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Abstract 

The equilibrium of self-balanced masonry shells, during their 
construction, is the focus of this research. Through an evaluation 
of various historical self-supporting technologies, isolation of the 
primary factors that contribute to their self-balanced state under 
construction, a general approach to assess the equilibrium of 
masonry structures during their construction is proposed. This 
approach, based on two steps, can consider J. Heyman’s 
hypotheses and can be adapted to consider the characteristics 
concerning different self-supporting technologies used. Among 
the historical technologies observed, the cross-herringbone 
technique (developed starting from the famous Brunelleschi's one) 
has been mainly observed. Its characteristics are derived from two 
types of sources: historical documents and surveys of real 
structures. A two-stepped approach is implemented to assess the 
self-balanced state of two case studies built adopting cross-
herringbone technology. The research places the basis for future 
research on the evaluation of the stability of masonry under 
construction, and development of the cross-herringbone 
technology. 

Keywords: Self-balancing, self-supporting, masonry, historic structures, 
cross-herringbone, herringbone, limit analysis, equilibrium analysis, 
discrete element method, Sangallo, Brunelleschi. 
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1. Introduction 

In this dissertation, an approach to evaluate the self-balanced state 
of masonry shells during the construction phase is proposed. The 
approach illustrated has been implemented to assess the 
equilibrium of domes built with the cross-herringbone spiralling 
technique. 

 

1.1 Design and technology  

In recent decades, masonry shells have been the subject of 
considerable study, in particular, with the development of 
computers and digital fabrication tools that influence the direction 
of research in this area. A witness of this development is the 
Armadillo Vault pavilion [1] where the extreme shape has been 
designed and fabricated, only through the aid of computer 
numerical control tools. Also, from the structural behaviour point of 
view, considerable progress has been made. The formulation of 
plastic theory for masonry structures [2] has been placed the basis 
for thriving research [3] [4] [5]. According to this theory, the 
geometry is the crucial factor for guarantee the equilibrium of 
masonry structures, from the simple study of geometry, it is 
possible to determine the state of the structure. Concerning the 
construction of masonry buildings, Byzantine builders believed that 
the stability, geometry and construction were fundamental 
elements for understanding these structures [6] [7]. They also 
believed that these three elements were deeply related to each 
other, and as mentioned above, nowadays, we know that there is a 
close relationship between the first two aspects: the stability and 
the geometry. However, much of the research developed in the last 
decades points to the development of advanced construction 
systems [8] [9] that do not always consider geometry and stability. 
Undoubtedly, the new digital fabrication technologies and the use 
of robotic instruments can reduce the costs of masonry structures 
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[10], in particular, referring to the relative costs of fabrication and 
formwork. The issues encountered in the context of productivity 
and economic efficiency of curved spatial structures are certainly 
not new, not in the current day nor throughout history when 
various self-supporting and/or self-centering technologies have 
been developed. Around the world, several studies, installations 
and architectural works give evidence of work being conducted in 
the area of self-supporting technologies, in particular, related to 
the tiling vaulting technique. Nevertheless, very few scientific 
researches are dedicated to defining an approach for evaluating 
the equilibrium of these structures under construction. 
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1.2 Statement of the problem 

The economic factor in terms of productivity is the main issue 
faced in the building field [11]. Starting from the existing and 
historical techniques, the development of efficient and sustainable 
construction technologies should be the scope of the current day 
research. From the previous discussion, and to achieve this 
purpose, it is needed to develop a theory to evaluate the state of 
equilibrium of structures during their construction and concerning 
masonry buildings, this approach should consider the peculiar 
masonry behaviour. 
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1.3 Outline of chapters 

The remainder of this document is organized as follows: in Part I., 
after introduction chapter 2. and chapter 3. give an overview of the 
principal historical self-balanced technologies and an introduction 
on the theory and method adopted for assessing the equilibrium of 
masonry structures. Part II is constituted by chapters 4, 5. and 6.. 
Chapter 4. describes the characteristics of the cross-herringbone 
spiralling pattern a self-supporting technology developed by 
Sangallo architects, while the approach to evaluate masonry 
structures during their construction is also illustrated in chapter 5. 
and applied to assess the equilibrium addressed in chapter 6.. The 
conclusions are illustrated in Part III, constituted by chapter 7.. 
Three appendixes follow the conclusions: Appendix A reports the 
list of domes built using herringbone or cross-herringbone 
spiralling technology, Appendix B gives the results of limit state 
analysis, and Appendix C the results of discrete element method. 
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2. Self-Balanced vaulting technologies 

Arches, vaults and domes are among of the most significant 
expressions of civilisation and cultural and technological progress. 
These structural systems have numerous applications, varying 
from providing shelter, defining a space, and in the creation of 
monuments. Among these, thin shell structures can define 
architectural forms and resist loads efficiently at the same time [12]. 
However, they require a significant investment in terms of 
resources, since centering or formwork is needed during the 
construction, which impacts at 20-30% of the entire project cost 
[13] [14]. 

Every culture has sought towards building methods and 
techniques based on the principles of efficiency. In this process, 
they have explored efficient technologies that permit to build 
vaults, arches and domes without the need for any formwork or 
shoring throughout various phases of its construction. As 
witnessed in scientific documents, several efficient technologies 
have been developed throughout history [15] [16]. Unfortunately, 
over the last few centuries, this knowledge is lost.  

The literature refers to these efficient vaulting technologies, 
through the adoption of various terms: self-centering [17], self-
supporting [18] or self-balancing [19]. Self-supporting and self-
centering are terms related to the construction aspect with slightly 
different meanings: not all self-supporting technologies are self-
centering; but, all self-centering technologies are self-supporting. 
The self-supporting techniques do not require the use of formwork, 
and in the self-centering ones, even the use of centering is not 
needed. The term self-balancing, on the contrary, is related to the 
static aspects. Self-balancing indicates the ability of a structure to 
find a balanced state without any support during all the 
construction phases. Therefore, in this document, the author refers 
to the following terms: self-supporting, self-centering or self-
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balancing, depending on the aspect analysed: constructive or 
structural. 

The focus of this chapter remains solely on the most relevant 
historical self-supporting technologies: vaulted masonry shells. 
The literature on various other self-supporting or self-centering 
technologies is available; nevertheless, this research does not 
include them, e. g. the armchair voussoirs technique [20] used in 
the Roman Empire to build self-supporting structures, displayed in 
figure 2.1, or the nuraghe vaulting technique [21]. 

  
Figure 2.1 Armchair voussoirs vault. Left detail. Right, vault under construction. 

Drawing of L. C. Lancaster [20] [22]. 

The technologies chosen for the literature review are 
representative and among the most diffused. For each technique, 
a historical and critical overview is presented, showing their main 
peculiarities, and the construction principles. The following 
chapters give a brief introduction to these technologies 
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2.1 Pitched vault 

2.1.1 Notes on the history of pitched vault 

The pitched vaulting technique, also called the "Nubian" technique, 
is it the first or among the first self-centering method developed. 
The history of the pitched vaults is strictly related to the history of 
the arches: the origin of this technology dates back to the same 
period of the origin of the arch. Evidence of the existence of this 
constructive method dates back to as early as the 21st century 
B.C.E. [23] [24] [25], and it is in use in the current day in few parts 
of North Africa [26]. Traces of these kinds of structures can be 
found on three continents: Asia (Middle East), North Africa and 
Europe, which suggests that this construction technology had 
spread through the Mediterranean Sea and the cultures 
surrounding it [7] [16] [20] [27]. Several sources document the use 
of the pitched vaulting technique: on one hand through domes at 
Taq-I Kisra (Sassanid Empire, around the 6th century, ancient city of 
Ctesiphon in modern-day Iraq) [16] or the Byzantine domes [28] as 
the substructure of the apse hall of the Palace of Byzantine 
Emperors (Byzantine Empire, ancient Constantinople in modern 
Istanbul) [7], and on the other hand by historical documents such 
as the A. Choisy’s treatise [6]. 

2.1.2 Principles of pitched vaulting technique 

To understand how the pitched vaulting technique allows building 
a structure without centering, it is essential to first visualize a barrel 
vault under construction. Traditionally to build these vaults, the 
bricks are laid radially as shown in figure 2.1.1 a), thus, to prevent 
sliding, it is necessary to use auxiliary structures. A peculiar pattern 
characterizes the barrel vaults built with the pitched vaulting 
technique, figure 2.1.1 b): the bricks are laid radially to form arches 
placed in an inclined plane, and laid one next to another with the 
new arch resting over the previous one [29]. Referring to figure 
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2.1.2, it is possible to observe the construction method, where the 
first arch laid is placed against a boundary wall, and that has a 
crucial role in supporting the barrel vault during its construction. 
The first bricks are placed such a way to push against the wall and 
to form an arch. Once the first arch is completed, the next one can 
be laid. Following this construction sequence, the new brick course 
is placed over the previous one, allowing each brick to interact with 
the previous arch, these contacts prevent the slippage of bricks 
during the placing of the subsequent. 

 
 

Figure 2.1.1 Barrel vault and pitched vault under construction. Drawing by J.F.D. 
Dahmen [16]. 

 
 
 

Figure 2.1.2 Pitched vault under construction. Photography by Adobe alliance [16].
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As mentioned, the arches formed do not lay in vertical planes and 
display inclinations that are not evenly defined; some examples of 
this variation are shown in figure 2.1.3 [7] [27]. 

 
 

Figure 2.1.3 Pitched vaulting technique, different scheme to lay bricks. a), b), c) 
and d) are a lateral view of barrel vaults each one show different scheme and 

inclination of arches. e) and f) represent a combined method [6]. 
Drawing of A. Choisy.

The shape of arches is not clearly defined, but research studies and 
evidences from archaeological remains, testify that the geometry 
of the arch adopted is parabolic [20]. This shape gives both 
structural and constructive advantages: the parabola being the 
geometry most similar to catenary [30], the ideal geometry to 
support the uniform distributed load. Therefore, once the first arch 
is laid, the geometry of all the subsequent next arches is defined, 
thus eliminates the need for centering. During construction, the 
equilibrium state is facilitated by the portion of the vaults already 
built.  
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The equilibrium of the pitched vault is guided by the arch’s stability 
and by the stability of the supporting wall, both of which depend 
essentially on their geometries [2]. 

2.1.3 Geometries of the pitched vault 

As displayed in figure 2.1.3 e) and f) cases, the pitched technique 
could combine different laying methods within a structure. 
Certainly, the geometry most suitable for this self-centering 
technology is the barrel vault, owing to the analogy to an arch. 
However, it can be used to build domes with different geometries 
such as hemispherical domes, cross vaults, dominical vaults and 
more complex shells [27]. In order to build these complex structures 
using the pitched vaulting technique, it is necessary to design the 
orientation of mortar joints. The constructive process also assumes 
great importance here, and figure 2.1.4 illustrates a possible pattern 
for building a cross vault [27]. 

 

Figure 2.1.4 Pitched vaulting technique. Scaled model of cross vault under 
construction: different pattern orientation [27] [31]. Photography by D. Wendland. 

  



 

29 

2.2 Clay tubes vault 

2.2.1 Notes on the history of Clay tube vault 

Among the several technologies that flourished during the Roman 
Empire, the origins of the tube vaulting technique can be traced 
back to the 4th century B.C.E. [32] [33]. Over the following centuries 
the tube vaulting technique, developed mainly in Africa 
proconsularis (today Tunisia, Libya, Algeria and Morocco) and 
spread throughout Europe, especially in Italy, France, Spain and 
Britain [20] [24] [33]. Even after the fall of the Roman Empire, this 
technique was used until the 7th century C.E. by civilizations in 
North Afric, such as Vandals, Byzantines and the Arabs [34]. 
Nowadays, the tubes vaults and domes are used as low-cost 
alternatives in India [20]. 

The first use for this technology could be linked to a pre-existing 
building technique used for clay kilns [35], this also includes the 
tube vault covered food storages where the clay fireproofing 
properties protected the food from fire-related dangers [20]. 

2.2.2 Principles of Clay tube vaulting technique 

As witnessed during the archaeological campaigns of Sicily and 
North Africa [33] [24], until the 2nd century C.E. the shape of the clay 
tubes changes constantly and the technique underwent 
refinements and variations. These tubes used in the clay vaulting 
technique are hollow clay cylinders with a small nozzle. Their sizes 
vary with the period and the context in which they were 
manufactured. Broadly viewing, they have the length of less than 
20 cm and diameter around 6-10 cm [20]. 

The reduced dimensions of the clay tubes guaranteed lightness, 
allowing the mason to place them easily. Their peculiar shape, also 
allows the tubes to be stacked, in a way that the nozzle rests within 
the hollow end of the next clay tube. During construction, just 
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before the two tubes are piled one upon the other, gypsum mortar 
is laid between the two interacting surfaces: the nozzle and the 
cylindrical lateral surface of the tube [34]. Therefore during 
construction, the hollow end is partially filled, and immediately, the 
two tubes are joined together. However, in the pitched vaulting 
technique (chapter 2.1), the first arch placed requires to be 
supported under construction. In the case of barrel vaults 
construction wich the tube vaulting technique, as shown in figure 
2.2.1, the tubes are oriented as parallel vertical arches and start 
from an end wall or by placing a light formwork [32]. 

 

Figure 2.2.1 Tube vaulting technique. Left detail under construction, the clay tubes 
and gypsum mortar Drawing of L. C. Lancaster [20]. Center and right, 

reconstruction of a barrel vault, Chemtou (Tunisia) [34]. 

The use of gypsum-based mortar and the pipes stereotomy does 
not make the construction sequence fundamental: it is not 
necessary to complete the previous arch before being able to 
proceed with the subsequent arches. Therefore the tubes vaulting 
technique allows creating self-supporting structures and 
construction of simple structures without centering. 

2.2.3 Geometries of clay tube vault 

The tube vaulting technique allows building complex geometries, 
such as hemispherical domes, cross vaults, pavilion domes, 
squinch domes, and even more complex geometries. For building 
these complex structures, the study of the orientation pattern of 
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tubes is needed, figure 2.2.2 clarifies some orientation patterns: 
interesting are the cases related to revolution geometries where 
the orientation patterns are possible by arches or rings [34]. 

 

Figure 2.2.2 a), b), c), d) orientation pattern of clay tubes. For cases c) and d) two 
different patterns can be adopted [34]. e), f), g), h) San Vitale basilica (Ravenna, 
Italy). e) and f) are details of the dome, which was built with the tube vaulting 

technique. e) Detail near the crown, the tubes are laid to form rings. f) Detail near 
the base of the dome, as well as e) the tubes form rings [36] [37]. g) Section and 
plan view of San Vitale in Ravenna. h) Detail of a section of San Vitale dome, the 

horizontal orientation of the tubes [38].  
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2.3 Tiling vault 

2.3.1 Notes on the history of tile vault 

The tile vault is the most famous self-supporting technology that 
developed in Spain around the 13-14th C.E. [39]. This technology is 
an efficient method to build curved structures using only mortar 
and tiles. 

Although extensive literature reports the history of the tile vaulting 
technique [40] [41], the origin of this technology is not clear. 
However, it is reasonable to think that the encounter between 
Islamic and Romanesque culture has favoured the birth of this 
constructive system. This interaction could have taken place in the 
Spanish peninsula, due to, the scarce availability of the wood for 
auxiliary structures. The use of tiles and the presence of gypsum 
[41] combined with constructive knowledge of Byzantine and 
Islamic builders [15], forms the perfect environment to develop the 
tiling vaulting technique.  

It is not the purpose of this document to report the complete 
historiography on the evolution of this technique [41], but it is 
fundamental to list the milestones in the evolution that have 
characterized the tile vaulting method. These milestones are 
broadly related to the aspects of efficiency and strength of the tile 
vaults The early known use, between the 12th-13th century, was for 
secondary structures such as stairs [39]or for filling space between 
ribs vaults [42] (span: 1.3 -1.5 m). Over the next centuries, the 
technique was used to build domes and vault without ribs. This is 
when, the knowledge of the tile structure behaviour increased, 
adding to its importance and applications (span: few meters). Along 
the 16th century, the method was systematically applied along the 
Spanish east coast [15], especially in the area of Catalonia, Valencia 
and Extremadura. Architects like Guastavino, had a significant role 
during the 19th and 20th century [43], when the tiling technology 
was transferred to North America and became one of the most 
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popularly used self-supporting technique [44] (span: > 15 m). Later 
since the 18th century, this constructive method was learnt and 
applied in other countries like Italy [15] and France [45]. Nowadays, 
tile vaults are used primarily in developing countries [26] [46]. 

