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Abstract
Investigating stochastic dominance within flexible multi-parametric families of distributions
is often complicated, owing to the high number of parameters or non-closed functional forms.
To simplify the problem, we use the T–X method, making it possible to obtain generalised
models through the composition of cumulative distributions and quantile functions.We derive
conditions for the second-order stochastic dominance and for the increasing convex order
within multi-parametric families in two steps, namely: (i) breaking them down via the T–X
approach and (ii) checking dominance conditions of the (more) manageable distributions
composing the model. We apply our method to some special distributions and focus on the
beta-generated family, which enables the comparisons of order statistics of i.i.d. samples
from (possibly) different random variables.

Keywords Stochastic dominance · T–X family · Generalised distributions · Generalised
beta · Order statistics

Mathematics Subject Classification 60E15 · 62XX · 60E05

1 Introduction

Stochastic orders are primary tools in ranking probability distributions based on some pref-
erence relations [36]. Owing to several applications of ordering theory in areas such as
economics, econometrics, and finance, the identification of stochastic orders within flexible
generalised families of distributions (i.e. suitable to approximate a wide range of phenomena)
is a relevant issue.

The literature on stochastic orders contains several studies aimed at deriving sufficient
conditions for the second-order stochastic dominance (SSD) and the closely related Lorenz
order (LO) for some basic parametric families. Many such conditions can be derived by what
we denote as the single-crossing property. This is a fundamental result ascribable to [20] that
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has also been presented elsewhere [17,33]. This property provides a sufficient condition for
SSDwhen distributions cross once, which turns out to be especially simple to verify for basic
models having few parameters. When the single-crossing condition is not directly verifiable,
we rely on alternative conditions that must be verified with densities [11,33,35].

Most generalised models are generally not easily tractable owing to the large number of
parameters or non-closed functional forms. Thus, deriving dominance conditions may be an
issue with the methods currently available. For instance, some authors derived LO conditions
within (and between) some generalised size distributions with remarkable computational
effort [12,21,22,34,40–43].

Regarding generalised parametric models, the so-called T–X family, recently introduced
by [5], provides an interesting modern method for generating distributions by composing
distributions and quantile functions [2]. Such an approachmakes it possible to add parameters
to an existingmodel to obtain a new andmore flexible one [3,4,6,14,15]. Although themethod
was originally introduced to compose new distributions, we use it to break down existing ones
into functional compositionswith certain characteristics. In fact, theT–Xapproach alsomakes
it possible to decompose most existing distributions, e.g. the beta-generated (BG) family of
[19], the generalised beta of the first and second kind (GB1 andGB2; [29], which are themain
distributions for modelling size phenomena on bounded or unbounded support, respectively,
and can generate the beta-type and gamma-type special-case distributions, including the
Singh-Maddala, the Dagum or Burr (III), the Pareto (II), the standard beta, the beta of the
second kind (B2), the log-logistic, the generalised gamma, the gamma and the Weibull [22]),
and many others [2].

In Sect. 3,we extend a result by [26] andwe provide simple theorems for deriving sufficient
dominance conditions withinmultiparametric distributions by breaking them down via the T–
Xmethod. Consequently, our approach checks certain conditions on the functions composing
themodel and avoids directly handling the composite distribution function,which is generally
more difficult to dealwith.We investigate the conditions for theSSD, the first-order stochastic
dominance (FSD) and the increasing convex order (ICX). The method covers a wide range of
applications, because it can be applied with reasonable simplicity to all distributions obtained
through composition.

In Sect. 4 we derive dominance conditions for some special multi-parametric families. In
particular, we focus on the BG family. Interestingly, as we show in Sect. 5, the distributions of
order statistics of i.i.d. samples, from any underlying distribution X , belong to the BG class.
This makes it possible to compare order statistics in terms of SSD, in different sampling
situations. Stochastic comparisons of order statistics are particularly relevant in reliability
theory, where order statistics may represent the waiting time until less than k components
are still functioning, in a system of n components. In Sect. 5 we show that our results can be
used to derive SSD conditions for order statistics of i.i.d. samples from (possibly) different
RVs.

2 Preliminaries

2.1 Stochastic orders

In this paper, we refer to absolutely continuous RVs. Thus, an RV, U , has a cumulative
distribution function (CDF), FU , a quantile function (QF), QU = F−1

U , and a probability
density function (PDF), fU .
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Stochastic dominance relations...

We recall the basic definitions of FSD, SSD and ICX.

1. We say that U1 dominates U2 w.r.t. FSD and we write U1 ≥1 U2 iff FU1(u) ≤
FU2(u),∀u ∈ R.

2. We say that U1 dominates U2 w.r.t. SSD and we write U1 ≥2 U2 iff
∫ u
−∞ FU1(t)dt ≤

∫ u
−∞ FU2(t)dt,∀u ∈ R.

3. We say that U2 is smaller than U1 in the ICX, and we write U1 ≥icx U2, iff∫ ∞
u 1 − FU1(t)dt ≥ ∫ ∞

u 1 − FU2(t)dt,∀u ∈ R.

