 1
2
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Finally,
R K,
ZZZZar}ablFl(xrj:xsl)
r=1 j=1s=1i=1
R K, K, 2
>CXZZZar]ar1—CXZ Zarj
r=1 j=1i=1 r=1 \j=I

]

The following lemmas show that the contributions given by the terms with F>, F3,
Fu, Fs are negligible.

Lemma 9 There exist C > 0 and Xy > 0 such that for every X > X

R K. R K; 2
YV e Pt o) = x2S,
r=1 j=1s=1i=1 r=1 \j=1
Proof We will show that for every integer v, 1 < v < d/2,
K. R K, , 2

Zzzzarjas‘lav(xrjath)Q (-xr]axYl) <CX1 2v/dZ Ar,j

r=1 j=1s=1i=I = j=1
By Lemma 6, for every x, y € M,

2,(r,y) = (7 (0B = B dix, ) )

+
22/ Oon,*d/227V7d/2|t| 2v— ]+d J_V+d/2 l(d(x y)t)H(t)dt
0

d(x, y)t) v+d/2—1
pv—dol—d d(x,y)
277 Faoy ( o )

. d(x,
e (o)) (52)

Using (13) and the fast decay at infinity of F4, for any positive M there exist
positive constants C and G such that for every p > 0

‘fd_zv (H (E) 4 n) (p)‘ = 3% |Faa (Fa (Fav)? Gx)Fan) ) )

+o00
— caamid / (2 — P2 (Faw Ooxr))? Fan(r)dr
o
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+o00
soxf [ Fap G e
P

< C)\‘)j( /-H)O(r2 - pz)”_lr—c dr
= A (1 + axr)C

oo vl C CAg
< C)f)l(_b/ (u2 - (kxp)z) u Gdu < X T
Axp (1+u) (I +rxpl)

Therefore, using the symmetry of €, (x, y), for any integer v with 1 < v < d/2
we obtain

R K
ZZZZQV jas, iy (xp .joXs, )82y (xp .joXs, i)
r=1 j=1s=1i=1

R K,

<2CZZZZCI,«]GS1 |Q (xr, ]7xs1)}

r=1 j=1s=r i=1
R K, R K

=YY ajaad 1

M
r=1 j=1s=r i=1 (1+Axd(x, j. Xs.0))

In order to estimate the above sum recall that every region B, is contained in a
ball centered at a point z, € B, of radius co Y —1/d and let c3 = 10c;. For every fixed
r = 1,..., R we will consider separately the contribution of those values of s for
which the By is near 3,, in the sense that B; is contained in the ball centered at z, and
with radius ¢3Y —1/d and the contribution of the remaining values of s, for which we
will say that B; is far from ;. Notice that there are at most

—1/d _
|B(zr, c3Y 1) _ Clesy 1/dyd gy
y-! = y-1 -

regions B, near B,. Thus, using again that Ax ~ X'/ and that for » < s we have
Z;(rﬁlr iz Z, | Gs.i» We obtain

R K;
)Ld 2v !
;;;;ar LjAs,i (1 +Axd()€r j,xs,i))M
<cx'- 2“”2 Z Z“HZ““
s=ro =] i=1
BnedrB

K, Ky
L ox!-2v/d Z Z Za’*-" Z“” (Axd(xr j, xs,i))*M

= s=r = j=
r=1 By far from B, j=l i=l
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R Ky z
< cx'\-v/d Z Z arj
r=1 \j=l1
R—1 R K; K -M
XN N S any Y ani (XM x)
r=l s=r+l j=1 =l

By far from B,

. . K K,
Using again that for r < s we have Zj;1 arj =D i as.is

K, K,
Z Z Zar,j Zas,i (Xl/dd(xr,jvxs,i))

=r+1 j=1 i=1

BY far from B,

R-1 K, o] Ky _
_ (xl/dg . .
- ar,j Ay i (xr,jvxs,l)

r=1 i=1 =0 S>r: i=1
’ 2-leyy =1 <d(zy ) <2l es Y1
R—-1 K, Ky
fCZZarzZZ‘W > Zas»i
r=1 j=1 S>r: =1
’ d(zy 2 =2tesy =1/
R—1 K, ty—1/d\4 Kr
o —en 2V 1)
<C ar,j 2 -_ ar,j
y-1 ’
r=1 j=1 =0 j=1

R-1 [ K, 2 R-1 [ K,
8 ($0) S <5 (3,
j=1 (=0 r=1 \j=1

Lemma 10 There exist C > 0 and X such that for every X > X

R K, R K R
>33 Y| 2 € zau
r=1 j=1s=1i=1

Proof We will show that for every integer v > d /2,
K, R Ky

ZZZZar ]a“otv(xr ],x“)Q (xr joXs, i)

r=1 j=1s=1 i=1
R K,
r=1 \j=1
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On a sharp lemma of Cassels and Montgomery on manifolds

Observe that for v > d/2, the distribution 9, (E, — E v) (¢, d(x, y)) can be identified
with the locally integrable function

v—1+(1-d)/2

b

Cultl (12 = dtx, »)?)

