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Chapter 1

Introduction

Since its inception, the air transport industry has been growing at a fast pace to finally

establish itself as one of the major industries in today’s global economy. The utmost

relevance of air transport industry is not only due to its direct economic impact but

mostly to its boosting effect on global trades and socio-economic development. Based

on the most recent industry figures (IATA 2019), in 2018 airlines have accommodated

about 4.4 billion origin-destination passenger journeys worldwide and the number of

unique city-pairs connected by regular airline services has reached almost 22,000,

corresponding to a substantial 5.4% CAGR from 2000 (1.7 billion passengers) and a

2x increase in the number of non-stop routes provided. The overall economic impact

of the industry is estimated to generate more than 65.5 million jobs worldwide and

US$ 1.7 trillion GDP (around 3.6 percent of the world’s gross domestic product) as

the sum of direct, indirect, induced, and tourism-related impacts (ATAG 2018).

Following deregulation, air transport networks have quickly grown into very com-

plex systems involving several interacting players. Alongside the capital-intensive

nature of the business and the large-scale operations, the fast-changing competitive

landscape characterizing the aviation industry has made the development of effective

planning schemes a highly challenging task, but more importantly, a strategic source

of competitive advantage. The consolidation of air transport networks and their

infrastructures has occurred in close synergy with developments in the field of opera-

tions research (OR) and quantitative methods, perhaps as in no other sector. OR has
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armed practitioners with optimization-based decision support tools and contributed

to significantly enhance industry performance (Barnhart et al. 2003a). Airlines in par-

ticular have long been at the forefront of innovation in operations research and, today,

tactical and operational decisions are routinely supported by dedicated optimization

software.

One of the main challenges of these models is to appropriately incorporate passen-

ger demand. Demand constitutes probably the most important input to the planning

processes in aviation; indeed, regardless of the sophistication of mathematical models

supporting these processes, the quality of their outcome is largely, if not entirely,

dependent on the accuracy of traffic estimates. Throughout the entire airline plan-

ning process, the assessment of air travel demand is pervasive and plays a vital role.

Airline decision making indeed goes hand-in-hand with demand forecasting both to

suitably allocate resources in the short term and to support strategic decisions on

capacity planning and network developments in the long term.

The earliest mathematical models in this field have focused on capturing the

complex intricacies of aviation processes to ensure feasible and realistic solutions

to real-world applications (e.g., Levin 1971, Abara 1989a, Teodorović et al. 1994).

These models were built under the assumption that passenger demand was fixed and

given—thus treating it as a known parameter in the mathematical formulation. The

consideration of inelastic demand has been taken as a (necessary) simplification for

quite a long time. However, while demand surely motives and drives the provision of

airline services to a large extent, on the other, the allocation of airline resources and

their scheduling determine the quality of services and travel opportunities available

to passengers, which in turn greatly influence their demand for air travel.

There is much evidence in the industry supporting the bi-directional relationship

between air travel supply and demand. Perhaps the most evident was the advent of

low-cost carriers, which, by leveraging low prices and point-to-point services, were

able to stimulate demand and serve markets that were previously deemed as not

economically viable, such as remote or leisure-dominated markets (Dobruszkes 2006,

Chung and Whang 2011, Antunes et al. 2020). Other contributions have highlighted
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Chapter 1. Introduction

the important role of other airline products, such as higher frequencies and better

timetables, as a key driver to both capturing demand over competition and stimulate

new traffic.

In recent years, a better understanding of airline planning problems, along with

advancements in data availability and forecasting methodologies, has motivated schol-

ars and practitioners to put greater emphasis on endogenizing demand into network

planning models in order to achieve and exploit a more realistic representation of the

so-called supply-demand interactions (e.g., Hsu and Wen 2003, Lohatepanont and

Barnhart 2004, Dong et al. 2016, Cadarso et al. 2017).

Properly incorporating supply-demand interactions leads to additional challenges.

First, it requires the empirical estimation of demand models, which comes with data

availability and model estimation issues. Furthermore, the incorporation of supply-

demand interactions into mathematical models requires either iterating among sub-

models (e.g., Hsu and Wen 2003) or addressing nonlinearities that arise from nonlinear

functional forms of advanced demand models (e.g., Cadarso et al. 2017). In both cases,

the resulting problem is very hard to solve and requires the development of ad-hoc

solution methods. Despite some recent contributions, research on this topic is all but

exhaustive and many challenges are still to be addressed.

The aim of this thesis is to contribute to this important stream of research by

developing integrated models that explicitly endogenize supply-demand interactions

at the various phases of the airline planning process. The thesis is composed of

three main chapters, each of which constitutes a stand-alone academic paper and

addresses a specific issue related to the modeling of supply-demand interactions in

the optimization of air transport networks.

In the next sections, we provide background material on the airline planning

process and air travel demand. By these sections, we aim to set a general terminology

and familiarize the reader with key concepts that will be recurrently used throughout

the thesis. In Section 1.3, we state the thesis main contributions and provide an

outline of the remaining chapters.
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1.1. Airline Planning Process

1.1 Airline Planning Process

The airline planning process is very complex process that comprises many interrelated

decisions, spanning from short-term activities of operational nature to medium-term

tactical decisions, up to long-term strategic decisions. In the following, we provide

a brief overview of the different planning steps, highlighting their main objectives

and features, and providing references to relevant developments in the optimization

literature.

Figure 1-1: Airline planning process (adjusted from Belobaba et al. (2015)

Although represented sequentially (see Figure 1-1), these steps are tightly inter-

related, with overlaps and necessary feedback from one stage to another. Tradition-

ally, the sequential representation reflected practice quite accurately. The different

planning steps were carried out in sequence and with limited feedback due to or-

ganizational constraints and computational reasons. More recently, along with the
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Chapter 1. Introduction

advancements in both computing technologies and solution methods, increasing ef-

forts have been put into the joint optimization of different planning stages so as to

explicitly capture the interrelationships among them and thus achieve superior deci-

sions.

On the one hand, aiming at integrating all steps of the airline planning process

is not (yet) computationally feasible, nor necessarily desirable. Single steps can be

very hard combinatorial problems on their own (e.g. aircraft scheduling) and, more

importantly, different stages are characterized by different time-horizons and are sub-

ject to different levels of uncertainty and data availability. On the other hand, a

partial integration of two or three steps has demonstrated significant benefits and has

become standard practice—especially at the tactical and operational level.

The first steps that are carried out in the airline planning process are of strategic

nature and relate to fleet planning and network design. These decisions are typically

made months, or years, before operations and constitute the key inputs for subsequent

tactical phases.

Fleet planning

The fleet planning problem consists in defining the fleet size and composition with a

long-term outlook. Strategic fleet planning is a crucial task for an airline. Decisions

to acquire/lease new aircraft, or dismiss/retire existing aircraft have substantial and

long-term impacts on an airline’s cost structure, both in terms of investment costs

and operating costs. Furthermore, the fleet configuration inevitably affects the ability

to serve specific routes profitably and significantly hinder the flexibility of subsequent

phases. Fleet decisions are mostly driven by the airline business strategy and “vision”,

aircraft technical characteristics (e.g., aircraft range, speed, pay-load curve), and fi-

nancial considerations (e.g., purchasing vs leasing, ownership vs operating costs).

Further aircraft selection criteria are represented by (growing) environmental con-

cerns, marketing, and political considerations (Belobaba et al. 2015).

Overall, this leads to a very complex, multi-step, and uncertain decision-making

setting, which complicates the development of mathematical models in support of air-
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1.1. Airline Planning Process

line strategic fleet planning. For this reason, despite the importance of fleet planning

and its huge economic impacts, airlines have primarily relied on spreadsheet-based

“top-down” approaches when making fleet planning decisions, leveraging aggregate

forecasts and KPIs at a macro-regional or sub-network basis, and mostly focusing on

the assessment of the more quantifiable economic and financial impacts.

Much research has been done in the field of vehicle fleet planning. A review can

be found in Andersson et al. (2010). However, only a few recent works have dealt

specifically with the airline industry. These recent contributions in the optimization

literature are the works of Hsu et al. (2011), Carreira et al. (2017), Repko and Santos

(2017), and Sa et al. (2019), which have proposed more comprehensive optimization

models that consider route networks, stochastic demand per origin-destination pair,

and detailed cost estimates on a per-flight basis. Collectively, these works constitute

a relevant addition to the established toolkit of airline planning currently available

and lay the foundations for future research toward the development of data-driven

decision support systems.

Network design

The second pillar of airline strategic planning is airline network design, which involves

the definition of the network structure, or shape (e.g., hub-and-spoke, point-to-point,

or mixed-structures), including the number of hubs and their location, and the iden-

tification of the routes to be flown and the markets to be served.

The definition of network structure is intrinsically linked to the airline business

model and is a fundamental long-term decision. In the literature, the hub location

problem has been extensive research. Starting from the seminal paper from O’Kelly

(1987), who presented the first mathematical formulation of the problem applied to

passenger airlines, further works have focused on developing solution methods and

addressing many problem variants, making transport-oriented hub location a thriving

area for operations research (see e.g., Bryan and O’Kelly 1999, Marianov and Serra

2003, Adler and Hashai 2005, Campbell and O’Kelly 2012, Adler et al. 2018, Soylu and

Katip 2019). Despite the emphasis in the literature, in practice hub location is not
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Chapter 1. Introduction

a very recurrent issue. Given the huge costs and strategic considerations associated

with the establishment of hub operations, airlines are very unlikely to ever change

the location of their main hub(s). On the contrary, airlines regularly need to revise

their flight networks in response to demand fluctuations and to promptly exploit

business opportunities due to changes in the market environments. In deciding the

best routes to be flown, route evaluation is dominated by economic considerations,

which require an in-depth assessment of route profitability based on accurate inputs,

including demand and revenue forecasts for the period under consideration.

In practice, route profitability assessment has been mostly supported by “bottom-

up” approaches that evaluate each route’s profitability individually and incrementally.

Models of this kind consider very detailed inputs, including traffic forecast and cost

estimates that also leverage information from more tactical decisions, like schedules

and flight frequencies. These models thus allow airlines to incrementally evaluate

new routes, given a set of route candidates and estimated demand, subject to fleet

and capacity constraints. As a main drawback, these approaches fail to suitably

capture network interdependencies in hub-and-spoke networks (such as the contribu-

tion of connecting passengers) and exploit potential synergies with fleet development

strategies.

In an effort to capture these aspects, some contributions in the literature have

developed integrated optimization-based approaches for airline network plannning

(Teodorović et al. 1994, Jaillet et al. 1996, Hsu and Wen 2000, 2002, 2003, Wen

and Hsu 2006) that simultaneously design the network, determine route frequencies,

and accommodate fleet sizing considerations. However, despite route profitability

plays a central role in the airline business, the literature on integrated models is

very scant—especially compared to the attention received by airline hub location

problems. More importantly, current models suffer from a number of simplifications

and scalability issues that limit their applicability as effective decision support tools

in realistic airline networks. This aspect will be further elaborated in Chapter 2.

Given the decisions about the fleet and the routes to be flown, the next steps along

the airline planning process involve flight scheduling and fleet assignment. Flight
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1.1. Airline Planning Process

schedules and aircraft rotation plans are developed up to 1 year in advance and

finalized 2–6 months before departure.

Flight scheduling

Flight scheduling, also referred to as schedule design, involves the development a

profit-maximizing schedule, defining an origin, a destination, a departure time, and

an arrival time for each flight leg. Flight scheduling encompasses two main sub prob-

lems: frequency planning and timetable development. Frequency planning determines

the optimal service frequency for each route in the airline network subject to aircraft

availability, and timetable development determines the specific departure time and

arrival time for each flight leg, taking into account flow balance and practical consid-

erations to ensure feasible aircraft routings.

The decisions made at this stage determine airlines’ economic performance and

bind future decisions to a large extent. Flight frequencies and timetables are acknowl-

edged to be among the most important determinants of passenger demand—along

with prices and other factors affecting the quality of service. The determination of

flight schedules directly impacts the convenience for passengers, which, in turn, sig-

nificantly determines the demand and revenues that can be achieved. Hence, the

success of flight scheduling optimization is mostly grounded on the availability of

demand models that carefully appraise passenger demand for an airline’s schedule

and the resulting revenues. This calls for accurate disaggregate demand models that

account for multifaceted quality of service factors and suitably appraise the offerings

by competing airlines. To address this issue, literature has developed a number of

forecasting methodologies in support of schedule development practices (Jacobs et al.

2012). Departing from earlier models of airline market share based on an “S-curve” re-

lationship (Button and Drexler 2005, Vaze and Barnhart 2012, Belobaba et al. 2015,

Pita et al. 2013), airlines and practitioners have recently leveraged discrete choice

methods to estimate itinerary choice models, which replicate how individuals select

among air-travel alternatives within a city-pair market (see Section 1.2, for details).

Among the relevant itinerary features, previous studies have investigated the role of
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various level-of-service, connection quality, and carrier attributes, underscoring the

key role played by airfare, travel and connecting time, number of stops, frequency,

punctuality, and time-of-day preference (see e.g., Coldren et al. 2003, Coldren and

Koppelman 2005, Koppelman et al. 2008, Lurkin et al. 2018). Despite the wide litera-

ture on schedule development, the development of suitable demand models in support

of flight scheduling—and their integration with the optimization framework—is still

a hot topic attracting continuous research attention. Chapters 3 and 4 delve into this

aspect more deeply.

Fleet assignment

Once the flight schedule has been defined, the next step in the airline planning pro-

cess is fleet assignment. Given the number of aircraft of each type, as well as the

flight schedule, fleet assignment assigns an aircraft type to each scheduled flight to

optimally match passenger demand. This involves trading off passenger revenues and

aircraft assignment costs to maximize operating profits, subject to aircraft availability

and flow balance constraints across the entire network. This assignment, obviously,

becomes more crucial with the increase in the number of different aircraft types, as

commonly the case with modern aircraft fleets.

Fleet assignment has been widely researched in the literature and is one of the first

tasks that has been routinely supported by optimization tools since their early de-

velopments. The first mathematical model of fleet assignment is traditionally traced

back to Abara (1989a), who provided a connection-based network formulation able to

deal with realistically sized fleet assignment problems. Next, Hane et al. (1995) for-

mulated the problem as a multicommodity time-space network flow model, which has

been established as the method of choice in formulating the fleet assignment problem.

Building on these contributions, several later works have advanced the leg-based fleet

assignment models (FAM) in several ways. Enhanced models have achieved a greater

realism and wider acceptance among airlines by considering additional features of

real-world airline networks such as itinerary-based demand (IFAM) (Barnhart et al.

2002), flexible departure time (Levin 1971, Rexing et al. 2000), and re-fleeting mecha-
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nisms (Sherali et al. 2005). A comprehensive review of airline fleet assignment models

can be found in Sherali et al. (2006).

Despite the typical sequence that characterizes flight scheduling and fleet assign-

ment in the planning process, these two decisions are clearly strongly intertwined. On

the one hand, flight schedules represent the key input for the fleet assignment, but, on

the other hand, aircraft technical specifications, seat capacity, and availability directly

affect the optimality of flight schedules. Hence, solving these problems sequentially

and separately may result in suboptimal decisions, or even yield infeasibilities.

This consideration has motivated a number of contributions to move from stand-

alone flight scheduling and fleet assignment models toward the simultaneous integra-

tion of these two planning stages into the so-called integrated flight scheduling and

fleet assignment models (Lohatepanont and Barnhart 2004, Sherali et al. 2010, 2013,

Pita et al. 2013, Atasoy et al. 2014, Pita et al. 2014, Dong et al. 2016), with significant

benefits.

Aircraft routing & Crew Scheduling

After the fleet assignment is solved, aircraft routing and crew scheduling problems

are addressed.

The aircraft routing, or tail assignment problem, determines which flight legs

should be optimally allocated to individual aircraft. The sequence of flight legs as-

signed to each aircraft constitutes an aircraft routing, or rotation, and must satisfy

a number of operating constraints. Among others, flights in an aircraft routing must

be sequential in time and space, as well as ensure sufficient turnaround times and

adherence to maintenance restrictions. The objective function aims at minimizing

the cost of allocating aircraft to routings.

Closely related to aircraft routing is the crew scheduling problem. Crew scheduling

is about to determine the assignments of crews, namely pilots and cabin crew (flight

attendants), to each flight leg in the airline’s schedule. A crew schedule specifies the

sequence of flight legs and accounts for other activities that each crew member should

execute over a period of time, typically spanning one month. The crew scheduling
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problem is divided into two sub-problems. First, the crew Pairing problem allocates

crews to sequences of flights to minimize crew costs—e.g., pay & credit compensation,

overnight stays— while ensuring that all flights are covered by a crew. The outcome

is a feasible allocation of anonymous crews to flight strings (pairings) that start and

end at the crew’s base and satisfy regulatory requirements, such as the 8-in-24 rule

or the maximum time away from the base (TAFB), as well as other constraints given

by collective agreements between the airline and its employees. Second, the crew

rostering problem allocates the resulting pairings to individual crew members, taking

into account their qualifications, rest periods, and their specific requests.

The airline aircraft routing and crew planning problems have been subject to ex-

tensive research. Mathematically, these problems are typically modeled using a set

partitioning formulation. Although simple and linear in form, the number of feasible

partitions (crew pairing or aircraft rotations) for a real-world airline network is in

practice very high, leading to large-scale combinatorial optimization problems (in-

volving thousands of constraints and billions of variables) that are extremely difficult

to solve (Barnhart et al. 2003a). Accordingly, a great deal of research around these

topics has been dedicated, on the one hand, to embrace the intricacies and specifici-

ties of real-world decision making and, on the other hand, to seek advanced solution

methods, such as branch and price (Barnhart et al. 1998b), to effectively address large

instances characterizing real-world airline networks. Excellent reviews are provided

by Barnhart et al. (2003b) and Kasirzadeh et al. (2017) for the crew scheduling and

Gronkvist (2005) and Marla et al. (2018) the tail assignment problem, respectively.

Similar to flight scheduling and fleet assignment, also aircraft routing and crew

scheduling are intricately interwoven with themselves and prior phases. For instance,

solving sequentially the fleet assignment problem and aircraft routing problems can

lead to maintenance-infeasible rotations. The same issue can occur between aircraft

routing and crew scheduling. Furthermore, besides the risk of generating infeasible

solutions, solving aircraft rotation first and crew scheduling later, or vice versa, may

limit the set of feasible crew pairings (or, respectively, the number of feasible rota-

tions), thus reducing optimization flexibility and resulting in potentially suboptimal
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solutions.

To overcome these issues, researchers have proposed integrated models that simul-

taneously optimize fleet assignment and aircraft routing (e.g., Haouari et al. 2011,

Liang and Chaovalitwongse 2013), fleet assignment and crew scheduling (e.g., Barn-

hart et al. 1998c, Gao et al. 2009), aircraft routing and crew scheduling (e.g., Cordeau

et al. 2001, Barnhart and Cohn 2004, Mercier et al. 2005, Mercier and Soumis 2007)

or the three stages simultaneously (e.g., Sandhu and Klabjan 2007, Papadakos 2009).

