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Abstract— Recently, a Model Predictive Control
(MPC) suitable for closed-loop re-identification was
proposed, which solves the potential conflict bet-
ween the persistent excitation of the system and
the stabilization of the closed-loop by extending
the equilibrium-point-stability to the invariant-set-
stability. The proposed objective set, however, derives
in large regions that contain conservatively the exci-
ted system evolution. In this work, based on the con-
cept of probabilistic invariant sets, the controller tar-
get sets are substantially reduced ensuring the inva-
riance with a sufficiently large probability (instead of
deterministically), giving the resulting MPC contro-
ller the necessary flexibility to be applied in a wide
range of systems.

Keywords— Model predictive control, closed-
loop identification, probabilistic invariant set

1. INTRODUCTION

In most Model predictive control (MPC) applications
a periodic updating of the system model are desired to
reach meaningful performances. In this context, a re-
identification procedure should be developed in a closed-
loop fashion, since the process cannot be stopped each
time an update is needed. As it is known, the main pro-
blem of a closed-loop identification is that the dynamic
control objectives are incompatible with the identification
objectives. In fact, to perform a suitable identification, a
persistent excitation of the system modes is needed, whi-
le the controller takes this excitation as disturbance that
it tries to reject from the output to stabilize the system.
On the other hand, the identification objective is to excite
the system in a open-loop fashion to obtain uncorrelated
input-output (and input-output noise) data that permits to
obtain a suitable model.

Several strategies were developed to perform closed-
loop re-identification under MPC controllers: [1] pro-
posed a controller named Model Predictive Control and
Identification (MPCI) where a persistent excitation con-
dition is added by means of an additional constraints in
the optimization problem. This strategy turns the MPC
optimization problem non-convex, and so, most of the
well-known properties of the MPC formulation cannot

be established. In [2] a two-step controller approach is
presented: the first stage is devoted to optimize the con-
trol trajectory - as usual in MPC, while the second stage
is devoted to generate the persistent excitation input sig-
nal by maximizing the minimal eigenvalue of the infor-
mation matrix (a matrix describing the input variability).
The second optimization problem, however, is nonlinear
and difficult to solve. In [3], a study of several MPC re-
identification methods is made, focusing on the so-called
MPC Relevant Identification (MRI), which is an identifi-
cation method that not only takes into account the identi-
fied model accuracy but also the model aptitude for pre-
dictions, i.e., the model aptitude for the controller point
of view.

In general, none of these reports have shown results re-
garding the stability of the MPC while it is re-identifying
the system. Recently, [4] have proposed a novel MPC sui-
table for re-identification that ensures stability and per-
forms a safe closed-loop re-identification. The main idea
is this paper is to extend the concept of equilibrium-
point-stability to the invariant-set-stability, and proposed
an MPC that: steers the system to that invariant set, when
outside, and persistently excites the system, when inside.
The MPC problem formulation is based on the concept
of generalized distance from a point (the state and input
trajectory) to a set (target invariant set and input excita-
tion set). So, it guaranties stability of the target invariant
set and also the persistent excitation of the system, since
both tasks are developed separately in the state space.

The method proposed in [4], however, derives in lar-
ge regions that contain conservatively the excited system
evolution. This way, the region where the controller lea-
ves the system in open-loop (given that the entire inva-
riant set is considered as a generalized equilibrium and
no control action are injected to the system when the sys-
tem is in it) is a large region in the state space, which is
not safety enough for many control systems.

In this work, based on the concept of probabilistic in-
variant sets presented in [5], the controller target sets are
substantially reduced ensuring the invariance with a suf-
ficiently large probability (instead of deterministically),
giving the resulting MPC controller the necessary flexi-
bility to be applied in a wide range of systems. Several
closed-loop re-identification scenarios are simulated to



XVI Reunión de Trabajo en Procesamiento de la Información y Control, 5 al 9 de octubre de 2015

clearly show the proposed controller benefits and limi-
tations.

1.1. Problem Statement
We shall consider a system described by a linear time-

invariant discrete-time model

x(k + 1) = Ax(k) +Bu(k), x(0) = x0 (1)

where x(k) ∈ X ⊂ IRn is the system state at the current
time instant k, x0 is the initial state, and u(k) ∈ U ⊂
IRm is the current control input. All along this work we
assume that matrix A ∈ IRn×n has all its eigenvalues
strictly inside the unit circle, the pair (A,B) is controlla-
ble, the set X is convex and closed, the set U is convex
and compact and both contain the origin in their interior.

