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Abstract

Motivation: The elucidation of dysfunctional cellular processes that can induce the onset of a disease is a challenging
issue from both the experimental and computational perspectives. Here we introduce a novel computational method
based on the coupling between fuzzy logic modeling and a global optimization algorithm, whose aims are to (1) predict
the emergent dynamical behaviors of highly heterogeneous systems in unperturbed and perturbed conditions, regardless
of the availability of quantitative parameters, and (2) determine a minimal set of system components whose perturbation
can lead to a desired system response, therefore facilitating the design of a more appropriate experimental strategy.

Results: We applied this method to investigate what drives K-ras-induced cancer cells, displaying the typical
Warburg effect, to death or survival upon progressive glucose depletion. The optimization analysis allowed to
identify new combinations of stimuli that maximize pro-apoptotic processes. Namely, our results provide different
evidences of an important protective role for protein kinase A in cancer cells under several cellular stress conditions
mimicking tumor behavior. The predictive power of this method could facilitate the assessment of the response of
other complex heterogeneous systems to drugs or mutations in fields as medicine and pharmacology, therefore
paving the way for the development of novel therapeutic treatments.

Availability and implementation: The source code of FUMOSO is available under the GPL 2.0 license on GitHub at
the following URL: https://github.com/aresio/FUMOSO

Contact: ferdinando.chiaradonna@unimib.it or daniela.besozzi@unimib.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cells are complex heterogeneous systems, whose functioning is
governed by a finely regulated interplay between various types of
molecules involved in gene expression, signal transduction and meta-
bolic pathways, altogether resulting in different cellular phenotypes.
Dysfunctional processes caused by events occurring at the molecular
level can induce a cascade of local and global damages in cells, tissues,
organs and, possibly, in the whole organism. Therefore, understanding
molecular regulations at a mechanistic level is indispensable either to

prevent or control the onset of many diseases. In this context, the
integration between experimental data and computational methods fa-
cilitate the definition of predictive mathematical models, whose simu-
lations can elucidate the emergent properties of the biological system
in physiological and pathological conditions, reveal possible counter-
intuitive mechanisms and envisage new hypotheses that can be tested
in the laboratory (Faeder and Morel, 2016; Kitano, 2002).

The mathematical description of biological systems can be realized
with different approaches, such as mechanism-based (Wilkinson,
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2009) or logic-based modeling (Le Novère, 2015). Mechanism-
based models provide a detailed description of the underlying
biochemical reactions (Chylek et al., 2015; Szallasi et al., 2006).
However, these models require the knowledge or the inference
(Chou and Voit, 2009) of quantitative parameters (e.g. kinetic rates,
molecular amounts) that are often difficult to be measured, especial-
ly in vivo and for large-scale systems, therefore hampering the effect-
iveness of many computational analyses (Somogyi et al., 2015;
Tangherloni et al., 2017). Moreover, biological systems and their
components are often described in a qualitative way, by using
natural language terms, such as ‘moderately active’ or ‘highly
expressed’, which highlight biological uncertainty and experimental
measurement limitations. Given these issues, logic-based models
may be used as a reliable alternative to study cellular systems
(Morris et al., 2010; Samaga and Klamt, 2013; Wynn et al., 2012),
since they are more suitable than mechanistic models when only
qualitative data are available (Flobak et al., 2015; Fumi~a and
Martins, 2013; Za~nudo and Albert, 2015). In particular, fuzzy logic
represents a powerful extension of Boolean logic to model complex
systems, since it generalizes the binary formalization of the variables
states to deal with any uncertainty related to the system (Yen and
Langari, 1999). Fuzzy logic-based models are defined by: (i) a
directed graph representing the set of system components (i.e. lin-
guistic variables) and their mutual positive or negative regulations;
(ii) a set of linguistic terms for each variable, necessary to give a
qualitative description of intracellular concentrations or functional
activities. Noteworthy, linguistic terms bypass the necessity of a
precise parameterization but, at the same time, they allow to provide
a quantitative representation of the variables states thanks to the
so-called membership functions; (iii) a set of fuzzy logic rules that
specify the state that each linguistic variable will assume over time,
according to the states of the variables by which it is regulated.