The following relations hold between these stochastic orders [36]:

U1 ≥1 U2 ⇒ U1 ≥2 U2, U1 ≥1 U2 ⇒ U1 ≥icx U2,

U1 ≥icx U2 ⇐⇒ −U2 ≥2 −U1. (1)

It is apparent that FSD holds iff CDFs do not cross. However, it is interesting to observe
that both SSD and ICX can be related to the number of crossings between CDFs or PDFs.
In fact, when the integral conditions of the definitions above are difficult to verify for some
parametric distributions, we can use an alternative method for deriving sufficient conditions.
We denote it as the single-crossing property, because it requires CDFs to cross (at most)
once [17]. When it is not possible to verify the crossing condition of CDFs (e.g. when a
closed-form expression for the CDF is not available), we rely on some closely related results
that involve densities. In particular, it is sufficient to prove that PDFs cross at most twice or
that the likelihood ratio (i.e. the ratio of the PDFs) is unimodal [11,33,35].

Let us denote the number of sign changes of a function, g, defined on an interval, I , with

S−(g) = S−(g(x)) = sup S−[g(x1), . . . , g(xm)], (2)

where S−[y1, . . . , ym] is the number of sign changes of the sequence, y1, . . . , ym , where the
zero terms are omitted, and the supremum is extended over all x1 < x2 < . . . < xm (xi ∈ I ),
m < ∞ [35]. We summarise some important results as follows.

Lemma 1 Let U1 and U2 have finite means.

1. If S−(FU1 − FU2) ≤ 1 and the sign sequence starts with −, then U1 ≥2 U2 iff E(U1) ≥
E(U2), whilst U2 ≥icx U1 iff E(U2) ≥ E(U1).

2. Let S−( fU1 − fU2) ≤ 2 and the sign sequence begins with −. Then, U1 ≥2 U2 iff
E(U1) ≥ E(U2), whilst U2 ≥icx U1 iff E(U2) ≥ E(U1).

3. Let fU1/ fU2 be unimodal, where the mode is a supremum. Then, U1 ≥2 U2 iff E(U1) ≥
E(U2), whilst U2 ≥icx U1 iff E(U2) ≥ E(U1).

Proof Point (1) is Theorem 4.A.22(b) (p. 194) of [36]. Point (2) follows from Lemma 2.1 of
[35]. Regarding point (3), the proof can be found in [33], for the SSD case. Then, the ICX
condition follows from the relation, U1 ≥icx U2 ⇐⇒ −U2 ≥2 −U1. 	


2.2 The T–X family

The T–X method, introduced by [5] is based on the composition of the CDFs of two RVs, X
and T , with a function, say W , that fulfils certain requirements. In [2] give a more practical
definition by taking W to be the QF of a third RV Y . This method, denoted as T–X{Y}, can
be outlined as follows: given three RVs X , Y and T , where the support of T coincides with
that of Y , a new RV Z is defined by means of the CDF

FZ = FT ◦ QY ◦ FX . (3)
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The corresponding PDF is

fZ (z) = fX
fT ◦ QY ◦ FX

fY ◦ QY ◦ FX
. (4)

Remark 1 Formula (3) has a twofold interpretation:

– The composite function u = Q X ◦ FY can be seen as an increasing transformation of the

RV T , since Z
d= u(T ).

– The composite function h = FT ◦ QY can be seen as a probability distortion1 of the CDF

FX , since Z
d= [X ]h , where [X ]h is the RV with CDF h ◦ FX .

These functions will prove useful in the next section.

With the notation introduced by [2] we can specify and highlight the role of the different
distributions within the T–X{Y} family, e.g. gamma-normal{exponential} means that T is a
gamma, X is a normal and Y is an exponential. Some basic properties are as follows:

1. Z and X have the same support.
2. If θ is a location (scale) parameter for X , then it is also a location (scale) parameter for Z .
3. Any distribution can (trivially) belong to the T–X family (if FY = FT , then FX = FZ ).
4. The QF of Z is given by Q Z (t) = Q X ◦ FY ◦ QT (t).
5. The expectation of Z , if it exists, is given by E(Z) = ∫ 1

0 Q X ◦ FY ◦ QT (t)dt .

Many continuous RVs have closed-form expressions for the QF, which can play the role
of QY in (3), to generate T–X{Y} families. Since the support of Y coincides with the support
of T , it is useful to classify different choices of Y on the basis of its support. Among those
defined on (0,∞), we may use the exponential, the Weibull, the Rayleigh, the Dagum, the
Lomax, the log-logistic and the exponentiated exponential distribution. Among those with
support (−∞,∞), we may use the Gumbel, the Laplace, the logistic and the generalised
logistic distribution. However, in most practical situations, FY is not parametrised, since a
parametrisation may lead to the collapse of the parameter space.

The original paper of [5] focuses on the T–X{exponential} family, which is obtained
by taking QY to be the QF of an exponential RV with scale parameter equal to 1, i.e.:
QY (p) = − ln(1 − p). The T–X{exponential} family makes it possible to generate a large
number of new families of distributions, such as: the gamma-X family [5]—among which we
can find the gamma-normal distribution [6]; the beta-exponential-X family and the Weibull-X
family—among which we can find the Weibull–Pareto distribution, as defined by [4]; the
exponentiated Marshall–Olkin family [15]; and the Lomax-generator family [14].