Our goal is to develop a MPC strategy that account for
the closed-loop re-identification of such a system.

2. BACKGROUND

In this section, we recall definitions and properties that
will be used in the next section to derive the main results
of the work.

2.1. Invariant sets and control
Definition 1. (γ-Control Invariant Set, γ-CIS) Given
γ ∈ [0, 1], a set Ω ⊆ X is γ-control invariant for sys-
tem (1) associated with the set U , if x(k) ∈ Ω implies
x(k + 1) ∈ γΩ, for some u(k) ∈ U .

Definition 2. (Reachability Set) Given the set Ω ⊂ X ,
the reachability set R(Ω) from Ω in one step, associated
to the input set U , is the set of all z ∈ X for which there
exists x ∈ Ω and u ∈ U such thatAx+Bu = z.R(Ω) =

= {z ∈ X : ∃x ∈ Ω,∃u ∈ U such that z = Ax+Bu}

Definition 3. (Controllability Set) Given the set Ω ⊂ X ,
the controllability set Q(Ω) to Ω in one step, associated
to the input set U , is the set of all x ∈ X for which there
exists u ∈ U such that Ax+Bu ∈ Ω.

Q(Ω) = {x ∈ X : ∃u ∈ U such that Ax+Bu ∈ Ω}

2.2. Probabilistic Invariants
In this work, the concept of probabilistic invariant set

is associated to the excitation requirements necessary to
perform suitable identifications. So we first define:

Definition 4. Bounded Persistent Excitation Given a
compact non empty set V ⊂ IRm, we say that a sta-
tionary stochastic Markovian process1 v : N → V is a
persistent excitation bounded by V if E[v(k)] = 0 and
cov[v(k)] > 0 for all k ∈ N.

Note that this definition is directly related to the usual
one used to define persistent excitation inputs in the iden-
tification system literature ([6]). Now, associated to the
persistent excitation, we define:

1i.e., v(k) takes random values on set V so that v(k) is uncorrelated
with v(j) for k 6= j.

Definition 5. γ–Probabilistic Invariant Set (γ–PIS) Let
p ∈ (0, 1] and γ ∈ (0, 1]. A set S ⊆ X is a γ–
Probabilistic Invariant Set with probability p of system
(1) with u(k) being a persistent excitation bounded by
V ⊂ U , if and only if x(k) ∈ S ⇒ Pr[x(k + j) ∈ γS] ≥
p, for any j > 0.

Notice that when γ = 1, a γ-PIS is simply a PIS. On
the other hand, when p = 1, a γ-PIS is a γ-ISI set, as the
one defined in [4].

3. MAIN RESULTS

3.1. One Step Probabilistic Invariant Sets
In [4], the γ-Invariant Set for Identification (γ-ISI) was

defined as a γ-PIS with probability 1. This set is used as
target set when the system is outside, and it is used as
an identification set when it is inside. Given that in this
approach the stochastic nature of the Bounded Persistent
Excitation is not used, the resulting sets are too large, and
contain conservatively the excited system evolution.
We will introduce below the concept of one step probabi-
listic invariant sets, which will be then used for identifica-
tion purposes. The next, is the set we will use to formulate
the MPC for re-identification.

Definition 6. γ–One Step Probabilistic Invariant Set
(γ–OSPIS) Let p ∈ (0, 1] and γ ∈ (0, 1]. A set S ⊆ X
is a γ–One Step Probabilistic Invariant Set with proba-
bility p of system (1) with u(k) being a persistent exci-
tation bounded by V ⊂ U , if and only if x(k) ∈ S ⇒
Pr[x(k + 1) ∈ γS] ≥ p.

Again, when γ = 1 a γ–OSPIS is simply an OSPIS.
Furthermore, when p = 1 a γ-OSPIS is a γ-ISI set, as the
one defined in [4].

Remark 1. Notice that by definition, a γ-PIS with pro-
bability p ∈ (0, 1] is also γ-OSPIS with the same proba-
bility, for the same system. Although the opposite is not
necessarily true.

The following lemma establishes that a γ–OSPIS is al-
so a γ–CIS. This property will play a fundamental role
to prove the convergence of the MPC scheme we shall
propose.