2.3.2 Principles of tile vaulting technique 

To raise a tile vault it is required following a construction sequence 
[47]: first, the centering is placed, as shown in figure 2.3.1 a) [48], 
and then tiles are laid according to the construction sequence, e.g. 
figure 2.3.1 b). Generally, the tile vaults are composed of 2-3 tile 
layers, which are laid using two different types of binders. The inner 
shell is placed by using gypsum mortar (plaster of Paris) or fast-
setting cement; this layer supports the following layers and acts as 
formwork during the construction process. The remaining layers 
can be laid with non-hydraulic or hydraulic binder [49]. To avoid 
overlap of joint the orientation of the tile pattern must be changed 
between different layers, typically by rotating the first layer with 
respect to the second one by 45° [50] figure 2.3.1 c). The tile used 
to build the vaults are thin, once laid the overall thickness remains 
less than 12 cm.  

The use of a fast-setting mortar does not provide by itself all the 
resources to prevent sliding and overturning of the structure during 
the construction phases. Only if all factors have been respected: 
the construction sequence, the feature of stiffness derived from 
the curved geometry [27], lightness and strength of the tiles and 
the fast-setting property of the binder [44] the tile vaulting is a self-
supporting method. 
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Figure 2.3.1 Tile vault under construction. a) Centering [48]. b) The construction 
sequence [51]. c) A portion of tile vault under construction [48]. Drawing of (from 

top to bottom) L. B. Moya, A.Choisy, L B. Moya. 
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2.3.3 Geometries of tile vault 

Thanks to the peculiar constructive technique, the tiling vaulting 
technique permit to build practically any kind of compressed shells: 
from staircases [44] to barrel vaults. As displayed in figure 2.3.2, 
contemporary projects [46] [52] show the full potential of the tile 
vaulting technique [50]. 

 
 

Figure 2.3.2 Complex ribbed vaults. Masterclass - Ribbed Catalan, Photography by 
M. Ford [52].
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2.4 Herringbone vaulting technique 

2.4.1 Notes on the history of Herringbone vaulting 

The secret building process of the dome of the Santa Maria del Fiore 
(1418-1471) cathedral in Florence has fascinated researchers for 
around six hundred years [53] [54] [55] [56] [57]. Despite the 
resolution of numerous questions, the construction of these 
impressive structure remains a mystery.  

The origins of the herringbone construction technology have been 
obscured by the fame of the dome of Santa Maria del Fiore. It is 
unreasonable to think that Filippo di Ser Brunellesco Lapi (1377-
1446 [58]), commonly known by the name Brunelleschi, built his 
masterpiece without having a full grasp of the herringbone 
spiralling technology. 

Some researchers believe that the herringbone spiralling technique 
can be derived from the Opus spicatum [59], a Roman technique, 
shown in figure 2.4.1 a), used to build wall whose pattern appears 
very similar to that of the Brunelleschi's herringbone.  

Other researchers trace its origins to the east [60] [61] [62], based 
in the cultural contact that was evident between the Florentine, 
Byzantine and Arab cultures. As evidence of this, there are 
numerous testimonies: the council of Florence (1055) chaired by 
Victor II [63] or the commercial agreements between Tuscans and 
Arab kingdoms [64]. The influence of Arab and Byzantine in 
Florentine architecture begins at least one century before the 
construction of Santa Maria del Fiore's dome [64]. Therefore, for all 
of these reasons, it is not possible to pinpoint the origins of the 
herringbone spiralling technology, and even how Brunelleschi 
gathered his knowledge on this constructive system.  
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Figure 2.4.1 Herringbone spiralling pattern. a) Opus spicatum. Drawing of C. G. de 
Montauzan [65]. b) Revolution dome and herringbone spiralling pattern, the vertical 

bricks are highlighted. Drawing of F. Gurrieri [66]. 

The Venetian master masons, during the 11th century, used the 
herringbone spiralling technique in the area close to Venice [60], as 
the same period, the Seljuks applied it to build mosques [61]. Figure 
2.4.2 shows the dome of Northern Prayer Hall (completed in 1088) 
of the Isfahan Friday Mosque (Isfahan, Iran), the herringbone 
spiralling pattern is visible in the lateral half-domes. Nowadays, the 
Ardestan Friday Mosque (completed in 1158, Ardesan, Iran), 
displayed in figure 2.4.3, is proof of the great skill of Arab masons 
in the use of the herringbone spiralling technique. The invention of 
this technology could be even more ancient since it is interwoven 
with the history of traditional Iranian wind towers (the Bādgir) and 
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the traditional Iranian water cisterns (the Ab Anbar) whose origins 
are very ancient even millennia B.C.E., figure 2.4.4 [67]. 

 

Figure 2.4.2 Northern Prayer Hall (completed in 1088 C.E.) of the Isfahan Friday 
Mosque (Isfahan, Iran). Photography by R. Piperno [68]. 

 

Figure 2.4.3 Ardestan Friday Mosque (completed in 1158 C.E., Ardesan, Iran). 
Photography by Selcuklu Belediyesi [69]. 
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Figure 2.4.4 a) Traditional Iranian water cisterns (date unknown, Ardakan, Iran) 
Photography by unknown [70]. b) water cisterns facility of Ardestan Friday Mosque 

(completed in 1158 C.E., Ardesan, Iran). Photography by R. Piperno [68]. c) 
Traditional water cisterns (date unknown, Ardakan, Iran) Photography by unknown. 
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In Italy, until the second half of the 16th century. The herringbone 
spiralling technique was used systematically by florentine Sangallo 
architects [62] (Appendix A). Sangallo perfected this building 
technology, and from it, developed the cross-herringbone spiralling 
technique [71]. It also seems that the application of the technique 
ended with the Sangallo architects. However, the specific reasons 
why the use of this herringbone spiralling technique disappeared in 
Italy post 16th century are not known. 

2.4.2 Principles of herringbone vaulting technique 

To understand how the herringbone spiralling technique allows 
building structures without support it is necessary to examine its 
typical masonry pattern: as shown in figure 2.4.1 b), the 
herringbone spiralling pattern consists of an arrangement of 
horizontal brick courses interrupted by vertical bricks, in this 
document, they are called herringbone bricks. The herringbone 
bricks are laid at regular intervals and placed in the same plane of 
the horizontal bricks. 

Through the different courses, the herringbone bricks describe a 
peculiar trajectory curve: the loxodrome also called rhumb line [72] 
[73][74]. The loxodromic curves are a class of mathematical curves: 
they are continuous, and they run on the entire surface of the 
structures. This geometrical continuity highlights the role of the 
herringbone spiralling pattern and in particular that of the 
arrangement of herringbone bricks: linking the courses together. 

Figure 2.4.1 b) shows an incomplete dome with a herringbone 
spiralling pattern, and assuming to build through the complete 
course, i.e. placing bricks of a new course only when the previous 
one is completed, it is possible to understand how the vertical 
bricks tie two courses together. They belong to a closed course 
which is a balanced structure and stable; therefore the vertical 
bricks are fixed and capable of acting as constraints for the 
construction of the next course. Under construction, the 
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herringbone spiralling technique allows the formation of resistant 
substructures (see chapters 4.3 and 6.3.2) whose role is to prevent 
slippage and overturning. 

2.4.3 Geometries of herringbone vault 

The herringbone spiralling technique has been applied mainly to 
hemispherical or pavilion domes; however, as shown in figure 2.4.3 
and 2.4.4 b) with appropriate precautions, it can also cater to other 
geometries.
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3. Notes on masonry mechanics 

The following chapters 3.1, 3.2 and 3.3 illustrate the mechanical 
assumptions and the essential characteristics of the theory and 
tools adopted to pursue the research presented in this thesis. 

 

3.1 Notes of the history on the theory of arch and 
vaults 

This chapter contains a brief history of the fundamental theories 
formulated over the last four centuries. The aim here is not to 
present the history of the structural arch theory, which is well 
known and documented, as evidenced by the vast literature [75] 
[76] [77]. The aim is to understand what the origins of the structural 
theories of the arch and vault are. Also, what today is commonly 
accepted. Only through this study of history and theories 
formulated in the past, it is possible to develop a critical capacity 
that avoids repetitions of mistakes. 

The earliest scientific research published on an arch is written by R. 
Hooke (1670). He understood the link between the geometry of the 
catenary and the resistance capacity of the arch, figure 3.1.1 [78]. 
Twenty-seven years later, D. Gregory (1697) reached the same 
conclusion, adding for the first time what is now within Heyman's 
theory as the sufficient condition to guarantee equilibrium [75]. 

Simultaneously in France, by pursuing the medieval tradition, P. de 
La Hire (1695) initially [79] [80] and then B. F. de Belidor (1739) [81] 
[x] analysed the kinematics of the arch as a system of macroblocks. 
Today, a similar approach is adopted through D.E.M. [82]. 

Around the same time in France itself, although with some 
inaccuracies and without much mathematical rigour, A. Couplet 
(1730) in his second memoir [83] anticipated by almost two 
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centuries the hypotheses fundamental for the validity of the limit 
analysis [2]. From the observation of the real structures, Couplet 
understood that commonly the collapse of arches occurs due to 
the formation of kinematic mechanisms. 

He illustrated the dual nature of structural analysis: the static 
approach aimed at determining equilibrium and the kinematic 
approach whose purpose is to analyse the possible mechanisms. 
Although indirectly, the Couplet's work, as well as that of de La Hire 
and Belidor, was enclosed and reformulated by C. A. de Coulomb 
(1773) [75], he was the first to introduce the concept of the upper 
and the lower limit of thrust and described the nature of crushing 
phenomena [78]. 

 

Figure 3.1.1 a) Poleni's drawing of Hooke's analogy. b) Overpostistion of: The 
Catenary and The Arch by R. Pedreschi and Poleni's drawing of Hooke's analogy. 

The studies are based on the two approaches: static and kinematic 
pursued in search of a connection. This element was recognised in 
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the curve of pressure, whose first exhaustive formulation was by T. 
Young (1817) [76] [84]. 

The curve of pressure is a specific funicular polygon related to an 
arch, through which the real state of the structure can be 
described. The curve of pressure is the locus of the application 
points of the resultant internal forces. These resultants do not 
necessarily act orthogonal by to the masonry joints in the arch, but 
at the limit, in the hypothesis of finite friction, they must be 
contained within the friction cone. Furthermore, to reflect the real 
mechanical behaviour of masonry, i.e. zero tensile strength, the 
curve of pressure must be entirely contained within the arch 
thickness [85]. 

The question of determining the curve of pressure was the primary 
subject for research in the first half of the 19th century [86] [87]. 

In the same century, C. Navier (1826), JV Poncelet (1852), H. 
Bresser (1852), W. J. M. Rankine (1860), E. Winkler (1879) and A. 
Castigliano (1879) [76] investigated on the possible applications of 
the theory of elasticity for the analysis of arches and vaults. Winkler 
wrote the first complete formulation. The elastic theory permits to 
describe the correct curve of pressures of the ideal arch, once the 
data are known exactly hence for analysing the real structure, 
several coefficients should be considered. These coefficients called 
perturbations, justify the differences between the determined 
elastic curve and the behaviour of the real arch [88]. 

Due to the considerable computational complexity and the 
development of static graphical tools, the application of the elastic 
arc theory was limited only to the analysis of exceptional structures 
[2]. 

In the second half of the 19th century, the static graphical tools 
allowed the analysis of arches and vaults. In particular, as shown in 
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figure 3.1.2, H. T. Eddy (1877) determined a method for the analysis 
of shells of revolution [89]. 

The first studies for evaluating masonry shells date back to the 18th 
century by P. Bouguer (1734) [90]. A. F. Frezier (1737) who 
introduced the Slicing technique [91] an essential element for the 
method developed by H. T. Eddy. Towards the end of the 19th 
century using static graphics tools, G. Ungewitter (1892) published 
a manual for the static study of vaults [92]. 

 

Figure 3.1.2 Eddy's method, analysis of hemispherical domes. Drawing of H.T. Eddy 
[89]. 
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Despite the critical points highlighted, the theory of the elastic arch 
was considered the most correct until the second half of the 20th 
century when D.C. Drucker (1952) [93], A. Kooharian (1953) [94] and 
W. Prager (1959) [95], formulated the theory of plasticity and Limit 
Analysis for perfectly plastic solids. Following their studies, J. 
Heyman (1966) presented his Structural theory for masonry [2]. He 
revisited the traditional methods of analysis of masonry 
constructions (Hooke, Gregory, Couplet, Coulomb) in the 
framework of the plastic theory, and thus through the Heyman’s 
formulation, it is possible to apply the principle of limit analysis to 
masonry structures [2]. 

Today, although with variations, the approach of the elastic theory 
is still predominant. This is mainly due to the development and the 
diffusion of F.E.M. commercial software based on the elastic 
approach. Commercials tools which permit to evaluate masonry 
structure within the framework of limit analysis approach are not 
yet been developed [30] [96] [97]. 

Finally, during the last decade of the 20th century, some 
researchers adopted distinct element methods to analyse masonry 
structures [98] [99] [100]. Distinct element method (D.E.M.), also 
called the discrete method, permits to evaluate masonry structures 
as a system of distinct blocks [101]. 

For this research, among all approaches developed in history, 
D.E.M. and Heyman's formulation have been adopted to evaluate 
the equilibrium during the construction. Chapter 6.4.2 presents the 
considerations and the assumptions needed to adapt them to 
evaluating the building phases.
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3.2 Essential of the Structural theory for masonry [2] 

The structural theory for masonry formulated by Heyman (1966) 
provides, under specific conditions [2], a method for evaluating 
masonry structures within the framework of the plastic theory and 
use limit analysis [102]. His formulation is based on three 
fundamental hypotheses:  

I. Sliding failure cannot occur; 
II. Masonry has no tensile strength; 
III. Masonry has infinite compressive strength [2]; 

It is not a coincidence that the hypotheses mentioned were already 
derived by Couplet in the 18th century; they reflect the behaviour 
of the real masonry structures. Commonly, the collapse of the arch 
structure is strictly related to the formation of a sufficient number 
of hinges, for a kinematic mechanism to form. This is because of 
the absence of sliding failures and low compressive stresses that 
are present in ordinary masonry structures [103] [104] [100]. 

For ordinary conditions and common structures, the Heyman’s 
hypotheses I., II. and III. are usually respected, thus the lower 
bound theorem (or static theorem) provides the condition to 
guarantee the equilibrium of masonry structure. To evaluate the 
arch stability, the lower bound theorem can be expressed as 
follows: 

Under a given set of loads, if at least one line of thrust can 
be found entirely within the arch geometry. Then no 
kinematic mechanism can exist, and this is an absolute 
proof that under this set of loads, the structure is stable, and 
indeed that collapse can never occur. 

This form of the lower bound theorem is called master 'safe' 
theorem. It provides sufficient condition to guarantee the 
equilibrium of an arch [2].  
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To trace the line of thrust, several methods can be adopted, most 
of them based only on the principle of equilibrium. Therefore, being 
the arch a hyperstatic structure, it is easy to understand that 
infinite lines of thrust can be traced [2]. Theoretically given a set of 
loads, a range of balanced solutions can be determined, figure 3.2.1 
reports an example. The range is characterized by two factors: its 
bounds and the number of solutions contained. The bounds 
correspond to the minimal line of thrust and the maximal line of 
thrust.  

Figure 3.2.1 Different lines of thrust for an arch: curve d-f represents the maximum 
line of thrust, curve a-c the minimum line of thrust. Drawing of W. H. Barlow [105]. 

The number of solutions contained, instead, depends on several 
factors, as the arch geometry or the presence of cracks.  

For particular cases, e. g. the existence of more than four hinges, 
the master 'safe' theorem is violated, the range is empty; hence the 
arch is not stable. To date, in the literature, several scientific 
documents can be found that introduce variations to conditions I., 
II. or III., these variations are due to justify local phenomena or 
particular circumstances [106] [107] [108].  

As detailed in chapter 6.3, in the research here presented, limit 
analysis is used to evaluate the equilibrium under construction of 
domes. The master 'safe' theorem was used to provide the 
resources to assess the dome equilibrium under construction.  
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3.3 Discrete element method 

The Distinct Element Method (D.E.M.) was conceived for 
geomechanical analysis, such as for caves or mines [98] [99]. 
However, some researchers have also demonstrated its validity for 
masonry structures [109] [110] [111]. 

