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Abstract: Surfing in rough waters is not always as fun as wave riding the “big one”. Similarly, in
optimization problems, fitness landscapes with a huge number of local optima make the search for
the global optimum a hard and generally annoying game. Computational Intelligence optimization
metaheuristics use a set of individuals that “surf” across the fitness landscape, sharing and exploiting
pieces of information about local fitness values in a joint effort to find out the global optimum. In
this context, we designed surF, a novel surrogate modeling technique that leverages the discrete
Fourier transform to generate a smoother, and possibly easier to explore, fitness landscape. The
rationale behind this idea is that filtering out the high frequencies of the fitness function and keeping
only its partial information (i.e., the low frequencies) can actually be beneficial in the optimization
process. We prove our theory by combining surF with a settings free variant of Particle Swarm
Optimization (PSO) based on Fuzzy Logic, called Fuzzy Self-Tuning PSO. Specifically, we introduce a
new algorithm, named F3ST-PSO, which performs a preliminary exploration on the surrogate model
followed by a second optimization using the actual fitness function. We show that F3ST-PSO can lead
to improved performances, notably using the same budget of fitness evaluations.

Keywords: global optimization; particle swarm optimization; fuzzy self-tuning PSO; Fourier
transform; surrogate modeling

1. Introduction

Most optimization problems, related to real-life applications, are characterized by the existence of
a large number of local optima, which might induce a premature convergence of optimization methods
and prevent the identification of the global optimum. If we consider this issue from the perspective of
a search on the fitness landscape, we are forced to face the exploration of a rugged multidimensional
surface, which makes the search for the global optimum pretty hard and time consuming. In order to
facilitate optimization tasks, we metaphorically take inspiration from the fact that surfing in rough
waters is arduous and annoying, while riding a big wave is much easier and more fun. Similarly, in
this work we aim at simplifying the optimization task by smoothing the fitness landscape, i.e., getting
rid of (a number of) local optima thanks to the generation of a surrogate fitness surface.

In the field of optimization, surrogate modeling consists in the definition of an approximated
fitness function, whose evaluation is typically less expensive than its original counterpart [1].
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Commonly employed techniques include polynomial regression [2], Kriging modeling [3], support
vector regression [4], radial basis functions [5], artificial neural networks [6], genetic programming [7],
or a combination of the above, employed to build local or global surrogate models [8–11].

The construction of surrogate models is exploited in several engineering and scientific
fields [1,12–15], to lessen the computational burden of optimization tasks in which the evaluation of
the fitness function is a major bottleneck. Indeed, many different optimization problems typically
require the execution of time-consuming computer simulations for each evaluation of the fitness
function, like, for instance, engineering design, drug design, and biochemical simulation. Leveraging
surrogate models proves particularly useful when the optimization problems are tackled by means of
evolutionary computation and swarm intelligence algorithms [16–18], which require a huge number of
fitness evaluations to converge to optimal solutions. Besides the reduction of the computational cost,
surrogate modeling has been used to address other issues [16], e.g., searching for optimal solutions
that are insensitive to small perturbations [19]; learning changes in the fitness landscapes in dynamic
optimization problems [20]; smoothing noisy or multimodal fitness functions [21,22].

Following this line of research, here we present a novel method, named surF, which leverages
the direct Fourier transform to generate smoothed surrogate models of multimodal, rugged, and
noisy fitness landscapes. In addition to the advantage of creating surrogate fitness landscapes that
are computationally less expensive to evaluate, surF provides the user with the possibility of tuning
the “level of smoothing” by means of a hyperparameter, which corresponds to the number of low
frequency spectral coefficients considered for the inverse Fourier transform. To assess the usefulness of
surF in facilitating the convergence to the global optimum, we test our approach on a set of benchmark
functions characterized by ruggedness, noise, and multimodality.

In this work, we thoroughly investigate the efficacy and effectiveness of surF, by coupling it
to FST-PSO [23], a settings-free version of Particle Swarm Optimization (PSO) [24]. FST-PSO was
specifically chosen among the swarm intelligence techniques since it is a self-tuning algorithm: as a
matter of fact, the lack of any hyperparameters simplifies the analysis of surF’s performance, which
could be otherwise affected or even covered up by the selection of the optimizer’s functioning settings.
The surrogate model created by surF is directly exploited by FST-PSO to perform a (computationally
less expensive) optimization on a smoother fitness landscape. This idea represents the foundation for
F3ST-PSO, a novel dual-phase variant of FST-PSO that begins the optimization on the surrogate model
and terminates on the real fitness landscape (Figure 1).

F3ST-PSO starts by randomly collecting samples of the fitness landscape in a given search space:
this information allows surF to create a surrogate model using Fourier transforms and filtering (step
1). Then, a random population of candidate solutions is initialized on the surrogate model (step 2) in
order to perform a FST-PSO optimization (step 3); the best particle found in the surrogate model is
then identified and translated to the original fitness landscape (step 4), where it provides a hint for a
new optimization with FST-PSO using the real model (step 5).