Lemma 1. (OSPIS⇒ CIS) Let p ∈ (0, 1] and γ ∈ (0, 1].
Let S be a γ–OSPIS with probability p of System (1) with
u(k) being a persistent excitation bounded by V ⊂ U .
Then S is a γ–CIS for the same system, associated with
the set V .

Demostración. Let x(k) ∈ S. Consider x(k + 1) =
Ax(k) +Bu(k), being u(k) a persistent excitation boun-
ded by V ⊂ U . Then Pr[x(k + 1) ∈ γS] ≥ p.
Since p > 0, and u(k) takes values on V ⊂ U =⇒ there
is û(k) ∈ V such that x̂(k+1) = Ax(k)+Bû(k) ∈ γS.
Therefore, S is a γ-CIS of system (1), association with
the set V ⊂ U .
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3.2. Application to MPC
When the bounded persistent excitation inputs is consi-

dered for the computation of the γ–OSPIS in the context
of identification, it must belong to a compact set smaller
than U , but large enough to sufficiently excite the system.
Formally:

Definition 7. (Excitation input set, EIS). An input pro-
per C-set 2 U t ⊂ U , with enough size to excite the system
will be denoted as excitation input set.

The target set used to implement the MPC for re-
identification is defined as a proper C-set St that is a
γ-OSPIS with probability p ∈ (0, 1], and γ ∈ (0, 1),
for system (1), associated to a persistent excitation input,
u(k), bounded by U t ⊂ U .

Remark 2. Notice that a set St could be an OSPIS with
probability p ∈ (0, 1] for some stochastic process and an
OSPIS with probability q 6= p for some other stochastic
process.

In this context, the main idea of the MPC formulation
consists in penalize the distance from the predicted sta-
te to a target set, for which it is necessary the following
definition:

Definition 8. Distance from a point to a set. Let V be
a proper C-set on Rp, the distance from x ∈ Rp to V is
defined as

dV(x)
∆
= ı́nf{(x− x̂)TM(x− x̂) : x̂ ∈ V}

with M ∈ Rpxp positive definite.

Notice that dV(x) is a convex and continuous function,
and dV(x) ≥ 0 for all x ∈ Rp, and dV(x) = 0 if and
only if x ∈ V .

The proposed controller cost function is based on the
aforementioned distance to an OSPIS St with probability
p ∈ (0, 1], and is given by:

V OSPISN (x,St;u) =

N−1∑
j=0

[αdSt(x(j)) + βdUt(u(j))] (2)

where α and β are positive real numbers, N ∈ N is the
prediction horizon, and St is the objective set, where the
system needs to be placed to start an identification proce-
dure.

For any current state in the set of states that can be
feasibly steered to St in N steps (the N -step contro-
llable set to St), x ∈ XN , the optimization problem
POSPISN (x,St) to be solved is given by:

2A proper C-set is a convex and compact set that contains the origin
as an interior point.

Problem POSPISN (x,St)

mı́n
u

V OSPISN (x,St;u)

s.t.
x(0) = x,
x(j + 1) = Ax(j) +Bu(j), j = 0, ..., N − 1.
x(j) ∈ X , u(j) ∈ U , j = 0, ..., N − 1.
x(N) ∈ St.

In this MPC formulation u = {u(0), · · · , u(N − 1)}
is the optimization variable, while the initial state x and
the target set St are the optimization parameters. The
last constraint is a terminal constraint that forces the
the terminal state (the state at the end of the control
horizon) to be in St, avoiding this way the use of a
terminal penalization in the cost. The control law de-
rived from the application of the receding horizon po-
licy is given by κN (x,St) = uo(0;x), where uo(0;x)
is the first element of the (optimal) solution sequen-
ce uo(x). This way, the closed-loop system under the
MPC law is described as x(j) = φκN

(j;x,St) =

Ajx +
∑j−1
i=0 A

j−i−1BκN (x,St). Now, the following
Theorems can be established

Theorem 1. Consider an OSPIS St ⊆ X , with proba-
bility p ∈ (0, 1], for system (1) associated to the per-
sistent excitation u(k), which is bounded by U t. Then,
St is an Invariant Set for the closed-loop system x(j) =
φκN

(j;x,St), x(0) = x, j ∈ N.