Due to the hardness of the resulting problems, most of the contributions have re-

lied on heuristic approaches to solve these problems in real-world applications. More

recently, Cacchiani and Salazar-González (2017) have proposed exact algorithms to

solve the three stages simultaneously and demonstrated their applicability for a re-

gional carrier.

Pricing and revenue management

In parallel to schedule planning, airlines must also address pricing and revenue man-

agement decisions. In the air transport industry, pricing refers to the determination of

the different fare levels to make available to customers in each market, while revenue

management consists in optimizing the number of seats on each flight to be made

available at each fare level, limiting low-fare seats and protecting seats for later-

booking, higher-yield passengers (Barnhart et al. 2003a). Pricing decisions depend

on many considerations, including cost, demand, and service-related decisions that

directly depend on the strategic vision and positioning pursued by the airline com-

pany. A comprehensive research overview on this topic topics is provided by McGill

and Van Ryzin (1999) and Strauss et al. (2018).

Pricing information is requested at all stages of the airline planning process, al-

though at different levels of aggregation. Prices directly affect the demand estimates

and are necessary to pursue profit maximization objectives at the different strategic

and tactical decision-making stages. Hence, the yield management process is contin-

ued throughout the planning process, until the day of operation, to make sure that

the seat allocation matches future demand most profitably. Although some contribu-
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tions have attempted to integrate pricing and scheduling decisions (see e.g., Atasoy

et al. 2014, Barnhart et al. 2009, Dong et al. 2016, Yan et al. 2020)—which surely

represents an interesting feature for future research—this is not the current state of

practice and is out of the scope of this thesis.

1.2 Demand modeling in air transportation

Air travel demand is a key component of air transport planning. Literature on air

travel demand estimation is widespread and concentrates around to two main issues:

the identification of main air travel determinants and the development of model for-

mulations that best reflect passenger behaviors, consistently with the level of data

aggregation and information available at the different planning stages. Jorge-Calderón

(1997) provides a well-accepted classification of air travel determinants into two broad

categories: geo-economic characteristics of the territories in which travel occurs and

service-related variables, which depend on the air services and are thus partially under

control of airlines and airports. Evidence in the literature (e.g., Jorge-Calderón 1997,

Grosche et al. 2007, Valdes 2015, Abed et al. 2001, Jankiewicz and Huderek-Glapska

2016, Boonekamp et al. 2018, Adler et al. 2018) have highlighted the role of popula-

tion, income (GDP per capita), trade and tourism flows, as well as cultural, ethnic

and political links between countries, and aviation-dependent employment as key

geo-economic determinants. On the other hand, regarding service-related variables,

flight frequency, travel time, itinerary routing — proxied by a number of variables

capturing the disutility of connecting vs nonstop itineraries, such as connecting time

and number of stops—, schedule delay and departure time, price, and punctuality

(or stochastic delay) have been identified as key level-of-service attributes driving

passenger choices (e.g., Abrahams 1983, Coldren et al. 2003, Coldren and Koppelman

2005, Koppelman et al. 2008, Garrow et al. 2016, Lurkin et al. 2017, 2018).

An important distinction to consider when dealing with the estimation of air travel

demand is between demand generation and demand allocation models (Figure 1-

2). Demand generation generally refers to the estimation of total travel demand
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between two areas (e.g. 𝑜 and 𝑑 in Figure 1-2), while demand allocation concerns the

redistribution of this demand over the available travel alternatives (e.g. 𝑘1, 𝑘2, and

𝑘3 in in Figure 1-2). Demand generation models are also referred to as O-D market

demand models, while demand allocation models as itinerary market share models

(Belobaba et al. 2015).

Figure 1-2: Demand generation and demand allocation

Demand generation models usually rely on a gravity formulation (e.g. Jorge-

Calderón 1997, Grosche et al. 2007, Adler and Hashai 2005, Adler et al. 2018). Based

on an analogy with Newton’s law of gravity, these models represent demand as a

result of conflicting forces of attraction and impedance. In its simplest form, the

gravity model can be stated as follows:

𝐷𝑜𝑑 =
𝑀𝛽1

𝑜 𝑀
𝛽2
𝑑

𝑇 𝛽3𝑜𝑑
(1.1)

where 𝐷𝑜𝑑 indicates the total demand between 𝑜 and 𝑑 in a given period, 𝑀𝑜 and

𝑀𝑑 represent attraction factors (e.g. population, gdp) at the origin and destination,

and 𝑇𝑜𝑑 includes impedance factors that forbid, or restrain air travel between the two

areas (e.g., distance). More advanced formulations have extended the basic gravity

model by including service-related variables to appraise the role of service quality

in stimulating air travel. Previous studies have considered single factors separately,

such as average frequency, average price, or the presence of low-cost carriers. An

alternative approach consist in computing the generalized cost of travel to combine

in a unique variable the multifaceted aspects and components that characterize a

typical trip by an air passenger—e.g, travel time, schedule delay, waiting time (Abra-
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hams 1983, Lieshout et al. 2016). Demand generation models have been extensively

used by practitioners to estimate aggregate traffic flows between territories. However,

although disaggregate models can be estimated by segmenting the dataset, for exam-

ple, by passenger types (business vs leisure), lengths of haul, or airlines, the use of an

aggregate multiplicative specification is not very appropriate to capture competition

among air travel itineraries.

As anticipated in Section 1.1, airlines have intensively relied on demand allocation

models to support tactical decisions regarding service design and capacity allocation.

By taking total demand as given, these models estimate the proportion of total market

demand that is captured by the different alternatives available in the market. This is

achieved by identifying key factors driving the allocation of passengers, collecting this

information for all alternatives available, and applying a function that redistribute

passengers proportionally to the relevant factors identified. Each step n its own is

not trivial and poses substantial theoretical and empirical challenges.

The earliest models of demand allocation in the air travel industry relied on a

“S-curve” relating flight frequencies with itinerary market shares (e.g., Button and

Drexler 2005, Pita et al. 2013). Let 𝑘 be a given itinerary operating in market (𝑜, 𝑑),

demand 𝐷𝑜𝑑𝑘 on itinerary 𝑘 is estimated as follows:

𝐷𝑜𝑑𝑘 = 𝐷𝑜𝑑
𝑁𝜇
𝑘∑︀

𝑘′∈𝐾 𝑁
𝜇
𝑘′

(1.2)

where 𝐷𝑜𝑑 is the total market demand between 𝑜 and 𝑑, 𝑁𝑘 is the service frequency

of itinerary 𝑘, 𝐾 is the set of itineraries available in market (𝑜, 𝑑), and 𝜇 is an empirical

coefficient.

More recently, researchers have been relying on discrete choice modeling to ac-

count for more quality factors (rather than only frequency) and improve the degree

of behavioral realism in the allocation of passengers over available itineraries. The

theory of discrete choice modeling is rooted in the random utility theory, according

to which passengers select their preferred itinerary in a given market based on the

relative utilities provided by all available itineraries. Utility is intended as an abstract
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measure that quantifies the satisfaction received by an individual from consuming a

good or service. Since it is unrealistic assuming that the modeler can collect and

account for all factors affecting passengers’ choice behavior, the utility is modelled as

the sum of a deterministic, or observable, component (which can be estimated by the

modeler and is typically represented as a linear function of quantifiable relevant choice

attributes) and a random component, which is unobserved and unmeasurable by the

modeler. According to the assumption on the distribution of the error term, different

model specifications are obtained (further details can be found in Ben-Akiva and Ler-

man (1985) and Train (2003)). In particular, the assumption that the random terms

are independently and identically distributed following an extreme-value (or Gumbel)

distribution leads to the formulation of the basic multinomial logit (MNL) (McFadden

1974)—which has been widely used in modeling air passenger choices (Coldren et al.

2003, Garrow 2016, Cho et al. 2015). Using the same notation as in Equation 1.2,

the MNL formulation is as follows:

𝐷𝑜𝑑𝑘 = 𝐷𝑜𝑑
𝑒𝑉𝑘∑︀

𝑘′∈𝐾 𝑒
𝑉𝑘′

(1.3)

where 𝑉𝑘 is the deterministic utility component of itinerary 𝑘, usually represented

as a linear combination of relevant choice factors, i.e., 𝑉𝑘 = 𝛽𝑇𝑥𝑘 (where 𝑥𝑘 is the

vector of explanatory variables for itinerary 𝑘 and 𝛽 is the vector of coefficients to be

estimated).

The MNL has recently become the standard for capturing supply-demand inter-

actions in airline tactical planning (see, e.g. Talluri and van Ryzin 2004, Atasoy et al.

2014, Dong et al. 2016). The great popularity of MNL models stems from its flex-

ibility to simultaneously and consistently account for many factors (included in the

deterministic component). Another important feature is that MNL models produce

a (nonlinear) closed-form expression for choice probabilities, which can be explicitly

embedded into optimization models (although not trivially). However, MNL suffers

from two main limitations. First, the assumption that error terms are independently

distributed forbids MNL models to properly accommodate correlations among alter-
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natives. This issue is formally known as Independence from Irrelevant Alternatives

(IIA) and, when violated, may lead to unrrealistic substitution patterns (see Ben-

Akiva and Lerman (1985) and Mokhtarian (2016), for details). Second, MNL models

estimate unique and deterministic coefficients, thus overlooking any form of taste

heterogeneity across individuals. Recent contributions in the field of discrete choice

modeling have proposed advanced model formulations to overcome these important

limitations of MNL models. Nested logit models (NL) extend the basic MNL formula-

tion by grouping alternatives into nests, thus explicitly capturing some (known) forms

of correlation among alternatives (Carrasco and de Dios Ortúzar 2002, Coldren and

Koppelman 2005, Garrow et al. 2016). Latent class models (LC) explicitly address

the heterogeneity issues by estimating separate sets of coefficients for homogeneneous

groups of respondents (Greene and Hensher 2003, Wen and Lai 2010). Mixed logit

models (MMNL) adress both issues by the estimation random coefficients (Hensher

and Greene 2003, Train 2003, Birolini et al. 2019). Despite the recognized superiority

of these models to represent passenger behaviour, their application and systematic

incorporation into airline optimization-based decision support tools is very limited.

Demand generation and demand allocation have been traditionally solved sequen-

tially—assessing demand generation at one level of aggregation and then distributing

the estimated volumes to lower-level components (Hsiao 2008). By assuming that

the total demand is fixed for the allocation model, the sequential approach fails to

fully appraise the specificities of single itineraries and how changes in their attributes

can impact the overall air traffic volume. Acknowledging this limitation, Wei and

Hansen (2005) and Hsiao and Hansen (2011) have proposed similar approaches to

tackling the two stages simultaneously based on hierarchical demand models. The

proposed hierarchical structure involves (at least) two levels. At the bottom level,

an allocation model is used to allocate demand based on the utility values of the

different air travel alternatives. At the upper level, the overall utility to travel by air

in a given market (compared to the alternatives of not traveling at all or traveling by

other modes) is obtained as the sum of exogenous factors (e.g. geo-economic factors)

and the composite utility provided by the inner air travel alternatives. This mod-
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eling practice achieves the goal to make total market demand elastic to the quality

of air transport supply and, more importantly, to estimate the elastic response as a

function of the same service-related attributes considered in the demand allocation

model. Similar to the capturing of interrelationships among airline planning steps, the

integrated modeling of demand generation and allocation constitutes an important

aspect of supply-demand interactions that has been substantially underrepresented

in the literature.

1.3 Research outline and contributions

This thesis follows the “three paper” format. The first contribution (Chapter 2) deals

with airline network planning. The treatment of supply-demand interactions has been

largely overlooked at this stage of airline planning. We fill these gap by developing a

data-driven optimization model that simultaneously optimize key strategic decisions

regarding flight network and fleet composition and explicitly incorporate demand-

supply interactions related to flight frequencies and hub-and-spoke operations. The

second contribution (Chapter 3) deals with airline tactical planning. The key is-

sue here is to incorporate both demand allocation and generation dynamics into the

mathematical modes used to optimize flight scheduling and fleet assignment. To this

aim, we rely on a hierarchical demand model to jointly endogenize demand generation

and allocation, and develop a solution approach based on piecewise linearization to

address the resulting nonlinearities in the mathematical model. The third contribu-

tion (Chapter 4) addresses a fundamental issue of air travel demand estimation. This

relates to the capturing of correlations between overlapping air transport markets in

the estimation of air travel demand. To address this issue, we propose an integrated

origin-based demand model that assumes saturation at the origin level—instead of

assuming that demand occurs independently within city-pairs—and demonstrate how

this can help practitioners in better assessing the impact of changes in air transport

supply. We now introduce each chapter more in detail.

Chapter 2: Airline Network Planning: Data-driven Optimization with Demand-
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supply Interactions

Airlines routinely use analytics tools to support flight scheduling, fleet assignment,

revenue management, crew scheduling, and many other operational decisions. How-

ever, decision support systems are less prevalent to support strategic planning. This

paper fills that gap with an original data-driven optimization model, named Airline

Network Planning with Supply and Demand interactions (ANPSD). The ANPSD op-

timizes network planning (including route planning, flight frequencies and fleet com-

position), while capturing interdependencies between airline supply and passenger

demand. We first estimate a demand function as a function of flight frequencies and

network composition, using a two-stage least-squares procedure fitted to historical

data. We then formalize the ANPSD by integrating the empirical demand function

into an optimization model. The model is formulated as a non-convex mixed-integer

program. To solve it, we develop an exact cutting plane algorithm, named 2𝛼ECP,

which iteratively generates hyperplanes to develop an outer approximation of the

non-linear demand function. Computational results show that the 2𝛼ECP algorithm

outperforms state-of-the-art benchmarks and generates tight solution quality guar-

antees. Case study results based on the network of a major European carrier show

that the ANPSD provides much stronger solutions than baselines that ignore—fully

or partially—demand-supply interactions.

This paper was co-authored by Alexandre Jacquillat (Sloan School of Management

at the Massachusetts Institute of Technology,), António Pais Antunes (University of

Coimbra), and Mattia Cattaneo (University of Bergamo), and is currently under

submission in Transportation Research Part B: Methodological.

Chapter 3: Integrated flight scheduling and fleet assignment with improved supply-

demand interaction modeling

Flight scheduling and fleet assignment are important steps of an airline plan-

ning process. In light of the reciprocal relationship between air transport supply

and demand, a key element of these models is to devise effective methods to both

incorporating estimation of total market demand and allocating passengers over the
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available itineraries in a specific market. In this paper, we present a novel mixed-

integer nonlinear flight scheduling and fleet assignment optimization model wherein

air travel demand generation and allocation are simultaneously and consistently en-

dogenized. Using a nested logit formulation, we jointly model competition among air

travel itineraries and appraise the contribution of specific itinerary attributes to de-

mand generation, therefore yielding a more comprehensive and explicit representation

of supply-demand interactions. Computational testing based on realistic problem in-

stances reveals that the model can optimize mid-size hub-and-spoke networks within

reasonable time. Further analyses illustrate the benefits that can be derived from

the application of the proposed approach using real-world data for a major European

airline. Results demonstrate that the proposed approach can significantly enhance op-

erating profits by up to 6.9% and better reveal opportunities for demand stimulation

against a conventional approach using inelastic trip generation.

This paper was co-authored by Prof. António Pais Antunes (University of Coim-

bra), Mattia Cattaneo (University of Bergamo), Paolo Malighetti (University of Berg-

amo), and Stefano Paleari (University of Bergamo), and is currently under submission

(R&R) in Transportation Research Part B: Methodological.

Chapter 4: Integrated origin-based demand modeling for air transportation

This paper proposes an origin-based approach to the estimation of the demand for

air travel. Whereas the prevailing approach in the literature involves the independent

estimation of air flows between city-pair markets, the proposed framework explicitly

accounts for the determinants of outbound trips and substitution patterns between

destinations. We simultaneously integrate demand generation and allocation using

a multilevel aggregate nested logit formulation that covers the choices of whether

or not to travel by air, where to travel (destination), and how to travel (itinerary).

Two specifications are proposed to reflect systematic differences between lengths of

haul and the bootstrap is applied to jointly address endogeneity issues and data

missingness. The validity of the proposed approach is tested over the entire network

of outbound air trips from Italy in 2018. Results highlight systematic differences
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in sensitivity to travel determinants between medium- and long-haul travel itinerary

choices. Additionally, nesting coefficients demonstrate the validity of the origin-based

approach, as attribute changes in air transport supply are found to significantly affect

both passenger distribution among destinations and trip making.

This paper was co-authored by Mattia Cattaneo, Paolo Malighetti, and Chiara

Morlotti, all affiliated at the University of Bergamo. It was awarded the best PhD

student paper award at the 2019 ATRS World Conference in Amsterdam and was

recently published in Transportation Research Part E: Logistics and Transportation

Review.

Finally, in Chapter 5, we conclude the thesis and discuss directions for future

research.
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Chapter 2

Airline Network Planning:

Data-driven Optimization with

Demand-supply Interactions

2.1 Introduction

The airline industry has been facing rapid growth globally for the past decades. Yet,

airlines have had to react to a number of shocks, such as the crisis following the terror-

ist attacks of September 11, 2001 and the financial downturn in 2008-10. Even more

dramatically, the Covid-19 pandemic put the entire industry to a brutal halt in 2020,

resulting in downsized operations at hub airports, global cuts in service frequency,

and early aircraft retirements—raising critical questions for airlines to ramp opera-

tions back up as society progressively reopens. In addition to these global patterns,

individual airlines are often subject to demand fluctuations on specific routes. These

ever-changing patterns in air travel demand create massive challenges and opportu-

nities for airlines to revise their flight networks and fleets in response to long-term

outlooks on the origin-destination markets.

The airline planning process comprises many interrelated decisions, spanning

strategic decisions (e.g., route planning, fleet planning), tactical decisions (e.g., sched-
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ule planning, fleet assignment, revenue management) and operating decisions (e.g.,

aircraft routing, crew rostering, schedule recovery). Collectively, these decisions have

a tremendous impact on airline operating profitability. Airlines have long been at

the forefront of innovation in operations research and, today, tactical and operational

decisions are routinely supported by dedicated optimization software. For instance,

a new generation of fleet assignment algorithms in the late 1980s and early 1990s

resulted in a 1.4% improvement in operating margins at American Airlines (Abara

1989a) and annual savings of $100 million at Delta Airlines (Subramanian et al.

1994). A decade later, schedule planning software again resulted in significant profit

improvements, estimated at $500 million a year at American Airlines (Barnhart and

Cohn 2004). Airlines have achieved similar success in revenue management, schedule

recovery, crew planning, and other tactical and operational areas.

In contrast, decision support systems are less prevalent in airline strategic plan-

ning. The academic literature has mainly focused on hub location problems (see,

e.g., Jaillet et al. 1996, Marianov and Serra 2003, Soylu and Katip 2019). However,

in practice, the location of hub airports has remained all but fixed for the vast ma-

jority of carriers since their inception. For example, British Airways’ boardrooms are

rarely preoccupied by whether they should keep a hub in London or relocate it to Am-

sterdam. In comparison, airlines regularly need to re-appraise which routes to open

and close, which origin-destination markets to serve, and which aircraft to operate.