Different choices of QY make it possible to generate an even larger number of new families,
among which we may cite the exponentiated T–X family [8], the T-normal family [7], the
logistic-X family [38], the Weibull–Pareto, as defined by [3] (not to be confused with the
homonymous distribution of [4], the exponentiated Weibull [31] and the new distributions
proposed in [2].

Another important advantage of the T–X family is that it also generates many existing
parametric models of noticeable practical relevance, such as: the GB1, the GB2, the GG
[29], or, more generally, the generalised beta of [30] and the generalised beta-generated
distribution proposed by [1].

1 A probability distortion function is defined as a non-decreasing function h such that h(0) = 0 and h(1) = 1,
see [39].
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3 Stochastic orders for the T–X-decomposable families

Becausemanyparametric distributions canbedecomposedviaT–Xmethod,we are concerned
with finding the sufficient conditions for ranking T–X families with FSD, SSD (especially),
and ICX. We wonder whether T–X families obtained by composition of CDFs and QFs,
ranked by FSD, SSD, or ICX, preserve some kind of order. Actually, this is related to the
preservation of stochastic orders under transfomations or distortions [25,32].

Below we derive sufficient conditions for FSD, SSD and ICX, for pairs of distributions
which are decomposable via the T–X method. Stated otherwise, we compare pairs of distri-
butions with CDFs given by (3).

Henceforth, let:

– FZi (z) = FTi ◦ QYi ◦ FXi (z), for i = 1, 2;
– u = Q X2 ◦ FY2 ;
– h = FT1 ◦ QY1 .

Moreover, denote with Fcv and Fcx the classes of all concave and convex functions, respec-
tively.

Our objective is to compare Z1 and Z2. As far as concerns the FSD, it is readily seen that

X1 ≥1 X2, Y2 ≥1 Y1 and T1 ≥1 T2 ⇒ Z1 ≥1 Z2. (5)

Differently, we propose two approaches for deriving SSD and ICX conditions, based on
the classic characterization of stochastic orders in terms of expected utilities [16], and on
the dual characterization, based on distorted expectations [39]. The two methods are not
mutually exclusive. Theorem 1 has been proved by [26], we provide a simpler proof here.

Theorem 1 u ∈ Fcv , X1 ≥1 X2, Y2 ≥1 Y1 and T1 ≥2 T2 ⇒ Z1 ≥2 Z2.

Proof By characterization of SSD, T1 ≥2 T2 iff E(φ(T1)) ≥ E(φ(T2)) for every increasing
and concave function φ [28, Proposition B.19.c]. Consequently, we obtain E(φ ◦ u(T1)) ≥
E(φ ◦ u(T2)) for every increasing concave function φ, that is, u(T1) ≥2 u(T2).

Now, let ũ = Q X1 ◦ FY1 . X1 ≥1 X2 and Y2 ≥1 Y1 yield ũ(x) ≥ u(x),∀x ∈ R, then

Z1
d= ũ(T1) ≥1 u(T1) ≥2 u(T2)

d= Z2. (6)

	

Theorem 2 h ∈ Fcv , X1 ≥2 X2, Y2 ≥1 Y1 and T1 ≥1 T2 ⇒ Z1 ≥2 Z2.

Proof By the dual characterization of SSD, X1 ≥2 X2 iff E([X1]ψ) ≥ E([X2]ψ) for every
concave distortion functionψ [25, Theorem 4]. Consequently, since h is concave by assump-
tion, we obtain E([X1]ψ◦h) ≥ E([X2]ψ◦h) for every concave distortion function ψ , that is,
[X1]h ≥2 [X2]h .

Now, let h̃ = FT2 ◦ QY2 . Y2 ≥1 Y1 and T1 ≥1 T2 yield h(p) ≤ h̃(p),∀p ∈ [0, 1], then
Z1

d= [X1]h ≥2 [X2]h ≥1 [X2]h̃
d= Z2. (7)

	

Remark 2 Weobserve that, regarding theT–Xfamilies studied in the literature, FY is generally
not parametrised. Hence, if Z1 and Z2 are within the same family, FY is generally fixed
(FY1 = FY2 = FY ). The previous theorems also apply to this special case, owing to the
reflexive relation Y ≥1 Y . Our results, however, are stated in the most general form to enable
comparisons between different families (composed by different QY ’s).
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Theorems 1 and 2 provide two methods for deriving SSD, in which the first condition
depends on the shape of the distribution of X2 or T1, respectively, whereas the second and
the fourth conditions can be obtained just by comparing pairwise X1 and X2, or T1 and
T2. Counterexamples can show that replacing FSD with SSD in the second condition of
Theorem 1, or in the fourth condition of Theorem 2, does not ensure Z1 ≥2 Z2. However,
by combining the two methods, we obtain the following:

Theorem 3 u, h ∈ Fcv , X1 ≥2 X2, Y2 ≥1 Y1 and T1 ≥2 T2 ⇒ Z1 ≥2 Z2.