Demostración. Consider a state x ∈ St. Then, gi-
ven that an OSPIS is also a CIS associated with
the EIS U t (by Lemma 1), an input sequence û =
{u(0), . . . , u(N − 1)}, exists with u(j) ∈ U t, for j =
0, ..., N−1, that produces a sequence of states that remain
in St. So, considering the definition of the generalized
distance function, the optimal solution of POSPISN (x,St)
will have the properties of û, producing a cost function
V OSPISN (x,St; û) = 0. On the other hand, any input se-
quence û with u(j) /∈ U t, for some j = 0, ..., N − 1,
produces a cost V OSPISN (x,St; û) > 0. This means that
necessarily uo(0;x) ∈ U t. This proves that the MPC cost
V OSPISN (x,St;u) is null along every trajectory starting
in an initial state inside St, and furthermore, uo(0;x) is a
control input inside U t. From this fact, it directly follows
that St is an IS set for the MPC closed-loop system.

Theorem 2. Consider an OSPIS St ⊆ X , with proba-
bility p ∈ (0, 1], for system (1) associated to the persis-
tent excitation u(k), which is bounded by U t. Then, St
is locally attractive for the closed-loop system x(j) =
φκN

(j;x,St), with x(0) = x ∈ XN and j ∈ N.

Demostración. Since St is a CIS associated with the EIS
U t (by Lemma 1), the proof can be followed from here
on [4].
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3.3. Including the exciting mode
Theorems 1 and 2 suggest that an extra requirement

to the input, such as a persistent excitation requirement,
could be included in the proposed cost function. In fact,
under a persistent excitation context, the state trajectory
will be inside St most of the time (i.e., with probability
p), and when the state trajectory leaves St, the MPC con-
troller could resume the control action to bring it back to
St.

To precise this idea, consider the following cost
function which depends on the current time k (k denotes
the time instant at which the MPC optimization Problem
is solved):

V EXCN (x,St, upe(k);u) =

(1− ρ(x))V OSPISN (x,St;u) + ρ(x)‖u(0)− upe(k)‖,

where ρ(x) = 1 if x ∈ St, and ρ(x) = 0 otherwise.
Here, upe(k) is a persistent excitation input bounded by
U t (the time dependence is necessary to make explicit
that we have one different persistent excitation input for
each time k).

For any initial state x in XN , at a given time step k,
the optimization problem PEXCN (x,St, upe(k), k), to be
solved at each time instant k, is given by:

Problem PEXCN (x,St, upe(k), k)

mı́n
u

V EXCN (x,St, upe(k);u)

s.t.
x(0) = x,
x(j + 1) = Ax(j) +Bu(j), j = 0, ..., N − 1.
x(j) ∈ X , u(j) ∈ U , j = 0, ..., N − 1.
x(N) ∈ St

Notice that the function ρ(x) is a discontinuous function
necessary to cancel the persistent excitation in case the
state leaves St. This could occur by the presence of an
external disturbance or even, with a small probability (1−
p) by the persistent excitation itself.

Assume that Tid ∈ N is the length of the data neces-
sary to perform a suitable identification of (1), so we must
excite the system at least Tid times to complete the iden-
tification process.

The OSPIS with probability p, ensures that only the
first step of any trajectory starting inside the set remains
there with probability greater than p. Accordingly, to en-
sure the excitation of the system as long as needed, the
following theorem, subject to the assumption below, is in-
troduced to formalize the properties of the proposed MPC
controller.

Assumption 1. Let St be an OSPIS with probability p ∈
(0, 1], of system (1) with u(k) being a persistent excita-
tion bounded by U t. If R(St) is the reachability set from
St in one step, associated to the EIS set U t, andQ(St) is
the controllability set to St in one step, associated to the
input set U , then we assume thatR(St) ⊆ Q(St).

Theorem 3. Let Assumption 1 holds. Consider an OSPIS
St ⊆ X with probability p ∈ (0, 1] of system (1) with
u(k) being a persistent excitation bounded by U t. Then,
St is a PIS with probability p, for the closed-loop system
x(j) = φκN

(j;x,St), x(0) = x, and j ∈ N.

Demostración. Suppose x ∈ St at time instant k.
Then ρ(x) = 1, and the cost of the Problem
PEXCN (x,St, upe(k), k) will be

V EXCN (x,St, upe(k);u) = ‖u(0)− upe(k)‖

then, uo(0;x) = upe(k), where upe(k) is a bounded per-
sistent excitation. Given that St is an OSPIS with proba-
bility p, this means that

Pr[Ax+Buo(0;x) ∈ St] = Pr[Ax+Bupe(k) ∈ St]
≥ p

This occurs whenever the system state remains in St. Ot-
herwise, if some state x̃ is brought outside St, we must
show that Pr[Ax̃ + BκN (x̃) ∈ St] ≥ p. In fact, sup-
pose that x̃ leaves St at time k + j, then x̃ belongs to
R(St), the reachability set from St in one step, associa-
ted to the EIS set U t, since that upe(k + j − 1) ∈ U t.
But, R(St) ⊆ Q(St) by Assumption 1, where Q(St) is
associated to the input set U ⊇ U t.