F3ST-PSO was applied for the optimization of a set of classic benchmark functions and the CEC
2005 test suite. We show that, in general, the application of F3ST-PSO allowed us to obtain better
results than FST-PSO, thanks to the surrogate models created by surF, which effectively remove noise
and local optima that might impair the convergence process.

A detailed description of the creation of the surrogate model by the surF algorithm, and its
coupling with FST-PSO, is provided in Section 2, while in Section 3 we show that F3ST-PSO can
outperform FST-PSO, especially in the case of very noisy fitness landscapes. Finally, in Section 4 we
draw some conclusions and provide some insights on future developments of this line of research.



Entropy 2020, 22, 285 3 of 17

Creation of the 
surrogate model 

via Fourier 
transform

The best particle 
is translated back 
to the real model

Optimization using FST-PSO 
on the surrogate model

Initial (random) 
selection 

of particles

Optimization using 
FST-PSO on the 

real model

1 2

3

45

Figure 1. F3ST-PSO phases. Step 1: surF randomly samples the fitness landscape within a chosen
search space (red dots) and uses that information to create a surrogate and smoother model. Step
2: a population of random candidate solutions is generated and placed on the surrogate model of
the fitness landscape (orange dots). Step 3: FST-PSO is exploited to perform an optimization on the
surrogate model. Step 4: the best individual (black star) found by FST-PSO is placed on the original
fitness landscape, together with a new population of random candidate solutions (orange dots). Step 5:
a final optimization with FST-PSO is performed on the original fitness landscape.

2. Materials and Methods

Given a D-dimensional search space S ⊆ RD and a fitness function f : RD → R, a minimization
(maximization) problem consists in finding the optimal solution o ∈ S such that f (o) ≤ f (x) ( f (o) ≥
f (x)), for all x ∈ S , x 6= o. Since the fitness function associates each candidate solution in the search
space to a real value, it induces a hypersurface representing the quality of solutions across their
feasible space of existence. This surface traditionally takes the name of fitness landscape, and can
be formally defined as a pair Λ = (S , f ). It is often the case that these hypersurfaces are irregular,
rugged, noisy, funnelled, and so forth. This circumstance prevents the adoption of simple approaches
like hill climbing and gradient descent to determine the optimal solution, since these methods would
easily get stuck in a local minimum. To bypass this issue, a plethora of metaheuristics (e.g., stochastic
gradient descent, simulated annealing, and the methods belonging to evolutionary computation and
swarm intelligence) have been proposed and proved to be effective on a large number of benchmark
functions and real applications. In the next sections, we first recall one advanced metaheuristic for
global optimization, we introduce a novel approach to smooth the fitness landscapes by means of
Fourier transforms, and finally show how to couple these approaches to carry out efficient optimization
on surrogate models of the fitness landscape.

2.1. Fuzzy Self-Tuning PSO (FST-PSO)

Particle Swarm Optimization (PSO) is a population-based metaheuristics for global optimization
inspired by the collective movement of fish and birds [24]. In this algorithm, a set (swarm) of P
candidate solutions (particles)—each one identified by a position vector ~x—moves inside a bounded
D-dimensional search space. Particles cooperate to identify and converge to the (global) best solution
of the optimization problem. In the classic formulation of PSO, the balancing between the global
exploration and the local exploitation of particles is determined by two specific settings: the cognitive
attractor Ccog ∈ R+ and the social attractor Csoc ∈ R+, respectively. These two factors have a relevant
impact on the performances of PSO, along with the inertia factor w ∈ R+ that is used to prevent a
chaotic movement of particles. On top of that, the values of the maximum and minimum velocity
(~vmax,~vmin ∈ RD) of particles along each dimension of the search space can also affect the quality of



Entropy 2020, 22, 285 4 of 17

the optimal solutions found by PSO: the former prevents extreme movements inside the search space
(possibly leading the particles outside the feasible region), while the latter prevents the stagnation
of the swarm. Due to their importance, Csoc, Ccog, w,~vmax, and ~vmin are usually carefully selected
according to the characteristics of the problem under investigation. Since these values cannot be
determined analytically, their selection usually requires a massive amount of trials.

In this context, Fuzzy Self-Tuning PSO [23] adopts a radically different approach, which allows to
avoid the settings problem by adding a Fuzzy Rule Based System (FRBS) to each particle. Specifically,
Fuzzy Logic is used to dynamically (i.e., during the optimization) adjust the settings for each
particle—independently from the other particles in the swarm—according to the performances of the
particle and its distance with respect to the position of the current global best particle ~g. Thanks to this
approach, FST-PSO does not require any user settings and can outperform the classic PSO (and many
competitor algorithms) in several benchmark [23] and real-world problems [25–27].

The pseudocode of the FST-PSO algorithm is shown in Algorithm 1: the algorithm begins by
randomly placing the particles in the search space (line 1). Then, similarly to conventional PSO, the
fitness function is evaluated for all particles, and the information about the current global and local
bests are updated accordingly (lines 4–10). FST-PSO exploits the FRBS to perform multiple Sugeno
inferences (line 14), according to each particle’s performance with respect to the previous iteration
(line 12) and to its distance from the current global best in the swarm (line 13). Finally, the velocity
and position of all particles are updated (lines 16–20), and the algorithm iterates until the budget of
fitness evaluations is depleted. The best solution found by the swarm is returned as the result of the
optimization (line 23).