The optimization literature is more sparse in these areas. In practice, many strategic

decisions, despite being key drivers of airline operations, are still rarely supported by

analytical tools.

To fill this gap, we formulate and solve a data-driven optimization model in sup-

port of airline strategic planning, referred to as Airline Network Planning with Supply

and Demand interactions (ANPSD). The model considers the airline’s hub airports as

fixed. It optimizes network planning decisions to maximize operating profits, subject

to operating constraints. As such, the model adopts a timeframe spanning a medium-

to long-term horizon (months to years). The outputs of the model are the core inputs

of the subsequent tactical phase of the airline planning process.
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A key challenge lies in capturing the interdependencies between airlines’ networks

of flights, on the supply side, and passenger flows, on the demand side. On the

one hand, the optimal network of flights obviously depends on passenger demand.

Vice versa, the quality of an airline’s offerings on each origin-destination market

impacts passenger demand through demand generation (by stimulating new traffic)

and demand capture (by attracting passengers from competitors). In order to capture

these interdependencies, we first estimate passenger demand from historical passenger

flow data, as a function of demand-side variables and supply-side variables. We then

embed this demand model into an optimization model to support network planning

decisions, and develop an original mixed integer non-linear programming algorithm

to solve it.

Specifically, this paper makes the following contributions:

1. It develops a data-driven model to estimate passenger demand, as a function

of airline network characteristics. We use a two-stage least-squares procedure

to estimate a leg-based gravity model from historical passenger flow data as a

function of demographic, geographic and economic variables, as well as supply-

related variables. In particular, we let demand vary with flight frequencies, to

capture the positive effect of frequency on demand, and with network struc-

ture, to capture the connectivity effects originating from the development and

consolidation of hub-and-spoke networks. As a result, this empirical model ex-

plicitly captures the interdependencies between supply-side network planning

and demand-side passenger flows.

2. It provides a novel optimization model to support airline strategic planning that

captures demand-supply interactions. We develop an original formulation that

optimizes network planning, which we define as encompassing (i) route plan-

ning, i..e., on which origin-destination pairs to operate, (ii) frequency planning,

i.e., how many flights to operate on each route, and (iii) fleet composition, i.e.,

which aircraft types to operate and where. We capture demand-supply inter-

dependencies by integrating our empirical model of passenger demand into the

optimization. From a technical standpoint, however, these demand-supply in-
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teractions create constraints of the form 𝐷 = 𝛾𝑓𝑢𝑠𝑣 (where 𝐷 is the demand, 𝑓

is the flight frequency, 𝑠 is the number of spokes in the network). As a result,

the ANPSD is formulated as a non-linear, non-convex mixed-integer program.

3. It develops an exact cutting-plane algorithm based on outer approximation to

solve the resulting non-linear, non-convex mixed-integer optimization model, re-

ferred to as 2𝛼ECP. Leveraging the structure of the demand function, we define,

in any point, two semi-hyperplanes that yield a valid relaxation of of the true

(non-linear, non-convex) function. Accordingly, we design a gradient-based pro-

cedure that extends outer approximation schemes from convex to non-convex

problems, using two semi-hyperplanes as opposed to a single one. At each iter-

ation, the algorithm solves mixed-integer linear programming models to update

a feasible solution (lower bound to a maximization problem) and a solution

guarantee (upper bound), until convergence to a provable optimality gap. Ul-

timately, the algorithm provides a new solution approach to a broad class of

data-driven optimization problems that consist of (i) a mixed-integer optimiza-

tion problem and (ii) a non-convex function stemming, for instance, from log-log

regression specifications (log 𝑦 = 𝛾 + 𝛽𝑇 log𝑥).

4. It shows that the proposed algorithm generates high-quality solutions in short

computational times, outperforming state-of-the-art benchmarks. We consider

baseline solution methods based on discretization and linearization, using tradi-

tional convex combination techniques (Keha et al. 2004, Lee and Wilson 2001,

Padberg 2000) and the more recent logarithmic bivariate piecewise linearization

(Vielma et al. 2010, Vielma and Nemhauser 2011). We conduct a comprehen-

sive computational study in a controlled experimental setting, using randomly-

generated instances inspired from real-world data. This environment enable

us to investigate the scalability of the proposed approach and systematically

assess computational performance as a function of network structure—one or

two hubs—and network size—100, 250, and 500 routes. Results suggest that

our cutting-plane algorithm outperforms the benchmarks, returning better so-

lutions and more consistent performance. Ultimately, the proposed algorithm
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generates optimal, or near-optimal solutions, to realistic problem instances in

short computational times (2 hours), consistent with practical implementation

requirements.

5. It demonstrates the practical impact of the proposed modeling and algorithmic

approach using real-world data, providing insights into the development and con-

solidation of airline networks. We apply the model to the continental network

of Alitalia, consisting in 2018 of two hubs, 172 monthly routes and 3,028 weekly

flights on average. The demand function is fitted to historical data on all intra-

European flights in 2018. Results demonstrate that capturing the demand-

supply interactions in our data-driven optimization model results in substantial

benefits, as compared to baselines that ignore—fully or partially—these inter-

dependencies. From a managerial standpoint, the proposed model provides

strategic insights into how to balance competing network planning objectives,

such as consolidating operations at major hubs vs. leveraging a two-hub net-

work, and increasing flight frequency and service offers to the busiest airports

vs. covering a broader set of destinations. Ultimately, this approach can drive

the synergistic evolution of flight networks and aircraft fleets in airline networks.

The remainder of the paper is organized as follows. Section 2.2 reviews the related

literature on airline strategic planning. Section 2.3 describes the overall modeling

structure, which is further detailed in Section 2.4 (demand model) and Section 2.5

(optimization model). In Section 2.6, we present our cutting plane algorithm and

the linearization benchmarks. We report the computational results using synthetic

data in Section 2.7 and real-world case study data in Section 2.8. We summarize our

contributions and outline future research directions in Section 2.9.

2.2 Literature Review

Within airline strategic planning, the scientific literature has primarily concentrated

on hub location and fleet planning problems. The hub location problem involves

determining the location of hub airports to connect passenger flows from origin to
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destination nodes. O’Kelly (1987) provided the first mathematical formulation of

the problem. Follow-up research was devoted to improve the model formulation,

develop solution methods, and address different problem variants (see Bryan and

O’Kelly 1999, Campbell and O’Kelly 2012, for reviews). The hub location problem

is primarily focused on the overall network shape—for instance, hub-and-spoke vs.

point-to-point, how many hubs and where. As such, these models do not capture other

important decisions in network planning, such as route planning, flight frequency

and aircraft operations. The fleet planning problem consists of defining the fleet

size and composition with a long-term outlook. In practice airlines have primarily

relied on spreadsheet-based “top-down” approaches, leveraging aggregate forecasts

and key performance indicators at a macro-regional or sub-network basis, and focusing

almost exclusively on financial aspects (e.g., buying vs. leasing aircraft) (Belobaba

et al. 2015). Recently, optimization models have been proposed to support when to

dismiss/sell vs. acquire/lease aircraft, providing a more systematic and integrated

treatment of demand uncertainty, purchasing and leasing alternatives, and operating

costs (Listes and Dekker 2005, Hsu et al. 2011, Dožić and Kalić 2015, Carreira et al.

2017, Repko and Santos 2017, Sa et al. 2019). These models do not fully capture route

planning considerations, instead considering a restricted set of routes as inputs. Yet,

fleet planning and route planning decisions are strongly interdependent, in that route

profitability depends on available aircraft and, conversely, fleeting decisions depend

on how aircraft will be used in the network of flights and how they will contribute to

operating profitability. These interdependencies motivate new research to investigate

the route planning and fleet composition problems in an integrated manner.

Another extensive branch of the literature has focused on developing optimization

models in support of tactical planning. Notable examples include flight scheduling

(Lohatepanont and Barnhart 2004), fleet assignment (Abara 1989b, Hane et al. 1995,

Sherali et al. 2006), maintenance aircraft routing (Desaulniers et al. 1997, Barnhart

et al. 1998a), and crew scheduling (Barnhart et al. 2003b).

In contrast, this paper focuses on the network planning problem, encompassing

route selection, frequency planning and fleet composition decisions. As such, the net-
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work planning problem stands somewhat in-between the very long-term problems of

hub location and fleet planning and the more tactical problems of flight scheduling

and fleet assignment. Despite involving critical and recurrent strategic decisions for

the airlines, network planning has received limited attention in the literature. Teodor-

ović et al. (1994) first proposed an optimization model to design an airline’s network

and determine flight frequencies. To cope with the combinatorial complexity of the

problem, the authors proposed a two-step approach, which first determines a set of

(non-stop or connecting) route candidates, and then determines flight frequencies for

this set of routes. Jaillet et al. (1996) introduced three integer programming models

to design capacitated networks and routing policies without assuming a given net-

work structure a priori. Due to the difficulty to solve even small instances by exact

methods, the authors introduced a series of heuristic algorithms. These two seminal

papers have provided important advances; still, they rely on restrictive assumptions.

First, the models focus on cost minimization, thus providing a partial appraisal of

each route’s economic viability. Second, fleet considerations are limited to a handful

of generic aircraft types, thus failing to capture the complexities of modern fleets.

Third, these models start from predetermined origin-destination markets. As such,

the focus is more on identifying the adequate network structure (and supporting

frequencies) rather than selecting the most profitable markets.

A key ingredient of the network planning problem is the prediction of passenger

demand on each route. Extensive empirical research developed data-driven models

to estimate passenger demand, as an input into downstream applications (e.g., down-

stream optimization models). Notably, Adler and Hashai (2005) an Adler et al. (2018)

developed gravity models to estimate passenger flows in developing countries, in sup-

port of hub location and network development decisions; Wei and Hansen (2005)

proposed a hierarchical demand model to assess competition dynamics in non-stop

duopoly markets; and Wei and Hansen (2006) developed an aggregate leg-based de-

mand model to predict demand in a hub-and-spoke environment and evaluate network

expansion alternatives.

As mentioned in the introduction, a fundamental challenge in this literature in-
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volves the interdependencies between airline supply and passenger demand. These

demand-supply interactions have become a common feature of tactical airline plan-

ning models, which leverage disaggregate demand models to capture quality compe-

tition among air travel itineraries. For instance, Atasoy et al. (2014) and Dong et al.

(2016) propose an integrated model to optimize flight scheduling, fleet assignment

and pricing, where demand is allocated across itineraries using a multinomial logit

formulation. Cadarso et al. (2017) capture demand-supply interactions in optimiz-

ing frequency planning and flight scheduling, accounting for inter-airline competition

inter-modal competition with high speed rail. Wei et al. (2020) optimize fleet assign-

ment and flight timetabling, by capturing the endogeneity of passenger demand by

means of a generalized attraction model. In Chapter 3, we use a nested logit model

to capture demand generation and demand allocation dynamics in integrated flight

scheduling and fleet assignment models.

In contrast, supply-demand interactions have remained largely overlooked in strate-

gic planning. Existing approaches primarily rely on a fixed matrix of origin-destination

flows. The focus is thus primarily on demand stochasticity, captured by means of

fuzzy theory Teodorović et al. (1994), grey theory (Hsu and Wen 2000, Wen and Hsu

2006), a reliability evaluation procedure (Hsu and Wen 2002), and two-stage stochas-

tic programming (Yang 2010). One exception is the paper from Hsu and Wen (2003),

which iterates between frequency planning and passenger choice modeling. Still, the

model relies on pre-selected routes and fixed aircraft fleets.

Finally, tackling the network planning problem—especially with a comprehensive

empirical model that captures demand-supply interactions—raises additional ques-

tions on computational tractability. Due to the complexity of the problem, existing

models have been applied to small/medium-scale networks, with 7 nodes (Teodor-

ović et al. 1994), 10 nodes (Hsu and Wen 2002, 2003, Wen and Hsu 2006), 13 nodes

(Hsu and Wen 2000), and 39 nodes (Jaillet et al. 1996). While insightful, these set-

tings remain much simpler than those of real-world airline networks, thus limiting the

potential applicability of existing models as effective decision support tools.

This discussion highlights three main limitations of the literature on airline strate-
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gic planning: (i) no systematic consideration of network planning decisions (e.g.,

route selection, flight frequencies, fleet composition); (ii) no systematic consideration

of demand-supply interactions, and (iii) limited tractability in real-world large-scale

networks. This paper fills this gap by proposing an original modeling framework

for comprehensive network planning, by embedding a data-driven passenger demand

function that incorporates demand-supply interactions, and by developing an exact

algorithm to solve the network planning model in large-scale networks of flights.

2.3 Modeling Framework

We propose in this paper an integrated modeling framework for comprehensive airline

network design, referred to as Airline Network Planning with Supply and Demand

interactions (ANPSD). This modeling framework comprises two main elements, as

depicted in Figure 2-1.

Figure 2-1: Overview of modeling framework.

First, the demand model takes as inputs historical data on flight schedules, air-

fares, passenger flows, and socio-economic variables. It estimates monthly passenger

demand on each flight leg, including both non-stop and connecting passengers, using
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a two-stage least squares approach with instrumental variables to capture the endo-

geneity between demand and flight frequency. Its output is a parametric demand

function that captures the dependencies of passenger demand with service frequency

and network structure (proxied by the number of spokes).

Second, the optimization model takes as inputs the demand model, the set of

candidate airports and flight legs in the network, and the set of fleet types. The

model optimizes network planning decisions, i.e., route planning, flight frequency,

and fleet composition decisions. Due to the form of the data-driven demand function,

the ANPSD is formulated as a mixed integer non-linear, non-convex programming

model.

In its current form, the ANPSD considers a deterministic demand model to focus

on capturing supply-demand interactions in strategic planning optimization. While

the proposed modeling framework can be readily used to account for uncertainties

through sensitivity analyses, a systematic integration of stochasticity—by quantify-

ing prediction error in the demand estimation model and developing a stochastic

optimization formulation accordingly—represents an interesting avenue for future re-

search.

2.4 Demand Model

Let us first note, at the outset, that the proposed integrated approach to airline net-

work planning requires a new empirical framework for passenger demand estimation,

as opposed to merely using existing models from the literature. As highlighted in

Section 2.2, previous work on airline network planning did not focus on empirical

demand estimation with demand-supply interactions. Recent research has embedded

disaggregate demand models into tactical optimization models for flight scheduling

and fleet assignment. These models typically estimate demand at the itinerary level,

often relying on discrete-choice methodologies. The key factor driver passenger de-

mand is itinerary attractiveness, computed as a function of detailed schedule-related

attributes, such as total travel time, routing, departure times, and average price.
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These attributes are partly or entirely determined by tactical optimization models.

In contrast, our network planning problem focuses on route selection and flight fre-

quencies at the more aggregate level, over a longer time horizon. Therefore, itineraries’

features cannot be exploited to allocate passengers among competing itineraries, thus

requiring a new data-driven approach to estimate passenger flows.

We develop this empirical demand estimation procedure in this section. We first

introduce the variables in Section 2.4.1 and the data sources in Section 2.4.2; then,

we report and discuss the model estimation (Section 2.4.3) and empirical results

(Section 2.4.4).

2.4.1 Model Variables

In defining the variables of the demand model, we index flight legs by 𝑖, origin and

destination airports by 𝑜 and 𝑑, time periods (months) by 𝑡, and airlines by 𝑘. Our

dependent variable, denoted by 𝐷𝑘
𝑖𝑡, is the demand on flight leg 𝑖 for airline 𝑘. De-

mand is defined as the sum of nonstop passengers, incoming passengers (connecting at

the origin airport) and outgoing passengers (connecting at the destination airport).

We leverage a gravity formulation, one of the most successful empirical models to

forecast passenger demand (see, e.g., Jorge-Calderón 1997, Adler and Hashai 2005,

Grosche et al. 2007, Boonekamp et al. 2018), which includes three sets of predic-

tors: impedance, generative, and service-related variables, including leg-based supply

variables and network variables.

Impedance variables characterize the “distance” between the origin and the des-

tination. We define: (i) the great circle distance (thousands of kilometers) between

the airports (𝑑𝑖𝑠𝑡𝑖), (ii) the squared distance (𝑑𝑖𝑠𝑡2𝑖 ), and (iii) the economic distance

defined by Adler and Hashai (2005) as the absolute difference between the per-capita

income of the catchment areas (∆𝑔𝑑𝑝𝑖).

Generative variables characterize the passenger pool at each airport based on

geo-economic determinants. The market potential is estimated by the product of

the population size of the catchment areas at the origin and destination (𝑝𝑜𝑝𝑜𝑝𝑜𝑝𝑑)

(Grosche et al. 2007). We add the product of the yearly volume of local passengers at
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the two airports in the previous year (𝑦𝑙𝑜𝑐𝑎𝑙𝑜𝑦𝑙𝑜𝑐𝑎𝑙𝑑) to account for propensity to fly.

We define a variable to capture the degree of seasonality on flight leg 𝑖 at time 𝑡. It is

expressed as the sum of standardized seasonality at the origin and destination airports

(𝑙𝑜𝑐𝑎𝑙𝑠𝑡𝑑𝑜𝑡 + 𝑙𝑜𝑐𝑎𝑙𝑠𝑡𝑑𝑑𝑡 ), defined such that each component is positive (resp. negative) if

the passenger flow in month 𝑡 is higher (resp. lower) than the mean yearly value at

the airport.1.

Service-related variables characterize the supply decisions from the airline and

the resulting quality of service. We consider the number of flights (𝑓𝑘𝑖𝑡) by airline

𝑘 on leg 𝑖 in month 𝑡. Similarly, we define a price variable (𝑝𝑟𝑖𝑐𝑒𝑘𝑖𝑡) as the average

of the non-stop fare and the revenue contribution from connecting traffic, assuming

proration by distance. A dummy variable is introduced to indicate whether airline

𝑘 is a low-cost carrier (LCC) (𝑙𝑐𝑐𝑘=1) or a full-service carrier (FSC) (𝑙𝑐𝑐𝑘=0). This

variable reflects different business model between LCCs and FSCs, and accounts for

the demand stimulation effect of LCCs on point-to-point traffic (Bhadra 2003). All

these variables capture the non-stop local market between airports 𝑜 and 𝑑. We add

the number of spokes (𝑠𝑘𝑖𝑡), defined as the number of airports 𝑎 such that airline 𝑘

operates a direct flight from 𝑎 to the origin 𝑜 or from the destination 𝑑 to 𝑎. This

variable captures the “size” of the network, thus accounting for interdependencies

across hub-and-spoke operations (Wei and Hansen 2006). Since LCCs rely much less

on hub-and-spoke networks than FSC, network interdependencies are expected to be

smaller for LCCs. Accordingly, we interact the number of spokes with the low-cost

dummy.

2.4.2 Data Sources

The data for the network variables included in the demand model is taken from

the Official Airline Guide (OAG), and concerns Europe in the year 2018. Two data

modules are used: (i) the OAG Schedule Analyser, which provides data on flight

1We use values from the previous year to avoid simultaneity issues in the estimation procedure,
and to ensure that we only leverage predictors that are available to decision-makers. This is a minor
concern because seasonal patterns do not vary significantly from year to year.
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schedules, and (ii) the OAG Traffic Analyser, which provides data on air passenger

flows and average fares. To remove thin flight observations, we restrict the dataset

to combinations with at least one flight per week and a load factor of at least 30%.