Given that the system is outside St, it will be ρ(x̃) = 0,
and so the MPC controller will implement the control
action uo(0; x̃), which will steer the state back to St
in one step. In other words, given that it is possible to
do that (since x̃ ∈ Q(St)), and this will be the opti-
mal control action (since it produces a null cost), then
Pr[Ax̃+Buo(0; x̃) ∈ St)] = 1 ≥ p.

On the other hand, if we assume that x /∈ St at time
instant k, the reasoning is the same.

Therefore, Pr[φκN
(j;x,St) ∈ St] ≥ p, for all j ∈ N,

which concludes the proof.

This later result is important since it shows that with
just an OSPIS we obtain a PIS in the closed loop. This
way we can estimate how often the system will be pro-
perly excited under the MPC control law.

Theorem 4. Let St be an OSPIS with probability p ∈
(0, 1] of system (1) with u(k) being a persistent exci-
tation bounded by U t. Then, for any initial state x ∈
St, the system controlled by the receding horizon MPC
control law κN (x,St) = uo(0;x), will be persistently
excited inside St with probability p, i.e., Pr[x(j) =
φκN

(j;x,St,upe)]≥ p, for j ∈ N, and whenever x(j) ∈
St, the persistent input upe will be injected to the system.
Furthermore, for any initial state x ∈ XN , the closed-
loop converges to St.

Demostración. i) Let x = x(0) ∈ St. According
to Theorem 3, the closed loop system will remain in
St with probability greater than p, and in this case,
the optimal control action to be applied to the sys-
tem is given by the persistent excitation input upe. ii)
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Let x = x(0) ∈ XN\St. Then, ρ(x) = 0, and so,
Problem PEXCN (x,St,upe, k) is equivalent to Problem
POSPISN (x,St). Then, for Theorem 2 we have the re-
sult.

A corollary of the later results is that, in absence of dis-
turbances, the system under the MPC control law will be
persistently excited p % of the time steps, in expectation.

3.4. Robust Analysis
It should be noticed that the OSPIS St, which is a pa-

rameter of the proposed MPC optimization cost, depends
on the model. Since the excitation scenario is precisely
given when we suspect that the current model is no lon-
ger accurate, a guarantee that this PISI set is robust to
some kind of model mismatch is necessary. The follo-
wing parametric uncertainty description is selected here
(although other could be equally considered):

x(k + 1) = A(w)x(k) +B(w)u(k), w ∈ W ⊆ R, (3)

where A(w) and B(w) are affine functions of w, i.e.,
A(w) = A + wĀ, B(w) = B + wB̄ with w belonging
to a proper C-setW ⊂ R.

Assume that the Nominal model is given by x(k+1) =
Ax(k) + Bu(k) (w = 0), and the unknown Real model,
is given by x(k + 1) = A(wR)x(k) + B(wR)u(k), for
some wR ∈ W . The following Theorem holds:

Theorem 5. Consider a γ-OSPIS St with probability p,
and γ ∈ [0, 1), of system (1) with u(k) being a persistent
excitation bounded to U t. Then, there exists a proper C-
set W ⊂ R for which St is an OSPIS with probability
p, of system (3) with u(k) being a persistent excitation
bounded to U t, and for all w ∈ W .

Demostración. Let x(k) ∈ St. If u(k) is a persistent ex-
citation bounded to U t, then Pr[x(k + 1) ∈ γSt] ≥ p.