Algorithm 1: Pseudocode of the FST-PSO algorithm.

1 swarm← population_initialization(N,search_space);
2 fitness_budget← max_iterations × N;
3 repeat
4 for particle ∈ swarm do
5 particle.fitness← fitness(particle.update_position);
6 if particle.fitness < particle.pbest.fitness then
7 particle.pbest← particle;
8 end
9 end

10 gbest← update_global_best(swarm);
11 for particle ∈ swarm do
12 phi← particle.calculate_improvement() ;
13 delta← particle.calculate_distance_gbest(gbest) ;
14 particle.adjust_settings();
15 end
16 for particle ∈ swarm do
17 particle.update_velocity() ;
18 particle.update_position() ;
19 particle.check_boundary_conditions() ;
20 end
21 fitness_budget← fitness_budget − N;
22 until fitness_budget > N;
23 return gbest

2.2. Fitness Landscape Surrogate Modeling with Fourier Filtering (surF)

The discrete Fourier transform (DFT) is one of the most useful mathematical tools to process signals
and information represented in a discrete way [28]. Here we recall the definition of the DFT in the
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one-dimensional case, the way it is extended to higher dimensions, and how it can be employed in a
process of “filtering” the fitness landscape to reduce the number of local minima.

Let f : [`, u]→ R be a fitness function for a given optimization problem, whose solutions belong
to the interval [`, u] ⊆ R. Suppose that we can sample f for ρ times at regular intervals, obtaining a
set of fitness values f (x0), . . . , f (xρ−1), where |xk − xk+1| = ∆x for 0 ≤ k < ρ− 1. Stated otherwise,
the ρ points x0, . . . , xρ−1 are all equispaced with distance ∆x in the interval [`, u]. The idea behind the
DFT is that each sampled fitness value f (x0), . . . , f (xρ−1) can be represented as a weighted sum of
frequencies, in the following way:

f (xk) =
ρ−1

∑
m=0

ame−2πi mk
ρ for 0 ≤ k < ρ.

This means that the ρ coefficients a0, . . . , aρ−1 in the frequency domain are all that is needed to
recover f (x0), . . . , f (xρ−1). Intuitively, each am is the coefficient corresponding to a certain frequency,
thus we can freely move from a collection of ρ points f (x0), . . . , f (xρ−1) in space (i.e., R, in this
case), to a collection of ρ coefficients a0, . . . , aρ−1 for the frequencies and vice versa, via the inverse
transformation called the inverse DFT.

Since applying the DFT first and then the inverse DFT corresponds to the identity function, we
carry out an intermediate transformation step, which consists in filtering all frequencies above a certain
threshold. This step, when operating in the frequency domain, simply consists in setting to zero all
but the first γ coefficients, for some γ ∈ {0, . . . , ρ− 1}, which correspond to the highest frequencies.
Namely, we only consider the coefficients a′0, . . . , a′ρ−1, where a′0 = a0, . . . , a′γ−1 = aγ−1, and a′γ =

0, . . . , a′ρ−1 = 0. When applying the inverse DFT to the set of coefficients a′0, . . . , a′ρ−1, the resulting set
of points y0, . . . , yρ−1 is a “smoothed” version of the starting set of points f (x0), . . . , f (xρ−1).

We can interpret the points y0, . . . , yρ−1 as those obtained via a function f̃ : [`, u] → R that is
“smoother” than f , namely, y0 = f̃ (x0), . . . , yρ−1 = f̃ (xρ−1). By initially employing f̃ as the fitness
function in our optimization process we might be able to avoid local minima, while preserving the
location of the global optima. This is, indeed, an assumption that might be or might not be satisfied by
the specific fitness function under examination. We provide some examples and a discussion of this
matter in Section 3.

Since we only have a sample of ρ values of f̃ , to actually obtain a function defined on the entire
interval [`, u] it is necessary to interpolate between the points f̃ (x0), . . . , f̃ (xρ−1). This can be simply
performed by a linear interpolation (i.e., connecting the points with segments), thus obtaining a
piecewise linear function. Therefore, a sequence of steps to find the global optimum of an unknown
function f : [`, u]→ R+ consists in: sampling f in a number ρ of equally spaced points; applying the
DFT and reduce the number of coefficients; filtering out the higher frequencies; applying the inverse
DFT to obtain a “smoothed” version of f —that is, its surrogate model defined by the function f̃ —on
which an optimization method can be applied. The resulting optima of f̃ found by the optimization
method can then be “translated back” to f , with the assumption that, for some classes of functions, the
global optima of f̃ will be the same or close to the global optima of f .