D.E.M. is a computational method to study the time temporary 
evolution of structures. Through D.E.M., the masonry is assimilated 
to a system of discrete bodies consisting of two elements: blocks ( 
the solid elements) and discontinuities (the interfaces) [98] [99]. 
The blocks can be rigid or deformable; in the second case, D.E.M. 
and F.E.M. methods are integrated, allowing to estimate stresses 
and deformations [112]. The discontinuities between the blocks 
could be described by elements or, in the simplified models by the 
interface between two blocks. The purpose of D.E.M. is to describe 
the time evolution of the system, to perform this the collisions 
between the bodies can be detected, and they influence the 
evolution of the system itself. D.E.M. uses an explicit time-
marching scheme to solve the equations of motion directly [101], 
thus the determination of the different temporal states is 
calculated by the explicit numerical integration of the equations of 
the motion of rigid bodies in time [101]. 

The analyses are ruled by several parameters, some related to the 
blocks, such as the characteristics of the material, and other 
relevant to the discontinuities for simulating the joints [101]. 
However, the most decisive factors that influence the analysis are: 

- The geometry of the blocks, whose choice must be 
weighted concerning different factors, including the type 
of analysis performed [113]. 

- The coefficients of the discontinuities, they depend on 
the scale of the model analysed, its geometry, and the 
failure criteria adopted to describe the joints [114]. 
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Even if several documents propose several approaches on how the 
parameters should be chosen [115], their determination is 
subjective, at least partially. Thus, before defining any model, it is 
required to identify what the goal of the analysis is, only then the 
hypothesis can be formulated carefully. Wrong assumptions (e.g. 
the choice of discretisation) could lead to incorrect solutions, even 
though the equations are correctly solved. 

The spreading of the technique in different fields has led to the 
development of different D.E.M. methods characterised by notable 
differences [116] [117]. 

Within the research conducted, here as described in chapter 6.4, 
the method D.E.M. was used to investigate the effect of cross-
herringbone spiralling pattern on domes under construction. 
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4. Cross-herringbone vault 

Essays, articles and other literature on the application of 
herringbone spiralling technology for Brunelleschi's dome: Santa 
Maria del Fiore in Florence are numerous, albeit how the 
Brunelleschi gained knowledge on this technology is still not well 
understood (see chapter 2.4.1). Undoubtedly, the use of this 
technology in the dome of Santa Maria del Fiore has influenced the 
diffusion and the affirmation of the herringbone spiralling 
technique in the buildings of the Florentine tradition. Even if Leon 
Battista Alberti explicitly writes about this technique in his treatise 
De aedificatoria [118], the most significant contribution to the 
knowledge and conservation of the herringbone spiralling 
technology is provided by the Florentine family of architects and 
master masons: the Sangallo. 

Despite the diffusion of this technique, today, there are only two 
historical, scientific documents that describe the herringbone 
technique which are preserved in the Uffizi Museum. The first is the 
drawing 900A (n. 639051) GDSU (Gabinetto dei Disegni e Stampe 
Uffizi) and the second drawing 1330 (n. 594469) GDSU, illustrated 
in figure 4.1.1 and figure 4.2.10 respectively. Therefore, by reading 
these precious documents that describe the method of 
construction, and by studying the Sangallo's domes which are still 
standing, such as the dome of Santa Maria in Ciel d’Oro in 
Montefiascone (Viterbo) or the dome of Simon Mago of San Pietro 
cathedral in Rome, an attempt to interpret and to trace the various 
motivations behind this technology is made. The domes mentioned 
prove how the Sangallo, especially Antonio the Younger, has 
contributed to the growth of the herringbone spiralling technology. 
Hence they do not only systematically applied the herringbone 
spiralling technique, but they have also perfected. 

The research of the Sangallo family led them to develop a building 
system the cross-herringbone spiralling technology. Even if such a 
technique is based on the same principles of Brunelleschi's one, the 



 

56 

differences are significant. Figure 4.1 b) illustrates the main 
variation is the presence of two orders of loxodromic curves, one 
right-handed oriented and another left-handed oriented. 

 
Figure 4.1 a) Herringbone spiralling pattern, Santa Maria of Fiore dome in Florence. 
b) Cross-herringbone spiralling pattern, the dome of Simon Mago of San Pietro in 

Rome.  
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The cross-herringbone spiralling technique is the last self-
balancing technique presented in this document and is perhaps the 
most modern one. The application of cross-herringbone spiralling 
technology requires a detailed preliminary study that influences the 
project from the first conceptual phases. 

The following chapters illustrate the cross-herringbone spiralling 
technology through its history in chapter 4.1, its geometric 
characteristics illustrated in chapter 4.2, and the principles of 
technology and structural behaviour in chapter 4.3. 

4.1 Traces of the cross-herringbone spiralling 
technology 

The origins of the cross-herringbone spiralling technique are to be 
found in the works of architects and master masons of the 15th 
century. They had perhaps acquired the knowledge behind this 
technique at the building site of the Florentine Cathedral and were 
able to master as well as develop it until they had defined the cross-
herringbone spiralling technique. Among the Florentine master 
masons, who jealously guarded the techniques behind this 
technology, were the Sangallo masters, descendants of Francesco 
Giamberti (1405-1480 [58]), who was the master mason 
contemporary of Brunelleschi. Surely Francesco and Brunelleschi 
must have known each other, and perhaps Francesco also might 
have worked under the leadership of Brunelleschi [119]. His sons: 
Antonio da Sangallo the Older (1455-1534 [58]) and Giuliano da 
Sangallo (1452-1512 [58]) were brilliant architects, worked 
alongside Pope Alessandro VI Borgia and Lorenzo il Magnifico 
respectively, but it was Antonio da Sangallo the Younger (1484-
1546 [58]), who was also Francesco’s nephew, who gave us the 
most significant amount of evidence and documents on the 
application of the cross-herringbone spiralling technique. 
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4.1.1 Development of herringbone and cross-herringbone 
spiralling technologies during the Renaissance 

It is common knowledge that Brunelleschi’s proposal for the dome 
of Santa Maria del Fiore (1418): to build the octagonal dome without 
formwork, were questioned by the jury of the Opera del Duomo. As 
evidence of their perplexity, in the early stages, Lorenzo Ghiberti 
was chosen as co-director and supervisor for Brunelleschi’s work. 
Ghiberti, who was linked to the traditional approach, had never fully 
understood the Brunelleschi’s approach or even the significance of 
the herringbone spiralling pattern. To testify this, several examples 
are recorded [120] [119], one for them is where Ghiberti accused 
Brunelleschi of not respecting the promise made a century before 
by the master masons to construct a gothic dome, but to build a 
dome of revolution [121]. The fact that this construction method 
was not a simple hypothesis is extensively documented in the 
Florentine Opera’s records, through a certain record showing the 
purchase of a specific kind of bricks, called Mezzane. The Mezzane 
bricks were used to build a scale model of the dome, to prove the 
effectiveness of Brunelleschi’s proposal. The records report that on 
the 26th of October 1418 had been paid 121 lire, 9 soldi and 4 denari 
to buy 13,725 bricks, the Mezzane from a furnace owner in 
Ghibellina street, in order to build a wall: Pro modello Filippi ser 
Brunellesco for the Brunelleschi's model [119]. Just from these two 
elements, the report of the bill of Mezzane bricks and the incapacity 
of the Ghiberti to understand the constructive method, prove how 
innovative the approach of Brunelleschi was, and that, at least, 
Brunelleschi already knew the herringbone spiralling technology .  

Furthermore, this building method was usually practised for many 
years, even after Brunelleschi's death. It is known that many domes 
were built adopting to herringbone spiralling technology [62], 
Appendix A. Indeed, during the 16th century, the political and 
economic conditions and the spread of new weapons, such as the 
cannons [122], gave impetus to build several fortresses for defence. 
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Consequently, as testified by the domes still in existence and the 
historical reports, Sangallo architects used the herringbone to 
complete domes of these defensive structures [123]. 

Evidence and testimonies of use of herringbone and cross-
herringbone is readable in many vaults built in the 15th and 16th 
centuries, such as in the vaults of the Vecchia Fortezza in Livorno 
(1519) [124], where Antonio da Sangallo the Younger built a 
hemispherical vault, as well as in the Sala d'Armi of the Fortezza da 
Basso in Florence (1534) [122]. Even in the dome of Santa Maria 
delle Carceri in Prato (1484) and in Basilica della Santa Casa in 
Loreto in Ancona (1468) Giuliano da Sangallo have applied the 
technology [125]. Figure 4.1.1 shows the location of the existing 
architectures, where probably the herringbone or cross-
herringbone spiralling technologies could be applied by Sangallo. 
As shown in the figure, the buildings are mainly situated in the 
Tuscany region, exactly the same context where the Sangallo 
architects practiced. Inevitably the use of this technology led to 
perfecting it, and presumably, Sangallo introduced the use of the 
cross-herringbone spiralling technique in some of these fortresses, 
but this is however just a hypothesis. The presence of plastered 
surface in many of these domes does not allow observation of the 
masonry pattern [126].  

As it is easy to understand by the restricted area of application of 
these building systems their use was kept confidential: a closely 
guarded secret, and, it is not by chance that after Sangallo, the 
herringbone and cross-herringbone spiralling techniques were lost. 
Today, the cross-herringbone spiralling pattern is visible in a few of 
the constructions all realised by Antonio the Younger, such the 
domes of octagonal rooms also called octagons, of San Pietro 
cathedral in Rome, or the dome of Santa Maria in Ciel d'Oro in 
Montefiascone which are the only octagonal domes known built 
with the cross-herringbone [127]. These non-plastered domes 
make the masonry model readable and allow to formulate 
hypotheses on how they were built. 



 

60 

These domes are certainly not comparable to the one in Santa Maria 
del Fiore in Florence, at least for size and for temporal context. 
Suffice to say that the building site of Santa Maria del Fiore ended 
about one hundred years before the one of Simon Mago of San 
Pietro in Rome. 

 

Figure 4.1.1 Distribution of domes built probably using herringbone or cross-

herringbone spiralling technologies, the complete list is reported in Appendix A. 

4.1.2 Historical documents of herringbone and cross 
herringbone spiralling technologies. 

Adding to the totality of the historical understanding of 
Herringbone spiralling technology, in addition to the previously 
mentioned testimonies, the two drawings: 900A (n. 639051) and 
1330 (n. 594469) GDSU, drawings already introduced and shown in 
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figure 4.2.10 and figure 4.1.2 need to be given weightage. The 
former drawing is attributed to Antonio da Sangallo [128] the 
Younger and the latter to Guido Guidetti [59], who was a minor 
architect probably close to Antonio da Sangallo the Younger. The 
two drawings constitute further evidence of the existence of the 
Sangallesca school, where the herringbone spiralling technology 
was handed down and developed. However, beyond any possible 
verification, it is for sure that the first known record of the 
herringbone spiralling technology was in the building site of the 
Dome of Santa Maria del Fiore, as well as by the Sangallo family who 
knew the technique and used it until the first half of the 16th 
century. Besides, as witnessed at the dome of Santa Maria in Ciel 
d'Oro and at the domes of the octagons, it is indisputable that 
Antonio da Sangallo the Younger knew and used the cross-
herringbone spiralling technique during his Roman permanence 
under Pope Paolo III. 
 

 

Figure 4.1.2 Drawing 1330 (n. 594469) GDSU. View of Simon Mago chapel, the 
cross-herringbone spiralling pattern is visible.  
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4.2 Cross-herringbone spiralling pattern 

The study of existing structures is the primary source for 
understanding the behaviour of the structures themselves. In the 
following chapters 4.2.1, 4.2.2, 4.2.3 and 4.2.4, the geometric 
characteristics of the cross-herringbone spiralling technology, 
which are derived through the direct study and the survey of the 
domes of Santa Maria in Ciel d’Oro and Simon Mago of San Pietro 
are illustrated. 

4.2.1 Overall information of cross-herringbone dome 

As mentioned in chapter 4.1, Antonio da Sangallo the Younger 
designed the two domes: Santa Maria in Ciel d’Oro and Simon Mago 
of San Pietro. These two structures have histories that are quite 
similar. Santa Maria in Ciel d’Oro was designed around the year 1526 
and was completed in 1548 [129]. The construction has been 
stopped several times for various reasons, such as the bubonic 
plague or the invasion of Lanzichenecchi. The initial idea was to 
build a monastery for pilgrims, but later only the church was 
realised. Figure 4.2.1 a) reports the plan view and a vertical section 
of the church. Antonio da Sangallo the Younger visited the building 
site only three times and the work was supervised by his brother 
Giovanni Battista Fiorentino. Simon Mago, as shown in figure 4.2.1 
b) c) d) is a minor chapel at the first level in San Pietro cathedral. 
The historical documents do not say when its construction had 
precisely started, but there is evidence of Antonio da Sangallo the 
Younger working at the Fabbrica of San Pietro from 1520 until 1546 
[123]. His presence in this building site is testified by numerous 
documents collected in the Archive of the Fabbrica of San Pietro. 
Thus, it is reasonable to think that Simon Mago was built with more 
accuracy and skill than Santa Maria in Ciel d'Oro. The two domes 
have similar dimensions, but one is an octagonal dome and the 
other a hemispherical one. As shown in detail in figure 4.2.2, Simon 
Mago is a perfect hemispherical dome whose inner radius is 4.83 
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meters, and the maximum deviation between the minimum and 
maximum radius is about 1.8 centimetres, it has an oculus of 
diameter 1.82 meters and no other openings.  

 

Figure 4.2.1 a) The drawing n. 173 Uffizi museum archive, plan view and vertical 
section of Santa Maria in Ciel d’Oro. Drawing of Antonio the Younger. b), c), d) 
Plans view of San Pietro Cathedral. b) Ground level. c) The first level above the 

secondary naves. d) View at the base of the dome of octagonal rooms. In all plans 
view, Simon Mago chapel is highlighted in yellow. Drawing of P.-M. Letarouilly [59]. 

Santa Maria in Ciel d'Oro, represented in figure 4.2.3, is an 
octagonal dome. The sails are described geometrically by portions 
of ellipsoidal cylinders. The ribs of the sails are circular arches 
whose radius is about 5.47 meters. The length of the four internal 
diagonals varies between 10.95 meters and 10.98 meters and the 
height is 5.31 meter.



 

64 



 

65 



 

66 

4.2.2 Geometry of cross-herringbone spiralling pattern 

The cross-herringbone spiralling pattern is a double herringbone 
path system, with one left-handed and one right-handed spiralling. 
Thus, referring to figure 4.2.4, at each of the intersection of two 
systems of the loxodromic curves, nodes are formed. The nodes are 
materialised by 1, 2 or 3 bricks placed one adjacent to another. The 
brickwork appears as a complex system of rhombi; each one is 
delimited by loxodromic trajectories. From the bottom to the crown 
of the dome, the size of the rhombi decreases. The geometry of 
loxodromic curves that trace rhombi is related to several factors: 
the thickness of mortar, the size of bricks and the dome geometry 
itself [130].  

 
Figure 4.2.4 Cross-herringbone spiralling pattern: masonry pattern for a sail of an 
octagonal dome. a) Elements highlighted: nodes (top), horizontal courses (middle), 

herringbone bricks (bottom). b) Elements highlighted: left and right-handed 
loxodromic curves (thick lines) and rhombi (areas filled). 
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As shown in figure 4.2.5 and 4.26, the masonry pattern of Simon 
Mago domes exhibits that, the geometries of all loxodromic curves 
(one highlighted with continuous purple line) are the same. Thus, 
the rhumb lines have the same inclination with respect to the 
course of horizontal bricks, and all nodes are aligned radially 
(highlighted with dot orange lines). Santa Maria in Ciel d'Oro, on the 
other hand, presents several discontinuities. The reason for these 
discontinuities can be found in its history, as reported in chapter 
4.2.1. The construction was interrupted and masons changed 
during the construction phase, with evidence to support the 
hypothesis that the builders did not know the cross-herringbone 
spiralling technique well. Also, Antonio da Sangallo the Younger did 
not follow the building site assiduously. Indeed, as shown in figures 
4.2.7, the masonry pattern close to the dome’s base is more regular 
than that at the crown, where the cross-herringbone spiralling 
pattern is not clearly visible. Furthermore, it is known that at least 
one intervention on the masonry dome was carried out during the 
last century. Despite the discontinuities in the masonry pattern of 
the Santa Maria in Ciel d'Oro dome, 6 loxodromic curves for each 
sail, 3 left-handed and 3 right-handed, can be visually identified. 
Figure 4.2.8 displayed the ideal sail of Santa Maria in Ciel d'Oro. 
Here within the sails, the position of the nodes describes a scheme 
4 3 4 3 of rhombi, while near the ribs irregular nodes and spatial 
rhombi arise. The same pattern is visible in figure 4.2.7, (here, near 
the ribs of sails), the rhombi defined through paths lie in the two 
different sails. At the base of the dome, the distance between two 
loxodromic curves corresponds approximately to 1.15 m, which is 
around 2 Fiorentine arms (1 Florentine arm corresponds to 0.584 
meters [127]). As far as with the Simon Mago dome reported in 
figures 4.2.5 and 4.2.6, is concerned 16 right-handed and 16 left-
hand loxodromic paths are readable, hence 32 spirals in total. In this 
dome, all rhombi are regular, and the masonry pattern is visible 
throughout the structure. At the level of the spring of the dome, the 
spirals are spaced 3 Florentine arms, about 1.80 meters.
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Figure 4.2.6 Vertical section of the dome of Simon Mago.
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Figure 4.2.8 Vertical section of the dome of Santa Maria in Ciel d’Oro.
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4.2.3 Brick dimensions 

Two different types of bricks were adopted in the two domes 
discussed previously, as shown in figure 4.2.7 a), b) that exposes 
details of the masonry:  the Simon Mago and Santa Maria in Ciel 
d'Oro. The sizes of Simon Mago's bricks are 4-13-27 centimetres 
(height-width-length), while the bricks used at Santa Maria in Ciel 
d'Oro have dimensions of 7-14-28 centimetres.  

