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Featured Application: Novel method for Automated Cell Detection and Counting (ACDC) in
time-lapse fluorescence microscopy.

Abstract: Advances in microscopy imaging technologies have enabled the visualization of live-cell
dynamic processes using time-lapse microscopy imaging. However, modern methods exhibit
several limitations related to the training phases and to time constraints, hindering their application
in the laboratory practice. In this work, we present a novel method, named Automated Cell
Detection and Counting (ACDC), designed for activity detection of fluorescent labeled cell nuclei
in time-lapse microscopy. ACDC overcomes the limitations of the literature methods, by first
applying bilateral filtering on the original image to smooth the input cell images while preserving
edge sharpness, and then by exploiting the watershed transform and morphological filtering.
Moreover, ACDC represents a feasible solution for the laboratory practice, as it can leverage
multi-core architectures in computer clusters to efficiently handle large-scale imaging datasets. Indeed,
our Parent-Workers implementation of ACDC allows to obtain up to a 3.7× speed-up compared to the
sequential counterpart. ACDC was tested on two distinct cell imaging datasets to assess its accuracy
and effectiveness on images with different characteristics. We achieved an accurate cell-count and
nuclei segmentation without relying on large-scale annotated datasets, a result confirmed by the
average Dice Similarity Coefficients of 76.84 and 88.64 and the Pearson coefficients of 0.99 and 0.96,
calculated against the manual cell counting, on the two tested datasets.
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1. Introduction

Advances in microscopy imaging technologies have enabled the visualization of dynamic live-cell
processes using time-lapse microscopy methodologies [1–3]. Therefore, collections of microscopy
images have become a primary source of data to unravel the complex mechanisms and functions
of living cells [4]. The vast quantity and complexity of the data generated by modern visualization
techniques preclude visual or manual analysis, therefore requiring computational methods to infer
biological knowledge from large datasets [5,6]. In particular, the objects of interest in cellular images
are characterized by high variations of morphology and intensity from image to image [6], which make
features such as cell boundaries and intracellular features difficult to accurately identify. For this
reason, cell segmentation analysis has gained increasing attention over the last decade [7].

The most commonly used free and open-source software tools for microscopy applications in the
laboratory are ImageJ [8] or Fiji [9], and CellProfiler [10]. Although these tools offer customization
capabilities, they do not provide suitable functionalities for fast and efficient high-throughput cell
image analysis on large-scale datasets. In addition, CellProfiler Analyst [11] allows the user to explore
and visualize image-based data and to classify complex biological phenotypes with classic supervised
Machine Learning (e.g., Random Forests, Support Vector Machines). Taken together, these tools provide
accurate performance for image quantification on high-quality annotated datasets but generally lack
capabilities to work in the laboratory practice, because training and model setup phases are required;
in addition, the user is often forced to transfer data from one tool to another for achieving the desired
analysis outcome. Therefore, this hinders these tools to match the time constraints imposed by
time-lapse microscopy studies.

Various mathematical morphology methodologies have been extensively used in cell imaging to
tackle the problem of cell segmentation [7]. Wählby et al. [12] presented a region-based segmentation
approach in which both foreground and background seeds are used as starting points for the watershed
segmentation of the gradient magnitude image. Since more than one seed could be assigned to a single
object, initial over-segmentation might occur. In [13], the authors developed an automated approach
based on the Voronoi tessellation [14] built from the centers of mass of the cell nuclei, to estimate
morphological features of epithelial cells. Similarly to the approach presented in this paper, the authors
leveraged the watershed algorithm to correctly segment cell nuclei. It is worth noting that we do not
exploit Voronoi tessellation since our objective disregards the morphological properties of adjacent
cells in a tissue. Kostrykin et al. [15] introduced an approach based on globally optimal models
for cell nuclei segmentation, which exploits both shape and intensity information of fluorescence
microscopy images. This globally optimal model-based approach relies on convex level set energies
and parameterized elliptical shape priors. Differently, no detection with ellipse fitting was exploited
in [16], as this shape prior is not always suitable for representing the shape of the cell nuclei because of
the highly variable appearance. In particular, a two-stage method combining the split-and-merge and
watershed algorithms was proposed. In the first splitting stage, the method identifies the clusters by
using inherent characteristics of the cell (such as size and convexity) and separates them by watershed.
The second merging stage aims at detecting the over-segmented regions according to the area and
eccentricity of the segmented regions. These sub-divisions are eliminated by morphological closing.

Machine Learning techniques have been applied to bioimage analysis [17,18]. For instance,
CellCognition aims at annotating complex cellular dynamics in live-cell microscopic movies [19]
by combining Support Vector Machines with hidden Markov models to evaluate the progression
by using morphologically distinct biological states. More recently, it has been shown that methods
based on Deep Convolutional Neural Networks (DCNNs) [20,21] can successfully address detection
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and segmentation problems otherwise difficult to solve by exploiting traditional image processing
methods [22]. Further, an ensemble of DCNNs defined to segment cell images was presented in [23],
where a gating network automatically divides the input image into several sub-problems and assigns
them to specialized networks, allowing for a more efficient learning with respect to a single DCNN.

With regard to the most popular architectures for object detection and instance segmentation,
such as Faster Region-CNN (R-CNN) [24] and You Only Look Once (YOLO) [25], these approaches
require a considerable amount of labeled images and yield only a coarse-grained segmentation
in cell imaging [26] and medical image analysis [27]. This does not ensure a precise separation
between adjacent cells. Even though transfer learning (i.e., the use of pre-trained CNNs on large-scale
datasets of natural images) could be applied, hundreds of accurately annotated input samples should
be available [28]. Therefore, parameter-efficient architectures, including simple trainable activation
functions [29] or mixed-scale dense CNNs [30], might be beneficial to deal with the paucity of manually
labeled and validated datasets. Alternatively, also data augmentation techniques based on Generative
Adversarial Networks (GANs) [31,32] or interactive solutions [33], require time-consuming annotation
by experts.

