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Abstract
In air pollution studies, dispersion models provide estimates of concentration
at grid level covering the entire spatial domain and are then calibrated against
measurements from monitoring stations. However, these different data sources
are misaligned in space and time. If misalignment is not considered, it can bias
the predictions. We aim at demonstrating how the combination of multiple data
sources, such as dispersion model outputs, ground observations, and covariates,
leads to more accurate predictions of air pollution at grid level. We consider
nitrogen dioxide (NO2) concentration in Greater London and surroundings for
the years 2007–2011 and combine two different dispersion models. Different
sets of spatial and temporal effects are included in order to obtain the best pre-
dictive capability. Our proposed model is framed in between calibration and
Bayesian melding techniques for data fusion. Unlike other examples, we jointly
model the response (concentration level at monitoring stations) and the disper-
sion model outputs on different scales, accounting for the different sources of
uncertainty. Our spatiotemporal model allows us to reconstruct the latent fields
of each model component, and to predict daily pollution concentrations. We
compare the predictive capability of our proposed model with other established
methods to account for misalignment (e.g., bilinear interpolation), showing that
in our case study the joint model is a better alternative.
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1 INTRODUCTION

Air pollution is a major concern for policy makers worldwide (EPA, 2016; European Commission, 2018; WHO, 2006),
and there is extensive evidence of its negative effects, in particular on respiratory and cardiovascular diseases (Atkinson,
Mills, Walton, & Anderson, 2015; COMEAP, 2015; Dominici, Peng, Barr, & Bell, 2010; Lipfert, 2017). Obtaining an accu-
rate estimate of air pollution concentration is key for evaluating compliance with regulatory standards set by national
and international environmental agencies and to reduce exposure misclassification in epidemiological studies (Berrocal,
Gelfand, & Holland, 2012; Keller & Peng, 2019; Shaddick et al., 2018).
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Air pollution data come from different sources, each presenting some limitations: ground measurements from mon-
itoring network stations, usually affected by sparse spatial resolution; estimates from land use regression models (LUR),
which rely on the availability of accurate and dense monitor observations; satellite remote sensing data, sometimes poorly
correlated with ground pollution level; simulations from deterministic models (e.g., chemical transport models or dis-
persion models), that can present prediction quality concerns despite the complete spatial coverage and high temporal
resolution (Chang, 2016; Gelfand, Sahu, & Holland, 2012; Hoek et al., 2008; Johnson, Isakov, Touma, Mukerjee, & Özkay-
nak, 2010; Lee, Ferguson, & Scott, 2011; Shaddick et al., 2018; Shaddick & Wakefield, 2002; Shaddick, Zidek, & Liu, 2015).

Several “hybrid” approaches have been proposed to combine these data sources to draw from their strengths and
to overcome their limitations, but not all of them address the discrepancy in the spatial resolution of the different data
sources, which is known as misalignment or change of support problem (COSP).

1.1 Main approaches to address spatial misalignment

In the context of COSP, we refer to upscaling methods when the target resolution is lower than the data resolution (e.g.,
point-to-area) and to downscaling when the target resolution is higher (e.g., area- or grid-to-point).

Model-based solutions for data assimilation (also referred to as data fusion or data blending) in environmental applica-
tions allow us to account for all sources of uncertainty while addressing COSP. These are usually set within a hierarchical
Bayesian framework. Popular approaches include Bayesian melding and calibration techniques (Chang, 2016).

Bayesian melding assumes that both measurements and modeled data are error-prone realizations of an underlying
latent true pollution field, and they both inform the posterior distribution of the latent process. Among the proposed
melding strategies applied to misaligned air pollution data we find, for instance, the downscaling spatial Bayesian melding
model by Raftery and Fuentes (2005), the upscaling spatial Bayesian melding model by Wikle and Berliner (2005), and
the upscaling spatiotemporal fusion model by McMillan, Holland, Morara, and Feng (2010).

Calibration techniques assume that the model-based estimates (e.g., from dispersion models) are used in a regression
framework as predictors against the monitoring site measurements. In this way the computational cost is reduced com-
pared to melding, as the models only need to be fitted at the monitoring sites locations (Berrocal et al., 2012; Chang, 2016).
Some examples are the block-averaging upscaling calibration fusion model by Sahu, Gelfand, and Holland (2010), and
the spatiotemporal downscaling calibration models by Berrocal, Gelfand, and Holland (2010) and Berrocal et al. (2012),
which can be considered a generalization of a Bayesian universal kriging model (Berrocal, 2019).

1.2 Novelty of our approach

In this article, we are framed in the context of data integration to improve air pollution predictions at a fine grid. We
combine monitoring measurements and numerical model outputs coming from two dispersion models: the pollution
climate mapping (PCM) model from DEFRA (DEFRA, 2018; Ricardo Energy & Environment, 2017) and the Air Quality
Unified Model (AQUM) from the Met Office (Met Office, 2018; Savage et al., 2013), and account for their associated errors.

These deterministic models have previously been used for similar purposes: Lee and Sarran (2015) provide an
example of point-to-area upscaling from the PCM model grid to local authority areas for epidemiological applications
and Mukhopadhyay and Sahu (2017) combine the AQUM and the monitoring observations to accurately predict NO2
concentration in UK.