The bricks are quite similar, they have almost the same length, but 
it is more relevant to express the relationship between the three 
dimensions referring to height as a unitary quantity. Therefore, 
Simon Mago bricks can be described through the relation 1-3-6, 
Santa Maria in Ciel d'Oro as 1-2-4. Although the two types of bricks 

have different ratios, it is possible to identify a common root: 1-α𑁦1-

2𑁦α. 

 
Figure 4.2.9 Details of cross-herringbone spiralling pattern in correspondence of 
nodes. a) Detail of Simon Mago, ratio 1-3-6. b) Detail of Santa Maria in Ciel d’Oro, 

ratio 1-2-4.
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4.2.4 The drawing 900A 

The drawing 900A (n. 639051) GDSU, shown in figure 4.2.10 and 
previously mentioned in chapter 4.1, testifies the knowledge of 
Antonio the Younger of the herringbone spiralling technique. 
Despite its historical value, this document certainly has greater 
importance from a technological point of view.  

The document displays one plan view, one vertical section and one 
caption that says: ‘volte tonde di mezzane quali si voltano sanza 
armadura a Firenze’ that translates to hemispherical domes made 
of mezzane built without formwork in Florence. The drawing 
describes the herringbone spiralling technique, which displays 
several projections of loxodromic curves on the plan view of a 
hemispherical dome. Although the plan provides some information 
about the loxodrome trajectory, for the purpose of this research, 
the vertical section displayed on the right is of importance. 

 

Figure 4.2.10 Drawing 900A (n. 639051) GDSU. Drawing by Antonio da Sangallo the 
Younger. 

Few researchers suggest that this vertical section is associated to 
the Brunelleschi's dome [53] [128] [131], and according to them it 
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describes a double dome of the Santa Maria del Fiore. However, it 
is sufficient to observe the drawing further to realize that it cannot 
be a double-shells dome, the rectangular elements drawn can only 
be bricks. 

Considering the accuracy of the drawing in the plan view, the 
vertical section appears to be just an explanatory scheme, the 
same hand that has designed such an accurate plan cannot have 
drawn so grossly vertical section if not just for explanatory 
purposes, the scale itself of the bricks is a clue. The vertical section 
reported in figure 4.2.11 a) is however associated with the same 
hemispherical dome seen in the plan view in figure 4.2.10. The 
figures drawn at the intrados can be assimilated to bricks laid 
according to a radial alignment. In the central portion of the vertical 
section others radial elements are illustrated, they seem to describe 
the same elements just mentioned, but with the double width (as 

highlighted in orange). Therefore revisiting the relationship 1-α𑁦1-

2𑁦α, and the manner herringbone bricks are placed, in figure 4.2.11 
b), it is possible to understand that these double-width elements 
are actually the herringbone bricks.  

Therefore both the plan view and the vertical section describe the 
herringbone spiralling pattern for a hemispherical dome. The 
document explicitly provides some indications on the possible 
stratigraphy of the domes built with herringbone spiralling 
technique. 

To date, this drawing is the only historical source which provides 
information on how the herringbone spiralling pattern links the 
layer in the direction of the thickness of the dome. Two other 
sources available give some information about the composition of 
the walls. The first is a historical dome near Brunelleschi's dome, 
which consists only of one brick layer, thus, from the point of view 
analysed, this structure is of no relevance [132]. The second source 
is a scale model of the Santa Maria del Fiore dome, called Antonella 
model, built at the end of the 20th century [133]. This model 
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presents similarities to the hypotheses made but fails to provide 
any historical information. It is reasonable to assume that the 
herringbone spiralling pattern can link the bricks layers through the 
thickness of the wall and this is also proved from the dimensions of 

bricks (1-α𑁦1-2𑁦α) and their arrangement.  

 
Figure 4.2.11 Comparison of drawing 900A (n. 639051) GDSU. Drawing by Antonio 

da Sangallo the Younger. 

Referring to figure 4.2.11 b), the model of the cross-herringbone 
spiralling pattern presents the same characteristics of the 
herringbone spiralling pattern, but the presence of the two systems 
of loxodromic curves increases the connection effect through the 
dome thickness. The cross-herringbone, differently from the 
herringbone pattern, permits to identify volumes completely 
delimited by herringbone bricks.  

The analogy between these empty volumes and the empty spaces 
between the surfaces of the formwork is immediate. Perhaps the 



 

76 

stratigraphy of some domes built with cross-herringbone spiralling 
technique is similar to that of rubble masonry. Unfortunately, no 
one can affirm how to stratigraphy of the dome is, all the surveys 
carried out on such structures are not able to provide any 
information about this, but however the vertical section in figure 
4.2.11 a) shows empty central areas which could be representative 
of empty volumes, as just described.  

The last element displayed on the vertical section is an external 
layer of bricks, the extrados of the dome. The bricks are not 
arranged radially but lie within almost horizontal courses. The 
elements are only sketched, as to underline the scarce importance 
of the external layer with respect to the structure of the 
herringbone. Hence considering the purpose of the drawing 900A 
GDSU: explaining the herringbone spiralling technology, the bricks 
of the extrados play a marginal role, but do not constitute essential 
elements to reach the self-balance state during the phases of 
construction. 
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4.3 Principles of cross-herringbone vaulting 
technique 

As already remarked above, the herringbone and the cross-
herringbone spiralling techniques are based on the same principles. 
In this chapter, we refer to the cross-herringbone spiralling 
technology, but unless otherwise specified, the same concepts also 
apply for the herringbone one. 

The ability to achieve the self-balance state of structures built 
using the cross-herringbone spiralling technique can be attributed 
to their construction process. Thus, even if it is not the specific 
scope of this chapter (in this respect see for example [71] [120] 
[127]), some elements of construction technique must be 
discussed. 

To use the cross-herringbone spiralling technique an executive 
scheme is needed, whose goal is to identify the position and 
geometry of the nodes with respect to the whole structure, as well 
as to identify the number of herringbone bricks located between 
two nodes. Possible inaccuracies in the arrangement of these 
elements inevitably lead to mistakes that can compromise the self-
balancing state of the structure itself. As shown in figure 4.3.1. a), 
Santa Maria in Ciel d'Oro dome exhibits several inaccuracies, 
probably due to the reasons mentioned in chapter 4.2.1. The 
realization of an accurate executive scheme is even more 
significant in double-curved structures such as the domes of 
revolution, indeed figure 4.3.1 b) shows the scheme for a 
hemispherical dome. Here, the non-alignments between 
herringbone bricks belonging to different rhumb lines (highlighted 
with an orange dotted line) are unquestionable. 

Therefore the executive plan and the tracing operations are 
fundamental to guarantee the self-balancing state of these 
structures, while they have less importance when adopting the 
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herringbone spiralling technique. In this last case, the absence of 
nodes does not require such sophisticated executive drawing. 

 
Figure 4.3.1 a) Details of nodes of Santa Maria in Ciel d’Oro. b) Scheme of 

herringbone bricks for a hemispherical dome. The herringbone bricks which belong 
to different loxodromic curves are not aligned. 

The cross-herringbone spiralling technique permits to achieve the 
self-balanced state in the shells only by building through complete 
horizontal courses, i.e. during the construction before proceeding 
with the laying of a new course, all the courses at the lower courses 
must be complete (condition A.). Condition A. is the first of two 
requirements necessary to guarantee the effectiveness of the 
cross-herringbone spiralling technique. As evidence of this 
affirmation, it is noted that Brunelleschi claimed 8 teams of 
masons, one for sailing, to build the sails of Santa Maria del Fiore 
simultaneously [119]. Due to this and a few other reasons [119], 
Ghiberti accused him of building a dome of revolution within the 
walls of the dome of Santa Maria del Fiore [54]. Indeed, the 
condition A. combined with the radial symmetry of these structures 
constitutes a sufficient condition for achieving a self-balanced 
state. For the domes of revolution, during the laying of a brick 
course, the sliding of the elements can take place only before the 
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course itself is complete. Once closed, it can withstand 
compressive forces preventing sliding. Likewise, the cross-
herringbone spiralling pattern allows the development of resistant 
sub-structures. To understand this, it is sufficient to think again 
about the domes of revolution. Referring to figure 4.3.2, when the 
course where two herringbone bricks (highlighted in orange) are 
laid is complete, the two mentioned bricks are fixed. Hence, they 
can support the upper course and once laid all bricks of the next 
course between the two herringbone elements a resistant arch 
exhibit. Therefore in domes built with cross-herringbone spiralling 
technique, whose pattern was discussed in chapter 4.2.2, the role 
of herringbone bricks is to link the courses together during the 
construction.  

The goal of cross-herringbone is the development of sub-
structures, like arches, that, under construction, provide the 
resources necessary to guarantee a self-balance state. Thus, the 
second condition necessary to guarantee the efficacy of the cross-
herringbone spiralling technique is determined by the behaviour of 
the resistant sub-structures (condition B.), in the context of the 
analyses conducted it is generally correlated to the geometry of 
these sub-structures. If the conditions A. and B. are respected the 
cross-herringbone spiralling technology permit to build domes of 
revolution and polygonal domes without any formwork, 
furthermore within appropriates conditions, even other geometries 
of masonry shells could be built as self-supporting structures. 

The following remark is in order, the presence of the double order 
of loxodromic curves differently from the herringbone technique 
permits to the materialisation of nodes reported in figure 4.2.9 and 
mentioned in chapter 4.2.2. During the construction phase, these 
elements play an essential role to achieve the self-balance state; 
they permit to adjust some errors by inserting wedges, bricks or 
elements to increase the compression forces within the horizontal 
brick courses. Indeed from the survey, especially in Santa Maria in 
Ciel d'Oro dome, several node adjustments are readable.
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Figure 4.3.2 Hemispherical dome, the brick laid as herringbone bricks (highlighted 
in orange). Thank their orientation, the upper bricks course is constrained.
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5. Learning from the history: equilibrium 
under construction 

Chapters 2. and 4. present the significant technologies that allow 
building masonry vaults or domes without the aid of any temporary 
support. The study of these efficient techniques could contribute 
significantly to the formulation of a theory to evaluate the 
equilibrium under construction.  

Chapter 5.1 summarises and organises the principles on which the 
self-balanced technologies are based, while in chapter 5.2, the 
guidelines to the evaluation of the stability of masonry structures 
during their construction are illustrated. 

 

5.1 On the factors to reach the self-balanced state 

The techniques illustrated in chapters 2. and 4. provide the 
resources to understand the self-balanced state of masonry 
structures under construction. All the technologies are ruled by 
factors whose principles can be geometric, constructive, 
mechanical, or a result of the properties of the material used. 
These factors are undoubtedly related to their effectiveness, e.g. 
it is not possible to build tile vaults without the use of fast-setting 
mortar or by the use of heavy blocks, because this would leads to 
their collapse. 

The following factors have been derived from the study of the 
principles of the different self-supporting construction systems. 
These factors are: 

- Bed joints orientation. For some technologies, such as 
pitched vaulting, this factor is the primary element that 
affects the self-balanced state. In others, like clay tubes 
vaulting technique, it is barely relevant. Examples are 
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given by figure 2.2.2 c) and d) where the tubes can be 
oriented in two different manners for the same structural 
geometry shown. If this factor is primary or relevant, a 
preliminary design is required, whose goal is to determine 
the correct orientation of the bed joints. 

- Bricks stereotomy. During the construction phase, the 
geometry of the bricks significantly influences their 
stability, as witnessed by the clay tube vaulting 
technique or corbelled vaulting technique [37]. A wrong 
choice of the sizes or the geometry of the bricks lead to 
the sliding phenomena. The study of the stereotomy of 
bricks still represents an active research topic [134] [135]. 

- Resistant substructures. The existence of resistant sub-
structures during the construction. This element is the 
primary factor for herringbone technology or even cross-
herringbone, but it also influences the ability of self-
balance in pitched vaults or clay tube vaults. Owing to the 
nature of this factor, the state of a structure based on it 
can be evaluated through mechanical analyses. The 
study of the equilibrium related to this factor is the 
primary subject discussed in chapter 6.. 

- Construction sequences. The construction sequence is a 
factor that influences all self-supporting technologies. 
This is essential for the correct construction of tile vaults 
and all those technologies whose balance is provided by 
resistant sub-structures. 

- Material properties. A right choice of building material is 
always significant, but for technology such as tile 
vaulting technique the material properties are the 
primary factors to reach a self-balanced state. 
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Each of these factors can be decisive concerning the technology 
adopted. Table 01 summarises for all techniques discussed the 
incidence of factors mentioned above, three grades have been 
adopted: primary, relevant and not required: 

- Primary is the factor that characterises the technology 
analysed. An incorrect application of the factor 
considered could lead to failures and collapse during 
construction. 

- Relevant indicates a factor significant for a specific 
technology, but not primary.  

- Not required is a factor that for the technology examined 
does not need a specific study, but as primary and 
relevant grades, if violated, could lead to failures.  

E.g. for the right application of the herringbone vaulting technique 
it is assumed that the bed joints are arranged conventionally, and 
no particular study is required for the orientation of the joints. On 
the contrary, by adopting the pitched vaulting technique, the 
orientation of the bed joints is fundamental. However, even for the 
herringbone technique, errors of the orientation of beds joints 
could preclude the self-balancing ability of the structure built by 
herringbone vaulting technique. 

The identification of the primary and relevant factors is 
fundamental to choose the method for assessing the equilibrium 
state during the building phase. For technologies based on 
different factors, a different method of evaluation should be 
adopted.
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Table 01 Self-balanced technology and incidence factors.
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5.2 Two-stepped approach 

The evaluation of the state of a masonry building is the subject of 
studies by numerous researchers [136] [137] [138], however even 
today, the behaviour of these structures during the construction 
phase is scarcely analysed [17] [37]. One of the goals of the present 
study is to introduce the principles of a new theory which allow 
evaluating equilibrium during the construction phase. The 
development of this theory is significant for masonry arches, vaults 
or domes, but it can also be useful for other types of masonry 
structures. For this reason, the following rational refers to any type 
of masonry structure. Its validity is discussed in this chapter and 
also in the following ones, see chapter 5.2, 5.2.1 and 5.2.2. 

Only from the observation of real structures and the study of 
historical technologies, the understanding of the reasons that 
guide the balanced state of domes and masonry vaults during the 
construction phase can be gained. Indeed, for the type of 
structures studied, the analyses conducted on self-balancing 
technologies have revealed that, although with considerable 
differences, they are influenced by common factors (see chapter 
5.1 for the requirements to reach the self-balanced state under 
construction).  

These factors affect only locally the behaviour of the structure. For 
example, referring to the tile vaulting technology, the fast setting 
properties of the mortar and lightness of the tiles allow the laying 
without manifesting any sliding phenomena, or the presence of 
sub-structures provides the support needed for the stability of 
bricks until the brick course is complete. Likewise, these factors do 
not alter the integrity of the whole structure, whose behaviour 
remains unchanged. To confirm this, it is enough to revisit 
hemispherical domes; by applying the building process discussed 
in chapter 4.3, it is possible to build them without any formwork. 
However, independently of the construction sequence adopted, 
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the stability of the hemispherical domes depends mainly on 
geometric factors [139], their overall behaviour does not change. 
Then, it is irrational to assume that the herringbone pattern governs 
the stability of a structure, like, for example, in the case of the dome 
of Santa Maria del Fiore. Although it may influence some aspects of 
its behaviour such as the position or shape of the cracks, it does 
not alter its collapse behaviour.  