Traditional image segmentation approaches often require experiment-specific parameter tuning,
while DCNNs require large amounts of high-quality annotated samples or ground truth. The ground
truth, representing the extent to which an object is actually present, is usually delineated by a domain
expert, via a tedious, cumbersome and time-consuming visual and manual approach. The annotated
samples for one dataset may not be useful for another dataset, so new ground truth generation may be
needed for a new dataset, thus limiting the effectiveness of DCNNs. The authors of [22] proposed an
approach for automatically creating high-quality experiment-specific ground truth for segmentation
of bright-field images of cultured cells based on end-point fluorescent staining, then exploited to
train a DCNN [34]. In general, applying DCNNs to microscopy images is still challenging due to the
lack of large datasets labeled at the single cell level [34]; moreover, Gamarra et al. [16] showed that
watershed-based methods can achieve performance comparable to DCNN-based approaches. Thus,
unsupervised techniques that do not require a training phase (i.e., data fitting or modeling) represent
valuable solutions in this practical context [19,35].

In this work, we present a novel method named Automated Cell Detection and Counting (ACDC),
designed for time-lapse microscopy activity detection of fluorescent-labeled cell nuclei. ACDC is
capable of overcoming the practical limitations of the literature approaches, mainly related to
the training phases or time constraints, making it a feasible solution for the laboratory practice.
Recent developments of automated microscopy imaging systems has allowed for the generation of very
large datasets [36], which are typically∼3TB, including over 300,000 images, for each experiment. Each
dataset produces novel features due to differences in the cells used, their fluorescence label intensity,
and their specific responses to anti-cancer treatment conditions. This variation poses challenges to
using deep learning-based segmentation [37] that is trained without including the new data: for any
comparisons across datasets, the segmentation would need to be repeated/updated to include every
new dataset and re-applied to all previous data. To cope with these issues, ACDC uses bilateral
filtering [38] applied on the original image to smooth the input cell image while preserving edge
sharpness. This is followed by watershed transform [39,40] and morphological filtering [41,42], applied
in a fully automatic manner. Thus, ACDC efficiently yields reliable results by only requiring the settings
of a few parameters, which may be conveniently adjusted by the user. Therefore, unlike sophisticated
solutions that do not provide any interactive control, ACDC makes the end-user sufficiently aware of
the underlying automated analysis, thanks to the resulting interpretability of the segmentation model.
We demonstrate applications of ACDC on two different cell imaging datasets in order to show its
reliability in different experimental conditions.

The main contributions of this work are summarized hereafter:

• ACDC is a fully automatic pipeline for cell detection and counting that exploits watershed
transform [39,40], morphological filtering operations [41,42], and bilateral filtering [38];
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• ACDC is designed and developed to cope with the analysis of stacks of time-lapse microscopy
images in real-time;

• ACDC does not require any training phase, and represents a reliable solution even without the
availability of large-scale annotated datasets.

The manuscript is structured as follows. Section 2 describes the analyzed fluorescence imaging
datasets, as well as the proposed method. Section 3 presents the results achieved by ACDC. Discussions
and final remarks are provided in Section 4.

2. Materials and Methods

In this section, we first present the fluorescence imaging datasets analyzed in this work, then we
describe the pipeline at the basis of ACDC.

2.1. Fluorescence Microscopy Imaging Data

2.1.1. Vanderbilt University Dataset

This dataset (VU) collected time-lapse microscopy images from two experiments performed in
the Vanderbilt High-Throughput Screening (HTS) Core Facility at Vanderbilt University (Nashville,
TN) with assistance provided by Dr. Joshua A. Bauer. All images were acquired by using Molecular
Devices (San Jose, CA, USA) from ImageXpress Micro XL using a PCO.EDGE 5.5 CMOS camera with
a 2560× 2160 image sensor format (6.5× 6.5 micron pixel size). The center 2160× 2160 pixels were
extracted during plate acquisition to ensure adequate illumination uniformity. Images were obtained
using a 10× objective in the red channel (Cy3) and sometimes in the green channel (FITC) for the same
well and location (overlapping information). Pixel intensity from the camera has a range of 12 bits
stored in a 16-bit format. The PC-9 human lung adenocarcinoma cell line used in these studies had
previously been engineered to express histone 2B conjugated to monomeric red fluorescent protein and
geminin 1–110 fused to monomeric azami green [43–45]. The total number of the analyzed images with
the corresponding manual cell segmentation was 46, related to two distinct experiments. The manual
annotation was performed with a custom MatLab tool by a biologist (R.B.) and then validated by
another expert with expertise in biochemistry and cancer biology (D.R.T.). For images with sparse cell
nuclei, the manual procedure took approximately 1–2 min, while it took 30–40 min on images with
high cell coverage. Two examples of input images are shown in Figure 1.

(a) (b)

Figure 1. (a,b) Examples of the analyzed microscopy fluorescence images provided by the Department
of Biochemistry of the VU. The images were displayed by automatically adjusting the brightness and
contrast according to an histogram-based procedure.
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2.1.2. 2018 Data Science Bowl

With the goal of validating ACDC on imaging data coming from different sources, we considered
a selection of the training set of the Data Science Bowl (DSB) dataset [37,46], which was a competition
organized by Kaggle (San Francisco, CA, USA). We used only the human-annotated training set
because the gold standard for the test set is not publicly provided by the organizers. The annotations
were manually performed by a team of expert biologists in a collaborative manner, where a single
expert outlined the nuclei and the other collaborators reviewed the result.