However, usually in the literature only one extra data source at a time is considered (Berrocal et al., 2010; Berrocal
et al., 2012; Huang, Lee, & Scott, 2015; Huang, Lee, & Scott, 2017; Lee, Mukhopadhyay, Rushworth, & Sahu, 2017; Lee
& Sarran, 2015; McMillan et al., 2010; Moraga, Cramb, Mengersen, & Pagano, 2017; Mukhopadhyay & Sahu, 2017; Pan-
nullo, Lee, Waclawski, & Leyland, 2016; Raftery & Fuentes, 2005; Sahu et al., 2010; Wikle & Berliner, 2005; Zidek, Le, &
Liu, 2012). We show that, when more are available, these can all be put together to get better predictions while accounting
for the bias which affects deterministic data.

Our approach is similar to the coregionalization model proposed by Schmidt and Gelfand (2003) to model CO, NO,
and NO2, which allows us to calibrate the deterministic models against the monitor observations through a coefficient
similarly to calibration techniques. However, here we treat the three sources of information on NO2 as coming from the
same true underlying spatiotemporal process (i.e., the true air pollution concentration field) as in Bayesian melding. The
pure application of this kind of models is computationally prohibitive for the high resolution output data we have at hand.
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This issue is solved by representing the spatially continuous fields as solutions to a stochastic partial differential equation
(SPDE) to handle this in a computationally efficient way (Krainski et al., 2018; Lindgren, Rue, & Lindström, 2011).

Additionally, our model reconstructs the continuous latent spatial and temporal fields allowing us to account for all
the sources of uncertainty: first, the one associated with the estimates from the numerical models, which is not pro-
vided as they are deterministic models, and second, the measurement error associated with ground observations. This is
most useful in the perspective of using the predictions from the air pollution model as a measure of exposure in an epi-
demiological model, where the uncertainty could be fed forward (see Cameletti, Gómez-Rubio, & Blangiardo, 2019; Lee
et al., 2017).

The inference is done under the Bayesian paradigm through the integrated nested Laplace approximations (INLA)
coupled with the SPDE approach, which is implemented in the R-INLA package (Rue, 2018).

Other authors have implemented solutions for spatially misaligned air pollution data in R-INLA; however, their
approaches differ from ours under several points of view. In particular, Moraga et al. (2017) show an example of
area-to-point misalignment addressed via block averaging, in a spatial-only context, without accounting for the uncer-
tainty associated with the raster data. Cameletti et al. (2019) implement a spatial upscaler from point to area comparing
two different averaging methods. Kifle, Hens, and Faes (2017) compare additive and coupled spatiotemporal processes
for multivariate data in a biological context (prevalence of vectors for arboviruses), where the data are not misaligned,
and do not include any explanatory covariate.

To the best of our knowledge, this is the first time a spatiotemporal model for spatially misaligned point-referenced
data is implemented through the INLA-SPDE approach considering more than one deterministic model output at
different spatial and temporal resolutions.

We compare and contrast several models and through a cross-validation method we evaluate which one produces the
most accurate predictions of NO2 concentration in Greater London and surroundings for the period 2007 to 2011. We
compare our method with two approaches in which the alignment is done through bilinear interpolation or kriging, hence
not accounting for the measurement error associated with the misaligned covariates. The first is a simple hierarchical
model that includes linear effects for the covariates and structured spatiotemporal residuals. The second is the recently
proposed data integration model from Mukhopadhyay and Sahu (2017), which allows for nonstationarity in the residual
spatial process.

The remainder of the article is organized as follows: Section 2 presents the study area and data; Section 3 describes the
methods used in the analysis, starting with the model specification followed by a description of the competitor models;
Section 4 reports the results of the application of such methods to our air pollution data; finally, Section 5 contains the
conclusions and a short discussion, pointing toward further developments.

2 STUDY AREA AND DATA

The study focuses on NO2, as it is one of the pollutants regulated by national and international directives, and it is traffic
driven, hence characterized by high spatiotemporal variability.

We used daily averages of hourly observations from different monitoring networks including the AEA and the Auto-
matic Urban and Rural Network (AURN) from the DEFRA’s UK Air Quality Archive, and the London Air Quality
Network (LAQN) in Greater London and surroundings, managed by the King’s College London Environmental Research
Group (ERG). The combined database was built as part of the Spatio/Temporal Exposure Assessment Methods (STEAM)
project (King’s College London ERG, 2016).

We also considered the outputs of two deterministic models: (i) annual 1 km × 1 km predictions from the PCM model
provided by DEFRA (DEFRA, 2018), for 2007–2011; (ii) daily 12 km× 12 km predictions from the AQUM model, available
for the years 2007–2011, provided by the Met Office (Met Office, 2018).

We consider the period 2007–2011 due to the availability of the AQUM data.
Among the 213 monitoring stations active between 01/01/2007 and 31/12/2011 for at least 1,370 consecutive days

(75% of the total number of days), 126 have been included in the analysis after applying the following criteria to the NO2
time series: (i) the daily average is computed only for the days where at least 18 hourly observations, that is, the 75%, are
present; (ii) we eliminated nonpositive daily averages which do not allow for the logarithmic transformation required
in the analysis (negative observations are due to measurement error); (iii) monitors where the resulting daily NO2 is
available for less than 1,370 days, not necessarily consecutive, have been excluded (this is because an active monitor does
not necessarily record NO2 measurements).
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F I G U R E 1 NO2 data
locations on the study domain,
on the shape of England as
reference

The monitors are split into six groups maximizing similarity criteria between groups, and a six-fold cross validation
is performed.