The same idea can be extended to any number of dimensions. Let the fitness function be defied
as f : ∏D

d=1[`d, ud] → R+. For the sake of exposition, we assume that all intervals [`d, ud] are
equal, so that we can rewrite the fitness function as f : [`, u]D → R+. Since we are working in a
D-dimensional space, instead of sampling ρ equispaced points we will sample ρD points, which are
all equally spaced in a D-dimensional grid. The DFT can be extended into D dimensions, obtaining
ρD coefficients for the frequencies. For example, in the two-dimensional case there will be ρ2 points
f (~x1,1), . . . , f (~x1,ρ−1), . . . , f (~xρ−1,1), . . . , f (~xρ−1,ρ−1), from which ρ2 coefficients are obtained by the
two-dimensional DFT: a1,1, a1,2, . . . , aρ−1,ρ−1. Then, we can keep only the γ2 coefficients ai,j with
0 ≤ i, j < γ corresponding to the lower frequencies. In D dimensions, the number of coefficients to
keep is γD. As before, by performing the inverse DFT, we obtain a set of ρD points from a function f̃ ,
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which can be interpreted as f where the higher frequency components were removed. The optimization
can then proceed on the surrogate model f̃ , at least initially.

One last point to notice is that, in order to perform the DFT, we need to sample the function f in
ρD points, which might not be always feasible, especially when computing f is resource-intensive. To
mitigate this problem, we propose the following additional approximation:

1. a set A = {~x0, . . . ,~xσ} of σ points, with σ� ρD, is defined by sampling f uniformly in [`, u]D;
2. a surrogate f̂ of f is defined in the following way, for each ~x ∈ [`, u]D:

(a) if ~x is inside the convex hull of the points in A, then a triangulation of the points in A is
constructed and the value of f̂ (~x) is obtained by linear interpolation. For example, in two
dimensions, ~x will be contained in a triangle defined by three points ~xi,~xj,~xk ∈ A, and
f̂ (~x) will be a linear combination of f (~xi), f (~xj), and f (~xk);

(b) if ~x is outside the convex hull of the points in A, then f̂ (~x) = f (~x′), where ~x′ ∈ A is the
point in A that is nearest to ~x.

So doing, the ρD sampled points from function f̂ can be obtained in a more efficient way, since f
is only evaluated σ times. Actually, the function f̃ obtained by filtering the higher frequencies will
actually be a smoothed version of f̂ and not directly of f . The rationale of surF is exactly to get a pointer
to f and return a pointer to f̃ , which can be directly exploited in global optimization algorithms.

The pseudocode of surF is provided in Algorithm 2. The input of the algorithm is the original
fitness function and its search space, along with the actual values for σ, ρ and γ. The fitness function
is randomly sampled σ times in the search space (line 2), and this information is used to create the
interpolation grid with step ρ (line 3). The interpolated grid is fed to the DFT to extract the Fourier
coefficients (line 4). The first γ coefficients are conserved, while the rest is filtered out by setting the
values to 0 (lines 5–8). Finally, the filtered coefficients are processed with inverse DFT to produce a
pointer to the surrogate model, which is returned as output of the algorithm.

Algorithm 2: Pseudocode of the surF algorithm.

1 Function surF(fitness, search_space, σ, ρ, γ)
2 random_samples← sample(fitness, search_space, σ) ;
3 grid← interpolate(search_space, random_samples, ρ) ;
4 fourier_coefficients← DFT(grid) ;
5 filtered_coefficients← fourier_coefficients;
6 for i← γ to fourier_coefficients.size() do
7 filtered_coefficients [i]← 0 ;
8 end
9 surrogate_fitness_function← inverse_DFT(filtered_coefficients) ;

10 return surrogate_fitness_function

2.3. The Search on the Smoothed Landscape: Coupling surF with FST-PSO (F3ST-PSO)

Once the surrogate model of the fitness landscape is defined, it can be used as an actual fitness
function to perform the optimization. The advantages provided by this approach are manifold:

• the surrogate model represents a smoothed version of the original fitness landscape, whose
“smoothness” can be tuned by means of the γ hyperparameter;

• the evaluation of a candidate solution, using the surrogate model, requires a small computational
effort. Notably, the latter can be far smaller than the evaluation of the original fitness function,
especially in the case of real-world engineering or scientific problems (e.g., parameter estimation
of biochemical systems [29], integrated circuits optimization [14], vehicle design [15]);
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• even if an optimization performed on the surrogate model (e.g., using FST-PSO) does not require
any evaluation of the original fitness function, it can provide useful information about the fitness
landscape and the likely position of optimal solutions;

• the information about the optimal solutions found on the surrogate model can be used for a new
optimization, leveraging the original fitness function.

We propose a novel methodology, named Fourier Filtering Fuzzy Self-Tuning Particle Swarm
Optimization (F3ST-PSO), which couples surF and FST-PSO and works by performing the
following operations:

1. a part of the fitness evaluations budget is reserved for surF to randomly sample the search space
and create the surrogate model;

2. a preliminary optimization on the surrogate model is performed with FST-PSO, to identify an
optimal solution ~g';

3. a new FST-PSO instance is created, and ~g' is added to the initial random population;
4. a new optimization is performed, exploiting the original fitness function and using the remaining

budget of fitness evaluations;
5. a new optimal solution ~greal is determined and returned as a result of the whole optimization.