The goal of the DSB regarded the detection of the nuclei of the cells to identify each individual cell
in a sample, a mandatory operation to understand the underlying biological processes. This dataset
includes a large number of labelled nuclei images acquired under a variety of conditions, magnification,
and imaging modality (i.e., bright-field and fluorescence microscopy). Image size varies among
256× 256, 256× 320, 260× 347, 360× 360, 512× 640, 520× 696, 603× 1272, and 1040× 1388 pixels.

The DSB dataset aimed at evaluating the generalization capabilities of computational methods
when dealing with significantly different data. Therefore, to run tests with ACDC, we first extracted the
fluorescence microscopy images from the training set; then, we selected images where the maximum
size of the region cells segmented in the ground truth was equal or less than 1000 pixels to obtain a
magnification factor roughly comparable to the Vanderbilt University dataset, for a total of 301 images.
According to the work presented in [37], we considered only the small fluorescent nuclei images
(e.g., those obtained using a microscope objective of 10× or 20×), which are very common in
biomedical research.

Three examples of input images with highly different characteristics are shown in Figure 2.
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(a) (b) (c)

Figure 2. (a–c) Examples of the analyzed microscopy fluorescence from the DSB dataset.

Finally, Figure 3 shows the boxplots the reveal the high variability of the analyzed microscopy
imaging datasets, in terms of the number of cells and cell coverage, to support the validity of the
experiments carried out in this study.
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Figure 3. Boxplots depicting the distribution for both the analyzed datasets in terms of: (a) total number
of cells, and (b) coverage of the cell nuclei regions.
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2.2. Acdc: A Method for the Automatic Cell Detection and Counting

Advances in optics and imaging systems have enabled biologists to visualize live-cell dynamic
processes by time-lapse microscopy images. However, the imaging data recorded during even
a single experiment may consist of hundreds of objects over thousands of images, which makes
manual inspection a tedious, time-consuming and inaccurate option. Traditional segmentation
techniques proposed in the literature generally exhibit low performance on live unstained cell images.
These limitations are mainly due to low contrast, intensity-variant, and non-uniform illuminated
images [1]. Therefore, novel automated computational tools tailored to quantitative system-level
biology are required.

ACDC is a method designed for time-lapse microscopy that aims at overcoming the main
limitations of the literature methods [10,19,47], especially in terms of efficiency and execution time,
by means of a fully automatic strategy that allows for reproducible measurements [48]. Each step of
the pipeline underlying ACDC has been carefully optimized to reduce the running time required by
large size images. We also provide two distributed versions of ACDC that allow the users to analyse a
stack of images in real-time.

The processing pipeline of ACDC exploits classic image processing techniques in a smart fashion,
enabling feasible analyses in real laboratory environments. Figure 4 outlines the overall flow diagram
of the ACDC segmentation pipeline, as described hereafter. It is worth noting that the number of
parameters that need to be set in the underlying image processing operations involves only the kernel
size of spatial filters and the structuring element sizes in morphological operations, providing a
reliable yet simple solution. Nevertheless, these parameters allow the user to have control over the
achieved cell segmentation results. Unlike DCNN-based black- or opaque-boxes, ACDC offers an
interpretable model for biologists that may conveniently adjust the parameters values according to the
cell lines under investigations. Differently from supervised Machine Learning approaches [11,18,22],
ACDC does not require any training phase, thus representing a reliable and practical solution even
without the availability of large-scale annotated datasets.

Bilateral 
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Top-Hat 
Transform
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Thresholding
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cell image
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Figure 4. Flow diagram of the ACDC pipeline. The gray, black and light-blue data blocks denote
gray-scale images, binary masks and information extracted from the images, respectively. The three
macro-blocks represent the three main processing phases, namely: pre-processing, seed selection,
and watershed-based segmentation.
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2.2.1. Pre-Processing

The input microscopy image is pre-processed to yield a convenient input to the downstream
watershed-based segmentation by means of the following steps:

1. Application of bilateral filtering that allows for denoising the image I while preserving the
edges by means of a non-linear combination of nearby image values [38]. This noise-reducing
smoothing filter combines gray levels (colors) according to both a geometric closeness function c
and a radiometric (photometric) similarity function s. This combination is used to strengthen
near values with respect to distant values in both spatial and intensity domains. This simple
yet effective strategy allows for contrast enhancement [49]. Bilateral filter has been shown to
work properly in fluorescence imaging even preserving the directional information, such as in the
case of the F-actin filaments [50]. This denoising technique was effectively applied to biological
electron microscopy [51], as well as to cell detection [52], revealing better performance—compared
to low-pass filtering—in noise reduction without removing the structural features conveyed
by strong edges. The most commonly used version of bilateral filtering is the shift-invariant
Gaussian filtering, wherein both the closeness function c and the similarity function s are Gaussian
functions of the Euclidean distance between their arguments [38]. With more details, c is radially

symmetric: c(p, q) = e−
1
2

(
||p−q||

σs

)2

. Consistently, the similarity function s can be defined as:

s(p, q) = e−
1
2

(
||I(p)−I(q||

σc )
)2

. In ACDC we set σc = 1 and σs = σglobal (where σglobal is the the
standard deviation of the input image I) for the standard deviation of the Gaussian functions c
and s, respectively. This smart denoising approach allows us to keep the edge sharpness while
reducing the noise of the processed image, so avoiding cell region under-estimation.