For each monitor we have information about the site-type classification that we aggregated into three categories: rural,
urban, and road-kerb side.

We define our study area as that including all the selected monitors, containing 495 grid cells for AQUM and 44,117
grid cells for PCM.

The locations of the air pollution data sources described above are shown in Figure 1.
The AQUM model includes chemistry, physical and aerosol models, meteorological configuration based on the Met

Office’s North Atlantic and European Model (NAE), and emission data (Savage et al., 2013); the PCM model input includes
emission inventory, energy projections, road traffic counts, road transport activity, and meteorological hourly data from
Waddington weather station (Ricardo Energy & Environment, 2017).

Although data were available, we decided against the inclusion of meteorological variables in our models, as they are
already an input for both the numerical models considered in the analysis.

Consistently with the selection criteria, all the six training and validation sets have similar distribution of daily NO2
concentration by site type (see Appendix A, Figure 1). As expected, in all sets the road-kerb side monitors have higher
mean and maximum levels of NO2.
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T A B L E 1 Descriptive statistics of NO2 concentration (μg/m3) for the three data sources

Data Min First qu. Median Mean Third qu. Max

PCM 2007 7.276 9.948 11.289 13.039 14.055 66.036

PCM 2008 5.615 9.107 10.439 12.064 13.198 56.123

PCM 2009 7.097 10.105 11.333 12.844 13.915 53.290

PCM 2010 5.613 10.396 11.843 13.404 14.705 62.190

PCM 2011 5.437 9.905 11.317 12.545 13.575 55.400

AQUM January 0.215 11.354 19.926 21.943 30.150 73.654

AQUM February 0.154 13.912 22.491 25.052 33.535 97.435

AQUM March 0.291 10.165 16.760 19.180 25.969 84.589

AQUM April 0.059 9.982 15.339 17.248 22.457 81.498

AQUM May 0.008 6.847 10.340 12.187 15.622 77.623

AQUM June 0.000 6.493 9.568 11.088 13.974 63.689

AQUM July 0.409 5.855 8.388 9.842 12.244 67.893

AQUM August 0.000 6.392 9.210 10.591 13.176 58.456

AQUM September 0.054 7.545 11.795 13.899 18.095 68.396

AQUM October 0.067 10.521 16.622 18.402 24.576 70.455

AQUM November 0.531 11.714 18.694 20.942 28.109 97.137

AQUM December 0.000 12.890 23.150 25.040 34.480 121.320

Monitors RUR 0.484 5.357 8.995 11.405 14.734 114.375

Monitors URB 0.679 11.938 19.091 22.286 29.049 166.792

Monitors RKS 0.245 20.208 30.524 34.903 44.422 231.292

In particular, 17 road-kerb side sites overcome the limits set by the WHO and the European Commission for the
annual average of 40μg/m3, for at least 4 of the 5 years under study (see Appendix A, Figure 2). Of these, the monitor in
Lambeth-Brixton Road (LB4) is also well above the threshold of 18μg/m3 not to be exceeded more than 18 times annually,
for every year, even though a decreasing trend can be observed (from 865 hourly exceedances in 2007, to 62 in 2011), and
other six monitors exceeded this threshold between 2007 and 2008.

Table 1 reports summary statistics for PCM data by year, AQUM data by month and monitor observations by site type.

3 METHODS

In this section we first present some analysis on the AQUM and PCM data, then we introduce the joint model, and finally
the models that we use for comparison. Note that we will represent vector/matrices in bold typeface.

3.1 Separate models for AQUM and PCM data

In order to quantify the relevance of the temporal component for PCM (i= 1) and the spatial component for AQUM (i= 2),
we ran three models for each data source separately: (i) one with spatial-only or temporal-only effect respectively, (ii) one
with additive spatial and temporal effects, and (iii) one with a spatiotemporal interaction.

Let us define yi as the vector of air pollution concentration on the logarithmic scale across space and time for the ith
numerical model. This is assumed to be normally distributed with mean 𝜼i and variance 𝜎2

𝜖i
: yi ∼ MVN(𝜼i, 𝜎

2
𝜖i

I)
Each element of the linear predictor 𝜼i (for a time point t and location s identified by UTM coordinates) for models

(i), (ii), and (iii) is specified as follows:
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𝜂1(s) = 𝛼1 + z11(s)
𝜂2(t) = 𝛼2 + z22(t), (i)

𝜂1(s, t) = 𝛼1 + z11(s) + z21(t)
𝜂2(s, t) = 𝛼2 + z12(s) + z22(t), (ii)

𝜂1(s, t) = 𝛼1 + z31(s, t)
𝜂2(s, t) = 𝛼2 + z32(s, t), (iii)

where z1i(s) is the realization at location s of the spatial process z1i with Matérn covariance function z1i ∼ MVN(0, 𝜎2
z1i
𝚺),

z2i(t) ∼ N(z2i(t − 1), 𝜎2
z2i
) is a temporal process modeled as a random walk and z3i ∼ MVN(0, 𝜎2

z3i
𝜮t ⊗𝜮s) is a separable

space–time interaction with Matérn covariance function and temporal dependence modeled as a random walk.
Based on the deviance information criterion (DIC), the results show that AQUM spatial variation is relevant but there

is no need for a space–time interaction so model (ii) is selected for AQUM, while the PCM temporal variation is negligible
so model (i) is selected for PCM (see Appendix B for details). Hence, we will use this specification in the joint model
presented in the next section.