The complete functioning of F3ST-PSO is schematized in Figure 2. It is worth noting that, in the
case of computationally expensive fitness functions, the algorithm can skip the points 3, 4, and 5 (i.e.,
the green boxes in Figure 2) and directly return ~g' as solution to the optimization problem.

Random sampling of 
fitness landscape

Interpolation over 
D-dimensional lattice

D-dimensional 
Fourier Transform

Spectral coefficients 
filtering

Inverse D-dimensional  
Fourier transform

Creation of 
surrogate model

Optimization using 
surrogate model Identification of g≅ Creation of new 

FST-PSO instance
Creation of a

FST-PSO instance
Optimization using real 

fitness function
Initialization of random 

population + g≅ Return greal

Returned in the case of 
computationally expensive 

fitness evaluations

Figure 2. Detailed scheme of F3ST-PSO functioning. In the first phase (red boxes), the algorithm creates
the surrogate model of the fitness landscape, by exploiting random sampling and Fourier filtering.
The second phase (yellow boxes) consists in an optimization by means of FST-PSO over the surrogate
model. In the third phase (green boxes), the best solution found is fed to a new FST-PSO optimization
step over the real fitness function.

2.4. Frequency of the Optimum Conjecture

Given a fitness function f : [`, u] → R (the following discussion is for a single dimension but
generalizes to any number of dimensions), let us assume that f has a unique global optimum o ∈ [`, u];
it is then possible to define the frequency of the optimum o. Informally, the frequency of o is given by the
minimum number of terms of the Fourier transform of f to keep in order to obtain an approximation
f̂ of f where o is still the global optimum. Stated otherwise, only a subset of the coefficients of the
Fourier transform of f are necessary to recover the global optimum.

Formally, let

f (x) =
+∞

∑
n=−∞

cne2πi nx
u−` for x ∈ [`, u]
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be the function f written as a Fourier series, and let o ∈ [`, u] be such that o = argminx∈[`,u] f (x) (i.e.,
here o represents the global minimum, the reasoning for the global maximum is symmetric). We say
that o has frequency γ if the function fγ defined as:

fγ(x) =
+γ

∑
n=−γ

cne2πi nx
u−` for x ∈ [`, u],

with oγ = argminx∈[`,u] fγ(x) is such that oγ = o and, for all γ′ < γ, oγ′ 6= o. We can allow for o and oγ

to not be equal but only at a distance at most equal to ε, for some ε > 0: we say that the frequency of
the optimum o with error ε is γ if |o− oγ| < ε and, for all γ′ < γ, |o− oγ′ | ≥ ε.

Notice that in this definition we do not use the idea of performing a sampling of f , or a sampling
of an approximation of f , but we work directly with the function f and its Fourier transform. However,
in practical cases f is not directly available, thus requiring some approximations and “tricks”.

It is interesting to notice that working on the approximation fγ of f , where the frequency of the
optimum is γ, can be beneficial: while there is no restriction on the number of local optima in f , the fact
that fγ is defined as a finite sum of frequencies means that the number of local optima in f is bounded
above by an increasing function of γ, thus limiting the number of places where an optimization process
might “get stuck” in fγ.

One question that remains unanswered by the previous definition is how to find the frequency
of the optimum. If the frequency is low enough, then using a low value of γ can be beneficial, since
the number of local optima can be greatly reduced. On the contrary, if the frequency is high enough,
then fγ for a low value of γ might not help in the optimization process, since the location of the global
optimum is different in f and in fγ. If the value of γ is high enough there might not be a reduction
in the number of local optima, thus making the use of fγ not beneficial from an optimization point
of view.

In fact, since we are truncating the Fourier series of f to a limited number of terms, if f has a
global optimum at a high frequency but has only a limited number of local optima, it might be possible
to increase the number of local optima in fγ, making the problem more difficult to solve. Therefore,
approximating f with fγ is expected to be more beneficial when the frequency of the global optimum
is low enough that fγ actually decreases the number of local optima by smoothing f .

3. Results and Discussion

The aim of the tests presented in this section is twofold: first, we assess the actual capability of
surF in creating surrogate models that are easier to explore, while preserving the specific features of the
fitness landscape; second, we investigate the entire process to evaluate whether our methodology could
be beneficial to solve the optimization problem. To this aim, we tested F3ST-PSO on the benchmark
functions listed in Table 1, and on a subset of the CEC 2005 test suite. The Ackley, Alpine, Griewank,
Michalewicz, Rastrigin, Schwefel, Shubert, and Vincent functions were selected because they represent
excellent candidates to study the effectiveness of our approach, thanks to their structural characteristics
(multimodal, rugged, and noisy).