The sample comprises 191,160 observations.

The geo-economic variables were computed using a Geographic Information Sys-

tem (GIS). We retrieve airport coordinates from the Open Flights Airport Database.

For each airport, we define a circular catchment area with a radius of 100 km, and cal-

culate the population and Gross Domestic Product (GDP) based on high-resolution

(30 arcsec) global spatial datasets (see Tatem 2017, Kummu et al. 2018, for details).

Table 2.1 summarizes these data.

Table 2.1: Data summary.

Variables Average Std dev Data Range (5th, 50th, 95th)

Population (’000) 5,126 4,779 [268, 3,666, 16,412]
Local passengers (yearly) (’000) 12,901 12,000 [377, 8,651, 38,008]
GDP per capita ($) 38,308 13,354 [18,886, 37,387, 60,431]
Distance (km) 1,406 830 [319, 1,278, 3,027]
Price ($) 129 68 [45, 118, 248]
Frequency (montly) 36 49 [4, 18, 124]
Number of spokes 61 48 [10, 48, 152]

2.4.3 Model Estimation

The gravity model we use to describe passenger demand implies a non-linear mul-

tiplicative specification of the form 𝑦 =
∏︀𝑛

𝑗=1 𝑥
𝛽𝑗
𝑗 , which is estimated by taking the

logs of both sides, i.e., log 𝑦 =
∑︀𝑛

𝑗=1 𝛽𝑗 log 𝑥𝑗, and fitting linear regression models.

However, the estimation of this model involves three complexities.

First, we face potential endogeneity between passenger demand and service frequency—

higher passenger demand leads airlines to increase service frequency, but service fre-

quency also induces higher demand. In such instances, ordinary least squares (OLS)

regression can lead to biased and inconsistent estimates. Accordingly, we adopt a

two-stage least squares (2SLS) approach with three exogenous instruments: (i) the

average aircraft size used by airline 𝑘 on leg 𝑖 (𝑎𝑐𝑠𝑖𝑧𝑒𝑘𝑖𝑡) (Boonekamp et al. 2018);

(ii) the average frequency operated by airline 𝑘 on flight legs of similar distance
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(±300 km) as leg 𝑖 (𝑎𝑣𝑔𝑓𝑟𝑒𝑞𝑘𝑖𝑡)(Cattaneo et al. 2018); and (iii) the dominance index

(𝑑𝑜𝑚𝑖𝑛𝑑𝑒𝑥𝑘𝑖 ), defined as the product of the seat capacity shares of airline 𝑘 at the

origin and destination airports. These three instruments are indeed correlated with

flight frequency but have no direct impact on demand.

Second, the fare variable has 31% of missing data. We therefore estimate a supply-

exogeneous fare model for imputation, considering three main determinants: (i) op-

erating costs, proxied by the product of distance (thousands of km) and fuel cost

(US$ per gallon) (𝑑𝑖𝑠𝑡𝑓𝑢𝑒𝑙𝑖); (ii) the airline business model, captured by the low-

cost dummy (𝑙𝑐𝑐𝑘); and (iii) local competition, proxied by the number of carriers

competing with airline 𝑘 in the local market (𝑁𝑘
𝑖𝑡) (Brueckner et al. 1992).2

Third, the inclusion of fare variables in the demand estimation is also challenged by

the endogeneity between price and passenger demand—higher demand leads airlines

to increase prices, but higher airfares also induce lower demand. In our setting,

however, we avoid this issue by leveraging the operating cost variable (𝑑𝑖𝑠𝑡𝑓𝑢𝑒𝑙𝑖).

Indeed, this variable provides a valid instrumental variable, as it is correlated with

prices but not with demand (Hsiao and Hansen 2011, Birolini et al. 2020).

Equation (2.1) reports the estimated fare model (𝑅2 = 0.27).

𝑝𝑘𝑖 = 131.34− 6, 59𝑑𝑖𝑠𝑡𝑓𝑢𝑒𝑙𝑖 + 3.11𝑑𝑖𝑠𝑡𝑓𝑢𝑒𝑙2𝑖 − 11.05𝑙𝑐𝑐𝑘 − 8.91𝑁𝑘
𝑖𝑡. (2.1)

The model’s relatively poor fit primarily follows from the noise and high hetero-

geneity in airfare data—a common issues in air transportation research (e.g., Barnhart

and Cohn 2004, Lieshout et al. 2016). Yet, the estimated coefficients (all statistically

significant at the 99% confidence level) produce reasonable fare estimates and high-

2In theory, this imputation procedure could be challenged by the endogeneity between price
and competition. However, this endogeneity is not too severe in our case, since the fare variable
encompasses several markets, therefore reducing the simultaneity with leg-based demand. More
broadly, the endogeneity between price and competition has been long debated in the literature.
The proper correction would require the development of a complete structural model (Berry and
Reiss 2007), which goes beyond the scope of this paper. An alternative approach is to correct
for price-competition endogeneity with instrumental variables. However, the identification of valid
instruments is problematic, since they mostly entail route characteristics that might serve themselves
as explanatory variables. Ultimately, our approach is consistent with the literature (Brueckner et al.
2013).
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light meaningful substitution patterns. In particular, the price elasticity estimate of

-0.65 is in line with previous findings (Brons et al. 2002). Finally, it is important to

note that, in practice, airlines have access to much better airfare estimates to refine

these inputs, based on proprietary data and market research.

2.4.4 Estimation Results

Three different model versions are estimated, referred to as M0, M1 and M2, which

capture increasing extents of demand-supply interactions. Specifically, M0 omits the

variables characterizing frequency and number of spokes; M1 adds frequency but

excludes the number of spokes; and M2 is the full model. Table 2.2 reports each

model’s estimates. Table 2.3 shows the models’ predictive performance obtained by

Monte Carlo cross-validation using 100 subsamples.

Note that the coefficients in models M1 and M2 are statistically significant with

the expected signs. The first-stage regression coefficients also show the validity of the

instrumental variables (𝑑𝑜𝑚𝑖𝑛𝑑𝑒𝑥𝑘𝑖 , 𝑎𝑐𝑠𝑖𝑧𝑒𝑘𝑖𝑡, and 𝑎𝑣𝑔𝑓𝑟𝑒𝑞𝑘𝑖𝑡), which have the expected

signs and are significant.

Specifically, we find that population and local traffic at the market endpoints are

positively correlated with passenger demand. Distance exhibits an inverse U-shape

relationship, reflecting the effects of intermodal competition on shorter routes and

stronger links between less distant areas. The economic distance between origin and

destination has a small, but negative effect. Seasonality has a positive impact on

demand. We obtain price elasticity estimates of -0.35 (M1) and -0.65 (M2), in line

with previous values found in the literature (e.g., Brons et al. 2002). Last, the business

model dummy indicates a larger point-to-point traffic for LCCs than FSCs, ceteris

paribus.

We highlight next two benefits of capturing network variables in M2, as opposed

to focusing on service frequency only in M1. First, M2 yields a more reasonable

frequency elasticity parameter (0.9018, as opposed to 1.0595 with M1). Indeed, fre-

quency elasticity is expected to be less than one, indicative of diminishing returns.

Second, M2 allows to isolate the effect of incoming and outgoing connections (elastic-

49



2.4. Demand Model

ity of 0.1514) and disentangle the effects of hub-and-spoke operations. Most impor-

tantly, these results underscore the importance of capturing supply-level variables.

Indeed, cross-validation results show that M0 exhibits poor predictive performance,

with 𝑅2
𝑀0 = 0.37 and an out-of-sample MAPE of 84%. Adding service frequency

greatly increases the model’s predictive power—𝑅2
𝑀1 = 0.896. Moreover, accounting

for the number of spokes further improves predictive performance—M2 increases 𝑅2

to 0.906 and reduces out-of-sample MAE by 1.3%—along with consistent prediction

power among training and testing samples. Collectively, these results highlight the

need of embedding demand-supply interactions into the optimization model.

Table 2.2: Demand parameters (robust standard errors reported in parentheses).

M0(OLS) M1(2SLS) M2(2SLS) M1(1st Stage) M2(1st Stage)

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 -0.9980*** 3.7606*** 5.2397*** -2.3343*** -0.7523***

(0.1712) (0.069) (0.0666) (0.146) (0.151)
log 𝑝𝑜𝑝𝑜𝑝𝑜𝑝𝑑 0.0932*** 0.0226*** 0.0212*** 0.0440*** 0.0392***

(0.0015) (0.0007) (0.0006) (0.0012) (0.0012)
log 𝑦𝑙𝑜𝑐𝑎𝑙𝑜𝑦𝑙𝑜𝑐𝑎𝑙𝑑 0.2458*** 0.0333*** 0.0382*** 0.1780*** 0.1583***

(0.0013) (0.0008) (0.0008) (0.0012) (0.0014)
𝑑𝑖𝑠𝑡𝑖 -0.8578*** 0.5765*** 0.3464*** -0.5571*** -0.6075***

(0.0084) (0.0053) (0.0053) (0.0083) (0.0086)
𝑑𝑖𝑠𝑡2𝑖 0.1440*** -0.0819*** -0.0226*** 0.1482*** 0.1693***

(0.003) (0.0015) (0.0014) (0.0026) (0.0027)
logΔ𝑔𝑑𝑝𝑖 -0.0038** 0.0013 -0.0024*** -0.0103*** -0.0106***

(0.0019) (0.0008) (0.0007) (0.0015) (0.0015)
𝑙𝑜𝑐𝑎𝑙𝑠𝑡𝑑𝑜𝑡 + 𝑙𝑜𝑐𝑎𝑙𝑠𝑡𝑑𝑑𝑡 0.0233*** 0.0116*** 0.0078*** 0.0276*** 0.0216***

(0.0011) (0.0004) (0.0004) (0.0009) (0.0009)
log 𝑝𝑘𝑖𝑡 -0.1747*** -0.3557*** -0.6492*** -0.6083*** -0.7971***

(0.0317) (0.0124) (0.012) (0.0276) (0.0278)
𝑙𝑐𝑐𝑘 -0.0178*** 0.4094*** 0.3791*** -0.2263*** -0.4477***

(0.0047) (0.0023) (0.0076) (0.0042) (0.0163)
log 𝑓𝑘𝑖𝑡 1.0595*** 0.9018***

(0.0026) (0.003)
log 𝑠𝑘𝑖𝑡 0.1514*** 0.0787***

(0.0018) (0.0034)
log 𝑠𝑘𝑖𝑡𝑙𝑐𝑐

𝑘 -0.0179*** 0.0517***

(0.0018) (0.0042)

𝑑𝑜𝑚𝑖𝑛𝑑𝑒𝑥𝑘𝑖 1.4341*** 1.2006***

(0.0163) (0.0173)
𝑎𝑐𝑠𝑖𝑧𝑒𝑘𝑖𝑡 -0.0005*** -0.0008***

(0.0001) (0.0001)
𝑎𝑣𝑔𝑓𝑟𝑒𝑞𝑘𝑖𝑡 0.6155*** 0.5807***

(0.0034) (0.0039)
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Table 2.3: Monte Carlo sampling validation.

Model 𝑅2

Mean Absolute Error (MAE) Mean Absolute Percentage Error (MAPE)

in sample out of sample in sample out of sample

mean std mean std mean std mean std

M0 0.372 2491.1 9.6 2489.4 10.6 84.01% 0.26% 84.07% 0.44%
M1 0.896 968.9 3.6 969.8 3.5 27.52% 0.07% 27.54% 0.09%
M2 0.906 958.6 4.5 957.5 6.5 25.61% 0.07% 25.63% 0.09%

2.5 Optimization Model

We now formulate the Airline Network Planning with Supply and Demand inter-

actions (ANPSD) mathematically. The ANPSD optimizes network design and fleet

planning decisions for a single hub-and-spoke airline, with a profit-maximization ob-

jective.The ANPSD starts from a complete potential network, characterized by a set

of airport nodes (𝒩 ), including hub airports (ℋ) and spoke airports, and a set of can-

didate flight legs (ℐ). On the fleet side, the ANPSD considers a set of fleet types (𝒜)

along with aircraft specifications. Specifically, we consider cruising speed and average

landing and take-off times to compute flight block times (𝑡𝑖𝑎). This parameter is, in

turn, used to determine the feasibility of allocating aircraft type 𝑎 to leg 𝑖, reflected

in the parameters 𝛿𝑖𝑎. We also define the seating capacity of each aircraft 𝑎 (𝑘𝑎).

Following Teodorović et al. (1994), we define an additional parameter of maximum

utilization (𝑙𝑎) to account for maintenance and turnaround times.

To estimate operating profitability, the ANPSD needs inputs on airfares and op-

erating costs. Costs are divided into two components. Variable and semi-variable

costs include fuel, maintenance, flight personnel (pilots and cabin crew), airport and

air traffic control charges. These costs can be parametrized at the flight-aircraft level,

and are thus denoted by 𝑐𝑣𝑎𝑟𝑖𝑎 . Fixed costs capture aircraft ownership costs (depre-

ciation and/or leasing), and are denoted by 𝑐𝑓𝑖𝑥𝑎 . These fixed costs are critical to

appraise fleet changes accurately and support fleeting decisions. We omit general and

administrative overheads, which are not directly involved in strategic planning.

The key outputs of the model are well-defined network planning solutions, cap-

tured by the number of aircraft of each type (𝑤𝑎) and the number of fights on each
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Inputs: sets and parameters

𝒩 set of airports, indexed by 𝑛
ℋ ⊂ 𝒩 subset of hub airports
𝒜 set of aircraft types, indexed by 𝑎
ℐ set of flight legs, indexed by 𝑖 or 𝑗
ℐ𝑜𝑢𝑡𝑛 ⊂ ℐ subset of outbound flight legs from airport 𝑛 ∈ 𝒩
ℐ 𝑖𝑛𝑛 ⊂ ℐ subset of inbound flight legs to airport 𝑛 ∈ 𝒩
𝑘𝑎 seat capacity of aircraft type 𝑎
𝑙𝑎 maximum utilization of aircraft type 𝑎
𝑝𝑖 average fare on flight leg 𝑖
𝑡𝑖𝑎 block time of leg 𝑖 operated with aircraft type 𝑎
𝛿𝑖𝑎 1 if flight leg 𝑖 can be operated by fleet type 𝑎; 0 otherwise
𝛿𝑜𝑢𝑡𝑖𝑛 1 if flight leg 𝑖 departs from airport 𝑛, i.e., 𝑖 ∈ ℐ𝑜𝑢𝑡𝑛 ; 0 otherwise
𝛿𝑖𝑛𝑖𝑛 1 if flight leg 𝑖 arrives at airport 𝑛, i.e., 𝑖 ∈ ℐ 𝑖𝑛𝑛 ; 0 otherwise
𝑐𝑣𝑎𝑟𝑖𝑎 trip cost for leg 𝑖 operated by aircraft type 𝑎
𝑐𝑓𝑖𝑥𝑎 aircraft-related fixed cost of aircraft type 𝑎 (e.g., ownership)
𝛾𝑖 leg-specific demand component (estimated from the demand model)
𝑢, 𝑣 elasticity parameters (estimated from the demand model)
𝑀 large parameter

Decision variables

𝑓𝑖𝑎 ∈ Z+ frequency on flight leg 𝑖 operated by aircraft 𝑎
𝑓𝑖 ∈ Z+ total frequency on flight leg 𝑖
𝑥𝑖 ∈ {0, 1} 1 if flight leg 𝑖 is operated; 0 otherwise
𝑞𝑖 ∈ R+ number of passengers accommodated on flight leg 𝑖
𝑠𝑖 ∈ Z+ number of spokes of flight legs 𝑖
𝑤𝑎 ∈ Z+ number of aircraft types 𝑎

leg by each aircraft type (𝑓𝑖𝑎). Through indirect variables, the model computes the

supply-level inputs of the demand function (𝑥𝑖, 𝑓𝑖 and 𝑠𝑖), and replicates passenger

flows (𝑞𝑖).
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Mathematical formulation

max
∑︁
𝑖∈𝐼

𝑝𝑖𝑞𝑖 −
∑︁
𝑖∈𝐼

∑︁
𝑎∈𝐴

𝑐𝑣𝑎𝑟𝑖𝑎 𝑓𝑖𝑎 −
∑︁
𝑎∈𝐴

𝑐𝑓𝑖𝑥𝑎 𝑤𝑎 (2.2)

s.t.
∑︁
𝑖∈𝐼𝑜𝑢𝑡𝑛

𝑓𝑖𝑎 =
∑︁
𝑖∈𝐼𝑖𝑛𝑛

𝑓𝑖𝑎 ∀𝑛 ∈ 𝒩 ,∀𝑎 ∈ 𝒜 (2.3)

∑︁
𝑖∈𝐼

𝑓𝑖𝑎𝑡𝑖𝑎 ≤ 𝑙𝑎𝑤𝑎 ∀𝑎 ∈ 𝒜 (2.4)

𝑓𝑖𝑎 ≤ 𝛿𝑖𝑎𝑓𝑖𝑎 ∀𝑎 ∈ 𝒜,∀𝑖 ∈ ℐ (2.5)

𝑞𝑖 ≤
∑︁
𝑎∈𝐴

𝑓𝑖𝑎𝑘𝑎 ∀𝑖 ∈ ℐ (2.6)

𝑓𝑖 ≤
∑︁
𝑎∈𝐴

𝑓𝑖𝑎 ∀𝑖 ∈ ℐ (2.7)

𝑓𝑖 − 𝑥𝑖 ≥ 0 ∀𝑖 ∈ ℐ (2.8)

𝑓𝑖 −𝑀𝑥𝑖 ≤ 0 ∀𝑖 ∈ ℐ (2.9)

𝑠𝑖 =
∑︁
𝑛∈ℋ

∑︁
𝑗∈𝐼𝑖𝑛𝑛

𝛿𝑜𝑢𝑡𝑖𝑛 𝑥𝑗 +
∑︁
𝑛∈ℋ

∑︁
𝑗∈𝐼𝑜𝑢𝑡𝑛

𝛿𝑖𝑛𝑖𝑛𝑥𝑗 ∀𝑖 ∈ ℐ (2.10)

𝑞𝑖 ≤ 𝛾𝑖𝑓
𝑢
𝑖 𝑠

𝑣
𝑖 ∀𝑖 ∈ ℐ (2.11)

𝑓𝑖𝑎 ∈ Z+ ∀𝑎 ∈ 𝒜,∀𝑖 ∈ ℐ (2.12)

𝑓𝑖 ∈ Z+, 𝑥𝑖 ∈ {0, 1}, 𝑞𝑖 ∈ R+, 𝑠𝑖 ∈ Z+ ∀𝑖 ∈ ℐ (2.13)

𝑤𝑎 ∈ Z+ ∀𝑎 ∈ 𝒜 (2.14)

Equation (2.2) maximizes operating profits. The revenue component is given by

the product of each leg’s average price (𝑝𝑖) and the number of accommodated passen-

gers (𝑞𝑖). Costs are expressed as the sum of fixed and variable costs. Equation (2.3)

enforces flow balance at each node by setting the number of inbound flights equal

to the number of outbound flights, for each aircraft type and at each airport. In a

multi-hub setting, Equation (2.3) allows for circular routing, hence directional im-

balance. If symmetry is required, we can replace Equation (2.3) by the following

symmetry-inducing constraints: 𝑓𝑖𝑎 = 𝑓−𝑖,𝑎 ∀𝑖 ∈ 𝐼, ∀𝑎 ∈ 𝐴, where “−𝑖” denotes the

leg opposite to leg 𝑖 (i.e., the leg from 𝑑 to 𝑜). Equation (2.4) ensures that total

aircraft utilization does not exceed the maximum possible utilization. Equation (2.5)
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ensures the feasibility of each aircraft-leg combination. Equation (2.6) bounds the

number of accommodated passengers on every flight leg by the allocated seat capac-

ity. Next, Equation (2.7) computes the frequency on every flight leg. Equations (2.8)

and (2.9) define the binary variables 𝑥𝑖 from the frequency variables 𝑓𝑖, and Equa-

tion (2.10) computes the number of spokes served by the network. Using these vari-

ables, Equation (2.11) imposes the demand constraint, ensuring that the number of

accommodated passengers does not exceed the estimated demand—obtained from the

demand function outlined in Section 2.4. Note that the frequency on each flight leg

and the number of spokes in the network are endogenous variables of the optimiza-

tion model but all other predictors from Section 2.4 are exogenous. Therefore, the

full demand specification (M2) can be succinctly represented as 𝐷𝑖(𝑓𝑖, 𝑠𝑖) = 𝛾𝑖𝑓
𝑢
𝑖 𝑠

𝑣
𝑖 ,

where 𝑢 and 𝑣 are the estimated elasticity parameters, and 𝛾𝑖 > 0 is a leg-specific pa-

rameter that includes the intercept and all remaining explanatory variables. Finally,

Equations (2.12)–(2.14) define the domain of the variables.