+

for an appropriate value of C,,. Therefore, using the symmetry of 2, (x, y),

>
>§

r s

R
Z arﬂjas,iav(xr.js xs,i)Qv(xr,jsxs,i)
1s=1i=1

R
r=1

J

R K. R K
CY Y > e [
r=1 j=1s=r i=1 d

+00

IA

t(t? —d(x, xs.’i)2)“71+(17d)/2 c'Hwydr,

(Xr,jsXs,i)

where we use the fact that C~' H (t) > 0, by Lemma 7.
Assume first that d = 1 and let D = d(x, ;, x5,;), then

+00
/ t(tz _ DZ)U—l"r(]—d)/zc—]ﬁ(t)dt
D

+o0 1 - t
- / 11> — D' = FH (—) dt
D T 2w
+00 1 t\\? t
ZAX/ t(ZZ—Dz)V_1—<f11//()\X_>> .7:177<—> dt
D T 21 2

400 D v—1
<chy [D u’ <u - E) (Fiyr (xu))* Fin(u)du.

2

A similar estimate can be obtained for d > 2. Indeed, by formula (13)
_1 2~
C"H(t)=—CH(t)
b4

1 ~ ([t
= —F1FaFaH <—>
T 2

oo L\ 2\ @D N
= c/ u> — (—) uFsHu)du
t 2

- L2\ @D/
<u2 _ (E) ) u (Far Ooxu))* Fan(u)du,

d +00
:C)LX/I

2
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so that, by Fubini’s theorem,

+o00
/ (2 — DY 1H1=D20=1 F () ar
D

+00
= cx§ / u (Far (x10))? Fanu)

27

U ; 2 (d-3)/2
x / 2t(t2 — D?)v=d/2-1/2 (u2 - (-) ) dt | du.
D 2

Since
v 2 2\v—d/2—1/2 2 2\@=3/2
/ 1(t2 — DYP =421/ (U —t)
D
U
-« CU(d—z.)/zf tv—d/2+l/2(t_ D)v—d/Z—l/Z(U —t)(d_3)/2dt
D

< CU(d—S)/2Uv—d/2+1/2
x /0 1 (U — D))" > 12 (1 = 2)(U — D)™ I> (U - D)dz
_ Cval(U . D)vfl /1 vad/271/2(l . z)("’3)/2dz,
0
we obtain

+00
/ t(t2 _ D2)U—l+(l—d)/26—lﬁ(t)dt
D

d +o00 ) D v—1 2
scy [, wlu-5- (Fayy (A xu))” Fan(u)du.
2

Thus, foralld > 1,

+00
/ t([2 _ DZ)V—IJF(]—d)/Zc—lﬁ(I)dt
D

400 v—1
<ol / u”(u—ﬂ) (Fatr (oxu))® Fan(u)du

D 2
400 v D v—1 v
- )Ldfl'/ vy (v D 2 LAY
<chy - ()\x ' om (Favr ()™ Fan ™ v
+00 D v—1
< c)»?(_z"/ v’ <v — —X) (Far (v)? dv
AX% 2
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+00
<o / VTN (Fap ) dv
<2

)‘271

1
< de—2v—.
X A+ axD)M

Finally, arguing as in the previous lemma,

R K, R K

o —1+(1—=d)/2 -
ZZZZ%/&H[ t(tz—d(xnjaxy,i)2>v i C 'H(r)dr
rljla =r j=1 d(xp j,Xs,i)

R K, .
<C a. ia d 2v
2;;; it (1 +)»Xd(xr,j,xs,i))M
2

R K,
r=1 \j=1

Lemma 11 There exist C > 0 and X > 0 such that for every X > X

R K, R K 2

2222 2 anjasiFal jxei)| < CZ Zam

r=1 j=1s=1i=1

Proof Recall that for every x, y € M,

&
F4(x,y):/ Ro(t,x, y)C™ H()dt.
0
As before, if d = 1, then

2
() - (o o)) 70 (3)
T 2 T 2 2

and, by Theorem 5,

)\ 2
|Fax, y)| < 7/ IRo(t. x. )] (fup(xxz—)) ﬂn(é) dt

< c,\;zQ‘zf 22+ (Fy g (1))2 dt.
0

A similar estimate holds for d > 2. Indeed, as in the previous lemma,

. L2\ @D
¢t = | (uz— (—) ) u (Far Gox))? Fan(u)du

x 2
2
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so that, again by Theorem 5,