Proof As in the proof of Theorem 1, u(T1) ≥2 u(T2)
d= Z2. As in the proof of Theorem 2,

Z1
d= [X1]h ≥2 [X2]h . Since u(T1) has CDF FT1 ◦ QY2 ◦ FX2 and [X2]h has CDF FT1 ◦

QY1 ◦ FX2 , the thesis follows from Y2 ≥1 Y1. 	

Remark 3 If X1, X2 belong to the same location-scale family, that is, FXi (x) = G(

x−μi
σi

), for

i = 1, 2,whereG is theCDFof the standardRV, sayW , thenσ1 < σ2 gives S−(FX1−FX2) =
S−(h ◦ FX1 − h ◦ FX2) ≤ 1 (the sign sequence starts with −) and the crossing point is at

x0 = μ1σ2 − μ2σ1

σ2 − σ1
(8)

(see Lemma 2). Subsequently, by Lemma 1 and Y2 ≥1 Y1, the second condition of Theorem 1
can be replaced by

σ1 < σ2 and μ1 − μ2 ≥ E([W ]h)(σ1 − σ2), (9)

[25, section 3.2], which is indeed sufficient for Z1
d= [X1]h ≥2 [X2]h ≥1 u(T1). Likewise,

if T1, T2 belong to the same location-scale family, the third condition of Theorem 2 may be
replaced by

σ1 < σ2 and μ1 − μ2 ≥ u−1
(

E(u(σ1W ))

E(u(σ2W ))

)

, (10)

[18, section 3.3].

Remark 4 The requirements on u and h impose constraints on the shape of FX2 and FT1 ,
respectively. Such constraints are related to the concept of relative convexity w.r.t. FY2 and
FY1 , respectively, which may be also expressed in terms of stochastic orders:

– u ∈ Fcv iff FY2 ≥c FX2 , where “≥c” denotes the convex transform order of [44].
– h ∈ Fcv iff FY1 ≥c FT1 , where “≥c” denotes the convex order of [13].2

The convex transform order≥c gives rise to various classes of distributions that are convex
w.r.t. simple reference quantile functions, such as the unit exponential quantile − ln(1− p),
the logit function − ln p

1−p and the odds function p
1−p [27]. The convex order ≥c can be

equivalently used to define classes of distributions w.r.t. some simple reference functions.
Interestingly, such classes contain most basic models [27] and these simple quantiles are
commonly employed for the composition of multiparametric models via the T–X method,
as we shall see in the next section. Therefore, theorems 1, 2 and 3 have broad applications.
However, in some cases, the proposed methods are not applicable, because, for some T–
X families, neither u nor h is concave. A mathematically equivalent approach enables the

2 ≥c is referred to as convex transform order as it requires convexity of the transfomation function u−1 =
QY2 ◦Q X2 . Similarly,≥c may be referred to as convex distortion order as it requires convexity of the distortion

function h−1 = FY1 ◦ FT1 .
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derivation of ICX when u or h is convex. We state the following three results in a compact
form. The proofs are omitted because they are similar to the previous ones.

Theorem 4
1. u ∈ Fcx , X1 ≥1 X2, Y2 ≥1 Y1 and T1 ≥icx T2 ⇒ Z1 ≥icx Z2;
2. h ∈ Fcx , X1 ≥icx X2, Y2 ≥1 Y1 and T1 ≥1 T2 ⇒ Z1 ≥icx Z2;
3. u, h ∈ Fcx , X1 ≥icx X2, Y2 ≥1 Y1 and T1 ≥icx T2 ⇒ Z1 ≥icx Z2.

4 Some special cases

In this section, we apply our method to some special mutliparametric families, i.e., the T–
X exponential (among which we derive dominance conditions for the gamma-normal and
the Weibull–Pareto{exponential}) and the BG family (among which we derive dominance
conditions for the GB1 and the GB2). To apply the method, we need the functions u or g to be
concave or convex, so that we can derive sufficient conditions for SSD or ICX, respectively
– in general, at least one condition holds true.

4.1 T–X {exponential} family

The T–X{exponential} family, studied by [5], is obtained by setting QY (p) = − ln(1 − p).
Sufficient SSD conditions for this family are particularly relevant because the assumption of
concavity of u is equivalent to the assumption of convexity of the cumulative hazard function
of X2, namely− ln(1−FX2). The class of distributions with convex hazard function is known
in the literature as increasing failure rate family (IFR) [27] and contains many important
models (i.e. normal, logistic, extreme value, chi-square, chi, exponential, Laplace, Weibull
with shape parameter ≥ 1, gamma with shape parameter ≥ 1, and beta with both parameters
≥ 1 [10]). Hence, the method provided by Theorem 1 has broad application within this
family. Conversely, both Pareto (I) and Pareto (II) have concave hazard function (i.e., u is
convex), which is know in the literature as having a decreasing failure rate (DFR).