ANPSD model structure

The ANPSD formulation results in a mixed integer non-linear, non-convex program-

ming model. Integer variables are needed to represent the discrete decisions associated

with flight frequencies, fleet composition, and route planning. The non-linearities

and non-convexities arise from the demand function in Equation (2.11), needed to

capture the demand-supply interactions. This demand function is equivalent to a

Cobb-Douglas model based on leg frequency (𝑓𝑖) and the number of spokes (𝑠𝑖). Its

Hessian is given by:

𝐻(𝐷𝑖) =

⎛⎝𝛾𝑖𝑢(𝑢− 1)𝑓𝑢−2
𝑖 𝑠𝑣𝑖 𝛾𝑖𝑢𝑣𝑓

𝑢−1
𝑖 𝑠𝑣−1

𝑖

𝛾𝑖𝑢𝑣𝑓
𝑢−1
𝑖 𝑠𝑣−1

𝑖 𝛾𝑖𝑣(𝑣 − 1)𝑓𝑢𝑖 𝑠
𝑣−2
𝑖

⎞⎠ (2.15)
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For𝐷𝑖 to be concave—hence, for the ASPD to be a convex optimization problem—

we need:

𝜕2𝐷𝑖

𝜕𝑓 2
𝑖

≤ 0 ⇐⇒ 𝑢(𝑢− 1) ≤ 0

𝜕2𝐷𝑖

𝜕𝑠2𝑖
≤ 0 ⇐⇒ 𝑣(𝑣 − 1) ≤ 0

det𝐻(𝐷𝑖) ≥ 0 ⇐⇒ 𝑢𝑣(1− 𝑢− 𝑣) ≥ 0,

which yields (i) 0 ≤ 𝑢 ≤ 1, (ii) 0 ≤ 𝑣 ≤ 1, (iii) and 𝑢 + 𝑣 ≤ 1. From

Table 2.2, however, we obtained empirically 𝑢 = 0.9018 and 𝑣 = 0.1514, which satisfy

conditions (i) and (ii) but not condition (iii). As a result, the two-dimensional demand

function is not concave. From a computational standpoint, this structure makes

ANPSD highly challenging to solve. Integer variables prevent the use of gradient-

based algorithms for non-linear optimization (e.g., stochastic gradient descent). Non-

linearities prevent the direct use of integer linear programming methods. And non-

convexities prevent the use of simple gradient-based outer approximation schemes.

Accordingly, in the next section, we present an original algorithm to solve the ANPSD.

2.6 Solution Algorithms

Mixed integer non-linear programming (MINLP) represents a broad class of optimiza-

tion problems that combine the challenges of discrete and non-linear optimization.

Typical solution methods can be classified into two broad categories. Branch-and-

bound methods, first, follow a tree-based search strategy, by solving non-linear con-

tinuous subproblems iteratively and enforcing integrality via branching (e.g., Gupta

and Ravindran 1985, Quesada and Grossmann 1992). Outer approximation meth-

ods, second, alternate between a relaxed master problem (which provides solution

guarantees) and a subproblem that generates a feasible solution. Some of these outer

approximation methods iterate between a mixed-integer master problem and non-

linear continuous subproblems (e.g., Geoffrion 1972, Duran and Grossmann 1986).
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Others only solve mixed-integer linear problems (of increasing size) by iteratively ap-

proximating the feasible region with first-order Taylor expansions (e.g., Westerlund

and Pettersson 1995). Our algorithm falls into this latter category. These meth-

ods exhibit strong convergence properties for convex problems, collectively providing

a comprehensive toolkit for convex MINLPs. In contrast, nonconvex MINLPs are

much more challenging, and often solved by heuristics (e.g., Exler et al. 2008, Schlüter

et al. 2009). General-purpose methods usually resort to discretization to approximate

non-linear functions by means of piecewise linear functions. These methods induce

a trade-off between computational times and solution quality, governed by coarse vs.

granular discretization. Recent discretization formulations have been proposed to

model non-linear and disjunctive constraints with a logarithmic number of variables

and constraints, with substantial computational benefits (Vielma et al. 2010, Vielma

and Nemhauser 2011). We use these methods as a benchmark in this paper.

In another stream of research, methods for convex MINLPs have been extended

to broader classes of problems. For instance, Westerlund et al. (1998) and Still and

Westerlund (2008) extend the extended cutting-plane (ECP) method from Westerlund

and Pettersson (1995) to pseudo-convex and quasi-convex MINLPs. More recently,

Eronen et al. (2015) extend it to non-smooth functions. These extensions correct the

gradient-based linear approximation of a convex function by a factor 𝛼 to account

for non-convexities—this method is thus referred to as 𝛼ECP. Results suggest that

the extended cutting plane algorithm provides an effective approach for solving large-

scale MINLP problems featuring a moderate degree of non-linearity. Our algorithm

extends this body of work by generating two cutting planes at each iteration. We

therefore refer to our algorithm as 2𝛼ECP.

2.6.1 2𝛼ECP: An Exact Subgradient-based Cutting Plane Al-

gorithm

The proposed 2𝛼ECP algorithm develops iteratively a linear outer approximation of

the non-linear, non-convex function (Equation (2.11)). If the demand function was
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concave, the plane tangent to any feasible solution would provide a valid cut—akin

to the ECP method. However, since the demand function is not concave, the tangent

plane eliminates part of the feasible region. Instead, we demonstrate how two semi-

hyperplanes can provide a valid outer approximation of the demand function. Accord-

ingly, at each iteration, we solve a master problem by replacing Equation (2.11) by a

set of outer-approximating semi-hyperplanes, and generate two new semi-hyperplanes.

The algorithm updates a lower bound (feasible solution) and an upper bound (solu-

tion guarantee) at each iteration, ultimately converging to the optimal solution of

ANPSD.

We now proceed to the description of this algorithm. All proofs are reported in

Appendix 2.9.

Outer approximation with two semi-hyperplanes

For a given flight leg 𝑖 ∈ 𝐼, we define the domain of 𝐷𝑖 as Ω𝑖 = {(𝑓𝑖, 𝑠𝑖) ∈ Z2 : 0 ≤

𝑓𝑖 ≤ 𝑓, 0 ≤ 𝑠𝑖 ≤ 𝑠} where 𝑓 and 𝑠 are appropriate upper bounds. Let ∇𝐷𝑖(𝑓𝑖, 𝑠𝑖) =

(𝑢𝛾𝑖𝑓
𝑢−1
𝑖 𝑠𝑣𝑖 , 𝑣𝛾𝑖𝑓

𝑢
𝑖 𝑠

𝑣−1
𝑖 ) be the gradient of𝐷𝑖, defined over Ω𝑖∖{(𝑓𝑖, 𝑠𝑖) : 𝑓𝑖 = 0∨𝑠𝑖 = 0}

(recall that 𝑢 < 1 and 𝑣 < 1). Consider (𝑓𝜓𝑖 , 𝑠
𝜓
𝑖 ) ∈ Ω𝑖 such that 𝑓𝜓𝑖 ̸= 0 and 𝑠𝜓𝑖 ̸= 0

and let us define 𝒲𝜓
𝑖 (𝑓𝑖, 𝑠𝑖) as follows:

𝒲𝜓
𝑖 (𝑓𝑖, 𝑠𝑖) = ∇𝐷𝑖(𝑓

𝜓
𝑖 , 𝑠

𝜓
𝑖 )𝑇

⎛⎝𝑓𝑖 − 𝑓𝜓𝑖
𝑠𝑖 − 𝑠𝜓𝑖

⎞⎠ = 𝛾𝑖

(︁
𝑓𝜓𝑖

)︁𝑢 (︁
𝑠𝜓𝑖

)︁𝑣(︃ 𝑢

𝑓𝜓𝑖
𝑓𝑖 +

𝑣

𝑠𝜓𝑖
𝑠𝑖 − 𝑢− 𝑣

)︃
(2.16)

If the function𝐷𝑖 was concave, we would obtain an outer approximation as: 𝐷𝑖(𝑓
𝜓
𝑖 , 𝑠

𝜓
𝑖 )+

𝒲𝜓
𝑖 (𝑓𝑖, 𝑠𝑖) ≥ 𝐷𝑖(𝑓𝑖, 𝑠𝑖), ∀(𝑓𝑖, 𝑠𝑖) ∈ Ω𝑖. Instead, we search for a valid outer-approximation

by partitioning the space Ω𝑖 into Ω𝑖1, · · · ,Ω𝑖𝐾 and searching for constants 𝛼𝜓𝑖1, · · · , 𝛼
𝜓
𝑖𝐾

such that:

𝐷𝑖(𝑓
𝜓
𝑖 , 𝑠

𝜓
𝑖 ) + 𝛼𝜓𝑖𝑘𝒲

𝜓
𝑖 (𝑓𝑖, 𝑠𝑖) ≥ 𝐷𝑖(𝑓𝑖, 𝑠𝑖) ∀(𝑓𝑖, 𝑠𝑖) ∈ Ω𝑖𝑘 (2.17)
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Proposition 1 provides such a valid approximation as the union of two semi-hyperplanes

with an intersecting edge, shown in Figure 2-2. Specifically, we partition the feasible

region based on whether 𝒲𝜓
𝑖 (𝑓𝑖, 𝑠𝑖) ≥ 0 or 𝒲𝜓

𝑖 (𝑓𝑖, 𝑠𝑖) < 0, and define the following

semi-hyperplanes:

ℒ𝜓𝑖+ =
{︁
𝐷𝑖(𝑓

𝜓
𝑖 , 𝑠

𝜓
𝑖 ) + 𝛼𝜓𝑖+𝒲

𝜓
𝑖 (𝑓𝑖, 𝑠𝑖), (𝑓𝑖, 𝑠𝑖) ∈ Ω𝜓

𝑖+

}︁
ℒ𝜓𝑖− =

{︁
𝐷𝑖(𝑓

𝜓
𝑖 , 𝑠

𝜓
𝑖 ) + 𝛼𝜓𝑖−𝒲

𝜓
𝑖 (𝑓𝑖, 𝑠𝑖), (𝑓𝑖, 𝑠𝑖) ∈ Ω𝜓

𝑖−

}︁
The proof proceeds by construction, but needs to show that the function 𝐷𝑖(𝑓𝑖, 𝑠𝑖)

achieves its maximum in (𝑓𝜓𝑖 , 𝑠
𝜓
𝑖 ) when𝒲𝜓

𝑖 (𝑓𝑖, 𝑠𝑖) = 0, so the cuts remain valid where

𝒲𝜓
𝑖 (𝑓𝑖, 𝑠𝑖) = 0.

(a) (𝑓𝜓𝑖 , 𝑠
𝜓
𝑖 ) = (300, 50) (b) (𝑓𝜓𝑖 , 𝑠

𝜓
𝑖 ) = (300, 10)

Figure 2-2: Illustration of valid cuts ℒ𝜓𝑖+ (green) and ℒ𝜓𝑖− (red).

Proposition 1 Let us partition Ω𝑖 into Ω𝜓
𝑖+ ∪ Ω𝜓

𝑖− as follows:

Ω𝜓
𝑖+ =

{︃
(𝑓𝑖, 𝑠𝑖) ∈ Ω𝑖 :

𝑢

𝑓𝜓𝑖
𝑓𝑖 +

𝑣

𝑠𝜓𝑖
𝑠𝑖 − 𝑢− 𝑣 ≥ 0

}︃
(2.18)

Ω𝜓
𝑖− =

{︃
(𝑓𝑖, 𝑠𝑖) ∈ Ω𝑖 :

𝑢

𝑓𝜓𝑖
𝑓𝑖 +

𝑣

𝑠𝜓𝑖
𝑠𝑖 − 𝑢− 𝑣 < 0

}︃
(2.19)
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There exist 𝛼𝜓𝑖+ and 𝛼𝜓𝑖− such that:

𝐷𝑖(𝑓
𝜓
𝑖 , 𝑠

𝜓
𝑖 ) + 𝛼𝜓𝑖+𝒲

𝜓
𝑖 (𝑓𝑖, 𝑠𝑖) ≥ 𝐷𝑖(𝑓𝑖, 𝑠𝑖) ∀(𝑓𝑖, 𝑠𝑖) ∈ Ω𝜓

𝑖+ (2.20)

𝐷𝑖(𝑓
𝜓
𝑖 , 𝑠

𝜓
𝑖 ) + 𝛼𝜓𝑖−𝒲

𝜓
𝑖 (𝑓𝑖, 𝑠𝑖) ≥ 𝐷𝑖(𝑓𝑖, 𝑠𝑖) ∀(𝑓𝑖, 𝑠𝑖) ∈ Ω𝜓

𝑖− (2.21)

We implement this outer approximation by means of the following linear relationships.

In these equations, (𝑓𝜓𝑖 , 𝑠
𝜓
𝑖 ) denote linearization points; 𝑀𝜓

𝑖1, 𝑀
𝜓
𝑖2, 𝑀

𝜓
𝑖3 and 𝑀𝜓

𝑖4 denote

“big-M” parameters; and 𝛿𝑖 denotes a binary variable equal to 1 if (𝑓𝑖, 𝑠𝑖) ∈ Ω𝜓
𝑖+, and

0 otherwise.

𝒲𝜓
𝑖 (𝑓𝑖, 𝑠𝑖) +𝑀𝜓

𝑖1(1− 𝛿𝑖) ≥ 0 (2.22)

𝒲𝜓
𝑖 (𝑓𝑖, 𝑠𝑖)−𝑀𝜓

𝑖2𝛿𝑖 ≤ 0 (2.23)

𝑞𝑖 ≤ 𝐷𝑖(𝑓
𝜓
𝑖 , 𝑠

𝜓
𝑖 ) + 𝛼𝜓𝑖+𝒲

𝜓
𝑖 (𝑓𝑖, 𝑠𝑖) +𝑀𝜓

𝑖3(1− 𝛿𝑖) (2.24)

𝑞𝑖 ≤ 𝐷𝑖(𝑓
𝜓
𝑖 , 𝑠

𝜓
𝑖 ) + 𝛼𝜓𝑖−𝒲

𝜓
𝑖 (𝑓𝑖, 𝑠𝑖) +𝑀𝜓

𝑖4𝛿𝑖 (2.25)

Equations (2.22) and (2.23) enforce the logical relationship between the sign of 𝒲𝜓
𝑖

and 𝛿𝑖. Note that these equations are linear because 𝒲𝜓
𝑖 is linear in 𝑓𝑖 and 𝑠𝑖 (Equa-

tion (2.16)). Equation (2.24) and (2.25) then select the valid (upper) plane accord-

ingly. When 𝒲𝜓
𝑖 (𝑓𝑖, 𝑠𝑖) ≥ 0 (and so 𝛿𝑖 = 1) then Equation (2.24) is activated and

Equation (2.25) is inactive—that is, the semi-hyperplane ℒ𝜓𝑖+ is activated. Vice versa,

if 𝒲𝜓
𝑖 (𝑓𝑖, 𝑠𝑖) < 0 (and so 𝛿𝑖 = 0), the semi-hyperplane ℒ𝜓𝑖− is activated. To enforce

these logical relationships with the tightest possible big-M parameters, we define:

𝑀𝜓
𝑖1 = − inf

{︁
𝒲𝜓

𝑖 (𝑓𝑖, 𝑠𝑖) : (𝑓𝑖, 𝑠𝑖) ∈ Ω𝜓
𝑖−

}︁
(2.26)

𝑀𝜓
𝑖2 = sup

{︁
𝒲𝜓

𝑖 (𝑓𝑖, 𝑠𝑖) : (𝑓𝑖, 𝑠𝑖) ∈ Ω𝜓
𝑖+

}︁
(2.27)

𝑀𝜓
𝑖3 = sup

{︁
(𝛼𝜓𝑖− − 𝛼

𝜓
𝑖+)𝒲𝜓

𝑖 (𝑓𝑖, 𝑠𝑖) : (𝑓𝑖, 𝑠𝑖) ∈ Ω𝜓
𝑖−

}︁
(2.28)

𝑀𝜓
𝑖4 = sup

{︁
(𝛼𝜓𝑖+ − 𝛼

𝜓
𝑖−)𝒲𝜓

𝑖 (𝑓𝑖, 𝑠𝑖) : (𝑓𝑖, 𝑠𝑖) ∈ Ω𝜓
𝑖+

}︁
(2.29)

Equations (2.22)-(2.25) require computing the gradient of 𝐷𝑖 in (𝑓𝜓𝑖 , 𝑠
𝜓
𝑖 ) and thus

can only be used to build a valid outer approximation in differentiable linearization
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points. However, the demand function 𝐷𝑖(𝑓𝑠, 𝑠𝑖) is not differentiable when 𝑓𝑖 = 0 or

𝑠𝑖 = 0. Proposition 2 defines valid outer approximations in those points where the

demand function is not differentiable.