2. Application of top-hat transform for background correction with a binary circular structuring
element (radius: 21 pixels) on the smoothed image. This operation accounts for non-uniform
illumination artifacts, by extracting the nuclei from the background. The white top-hat transform
is the difference between the input image I and the opening of I with a gray-scale structuring
element b: Tw = I − I ◦ b [53].

The results of the pre-processing images applied to Figures 1a and 2a are shown in Figure 5a,b,
respectively. For the pre-processing step, ACDC requires only 3 parameters, namely: σc and σs for the
bilateral filtering, and a structuring element for the hat-top transform.
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Figure 5. Result of the application of the pre-processing steps on the images shown in Figure 1b (a)
and Figure 2a (b).
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2.2.2. Nucleus Seed Selection

The following steps are executed to obtain a reliable seed selection, so that the cells nuclei can be
accurately extracted from the pre-processed images:

1. A thresholding technique has to be first applied to detect the cell regions. Both global and local
thresholding techniques aim at separating foreground objects of interest from the background
in an image, considering differences in pixel intensities [54]. Global thresholding determines
a single threshold for all pixels and works well if the histogram of the input image contains
well-separated peaks corresponding to the desired foreground objects and background [55].
Local adaptive thresholding techniques estimate the threshold locally over sub-regions of the
entire image, by considering only a user-defined window with a specific size and exploiting local
image properties to calculate a variable threshold [53,54]. These algorithms find the threshold
by locally examining the intensity values of the neighborhood of each pixel according to image
intensity statistics. To avoid unwanted pixels in the thresholded image, mainly due to small
noisy hyper-intense regions caused by non-uniform illumination, we apply the Otsu global
thresholding method [55] instead of local adaptive thresholding based on the mean value in
a neighborhood [56]. Moreover, global threshold techniques are significantly faster than local
adaptive strategies.

2. Hole filling is applied to remove possible holes in the detected nuclei due to small hypo-intense
regions included in the nuclei regions.

3. Morphological opening (using a disk with 1-pixel radius as a structuring element) is used to
remove loosely connected-components, such as in the case of almost overlapping cells.

4. Unwanted areas are removed according to the connected-components size. In particular,
the detected candidate regions with areas smaller than 40 pixels are removed to refine the
achieved segmentation results by robustly avoiding false positives.

5. Morphological closing (using a 2-pixel radius circular structuring element) is applied to
smooth the boundaries of the detected nuclei and avoid the under-estimation of the detected
nuclei regions.

6. The approximate Euclidean distance transform (EDT) from the binary mask, achieved by applying
the Otsu algorithm and refined by using the previous 3 steps, is used to obtain the matrix of
distances of each pixel to the background by exploiting the `2 Euclidean distance [57] (with a
5× 5 pixel mask for a more accurate distance estimation). This algorithm calculates the distance
to the closest background pixel for each pixel of the source image. Let G be a regular grid and
f : G → R an arbitrary function on the grid, called a sampled function [58]. We define the
distance transform D f : G → R of f as:

D f (p) = min
q∈G

(d(p, q) + f (q)), (1)

where d(p, q) is a measure of the distance between the pixels p and q. Owing to the fact that cells
have a pseudo-circular shape, we used the Euclidean distance, achieving the EDT of f . In the
case of binary images, with a set of points P ⊆ G, the distance transform DP is a real-valued
image of the same size:

DP = min
q∈P

(d(p, q) + 1(q)), (2)

where:

1(q) =

{
0, if q ∈ P
∞, otherwise

is an indicator function for the membership in P [58]. The computed distance map is normalized
by applying contrast linear stretching to the full 8-bit dynamic range.
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7. Regional maxima computation allows for estimating foreground peaks on the normalized distance
map. Regional maxima are connected-components of pixels with a constant intensity value,
whose external boundary pixels have all a lower intensity value [42]. The resulting binary mask
contains pixels that are set to 1 for identifying regional maxima, while all other pixels are set to 0.
A 5× 5 pixel square was employed as structuring element.

8. Morphological dilation (using a 3-pixel radius circular structuring element) is applied to the
foreground peaks previously detected for better defining the foreground regions and merging
neighboring local minima into a single seed point. The segmentation results on Figure 5a,b are
shown in Figure 6a,b, respectively. The detail in Figure 5a shows that ACDC is highly specific to
cell nuclei detection, discarding non-cell regions related to acquisition artifacts.
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Figure 6. Segmented images obtained after the refinement steps applied to the image shown in
Figure 5a (a), and to a sub-image of Figure 5b (b).

For the Nucleus Seed Selection step of the pipeline, the user can set the following parameters:
a structuring element for the morphological opening; a structuring element for the morphological
closing; a structuring element for the morphological dilation; the minimum size (in pixels) for the
unwanted area removal.

2.2.3. Cell Nuclei Segmentation Using the Watershed Transform

The watershed transform [39] is one of the most used approaches in cell image segmentation [7],
while it was originally proposed in the field of mathematical morphology [42].

The intuitive description of this transform is straightforward: assuming an image as a
topographic relief, where the height of each point is directly related to its gray level, and considering
rain gradually falling on the terrain, then the watersheds are the lines that separate the resulting
catchment basins [40]. This technique is valuable because the watershed lines generally correspond
to the most significant edges among the markers [41] and are useful to separate overlapping objects,
such as in the case of the nuclei separation in cell segmentation in human-derived cardiospheres
(i.e., 3D clusters of cardiac progenitor cells) [59]. Even when no strong edges between the markers exist,
the watershed method is able to detect a contour in the area. This contour is detected on the pixels with
higher contrast [39]. As a matter of fact, edge-based segmentation techniques—which strongly rely on
local discontinuities in gray levels—often do not yield unbroken edge curves, thus heavily limiting
their performance in cell segmentation [12]. Unfortunately, it is also well-known that the watershed
transform may be affected by over-segmentation issues, thus requiring further processing [60].