4.1.1 Gamma-normal distribution

The gamma-normal{exponential} distribution, introduced and studied by [6] is obtained by
taking T as a gamma, X as a normal, and Y as an exponential. This distribution always has
a finite mean. Neither the gamma nor the normal distribution has a closed-form expression
for the CDF:

FT (t; a, b) = γ

[

a,
t

b

]

/�(a), a, b, t > 0;

FX (x;μ, σ) = �

(
μ − x

σ

)

, σ > 0; x, μ ∈ R, (11)

where γ is the (lower) incomplete gamma function and� is the CDF of the standard normal.
Note that a is a shape parameter, b and σ are scale parameters and μ is a location parameter.

Then, the CDF of Z is given by

FZ (z; a, b, μ, σ ) = γ

[

a,− ln

(

1 − �

(
μ − z

σ

))

/b

]

/�(a), z ∈ R. (12)

In this expression, b is an additional shape parameter. Let Zi , for i = 1, 2, have a
gamma-normal distribution, FZi (z) = FZ (z; ai , bi , μi , σi ), where FTi (z) = FT (t; ai , bi )
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and FXi (z) = FX (x;μi , σi ). We search for sufficient conditions for Z1 ≥2 Z2. We can-
not apply Lemma 1 (point 1), because FZ is not in closed form. Thus, it is not possible
to directly verify the single-crossing condition on FZ1 , FZ2 . Moreover, we cannot use the
double-crossing argument of [35] (Lemma1 point 2) nor the unimodality condition (Lemma1
point 3), to be verified with PDFs, because fZ does not have a closed form as well. Thus, in
this case, the simplest solution is to rely on the dominance conditions for the normal and the
gamma, which are already known and easy to derive.

The normal distribution is IFR, that is, u is concave, therefore we can apply Theorem 1
by relying on FSD conditions for the normal and SSD conditions for the gamma [33]. We
obtain that

μ1 = μ2, σ1 ≤ σ2, a1 ≥ a2 and a1b1 ≥ a2b2 ⇒ Z1 ≥2 Z2. (13)

Note that FY1 ◦ QT1 is convex, that is, h is concave, iff the likelihood ratio

fY1

fT1
(x) = �(a)ba x1−ae

(1−b)x
b (14)

is increasing [13]. Then h is concave for a1, b1 ≤ 1 and Theorem 3 gives

μ1 ≥ μ2, σ1 ≤ σ2, 1 ≥ a1 ≥ a2, b1 ≤ 1 and a1b1 ≥ a2b2 ⇒ Z1 ≥2 Z2. (15)

4.1.2 Weibull–Pareto {exponential}

The Weibull–Pareto{exponential} distribution, as introduced and studied by [4], is obtained
by taking T as a two-parameter Weibull distribution with PDF FT (t; c, γ ) = 1 −
exp

[
−

(
t
γ

)c]
, c, γ > 0, t > 0, X as a Pareto (I) distribution with CDF FX (x; k, θ) =

1− (
θ
x

)k
, k > 0, x > θ > 0 and Y as an exponential distribution with parameter 1. The CDF

of Z reduces to

FZ (z; c, β, θ) = 1 − e−(β log( z
θ ))

c
, z > θ > 0 (16)

where β = k
γ
. This family is indistinguishable with that obtained under the assumption

that X follows a Pareto (I) distribution with CDF FX (x, 1, θ). Then, let Zi , for i = 1, 2,
have aWeibull–Pareto{exponential} distribution FZi (z) = FZ (z, ci , γi , θi ), where FTi (z) =
FT (t; ci , γi ) and FXi (x) = FX (x; 1, θi ). As noted above, the Pareto (I) is DFR and ICX
can be derived straightforwardly. Indeed, it can be shown that T1 ≥icx T2 if c1 ≤ c2 and
γ1�(1 + 1/c1) ≥ γ2�(1 + 1/c2) [37], whereas X1 ≥1 X2 iff θ1 ≥ θ2, and we obtain that:

c2 ≥ c1, γ1�

(

1 + 1

c1

)

≥ γ2�

(

1 + 1

c2

)

and θ1 ≥ θ2 ⇒ Z1 ≥icx Z2. (17)

4.2 Beta-generated family

The BG family has been introduced by [19]. Besides generating the GB1 and GB2, the BG is
very important because of its relation with order statistics, as we shall discuss in the sequel.
Starting from a baseline RV X , the BG is defined by the following CDF

FB (FX (z); p, q) (18)

where FB(x; p, q) is the beta CDF and z is such that fX (z) > 0 .
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The BG generates the two main distributions for modelling size phenomena on bounded
or unbounded support, namely, the GB1 and the GB2, respectively. Many other widely used
models can be obtained from theGB1 and theGB2, such as the standard beta, power function,
the Singh-Maddala, the Dagum or Burr (III), the B2, the log-logistic, and the Pareto (II). The
generalised gamma (also the gamma and the Weibull) can be seen as a limiting case of the
GB2 [22].