The same considerations discussed are also valid for different 
types of masonry structures, such as walls or structures which 
require support. Their overall behaviour is not modified by how they 
find the equilibrium during the construction phase because the 
overall equilibrium is determined by their geometries [2]. 

Therefore, to assess the balanced state of masonry structures 
during the construction phase, it is convenient to study their 
equilibrium through two analyses: one related to the local state and 
the other related to the global state. From here on, this approach is 
defined and referred to as the two-stepped approach. The first step 
consists of the evaluation of the local equilibrium and the second 
one of the assessments of the overall stability.  

The two steps are called: Local equilibrium step and Global 
equilibrium step. 

The study of Local equilibrium step (L.E.S.) has the goal of 
detecting any possible local collapses. The evaluation 
criterion is relative to the construction techniques used, 
especially in the case of self-technology the criteria to 
assessing the stability of structures should be related to the 
factors that characterise the building technique itself 
(primary factors). It is not possible to adopt the same 
criterion to technologies based on factors whose principles 
are different. In this document, the calculation of local 
stability is carried out by referring only to the primary and 
relevant criteria of the cross-herringbone technology. The 
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determination of other criteria relating to other factors or 
technologies are not considered. 

The study of Global equilibrium step (G.E.S.) aims to 
determine the stability of the entire structure built. It can be 
conducted with the traditional tools developed for 
determining the behaviour of complete structures. 

Independently of the building technology adopted and of the type 
of structure considered, if no collapse phenomena (local or global) 
could occur for a given construction stage, all the conditions to 
guarantee a balanced state are provided. To guarantee the 
possibility to build a masonry structure, it is needed to evaluate all 
the construction stages and if for each one the balanced state is 
found (Local and Global), that structure could be built.  

The flowchart shown in figure 5.2.1 describes the logic of the two-
stepped process: before evaluating the global equilibrium (G.E.S.), 
it is required to determine the local balanced state (L.E.S.).This 
relation is justified by a simple assumption already mentioned: it is 
impossible to build any structure if, during the construction phase, 
local collapses occur. To explain the flowchart consider a wall under 
construction and defined by the i index the number of brick courses 
and by the n index the construction stages, it is possible to 
determine the equilibrium at the nth stage evaluating the local 
stability, through L.E.S., and then the global stability at that stage, 
through G.E.S. If no local or global failure phenomena are exhibited, 
the same logic process should be repeated for the next 
construction stage (n+1), and as mentioned before, the wall can be 
built if the equilibrium is found (local and global) for all stages.  
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Figure 5.2.1 Right, flowchart to assess the equilibrium of a masonry structure 
during the construction. Left, a model of a wall during the construction, the i index 

indicates the course, while n index the last stage built.

5.2.1 Local equilibrium step 

To build a structure it is necessary to prevent any failures, even the 
local ones. The Local equilibrium step has the purpose of 
identifying and verifying any possible collapses of masonry blocks 
or portions of brickwork at this local scale. Therefore, for each nth 
construction stage, an analysis must be performed for determining 
the balanced state of the brick course just laid (nth course), and the 
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balanced state of a portion of the structure. The choice of this 
portion concerns the type of structure considered and the building 
technology adopted, e.g. domes, arches and tower present 
different criticalities during the construction; thus, the different 
portion should be observed.  

The following considerations concern the construction of a generic 
structure observed at the moment in which the bricks or blocks are 
being laid on a rough inclined plane, i.e. when the bricks are laid on 
the i =nth course. In this situation, the blocks are subject only to their 
weight, surely, they do not crack by themselves and the failures 
that could happen are through sliding or overturning. To 
understand this, we recall the III. Heyman's hypothesis (masonry 
has infinite compressive strength, chapter 3.2), if this statement is 
valid for complete structures, it is undoubtedly true also for the 
case investigated. Then the stability of the bricks or blocks are 
equivalent to the equilibrium of a rigid body and the causes of 
collapses are due to the low tensile strength of mortar joints, and 
the critical role assumed of the friction.  

Referring to figure 5.2.2 and denoting by w the weight of a block, 
w∥, w⟂ its parallel and orthogonal components to the inclined plane 
and μ the Coulomb’s friction, the equilibrium of the block at the nth 

construction stage is described by (1) and (2) [140]. 

       (1)

       (2) 

where H and B are the height and width of the considered block. 
The inequality (1) expresses the equilibrium condition at the 
translation of the block on an inclined plane, while (2) expresses the 
overturning equilibrium condition with respect to point A.  
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Figure 5.2.2 Block laid on the inclined plane at the nth construction stage. 

As long as both conditions (1) and (2) are verified, the system is 
balanced, while if one or both are violated, then motion occurs. 
Denoting φ the slope angle of the laying plane it is possible to 
express (1) and (2) in terms of φ: 

 

      

Therefore the study of the block equilibrium is related to the 
geometric parameters B, H, φ, to the friction factor μ and the stage 
n, in particular, the limit condition for the equilibrium of the block is 
described by the equations (3) and (4). 

       (3)

      (4) 

For the purpose of this analysis, the φ angle could assume values 
within 0 and π/2. In such domain, the cotangent function is defined 
and is continuous, strictly monotone decreasing and superiorly not 
limited. Thus, independently of the values of B, H and μ, it exists a 
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limit value of the φ angle for which the block is not stable. This value 
is called the equilibrium limit angle and can be determined from (5). 

        (5)  

For angles greater than the equilibrium limit angle, (1) and (2) are 
violated, and failure occurs. The nature of the motion depends on 
B, H, μ and the relation to the angle of inclination φ. More precisely, 
in correspondence to the equilibrium limit angle, it is enough to 
study their relation as seen in (6) to understand the nature of the 
motion. If the (6) is verified, sliding occurs. Otherwise, the block 
overturns. 

      (6) 

Ultimately the block equilibrium condition is dictated by the 
condition described in (7), this condition is represented by the 
intersection of the areas illustrated in figure 5.2.3. 

  (7) 

During the construction of arches, vaults or domes, the inclination 
of the plane increases through its construction stages, and the 
equilibrium limit angle can be exceeded; thus condition (7) is 
violated. In this case, the system represented in figure 5.2.2 is not 
able to supply all the resources needed to avoid slippage or 
overturn. Therefore, using traditional building techniques formwork 
and shoring is required. Self-supporting technologies aim to 
provide all resources to achieve the self-balanced state. Hence 
when φ is greater than the equilibrium limit angle, (7) cannot be 
valid and to express the block equilibrium, a new relation should be 
found. The nature of this new relations depends on factors that rule 
the self-supporting technology adopted to build the structure. 
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Figure 5.2.3 Representation of condition (7) and the equilibrium limit angle 

determined by (6) (μ = 0.35 and Ratio B/H = 2). 

Relations (5), (6) and (7) do not consider the presence of any binder, 
and they describe the situations where the joint are dry-joints, 
furthermore with approximation, they can depict those situations 
in which hydraulic binders are used [141]. To represent structures 
built using fast-setting binders, such as gypsum, (5) (6) and (7) 
should alter take into account the cohesive mortar ability, the 
relations above must be reformulated concerning the type of 
binder used. An approximation could be obtained incrementing the 
stabilising factor relative to w⟂ to represent the cohesive 
phenomenon. For this particular situation, due to the scale 
analysed: only a few bricks are considered thus it is possible to 
estimate the tensile strength which is reasonable in the same order 
as the tensile strength of mortar.
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5.2.2 Global equilibrium step 

The Global equilibrium step, as mentioned in chapter 5.2, aims to 
evaluate the stability of the entire built structure. Thus, referring to 
figure 5.2.4 a), at the nth construction stage, the equilibrium is 
determined by considering the elements that constitute all i built 
courses, i.e. all courses comprised between i = 0 up to i = n. The 
G.E.S. must be repeated for all the different construction stages, 
only if for each stage a balanced state is determined, then, during 
construction, no failures occur. Due to the scale of the analysis, the 
G.E.S. can be performed using traditional methods such as statics 
graphic statics, but for each given construction stage, to perform 
G.E.S. the forces defined in L.E.S. must be compatible and 
considered.  

 
Figure 5.2.4 a), b) and c) G. E. S. for three different construction stages na , nb ,  nc 

The geometry of the structure changes during construction, the number i of 
course increases. For each stage considered a balanced state is found.  
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6. Two-stepped approach: the cross-
herringbone spiralling technology  

The two-stepped approach, introduced in chapter 5.2, shows the 
logic for assessing the balance of masonry structures during 
construction. It does not provide the tools suitable for performing 
analyses, but it describes the steps (L.E.S. and G.E.S.) necessary 
for the evaluation of the behaviour of the structures in the building 
phase. 

In chapter 6.3, according to the two-stepped approach, a 
formulation is presented for the determination of the self-balanced 
state of domes built through the cross-herringbone spiralling 
technique. Consistently with the factors determined in chapter 5.1, 
the developed formulation is an example of how the two-stepped 
approach can be considered the effects of specific building 
technology for the evaluation of balance state. 

The existence of resistant sub-structures, such as arches and 
plate-bandes, is also proven by the numerical model illustrated in 
chapter 6.4. Numerical simulations developed with D.E.M. are 
intended to describe the behaviour of dome during construction, 
especially in terms of displacements, bricks configuration but 
above all to verify the existence of these sub-structures. 

The models on which the analyses, simulations and the formulation 
were carried out, derived from the study of the two domes Santa 
Maria in Ciel d'Oro and Simon Mago are extensively discussed in 
chapter 4.2. The digital models respect the main geometric 
characteristics described in that chapter as the ratios of bricks 
dimensions, the orientation of bricks and the position of nodes. 
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6.1 Geometry of dome 

The formulation developed in the following chapters has been 
applied to an octagonal dome, whose geometry consisting of eight 
identical sails, and has been elaborated from the considerations 
discussed in chapters 4.2.2, 4.2.3 and 4.2.4. on the dome of Santa 
Maria in Ciel d'Oro. However, under some conditions illustrated in 
chapter 6.3.2, different dome shapes can be evaluated using the 
same approach, for example, cases presented in Appendix B 
reports the analyses performed on the hemispherical dome. As 
shown in figure 4.2.2 and 6.1.1 the herringbone bricks are laid in 
regular intervals and placed at the same plane to the horizontal 
bricks, they are arranged in a radial manner. This geometric 
property is key to understanding the structural behaviour of the 
dome under construction. From now on the last complete brick 
course (thus a closed course) is highlighted in light grey, while the 
one under construction is dark grey. 

Figure 6.1.1 Octagonal dome during the nth construction stage. The geometry of 
each block modelled are constituted by the mortar thickness and the brick 

geometry. The last complete brick course laid (i = n-1) is coloured light grey, while 
the one under construction, (i = n) is dark grey.
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6.2 The self-balance state of cross-herringbone 
domes  

To understand how the cross-herringbone spiralling pattern allows 
the construction of a self-balancing octagonal dome, we need to 
analyse the different construction stages verifying the equilibrium 
of the dome. To achieve this objective, the resistance structure 
(global 1) and sub-structures (local 1 and 2) need to be assessed. 
The first sub-mechanism (local 1) manifests itself when the brick 
course is completed, and the mason begins to lay a new course. 
The second sub-mechanism (local 2), the plate-bande, occurs 
when the bricks are laid in a course which is not yet closed. Both 
systems are illustrated in figure 6.1.1. In this study, both brick laying 
phases have been modelled at different heights corresponding to 
distinct construction stages. Meanwhile, the overall stability of the 
dome has also been performed; thus, it is possible ensuring a full 
evaluation of the local and global equilibrium states. 

When under construction, the local equilibrium state of a self-
balancing cross-herringbone spiralling dome is characterized by 
two resistance structures: the closed course structure (local 1) and 
the plate-bande structure (local 2). As described in chapter 2.4.2, it 
is assumed that the octagonal dome is built through complete 
courses, only when the previous course is completed, the mason 
begins to lay a new course of bricks. Thus, any meridian section of 
the dome, evaluated during the construction stage, can be 
represented by an incomplete voussoir arch shape. Referring to 
figure 6.2.1, it is assumed that the voussoir bricks are rigid bodies 
with a mass. We further assume that they experience friction along 
with their interfaces and that they can slip as a rigid body on an 
inclined plane leading to the overturning of the incomplete voussoir 
arch. Two equilibrium equations are distinguished, both relate to 
the local equilibrium (local 1 and 2). Using Coulomb’s law of friction, 
the equilibrium can be expressed as: 



 

98 

 

 

where w is the weight of the bricks, μ the mortar friction coefficient, 
while φ angle represents the inclination of the laying plane with 
respect to the horizontal plane and the n subscript denotes the last 
course, i.e. nth identifies the construction stage. As shown in figure 
6.2.1, the i index corresponds to the course label. Hence the first 
course built is denoted with i=0 index and the second i=1, thus each 
course is uniquely defined by i and n defines the constructive stage. 

Figure 6.2.1 Meridian section of a dome: the incomplete arch and rigid bodies (nth 
construction stage).

These inequalities correspond to the number (1) and (2) illustrated 
in chapter 5.2.1, hence the balance condition is provided by (7). The 
second equation of equilibrium, which relates to the overturning 
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moment of the incomplete voussoir arch about its springing, is 
formulated as: 

                   (8) 

where XGn is the distance from the origin, defined by the X, Z 
coordinates system, to the centroid of incomplete voussoir arch, 
and Rint is the distance from the origin to the center of rotation of 
the voussoir arch (or springing). Only if both inequalities, expressed 
in equation (7) (local 1 and 2) and (8) (Global 1) are verified, the 
system of rigid bodies (being the individual bricks and the 
constructed portion of the sail) is self-equilibrated. This can be 
expressed by situation 1 (S1): 

 
                        (S1) 

Otherwise, if at least one of the two inequalities, (7) and/or (8), is 
not satisfied, the system of rigid bodies is not able to guarantee a 
self-balanced state. This can be expressed in situation 2 (S2): 

 
                  (S2) 

In the situation (S2) to achieve a balanced state, a system of 
auxiliary forces must be considered. The role of the cross-
herringbone spiralling pattern is to provide this auxiliary force 
system through plate-bande action (local 2) to achieve the self-
equilibrated state.  During all construction stages, sliding and 
overturning of the bricks are avoided through, the construction of 
complete courses on one hand and the plate-bandes on the other. 
The role of the cross-herringbone pattern can also be derived by 
observing the physical behaviour of brick courses in the different 
construction stages.  
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Referring to figure 5.2.3 and recalling the relationship between the 

dimensions of the bricks 1-α𑁦1-2𑁦α (α>1), it is possible to understand 
that the sliding is the first collapse phenomenon that could occur 
in such type of domes. Therefore, the equilibrium limit angle is 
defined from (4). 

We define the limit course (i=L) as the first brick course in which the 
angle is greater than the equilibrium limit angle, thus the friction 
forces between the bricks are not sufficient to avoid slippage, the 
angle (S2). At the limit course (i=L) the bricks slide towards the 
centroid of the dome. However, the presence of the herringbone 
bricks in the spiralling pattern prevents them from slipping inwards. 
When the bricks of the limit course try to slip, they collide against 
the herringbone bricks, which are already laid in a radial manner 
and fixed into the lower course (i=L-1). This lower brick course is 
closed and the herringbone bricks at the course (i=L) are 
encastered into that lower brick course so that no sliding of the 
herringbone bricks can occur. 