From a computational perspective, the watershed algorithm analyzes a gray-scale image by means
of a flooding-based procedure. Since the flooding process is performed on either a gradient image or
edge map, the basins should emerge along the edges. As a matter of fact, during the watershed process,



Appl. Sci. 2020, 10, 6187 10 of 22

the edge information allows for a better discrimination of the boundary pixels with respect to the
original image. Finally, only the markers of the resulting foreground cells are selected. ACDC uses an
efficient version of the watershed algorithm that exploits a priority queue to store the pixels according
to the pixel value (i.e., the height in the gray-scale image landscape) and the entry order into the
queue (giving precedence to the closest marker). More specifically, during the flooding procedure, this
process sorts the pixels in increasing order of their intensity value by relying on a breadth-first scan of
the plateaus based on a first-in-first-out data structure [40].

Although the watershed transform can detect also weak edges, it may not accurately detect the
edge of interest in the case of blurred boundaries [60]. This sensitivity to noise could be worsened by
the use of high pass filters to estimate the gradient and the edges, which amplify the noise. We address
this issue by formerly applying the bilateral filter that reduces the halo effects [38]. Accordingly,
we implemented the following steps:

1. Connected-component labeling [61] of the foreground region binary mask for encoding the
markers employed in the following watershed algorithm.

2. Laplacian operator for producing the edge image [53] to feed the edge map as input to the
watershed transform.

3. Watershed segmentation on the edge image according to the previously defined markers [62,63].

ACDC does not require any settings for the Cell Nuclei Segmentation Using the Watershed
Transform step.

2.2.4. Implementation Details

The sequential version of ACDC has been entirely developed using the Python programming
language (version 2.7.12), exploiting the following libraries and packages: NumPy, SciPy, OpenCV,
scikit-image [64], and Mahotas [65]. The resulting processing pipeline makes use of classic image
processing techniques in a smart fashion [66], thus enabling an efficient and feasible solution in
time-lapse microscopy environments.

For laboratory feasibility purposes, an asynchronous job queue, based on a distributed message
passing paradigm—namely Advanced Message Queuing Protocol (AMQP)—was developed using
Celery [67] (implementing workers that execute tasks in parallel) and RabbitMQ [68] (exploited as
a message broker to handle communications among workers) for leveraging modern multi-core
processors and computer clusters.

We also developed a Parent-Workers strategy using mpi4py, which provides bindings of the
Message Passing Interface (MPI) specifications for Python to leverage multi-core and many-core
resources [69]. The distributed strategy used to accelerate ACDC is similar to that employed in [70–72],
where the Parent allocates the resources and orchestrates the workers, which run ACDC to analyze
the assigned images. This distributed version of ACDC is 3.7× faster than the sequential version by
exploiting 6 cores of a CPU Intel Core E5-2650 v4 (clock 2.2 GHz).

2.3. Segmentation Evaluation Metrics

The accuracy of the achieved segmentation results S was quantitatively evaluated with respect to
the real measurement—i.e., the ground truth T obtained manually by an experienced biologist—by
using the Dice Similarity Coefficient (DSC):

DSC =
2× |S ∩ T |
|S|+ |T | × 100 (%), (3)

as well as the Intersection over Union (IoU) metrics, also known as Jaccard coefficient:

IoU =
|S ∩ T |
|S ∪ T | × 100 (%) =

|S ∩ T |
|S|+ |T | − |S ∩ T | × 100 (%) =

DSC
2−DSC

. (4)
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3. Results

3.1. ACDC Performance

In this section, we present the results obtained with ACDC on the VU dataset and the 2018
DSB training dataset [37,46]. Figure 7 shows an example of results obtained on VU and DSB
datasets, where the detected cells are displayed with different colors to highlight the separation
among overlapping and merging cells. We note that the analyzed images are characterized by a
considerable variability in terms of cell density. Figure 8 shows a representative case for both the VU
and DSB datasets, where the results of ACDC are slightly different from the gold standard. In the case
of the VU dataset (Figure 8a), it is clear that some groups of small cells, characterized by very similar
intensity values without strong discontinuities are detected by ACDC as a single connected-component
(orange arrows). On the contrary, for the 2018 DSB dataset (Figure 8b), ACDC is capable of accurately
separating groups of cells that were erroneously delineated as single connected-components in the
gold standard (green arrows); moreover, the spurious speckles included in the 2018 DSB gold standard
(highlighted by blue dashed boxes), are not detected by ACDC since these very small regions are
characterized by hypo-intense fluorescence levels.

(a) (b)

(c) (d)

Figure 7. Examples of cell nuclei segmented by ACDC considering sub-images of Figure 1a,b (a,b),
and the whole images in Figure 2a,b (c,d). The cell nuclei images were over-imposed onto the original
fluorescence images with alpha-blending (α = 0.4).
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.VSK�Z[HUKHYK

.VSK�Z[HUKHYK

Gold standard ACDC

(a)

.VSK�Z[HUKHYK

.VSK�Z[HUKHYK

Gold standard ACDC

(b)

Figure 8. Comparison of the gold standard cell nuclei segmentation (magenta contour in the left
images) against the automated result obtained by ACDC (segmented nuclei over-imposed onto the
original fluorescence images with alpha-blending in the right images): (a) VU dataset, where the orange
arrows denote errors in the split of clustered cell nuclei; (b) DSB dataset, where the green arrows denote
groups of cells that were erroneously delineated as unique connected-components in the gold standard
and the blue dashed boxes represent spurious speckles that are not detected by ACDC.