So far, fuzzy logic has been applied to different strategies in the
field of cellular biology, for instance, to model and simulate signal-
ing pathways (Aldridge et al., 2009) or gene regulatory networks
(Küffner et al., 2010), overcome the lack of kinetic parameters
(Bordon et al., 2015; Liu et al., 2016a), automatically infer network
models (Keller et al., 2016; Liu et al., 2016b; Morris et al., 2011;
2016) or implement regression models (Schmidt-Heck et al., 2015).
In this work, we propose a novel and general-purpose computation-
al method, based on fuzzy logic, designed to facilitate the modeling
and analysis of heterogeneous systems. In particular, our method
was designed to provide a mathematical description of complex
biological systems whose components range from single molecules
to whole cellular processes and observable cell phenotypes, together
with their mutual regulations. One of the main advantage of this
method is that, although it does not require the availability of quan-
titative (kinetic) parameters and exact values of the state or the
abundance of cellular components, it is a dynamical modeling ap-
proach that allows to simulate and predict the temporal evolution of
the system in both unperturbed and perturbed conditions. We also
show that our fuzzy modeling approach, coupled with an optimiza-
tion algorithm, automatically identifies a potential (minimal) set of
system components whose perturbation can maximize, or minimize,
a desired system response. This automatic identification represents
one of the main novelties of our computational approach, which can
largely facilitate the design of new laboratory experiments by yield-
ing putative perturbations able to drive the behavior of an arbitrary
complex system. Although several fuzzy logic tools and libraries are
available in the literature, none of them was specifically designed to
support the modeling, the dynamical simulation and the optimiza-
tion of the heterogeneous systems that we aim to investigate. For
this reason, our methodology was implemented from scratch and, in
particular, we developed a novel user-friendly software named
FUMOSO (FUzzy MOdel SimulatOr), which supports the defin-
ition, editing, export and simulation of heterogeneous fuzzy models
of complex dynamical systems.

To show the potentiality of this novel computational method,
we investigated a complex, heterogeneous system consisting of
oncogenic K-ras cancer cells—characterized by the so-called
‘Warburg effect’—grown in a progressive limiting amount of

glucose, in order to understand the glucose-dependent mechanisms
driving cancer cells to death or survival. The Warburg effect, or aer-
obic glycolysis, is a metabolic hallmark of malignancy. Accordingly,
numerous cancer cells, grown either in low glucose availability or in
free glucose, are strongly susceptible to cell death as compared to
normal cells. However, it has also been observed that not all cancer
cells undergo cell death upon a really harsh environment, such as in
glucose starvation, since some of them might acquire the ability to
survive in this new environmental condition by activating compen-
satory signaling pathways (Huang et al., 2019; Palorini et al., 2016)
and alternative metabolic routes (Ye et al., 2015; Zaugg et al.,
2011). Worthy of note, metabolic rewired cancer cells, which often
are more aggressive (Endo et al., 2018), can be selected by chemo-
therapy, by therapies exploiting synergism between chemotherapeu-
tic treatments and anti-metabolic drugs or by genetic and
pharmacological ablation of oncogenic pathways (Elgendy et al.,
2019; Viale et al., 2014; Zhao et al., 2013). In addition, strategies to
directly inhibit glycolysis in cancer patients have been partially
dumped since they might also likely damage normal healthy tissues
(i.e. smooth and skeletal muscle, and normal viscera). In this scen-
ario, the combination of therapies targeting aerobic glycolysis, adap-
tive mechanisms (i.e. increased autophagy) and well-established
cancer-specific targets (i.e. tyrosine kinase signaling pathways) rep-
resent a potential approach to be explored in cancer cure.

Here we present a fuzzy logic model of programmed cell death
and survival under progressive glucose depletion, defined on the
basis of an extensive prior knowledge of the main components
involved in K-ras-transformed cells grown in this perturbed condi-
tion. In particular, we considered cancer cell death occurring upon
glucose starvation along two major pathways: (i) a pathway cen-
tered on mitochondria (reactive oxygen species (ROS), adenosine
triphosphate (ATP) depletion, calcium (Ca2þ) overloading) (Elmore,
2007; Taylor et al., 2008) and (ii) an endoplasmic reticulum (ER)-
stress pathway associated with reduction of N-glycosylation and cell
attachment, and a consequent activation of the unfolded protein re-
sponse (UPR) leading to cell death (Hetz, 2012; Hetz and Papa,
2018). In contrast, we indicated two major mechanisms as survival
routes: (i) mitochondrial activity rewiring and (ii) autophagy. The
model was validated against data obtained from mouse fibroblasts
transformed by oncogenic K-ras expression (NIH3T3 K-ras cells)
and a human K-ras-mutated breast cancer cell line (MDA-MB-231),
both grown in unperturbed and different perturbed conditions. The
optimization analysis allowed to automatically search for and detect
the combination of perturbations that maximize pro-apoptotic proc-
esses in cancer cells for the purpose of guiding the development of
novel therapeutic treatments.