Proposition 2 The following equations define valid outer approximations of 𝐷𝑖(𝑓𝑖, 𝑠𝑖)

over {(𝑓𝑖, 𝑠𝑖) : 𝑓𝑖 = 0 ∨ 𝑠𝑖 = 0}:

for all (𝑓𝜓𝑖 , 𝑠
𝜓
𝑖 ) such that 𝑓𝜓𝑖 ≥ 0 and 𝑠𝜓𝑖 = 0: 𝑞𝑖 ≤ 𝐷𝑖(𝑓, 1)𝑠𝑖 (2.30)

for all (𝑓𝜓𝑖 , 𝑠
𝜓
𝑖 ) such that 𝑓𝜓𝑖 = 0 and 𝑠𝜓𝑖 > 0: 𝑞𝑖 ≤ 𝐷𝑖(1, 𝑠)𝑓𝑖 (2.31)

We define a master problem by replacing Equation (2.11) in the ANPSD by Equa-

tions (2.22)-(2.25), Equation (2.30) or Equation (2.31), for all flight legs and all

linearization points {(𝑓𝜓𝑖 , 𝑠
𝜓
𝑖 ) ∈ Ω𝑖, 𝑖 ∈ ℐ, 𝜓 ∈ Ψ}. This master problem is a mixed-

integer linear problem. By construction, the master problem provides a relaxation of

the ANPSD, hence an upper bound of the optimal solution.

Proposition 3 Let (𝑓 *
𝑖𝑎, 𝑓

*
𝑖 , 𝑥

*
𝑖 , 𝑞

*
𝑖 , 𝑠

*
𝑖 , 𝑤

*
𝑎) denote the optimal solution of the master

problem. The objective function, given as follows, provides an upper bound to ANPSD.

𝑈𝐵 =
∑︁
𝑖∈𝐼

𝑝𝑖𝑞
*
𝑖 −

∑︁
𝑖∈𝐼

∑︁
𝑎∈𝐴

𝑐𝑣𝑎𝑟𝑖𝑎 𝑓
*
𝑖𝑎 −

∑︁
𝑎∈𝐴

𝑐𝑓𝑖𝑥𝑎 𝑤*
𝑎. (2.32)

Next, from any solution of the master problem, we can retrieve a feasible solution

of ANPSD by evaluating the true demand function and applying the aircraft capacity.

In turn, we obtain a valid lower bound of the optimal solution. This is stated formally

in Proposition 4.

Proposition 4 Let (𝑓 *
𝑖𝑎, 𝑓

*
𝑖 , 𝑥

*
𝑖 , 𝑞

*
𝑖 , 𝑠

*
𝑖 , 𝑤

*
𝑎) denote the optimal solution of the master

problem. Then the following expression provides a valid lower bound to ANPSD:

𝐿𝐵 =
∑︁
𝑖∈𝐼

𝑝𝑖 ·min

(︃
𝛾𝑖(𝑓

*
𝑖 )𝑢(𝑠*𝑖 )

𝑣,
∑︁
𝑎∈𝐴

𝑓 *
𝑖𝑎𝑘𝑎

)︃
−
∑︁
𝑖∈𝐼

∑︁
𝑎∈𝐴

𝑐𝑣𝑎𝑟𝑖𝑎 𝑓
*
𝑖𝑎 −

∑︁
𝑎∈𝐴

𝑐𝑓𝑖𝑥𝑎 𝑤*
𝑎. (2.33)
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Iterative algorithm

We now summarize the full iterative procedure in Algorithm 1. At each iteration, we

solve the master problem and add a new set of cutting planes. This algorithm itera-

tively updates upper and lower bounds, thus providing a valid optimality gap at each

iteration. The algorithm terminates when the optimality gap reaches a predefined

tolerance 𝜀.

Algorithm 1 2𝛼ECP algorithm.
Initialization:

– Iteration count 𝜓 = 0, upper bound 𝑈𝐵(0) = +∞, lower bound 𝐿𝐵(0) = 0
– Linearization points (𝑓𝜓𝑖 , 𝑠

𝜓
𝑖 ) ∈ Ω𝑖,∀𝑖 ∈ ℐ

– Master problem (Equations (2.2)–(2.10) and (2.12)-(2.14))
while 𝑈𝐵𝜓−𝐿𝐵𝜓

𝐿𝐵𝜓
> 𝜀 do

for 𝑖 ∈ ℐ do
if (𝑓𝜓𝑖 , 𝑠

𝜓
𝑖 ) ∈ Ω𝑖 ∖ {(𝑓𝑖, 𝑠𝑖) : 𝑓𝑖 = 0 ∨ 𝑠𝑖 = 0} then

– compute 𝒲𝜓
𝑖 (Equation (2.16))

– compute 𝛼𝜓𝑖+ and 𝛼𝜓𝑖− (Equations (2.37)–(2.38))
– compute 𝑀𝜓

𝑖1, 𝑀
𝜓
𝑖2, 𝑀

𝜓
𝑖3 and 𝑀𝜓

𝑖4 (Equations (2.26)–(2.29))
– add cuts (2.22)-(2.25) to the master problem

else
– add cut (2.30) or (2.31) to the master problem

end if
end for
– 𝜓 ← 𝜓 + 1
– Solve the master problem
– Store solution (𝑓𝜓𝑖𝑎, 𝑓

𝜓
𝑖 , 𝑥

𝜓
𝑖 , 𝑞

𝜓
𝑖 , 𝑠

𝜓
𝑖 , 𝑤

𝜓
𝑎 )

– Update the upper bound 𝑈𝐵𝜓 and the lower bound 𝐿𝐵𝜓 (Prop. 3-4)
end while
– Return

(︁
𝑓𝜓𝑖𝑎, 𝑓

𝜓
𝑖 , 𝑥

𝜓
𝑖 ,min

(︁
𝛾𝑖(𝑓

𝜓
𝑖 )𝑢(𝑠𝜓𝑖 )𝑣,

∑︀
𝑎∈𝐴 𝑓

𝜓
𝑖𝑎𝑘𝑎

)︁
, 𝑠𝜓𝑖 , 𝑤

𝜓
𝑎

)︁

We now show that this algorithm is exact, that is, it converges in a finite number

of iterations to the ANPSD optimum. Note that the upper bound is non-increasing—

since we expand the set of cuts at each iteration—but the lower bound is not neces-

sarily non-decreasing.

Proposition 5 Algorithm 1 terminates in a finite number of iterations, and returns

the optimal solution of ANPSD.
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2.6.2 Discretization Benchmarks

We evaluate the computational performances of 2𝛼ECP against two benchmarks.

Both benchmarks rely on discretizing the space Ω𝑖 and approximating the non-linear

function 𝐷𝑖(𝑓𝑖, 𝑠𝑖) by a piecewise linear function. Under such discretization, the

ANPSD can be reformulated as a mixed-integer linear program (MILP), which can

be solved directly with commercial solvers.

Convex combination (CC)

This formulation directly approximates the non-linear function with a set of piecewise

linear hyperplanes. Specifically, it considers a set of vertices in the three-dimensional

space, of the form {(𝑓 (𝑘)
𝑖 , 𝑠

(𝑘)
𝑖 , 𝐷𝑖(𝑓

(𝑘)
𝑖 , 𝑠

(𝑘)
𝑖 )) : 𝑘 = 1, · · · , 𝐾}. Each point (𝑓𝑖, 𝑠𝑖) ∈

Ω𝑖 lies in a triangle formed by three of these discretized points, say (𝑓
(𝑘1)
𝑖 , 𝑠

(𝑘1)
𝑖 ),

(𝑓
(𝑘2)
𝑖 , 𝑠

(𝑘2)
𝑖 ), and (𝑓

(𝑘3)
𝑖 , 𝑠

(𝑘3)
𝑖 ). The CC method then expresses (𝑓𝑖, 𝑠𝑖) as the convex

combination of these three points, say (𝑓𝑖, 𝑠𝑖) = 𝜆1 · (𝑓 (𝑘1)
𝑖 , 𝑠

(𝑘1)
𝑖 ) + 𝜆2 · (𝑓 (𝑘2)

𝑖 , 𝑠
(𝑘2)
𝑖 ) +

𝜆3 · (𝑓 (𝑘3)
𝑖 , 𝑠

(𝑘3)
𝑖 ) (more generally, it expresses a 𝑝-dimensional vector as the convex

combination of 𝑝 + 1 adjacent points). The CC method proceeds by approximating

the demand function as the corresponding convex combination of the demand values,

i.e., 𝐷𝑖(𝑓𝑖, 𝑠𝑖) = 𝜆1 ·𝐷𝑖(𝑓
(𝑘1)
𝑖 , 𝑠

(𝑘1)
𝑖 )+𝜆2 ·𝐷𝑖(𝑓

(𝑘2)
𝑖 , 𝑠

(𝑘2)
𝑖 )+𝜆3 ·𝐷𝑖(𝑓

(𝑘3)
𝑖 , 𝑠

(𝑘3)
𝑖 ). We present

the formulation for ANPSD in Appendix 2.9, and refer to Keha et al. (2004), Lee and

Wilson (2001) and Padberg (2000) for more details.

Logarithmic branching convex combination (LOG)

This method follows the same general principle—approximating a non-linear func-

tion as the convex combination of discretized points. The key difference is that it

reformulates the convex combination with a number of binary variables and con-

straints that grows logarithmically with the number of triangles (or polytopes), as

opposed to linearly. Instead of adding one binary variable for each triangle, the LOG

method encodes each triangle with a binary vector (of length the log-number of tri-

angles) and implements a branching scheme based on SOS2 variables. As such, the
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LOG method can yield significant computational benefits, especially for granular dis-

cretization schemes. We present the formulation for ANPSD in Appendix 2.9, and

refer to Vielma et al. (2010) and Vielma and Nemhauser (2011) for details.

2.7 Computational Results

The performance and the scalability of our exact algorithm were tested through com-

prehensive computational experiments, using synthetic datasets inspired by real-world

instances of varying size and complexity. We first present the experimental setup and

the computational environment, and then compare the performance of our 2𝛼ECP

against the discretization benchmarks.

2.7.1 Experimental Setup

The size of our instances is controlled by three parameters:

– number of hubs |ℋ|. We randomly select the hubs among the 10 largest hub

airports in Europe.

– number of potential routes |ℐ|. We randomly select the potential routes by

sampling spoke airports out of all commercial airports in Europe and connecting

them to the hubs.

– maximum number of routes that can be operated, denoted by 𝜏 , enforced via the

following additional constraint:
∑︀

𝑖∈ℐ 𝑥𝑖 ≤ 𝜏 . This constraint reflects airlines’

network development practices, but also renders the problem more challeng-

ing computationally—thus enabling us to investigate the performance of the

proposed solution algorithm.

Overall, we consider 9 scenarios, with 1 or 2 hubs, 100, 250 or 500 potential routes,

and up to 100 or 250 actual routes. We run 5 instances for each scenario, leading to

45 instances in total. The problem sizes are consistent with the continental networks

of major European airlines, such as KLM (one hub, 190 routes) and Air France (two

hubs, 206 routes).
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We consider five narrow-body aircraft types, representative of European continen-

tal fleets: A321 (200 seats), A320 (180 seats), A319 (144 seats), E190 (100 seats),

and E175 (88 seats). In the absence of airline-specific data, we approximate operating

costs following Swan and Adler (2006): 𝑐𝑣𝑎𝑟𝑖𝑎 = (𝑑𝑖𝑠𝑡𝑖+722)·(𝑘𝑎+104)·$0.019−𝑐𝑓𝑖𝑥𝑎 /𝑇𝑎,

where 𝑐𝑓𝑖𝑥𝑎 is the monthly leasing cost (0.9% of the market price) and 𝑇𝑎 is the average

number of trips per month (average utilization and block distance per aircraft type).

We set the maximum daily utilization to 10 hours, in line with current practice. We

define total fleet size according to real-world networks (70 aircraft for a 100-route

network and 150 aircraft for a 250-route network). Finally, we compute price and

demand parameters from the empirical relationships estimated in Section 2.4, and we

estimate flight times as the ratio of the great circle distance between the origin and

destination airports to aircraft cruising speed plus 30 minutes of climb and descent.

2.7.2 Computational Setup

The CC method is applied with 16 intervals on both dimensions, and the LOG method

with 8, 16, or 32 intervals on both dimensions (yielding triangulations of 128, 512,

and 2048 simplices, respectively). This setup enables us to investigate the trade-off

between solution quality and computation time in the LOG discretization method.

We implement our 2𝛼ECP algorithm by solving the master problem at each iter-

ation with a maximum runtime of 30 minutes and an optimality gap of 1% (except

for the last iteration). We use a warm start with the solution from the previous

iteration. Note that computing the 𝛼 parameters (Equations (2.37)–(2.38)) and

“big-M" parameters (Equations (2.26)–(2.29)) requires solving separate nonconvex

MINLPs. However, given the finite solution space, their values can be computed

efficiently by complete enumeration. We initialize the algorithm with an mid-point

approximation—that is, (𝑓/2, 𝑠/2), for all flight legs, with 𝑓 = 600 (about 20 flights

per day) and 𝑠 = 𝜏/2.

All models are implemented using Python 3.6 and the CPLEX MILP Solver

(v12.9), on an Intel(R) Core(TM) i7-8700K CPU with a frequency of 3.70 GHz and

32 GB of RAM, and a maximum runtime of two hours.
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Chapter 2. Airline Network Planning

For each scenario and each method, Table 2.4 reports the average number of

variables (# cols) and constraints (# rows). Note that the logarithmic formulation

reductes the number of variables by a factor of 2.6 and the number of constraints by

8.3, as compared to the CC method. Turning to our 2𝛼ECP algorithm, recall that the

master problem increases in size at each iteration; accordingly, we report the problem

size at the first and last iterations, showing the smallest and largest test instances. All

problem instances in our 2𝛼ECP algorithm remain reasonable, comparable to LOG

with Γ = 8 or Γ = 16 (obviously, this comes at the cost of solving multiple MILPs

iteratively).
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Chapter 2. Airline Network Planning

2.7.3 Computational results

Table 2.5 reports the computational results. For both linearization benchmarks, we

report the computation time (𝑇 , in seconds) and the percentage variation in operating

profits compared to 2𝛼ECP (%∆𝑆𝑂𝐿 > 0 if the benchmark outperforms 2𝛼ECP, and

%∆𝑆𝑂𝐿 < 0 otherwise)3. To ensure comparability, the solution of the linearization

benchmarks, 𝑍*, refers to the objective value obtained by evaluating the profit func-

tion under the true demand function (as opposed to the discretized demand function).

For our 2𝛼ECP algorithm, we report the objective value (𝑍2𝛼𝐸𝐶𝑃 , in $M) and the

optimality gap achieved at the last iteration, after the two hours of computational

time (%𝐺𝑎𝑝).

First, CC performs consistently poorly. Indeed, it results in worse solutions than

the 2𝛼ECP algorithm in all 45 instances, with a relative difference (%∆𝑆𝑂𝐿) of up

to 98% in the worst case and of 55% on average. It also consistently underperforms

LOG—and this would be exacerbated with coarser discretization (e.g., Γ = 32).

Furthermore, the CC method uses the two-hour budget in most instances, so the

poor solution quality is not outweighed by shorter runtimes. Ultimately, this shows

the benefits of our algorithm, as compared to standard discretization.

Turning to the more advanced LOG discretization method, we observe a trade-

off between solution quality and computational times, as expected. Using a coarse

discretization with 8 intervals, the LOG method terminates fast in some instances.

However, it results in significantly inferior solutions, as compared to the 2𝛼ECP

algorithm—with a median difference of 5%. As the number of intervals increases

to 16, the problem size increases accordingly (see Table 2.4), thus requiring longer

runtimes. Yet, 2𝛼ECP still outperforms the linearization benchmark, resulting in

better solutions in most instances, a median profit improvement of 1.3% and an

average profit improvement of 3.5%. The main exception is scenario 1x100x500,

under which LOG provides better solutions than 2𝛼ECP for all instances but one;

however, for this instance (#4), LOG cannot even find a feasible solution within the

3%Δ𝑆𝑂𝐿 = (𝑍* − 𝑍2𝛼𝐸𝐶𝑃 )/𝑍2𝛼𝐸𝐶𝑃 , where 𝑍* and 𝑍2𝛼𝐸𝐶𝑃 denote the values attained by
CC/LOG and 2𝛼ECP.
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2.7. Computational Results

Table 2.5: Results of computational experiments.

Network
Inst.