3.2 Bayesian joint spatiotemporal model for misaligned covariates

Following Kifle et al. (2017) we implement an additive space–time model for data observed at different points in space,
which share a spatial and a temporal component.

Previous similar applications consider measurements of more than one variable at the same locations, but this is not
a requirement in the INLA-SPDE approach.

Our model is joint in the sense that we specify one likelihood for the response and one for each of the misaligned
covariates, and they contain common components which are estimated using all the data. Even though in R-INLA the
problem is computationally treated similarly to a multivariate situation, this is not our case as we ultimately consider
solely the monitor observations as response variable.

We make the assumption that the same temporal dynamics govern AQUM and monitor observations, and likewise
the same spatial dynamics govern PCM, AQUM, and monitor observations.

Our hierarchical model has three levels: in the first we define the likelihoods, in the second the random effect
components, while the third level includes the prior distributions for the model parameters and hyperparameters.

The joint model presented below is implemented via INLA, a computationally efficient alternative to Markov chain
Monte Carlo (MCMC) methods, that works specifically on hierarchical Gaussian Markov random fields (GMRF). Details
on how this is done in R-INLA can be found in Appendix E.

3.2.1 Level 1: Likelihoods and linear predictors

Let yi(s,t) denote the PCM (i= 1) and AQUM (i= 2) data and the observed NO2 concentration (i= 3) at the generic
time point t and site s, on the logarithmic scale. These are assumed to be normally distributed, with mean 𝜂i(s, t) and
measurement error variance 𝜎2

𝜖i
:

y1(s, t) ∼ N(𝜂1(s), 𝜎2
𝜖1
) (PCM)

y2(s, t) ∼ N(𝜂2(s, t), 𝜎2
𝜖2
) (AQUM)

y3(s, t) ∼ N(𝜂3(s, t), 𝜎2
𝜖3
) (Ground observations).

Based on the results from Section 3.1 we model the PCM data with an intercept and a spatial component and the
AQUM data with an intercept and additive spatial and temporal components. These are shared between the three linear
predictors, which are the following:

𝜂1(s) = 𝛼1 + z1(s), (1)
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𝜂2(s, t) = 𝛼2 + 𝜆1,2z1(s) + z2(t), (2)

𝜂3(s, t) = 𝛼3 + 𝛽ks + 𝜆1,3z1(s) + 𝜆2,3z2(t) + z3(t, ks), (3)

where 𝛼i are the intercepts, 𝜆i,j are the scaling parameters for the shared components from 𝜼i to 𝜼j, 𝛽ks is the fixed effect
for the site type as categorical variable (ks = 0: rural [reference], ks = 1: urban and ks = 2: road-kerb side), and z1 and z2
are the shared random effects. The linear predictor for the ground observations 𝜼3 also contains an interaction term z3,
which allows for a different residual temporal trend for each site type.

Note that even though PCM is assumed to be governed only by a spatial effect, its output does vary in both space and
time, so the deterministic model output y1 has space and time indices (here the locations are the centroids of the 44,117
PCM grid cell, and the time points are the years), while its latent field z1 has only a spatial index.

For AQUM, the space and time indices of y2 correspond to the centroids of the 495 AQUM grid cell and the 1,826 days,
respectively.

Finally, y3 is measured at the 126 monitors on 1,826 days.

3.2.2 Level 2: Latent fields

In Equation (3), z1 ∼ MVN(0, 𝜎2
z1
𝚺) is the common spatial latent field, with 𝚺 being the correlation matrix defined by the

Matérn stationary and isotropic covariance function (see Appendix D). It is important to note that z1 is then rescaled for
AQUM and monitor observations through 𝜆1,2 (Equation (2)) and 𝜆1,3 (Equation (3)).

In the same equation, z2(t) is the tth element of the temporal latent field z2, and is modeled as a random walk: z2(t) ∼
N(z2(t − 1), 𝜎2

z2
). Similarly to z1, z2 is rescaled for the monitor observations through 𝜆2,3 (Equation (3)).

Finally, z3 is the residual temporal trend assumed to be different for each site type (rural, urban, and road-kerb side),
and modeled as first-order autoregressive z3(t, ks) ∼ N(𝜌z3(t − 1, ks), 𝜎2

z3
). In other words, we assume conditionally inde-

pendent replications of the same latent field for each site type, with shared hyperparameters (Martins, Simpson, Lindgren,
& Rue, 2013).

3.2.3 Level 3: Priors

The priors on the model parameters are specified as follows.
According to Fuglstad, Simpson, Lindgren, and Rue (2019), we choose a penalized complexity prior (Simpson, Rue,

Riebler, Martins, & Sørbye, 2017) for range and variance of the latent spatial field z1 such that P(r < r0)= 0.95 and P(𝜎z1 >

𝜎0) = 0.5, where r0 = 1/5 of the domain size and 𝜎0 = 100 (see Appendix D).
For the standard deviation of the random walk we assume a penalized complexity prior such that the probability that

𝜎z2 is greater than the empirical standard deviation of the AQUM data is 1%, that is, P(𝜎z2 > SD(AQUM)) = 0.01.
For the time–site-type interaction we assume the default vague prior defined on the log-precision: log(1∕𝜎2

z3
) ∼

logGamma(1, 5e − 05); for the autoregressive parameter we assume 𝜌 ∼ N(0.3, 0.5) using information from previous
modeling exercise.