2 Materials and methods

2.1 Dynamic fuzzy rules-based modeling
A dynamic fuzzy rules-based model (DFM) is a computational para-
digm to describe and analyze the emergent behavior of heteroge-
neous complex systems characterized by uncertainty. In DFMs, a
linguistic variable and a set of linguistic terms (e.g. Low, Medium
and High) are associated with each component of the system to pro-
vide a qualitative description of all the possible states that compo-
nent can assume in time (Aldridge et al., 2009; Yen and Langari,
1999). A DFM handles the intrinsic uncertainty of the state of the
variables by means of the membership functions associated with
each linguistic term. Linguistic variables and terms are used to de-
fine a set of fuzzy rules, which provide a qualitative description of
the mechanisms (e.g. feedback regulation) driving the overall behav-
ior of the system. Fuzzy rules are conditional statements generally
written in the form ‘IF x IS a THEN y IS b’. The antecedent of a
fuzzy rule is a predicate involving variables (i.e. a system component
x) and their associated linguistic terms (i.e. a). The consequent of a
fuzzy rule can either be a fuzzy set, a constant or a function (i.e. b)
that is assigned to an output variable (i.e. y), according to the specif-
ic fuzzy inference engine employed.

2182 M.S.Nobile et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/36/7/2181/5637225 by guest on 13 July 2020



The variables belonging to a DFM can be partitioned into two
sets: outer and inner variables. The set of outer variables contains in-
put and output variables, which can only appear as antecedents and
consequents of fuzzy rules, respectively. Namely, input variables
correspond to the components that trigger the dynamic evolution of
the system, while output variables represent the components of
interest for the analysis of the system (i.e. some experimentally
measurable component). On the contrary, inner variables can
appear on both sides of fuzzy rules, and they are used to represent
mutual regulations among the system components.

The state of input variables is set (or perturbed) over time using
appropriate user-defined functions, which induce the evolution in
time of the whole system. On the contrary, the state of all other vari-
ables change as a result of the synchronous application of the fuzzy
rules. The inference engine here exploited for the variables’ state up-
date is the zero-order Sugeno method (Sugeno, 1985), in which the
outputs of the rules are constant crisp values. To evaluate the next
state of a variable over time, this method performs an aggregation of
the output values produced by the rules, weighed according to the
membership degrees of the antecedents of each rule. Additional in-
formation about the Sugeno inference method can be found in
Supplementary Section S2. After the application of the Sugeno infer-
ence to all inner and output variables, their states are updated and
the dynamic simulation of the DFM proceeds to the following time
step. The process iterates until the simulation time reaches the
maximum time step tmax set by the user. Given a set of linguistic var-
iables, a perturbation p can be applied to the DFM as follows. For
each variable belonging to p, a list of time intervals is specified.
During each time interval, the Sugeno inference is disabled for that
variable and the state update is performed by using a time-
dependent arbitrary function.

2.2 FUMOSO: a general-purpose simulator of DFMs
FUMOSO is a novel open source and cross-platform software spe-
cifically designed and implemented for the definition, simulation
and analysis of DFMs (see implementation details in Supplementary
Section S1). FUMOSO is provided with an intuitive Graphical User
Interface, realized to guide the users through the steps required for
the creation of a DFM, that is, the definition of linguistic variables,
linguistic terms, output crisp values, membership functions and
fuzzy rules (see Supplementary Fig. S1). FUMOSO allows the user
to enter all additional information required to simulate the dynamics
of a DFM: (i) the simulation interval ½t0; tmax�; (ii) the functions that
drive the dynamics of input variables; (iii) the initial state of all vari-
ables; (iv) the perturbation functions (if any). Optionally, for each
variable involved in a perturbation p, the user can specify a list of
time intervals in which that perturbation becomes active over that
variable.

Given a set O of linguistic variables chosen as observed targets
for the perturbation p, the effect of p on each variable o 2 O is cal-
culated as the difference between the state of o at the end and at the
beginning of any perturbation interval. The overall effect of p on the
set of all observed targets in O, during all time intervals that charac-
terize p, can be calculated as a user-defined function FðpÞ.

Once the simulation is completed, FUMOSO plots the dynamics
of any chosen system component, along with the shape of the mem-
bership functions and the weights of the firing rules involved in the
update of that component at any arbitrary time step, according to
the Sugeno inference method. The analysis of the simulation out-
come is facilitated thanks to the possibility of creating groups of
components, that is, subsets of variables whose dynamics are shown
in the same plot.