Further, even if the bricks of the lower course (i=L-1) try to slide, 
the same mechanism will take place in the previous course (i=L-2). 
Within the courses, plate-bande systems may be identified. Each of 
these plate-bande systems is bound by two herringbone bricks 
fixed into the lower course. The plate-bande systems act to 
prevent the failures by exerting a thrust against the herringbone 
bricks which transmit that thrust to the lower completed brick 
courses. Therefore, even in the case (S2) where the rigid bodies 
themselves are not sufficient to ensure a state of stable 
equilibrium, the cross-herringbone spiralling pattern provides 
internal support so that the dome can be in equilibrium (local 2). 
These conclusions are further supported by the interpretation of 
the results of the D.E.M analysis reported in chapter 6.4. Thus, even 
during the construction, the equilibrium of the masonry dome can 
be achieved through different systems: in the initial stages of 
construction, the equilibrium is provided by the system of friction 

file:///C:/Users/Vittorio/Documents/03_Uni/Tesi%20Dottorato/Consegna%20tesi/10_Tesi_online.docx%23_6.4_The_numerical
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forces (S1). In the later stages, when these are not sufficient (S2), 
the cross-herringbone spiralling pattern starts to operate, the 
structures of the closed brick courses (local 1) and the plate-bandes 
(local 2) provide the auxiliary forces required to maintain the static 
equilibrium of the dome under construction.
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6.3 Limit analysis for the building phase 

Two methods are adopted to analyse the equilibrium states of the 
spiralling cross-herringbone dome. Both are based on the limit 
analysis: the thrust line method (T.L.M.) and the modified thrust line 
method (M.T.L.M.) [89] [142]. The three Heyman hypotheses 
exposed in chapter 3.2 are made: I. sliding of the bricks cannot 
occur, II. the masonry has no tensile strength, and III. the masonry 
has infinite compressive strength [2]. Generally speaking, 
completed masonry domes experience meridian compressive 
stresses of one order of magnitude lower than the masonry’s 
crushing strength. The hoop forces experienced in a completed 
self-balanced dome, are generally low. However, it will be shown in 
Appendix B, that during construction their value might be larger 
than the ones experienced in the completed dome, but the stresses 
are always lower than the masonry’s crushing strength. 
Consequently, for this study, the assumption of infinite 
compressive strength (III.) is valid as the internal compressive 
stresses are very low. Under construction, when the bricks are 
being laid, sliding may occur. But even if it occurs, after few 
settlements, the motion stops and the structure under 
construction is stable. Therefore, even if the first hypothesis (I.) has 
been removed from our analyses, the limit state analysis can be 
applied as no significative motion manifests. Even if it is considered 
finite values of friction angle, as proven by D’Ayala and Casapulla 
[106], a unique solution exists. According to the Safe Theorem [2], 
the equilibrium of the dome is guaranteed if a thrust line exists 
which lies entirely within the cross-section of the dome. Therefore, 
we adopted a two-stepped approach consisting of L.E.S. and 
G.E.S. We perform the T.L.M. to verify the equilibrium state of the 
completed courses (local 1) and of the brick courses as they are 
being laid (local 2), that is L.E.S., while we verify the overall 
equilibrium of the dome under construction using the M.T.L.M. 
(global 1) which corresponds with G.E.S.. The M.T.L.M. combines 
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Heyman’s theory and membrane theory [143]. To perform the 
analyses with this method some assumptions are required. These 
assumptions are: the load is uniform and axisymmetric, the hoop 
forces decrease from the crown to the base of the dome, unlike to 
meridional forces, which increase from crown to the base. Both the 
methods T.L.M. (local 1 and 2) and M.T.L.M. (global 1) have been 
implemented for this study into the graphical editor algorithm 
Grasshopper for Rhinoceros software. 

The analyses have been performed for different construction 
stages and structures namely for the plate-bande system, for the 
closed brick course, and for the dome in different construction 
stages.  

6.3.1 L.E.S. and G.E.S. for cross-herringbone dome 

As introduced inchapter 5.2, to uniquely identify the brick courses 
the subscript i has been assumed, but within each course, several 
plate-bande structures exist. Therefore, as shown in figure 6.3.1, to 
identify every plate-bande structure, the j subscript has been 
adopted. Considering one of any courses and referring to figure 
6.3.1, j is equal to zero at the south edge of the east sail of the dome, 
j increases in a right-handed manner. The two-stepped approach, 
which has been developed to perform the equilibrium state analysis 
of the dome (both local and global) under all construction stages, is 
summarized in the flowchart in figure 6.3.2. First of all, for each nth 

constructive stage it is verified whether the bricks are self-
balanced (S1) then analyses are performed to assess the state of 
each sub-structure namely the plate-bande, the closed brick 
courses (L.E.S.), and subsequently constructed portion of the 
dome is evaluated (G.E.S.). Thereafter all j plate-bandes at the 
laying course are evaluated. Once the thrust of all plate-bandes in 
that laying course is computed, the stability of the compressive 
rings of the underlying closed brick course is verified and finally the 
overall equilibrium of the dome is verified using M.T.L.M. This 
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approach, illustrated in figure 6.3.2, is repeated for all construction 
stages until the last course is laid. 

 

Figure 6.3.1 Elevation (top) plan view (bottom) of octagonal dome under 
construction. In the plan view: enumeration of plate-bandes within a course, and 
closed brick course resulting in the nth compression ring (highlighted red). Lunes: 

A-A, B-B, C-C (plan view and elevation) and their middle section (plan view).
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6.3.2 Plate-bande (L.E.S.) 

The plate-bande is a straight arch and, because of its geometry, it 
is impossible to find a collapse mechanism, hence, the maximum 
thrust of the plate-bande structure is related to the crushing 
strength of the bricks. The thrust of plate-bande can be defined 
through considerations of equilibrium. We have adopted two 
formulations: both do not consider friction on the laying plane (i.e. 
the bricks are laid onto a smooth surface). This is a conservative 
assumption and in reality, the bricks would be posed onto a mortar 
bed which provides frictional resistance. The first formulation 
respects all Heyman’s assumptions, (I.), (II.) and (III.) discussed in 
chapter 3.2. The limit thrust is related to the loads applied, the 
length, and thickness of the plate-bande [144]. The length of plate-
bande is a function of its location in the dome (i.e. the higher up in 
the dome, the smaller its length) and it also depends on its position 
within the course. We define the brick dimensions as multiple of b: 

b the height (1), 2b the width(α𑁦1) and 4b the length (2𑁦α) (in the 
model b=6 cm) and the ρ density of bricks. The H horizontal thrust 
and V the vertical thrust are evaluated through the equilibrium 
equations (9) and (10) and considering only the parallel component 
of the self-weight to the φ (the laying plane). 

 

   

    (9) 

               (10) 
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Referring to n time of posing, the loads carried by the plate-bande 
are derived from the component of self-weight parallel to the laying 
plane as illustrated in figure 6.3.3.  

 

Figure 6.3.3 Plate-bande at the nth course. Plan view (left) and section (right), the 
graphical representation (top) and free body diagram (bottom). 

The other approach is obtained by assuming a finite friction angle 
and no sliding. Using equation (13), it is possible to evaluate the HFr 

horizontal thrust. To differentiate it with respect to the horizontal 
thrust calculated by equation (9) which relies on the Heyman’s 
assumption of infinite friction, the Fr in the superscript in equation 
(13), denotes the horizontal thrust defined by taking into account 
the friction between the faces of herringbone bricks. 

As shown in figure 6.3.3, the herringbone bricks have a radial 
arrangement, with their long side not running parallel to the normal 
of the imaginary surface of a cylindrical sail. Hence, referring to 
figure 6.3.4, β angles are defined. These angles are bound by the 
normal of the imaginary surface of the cylindrical sail and the long 
side of herringbone bricks, Φ is the friction angle and the γ angle 
which describes the inclination of the thrust with respect to the 
intrados of the sail (11). To avoid sliding of the bricks, the γ angle 
must be defined as described in (12). 
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Figure 6.3.4 Plate-bande. Angles: β ,γ and Φ and a thrust line. 

                   (11) 

The limits horizontal thrust which prevents slipping can be 
determined considering by equations (13). 

               (12) 

             (13) 

Equation (13) provides an estimate of the minimum horizontal 
thrust and the maximum horizontal thrust, but in the present 
formulation, the maximum horizontal thrust is neglected. Even if 
assuming a low angle of friction (e.g. Φ=20°) the octagonal 
geometry of the dome allow to do not consider the maximum 
horizontal thrust defined by (13), indeed the values of the β 
decrease from base to top dome and in correspondence of the limit 
course (i=L), defined in chapter 6.2, even assuming γ = 0° the 
condition (12) is verified. Hence the (13) assumed is: 
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The limit horizontal thrust in the plate-bande at the time of laying 
the bricks can be defined as the maximum horizontal thrust (14) 
required by the two approaches expressed in equations (9) and (13), 
thus: 

                (14) 

At the sail edges, where the two laying planes intersect each other 
and result in a geometric discontinuity (or fold line), a component 
of the thrust of the plate-bande pushes the dome outwards. 
However, due to the symmetry of the dome about that fold line, the 
reinforcements in the angles and due to the loads, which are of a 
modest order of magnitude, the outward thrust does not expel the 
bricks on the fold line, thus it does not lead to failure of the dome. 
The H PB thrust which acts on herringbone bricks laying on the 
previous layer is defined as: 

                 (15) 

The formulation presented (10) (13) (14) (15) is also validated for 
hemispherical domes. Indeed figure 6.3.5 shows the possibility to 
trace a straight line which lies entirely in the thickness of the dome 
which is bounded by two consecutive herringbone bricks. This 
geometrical peculiarity indicates that, although the geometry of the 
dome is hemispherical, the sub-structures can be described by 
plate-bande. This statement is also complying from (13), i.e. 
considering a finite friction value (Φ=20°), even in the case of a 
modest dome, the (12) is verified. Indeed, denoting with S Fr the limit 
span which allows describing the structural behaviour of arches as 
plate-bande. For hemispherical dome with inner radius 3.5 meters, 
the SFr corresponds of a value greater than 2 meters, but from 
chapter 4.2.2, the maximum distance between two consecutive 
loxodromes is lesser than 2 meters, thus a plate-bande behaviour 
is acceptable. Figure 4.3.6 shows the limit condition to define the 
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SFr, when β = Φ if β > Φ the maximum horizontal thrust must be 
considered. 

 

 

Figure 6.3.5 Portion of a hemispherical dome (radius 3.5 m), the straight line 
(highlighted red) of thrust lies entirely in the geometry, thus no cinematic 

mechanism can be individuated. 

 

Figure 6.3.6 Plate-bande mechanism and a portion of a hemispherical dome 
(radius 3.5 meters, γ=0° and βnj1 = βnj2 = Φ = 20°). If S the span of arch, defined by 

two herringbone bricks, is greater than SFr, the limit span, than the maximum 

horizontal thrust is derived by condition (13).

6.3.3 Closed brick course (L.E.S.) 

At the nth construction stage, once the entire nth bricks course is 
completed, a spatial compression ring is formed as shown in figure 
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6.3.1 (highlighted red). The magnitude of the ring force is estimated 
as the maximum thrust present in all the plate-bande structures at 
the nth course or: 

                (16) 

When the next course is positioned (n+1), the value of compression 
force in the nth completed ring and in the underlying completed 
rings changes. To determine the ring compression forces, other 
approaches could be assumed. For example, the contribution of the 
normal component of the self-weight of the bricks can be 
considered, in such manner the friction forces increase and the 
compression forces required to prevent sliding. Or one could also 
evaluate the variation of the plate-bande horizontal thrust caused 
by the slight incline of the herringbone bricks during the laying of 
bricks, and its effect on the underlying closed brick courses. 
However, due to hyperstatic nature of the closed brick courses, all 
approaches proposed under the assumed hypotheses, do not allow 
for the quantitative definition of the equilibrium state of the rings, 
but only give a qualitative definition. Equation (16) does allow us to 
compute the compression force value in the ring at the nth course 
at the nth constructive stage. 

6.3.4 Overall stability (G.E.S.) 

The compressive forces in the closed bricks courses act as hoop 
forces in domes of revolution, thus to evaluate the overall stability 
of the dome it is possible to assume the existence of a membrane 
behaviour and to determine a balanced surface [137]. Such surface 
depends on the compressive forces of the closed brick courses and 
on the brick’s self-weight. 

To estimate the balance surface, we adopt M.T.L.M. As shown in 
figure 6.3.1 (lunes representative A-A, B-B, C-C,) the octagonal 
dome is sliced by meridian planes into 32 lunes, in a manner so that 
for example the  A-A section of A-A lune lies in the plane of 
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symmetry of the sail. The balance surface is identified through the 
thrust traced in all different sections (e.g. sections A-A, B-B, C-C in 
figure 6.3.1) one for each different lune, thus the thrust in all 
different sections needs to be assessed. 

As denoted in chapter 6.3.3, the compression ring force of each 
closed brick course is constant, exactly as the hoop forces in domes 
of revolution. Therefore to trace the thrusts, one for each section, 
the same distribution of compressive ring forces must be 
considered. In domes of revolution under axisymmetric loads, the 
geometry of the hoop forces are described by circles, thus the hoop 
force can be described through their ∆h xHoop x-component and the 
ϑ angle (17), which is the half angle defining a lune measured on a 
horizontal plane as shown in figure 6.3.7. 

                (17) 

However, in the octagonal dome under study, the actual geometry 
of rings compressive forces is not known they are affected by 
dome’s geometry and by bricks pattern. Even from observing the 
spans of plate-bande structures, whose lengths vary from course 
to course it is clear that the shape of ring forces is affected by their 
shape. Thus, we make the assumption in our analysis that the ring 
forces H Ring act normal to the lunes side faces, namely, the x 
component of ring forces can be described by the relation (18). 

                (18) 

This adopted relation does not rely on the description of the actual 
geometry of ring forces, but it is based on the principle of 
equilibrium. According to the Safe Theorem [2], the real shape of 
the compressive rings is not significant, as long as the thrust line 
of the ring lies entirely within the thickness of the brick courses. 
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To prove the stability of the dome under construction, we compute 
the thrust at different construction stages. For each construction 
stage, the thrust line has been evaluated, at first the section A-A, 
shown in figure 6.3.7, subsequently, for sections B-B and C-C at 
the same construction stage (sections A-A, B-B, C-C are referred to 
figure 6.3.1). To calculate the thrust for sections B-B and C-C, the 
same distribution of ring forces found in section A-A is assumed. 
At the nth constructive stage, to guarantee that the ring forces are 
sufficient to provide the forces required to achieve a stable 
equilibrium state of the nth closed bricks course, the inequality (19) 
must be satisfied: 

                 (19) 

Therefore, if all thrusts are compatible with the prescriptions of the 
Safe Theorem and inequation (19) is verified, it is proven that the 
dome is in a state of stable static equilibrium.
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Figure 6.3.7 M.T.L.M for A-A lune at the nth stage: equilibrium of the nth wedge-

shaped element (top), plane view of A-A lune and ring forces (center), A-A section 
and thrust line (bottom).
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6.4 The numerical model 

The equilibrium states of the dome under construction has also 
been verified through D.E.M. numerical analysis. The dome 
analysed has been modelled in the commercially available software 
3.D.E.C. (Itasca, Minneapolis, MN, U.S.A.) based on a Discrete 
Element Modelling (D.E.M.) approach [101]. 

As introduced in chapter 3.3, discrete element methods can 
represent the behaviour of discontinuities and that of solid material; 
consequently, they can model the masonry in each of its parts: the 
bricks and the joints. In the numerical analyses the structure has 
been modelled as a system of discrete rigid bodies (the blocks), and 
their interfaces (the joints). Adopting a central finite-difference 
procedure, the behaviour of the system of rigid bodies is calculated 
by the explicit integration of the motion laws (20) (21), where (20) 
equation describes the translational motion law, while (21) equation 
corresponds to the rotational motion law, and k subscript denotes 
the kth centroid of rigid body of the system modelled. D.E.M. can 
describe the failures of masonry through the contact detection and 
the evaluation of forces acting on the interfaces. 

                (20)

                     (21) 

Each rigid body is constituted by the composition of real brick, see 
chapter 4.2.3, and a portion of mortar that surrounds the brick itself; 
thus, as mentioned, the joints represented by the interfaces 
between the blocks should describe all deformations of mortar and 
bricks and failures which could occur in the real structure.  

A Mohr-Coulomb constitutive model has been implemented to 
represent the mechanical behaviour of the joints, with no cohesive 
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strength, finite compressive strength and no tensile strength. In the 
joint tangential direction, the stiffness is ruled by elastoplastic 
stress-displacement law, while the Coulomb friction coefficient 
defines the shear strength. Thus the three penalty coefficients 
govern the behaviour of the interfaces they are jKn the joint normal 
stiffness, jKs the joint shear stiffness and the Coulomb friction 
coefficient [111]. The jKn coefficient describes the difficulty of 
pressing blocks against each other: it rules the intensity of the 
distributed compression force occurring at a unit depth of the 
penetration between the two elements [113]. The jKs rules the shear 
stiffness of the contact,  ensures that when a slight relative 
displacement increment occurs in the tangential direction between 
two blocks, a tangential force, equal to the displacement increment 
times the tangential stiffness, arises in the opposite direction, and 
prevents the contact from unrestricted sliding [113]. The last 
parameter is Φ, the angle for calculated the friction Coulomb 
coefficient. 