The assessment of cell count was quantified by means of the Pearson coefficient to measure
the linear correlation between the automated and manual cell counts. The accuracy of the achieved
segmentation results was evaluated by using the DSC and the IoU metrics. Table 1 reports the
results—by also comparing the performance of ACDC with and without bilateral filtering—achieved
on the VU and 2018 DSB datasets, which are supported by the scatter plots in Figure 9 that reports the
results concerning the case of the bilateral filter. The achieved high ρ coefficient values confirm the
effectiveness of the proposed approach, according to a validation performed against the manual cell
counting, which is considered as the gold standard.
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Table 1. Evaluation metrics on cell counting and segmentation achieved by ACDC (with and without
bilateral filtering) on the analyzed time-lapse microscopy VU and 2018 DSB datasets, comprising 46
and 301 images, respectively. The results for the DSC and IoU metrics, as well as the execution time
measurements, are expressed as mean value ± standard deviation.

Method Dataset Pearson Coeff. (p-Value) DSC (%) IoU (%) Exec. Time (s)

ACDC (without bilateral filter) VU ρ = 0.99 (p = 2.5× 10−74) 75.86± 5.98 61.45± 7.47 3.98± 0.10
ACDC (with bilateral filter) VU ρ = 0.99 (p = 6.6× 10−74) 76.84± 6.71 62.84± 8.58 7.49± 0.30

ACDC (without bilateral filter) DSB ρ = 0.96 (p = 1.1× 10−175) 87.34± 6.89 77.97± 9.49 0.07± 0.05
ACDC (with bilateral filter) DSB ρ = 0.96 (p = 2.6× 10−169) 88.64± 7.41 80.37± 10.58 0.12± 0.09
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Figure 9. Scatter plots depicting ACDC results compared to the gold standard in terms of cell nuclei
counting in the case of: (a) time-lapse fluorescence images from the VU dataset; (b) small fluorescent
nuclei images from the DSB dataset. The equality line through the origin is drawn as a dashed line.

A strong positive correlation between the cell counts computed automatically by ACDC and the
manual measurements was observed for both datasets analyzed in this study. In particular, in the
case of the VU dataset, the automated cell counting is strongly consistent with the corresponding
manual measurements, by denoting also a unity slope, as shown in Figure 9a. In the case of the DSB
dataset (Figure 9b), the identity straight-line reveals a negative offset in the ACDC measurements.
This finding means that the cell counts achieved by ACDC slightly under-estimated the gold standard
in approximately 55% of cases. Besides the high variability of the fluorescence images included in the
DSB dataset, this systematic error often depends on the gold standard binary masks, where the cell
nuclei are not always precisely separated (since the DSB challenge was focused on the segmentation
task), and consider also partial connected-components of cell nuclei smaller than 40 pixels located
at the cropped image borders. Notice that no ACDC setting was modified, so some very small
partial cell components were removed according to the morphological refinements based on the
connected-component size.

The agreement between ACDC and the manual cell counting measurements can be graphically
represented also by using a Bland-Altman plot [73], as reported in Figure 10 for both datasets.
The Bland-Altman analysis allows for a better data visualization by showing the pairwise difference
between the measurements obtained with the two methods, against their mean value. In this way,
we can assess any possible relationship between the estimation errors and easily detect any outlier
(i.e., observations outside the 95% limits of agreement). Figure 10 reveals that ACDC achieved
reproducible results also by considering the whole range of the cell counts concerning the analyzed
cell microscopy images; only about the 4% and 6% of outliers are observed in the ACDC results
achieved on the VU and DSB datasets, respectively. This confirms the observations on the scatter plots
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in Figure 9; neither systematic discrepancy between the measurements nor bias can be observed in the
VU dataset, while a negative bias is visible in the case of the DSB dataset.
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Figure 10. Bland-Altman plots of the cell counting measurements achieved by ACDC versus the gold
standard for the (a) VU and (b) DSB datasets. Solid horizontal and dashed lines denote the mean and
±1.96 standard deviation values, respectively.

The analysis of the DSC and IoU mean values reported in Table 1, calculated on the VU
images, reveals a good agreement between the segmentation results achieved by ACDC and the
gold standard. The standard deviation values confirm the high variability encountered in the input
datasets. In particular, in the case of the VU images, this evidence strongly depends on the density of
the cells represented in the input image. As a matter of fact, the DSC and IoU metrics is highly affected
by the size of the foreground regions with respect to the background. This behavior is confirmed by the
results achieved on the DSB dataset, where the IoU values are considerably higher than those achieved
on the VU images, even though the Pearson coefficient is slightly lower in this case. Accordingly,
the high standard deviation for the DSB dataset is due to the intrinsic variety of the images—in terms
of image size, zoom factor, and specimen type—included in this dataset (see Section 2.1.2). In general,
the bilateral filtering allows us to achieve better segmentation performance, while no appreciable
difference was found in the ρ values. Therefore, we incorporated the bilateral filtering into the ACDC
pipeline tested in the experiments.