2.3 Global optimization of DFMs
Given a DFM, FUMOSO allows to automatically explore the emer-
gent behavior of the system in different scenarios, where the state of
one or more linguistic variables is varied to simulate the effect of
perturbations (e.g. drugs) in obtaining a desired system behavior. To
this aim, a perturbation p can be defined by the user within a chosen
time interval ½tb; te� � ½t0; tmax�, by setting the state of (a subset of)

inner variables to a specific value, which either belongs to the term
set of each perturbed variable or is equal to the ‘unperturbed’ value.
The latter corresponds to the state of each perturbed variable at the
current time step, as evaluated by the Sugeno method. Given a set O
of linguistic variables chosen as observed targets, a user-defined
function FðpÞ can be defined to quantitatively assess the effectiveness
of p in obtaining the desired system behavior. A sampling time in-
stant D > 0, such that tb þ D � te, can be set by the user to evaluate
FðpÞ in between tb þ D and tb. FðpÞ is used in FUMOSO as the fit-
ness function for the global optimization of the DFM.

Global optimization allows to realize an effective and efficient
exploration of the huge search space of possible perturbations of a
DFM, whose dimension grows exponentially with the number of
perturbed variables. To automatically investigate the search space
and find out the optimal perturbation, FUMOSO is coupled with
Simulated Annealing (SA) (Kirkpatrick et al., 1983). The SA proced-
ure integrated in FUMOSO starts from an initial perturbation p0—
where all the variables are set to the ‘unperturbed’ state—and
explores the neighborhood of potential perturbations. During the ith
iteration of SA, a new putative perturbation p0i ¼ gpðpiÞ is calcu-
lated, where gp is a neighborhood function that randomly modifies
the current perturbation by changing at most p variables. To be
more precise, the perturbation p is modified by randomly changing
the state of a selected variable taking a new linguistic term from the
set of perturbable values of that variable. In the case of maximiza-
tion problems, if Fðp0iÞ > FðpiÞ then p0i is accepted as the new per-
turbation piþ1 and the process iterates; otherwise, p0i is accepted if
expð�ðFðp0iÞ � FðpiÞÞ=TÞ > rnd, where rnd is a random number
sampled from the uniform distribution in ½0;1�, and T is a parameter
that starts from an initial value T0 and linearly decreases to 0 during
the iterations, progressively reducing the exploration capabilities of
SA. The output produced by SA is the perturbation p characterized
by the best fitness value FðpÞ. In this work, we considered T0 ¼ 0:1
and p¼2.

2.4 Experimental protocol
Mouse K-ras-transformed NIH3T3-derived cell line 226.4.1 and
human breast cancer MDA-MB-231 (obtained from ATCC,
Manassas, VA, USA) were cultured in DMEM containing 4 mM
L-glutamine, 100 U/ml penicillin and 100 mg/ml streptomycin and
pyruvate free (complete medium), supplemented with 10% newborn
calf serum (mouse cells) or 5% fetal bovine serum (human cells).
Cells were grown and maintained according to standard cell culture
protocols. All reagents for media were purchased from Thermo
Fisher Scientific. For analysis, cells were plated at a density of 3000
cells/cm2 in complete medium. After 18 h cells were washed with
phosphate buffer saline (PBS) and incubated in growth medium
(time 0) supplemented with 25 or 5 mM glucose (high glucose, HG)
or 1 mM glucose (low glucose, LG). Cells were then treated and col-
lected for analysis as described in the figure legends. To measure cell
proliferation, harvested cells were counted using the Burker cham-
ber. Where indicated, cell viable count was performed using Trypan
Blue Stain 0.4%. Supplementary Section S3 contains detailed infor-
mation about the used compounds, flow cytometric analyses, con-
focal microscopy, adhesion assays, Western blot analysis,
transcriptome analysis and statistical analysis of the experimental
data.