All simulations performed have the purpose of evaluating the 
equilibrate state of structures. Following the two-stepped 
approach, the first simulation performed is related to the stability 
of the plate-bande, whose results are reported in chapter 6.4.1. The 
second step illustrated in chapter 6.4.2 and in Appendix C is relative 
to the simulations conducted on dome under construction. 

6.4.1 Plate-bande numerical analyses 

The numerical tests conducted for the plate-bandes (P.B. test) 
(L.E.S.) have the purpose of verifying the balanced state of the 
plate-bande themselves during the construction, thus to simulate 
different construction stages various inclinations of φ (the 
inclination of the laying plane) have been taken into consideration, 
at the top of figure 6.4.1 are reported the course analysed.  

The volumic mass assumed in all analyses performed is equal to 
2000 kg/m3 and the gravitational acceleration g=9.81 m/sec2. Due to 
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the specific goal of the analyses performed: during the 
construction, except for the self-weight no other loads have been 
considered. The values of the penalty coefficients jKn and jKs are 
not uniquely defined, in the last decades several theories 
concerning have been developed [110] [145]. To be rigorous and for 
respecting the composite characteristics of the rigid bodies 
modelled, they should be defined through a weighted average of 
mechanical and geometrical properties of joint mortar and bricks. 
Nevertheless this, to the aim of the  P.B. tests (verify the stability of 
plate bande structure) and due to their low influence in the stability 
respect the Coulomb coefficient, it has been satisfactory to assume 
values obtained from literature belonging to similar problems [110] 
[113] [146]. The implemented values are: E=36 GPa and G =21 GPa 
[x], thus the values of penalty coefficients adopted are jKn=135 

GPa/m, jKs=11 GPa/m. 

The influence of Φ (the friction angle) has been detected evaluating 
a variety of values: 0°, 10°, 15°, 20°, 40°, 60°, 80°, 90° for each laying 
plane; the results of the P.B. tests shows that the stability of plate-
bandes is related to the Φ and to the angle of inclination of laying 
plane. In particular, as reported in figure 6.4.1 (bottom), if the Φ is 
equal or larger than 10°, the plate-bande structures are stable. The 
results also show that for low angles of φ (the inclination of the 
laying plane) which correspond until the course i=33, the 
equilibrium of plate-bandes structures is not related to the Φ, and 
the results are presented in Table 01.  

The main outputs recorded through the numerical simulations are 
these three: the displacement, the z component of velocity (z-
velocity) and the unbalanced force. The first two elements are 
directly related to the motion of the discrete system, they provide 
information about the motion of specific points of the structure 
observed.
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Figure 6.4.1 From top to bottom: courses analysed for P.B. tests; plate-bande 
during collapses (i=52, φ=47°, Φ=0°); plate-bande equilibrates (i=52, φ=47°, Φ=10°).
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Φ 

 φ 0° ⋝10° 

i= 33 30° stable stable 

i= 52 47° unstable stable 

i= 78 71° unstable stable 

i= 93 86° unstable stable 

Table 02 Stability of plate bande. 

Referring to figure 6.4.1 for each simulation, displacement and z-
velocity are registered for two points (A and B), (B) the first is 
adopted to illustrate the motion of herringbone bricks and the other 
(A) for recording the behaviour of the horizontal bricks.  

The unbalanced force represents the summation of all nodal forces 
for each time-step of simulations, for static analyses, the 
Unbalanced force furnishes global information regarding the state 
of the system: theoretically, when the equilibrium state is reached 
the net nodal force vector at the centroid of all rigid bodies is zero, 
thus the unbalanced force is zero. Nevertheless, for numerical 
analyses, such quantity tends to zero, but practically this will never 
reach zero. The discrete system of rigid bodies can be assumed to 
be at equilibrium when the magnitude of the maximum unbalanced 
force is small compared to the representative forces of the previous 
problem [101].  

Figure 6.4.2 reports the variation of three quantities (unbalanced 
force, displacement and z-velocity) calculated for the plate-bande 
illustrated in figure 6.4.1, during the simulations. For all graphs the 
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x-axis reports the time-step of analyses, a parameter which 
describes the progression of the simulation, instead the y-axis 
illustrates the quantity recorded.  

The first graph reports the evolution of the unbalanced force, the 
red line describes the behaviour of plate-bande analysed with Φ 
that is 10°, in this case after few time-steps a peak occurs then the 
unbalanced forces is almost zero. Consequently, the structure is 
balanced, after an adjustment phase, where the rigid bodies act 
one against another. This behaviour is also shown by the z-velocity 
graph where in correspondence to the unbalanced force peak, the 
z-velocity is not zero, but after that, this quantity becomes zero and 
no motion occurs, while the displacement graph is practically zero 
all through the simulation. In the simulation conducted with Φ=0°, 
the unbalanced force never attains the zero and z-velocities of the 
A and B points change variously during the time. At the beginning 
of the numerical analysis, the two z-velocities have opposite signs, 
then the sign of B point z-velocity changes and both quantities are 
negative. This indicates that the vertical blocks, which represents 
the herringbone bricks, pushes the horizontal elements towards the 
external of plate-bande, while they slide on the inclined plane in the 
opposite direction, after a few steps even the horizontal blocks slide 
down. The displacement graph is coherent to the behaviour 
described, on the graph three different phases are readable: the 
first in which A and B displacements increase, a second one 
correspondents to the inversion of motion and the last one where 
the A displacement decreases because the horizontal blocks slide 
on the laying plane. Due to the small number of rigid bodies 
modelled in the P.B. Test, all of which are involved in an eventual 
collapse, it can be assumed that the system is balanced when the 
z-velocity of even just one point is zero and constant for a finite 
time interval. 
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Figure 6.4.2 Graphs for evaluating the state of a plate-bande represented in figure 
6.4.1. From top to bottom: unbalanced force, displacement and z-velocity. 
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6.4.2 Numerical analysis of dome under construction   

Following the two-stepped approach presented in chapter 5.2, 
once verified the stability of plate-bande through the P.B. Tests, 
two other structures are evaluated for different construction 
stages (n): the closed bricks course (C.B.C. Test) (L.E.S.) and the 
dome under construction (D.U.C. Test) (G.E.S).  

Two geometrical models have been evaluated: an octagonal dome 
as Santa Maria in Ciel d'Oro dome, and a hemispherical dome similar 
to Simon Mago. Both systems of rigid bodies are constituted by 
blocks which dimensions correspond to the brick dimensions, as 
described in chapter 6.4.1. The masonry pattern adopted coincide 
to the pattern formed by cross-herringbone spiralling technique. 

Both types of numerical analyses (C.B.C Test and D.U.C. Test) have 
been assessed simulating the constructive process, i.e. adding one 
course upon another. Once the equilibrium state has been reached 
for a given completed course, the next one is added and the overall 
analysis is performed again to assess the stability of the new overall 
structure built, in such manner the stability relative of the new 
construction stage is evaluated. The graph of unbalanced force 
related to these analyses records numerous peaks at least one for 
each brick course added, the first graph shown in figure 6.4.3 
illustrates the evolution of this quantity recorded for the octagonal 
dome analysed, while the other two graphs represent the 
unbalanced force record under different condition. The central 
graph refers to a complete dome analysed applying g=9.81 m2/s, 
while the graph at the bottom describes the same structure but, in 
this case the gravity value is applied in different time intervals, i.e. 
first g=0.981 m2/s, then g=1.96 m2/s up to g=9.81 m2/s. This method 
should reflect the formwork removal operations. The temporal 
evolution of the unbalanced force in the three graphs reflects the 
nature of simulations, the alternation of peaks and flat sections 
readable in the first diagram correctly describes the evolution of the 



 

123 

state of equilibrium during the construction stage of a dome built 
without the formworks aid.  

As shown in Appendix B, the balanced state varies depending on 
the construction stage: the hoop forces and the meridian forces 
change during the construction. This variation is intuitable even by 
the distribution of the unbalanced force, which for each brick 
course added a peak occurs, and after that, a flat section could 
manifest, to testify the new state of equilibrium. Figures 6.4.4 and 
6.4.5 highlight this concept, where a portion of the dome is 
displayed e analysed. More precisely, the graphs of figure 6.4.5 are 
referred to the dome portion modelled in figure 6.4.4. The 
evaluation of the balance of the courses included between the 28th 
and 33rd (i=28-33) of an octagonal dome is the subject of the 
analyses performed. The simulation has been carried out assuming 
jKn=100 GPa/m, jKs=10 GPa/m and Φ=89° [113], and adding the 
courses one at a time (as described above), with the exception of 
the 33rd brick course, where, as shown in figure 6.4.4 (in the centre 
and bottom), it has been added in two different time intervals: first 
only three plate-bandes (j=1, 2, 3; i=33), and then the remaining part 
of the course. As affirmed this process is clearly readable in the 
graph of the unbalanced forces where seven peaks are recorded, 
one for each brick course plus another, of lower intensity, for the 
addition of the three plate-bandes. Figure 6.4.5 each peak is 
located in a specific and distinct time interval, therefore pursuing 
the illustrated logic it is possible to determine a correspondence of 
the different construction stages and the time-steps of analysis.  
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Figure 6.4.3 Unbalanced force graphs. From top to bottom: dome under 
construction, complete dome (g=9.81 m2/s), complete dome considering the 

formwork removal operations (g=9.81, 1.962, ..., 9.81 m2/s).
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The other two graphs of figure 6.4.5 show the evolution of 
displacement and z-velocity relating to point A and B belonging to 
28th bricks of course (see figure 6.4.4), on these graphs no variation 
is recorded relative to the addition of blocks of plate bande (j=1, 2, 

3; i=33). Such behaviour indicates that the perturbation of the 
balanced state due to the three plate-bandes it is just local 
confirming the hypotheses proposed in chapter 5.2.  

Respect to the displacement graph reported in figure 6.4.2 the 
same quantity illustrated in figure 6.4.5 highlights the existence of 
movements due to the adjustment of brick courses laid when a new 
brick course is added. 

To demonstrate the stability of the complete courses, a series of 
C.B.C Test is performed, precisely at n=28, 52, 65, 78 construction 
stages for the octagonal dome, while n=27, 43, 66, 70 for 
hemispherical one. For each stage the same physical properties as 
for the P.B Test have been observed. The C.B.C Test consists of 
evaluating the displacement, z-velocity and unbalanced force 
relative of the last bricks course laid (i=n) at the nth constructive 
stage. For example, to prove the stability of the 28th complete 
course, 28 complete courses have been modelled, and the 
maximum displacement and velocity of the bricks in the 28th course 
have been recorded. The structural behaviour of the whole domes 
under construction is assessed (D.U.C. Test), in these numerical 
analyses the displacement and z-velocity have been recorded at 
several courses unlike the closed brick course tests, the 
displacements and velocities. For all numerical analyses (C.B.C Test 
and D.U.C. Test) only the first laying plane has been constrained 
and none of the other bricks. The joint penalty coefficients 
assumed are jKn=100 GPa/m, jKs=10 GPa/m, while a variety of 
friction angle is investigated. 
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Figure 6.4.4 Dome under construction. From top to bottom brick course i= 28, brick 
courses from i= 28 to i=32 and plate bande j= 1, 2, 3, brick courses from i= 28 to 

i=32.
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Figure 6.4.5 Graphs of dome under construction shown in figure 6.4.4. From top 
to bottom: unbalanced force, displacement and z-velocity.  
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results of C.B.C and D.U.C. Tests show that the maximum z-velocity 
to which the blocks are subjected coincides with that of the 
construction stage in which they are laid. Rare high magnitude z-
velocities occur randomly, especially in the hemispherical model 
where the blocks are modelled with some geometrical 
imperfections, thus these randomly z-velocity could be associated 
with the presence of imperfections. A resume of the z-velocity 
graph is reported in Appendix C, where the evolution of z-velocities 
relative to different points of octagonal and hemispherical domes 
are graphed.  

Table 03 summarizes results of D.U.C. Tests that were executed on 
octagonal dome modelled considering the interval of brick courses 
between i=28 up to i=93. The same variety of friction values of P.B. 
Tests has been. As Appendix C shows, the results in term of stability 
are coherent with table 03 even for the hemispherical structure 
analysed. 

Φ 

 φ 0° ⋝10° 

i= 28 26° unstable stable 

i= 52 47° unstable stable 

i= 65 59° unstable stable 

i= 78 71° unstable stable 

i= 93 86° unstable stable 

Table 03 stability of D.U.C. tests. 

Based on the results of the analysis for a wide range of friction 
angles and construction stages, displacement surfaces relative to 
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a specific point of the dome under construction can be shaped.  
Figure 6.4.6 shows the displacements surface recorded for a point 
in the middle of the sail at the 52nd course of the octagonal dome. 
Thus, the surface is related to the constructive stages range n=52-

93 and to the friction angles between Φ=10° and 89°. Friction angles 
less than 10° have not been considered because even the plate-
bandes structures are not stable at such low friction angles. 

Referring to figure 6.4.6 the maximum dome displacement 
recorded is less than 2 mm, a value really low even for structures 
built using formworks aid, nevertheless this inaccuracy, the 
displacement surface provides valuable information relative to the 
dependence of displacement, friction and construction stages.  

 

 

Figure 6.4.6 Graphs of displacement surface relative to A point of an octagonal 
dome placed in the middle of sail at 52nd brick course.  
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is to ascribe to values assumed by jKn, jKs  and mostly to the Mohr-
Coulomb joint constitutive model implemented, more accurate 
analyses could be conducted changing the constitutive model, but 
for the purpose of the analyses -testify the existence of plate 
bande structure in the dome under construction- this inaccuracy 
does not affect. Even larger displacements can occur when the 
bricks were laid, but in actual domes during the laying, the cohesion 
property of mortar is enough to prevent slide for a short time 
interval, just until the plate bande is formed. 

Figure 6.4.6 shows a low correlation between the friction angles 
and displacement, at least for friction angle values lager of 30°. This 
independence is also verified in the other graphs of the same 
quantity relative to the octagonal model shown in Appendix C. As 
illustrated in figure 6.4.5 the displacement curves are described by 
stepped curves, but as figure 6.4.6 displays (e.g. Φ=89°), they 
present a maximum. The resultant displacement surfaces display a 
bump region located in the central part of the surface, which 
reflects the maximum displacement reach for the different friction 
angles. After that, regardless of friction, the displacements 
decrease. Therefore the displacement surfaces record the “breath” 
of the dome under construction [147] which characterised the 
domes built without any support, starting from these surfaces is 
possible tracing the movements of the dome during its building. 
The “breath” phenomenon could be explained by observing the 
variation of vertical thrust under construction (see Appendix B): 
once a brick course has been laid, very small settlements toward 
the centre of the dome occur at this course, but after an initial 
period the thrust which acts in meridian direction increases and 
pushes outward the bricks and thus they tend to return to the initial 
configuration.
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7. Conclusion 

The research presented in this dissertation cannot be considered 
complete and more aspects could be investigated further in this 
field. However, that, various considerations in the report could be 
traced. Through the study of historical technologies, the past 
application of a self-supporting technology has been testified 
through a case of the cross-herringbone spiralling technique. An 
approach to evaluate masonry shells during their construction has 
also been defined: the two-stepped approach.  

 

7.1 The cross-herringbone technology a self-
balanced technology 

The Brunelleschi herringbone technique was certainly known by 
the Sangallo architects in the 16th century, who developed the 
cross-herringbone spiralling technology, a self-supporting 
construction method for building masonry domes and vaults based 
on his technique (chapter 4.1).  

The herringbone and cross-herringbone were applied for over a 
century in the central region of Italy. The reason for their limited 
temporary use and restricted spread have not been investigated, 
but some assumptions can be derived based on the historical-
cultural context they are located within. These two techniques 
require considerable skills, only a trained master mason could 
correctly execute, and over this the secret nature of the knowledge 
of the system, justifies the defined geographical area. 

The disappearance of the Sangallo school of architects, the 
reduced need to build domes in a fast manner, and different 
political context may have caused the loss of the theoretical and 
technical knowledge of these vaulting systems. 



 

134 

Nowadays several domes present the herringbone pattern are 
rediscovered, and a list of them is reported in Appendix A. Among 
them, due to peculiar characteristics two structures has been 
studied. They are Santa Maria in Ciel d'Oro and Simon Mago 
(chapter 4.2.2): both designed by Antonio da Sangallo the Younger, 
and both with a cross herringbone. These structures are not 
plastered and are perfectly conserved, providing valuable and 
relevant information on the peculiarity of the cross-herringbone 
techniques.  