TheBGmodel can be decomposed by using the beta distribution as the generator T and the
uniform for the QF, thereby giving rise to the beta-X {uniform} family. However, since the
QF of the uniform distribution is the identity function, to apply Theorem 1 we would require
the convexity of u−1 = QY ◦ FX = FX , which is a highly restrictive condition for a CDF.
Thus, we use an alternative T–X{Y} decomposition, thereby rendering it possible to consider
the BG as a B2-X{log-logistic} family. In particular, the B2 has CDF FB( x

x+1 ; p, q), where
x

x+1 = FY (x) is in fact the CDF of a log-logistic distributions with both parameters equal
to 1 (consequently, QY (p) = p

1−p ). We show that SSD conditions within the BG family can

be derived easily if u−1 = FX
1−FX

, namely, the odds function of FX , is convex. Most basic
models fulfil this condition, namely all IFR distributions plus some heavy tailed ones [27].
Similarly, ICX conditions can be derived by requiring the odds function to be concave (yet,
this condition is quite strong). Moreover, h is actually the beta CDF, which is concave for
p1 ≤ 1 and q1 ≥ 1 (the latter condition ensures also that the B2 has finite mean). Therefore,
we have the following results (the SSD conditions for the B2 are derived in the Appendix;
point 1) was proved by [26]):

Corollary 1 For i = 1, 2, let FZi = FB
(
FXi ; pi , qi

)
and

FX2
1−FX2

∈ Fcx .

1. X1 ≥1 X2, p1 ≥ p2 and p1
q1−1 ≥ p2

q2−1 (q1 ≥ 1) ⇒ Z1 ≥2 Z2.

2. X1 ≥2 X2, 1 ≥ p1 ≥ p2 and p1
q1−1 ≥ p2

q2−1 (q1 ≥ 1) ⇒ Z1 ≥2 Z2.

SSD conditions for the GB1 and the GB2 can be derived as follows.

4.2.1 GB1 distribution

TheGB1, introduced by [29], is suitable to model size phenomena on a bounded support. The
GB1 yields the standard beta and the power function distributions as special cases: the two
models used to compose the GB1 with the T–X method. Stochastic orders for the GB1 have
been studied by [41], who provided four sets of sufficient conditions for the LO. It appears
that stronger results are unavailable at present.

TheGB1 can be seen as a B2-power function {log-logistic} family: T has a B2 distribution
with parameters p, q > 0, X has a power function distribution with CDF FX (x; a, b) =
(x/b)a on its support (0, b), where a, b > 0, and QY (p) = p/(1 − p). Hence, the T–X
method yields the PDF of the GB1:

fZ (z; p, q, a, b) = azap−1(1 − (z/b)a)q−1

bap B(p, q)
, 0 < z < b. (19)

Let Zi , for i = 1, 2, have a GB1 distribution FZi (z) = FZ (z; pi , qi , ai , bi ), where FTi (z) =
FT (t; pi , qi ) and FXi (z) = FX (x; ai , bi ). It is easy to see that a1 ≥ a2 and b1 ≥ b2 imply
X1 ≥1 X2 (Lemma 2). FX

1−FX
is convex ∀a, b > 0. Thus, Corollary 1 point 1) yields

a1 ≥ a2, b1 ≥ b2, p1 ≥ p2 and
p1

q1 − 1
≥ p2

q2 − 1
⇒ Z1 ≥2 Z2. (20)
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Note that a1 ≥ a2 implies S−(FX1 − FX2) ≤ 1 (where the sign sequence starts with −).
Then, since the mean of the power function distribution is b

a+1 , Corollary 1 point 2) yields

a1 ≥ a2,
b1

a1 + 1
≥ b2

a2 + 1
,

1 ≥ p1 ≥ p2 and
p1

q1 − 1
≥ p2

q2 − 1
⇒ Z1 ≥2 Z2. (21)

4.2.2 GB2 distribution

TheGB2, introduced by [29], is probably themain distribution formodelling size phenomena
on the unbounded support (0,∞), owing to its flexibility. Many other widely used models
can be obtained from the GB2, such as the Singh–Maddala, the Burr (III), the B2, the log-
logistic, and the Pareto (II). The generalised gamma (also the gamma and the Weibull) can
be seen as a limiting case of the GB2 [22]. Sufficient conditions for the LO for the GB2 were
obtained by [40] and extended by [21].

The GB2 can be obtained as a T–X {Y} family, particularly as a B2-log-logistic {log-
logistic} family. T has a B2 distribution with parameters p, q > 0, X has a log-logistic
distribution with CDF FX (x; a, b) = 1

(b/x)a+1 , where a, b, x > 0, and QY (p) = p/(1− p).
Thus, the T–X method yields the PDF of the GB2:

fZ (z; p, q, a, b) = azap−1

bap B(p, q)(1 + (z/b)a)p+q
, z > 0. (22)

Note that the GB2 has a finite mean only if aq > 1. Let Zi , for i = 1, 2, have a GB2
distribution, where FTi (z) = FT (t; pi , qi ) and FXi (z) = FX (x; ai , bi ). By applying our
method, we find that X1 ≥1 X2 if b1 ≥ b2 and a1 = a2 (Lemma 2). Moreover FX (x)