3 Results

3.1 Fuzzy logic model
The DFM defined in this work describes the cellular components
that govern death and survival in K-ras cancer cells under progres-
sive glucose depletion. This growth condition, influenced by highly
interconnected processes with multiple levels of regulations (i.e.
protein–protein interaction and modification, positive and negative
feedback, etc.), and able to promote opposite effects on cancer cells
(i.e. sensitivity versus resistance to chemotherapy), here is regarded
as a complex and heterogeneous system to which apply our DFM
approach, to the aim of efficiently identifying novel therapeutic
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treatments that maximize apoptosis over survival in cancer cells in
such growth condition. The model can be depicted as a graph con-
sisting of 25 nodes corresponding to heterogeneous components—
e.g. proteins, small molecules and metabolites, biochemical path-
ways, cellular processes, output phenotypes—while edges between
nodes indicate the known positive or negative regulations among
these components (Fig. 1). To describe cell death processes as a re-
sult of glucose starvation in cancer cells, we considered:

1. the main cellular processes and components involved in energy

production, such as glucose, glycolysis, ATP, mitochondria and

autophagy;

2. different mitochondrial processes and components, such as mito-

chondrial potential variation, ROS generation, mitochondrial

complex I (CI) activity and B-cell lymphoma 2 (Bcl2) expression

and activity;

3. some processes and components related to the ER, such as UPR,

Ca2þ, C/EBP-homologous protein (CHOP) and c-Jun N-terminal

kinase (JNK);

4. processes and proteins involved in cellular adhesion, such as

hexosamine biosynthesis pathway (HBP), N-glycosylation, at-

tachment and Src;

5. proteins and processes involved in the regulation of cell death

and survival mechanisms, such as Ras, extracellular-signal-regu-

lated kinase (ERK), death-associated protein kinase 1 (DAPK),

Bcl2, Beclin1 (BCN1), caspase 3 (Casp3), protein kinase A

(PKA) and the phenotypes related to apoptosis, necrosis and sur-

vival of cells;

6. the protein Ras-GTP to mimic the hyperactivation of K-ras inside

tumor cells displaying both the Warburg effect and PKA as a key

node involved in cancer cells survival to glucose starvation.

Since not all of these components (e.g. apoptosis, survival, UPR,
HBP, etc.) can be formally represented by a quantitative variable,
and some interactions cannot be specified by means of kinetic

reactions, we relied on fuzzy logic modeling to handle this hetero-
geneity and the lack of parameters by defining suitable linguistic
variables that represent general concepts like concentration, activa-
tion or presence of a component. For each model component, we
defined a linguistic variable and an associated set of linguistic terms
to describe all the possible states of the variable (see, e.g.
Supplementary Fig. S2, left side, for the ROS component shown in
Fig. 1). To formalize the interactions existing among the compo-
nents considered in the model, we exploited literature and expert
knowledge. The complete list of linguistic variables and the corre-
sponding output crisp values of their associated linguistic terms are
available in Supplementary Table S1 and Table S2, respectively. A
set of fuzzy logic rules was defined for each linguistic variable, for a
total of 252 rules (see Supplementary Material). As an example,
Supplementary Figure S2, right side, shows the fuzzy rules that
describe the regulations acting on the ROS component given on the
left side, according to the linguistic terms (e.g. Low, Medium and
High) defined for the three components CI, DeltaPsi and ROS.

Three variables in the DFM of cell death and survival in glucose
depletion represent the input of the system, namely, glucose,
Ras-GTP and PKA: (i) Glucose is formally regulated by a custom
update function that simulates glucose consumption; (ii) Ras-GTP is
constantly kept to the High state to mimic the oncogenic hyperacti-
vation of K-ras in cancer; (iii) PKA is either kept to the High or Low
states to mimic the ability of cancer cells either to survive or die
under glucose starvation (see Supplementary Section S4). Apoptosis,
necrosis and survival represent the observable output variables of
the DFM.

3.2 Model validation
The DFM of death and survival of K-ras cancer cell grown on pro-
gressive glucose depletion, defined on the basis of empirical data
and the manual curation of literature, was experimentally validated
against data obtained from cell cultures grown in different glucose
availability, and in presence or absence of different protein and pro-
cess modulating molecules (see Supplementary Section S5).
Experimental data were obtained on NIH3T3 K-ras cells and a
human model of breast cancer, the MDA-MB-231 cell line, which

Fig. 1. Interaction network of the model of cell death and survival. Yellow circles represent metabolites and ions, green rectangles represent proteins, red rectangles represent

pathways or cellular processes, light blue hexagons represent the system phenotypes related to cell death. Positive and negative regulations are pictured as arrows and blunt-

ended arrows, respectively. Glucose, Ras-GTP and PKA are the input variables; survival, autophagy, apoptosis and necrosis are the output variables, while the remaining are

inner variables. (Color version of this figure is available at Bioinformatics online.)
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carries the oncogenic K-ras gene. The two cell lines were used in an
exchangeable manner, since previously published results indicated
that they have a comparable behavior as regard to numerous param-
eters associated with growth in 25 or 5 mM glucose (HG growth),
and in 1 mM glucose (LG growth) (Gaglio et al., 2011; Palorini
et al., 2013a, b, 2016).