Even in the historical document conserved in the Uffizi museum 
there are evidence of the existence of cross-herringbone spiralling 
technology (figure 4.1.2, drawing 1330 (n. 594469) GDSU). This 
technology is different from the herringbone technology and 
requires a detailed executive scheme and a precise tracing system 
as the preliminary operations, without which a self-supporting 
system cannot be implemented. 
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7.2 Considerations concerning: the two-stepped 
approach 

From the observation of self-supporting technologies, take into 
account Heyman's theory and the behaviour of single bricks during 
their laying, a frame approach needed to assess the state of 
masonry structure during their construction is proposed. This 
approach called two-stepped approach (chapter 5.2) is based on 
the Local Equilibrium Step and the Global Equilibrium Step. 

The two-stepped approach is formulated to verify the state of 
shells under construction, but it could even provide a process to 
evaluate the stability of other masonry structures such as arches 
or walls.  

Through the implementation of the two-stepped approach, 
productivity, and the economic issues can be related to the stability 
problem and analysed, i.e. to reduce the costs and increase the 
productivity for building masonry shells it is possible to evaluate the 
state of the structure under construction and eliminate the 
unnecessary expenses. 

Further, referring to the nth construction stage of a masonry shell, 
different considerations are proposed: 

- 1st independence property: the equilibrium at i=nth brick 
course, i.e. at the local scale, is related to the building 
technology adopted, while the overall equilibrium, i.e. 
referring to the whole structure already built, is ruled by 
geometry. 
 

- 2nd independence property: the methods to assess the 
local equilibrium and the overall state can be not related, 
in particular for evaluating the stability of the nth brick 
course, the nature of the primary factor (chapter 5.1) 
must be taken into account. 
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- 1st dependency property: to achieve a balanced state 
during the construction, the overall state of shells must 
satisfy the conditions required at the local scale of 
structures analysed. 
 

- 2nd dependency property: Even during the construction 
stage, the Heyman's hypotheses are not violated, thus 
the overall equilibrium of masonry shells, built using self-
supporting technologies, is governed by their geometry. 

 

The two-stepped approach provides a process for evaluating the 
state of masonry structures during the construction, its 
implementation must take into account the technology used to 
build the structure considered.  

Within this research it has been developed considering the cross-
herringbone spiralling technology. The two-stepped approach has 
been implemented following the limit analysis, as well as adopting 
static graphic tools (see chapters 6.3.2, 6.3.3 and 6.3.4). Even the 
numerical simulations have been performed following the logic of 
two-stepped approach (D.E.M. simulations, chapters 6.4.1 and 
6.4.2). 
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7.3 Dome behaviour during construction - Case 
study: the cross-herringbone spiralling technology 

During the construction of masonry domes built without shoring or 
formwork, the overturning of a partially constructed sail and/or the 
sliding of local bricks or brick courses can lead to an unstable 
equilibrium state of the dome and ultimately structural failure. 
Traditional masonry construction technologies do not intentionally 
address such construction failure mode and resort to costly 
auxiliary support systems. 

The case studies of an octagonal and a hemispherical dome 
patterned with a spiralling cross-herringbone layout, proves that 
this brick layout enables self-balancing domes during all phases of 
construction without formwork or shoring. Through the plate-
bande structures found in the incomplete brick course, a resistance 
mechanism is discovered that enables a self-balanced state by 
mobilising the underlying completed brick courses through the 
bonding with the herringbone bricks, linking new incomplete 
courses to the already completed underlying ones. Once the brick 
course is closed, the plate-bandes structures are no longer 
necessary to sustain dome’s stability, but instead they start to offer 
support to fix the herringbone bricks in the next course. 

The existence of the plate-bande structures, the closed bricks 
courses and the stability of the dome under construction is 
demonstrated through the D.E.M. analysis performed. As 
highlighted in chapters 6.4.1 and 6.4.2, even for low values of 
friction between the brick surfaces, the dome finds a balanced 
equilibrium state. 

For real friction angle values, D.E.M. analysis shows maximum 
displacements of only 1.8 centimetres (hemispherical dome 
displacement recorded at i=64 brick course and n=73 construction 
stage, Appendix C). However, what is more relevance is the 
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evolution of the motion of the bricks once the plate-bande and the 
closed brick course actions are mobilised. After that initial motion 
of the bricks, no further motion occurs. Therefore the I. Heyman’s 
hypothesis (see chapter 3.2) is not violated even under 
construction and even the II. and III. hypotheses are verified (2nd 

dependency property). 

The limit analyses performed during the construction of the two 
case studies (see Appendix B) highlights the variation of the force 
required to reach the self-balanced state concerning the building 
stage analysed. This is independent of the i brick course observed 
and the maximum compressive ring forces required to achieve the 
self-stability is recorded in correspondence to the i= nth 

construction stage. In other words, the most critical construction 
stage is precisely when the bricks of i course are being laid.  
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7.4 Future vision 

Although the equations of equilibrium defined in chapter 6.3.2, 
6.3.3 and 6.3.4 are used to verify the equilibrium state of the dome, 
they can be easily adapted to design other self-balanced domes. 
Currently, three-dimensional rigid structural surfaces (such as 
shells and domes) need formwork and shoring material during 
construction, which goes to waste once the structure is completed, 
adding to the economic and environmental cost of the project. In 
this document, a historic masonry dome construction technique, 
based on the spiralling cross-herringbone pattern, has been shown 
to enable statically stable geometries throughout the construction 
process without the need for any external support system. These 
self-balancing structures have no theoretical limit to their size. The 
disruptive potential of this historic masonry pattern comes to the 
fore for today’s construction industry when this technology is 
viewed in the context of other emerging innovations such as novel 
structural form-finding approaches and robotic construction 
technologies [148] [149] [150]. For example, it is envisaged that 
masonry rigid surfaces could be tailored in their shape through 
form-finding approaches [19] [151] [152] and patterned with the 
herringbone pattern to be effectively produced using robots 
without any falsework and yet be stable during all stages of 
construction and their service life. 
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Appendix A 

List of possible sites  

The following list provides an overview of buildings designed by 
Sangallo architects, especially by Antonio the Younger, in which 
the herringbone or cross-herringbone spiralling technology was 
probably applied. These buildings have been chosen because the 
presence of domes is testified and for other similar structure the 
herringbone or cross-herringbone technique was applied. 

The list was written by consulting various sources but cannot be 
considered complete. The purpose of this document is to prove that 
the use of the herringbone technique and or cross-herringbone is 
not sporadic but rather systematic. The date reported denotes the 
beginning years of the structure considered. The ** mark labels the 
structure where the presence of the herringbone or cross-
herringbone spiral technique is testified. 

 

List of sites: 

Basilica of Santa Casa** 
Place: Loreto (Ancona).  
Date: 1468. 
Architect: Giuliano Sangallo. 
Source: [125]. 
 
Porta Nova 
Place: Colle di Val d’Elsa (Siena). 
Date: 1479. 
Architect: Giuliano Sangallo. 
Source: [125]. 
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Medici Villa 
Place:Poggio a Caiano (Prato). 
Date: 1480. 
Architect: Giuliano Sangallo. 
Source: [125]. 
 
Santa Maria delle Carceri 
Place: Prato. 
Date: 1484. 
Architect: Giuliano Sangallo. 
Source: [125]. 
 
Poggio Imperiale** 
Place: Poggibonsi (Siena). 
Date: 1488. 
Architect: Giuliano Sangallo, Antonio Sangallo the Elder. 
Source: [62] [125]. 
 
Palazzo Della Rovere 
Place: Savona. 
Date: 1489. 
Architect: Giuliano Sangallo. 
Source: [58] [123]. 
 
Fort Sangallo 
Place: Civita Castellana (Viterbo). 
Date: 1495. 
Architect: Antonio Sangallo the Younger, Antonio Sangallo the 
Elder. 
Source: [58] [123]. 
 
Medici Fortress di Sansepolcro** 
Place: Sansepolcro, (Arezzo). 
Date: 1500. 
Architect: Giuliano Sangallo. 
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Source: [124] [125]. 
 
Medici Fortress** 
Place: Arezzo. 
Date: 1502. 
Architect: Giuliano Sangallo, Antonio the Younger and Antonio 
Sangallo the Elder. 
Source: [62] [124]. 
 
Church of Santissima Annunziata 
Place: Arezzo. 
Date: 1503. 
Architect: Antonio Sangallo the Elder. 
Source: [124]. [153]. 
 
Fortress of Nettuno 
Place: Nettuno (Rome). 
Date: 1503. 
Architect: Giuliano Sangallo Antonio Sangallo the Elder. 
Source: [124]. 
 

Fortress of Castrocaro** 
Place: Castrocaro Terme and Terre del Sole (Forlì). 
Date: 1504. 
Architect: Antonio Sangallo the Younger, Antonio Sangallo the 
Elder. 
Source: [62] [124]. 
 
Temple of San Giovanni in Oleo 
Place: Rome. 
Date: 1509. 
Architect: Antonio Sangallo the Younger. 
Source: [123]. 
 
Church of Sant’Egidio 
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Place: Cellere ( Viterbo). 
Date: 1513. 
Architect: Antonio Sangallo the Younger, 
Source: [123] [124]. 
 
Rocca Farnese 
Place: Capodimonte (Viterbo). 
Date: 1513. 
Architect: Antonio Sangallo the Younger, 
Source: [123] [124]. 
 
Oratorio di Santa Caterina 
Place: Bisentina di Capodimonte island, Bolsena lake, (Viterbo) 
Date: 1516. 
Architect: Antonio Sangallo the Younger. 
Source: [124]. 
 
Church of San Biagio 
Place: Montepulciano (Siena). 
Date: 1518. 
Architect: Antonio Sangallo the Elder. 
Source: [154]. 
 
Fortress Vecchia** 
Place: Livorno. 
Date: 1519. 
Architect: Antonio Sangallo the Elder. 
Source: [62] [125]. 
 
Church of Santa Maria in Ciel d’Oro** 
Place: Montefiascone (Viterbo). 
Date: 1523. 
Architect: Antonio Sangallo the Younger. 
Source: [71] [127]. 
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Cappella Cesi in Santa Maria della Pace** 
Place: Rome. 
Date: 1530. 
Architect: Antonio Sangallo the Younger. 
Source: [124] [155].  
 
Palazzo Farnese 
Place: Caprarola (Viterbo). 
Date: 1530. 
Source: [123]. 
 
Fortezza da Basso** 
Place: Florence. 
Date: 1534. 
Architect:  Antonio Sangallo the Younger. 
Source: [123]. [124]. 
 
Bastion Sangallo 
Place: Rome. 
Date: 1537. 
Architect: Antonio Sangallo the Younger. 
Source: [125]. 
 
Rocca di Nepi 
Place: Nepi (Viterbo). 
Date: 1537 
Architect: Antonio Sangallo the Younger, Antonio Sangallo the 
Elder. 
Source: [123] [155]. 
 
Rocca Paolina 
Place: Perugia. 
Date: 1540. 
Architect: Antonio Sangallo the Younger. 
Source: [58] [123]. 
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Simon Mago dome and domes of Octagons in San Pietro** 
Place: Roma. 
Date: 15--. 
Architect: Antonio Sangallo the Younger. 
Source: [59] [127].
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Appendix B 

Limit analysis 

The limit analysis has been performed for two different domes, one 
octagonal and the other hemispherical, the two structures have 
dimensions comparable to the Santa Maria in Ciel d’Oro dome. The 
internal diameter of the octagonal dome is 9.4 m and the thickness 
is 0.24 m, while the hemispherical one has radius 4.0 m and 
thickness 0.24 m. The two structures present the cross-
herringbone pattern, the maximum distance between two 
loxodromes is 1.4 m measured at the base of hemispherical one. 
The analyses have been conducted for different construction 
stages, following the formulation introduced in chapter 6.3 and 
considering ρ=20 kN/m3 and Φ=20°. The results are summarised in 
table 04 and 05 and in following technical sheets. The 
hemispherical dome has been divided by an angle of ϑ =11.25°, 
while the three lunes exposed in chapter 6.3.4 has been studied. 
According to the literature [92] [156] the octagonal dome is not 
stable, the thrust at the complete dome of C-C section does not lie 
entirely in the section of the dome, hence fill or abutment should 
be considered. Nevertheless, the purpose of the analyses is to 
highlight the variation of the hoop forces during the construction. 
As expected, the thrust or ring forces, listed in table 04 and 05, 
change as a function of the construction stage. For all construction 
stages the ring forces are larger near the last course laid than those 
located at the first level laid. From these tables it can be seen that 
the magnitude of ring forces required to achieve stability decreases 
drastically during construction. At the early construction stages, 
the magnitude of the ring forces is comparable to the thrust forces 
required to balance the plate-bandes (octagonal dome) or arches 
(hemispherical dome), but near the crown, their magnitude 
increases independently of the plate-bandes thrusts. This 
observed difference is due to the geometry and dimension of the  
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plate-bande structure and of the entire dome. The spans of plate-
bandes decrease from the base to the dome’s crown around 70-
80%, unlike the ring forces required to achieve a balanced state of 
the whole dome, which, at complete construction, increase from 
the base of the dome to the crown much more than 100%. 

 

Plate-bande 

  Stage n = i 

33 52 93 

j 1 3 1 

||Hnj
PB||   [N] 104.4 243.6 113.5 

Closed brick course 

  Stage n 

33 52 93 

||Hn
R||     [N] 104.4 243.6 113.5 

Dome under construction 

  Stage n 

33 52 93 

∆h33
x Ring  [N] 210.0 35.6 3.0 

∆h52
x Ring  [N]   276.0 3.5 

∆h93
x Ring  [N]     794.0 

||Hn
Ring||  [N] 538.2 707.4 2034.9 

Table 04 Results of limit state analysis for the octagonal dome analysed. 
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Arch 

  Stage n = i 

27 59 68 77 

||Hnj
PB||   [N] 117.6 152.3 68.0 56.2 

Closed brick course 

  Stage n 

27 59 68 77 

||Hn
R||     [N] 104.4 243.6 113.5  

Dome under construction 

  Stage n 

27 59 68 77 

∆h27
x Ring  [N] 386.0 15.4 1.9 1 

∆h59
x Ring  [N]   640.0 34.0 24.0 

∆h68
x Ring  [N]     720.0 35.4 

∆h77
x Ring  [N]    918.0 

||Hn
Ring||  [N] 989.3 1640.3 1845.3 2352.8 

Table 05 Results of limit state analysis for the hemispherical dome analysed. 
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Octagonal dome 
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Hemispherical dome 
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Appendix C 

D.E.M. analysis  

The structures investigated are the same two domes analysed in 
Appendix B, an octagonal and a hemispherical structure, but in the 
D.E.M. analyses the domes are modelled starting from 28th brick 
course (i=28), the polygonal one, and 27th brick course (i=27) for the 
hemispherical one. The dimensions of rigid bodies assumed to 
perform the analyses correspond to the sizes of brick and a portion 
of mortar which surrounds the brick itself, exactly as described in 
chapter 6.4. The results reported show the time evolution of the 
unbalanced force calculated for a friction angle range from Φ=0° up 
to Φ=89° and z-velocity from Φ=10° up to Φ=89°. As well as the 
displacement surfaces, the z-velocity graphs have been traced. 
The graphs illustrate the results obtained relative to the bricks 
course: i=28, 52, 65, 78 for the octagonal model and i=27, 43, 66, 70 

hemispherical structure. All analyses are performed with values of 
jKn=100 GPa/m, jKs=10 GPa/m.  

As mentioned in chapter 6.4.2, the author wants to highlight that 
the order of magnitude of the displacement surfaces should be 
non-exact, but their geometries provide interesting information on 
the time evolution of displacements at different courses, different 
construction stages and friction values. The bump region of 
displacement surfaces highlights the settlements occurred during 
the construction. These movements have really low magnitude, 
even regarding the order of maximum displacement recorded, they 
are at least two orders smaller than maximum displacement.  
Referring to the octagonal dome the “breath” phenomenon is more 
evident in the courses included in i=28-75 and in the middle of the 
sails of octagonal dome, this is due to the inclination of the laying 
plane, as well as this phenomenon is practically absent in 
correspondence of B point (near the edges of sails). In general, the 
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displacement surfaces relative to B points have an order lesser of 
the A points recorded at the same condition (Φ, n).     

The introduction of geometrical errors in blocks of the 
hemispherical dome does not allow the “breath” phenomenon to 
occur. The displacement surfaces relative to the upper portion of 
this structure (i=56-77) show a remarkable vertical section in 
correspondence of the early construction stages which they are 
recorded. This denotes that the geometrical errors lead to an 
increasing the settlements but however not such as to compromise 
the balanced state of the dome. 
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Octagonal dome 
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Hemispherical dome 
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