The precisions of response variable, AQUM data, and PCM data are assigned the default vague prior log(1∕𝜎2
𝜖i
) ∼

logGamma(1, 5e − 05), i= 1,2,3.
On the scaling coefficients we put a Normal prior centered on a positive values around 1 with a large variance to

ensure minimal information: 𝜆1,2 ∼ N(1.1,100), 𝜆1,3 ∼ N(1.3,100), and 𝜆2,3 ∼ N(0.9,100).
Finally on the coefficients of the fixed effects 𝛼i and 𝛽ks we assume the weak Normal prior distribution

N(0,1,000).

3.3 Competitor models

We compared our model to three different competitors: (i) a joint model that includes only one misaligned covariate
(either AQUM or PCM), (ii) a simple hierarchical model that includes a covariate aligned at the monitoring sites through
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bilinear interpolation (Akima, 1978) or kriging, and (iii) a complex hierarchical model that allows for nonstationarity
after interpolating the misaligned covariates via bilinear interpolation (Mukhopadhyay & Sahu, 2017).

The aim of this comparison is to evaluate if the inclusion of more than one extra data source actually improves the
model predictive capability and can counterbalance the need for complex random effect structures, and if there is a gain
in moving from a simple interpolation to a modeling framework.

We describe the three comparators in the rest of this section.

3.3.1 Joint models with one misaligned covariate only

The joint model that includes PCM only is specified as follows:

y1(s, t) ∼ N(𝜂1(s), 𝜎2
𝜖1
) (PCM)

and

y2(s, t) ∼ N(𝜂2(s, t), 𝜎2
𝜖2
) (Ground observations)

with

𝜂1(s) = 𝛼1 + z1(s) (PCM)

𝜂2(s, t) = 𝛼2 + 𝛽ks + 𝜆1,2z1(s) + z3(t, ks) (Ground observations)

Similarly, the joint model that includes AQUM only is defined as:

y1(s, t) ∼ N(𝜂1(s, t), 𝜎2
𝜖1
) (AQUM)

and

y2(s, t) ∼ N(𝜂2(s, t), 𝜎2
𝜖2
) (Ground observations)

with

𝜂1(s, t) = 𝛼1 + z1(s) + z2(t) (AQUM)

𝜂2(s, t) = 𝛼2 + 𝛽ks + 𝜆1,2z1(s) + 𝜆2,2z2(t) + z3(t, ks) (Ground observations)

For these models we considered either fixed to 1 or varying calibration coefficients 𝜆i,j, and different priors. The final
choice of priors is the one reported in Section 3.2.3.

3.3.2 Data integration model via interpolation

We implement two models that use interpolation techniques to obtain values of AQUM and PCM at the monitoring
stations. The first is a naive bilinear interpolation, the second can be considered as Bayesian kriging, as we predict AQUM
and PCM at the monitoring stations from the models described in Section 3.1.

In both cases, after aligning the AQUM (X1) and PCM (X2) values, we consider a linear effect on the covariates, a
spatially structured residual z1, a temporally structured residual z2 and the site-type-specific temporal effect z3 specified
as in Section 3.2. We also keep the fixed effects for the site type 𝛽ks as in the joint model.
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We specify a normal likelihood y(s, t) ∼ N(𝜂(s, t), 𝜎2
𝜖 ) and the linear predictor as follows:

𝜂(s, t) = 𝛽0 + 𝛽1X1(s, t) + 𝛽2X2(s, t) + 𝛽ks + z1(s) + z2(t) + z3(t, ks).

3.3.3 Data integration model with nonstationarity

Mukhopadhyay and Sahu (2017) developed a site-type-specific regression on the AQUM data using our same classification
for the site type. The key feature of their model is the specification of a nonstationary spatiotemporal process, which leads
to a better predictive performance compared to the stationary Gaussian process (GP) in their application.

To obtain a like-for-like comparison, we also include a site-type-specific regression on the PCM data and implement
both the stationary and the nonstationary versions of this model.

Both AQUM (X1) and PCM (X2) are interpolated at the monitoring site locations through bilinear interpolation.
The hierarchical model specification in this case is:

y(s, t) ∼ N(𝜂(s, t), 𝜎2
𝜖 ),

𝜂(s, t) = 𝜇(s, t) + 𝜈(s, t),

with

𝜇(s, t) = 𝛾0 + 𝛾1X1(s, t) +
2∑

k=1
𝛿k(s)(𝛾0k + 𝛾1kX1(s, t))

for the model with AQUM only, and

𝜇(s, t) = 𝛾0 + 𝛾1X1(s, t) + 𝛾2X2(s, t) +
2∑

k=1
𝛿k(s)(𝛾0k + 𝛾1kX1(s, t) + 𝛾2kX2(s, t))

for the model with AQUM and PCM.
Here k= 0 indicates rural site type (baseline), k= 1 urban and k= 2 road-kerb side, 𝛿k(s) is an indicator function equal

to 1 if site s is of type k and 0 otherwise, 𝛾0, 𝛾1, and 𝛾2 are the baseline intercept and slopes for X1 and X2, while 𝛾0k, 𝛾1k,
and 𝛾2k are site-type-specific adjustments to the baseline intercept and slopes.