3.3 Perturbation analysis
A perturbation analysis of the DFM of programmed cell death and
survival was performed in order to identify potential stimuli leading
to both a reduced survival and an increased death by apoptosis in
cancer cells. The total number of possible perturbations for the
DFM defined in this work is 36 � 49 ¼ 191;102; 976, where 6 and 9
are the numbers of perturbable variables that can assume 3 and 4
possible states, respectively (see Supplementary Table S3). Since an
exhaustive search of this huge space of perturbations would not be
feasible, we exploited SA to automatically infer the minimal set of
perturbations that allows to maximize apoptotic death in K-ras can-
cer cells. The optimization analysis was carried out both in the case
of low and hyperactivated states of PKA, during different glucose
availability. Among the solutions identified by SA, a set of promising
single/double perturbations was selected and tested in the laboratory
to assess their effectiveness in inducing death by apoptosis in MDA-
MB-231 cells. A list of perturbations found by SA—validated either
in this work or confirmed by previous experimental evidences—is
given in Supplementary Tables S4 and S5, ranked by their fitness
values. Details about the fitness function exploited to evaluate the
effectiveness of the perturbations are given in Supplementary
Section S6.

Figure 2 and Supplementary Figure S10 show the comparison be-
tween the simulated dynamics and the experimental data for single
perturbations predicted by SA. In particular, we assessed the effects
of UPR activation (Fig. 2) achieved by using 10 nM thapsigargin
(thap), or CI inhibition (Supplementary Fig. S10) achieved by using
10 nM rotenone (rot) or 20 nM piericidin (pier) in high and low glu-
cose availability, respectively (the experimental scheme for both per-
turbations is shown in Supplementary Fig. S9c). Both perturbations
were chosen taking into account their rank and the existence of pre-
vious data indicating that the pharmacological over-activation of
UPR pathway, as well as CI inhibition, can lead to cancer cell death
(Cubillos-Ruiz et al., 2017; Galluzzi et al., 2013). For both perturba-
tions, high or low activation of PKA was also experimentally
analyzed. In particular, to avoid the endogenous activation of PKA
under our experimental conditions, low PKA was achieved by cell
treatment with the known PKA inhibitor H89 (Chijiwa et al., 1990)
(experimental details are available in Supplementary Fig. S9).

It is interesting to notice that the model properly predicted the
experimental data. Indeed, an enhanced cell death was observed
in the simulations (orange line for apoptosis and magenta line for

necrosis in Fig. 2a and b) as well as in the experimental data upon
both treatments (Fig. 2c). This increase is evident when moving
from a high availability of glucose (left side of the simulation plots)
to a situation of glucose starvation (right side of the simulation
plots), and especially in the PKA Low state with respect to the
PKA High state, suggesting an important role of PKA in cancer cell
survival in acute UPR activation or in glucose starvation. These
computational results are consistent with the experimental measure-
ments, as represented by the graph bars in Figure 2c, which show a
higher level of cell death in glucose starvation (72 h), with the
fold change being higher when PKA is not activated. Similar consid-
erations can be done for the condition of chronic CI inhibition, as
shown in Supplementary Figure S10.

Analogously, Figure 3 shows the comparison between the simu-
lated dynamics and the experimental data for the double perturba-
tions predicted by SA. In particular, it shows the effects of UPR
activation coupled with autophagy inhibition (Fig. 3a–c), N-glycosy-
lation and HBP inhibition (Fig. 3d–f), N-glycosylation and autoph-
agy inhibition (Fig. 3g–i). Both the simulation outcomes and the
experimental data show an increase in cell death, especially when
moving towards a state of glucose starvation, and the protective role
of PKA. This result is evident by comparing, for example, the final
states reached in each condition by apoptosis (orange line) and ne-
crosis (magenta line) in Figure 3a, d and g, with the states reached
by the same variables in Figure 3b, e and h. These computational
results are consistent with the experimental measurements shown by
the graph bars in Figure 3c, f and i.

To analyze the combinatory effect on cell survival we used,
when possible, sub-toxic concentrations of the compounds, previ-
ously determined experimentally on this cell model (see, e.g. tuni
and aza). In addition, in these sets of validation experiments, we
evaluated also whether the model could predict the endogenous
PKA behavior, since no H89 inhibitor was used (experimental
scheme in Supplementary Fig. S9d). Combination effects of selected
compound pairs exceeded the effects of single compounds for the
majority of combinations, and well fitted with the model outcome
also in the absence of exogenous PKA inhibition. Thus, these results
corroborated the capability of the DFM, coupled with the optimiza-
tion algorithm, in predicting the system’s response in perturbed
conditions.