CC LOG
2𝛼ECP

|ℋ| × 𝜏 × |ℐ|
Γ = 16 Γ = 8 Γ = 16 Γ = 32

%Δ𝑆𝑂𝐿 𝑇 %Δ𝑆𝑂𝐿 𝑇 %Δ𝑆𝑂𝐿 𝑇 %Δ𝑆𝑂𝐿 𝑇 𝑍2𝛼𝐸𝐶𝑃 %𝐺𝑎𝑝

1x100x100

#1 -84.9% 7200 -11.9% 7200 -4.1% 7200 -0.2% 7200 19.5 0.7%
#2 - 7200 -8.6% 20 -3.9% 7200 -0.3% 7200 18.6 1.3%
#3 -86.4% 7200 -6.2% 11 -2.0% 40 0.2% 410 21.6 1.0%
#4 -88.1% 7200 -11.6% 14 -3.2% 116 0.0% 7200 18.6 0.9%
#5 -75.4% 7200 -5.1% 32 -1.6% 7200 -0.5% 7200 21.4 0.8%

1x100x250

#1 -77.9% 7200 -2.7% 7200 -0.3% 7200 0.4% 7200 28.5 1.0%
#2 -85.0% 7200 -2.9% 7200 0.4% 7200 0.5% 7200 29.4 1.1%
#3 -84.9% 7200 -7.4% 7200 0.5% 7200 1.3% 7200 19.9 2.3%
#4 -76.9% 7200 -4.7% 7200 -0.5% 7200 0.3% 7200 24.6 0.9%
#5 -81.7% 7200 -2.4% 7200 0.6% 7200 0.5% 7200 29.2 1.5%

1x100x500

#1 -91.8% 7200 0.6% 7200 0.9% 7200 - 7200 35.8 2.0%
#2 -82.0% 7200 0.4% 7200 1.6% 7200 0.9% 7200 35.2 2.5%
#3 -81.4% 7200 1.5% 7200 2.0% 7200 - 7200 45.0 3.1%
#4 -86.1% 7200 -2.2% 7200 - 7200 - 7200 35.0 3.9%
#5 -86.5% 7200 0.5% 7200 2.3% 7200 - 7200 27.7 3.9%

1x250x500

#1 -0.9% 896 -4.9% 9 -0.9% 303 0.3% 4015 65.5 0.5%
#2 -1.3% 7200 -10.0% 11 -1.3% 7200 0.3% 7200 41.1 0.5%
#3 -88.7% 7200 -6.1% 11 -1.4% 972 0.2% 2389 63.9 0.4%
#4 -1.0% 7200 -5.9% 12 -1.0% 273 0.6% 3013 61.1 1.0%
#5 -1.4% 7200 -10.2% 10 -1.3% 7200 0.3% 6736 49.6 0.9%

2x100x100

#1 -3.2% 2937 -8.6% 11 -3.1% 241 0.8% 7200 13.6 2.8%
#2 -3.0% 7200 -6.9% 15 -2.9% 285 -1.1% 7200 16.1 1.5%
#3 -0.5% 7200 -2.8% 15 -0.5% 229 0.4% 7200 26.1 1.3%
#4 -3.0% 6503 -6.6% 36 -2.9% 1821 0.3% 7200 17.3 1.7%
#5 -39.8% 7200 -11.2% 32 -4.9% 719 -0.6% 7200 12.9 1.0%

2x100x250

#1 -78.4% 7200 -4.6% 7200 -2.8% 7200 -0.5% 7200 21.9 1.7%
#2 -72.8% 7200 -5.7% 7200 -1.7% 7200 -0.2% 7200 22.6 1.1%
#3 -1.3% 7200 -4.6% 7200 -1.3% 7200 0.2% 7200 34.0 0.8%
#4 -79.7% 7200 -6.3% 7200 -2.1% 7200 -96.3% 7200 21.1 1.3%
#5 -71.3% 7200 -4.7% 7200 -2.5% 7200 -0.4% 7200 21.6 0.8%

2x100x500

#1 -78.2% 7200 -2.6% 7200 1.0% 7200 - 7200 36.0 2.5%
#2 -82.3% 7200 -3.6% 7200 -0.3% 7200 - 7200 29.6 2.9%
#3 -82.7% 7200 -2.9% 7200 0.5% 7200 - 7200 30.7 2.5%
#4 -70.3% 7200 -0.7% 7200 4.3% 7200 - 7200 31.7 4.9%
#5 -1.6% 7200 -2.8% 7200 -0.4% 7200 - 7200 30.5 2.1%

2x250x250

#1 -82.0% 7200 -5.0% 1824 -7.4% 7200 -17.0% 7200 73.9 0.7%
#2 -92.0% 7200 -5.7% 129 -1.3% 7200 -26.9% 7200 65.1 0.9%
#3 -98.0% 7200 -5.2% 7200 -0.8% 7200 - 7200 54.7 3.3%
#4 -86.0% 7200 -9.9% 7200 -6.5% 7200 - 7200 55.9 0.9%
#5 -88.4% 7200 -4.4% 162 -0.7% 7200 -36.6% 7200 66.2 1.2%

2x250x500

#1 -1.8% 7200 -5.0% 7200 -1.5% 7200 0.0% 7200 60.2 3.4%
#2 -1.2% 7200 -4.0% 7200 -0.5% 7200 0.2% 7200 77.2 1.8%
#3 -0.7% 7200 -3.0% 67 -0.7% 7200 0.2% 7200 99.9 0.9%
#4 -1.4% 3432 -5.9% 16 -1.3% 136 0.1% 6062 67.9 0.3%
#5 -2.1% 3539 -6.3% 71 -2.0% 1306 0.0% 2705 52.9 0.4%

Summary

min -98.0% 896 -11.9% 9 -100% 40 -100% 410 12.9 0.3%
avg -54.9% 6806 -5.1% 4065 -3.5% 5453 -28.3% 6664 38.5 1.6%
max -0.5% 7200 1.5% 7200 4.3% 7200 1.3% 7200 99.9 4.9%
25th -84.9% 7200 -6.3% 20 -2.5% 1821 -96.3% 7200 21.6 0.9%
50th -78.2% 7200 -5.0% 7200 -1.3% 7200 -0.2% 7200 30.7 1.2%
75th -2.1% 7200 -2.9% 7200 -0.3% 7200 0.3% 7200 54.7 2.3%
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Chapter 2. Airline Network Planning

two-hour limit. This issue is exacerbated when we further increase the linearization

granularity to 32 intervals. Indeed, the LOG method produces no feasible solution, or

largely sub-optimal solutions, in 13 instances out of 45 (or over 25% of the cases). In

contrast, 2𝛼ECP attains high-quality solutions with an optimality gap consistently

below 5%. Furthermore, LOG requires the full two-hour computational budget in all

but 7 instances, with 32 intervals—thus not markedly reducing runtimes as compared

to the 2𝛼ECP algorithm.

Ultimately, the 2𝛼ECP algorithm yields consistenly good solutions, which consid-

erably improve the quality of the solutions obtained with simple discretization schemes

(e.g., the CC method). The 2𝛼ECP also dominates state-of-the-art discretization

schemes (e.g., the LOG method) applied with coarse discretization, and also seems

to improve the quality of the solutions obtained with highly granular discretization—

resulting in better or comparable solutions in most instances, and achieving more

consistent performance across all instances considered. Finally, unlike the discretiza-

tion benchmarks, the 2𝛼ECP algorithm also provides solution quality guarantees,

indicating a median optimality gap of 1.2% and a maximum optimality gap of 4.9%

within the two-hour budget.

Finally, Figure 2-3 depicts the convergence pattern of the 2𝛼ECP per iteration

(Figure 2-3a) and over time (Figure 2-3b). Each line represents the upper (blue) and

lower (red) bounds in a single instance. Note that the number of iterations remains

limited, ranging from 7 to 18. Moreover, most improvements are achieved during the

first 1,000 seconds, thus highlighting the ability of 2𝛼ECP to compute good feasible

solutions in short computation times.

This behavior can be explained as follows. In initial iterations, the algorithm

roughly approximates the demand curves to narrow down the most profitable routes,

resulting in strong improvements over the initial solution. In later iterations, in con-

trast, the algorithm refines capacity allocation decisions, with a more marginal impact

on profitability. Moreover, the master problem becomes increasingly large from one

iteration to the next, resulting in longer runtimes per iteration. These patterns can

slow down convergence, especially when the number of allowed routes is small com-
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2.8. Case Study

(a) Convergence by number of iterations (b) Convergence by time

Figure 2-3: Convergence of 2𝛼ECP algorithm.

pared to the number of potential routes (e.g., 1x100x500, 2x100x500). In such cases,

the algorithm takes more iterations to select the most profitable routes and tighten

their outer demand approximation, since only a small subset of linearization points

can be updated at each iteration. Yet, this issue does not significantly compromise

the performance of 2𝛼ECP, indicated with the small optimality gaps achieved by the

algorithm across all instances (Table 2.5 and Figure 2-3).

Overall, these computational experiments show that the 2𝛼ECP algorithm achieves

stronger, more stable and more consistent performance than state-of-the-art bench-

marks based on discretization and linearization. Moreover, 2𝛼ECP is an exact method

that provides solution guarantees—hence, an optimality gap—at each iteration, as

opposed to only generating a feasible solution.

2.8 Case Study

The application of the proposed modeling and algorithmic framework is now illus-

trated through a case study involving the continental network of Alitalia (in May

2018). Through this case study, we highlight the benefits of considering demand-

supply interactions in airline network planning, and demonstrate how the ANPSD
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Chapter 2. Airline Network Planning

can be used to support strategic decisions concerning the endogenous expansion (or

contraction) of flight networks and fleets.

The continental network of Alitalia is based on a primary hub in Rome Fiumi-

cino (FCO) and a secondary hub in Milan Linate (LIN). The network consists of 150

intra-European routes and the fleet is composed by 5 aircraft types: 6 Airbus A321,

28 A320, 19 A319, 5 Embraer E90, and 11 E75—a total of 69 aircraft. In the absence

of proprietary data, we consider the same cost functions and parameters as in Sec-

tion 2.7.1. Note that each airline has access to additional cost information, such as

landing fees, costs of route openings, fleet costs, etc., which can easily be incorporated

into the model. Despite these necessary simplifications, relative comparisons allow us

to establish the benefits of the proposed approach.

To demonstrate the benefits of integrating demand-supply interactions in airline

strategic planning, we solve the optimization model using the three demand specifi-

cations from Section 2.4:

– Demand specification M0, which ignores demand-supply interactions by consid-

ering inelastic demand estimates. In the optimization model, demand is treated

as a fixed input parameter, replacing Equation (2.11) by a constraint of the

form 𝑞𝑖 ≤ 𝐷̄𝑖. The model is solved directly as a MILP. We refer to this model

as 𝒫0, which replicates most of the literature.

– Demand specification M1, which partially captures the demand-supply interac-

tions by modeling the effects of frequency, but disregards the positive effects

generated by hub-and-spoke network effects. In the optimization model, Equa-

tion (2.11) is replaced by a constraint of the form 𝑞𝑖 ≤ 𝛾′𝑖𝑓
𝑢′
𝑖 , which can be ef-

fectively approximated by (univariate) piecewise linearization methods (Vielma

et al. 2010). We refer to this model as 𝒫1.

– Demand specification M2, which fully captures the demand-supply interactions

by modeling the effects of frequency and network effects. This corresponds to

the ANPSD (Section 2.5).

In this paper, we have considered specification M2 in the ANPSD formulation due
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2.8. Case Study

to its stronger statistical performance and theoretical grounding. At the same time,

this choice has led to non-convexities, hence much more complex solution algorithms

than with M0 and M1. The question is whether it was worth it—that is, whether the

ANPSD outperforms 𝒫0 and 𝒫1.

We evaluate these three models under nine scenarios, by varying the number of

routes (∆𝑛𝑡𝑤) and fleet size (∆𝑓𝑙𝑒𝑒𝑡) by -20%/0%/+20% with respect to the baseline

network. Table 2.6 reports two profit outcomes: (i) the objective function value of

the model (𝑍, in $M), and (ii) the profit obtained when evaluating each model’s

resulting solution with specification M2 (𝑍*, in $M). For instance, for 𝒫0, we obtain a

network planning solution using M0, and we then evaluate the corresponding profits

if the “true” demand is given by M0 (𝑍) or by the full demand specification M2

(𝑍*). Comparing 𝑍 across different scenarios for for a given model identifies how the

different models can support (or misguide) the evaluation of different network and

fleet alternatives—using the relative variation of 𝑍 from the baseline scenario, denoted

by %∆𝐵𝐿. On the other hand, 𝑍* identifies the “real” performance of each model,

when evaluated against the best empirical specification—using the profit difference

between 𝒫0 or 𝒫1 and ANPSD, denoted by ∆𝐴𝑁𝑃𝑆𝐷. We further report fixed costs,

variable costs, fleet size, number of routes, passengers per flight and seats per flights.
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2.8. Case Study

Let us start with our main observation: The ANPSD model considerably outper-

forms the two benchmarks, 𝒫0 and 𝒫1. Indeed, the ANPSD leads to profit outcomes

ranging from 42.4$M to 72.7$M. In contrast, 𝒫0 and 𝒫1 lead to profit up to 20.6$M

and 16.7$M, respectively, resulting in an average gap of 40.4 M$ (72.5%) and 46.4

M$ (83.4%). As compared to 𝒫0, ANPSD leverages demand stimulation mechanisms,

capturing the impact of level of service on passenger demand. As compared to 𝒫1,

ANPSD captures saturation patterns and accounts for the consolidation of hub-and

spoke operations. Perhaps surprisingly, 𝒫1 performs worse than 𝒫0, although de-

mand specification M1 exhibits stronger empirical performance than M0. Overall,

these results clearly demonstrate the benefits of fully capturing the demand-supply

interactions (i.e., the effect of service frequency and of hub-and-spoke network effects

on passenger demand) in airline strategic planning.

Let us now discuss the solutions of each model. Model 𝒫0 prioritizes the largest

aircraft (i.e., A321 and A320) with a small number of flights. As a result, 𝒫0 leads to

180 seats per flight (as compared to 80 for ANPSD) but only 20 aircraft (as compared

to 50–80 for ANPSD), thus maximizing load factors (in a somewhat unrealistic way).

This is driven by the assumption that demand does not depend on the number of

flights (frequency or number of spokes), so 𝒫0 takes a full supply-side perspective to

match demand as cost-effectively as possible. Fleet variations thus do not impact

estimated profits 𝒫0 (%∆𝐵𝐿 = 0% in scenarios 2 and 3). In contrast, network expan-

sion and contraction has a major effect on the 𝒫0 solution. Note that considering a

maximum load factor as in (as Teodorović et al. 1994, Jaillet et al. 1996, for instance)

would slightly increase the number of flights but would not significantly impact the

qualitative insights.

Turning to 𝒫1, we observe the opposite distortions. Recall that our estimated

coefficient for frequency under M1 is 1.06, indicative of increasing returns to scale.

This leads to overconfident solutions in 𝒫1. Indeed, the model maximizes frequency

on the routes with the highest contribution margins. As a result, the number of

routes operated ranges from 20 to 30, less than 20% of all routes available. As such,

network contraction does not impact the estimated profits from 𝒫1 (%∆𝐵𝐿 = 0% in
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scenario 4, and network expansion leads to small benefits (only two new routes added

in scenario 5). In contrast, fleet variations have a very significant impact on the 𝒫1

solution.

The ANPSD achieves a middle ground between these two solutions, by balancing

fleet and network considerations. When the network is fixed, a fleet contraction

reduces profits by -17.8% (scenario 2), while a fleet expansion increases profits by

+12.9% (scenario 3). This suggests that the current network is not saturated, yielding

potential benefits by adding capacity on existing routes. When the fleet is fixed, a

network contraction leads to a modest profit reduction by -5.6% (scenario 4). This is

consistent with our observation from scenario 3, as the fleet capacity retrieved from

the cancelled routes can be redeployed to strengthen supply on the most profitable

routes. More importantly, in scenario 5, the model estimates a profit increase of

17.4% from network expansion. Obviously, the largest profit reduction (-22.4%) is

attained in scenario 6, where both fleet and network are reduced, and the greatest

profit increase (+32.9%) is expected under scenario 9. Note that, in scenario 9,

the improvement is larger than for scenarios 3 and 5 taken together (+2.6%), which

highlights the benefits of simultaneously optimizing fleeting and route selection.

Finally, scenarios 7 and 8 investigate intermediate situations in which the fleet is

increased but the number of routes is decreased, and vice versa. Figure 2-4 illustrates

the ANPSD outcome for these two scenarios, depicting network variations compared

to the baseline. In scenario 7 (network contraction, fleet expansion), the model sug-

gests dropping routes characterized by intense competition and lower prices, such as

those from LIN to Southern Italy or Madrid (Figure 2-4a). As a result, operations are

shrunk at LIN, refocusing on high-yield point-to-point markets towards major cities in

Northern Europe. Accordingly, operations are more concentrated at the primary hub

(FCO), leading to a hub consolidation strategy. In scenario 8 (fleet contraction, net-

work expansion), in contrast, the model suggests two strategies (Figure 2-4b). First,

it suggests opening new routes toward important destinations that are not currently

served by Alitalia, such as Istanbul (IST), Lyon (LYS), Palma de Mallorca (PMI),

Stuttgart (STR), and Wien (VIE). At the same time, the model suggests strategic
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diversification of supply in the largest European multi-airport systems (e.g., London,

Berlin, and Paris).

(a) Δ𝑓𝑙𝑒𝑒𝑡 = +20%Δ𝑛𝑡𝑤 = −20%

(b) Δ𝑓𝑙𝑒𝑒𝑡 = −20%Δ𝑛𝑡𝑤 = +20%

Figure 2-4: Impact of network and fleet expansion/contraction.
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Overall, this analysis highlights the importance of jointly optimizing the differ-

ent network planning decisions, spanning route planning, fight frequency and fleet

composition.. The integrated ANPSD model can provide effective decision tools to

support airline strategic planning. As the results have shown, the model’s ability to

fully capture the interactions between service frequency, network structure and pas-

senger demand results in significant benefits, as compared to simpler approaches that

ignore these demand-supply interactions

2.9 Conclusion

This paper has developed an original data-driven modeling and algorithmic framework

to optimize airline network planning—referred to as Airline Network Planning with

Supply and Demand interactions (ANPSD). The ANPSD simultaneously optimizes

on which routes to operate, with which frequency and with which aircraft types,

subject to operating constraints. The main novelty of ANPSD lies in the integration

of an empirical demand model into a supply-side network optimization model, which

enables an explicit treatment of demand-supply interactions. The model is formulated

as a mixed integer non-convex optimization problem. To solve it, we have proposed

an original exact cutting-plane algorithm, referred to as 2𝛼ECP, which generates

iteratively an outer approximation of the non-linear, non-convex demand function by

means of two hyperplanes.

Extensive computational experiments have shown the performance, scalability and

practical applicability of the proposed modeling and computational approach. First,

our exact 2𝛼ECP algorithm outperforms state-of-the-art benchmarks based on dis-

cretization and linearization. Second, the 2𝛼ECP algorithm yields solution quality

guarantees—thus proving that it can generate near-optimal ANPSD solutions in rea-

sonable computational times consistent with practical implementation requirements.

Third, a case study using the continental network of Alitalia has shown that the

ANPSD model provides much stronger planning solutions than baseline approaches

based on inelastic demand estimates or partial treatments of demand-supply inter-
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actions. Last, we showed how the ANPSD can practically aid decision-making by

appraising different network and fleet expansion/contraction scenarios to inform the

most promising development opportunities.

These positive results suggest future research opportunities in airline network

planning. For instance, our aggregate leg-based demand model ignores heterogeneity

across itineraries and origin-destination markets, which could be extended by devel-

oping data-driven estimates of passenger demand at a more disaggregate market level.

Another simplification of ANPSD is the static treatment of inter-airline competition

through its negative impact on prices. Extensions could incorporate game-theoretic

considerations to systematically assess market dynamics among competing airlines.

The ANPSD has also considered a deterministic demand model, which could be ex-

tended to capture demand uncertainty. Finally, the ANPSD has focused on maxi-

mizing operating profitability—the most important driver of network planning, but

not the only one. An interesting avenue for future research lies in the in-depth con-

sideration of additional factors underlying airline strategic planning, such as business

models, the costs of opening or closing routes, and other practical considerations. The

modeling and algorithmic framework provides methodological foundations to address

these questions, with the ultimate potential of developing new data-driven approaches

to support airline strategic planning that systematically integrate the interdependen-

cies between demand and supply.

This paper comes at a critical time for the airline industry, in the midst of the

COVID-19 pandemic. At a time of high uncertainty regarding the future of air

travel, one thing is for sure: questions of airline network planning will be central

in air transportation—for instance, Business Insider (2020) argued that “airlines face

a years-long challenge to rebuild global route maps and networks that were devastated

by the COVID-19 pandemic”. By providing a new data-driven approach to support

airline strategic planning, this paper strives to contribute to these efforts.