The mean execution times concerning the segmentation tests are shown in Table 1.
These experiments were run on a personal computer equipped with a quad-core Intel Core 7700HQ
(clock frequency 3.80 GHz), 16 GB RAM, and Ubuntu 16.04 LTS operating system. The computational
efficiency of ACDC is confirmed in both cases, as cell detection and counting tasks can be completed
in respect of the time constraints imposed by the high-throughput laboratory routine. As expected,
the execution times are dependent on the image size. This trend is mainly due to the bilateral filtering
operation, as it can be observed in the execution times measured on the VU dataset reported in Table 1.

3.2. Comparison with Other Cell Imaging Tools and Segmentation Methods

We compared the performance of ACDC against two pipelines realized with ImageJ v1.53c [8]. Since
filtering operations typically represent the initial step used to enhance the subsequent segmentation, in order
to assess any performance improvement introduced by low-pass filtering, we implemented the processing
pipelines in ImageJ, to perform cell segmentation and counting, with and without a Gaussian filtering.
To be more precise, the steps are: (i) Gaussian low-pass filtering; (ii) uneven background removal by
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an histogram-based rolling-ball algorithm; (iii) Otsu global thresholding; (iv) morphological operations
including hole-filling; (v) watershed algorithm for cell nuclei separation. The pipelines have been tested on
both VU and DSB datasets.

Figure 11 shows the results concerning cell counting achieved by ACDC and the two ImageJ
pipelines. In the case of the VU dataset (plots a–c), the ImageJ pipelines tend to over-estimate the
number of cells in the images; on the contrary, considering the DSB dataset (plots d-f), the results
are comparable. The segmentation results shown in Figure 12 present a different scenario. ACDC is
generally better than the ImageJ pipelines; we also note that the application of Gaussian filtering in
the ImageJ pipelines does not allow us to markedly improve the segmentation outcome. However,
over-segmentation can be observed when low-pass filtering is not applied.

Table 2 reports the values of DSC and IoU achieved by ACDC and the tested ImageJ pipelines.
The highest values for these metrics are obtained by ACDC both in the case of VU and DSB datasets.
Moreover, the very high ρ coefficients indicate that all approaches are effective, when validated against
the gold standard. To assess whether the difference in the achieved segmentation performance between
ACDC and ImageJ with Gaussian filter is statistically significant, we performed a two-sided Wilcoxon
signed rank test on both paired DSC and IoU results [74], with the null hypothesis that the samples
come from continuous distributions with equal medians, and considering a significance level of 0.05.
The results of the test confirmed that both the achieved DSC and IoU values are statistically different
in the case of ACDC and ImageJ with Gaussian filtering (p < 0.001 and p < 0.01 for the VU and DSB
datasets, respectively).

Table 2. Comparison of ACDC and the tested ImageJ pipelines in terms of cell nuclei counting and
segmentation. The results are expressed as mean value ± standard deviation.

Method Dataset Pearson Coeff. (p-Value) DSC (%) IoU (%)

ACDC VU ρ = 0.99 (p = 6.6× 10−74) 76.84± 6.71 62.84± 8.58
ImageJ (with Gaussian filter) VU ρ = 0.99 (p = 9.5× 10−75) 74.97± 6.17 60.32± 7.62

ImageJ (without Gaussian filter) VU ρ = 0.99 (p = 5.3× 10−44) 74.43± 6.20 59.62± 7.61

ACDC DSB ρ = 0.96 (p = 2.6× 10−169) 88.64± 7.41 80.37± 10.58
ImageJ (with Gaussian filter) DSB ρ = 0.97 (p = 5.7× 10−205) 86.50± 6.86 76.78± 9.66

ImageJ (without Gaussian filter) DSB ρ = 0.97 (p = 3.4× 10−207) 86.68± 7.75 77.23± 10.86

As a final test, we considered a recently published work that takes into account the SNP HEp-2
Cell Dataset (SNPHEp-2) [75]. SNPHEp-2 is composed of images acquired using a monochrome high
dynamic range microscopy camera, equipped with a plan-Apochromat 20×/0.8 objective lens and
an LED illumination source, resulting in a dataset considerably different compared to VU and DSB
datasets. Specifically, we compared ACDC against CellProfiler [10], Marker-Controlled Watershed
algorithm (MC-Watershed), and Split and Merge Watershed (SM-Watershed) [16].

The DSC and IoU metrics reported in Table 3 are computed against the gold standard automatically
obtained by processing the DAPI channel. To obtain a fair comparison with the results presented
in [16], we processed the 40 cell images from the homogeneous class used in that work. Even if the
SNPHEp-2 dataset consists of cell images with different characteristics with respect to those contained
in the VU and 2018 DSB datasets, ACDC achieved better results than CellProfiler, and slightly worse
results than MC-Watershed and SM-Watershed approaches, which were specifically tailored to analyze
this kind of images (see Table 3). These results were achieved by using the same settings in the pipeline,
further showing that ACDC is a reliable method that can also be easily tuned to obtain satisfactory
segmentation and cell counting outcomes on different datasets.
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Table 3. Comparison of ACDC, CellProfiler, MC-Watershed, and SM-Watershed in terms of cell nuclei
segmentation on the SNPHEp-2 dataset.

Method DSC (%) IoU (%)

ACDC 80.92 67.96
CellProfiler 78.12 64.10

MC-Watershed 86.54 76.27
SM-Watershed 83.10 71.09
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Figure 11. Regplots showing the scatter plots obtained by considering the number of manually detected
cells (y-axis) and the number of cells automatically detected (x-axis) with ACDC (left), ImageJ with
Gaussian filter (center), and ImageJ without Gaussian filter (right), along with the fitted regression
model (regression line and the 95% confidence interval for that regression). Plots (a–c) report the results
obtained on the VU dataset, while plots (d–f) are obtained from the DSB dataset.