4 Conclusion

Complex biological systems are characterized by emergent,
non-linear dynamic behaviors that arise from negative and positive
feedback regulations among a huge number of different molecules
and processes in cells. The elucidation of the mechanistic interac-
tions that govern the correct functioning of cells or that, in contrast,
can induce the onset of a disease, is an extremely challenging task

Fig. 2. Assessment of the effects of perturbations (UPR activation) predicted by the global optimization algorithm. (a, b) Simulation outcome of the three main model output

(apoptosis, necrosis and survival) upon UPR activation, either in (a) PKA Low state or (b) PKA High state. The perturbation was applied from time tb ¼ 0 to the end of the

simulation, and evaluated after D ¼ 0:13 a.u. (shaded area, see also Supplementary Section S6). (c) MDA-MB-231 cells, grown in HG, were daily treated with 10 lM FSK

mimicking the PKA High state, or 5 lM H89 mimicking the PKA Low state and, upon 24 h, also with 10 nM thap (single treatment). Samples were evaluated for cell death at

48 and 72 h post-treatment by using trypan blue exclusion method. The experimental scheme is shown in Supplementary Figure S9c. All data represent the average of at least

three independent experiments (6SD); *P< 0.05 (Student’s t-test). (Color version of this figure is available at Bioinformatics online.)
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from both the experimental and the computational perspectives.
This is strikingly true when the biological system under investigation
is poorly understood, or it cannot be easily subject to accurate
experimental measurements, or the interplay between its intrinsic
negative and positive control mechanisms is so complex that the
system can be analyzed only by considering a subset of (usually, homo-
geneous) components, such as metabolic traits, gene expression, etc.

In this context, we presented a novel computational method able
to address two open issues in the field of biochemical system model-
ing, that is, taking into account the heterogeneous nature of all bio-
logical systems, and dealing with the lack of quantitative parameters
that generally prevents the precise characterization of most cellular
components and processes. This modeling approach may be adopted
to incorporate data generated from different ‘platforms’ using
knowledge-based rules (e.g. transcriptional and proteomic data,
microscopy imaging), and can integrate multiple data types together,

i.e. signaling protein activation/inhibition, post-translational modifi-
cations, small molecule variation, end-process activation or inhibition,
etc. As such, our computational method not only solves some relevant
issues related to the modeling and dynamical simulation of heteroge-
neous systems, but it is also able to provide valuable predictions that
facilitate our understanding in controlling cellular systems. Our
method, based on the coupling between fuzzy logic modeling and a
global optimization algorithm, allows for the definition of models in a
readable and simple format, through the use of linguistic variables.
Here, in particular, we showed that our approach was able to predict
the behavior of K-ras-transformed cells grown either under progres-
sive glucose depletion or in different perturbed conditions, as well as
to identify possible novel cancer therapeutic treatments.

The model simulations showed that targeting the HBP, its down-
stream route controlling protein N-glycosylation, the ER processes
or the mitochondrial CI, alone or in combination with PKA inhibition,

Fig. 3 Assessment of the effects of perturbations (UPR activation and autophagy inhibition) predicted by global optimization. (a, b) Simulation outcome of the three main

model output (apoptosis, necrosis and survival) upon UPR activation and autophagy inhibition, either in (a) PKA Low state or (b) PKA High state. The perturbation was

applied from time tb ¼ 0 to the end of the simulation, and evaluated after D ¼ 0:13 a.u. (shaded area, see also Supplementary Section S6). (c) MDA-MB-231 cells, grown in

HG, were daily treated with 10 lM FSK mimicking the PKA High state and, upon 24 h, also with 10 nM thap and 20 lM chloroquine (CQ) (single treatment of both). Samples

were evaluated for cell death at 48 and 72 h post-treatment by using trypan blue exclusion method. The experimental scheme is shown in Supplementary Figure 9d. (d, e)

Simulation outcome of the three main model output (apoptosis, necrosis and survival) upon HBP and N-glycosylation inhibition, either in (d) PKA Low state or (e) PKA High

state. (f) MDA-MB-231 cells, grown in HG, were daily treated with 10 lM FSK mimicking the PKA High state and, upon 24 h, also with 1 lM aza and 50 ng/ml tuni (single

treatment of both). Samples were evaluated for cell death at 48 and 72 h post-treatment by using trypan blue exclusion method. The experimental scheme is shown in

Supplementary Figure 9d. (g, h) Simulation outcome of the three main model output (apoptosis, necrosis and survival) upon N-glycosylation and autophagy inhibition, either

in (g) PKA Low state or (h) PKA High state. (i) MDA-MB-231 cells, grown in HG, were daily treated with 10 lM FSK mimicking the PKA High state and, upon 24 h,

also with 50 nM tuni and 10 lM CQ (single treatment of both). Samples were evaluated for cell death at 48 and 72 h post-treatment by using trypan blue exclusion method.