1−FX (x)
=

(x/b)a is convex for a ≥ 1. Let FZ̃1
(z) = FZ (z; p1, q1, a2, b1). Corollary 1 part 1) yields

that, if a1 = a2 ≥ 1, b1 ≥ b2, p1 ≥ p2 and p1
q1−1 ≥ p2

q2−1 , then Z̃1 ≥2 Z2. Next, the

conditions obtained can be easily extended, because it is easy to verify that E(Z̃1) ≤ E(Z1)

and that the ratio, fZ1/ f Z̃1
, is unimodal. Thus, we can apply Lemma 1 (Point 3). Therefore,

we obtain that Z1 ≥2 Z̃1 ≥2 Z2, which implies that the sufficient conditions for SSD, can
be expressed as follows.

a2 ≥ a1 ≥ 1, b1 ≥ b2, p1 ≥ p2 and
p1

q1 − 1
≥ p2

q2 − 1
⇒ Z1 ≥2 Z2. (23)

Similarly, Corollary 1 part 2) gives

a2 ≥ a1 ≥ 1,
πb1 csc

(
π
a1

)

a1
≥

πb2 csc
(

π
a2

)

a2
,

1 ≥ p1 ≥ p2 and
p1

q1 − 1
≥ p2

q2 − 1
⇒ Z1 ≥2 Z2, (24)

where the second inequality involves the means of the log-logistic RVs.

5 An application to order statistics

Let X1, . . . , Xn denote a sample of i.i.d. RVs from an RV X . The k-th order statistic is
denoted by Xk:n . It can be shown that the distributions of order statistics of i.i.d. samples
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from any underlying distribution X belong to the BG class. This enables the comparison of
order statistics in terms of SSD in various sampling scenarios. In reliability theory, stochastic
comparisons of order statistics are particularly relevant. Order statistics may represent the
waiting time until fewer than k components remain functioning in a system of n components.
Put otherwise, the lifetime of the system is represented as Xk:n . Thus, reliability engineering is
concernedwithmaximizing themean life while also reducing the variability since predictable
life length is desirable. In the literature, several works deal with this issue using the LO
[9,23,24,42]; however, we argue that this scenario is even more suitable for SSD, in that it
considers both the variability and the mean (the LO is a size-independent version of SSD for
non-negative RVs).

As well known, the order statistic Xk:n belongs to the BG family. Replacing p = k and
q = n − k + 1 in (18), the CDF of Xk:n is

FB (FX ; k, n − k + 1) (25)

Let X1, . . . , Xn denote a sample of i.i.d. RVs from an RV X and let Y1, . . . , Ym denote a
sample of i.i.d. RVs from another RV Y . Corollary 1 enables the determination of the sample
sizes n and m and the ranks i and j such that Xi :n ≥2 Y j :m . Given j, n and m, we can
determine the minimum rank i = i( j, n, m) such that Xi :n ≥2 Y j :m . Given i, j ,and m, we
can determine minimum the sample size n = n(i, j, m) such that Xi :n ≥2 Y j :m .

Let X and Y be RVs such that FY
1−FY

is convex. Corollary 1 part 1) yields

X ≥1 Y , i ≥ j and
i

n
≥ j

m
⇒ Xi :n ≥2 Y j :m (26)

(see also [26]), whereas part 2) gives the following result involving sample minima

X ≥2 Y and n ≤ m ⇒ X1:n ≥2 X1:m . (27)

If X and Y have finite means, then Xi :n and Y j :m also have finite means (by the Jensen’s
inequality). In this case, the condition generated by the means of the B2 (i.e., i

n ≥ j
m ) can be

replaced by E(Xi :n) ≥ E(Y j :m), whereas i ≥ j and X ≥2 Y are enough to ensure that the
CDF of Xi :n crosses that of Y j :m at most once from below. Hence, we obtain the following
alternative result

X ≥2 Y , i ≥ j and E(Xi :n) ≥ E(Y j :m) ⇒ Xi :n ≥2 Y j :m . (28)

Condition (28) is weaker that (26), if the components’ distributions are know. Nevertheless,
the main advantage of condition (26) is that it’s distribution-free, since the only distributional
assumption about regards the convexity of FY

1−FY
. These results can be easily applied to several

basic models.

Example 1 A basic issue in engineering is designing a system with the smallest variability,
subject to given mean life constraints. An n-component system that fails if and only if at
least k of the n components fail is called a k-out-of-n: F system. If the components of such
system are i.i.d., its lifetime is represented as Xk:n . Consider a j-out-of-m: F system, with
m = 30 components, say Y1 . . . Ym which fails iff at least j = 10 components fail. Suppose
we need to replace the system with a new one, say X1, . . . , Xn , with a larger number of
components n > m. We want the new system to fail iff at least i = 15 components fail.
What is the largest possible number of components, say n∗, such that the lifetime of the
new system SSD-dominates the old one? If the components of the new system have the
same distribution of the old one, then n∗ = 15 · 30/10 = 45. Thus, X15:45 ≥2 Y10:30,
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Fig. 1 Empirical CFDs of X15:55 vs. Y10:30 and X15:54 vs. Y10:30