In all tests that follow, we considered D = 5 to limit the memory occupancy. Indeed, as the
function f̂ has to be sampled ρD times, the requirements in terms of time and memory needed to
store the samples and to compute the DFT increase exponentially with the number of dimensions,
even if we sample the function f only σ times to obtain f̂ . The number of initial samples of the fitness
landscape (i.e., the fitness evaluations) was set to σ = 500, while the resolution of the grid used for
the interpolation step was set to ρ = 40 points. All tests were repeated 30 times to collect statistically
significant results. In order to make quantitative comparisons between the different methods, we
calculated the Average Best Fitness (ABF), i.e., the mean of the fitness values of the best solution found
at each iteration, evaluated over the 30 runs.
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surF and F3ST-PSO were implemented using Python 3.7.4, NumPy 1.17.3 [30], and SciPy 1.3.1 [31].
The Python implementation of the IEEE CEC 2005 benchmark suite was based on the optproblems
library. Due to the exceptional computational effort required to perform all tests, the calculations were
offloaded on SURFsara’s Cartesius supercomputer, equipped with 66 nodes based on 2× 8-core 2.5
GHz Intel Xeon E5-2450 v2.

Table 1. Benchmark functions.

Function Equation Search Space Value in Global Minimum

Ackley fAck(~x) = 20 + e− 20 exp(−0.2
√

1
D ∑D

d=1 x2
d)−

exp( 1
D ∑D

d=1 cos(2πxd))

[−30, 30]D fAck(~0) = 0

Alpine fAlp(~x) = ∑D
d=1 |xd sin(xd) + .1xd| [−10, 10]D fAlp(~0) = 0

Griewank fGri(~x) = 1
4000 ∑D

d=1 x2
d −∏D

d=1 cos( xd√
d
) + 1 [−600, 600]D fGri(~0) = 0

Michalewicz fMic(~x) = −∑D
d=1 sin(xd) sin2k(

dx2
d

π ), k = 10 in
this work

[0, π]D fMic(0, 0) = −1.801
fMic(0, 0, 0, 0, 0) = −4.687

Rastrigin fRas(~x) = 10D + ∑D
d=1(x2

d − 10 cos(2πxd)) [−5.12, 5.12]D fRas(~0) = 0

Rosenbrock fRos(~x) = ∑D−1
d=1 [100(x2

d − xd+1)
2 + (xd − 1)2] [−5, 10]D fRos(~1) = 0

Schwefel fSch(~x) = 418.9829D−∑D
d=1 xd sin(

√
|xd|) [−500, 500]D fSch(

#                ‰

420.9687) = 0

Shubert fShu(~x) = ∏D
d=1(∑

5
i=1 i cos[(i + 1)xd + i]) [−10, 10]D

Many global minima, whose
values depend on D

Vincent fVin(~x) = ∑D
d=1 sin(10 log(xd)) [0.25, 10]D fVin(

#                ‰

7.706281) = −D

Xin-She Yang n.2 fXin(~x) = ∑D
d=1 |xd|[exp(∑D

d=1 sin(x2
d))]

−1 [−2π, 2π]D fXin(~0) = 0

3.1. Generation of Surrogate Models by surF

Except for the Rosenbrock function, the other benchmark functions defined in Table 1 contain
at least one trigonometric term, which was exploited on purpose to mimic noise or to introduce a
large number of local minima in the landscape. One of the scopes of this work is to show that these
fluctuations in the fitness values can be removed by means of Fourier filtering, yielding a smoother
fitness landscape that, ultimately, leads to a simpler version of the original optimization problem.

In Figure 3, first column, we present the original fitness landscape for each benchmark function,
while the last three columns show some examples of their 2D surrogate models, created using surF
and adopting an increasing number of coefficients in the frequency domain (i.e., γ = 3, γ = 5 and
γ = 15). All plots were generated using σ = 100 and ρ = 200. For each benchmark function, we
sampled the ρ = 200 random points from the fitness landscape using a uniform distribution (as shown
in the second column), exploiting a pseudorandom generator (Mersenne Twister [32]). These points
were used in surF to create an interpolated grid, calculate a two-dimensional Fourier transform, filter
the high-frequency components, and produce the surrogate model.

The results presented in Figure 3 show that, when using γ = 3 (third column), the surrogate
models of some benchmark functions are very similar to the original fitness landscape, with the
exception of the high frequency perturbations (compare, e.g., the original fitness landscape of the
Ackley function and its surrogate model). In particular, in many cases the position of the global
minimum is conserved even when using such a small number of coefficients. We then repeated the
process using γ = 5 and γ = 15 coefficients (fourth and fifth column, respectively), to show that a
larger number of coefficients can correctly reproduce the high frequency components of the original
fitness landscape (see, e.g., the Michalewicz and Rastrigin functions).
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Figure 3. Examples of 2D surrogate models of the benchmark functions defined in Table 1, created
by surF. The first column shows the original fitness landscape. The second column represents a
random sampling of the fitness landscape, which is used to create the interpolation grid for the Fourier
transform. The interpolation is shown as background color: dark/blue colors correspond to good
fitness values, while bright/yellow colors correspond to bad fitness values. The third, fourth, and fifth
columns represent the surrogate models, obtained by applying the inverse Fourier transform using
γ = 3, γ = 5 and γ = 15 coefficients, respectively.
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3.2. Optimization of Benchmark Functions by F3ST-PSO

surF was applied to create the surrogate models of the fitness landscapes of the nine benchmark
functions, considering γ = 3, γ = 5 and γ = 15 coefficients. We then performed an optimization
phase with FST-PSO on the surrogate models, using 150 particles and 1000 iterations. Note that these
optimizations did not require any evaluation of the original fitness function, except for the initial
random sampling of the fitness landscape that was carried out by surF. Figure 4 shows the boxplots
of the fitness values distributions of the best solutions ~g' found by FST-PSO for the optimization of
different benchmark functions, whose surrogate models were created with different γ values. Note
that the fitness values were calculated using the actual fitness function.
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Figure 4. Boxplots of the fitness values distribution of the best individuals ~g' found by FST-PSO at the
last iteration on the surrogate models, exploiting γ = 3, γ = 5 and γ = 15 coefficients (x-axis). The
orange line and the green triangle denote the median and the mean, respectively.