The experimental scheme is shown in Supplementary Figure 9d. All data represent the average of at least three independent experiments (6SD); *P<0.05, **P<0.01

(Student’s t-test). (Color version of this figure is available at Bioinformatics online.)
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cause a significant increase in cancer cell death. Noteworthy, all com-
putational results were experimentally substantiated here, or matched
literature results. For instance, it has been recently reported that HBP
inhibition in HG growth induces cell death in breast cancer cells and
xenograft mice (Ricciardiello et al., 2018), as also shown in this work
by computational and experimental data. Moreover, we demonstrated
that inhibition of N-glycosylation has a profound effect on breast can-
cer cell survival, validating other recent observations (Chiaradonna
et al., 2018; Serrano-Negrón et al., 2018; Wang et al., 2018; You
et al., 2018). In both cases, the model correctly predicted the outcomes
of new experiments that were not used in model construction, thus
confirming the reliability of our computational method.

It is noteworthy that the relevance and the validity of our
method is supported by its performance in predicting not only recog-
nized cell death-inducing stimuli, but also unrecognized stimuli
equally leading to cell death. For instance, a sub-toxic amount of
tuni, coupled with both a sub-toxic amount of the HBP inhibitor aza
or the autophagic inhibitor chloroquine, enhances cancer cell death.
Remarkably, both treatments are strongly attenuated by exogenous
PKA stimulation, implying the involvement of this pathway in ER
stress response, at least in our experimental conditions. Confirming
results were shown also about the protective role of PKA upon ER
stress induction by thapsigargin that, in combination with PKA in-
hibition, induces cancer cell death, an effect that is strongly impaired
by exogenous activation of PKA. Previous data indicated that PKA
activation protects cancer cells from death induced by glucose star-
vation (Palorini et al., 2013b, 2016). Here, we revealed a protective
role of PKA in cancer cells under acute ER stress. While this protect-
ive mechanism has been shown to be active in mouse embryonic
fibroblasts (Aguileta et al., 2016) and hepatocytes (Li et al., 2015),
to the best of our knowledge it has never been described in cancer
cells, further supporting the predictive value of our method.
Interestingly, also simultaneous CI and PKA inhibition induces mas-
sive cancer cell death, an effect that is prevented by PKA activation.
Therefore, the model also predicted that PKA activation is involved
in mitochondrial CI function and, more in general, in OXPHOS ac-
tivity, corroborating previous results (Garcı́a-Bermúdez et al., 2015;
Lark et al., 2015; Ould Amer and Hebert-Chatelain, 2018; Papa
et al., 2012). Altogether, our results provide the first evidence of a
protective role for PKA against several treatments mimicking cellu-
lar stress conditions, such as ER stress, N-glycosylation inhibition,
mitochondrial CI inhibition and glucose starvation in cancer cells.
These findings will hopefully pave the way for the use of new and
more specific PKA inhibitors in cancer therapy.

We further underline that the coupling of fuzzy logic modeling
with optimization algorithms is a promising tool to uncover new
potential therapeutic targets by assessing, in an automatic way, the
response of the system to an extensive number of perturbations,
therefore both reducing the costs and facilitating the design of la-
boratory experiments. The dynamic nature and predictive power of
DFMs could prove useful in assessing the effects of different types of
perturbations, such as drugs or mutations, on the behavior of the
system under examination in many application fields (e.g. medicine,
pharmacology, etc.). In the future, this novel computational
method could be exploited to preliminary assess the effects of FDA-
approved drugs, especially in combination with other metabolic
drugs, on the survival of resistant cancer cells. The great flexibility
of fuzzy logic could also be exploited to integrate different model
formalisms to define complex hybrid models, able to both represent
different layers of biological complexity (at the functional, temporal,
or phenomenological level) and leverage precise kinetic information
when available (Spolaor et al., 2019). Namely, with this novel com-
putational method we aim at opening the way to filling the gap be-
tween quantitative (mechanism-based) models and qualitative
(logic-based) models, in order to simultaneously exploit the peculiar
advantages provided by each modeling approach.
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