which is quite logical. This result does not rely on any assumption on the mathematical
form of the components’ distribution. But, the ordering conditions can be weakened if the
components’ distribution is known. Assume that X1, . . . , Xn are normally distributed with
meanμX = 50.1 and standarddeviationσX = 1,whereasY1, . . . , Yn are normally distributed
with mean μX = 50 and standard deviation σX = 1.1. Here the condition i

n ≥ j
m can be

replaced by E(X15:n) ≥ E(Y10:30), where numerical computation yields n∗ = 54. Then, in
this case we have X15:54 ≥2 Y10:30, that is, the number of components can be increased from
45 to 54. This theoretical result may be supported by a simulation study. We generated 500
random samples from X and Y of sizes n = 54, 55 and m = 30, respectively, to yield 500
random observations of X(15:53), X(15:54) and Y(10:30). The (empirical) CDFs of X15:55 vs.
Y10:30 and X15:54 vs. Y10:30 are plotted in Fig. 1. Denote by U obs an RV that is determined by
the empirical distribution of a sample from an RV U . We observed Xobs

15:54 ≥2 Y obs
10:30 (single-

crossing CDFs with E(Xobs
15:54) = 49.49 > 49.48 = E(Y obs

10:30)) whereas Xobs
15:55 ≥2 Y obs

10:30
does not hold (single-crossing CDFs with E(Xobs

15:55) = 49.47 < 49.48 = E(Y obs
10:30)).

6 Conclusion

The approach proposed in this paper provides rules (which may be verifiable with reasonable
simplicity) to establish stochastic rankings with FSD, SSD or ICX, for a large number of
multi-parametric families of distributions, namely, all the those that can be decomposed via
the T–X technique. The method has a wide range of applications. Overall, most generalised
families of distributions, including the distributions of some classic statistical tools, such
as order statistics, and classic transformations of random variables (RV) through invertible
functions, can be seen as a composition of parametric functions and can be framed within
this approach. Further applications and extensions of our results may be (i) obtaining rules
for stochastic dominance between different T–X families; (ii) focusing on different stochastic
orders; and (iii) deriving further properties for order statistics.
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A Location-scale families

Lemma 2 1. Let Xi , for i = 1, 2, be RVs with location parameters μi , such that FXi (z) =
G(z − μi ). If μ1 ≥ μ2, then, X1 ≥1 X2.

2. Let Ui , for i = 1, 2, be non-negative RVs with scale parameters σi , such that FXi (x) =
G(x/σi ) . If σ1 ≥ σ2, then X1 ≥1 X2.

3. Let Xi , for i = 1, 2, be two RVs with location and scale parameters μi and σi , such
that FXi (x) = G((x − μi )/σi ). If X1 and X2 have finite means and σ2 ≥ σ1, then
E(X1) ≥ E(X2) implies X1 ≥2 X2, whereas E(X2) ≥ E(X1) implies X2 ≥icx X1.

Proof Points (1) and (2) can be verified in a straightforward manner.
(3) G((x − μ1)/σ1) = G((x − μ2)/σ2) iff (z − μ1)/σ1 = (z − μ2)/σ2, that holds iff

x = μ1σ2−μ2σ1
σ2−σ1

. Thus, S−(FX1 − FX2) ≤ 1, where, in case of equality, the sign sequence
starts with −, and point 1) of Lemma 1 yields the thesis. 	


B On sufficient dominance conditions fot the B2 distribution

Let X1 and X2 be two B2-distributed RVs with PDFs fi (x) = B(pi , qi )
−1x pi −1(1 +

x)−pi −qi , where x, pi , qi > 0, i = 1, 2. We find h(x) = f1(x)
f2(x)

= a(x)(c + dx), where
a(x) > 0 for every x, pi , qi > 0, i = 1, 2, c = p1 − p2 and d = q2 −q1. If c = 0 and d = 0
the two distributions coincide. Otherwise, we find that, 1) if cd ≥ 0, then h is a (strictly)
monotone function, whereas 2) if cd < 0, then h is unimodal.We distinguish these two cases.

(1) By virtue of the monotonicity, if cd ≥ 0, then S−( f1 − f2) = 1. Then X1 and X2 are
stochastically ordered (Shaked, 1982). More precisely, if p1 ≥ p2 and q2 ≥ q1, then
X1 ≥1 X2, because h is increasing.

(2) By virtue of the unimodality of h, if cd < 0, then S−( f1 − f2) ≤ 2. More precisely, if
p1 > p2 and q1 > q2, then the mode is a maximum. Thus, applying Lemma 1 (point 3),
and, recalling that E(Xi ) = pi

qi −1 , if qi > 1, we obtain:

1. p1 > p2, q1 > q2 > 1 and p1
q1−1 ≥ p2

q2−1 implies X1 ≥2 X2.

2. p1 > p2, q1 > q2 > 1 and p1
q1−1 ≤ p2

q2−1 implies X2 ≥icx X1.

Because X1 ≥1 X2 implies X1 ≥2 X2, we may determine a single sufficient condition
for SSD: p1 ≥ p2 and E(X1) ≥ E(X2), if the expectations exist, implying X1 ≥2 X2.
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