Notice that, if x(k + 1) ∈ γSt,
sice γ < 1, there exists r > 0 such that
Br(x(k + 1)) ⊆ St. 3

Consider now the solution x̄(k + 1) of system (3):

x̄(k + 1) = A(w)x(k) +B(w)u(k)

= (A+ wĀ)x(k) + (B + wB̄)u(k)

= Ax(k) +Bu(k) + w(Āx(k) + B̄u(k))

= x(k + 1) + w(Āx(k) + B̄u(k))

= x(k + 1) + wθ

with w ∈ W , for someW ⊆ R.
But θ belongs to the bounded set Θ = ĀX⊕B̄U , so there
is w̄ > 0 such that ‖wθ‖2 < r for all w ∈ [−w̄, w̄]. Then,

‖x̄(k + 1)− x(k + 1)‖2 = ‖wθ‖2 < r, w ∈ [−w̄, w̄]

3Br(z) = {x ∈ Rn : ‖z − x‖2 < r}

which means that x̄(k + 1) ∈ Br(x(k + 1)) for all
w ∈ W̄ = [−w̄, w̄].

Furthermore, as we said before, if x(k + 1) ∈ γSt ⇒
Br(x(k + 1)) ⊆ St. Therefore, x̄(k + 1) ∈ St, for all
w ∈ W̄ . Then

Pr[x̄(k + 1) ∈ St] ≥ Pr[x(k + 1) ∈ γSt] ≥ p, ∀ w ∈ W̄

which concludes the proof.

4. EXAMPLES

4.1. How to get the final OSPIS
It should be noted that in this work a method for

computation of an OSPIS was not proposed. Instead, we
will use the method proposed by [5], that compute poly-
topic PIS, that also are OSPIS (remark 1).

The goal of this section is to compare the OSPIS with
the Invariant Set for Identification (the target set submit-
ted on [4]), showing that we gain a much smaller target
set.

A 2-state stable system of the form of (1) is used, with
matrices:

A =

[
0,42 −0,28
0,02 0,6

]
,

B =

[
0,3
−0,4

]
,

The constraints of the system are given by
X =

{
x ∈ R2 : ‖x‖∞ ≤ 17

}
and U =

{u ∈ R : ‖u‖∞ ≤ 1,5}. The EIS set has been se-
lected to be U t = {u ∈ R : ‖u‖∞ ≤ 1,25}. The
persistent excitation input upe(k) ∼ N(µ, σ2) has a
normal distribution and lies within U t, with µ = 0 and
standard deviation σ = 0,4. Then, upe(k) conditional on
upe(k) ∈ U t has a truncated normal distribution.

We compute an OSPIS with probability p1 = 0,9, and
the invariant set for identification (ISI) X t, proposed on
[4], which actually is an OSPIS with probability p2 = 1
(see figure 1 down).
By the property for the intersection of probabilistic inva-
riant sets from [5], we can get a new OSPIS St = S1∩X t
with probability p = p1 + p2 − 1 = 0,9, and the same
probability p = 0,9 holds.

Remark 3. Notice that by this way, we ensure that St ⊆
X t. Since X t is an ISI for U t, fulfills that R(St) ⊆ X t,
with the reachability set R(St) associated to the EIS set
U t. So, if we show that X t ⊆ Q(St) (see figure 1, down),
with the controllability set Q(St) associated to the input
set U , then Assumption 1 holds.

Notice that, considering the probabilistic sets, the con-
troller target set St is substantially reduced, compared
with the deterministic set X t.
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Figura 2: State evolution (left) outside and (right) inside
St.

Figura 1: Intersection St = S1 ∩X t (up). Controllability
set Q(St) associated to the input set U (down).

4.2. Model including the exciting mode
In this section some simulations results are presented,

to evaluate the state evolution with the proposed control
strategy in the same model presented before. Figure 2
shows how the system is steered to the OSPIS St, and
once the system enters the target set, the exciting proce-
dure is activated, until it comes out again. Once outside,
the excitation procedure is stopped, aand the control is
activated steering the system back to the OSPIS in one
step. This is repeated until the identification process is fi-
nished.
Notice that, in figure 2, after the system enters St for the
first time, it leaves that set nine times out of one hundred
steps, which is consistent with the probability p ≥ 0,9 of
this OSPIS.

We are taking advantage of the probabilistic nature of
the process to find the set. In this way, we can adjust the
size of the OSPIS with its own invariance probabilistic
character, and, at the same time, have control over the
amount of excited states.

5. CONCLUSIONS

In this work a new MPC suitable for closed-loop re-
identification is proposed. The main benefits consists in
the use of a reduced target set, that is computed taking
into account probabilistic invariance concepts. This way,
the persistent excitation of the closed-loop system is en-
sured, and furthermore, state-input uncorrelated data can
be obtained. In addition, from the control point of view, a
less conservative formulation is obtained, which conside-
rably improves the applicability of the proposed metho-
dology.
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