For the spatiotemporal process 𝝂 we first assume a stationary time-independent GP with zero mean and exponential
correlation function (note that 𝜈t(s) = 𝜈(s, t)):

𝝂t ∼ N(0, 𝜎2
𝜈H𝜈(𝜙)), where H𝜈(𝜙) = corr(𝜈t(s), 𝜈t(s′)) = exp(−||s − s′||𝜙).

Then we specify a nonstationary covariance structure as in Sahu and Mukhopadhyay (2015): given a GP 𝝂∗
t defined on a set

of m= 25 knot locations 𝝂∗
t ∼ MVN(0, 𝜎2

𝜈H𝜈∗ (𝜙)), the Gaussian predictive process (GPP) at a new location s is defined as
𝜈̃t(s) = E[𝜈t(s)|𝝂∗

t ]. From multivariate Gaussian theory it follows that 𝝂̃t = C∗H−1
𝜈∗ (𝜙)𝝂∗

t with C* being the cross-correlation
function between 𝝂t and 𝝂∗

t.
The nonstationarity and the anisotropy are given by the fact that corr(𝜈̃t(s), 𝜈̃t(s′)) = c∗(s)TH−1

𝜈∗ (𝜙)c∗(s′), which
depends on both s and s′ and not only on the separation vector or the distance between locations.

To introduce temporal dependence we specify a first-order autoregressive model for 𝝂∗
t .

The choice of knot locations, model specification, and prior distributions is based on Mukhopadhyay and Sahu (2017).
This is justified by the fact that we use the same data sources on a subregion of their study area.

3.4 Validation and predictive capability measures

We compared the predictive capability through proper scoring rules (Gneiting & Raftery, 2007) such as the cross-validated
logarithmic score (logScore), the Continuous Ranked Probability Score (CRPS), and the root mean squared error (RMSE),
and also the predictive model choice criterion (PMCC) proposed by Gelfand and Ghosh (1998).
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Furthermore, we reported the correlation between the observed and the predicted values for the validation sites (COR),
the mean absolute percentage error (MAPE), and the 95% coverage (COV), defined as the percentage of times that the
observed value falls within the 95% credibility interval of the sampled posterior marginal.

To measure the predictive capability we need to report the fitted values at the validation sites on the scale of the out-
come, as cannot compare the observed values with the fitted values because they are not accounting for the measurement
error, but only for the uncertainty associated with the model parameters. In order to do so, we draw 50 values from the
marginal posterior of the measurement error p(𝜎2

𝜖3
|y3) first, then draw 𝜼3 from its conditional posterior p(𝜼3|𝜎2

𝜖3
, y3) using

the simulated values of 𝜎2
𝜖3

(Gelman et al., 2013). These values are used as mean and variance of a Normal distribution,
from which we sampled values at each site (sample size = 100).

The following are the formulas for the different measures of predictive capability used in the analysis. For simplicity
we apply a slight change of notation here: yjt indicates the observed value at monitor j (m is the number of validation
monitors) and day t (t = 1,… ,T, T = 1,826), and ŷjt is the corresponding predicted value obtained as mean of the vector of
Q= 100× 50 sampled values ŷjt = ŷ1, … , ŷQ ∼ Fjt, Fjt being the empirical distribution function of ŷjt.

RMSE =

√√√√ 1
mT

m∑
j=1

T∑
t=1

(yjt − ŷjt)2

MAPE = 1
mT

m∑
j=1

T∑
t=1

|yjt − ŷjt|
yjt

⋅ 100

PMCC =
m∑

j=1

T∑
t=1

(yjt − ŷjt)2 +
m∑

j=1

T∑
t=1

VAR(ŷjt)

CRPS = 1
mT

m∑
j=1

T∑
t=1

CRPS(Fjt, yjt), with

CRPS(Fjt, yjt) =
1
Q

Q∑
q=1

|ŷq − yjt| − 1
2Q2

Q∑
q=1

Q∑
r=1

|ŷq − ŷr|.

For each model under comparison, the predictive capability measures presented above are computed pooling together
the six validation sets. It can be calculated by day, by site, by site type or across all sites to obtain specific and global
measures, with lowest measures indicating the best predictive performance.

3.5 Predictions on a regular grid

From the joint model, we extract daily predictions of NO2 concentration on a regular grid that covers the study area. For
the grid we choose an intermediate spatial resolution between PCM and AQUM data to limit the computational burden
while retaining spatial variability.

In order to provide the predictions in a reasonable time, we extract samples from the joint posterior marginals and
estimate the linear predictor at each time-location for the 1,826 days on the regular grid (Thomas, Shaddick, Simpson, de
Hoogh, & Zidek, 2019).

We compute the predictions from the model that includes all monitors as training set.
We extract samples from the posterior marginals of the model components in order to reconstruct the linear predictor

at each time-location for the 1,826 days on the regular grid, as:

𝜂3(s, t) = 𝛼3 + 𝛽ks + 𝜆1,3z1(s) + 𝜆2,3z2(t) + z3(t, ks).