These results show that in the case of the Ackley, Alpine, Griewank, and Michalewicz functions,
the best performances were obtained with the surrogate models using a few coefficients. Stated
otherwise, increasing the detail of the surrogate model does not necessarily lead to better results and
might even affect the optimization performances. This phenomenon could be due to the higher level
of multimodality and ruggedness introduced into the surrogate model by using higher frequency
components. This is particularly evident in the case of the Alpine function, when comparing the plots
of the surrogate models generated with γ = 3 and γ = 15 (Figure 3). By using 15 coefficients, many
local minima of the original fitness landscape are maintained in the surrogate model. We also observed
that creating a surrogate model of a function characterized by a logarithmic component, as in the case
of the Vincent function, can bend the resulting fitness landscape so that, despite being smoother than
its original counterpart, it completely loses its specific features. Finally, a different effect can be noticed
in the case of the Michalewicz benchmark function, where the plateaus of the original fitness landscape
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are introduced into the surrogate model as uneven areas, making the optimization problem harder to
solve. We believe that this might be related to the Gibbs phenomenon of the Fourier series, whereby
cutting the high frequencies of the fitness function introduces ringing artifacts [33].

We then compared the performances of F3ST-PSO—when all five phases of the methodology are
executed—against standard FST-PSO (i.e., with no previous application of surF). The settings used
for these tests are reported in Table 2. The results of this comparison are shown in Figure 5, where
FST-PSO is denoted by the black dashed line, while F3ST-PSO is denoted by solid blue, orange, and
green lines for γ = 3, γ = 5 and γ = 15, respectively. According to these results, F3ST-PSO always
showed better performances in the case of the Shubert function.

Table 2. Settings used for the comparison of performances between F3ST-PSO and FST-PSO,
considering the benchmark functions with D = 5.

Setting Value

Fitness evaluations budget 13,000
σ 500
ρ 40

γ values tested 3, 5 and 15
Swarm size F3ST-PSO 25
Iterations F3ST-PSO 500

Swarm size of FST-PSO 25
Iterations FST-PSO 520
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Figure 5. Convergence plot showing the performance of FST-PSO (black dashed line) against F3ST-PSO
(blue, orange, and green solid lines correspond to the use of γ = 3, 5, and 15 coefficients in surF,
respectively). The plots show that FST-PSO can perform 20 additional iterations compared to F3ST-PSO,
since the construction of the surrogate model “consumes” 500 fitness evaluations during the initial
random sampling.
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In the case of the Rastrigin and Vincent functions, F3ST-PSO outperformed FST-PSO by using
γ = 5 and γ = 15. In the case of the Michalewicz function, higher values of γ seem to lead to worse
results, arguably due to the increased number of local minima. FST-PSO performed similar to F3ST-PSO
in the case of the Ackley function and yielded better results in the case of the Griewank function.

Altogether, these results suggest that the preliminary optimization phase on the surrogate model
can actually have a positive impact on the identification of the global optimum.

Finally, in relation to the frequency of the optimum conjecture described in Section 2.4, we
observed that F3ST-PSO was outperformed by FST-PSO in the case of the Rastrigin and Vincent
functions, for γ = 3. This situation can be explained by the fact that the frequency of the optimum
might be higher than 3, implying that the initial optimization phase did not provide any optimal
solution for the second optimization phase.

3.3. Optimization of the CEC 2005 TEST suite by F3ST-PSO

We investigated the performances of F3ST-PSO on more complex fitness functions, by using the
CEC 2005 test suite. The settings used for these tests are shown in Table 3. Specifically, we considered
the subset of functions that are defined for problems with D = 5 (i.e., F1, F2, F4, F5, F6, F9, F13,
F15). Functions F1, F2, F6, F13, and F15 were very simple to solve, and both F3ST-PSO and FST-PSO
immediately converged to the optimal solutions with similar performances (data not shown). On the
contrary, the two algorithms showed significant differences in the optimization of functions F4, F5,
and F9, as shown in Figure 6.

Table 3. Settings used for the comparison of performances between F3ST-PSO and FST-PSO,
considering the functions F4, F5, and F9 of the CEC 2005 suite, with D = 5.