[Fax, )l

e boo [ P\ d-1)/2-1 .
)»Xfo RQ(LL)’)/’ u —(*> u (Fayr (Axu))® Fan(u)dudt
2

=cC

21

+o0
<end '/(; u (Far (hxu))® Fan(u)

min(2mu,e) 5 / o\ (d=1)/2—1
x Ro(t, x, -5 drd
/0 | olt.x y)| ! <2n) u

400 2mu ¢ 2\ (@-1/2-1
< c)»‘)i(f u (Fapr (Ooxu))? }'dﬂ(u)/ 2o+ (u2 - <2—> ) dtdu
0 0 us

+o00
<crd / (Fatr Gexu))? Fan(yu*@ du.
0

+o00
< cx§‘29‘2/ (Far )2 v2et gy,
0

Finally, for alld > 1, since R <Y =« X,

R K,

> ZZ Za, jas. /06 Ro(t, x,.j, x.)C ™ H (t)d1

r=1 j=1s=1i=1
R K, R K

< cz\f(_zQ_z Z Z Z Z ar,jds,i

r=1 j=1s=1 i=I
R R K

<cx'- QQHWZZZ“’J Za“

r=1s=1 j=1 i=1

<ex'- (2Q+2)/dZZ Z“’/

r=1 s=r

2

K,

<ecx!- <2Q+2)/dZ(R r+D (D a,
r=1 j=1

2

R [ K.
ECKXz—(2Q+2)/dZ Zar,j 7

r=1 \j=1

and since Q > d + 3, the exponent 2 — (20 + 2)/d is negative and the result follows.
O
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Lemma 12 There exist C > 0 and Xo > 0 such that for every X > X

R K

2
R K,
ZZZZ“}' /astS(xrjaxst) <CZ Zarj
r=1 j=1s=1i=1
Proof We need to estimate
K, R K +00 A -
Zzzzar js,i Z( <£> _H(Am)> Om (Xr j)Pm (Xs,i)
r=1 j=1s=1i=I m=0

K, R K; +x

S DWW

r=1 j=1s=r i=1 m=0

M) o
(52) - 16

|‘pm(xr ])’ |‘Pm(xs 1)‘

Let us first study the term

wren(z)- o z) o
Ax RA Ax AX

Since n(y) has rapid decay at infinity and H (x) is supported in B(0, 1),if [x| > 2Ax

we have
Y —
H (—y> n(y)' dy
AX

1100 5/ ‘H(ﬂ)m)’dys/
RY Ax {lx—yl<hx)

sc/ Ol dy < C (1 + Jx| — )™
{lyl=lx|—=Ax}

Assume |x| < 2Ax. By Taylor’s theorem with integral reminder we can write

ot

10 H [ x y\“
) 1<m<M Lol oxa (E) (‘E)
(3 oo 2 g

Ax

"
so that

(i) () X, B ()

A
1<lal<M—1 X
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It follows that

_ A -y
I(x)_/m [H (u) H( Ax )]"(y)dy
1 alelg y \*
= - d
1g|a|Z§:M—1a‘ dx« ()»X)/ ( )~X> )y

Iy
+ o n(y)dy
R4 )‘x

and since
o o . —\al ‘fdﬁ
/ yndy = Fa (y*n(»)) (0) = (=27i) "' ———(0) =0
RY 0&v
we obtain

1) < eay™.

Using Hormander’s estimates on the L° norm of the eigenfunctions (see [16,
(3.2.2), page 48])

d;
lomlloo < CA +Ap) 7,
we obtain

R K, R Ky +o0

2,220 anjasi |H

lom Cer D] |om (xs,0)]

()\_> - H(Am)

r=1 j=1s=r i=1 m=0
R R K, K
d—
T2 a0ty ) an ) o

Am<2ix r=1s=r j=I i=1

R R K, K
—Md—1
te D Adhn =0 M) D ) an ) a

Am>2Ax r=1s=r j=1 i=1

Am=<2\x Am>20x r=1

R K,
<c[a" X A+ Y RM Y R-r D[ Y ar
j=1
2

K,

R
<X [ A" Y a4aT 3 M N [N e

A <2Ax A =20 r=1
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By Weyl’s estimates, which say that the number of eigenvalues A2, < T2 is asymp-
totic to ¢T4,

k)—(M Z (1+Am)d—l+ Z A;M+d—1
don <2Ax Am=>20x

“+o00
A"+ > A M-l
k

=12k y <h, <2k+1)y

IA

—+00
C}\,}_(M—"_Zd_l +Cz2d(k+l))\’gl((2k)\’x)fM+d71
k=1

+00
CA;M+2d—1 +ck;M+2d_l ZZ(Zd—M—l)k

k=1

IA

IA

and taking M such that —M + 2d — 1 < —d gives the result. O
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