In particular, following the tutorial by Bakka (2017), we obtain samples from the posterior of the intercept 𝛼3 and 𝛽ks for
each site type, samples from the posterior of 𝜆1,3z1 at the mesh nodes and reproject it on the prediction grid, samples from
the posterior of 𝜆2,3z2 at each time point (days), and samples from the posterior of z3 for each day and site type.

Note that in order to predict at the grid locations we need to know the value of site-type classification for each grid
point. With this aim we built a function which assigns each location to road-kerb side, urban, or rural depending on the
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T A B L E 2 Model comparison in terms of predictive capability

Predictive capability

Modela PMCC CRPS RMSE MAPE CORR COV

AQUM(s,t) joint 18,277 0.0523 0.5725 16.71% 65.83% 78.15%

PCM(s) joint 14,018 0.0372 0.4615 13.54% 76.77% 86.87%

AQUM(s,t)+PCM(s) joint 13,621 0.0338 0.4665 13.67% 76.08% 84.66%

AQUM+PCM bilinear interpolation 82,970 0.2560 0.6911 17.57% 67.14% 68.55%

AQUM+PCM kriging estimates 35,017 0.2220 0.4964 14.58% 73.13% 75.27%

AQUM, nonstationary (Mukhopadhyay & Sahu, 2017) 79,542b 60.74%

AQUM+PCM, nonstationary (Mukhopadhyay & Sahu, 2017) 75,506b 62.13%

AQUM+PCM, stationary (Mukhopadhyay & Sahu, 2017) 75,510b 62.13%

a(s) indicates spatial-only random effects; (t) indicates temporal-only random effects; (s,t) indicates additive spatial and temporal random effects. When not
specified, a linear effect is assumed as described in Section 3.3.
bAs provided by spT.Gibbs function in R package spAir.

distance from any road as well as using the Corine land cover for the year 2012 for the UK, Jersey, and Guernsey shapefile
from the Centre for Ecology and Hydrology (Cole et al., 2015). See Appendix F for more details.

For each sample we then sum up the samples from the fixed effects and random effects to reconstruct the linear
predictor, then the prediction is given by average across all samples.

4 RESULTS

In this section we present the results of the model comparison, with particular focus on the advantages of the proposed
joint model, and the daily predictions that we obtained from the best model.

4.1 Model comparison

In order to show whether the inclusion of more than one extra data source actually improves the model predictive
capability, we compare our proposed joint model with the corresponding models that include only AQUM or PCM.

For AQUM we assume a spatiotemporal effect or temporal-only effect when PCM is included.
We also compare our joint model with other well-established data integration techniques, the simple interpolation

models described in Section 3.3.2, and the more complex ones described in Section 3.3.3.
Besides providing information about all the sources of uncertainty, all the joint models have better performance than

the models where the misaligned data are interpolated, even allowing for nonstationarity (see Table 2).
However, the AQUM data do not seem to provide much information, in fact the model that includes only AQUM has

a far worse performance than the one only including PCM. In addition, allowing for a spatial effect on AQUM does not
improve the prediction, for the model where PCM is also included. This can be explained by the fact that the time–site-type
interaction z3 replaces the role of AQUM in capturing the temporal trend when we remove AQUM from the model and
the temporal information is still provided by the numerous monitoring stations, while there is no other structured spatial
component that compensates for PCM when it is removed.

Furthermore, as we focus here on spatial prediction rather than temporal forecasting, removing AQUM is less of a
burden on the model performance in terms of predictive capability.

Nevertheless, the model including both AQUM and PCM has the best performance in terms of PMCC and CRPS and
we will report the results from this model in the next section.

Note that the predictive capability measures of the models in Section 3.3.3 cannot be compared with the others due
to the different model structure. Only the PMCC and the 95% coverage are comparable and reported in Table 2.
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mean SD 0.025q median 0.975q

𝛼1 2.0653 0.0308 2.0048 2.0653 2.1258

𝛼2 2.5793 0.0259 2.5285 2.5793 2.6301

𝛼3 2.4722 0.0236 2.4258 2.4722 2.5186

𝛽URB −0.1716 0.0047 −0.1808 −0.1716 −0.1624

𝛽RKS 0.3764 0.0047 0.3673 0.3764 0.3856

𝜎2
𝜖1

0.0003 0.0000 0.0003 0.0003 0.0003

𝜎2
𝜖2

0.0303 0.0000 0.0303 0.0303 0.0303

𝜎2
𝜖3

0.0213 0.0000 0.0213 0.0213 0.0213

𝜎2
z1

2.0729 0.0385 1.9815 2.0803 2.1225

𝜎2
z2

2626.3 7.960 2607.8 2627.7 2637.7

𝜎2
z3

0.0013 0.0000 0.0013 0.0013 0.0013

rz1
(km) 177.8 0.227 177.2 177.77 256.0

𝜌z3
0.5702 0.0005 0.5689 0.5700 0.6869

𝜆1,2 1.1000 0.0001 1.0996 1.0999 1.1345

𝜆1,3 1.2999 0.0003 1.2989 1.2998 1.3990

𝜆2,3 0.8995 0.0004 0.8977 0.8995 0.9003

T A B L E 3 Summary of model parameters and
hyperparameters

With regard to these models, allowing for nonstationarity and anisotropy leads to very little gain compared with the
introduction of an additional source of data at high spatial resolution. In general, their performance is almost as poor as
having a linear effect on interpolated covariates.