Setting Value

Fitness evaluations budget 25,500
σ 500
ρ 40

γ values tested 3, 5 and 15
Swarm size F3ST-PSO 25
Iterations F3ST-PSO 1000

Swarm size of FST-PSO 25
Iterations FST-PSO 1020
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Figure 6. Convergence plot showing the performance of FST-PSO (black dashed line) against F3ST-PSO
(blue, orange, and green solid lines correspond to the use of γ = 3, 5, and 15 coefficients in surF,
respectively). The plots correspond, from left to right, to the results on the benchmark functions F4, F5,
and F9 of the CEC 2005 suite.

In particular, the case of function F4 is worth discussing. This benchmark function represents
a shifted version of the Schwefel’s optimization problem [34], with additional noise [35]. The
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(multiplicative) noise applied to the function is calculated by taking the absolute value of scaled
normally distributed random numbers:

F4(~x) =

(
D

∑
d=1

(
d

∑
j=1

zj)

)
· (1 + 0.4 · |N (0, 1)|), ~z = ~x−~o,

where~o is the shifted position of the global optimum. Due to noise, two evaluations of function F4
using the same candidate solution return different fitness values, misleading all the approaches that
are purely based on gradient descent and, potentially, also swarm intelligence techniques like PSO.
On the contrary, surF can produce a smoother and easier version of the fitness landscape (Figure 7).
Thanks to this smoothing, F3ST-PSO actually led to better performances, with a final ABF lower than
FST-PSO regardless of the γ value used (Figure 6, left panel).
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Figure 7. Surrogate models of function F4 using γ = 3, γ = 5 and γ = 15 coefficients (plots (a), (b),
and (c), respectively). By removing the higher components of the Fourier transform, the random noise
is reduced, so that the fitness landscape becomes smoother and easier to explore (orange surface), while
retaining the general characteristics of the original problem (blue surface).

4. Conclusions

In this work we presented surF, a novel methodology for the creation of surrogate
models of fitness landscapes by means of Fourier filtering. Differently from similar surrogate
modeling approaches—which are generally adopted to mitigate the computational effort of fitness
evaluations—surF also allows the user to select the level of “ruggedness” of the search space by
setting a specific hyperparameter γ, which gives control over the number of low-frequency harmonics
used for the inverse Fourier transform. We tested surF using nine well known benchmark functions
characterized by multimodality, showing that it can be effective in several cases to smooth out the
fitness landscape, preserving the global optimum of the function. However, some fitness landscapes
can be characterized by pathological circumstances, in which the optimum cannot be reproduced using
low frequency components: in these cases, better results can be obtained by using higher values for γ.

We then coupled surF to the FST-PSO settings-free global optimization metaheuristics, thus
creating a novel algorithm named F3ST-PSO. This dual-phased methodology begins by performing a
first optimization phase on the surrogate model; then, the global optimum identified in the surrogate
(notably, without performing any fitness evaluation) is added to a new random population that
undergoes a second optimization phase on the real model. We showed that F3ST-PSO can outperform
a pure optimization run made by FST-PSO; still, it is worth noting that the second optimization phase
can be skipped in the presence of computationally expensive fitness evaluations.

The main inconvenience of surF, at the moment, is the interpolation of the random samples of the
fitness function over a D-dimensional grid, which is necessary to evaluate the Fourier transforms and
is characterized by a very high time and space complexity. Specifically, if ρ partitions are considered for
each axis of the search space, then a grid of ρD interpolated points must be calculated, making the naïve
implementation infeasible for high-dimensional optimization problems. As a future development,
we will investigate alternative approaches for the effective calculation of Fourier transforms on
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high-dimensional search spaces with a less-than-exponential complexity, possibly removing the need
for the ρ hyperparameter.

A second drawback of surF is the frequency of the optimum, i.e., the possibility that some optimal
solutions cannot be represented using low values for γ. This hyperparameter plays a relevant role
in the optimization and, of course, the optimal selection of its value is strictly problem dependent.
It might also be the case that a craftful manipulation of the fitness landscape (notably, by means of
Dilation Functions [36]) might reveal such optima even using low frequency components. We will
investigate this possibility, in particular, in the domain of stochastic biochemical systems that are
characterized by very noisy fitness landscapes [37] and a log-uniform distribution of the components
of optimal solutions within the search space [25].

Finally, the sampling of the search space exploited by surF is based on pseudorandom sequences.
Alternative sampling methods could be exploited (e.g., quasirandom sequences [38], cellular
automata [39], latin hypercubes [40]), and possibly lead to better (or perhaps biased) approximations.
We will investigate the impact of these initial sampling methods on Fourier-based surrogate modeling,
to the aim of further improving the optimization task.

The source code of surF and some usage examples are available on GITHUB at the following
address: https://github.com/aresio/surF. The surF Python package can be installed from the PyPI
repository by typing: pip install surfer.
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Abbreviations

The following abbreviations are used in this manuscript:

DFT Discrete Fourier Transform
EC Evolutionary Computation
FRBS Fuzzy Rule Based System
FST-PSO Fuzzy Self-Tuning Particle Swarm Optimization
F3ST-PSO Fourier Filtering Fuzzy Self-Tuning Particle Swarm Optimization
PSO Particle Swarm Optimization
surF Surrogate modeling with Fourier filtering
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