(*+* 0THNL1��^P[O�.H\ZZPHU�ÄS[LY� 0THNL1��^P[OV\[�.H\ZZPHU�ÄS[LY�(*+* 0THNL1��^P[O�.H\ZZPHU�ÄS[LY� 0THNL1��^P[OV\[�.H\ZZPHU�ÄS[LY�(*+* 0THNL1��^P[O�.H\ZZPHU�ÄS[LY� 0THNL1��^P[OV\[�.H\ZZPHU�ÄS[LY�

(*+* 0THNL1��^P[O�.H\ZZPHU�ÄS[LY� 0THNL1��^P[OV\[�.H\ZZPHU�ÄS[LY�(*+* 0THNL1��^P[O�.H\ZZPHU�ÄS[LY� 0THNL1��^P[OV\[�.H\ZZPHU�ÄS[LY�(*+* 0THNL1��^P[O�.H\ZZPHU�ÄS[LY� 0THNL1��^P[OV\[�.H\ZZPHU�ÄS[LY�

(a)
(*+* 0THNL1��^P[O�.H\ZZPHU�ÄS[LY� 0THNL1��^P[OV\[�.H\ZZPHU�ÄS[LY�(*+* 0THNL1��^P[O�.H\ZZPHU�ÄS[LY� 0THNL1��^P[OV\[�.H\ZZPHU�ÄS[LY�(*+* 0THNL1��^P[O�.H\ZZPHU�ÄS[LY� 0THNL1��^P[OV\[�.H\ZZPHU�ÄS[LY�

(*+* 0THNL1��^P[O�.H\ZZPHU�ÄS[LY� 0THNL1��^P[OV\[�.H\ZZPHU�ÄS[LY�(*+* 0THNL1��^P[O�.H\ZZPHU�ÄS[LY� 0THNL1��^P[OV\[�.H\ZZPHU�ÄS[LY�(*+* 0THNL1��^P[O�.H\ZZPHU�ÄS[LY� 0THNL1��^P[OV\[�.H\ZZPHU�ÄS[LY�

(b)

Figure 12. Examples of cell nuclei segmented by using ACDC and the implemented ImageJ pipelines
with and without Gaussian filtering. (a,b) present images taken from the VU dataset, with different
visual characteristics.
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4. Discussion and Conclusions

The fully automatic pipeline for cell detection and counting proposed in this paper, called ACDC,
exploits watershed transform [39,40] and morphological filtering operations [41,42], and also benefits
from the edge-preserving smoothing achieved by the bilateral filtering [38]. Notably, this pipeline
does not depend on expert knowledge and can be deployed by setting only a few parameters.
The capabilities of ACDC were tested on two different cell imaging datasets characterized by
significantly different acquisition devices, specimens, image characteristics, and experimental
conditions. ACDC was shown to be accurate and reliable in terms of cell counting and segmentation
accuracy, thus representing a laboratory feasible solution also thanks to its computational efficiency.
As a matter of fact, the Pearson coefficient achieved both in the case of the VU and DSB datasets was
higher than 0.96, demonstrating an excellent agreement between automated cell count achieved
with ACDC and the manual gold standard. The performance of ACDC were also compared
with two pipelines defined with ImageJ; our results highlighted that while the cell counting was
comparable, ACDC allowed us to achieved better segmentation outcomes. Moreover, we considered
an additional cell images dataset and compared the outcome achieved with ACDC against CellProfiler,
Marker-Controlled Watershed and Split and Merge Watershed, further showing the reliability of
ACDC for what concerns segmentation and cell counting results. Finally, with the current ACDC
implementation, it is also possible to distribute the computation on multi-core architectures and
computer clusters, to further reduce the running time required to analyze large single image stacks.
To this end, an asynchronous job queue, based on a distributed message passing paradigm was
developed exploiting Celery and RabbitMQ.

The time-lapse microscopy image samples analyzed in this study are considerably different from
to the publicly available microscopy images of cell nuclei, such as in [75–77]. Indeed, these datasets
were captured under highly different microscope configurations compared to the VU experiments;
with particular interest to magnification, a 40×/0.9 numerical aperture and a 20×/0.8 objective
lens were used in [75–77], respectively. These acquisition characteristics, summarized in Table 4,
produce substantially different images, compared to the datasets analyzed in this work, as in the case
of the average coverage (i.e., the percentage of pixels covered by cell nuclei), which is remarkably
different. As a future development, we plan to improve ACDC, to achieve accurate cell nuclei detection
and analysis for different cell imaging scenarios, independently from the acquisition methods.

Table 4. Main characteristics of fluorescence microscopy datasets.

U2OS [76] NIH3T3 [77] VU DSB [37,46]

# images 48 49 46 301
Image size 1349× 1030 1344× 1024 2160× 2160 various

Magnification 40× 40× 10× various
Total #cells 1831 2178 14,045 7931
Min. #cells 24 29 22 1
Max. #cells 63 70 1763 124

Avg. %coverage 23% 18% 2.07% 5.41%

We also aim at exploiting the most recent Machine Learning techniques [78] to accurately refine
the segmentation results. The improvements may be achieved by classifying the geometrical and
textural features extracted from the detected cells [79]. This advanced computational analysis can
allow us to gain biological insights into complex cellular processes [17]. Finally, as a biological
application, in the near future we plan to focus on the Fluorescent, Ubiquitination-based Cell-Cycle
Indicator (FUCCI) reporter system for investigating cell-cycle states [45], by combining accurate nuclei
segmentation results, on multiple fluorescent proteins for cell labeling [80], and live-cell imaging of
cell cycle and division.
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