4.2 Results from the complete joint model

We report the results for the joint model that includes spatial and temporal effects on AQUM and spatial effect on PCM,
ran using all monitors as training data.

Looking at the summary reported in Table 3 we see that, as expected, there is an increase in the NO2 concentration
going from rural to road-kerb side locations, but not for urban. For the spatial latent field z1, the estimated empirical
range, that is, the distance after which the spatial correlation function drops to 0.13 (Lindgren & Rue, 2015) is 177 km,
corresponding to approximately 50% of the maximum extension of the spatial domain.

The scaling parameters 𝜆i,j are all different from 1, meaning the spatial field for PCM needs to be rescaled for AQUM
(𝜆1,2 = 1.1) and for the monitor observations (𝜆1,3 = 1.3), and the temporal latent field for AQUM is also calibrated against
the monitor observations with 𝜆2,3 = 0.9.

The intercepts 𝛼i represent the overall mean of PCM, AQUM, and ground observations, respectively.
The spatial latent field z1 (Figure 2) shared between the PCM data, the AQUM data, and the monitor observations

shows the traffic-driven characteristics of NO2 as we can recognize higher values in correspondence of motorways and
major city centers. The rescaled fields are reported as well and for 𝜆1,3z1 the magnifying effect of the scaling parameter
𝜆1,3 = 1.3 is particularly visible.

Figure 3 shows the temporal latent field z2 shared between the AQUM data and the monitor observations, which
captures the seasonality of NO2, and the rescaled field 𝜆2,3z2, which is shrinked by the scaling parameter 𝜆2,3 = 0.9.

The latent fields z1 and z2 are both centered in zero as the large scale component of PCM and AQUM is captured by
their intercepts 𝛼1 and 𝛼2.

Finally, the time–site-type interaction z3 in Figure 4 shows that there is some residual site–type-specific tem-
poral variability, especially for urban and road-kerb side monitors, which is not captured by the main temporal
component z2.
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F I G U R E 2 Posterior mean of the latent spatial field z1 and of the rescaled spatial fields 𝜆1,2z1 and 𝜆1,3z1
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F I G U R E 4 Time–site-type interaction z3. Posterior mean in red, 95% CI in black dashed lines

4.2.1 Daily predictions

We selected four NO2 pollution episodes reported by the LondonAir website (King’s College London, 2018) and compared
the predictions for these 4 days with four randomly selected summer Sundays across the study period, where we expect
to see low levels of NO2. The predictions show the expected behavior, with high predicted concentrations during the
pollution episodes and low concentrations during the selected Sundays (Figure 5).

A layer with the roads classified as motorways is plotted on top of each map, showing correspondence between the
highest predicted levels of NO2 and the major roads. This is expected because NO2 is a highly traffic-driven pollutant. A
peak of NO2 concentration can also be observed in the area of Heathrow airport, on the left of Greater London, which is
characterized by the highest levels also on low concentration days.

5 CONCLUSION AND DISCUSSION

We implemented a hierarchical Bayesian model to estimate air pollution concentration, combining misaligned data
sources with a joint approach. This approach can be considered in between Bayesian melding and calibration, and it is
the first attempt at implementing such methods on spatiotemporal air pollution data in R-INLA.

The proposed model includes information on the site type as well as output from two different numerical models char-
acterized by spatial and temporal variability and accounting for traffic, chemistry, land use, and meteorological covariates.
Our method is transferable to any available data sources; however, the interpretation of the results may change according
to their intrinsic characteristics, in particular referring to the information included in the deterministic or LUR models.

We show that including more than one covariate at different spatial and temporal resolution increases model predic-
tive capability. However, removing AQUM has proven not to be detrimental, but this could be justified with the fact that
we are not doing temporal forecasting.

Overall, we prove that using as much spatial and temporal information as possible is more beneficial than increasing
the complexity of the random effect structure.
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F I G U R E 5 Daily predictions for 4 days in which an air pollution event was registered (top row) and 4 days with reported low air
pollution concentration (bottom row)

A time–site-type interaction was added to the model to account for residual temporal variability observed when
looking at the site-type-specific residuals.

The advantages of our method are manyfolds: first, reconstructing the entire latent field in a Bayesian approach pro-
vides us with the marginal posterior distribution for all the uncertainty parameters, allowing us to correctly quantify the
uncertainty associated with our predictions and the deterministic models, that is not possible to obtain with other down-
scalers and non-model-based solutions; second, unlike the spatiotemporal downscaler proposed by Berrocal et al. (2012),
our model reconstructs the latent fields of the misaligned covariates as a whole, rather than locally. For the same reason,
in order to obtain daily predictions at new locations there is no need to calculate the value of the misaligned covariates at
the prediction locations, as the model already estimates the whole latent field.

Our analysis presents some limitations related on one side to the computational requirements of INLA due to the high
number of parameters, and on the other side to the generalizability of the results, as the models are quite data-sensitive.
In particular, we have very few rural sites even though we extended the study domain outside Greater London, suggesting
the presence of preferential sampling that we did not account for. Furthermore, we made assumptions of stationarity and
isotropy, which may not hold when extending the spatial domain to bigger areas.

As a next step we will extend the joint model to a multivariate version including other pollutants, such as PM10 or O3.
In the future, the predicted air pollution concentration with associated measure of uncertainty could be used as

exposure in an epidemiological model, allowing for uncertainty propagation.
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