78



Chapter 2. Airline Network Planning

Appendix A: Proof of Statements

Proof of Proposition 1

Let us consider Ω𝜓
𝑖+ and Ω𝜓

𝑖− given in Equations (2.18) and (2.19), and define Ω𝜓
𝑖0 as:

Ω𝜓
𝑖0 =

{︃
(𝑓𝑖, 𝑠𝑖) ∈ Ω𝑖 :

𝑢

𝑓𝜓𝑖
𝑓𝑖 +

𝑣

𝑠𝜓𝑖
𝑠𝑖 − 𝑢− 𝑣 = 0

}︃
(2.34)

Solving for 𝛼𝜓𝑖+ and 𝛼𝜓𝑖− in Equations (2.20) and (2.21) yields:

𝛼𝜓𝑖+ ≥
𝐷𝑖(𝑓𝑖, 𝑠𝑖)−𝐷𝑖(𝑓

𝜓
𝑖 , 𝑠

𝜓
𝑖 )

𝒲𝜓
𝑖 (𝑓𝑖, 𝑠𝑖)

∀(𝑓𝑖, 𝑠𝑖) ∈ Ω𝜓
𝑖+ ∖ Ω𝜓

𝑖0 (2.35)

𝛼𝜓𝑖− ≤
𝐷𝑖(𝑓𝑖, 𝑠𝑖)−𝐷𝑖(𝑓

𝜓
𝑖 , 𝑠

𝜓
𝑖 )

𝒲𝜓
𝑖 (𝑓𝑖, 𝑠𝑖)

∀(𝑓𝑖, 𝑠𝑖) ∈ Ω𝜓
𝑖− (2.36)

Since the feasible region is finite, we can define 𝛼𝜓𝑖+ and 𝛼𝜓𝑖− as follows:

𝛼𝜓𝑖+ = sup

{︃
𝐷𝑖(𝑓𝑖, 𝑠𝑖)−𝐷𝑖(𝑓

𝜓
𝑖 , 𝑠

𝜓
𝑖 )

𝒲𝜓
𝑖 (𝑓𝑖, 𝑠𝑖)

: (𝑓𝑖, 𝑠𝑖) ∈ Ω𝜓
𝑖+ ∖ Ω𝜓

𝑖0

}︃
(2.37)

𝛼𝜓𝑖− = inf

{︃
𝐷𝑖(𝑓𝑖, 𝑠𝑖)−𝐷𝑖(𝑓

𝜓
𝑖 , 𝑠

𝜓
𝑖 )

𝒲𝜓
𝑖 (𝑓𝑖, 𝑠𝑖)

: (𝑓𝑖, 𝑠𝑖) ∈ Ω𝜓
𝑖−

}︃
(2.38)

To complete the proof, we need to show that Equation (2.20) holds for (𝑓𝑖, 𝑠𝑖) ∈

Ω𝜓
𝑖0. To this end, we need to prove that 𝐷𝑖(𝑓

𝜓
𝑖 , 𝑠

𝜓
𝑖 ) ≥ 𝐷𝑖(𝑓𝑖, 𝑠𝑖) for all (𝑓𝑖, 𝑠𝑖) ∈ Ω𝜓

𝑖0,

since 𝒲𝜓
𝑖 (𝑓𝑖, 𝑠𝑖) = 0 for all (𝑓𝑖, 𝑠𝑖) ∈ Ω𝜓

𝑖0. In other words, we need to prove that

𝐷𝑖(𝑓𝑖, 𝑠𝑖) achieves its maximum over Ω𝜓
𝑖0 in (𝑓𝜓𝑖 , 𝑠

𝜓
𝑖 ). By solving for 𝑓𝑖 in Equa-

tion (2.34), we define a function expressing the demand as a function of 𝑠𝑖 (shown in

Figure 2-5):

For all 𝑠𝑖 ∈ Z ∩
[︂
0,
𝑢+ 𝑣

𝑣
𝑠𝜓𝑖

]︂
, 𝜑𝜓𝑖 (𝑠𝑖) = 𝐷𝑖

(︃(︃
𝑢+ 𝑣 − 𝑣

𝑠𝜓𝑖
𝑠𝑖

)︃
𝑓𝜓𝑖
𝑢
, 𝑠𝑖

)︃

𝜑𝜓𝑖 (𝑠𝑖) = 𝛾𝑖

[︃(︃
𝑢+ 𝑣 − 𝑣

𝑠𝜓𝑖
𝑠𝑖

)︃
𝑓𝜓𝑖
𝑢

]︃𝑢
𝑠𝑣𝑖
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Figure 2-5: Illustration of 𝜑𝜓𝑖 (black solid line) for (𝑓𝜓𝑖 , 𝑠
𝜓
𝑖 ) = (300, 50).

Note that 𝐷𝑖 is differentiable over Ω𝑖 ∖ {(𝑓𝑖, 𝑠𝑖) : 𝑓𝑖 = 0 ∨ 𝑠𝑖 = 0}. Therefore, 𝜓

is differentiable over
(︁

0, 𝑢+𝑣
𝑣
𝑠𝜓𝑖

]︁
. Since 𝜑𝜓𝑖 (0) = 0, the maximum is not attained in 0.

We have, for all 𝑠𝑖
(︁

0, 𝑢+𝑣
𝑣
𝑠𝜓𝑖

]︁
:

(︁
𝜑𝜓𝑖

)︁′

(𝑠𝑖) = 𝛾𝑖

⎡⎣𝑣𝑠𝑣−1
𝑖

[︃(︃
𝑢+ 𝑣 − 𝑣

𝑠𝜓𝑖
𝑠𝑖

)︃
𝑓𝜓𝑖
𝑢

]︃𝑢
− 𝑣

𝑠𝜓𝑖

𝑓𝜓𝑖
𝑢
𝑠𝑖 · 𝑢

[︃(︃
𝑢+ 𝑣 − 𝑣

𝑠𝜓𝑖
𝑠𝑖

)︃
𝑓𝜓𝑖
𝑢

]︃𝑢−1
⎤⎦

= 𝛾𝑖

(︃
𝑓𝜓𝑖
𝑢

)︃𝑢(︃
𝑣

𝑠𝜓𝑖

)︃𝑢−1(︂
𝑢+ 𝑣

𝑣
− 𝑠𝑖

)︂𝑢−1

𝑠𝑣−1
𝑖 · 𝑣 · (𝑢+ 1)

(︃
1− 𝑠𝑖

𝑠𝜓𝑖

)︃

Therefore, 𝜑𝜓𝑖 is increasing over
[︁
0, 𝑠𝜓𝑖

)︁
and decreasing over

(︁
𝑠𝜓𝑖 ,

𝑢+𝑣
𝑣
𝑠𝜓𝑖

]︁
. We

obtain that 𝑠𝜓𝑖 is a global maximum of 𝜑𝜓𝑖 , hence (𝑓𝜓𝑖 , 𝑠
𝜓
𝑖 ) is a global maximum of 𝐷𝑖

over Ω𝜓
𝑖0. �

Proof of Proposition 2

We need to prove that 𝐷𝑖(𝑓, 1)𝑠𝑖 ≥ 𝐷𝑖(𝑓𝑖, 𝑠𝑖), ∀(𝑓𝑖, 𝑠𝑖) ∈ Ω𝑖. First, note that 𝐷𝑖 is

concave with respect to 𝑠𝑖. Indeed, the second-order partial derivative of 𝐷𝑖 with

respect to 𝑠𝑖 is given by 𝜕2𝐷𝑖/𝜕𝑠
2
𝑖 = 𝛾𝑖𝑣(𝑣 − 1)𝑓𝑢𝑖 𝑠

𝑣−2
𝑖 < 0. Along with the in-

tegrality of 𝑠𝑖, this implies that: 𝐷𝑖(𝑓𝑖, 1)𝑠𝑖 ≥ 𝐷𝑖(𝑓𝑖, 𝑠𝑖), ∀(𝑓𝑖, 𝑠𝑖) ∈ Ω𝑖. Moreover,

𝐷𝑖 is increasing with respect to 𝑓𝑖. Indeed, 𝜕𝐷𝑖/𝜕𝑓𝑖 = 𝛾𝑖𝑢𝑓
𝑢−1
𝑖 𝑠𝑣𝑖 > 0. There-
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fore, 𝐷(𝑓, 𝑠𝑖) ≥ 𝐷(𝑓𝑖, 𝑠𝑖) ∀(𝑓𝑖, 𝑠𝑖) ∈ Ω𝑖. We thus obtain 𝐷𝑖(𝑓, 1)𝑠𝑖 ≥ 𝐷𝑖(𝑓, 𝑠𝑖) ≥

𝐷(𝑓𝑖, 𝑠𝑖), ∀(𝑓𝑖, 𝑠𝑖) ∈ Ω𝑖. This completes the proof of Equation (2.30). Equation (2.31)

follows similarly. �

Proof of Proposition 3

This follows directly from Proposition 1 and Proposition 2, which show that Equa-

tions (2.22)-(2.25), Equation (2.30) and Equation (2.31) provide valid outer approxi-

mation of Equation (2.11). Thus, the master problem is a relaxation of ANPSD, and

its optimal solution is an upper bound of the ANPSD optimum. �

Proof of Proposition 4

The proof relies on three observations. First, the constraints of the master problem

and the ANPSD are identical, except Equation (2.11). Second, Equation (2.11) in-

volves only the decision variables 𝑞𝑖. Third, the decision variables 𝑞𝑖 are only involved

in Equations (2.6) and (2.11). Therefore, if 𝑞′𝑖 = min
(︀
𝛾𝑖(𝑓

*
𝑖 )𝑢(𝑠*𝑖 )

𝑣,
∑︀

𝑎∈𝐴 𝑓
*
𝑖𝑎𝑘𝑎

)︀
, then

(𝑓 *
𝑖𝑎, 𝑓

*
𝑖 , 𝑥

*
𝑖 , 𝑞

′
𝑖, 𝑠

*
𝑖 , 𝑤

*
𝑎) is a feasible solution of the ANPSD, which achieves the objective

given in Equation (2.33). The proof follows. �

Proof of Proposition 5

First, if the solution obtained by the master problem at iteration 𝜓 is a feasible

solution for ANPSD, than this point is a global optimum for ANPSD. Indeed, let 𝒵𝜓

denote the solution value of the master problem at iteration 𝜓 and let 𝒵𝑜𝑝𝑡 represent

the optimal solution of ANPSD. From proposition 3 we know that 𝒵𝜓 ≥ 𝒵𝑜𝑝𝑡. But

if (𝑓𝜓𝑖𝑎, 𝑓
𝜓
𝑖 , 𝑥

𝜓
𝑖 , 𝑞

𝜓
𝑖 , 𝑠

𝜓
𝑖 , 𝑤

𝜓
𝑎 ) is feasible under ANPSD, it follows that 𝒵𝜓 ≤ 𝒵𝑜𝑝𝑡. Hence,

we obtain 𝒵𝜓 = 𝒵𝑜𝑝𝑡. Therefore, the algorithm terminates at an optimal solution of

ANPSD.

Let us now consider the case in which the solution attained by the master problem

at iteration 𝜓 is infeasible for ANPSD. Since the master problem only relaxes the

nonlinear constraint (Equation (2.11)), we know that there exists 𝑖 ∈ ℐ such that
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𝑞𝜓𝑖 > 𝛾𝑖(𝑓
𝜓
𝑖 )𝑢(𝑠𝜓𝑖 )𝑣 (otherwise, the solution would be feasible). In the next iteration,

a new outer approximation is added at each (𝑓𝜓𝑖 , 𝑠
𝜓
𝑖 ) according to Equations (2.22)-

(2.25), Equation (2.30) or Equation (2.31)). To this end, we make three observations:

1. By construction, the new cutting planes make the previous solution infeasible—

so any previously visited sub-optimal solution will never be revisited by the

master problem, that is:

(𝑓𝜓𝑖𝑎, 𝑓
𝜓
𝑖 , 𝑥

𝜓
𝑖 , 𝑞

𝜓
𝑖 , 𝑠

𝜓
𝑖 , 𝑤

𝜓
𝑎 ) ̸= (𝑓 𝜂𝑖𝑎, 𝑓

𝜂
𝑖 , 𝑥

𝜂
𝑖 , 𝑞

𝜂
𝑖 , 𝑠

𝜂
𝑖 , 𝑤

𝜂
𝑎), ∀𝜂 < 𝜓,

2. The cutting planes bound the variables 𝑞𝑖 to the true demand values in (𝑓𝜓𝑖 , 𝑠
𝜓
𝑖 ),

since (𝑓𝜓𝑖 , 𝑠
𝜓
𝑖 ) ∈ Ω𝜓

𝑖0 (Proposition 1). Therefore, a solution (𝑓𝜓𝑖𝑎, 𝑓
𝜓
𝑖 , 𝑥

𝜓
𝑖 , 𝑞

𝜓
𝑖 , 𝑠

𝜓
𝑖 , 𝑤

𝜓
𝑎 )

is a feasible ANPSD solution if there exists 𝜂 < 𝜓 such that, for all 𝑖 ∈ ℐ,

(𝑓𝜓𝑖 , 𝑠
𝜓
𝑖 ) = (𝑓 𝜂𝑖 , 𝑠

𝜂
𝑖 ).

3. The set of feasible values of 𝑓𝑖 and 𝑠𝑖 in ANPSD is finite.

We conclude that the algorithm has finite convergence. Indeed, assume by con-

tradiction that the series of master problem solutions does not converge in a finite

number of iterations. Then, it would generate an infinite series of infeasible points

for ANPSD, each different from one another (See 1. above) and each featuring (at

least) one new value of 𝑓𝑖 or 𝑠𝑖 (See 2. above), which contradicts the fact that the set

of points (𝑓𝑖, 𝑠𝑖) is finite (See 3. above). This completes the proof. �

82



Chapter 2. Airline Network Planning

Appendix B: Formulation of the Discretization Bench-

marks

Convex combination (CC).

Let Γ𝑓 and Γ𝑠 be two sets of intervals partitioning [0, 𝑓 ] and [0, 𝑠], respectively. Let

ℬ𝑓 and ℬ𝑠 be the corresponding sets of breakpoints. This discretization partitions

Ω𝑖 into a grid of rectangles. We further divide each rectangle into two triangles to

partition the two-dimensional domain into a set of mutually exclusive triangles 𝒯

and define 𝒯𝑏𝑓 𝑏𝑠 = {𝑡 ∈ 𝒯 : (𝑏𝑓 , 𝑏𝑠) ∈ 𝒯 }. The CC formulation represents each point

(𝑓𝑖, 𝑠𝑖) as a convex combination of the three vertices of the triangle that contains

it. Specifically, let us introduce 𝜆𝑖𝑏𝑓 𝑏𝑠 as a positive variable defined over the set of

vertices (𝑏𝑓 , 𝑏𝑠) ∈ ℬ𝑓 × ℬ𝑠 and representing the weights in the convex combination.

We further define 𝜁 𝑖𝑡 as a binary variable equal to 1 if triangle 𝑡 ∈ 𝒯𝑏𝑓 𝑏𝑠 is activated,

and zero otherwise. We then replace the nonlinear constraint (Equation (2.11)) with

the following linear constraints.

𝑓𝑖 =
∑︁
𝑏𝑓∈ℬ𝑓

∑︁
𝑏𝑠∈ℬ𝑠

𝜆𝑖𝑏𝑓 𝑏𝑠𝑏𝑓 ∀𝑖 ∈ ℐ (2.39)

𝑠𝑖 =
∑︁
𝑏𝑓∈ℬ𝑓

∑︁
𝑏𝑠∈ℬ𝑠

𝜆𝑖𝑏𝑓 𝑏𝑠𝑏𝑠 ∀𝑖 ∈ ℐ (2.40)

𝑞𝑖 ≤
∑︁
𝑏𝑓∈ℬ𝑓

∑︁
𝑏𝑠∈ℬ𝑠

𝜆𝑖𝑏𝑓 𝑏𝑠𝛾𝑖(𝑏𝑓 )
𝑢(𝑏𝑠)

𝑣 ∀𝑖 ∈ ℐ (2.41)

∑︁
𝑏𝑓∈ℬ𝑓

∑︁
𝑏𝑠∈ℬ𝑠

𝜆𝑖𝑏𝑓 𝑏𝑠 = 1 ∀𝑖 ∈ ℐ (2.42)

𝜆𝑖𝑏𝑓 𝑏𝑠 ≤
∑︁

𝑡∈𝒯𝑏𝑓 𝑏𝑠

𝜁 𝑖𝑡 ∀𝑏𝑓 ∈ ℬ𝑓 ,∀𝑏𝑠 ∈ ℬ𝑠,∀𝑖 ∈ ℐ (2.43)

∑︁
𝑡∈𝒯

𝜁 𝑖𝑡 = 1 ∀𝑖 ∈ ℐ (2.44)

𝜆𝑖𝑏𝑓 𝑏𝑠 ≥ 0 ∀𝑏𝑓 ∈ ℬ𝑓 ,∀𝑏𝑠 ∈ ℬ𝑠,∀𝑖 ∈ ℐ (2.45)

𝜁 𝑖𝑡 ∈ {0, 1} ∀𝑡 ∈ 𝒯 ,∀𝑖 ∈ ℐ (2.46)
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Logarithmic branching convex combination (LOG).

Let Γ𝑓 and Γ𝑠 be two sets of intervals partitioning [0, 𝑓 ] and [0, 𝑠], respectively, such

that |Γ𝑓 | and |Γ𝑓 | are powers of two. Let ℬ𝑓 and ℬ𝑠 be the corresponding breakpoints.

This discretization again partitions Ω𝑖 into a grid of rectangles. Each rectangle is then

divided into two triangles, using Union Jack triangulation. This partition strategy

allows an effective branching scheme that first selects a rectangle by applying SOS2

branching on the two dimensions separately, and then selects one of the two triangles

inside the rectangle by forbidding one of the two non-shared vertices.

We define a SOS2 compatible function Λ to map each set of intervals into bi-

nary vectors of length log2(|Γ𝑓 |) and log2(|Γ𝑠|), that is, Λ : Γ𝑓 −→ {0, 1}log2(|Γ𝑓 |) and

Λ : Γ𝑠 −→ {0, 1}log2(|Γ𝑠|). SOS2 compatible functions are such that adjacent inter-

vals only differ by one element, according to the gray code property. We label as

𝑙𝑓 = 1, · · · , log2(|Γ𝑓 |) (resp. 𝑙𝑠 = 1, · · · , log2(|Γ𝑠|)) the elements of the binary codes.

We define ℬ+
𝑓 (𝑙𝑓 ,Λ), ℬ0

𝑓 (𝑙𝑓 ,Λ), ℬ+
𝑠 (𝑙𝑠,Λ) and ℬ0

𝑠(𝑙𝑠,Λ) to represent the subsets of

breakpoints whose adjacent intervals have the 𝑙𝑓 binary digit equal to 1 or 0. We fur-

ther define ℬ𝑒𝑣𝑒𝑛𝑓 and ℬ𝑜𝑑𝑑𝑓 (resp. ℬ𝑒𝑣𝑒𝑛𝑠 and ℬ𝑜𝑑𝑑𝑠 ) to include even and odd breakpoints,

respectively.

We introduce auxiliary SOS2 variables 𝜆𝑖𝑏𝑓 𝑏𝑠 defined over the set of vertices (𝑏𝑓 , 𝑏𝑠) ∈

ℬ𝑓 × ℬ𝑠 and representing the weights in the convex combination. We also introduce

auxiliary binary variables 𝜂𝑖𝑙𝑓 , 𝜂
𝑖
𝑙𝑠

and 𝜉𝑖 to implement the branching scheme.

We then replace the nonlinear constraint (Equation (2.11)) with the following

linear constraints.
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𝑓𝑖 =
∑︁
𝑏𝑓∈ℬ𝑓

∑︁
𝑏𝑠∈ℬ𝑠

𝜆𝑖𝑏𝑓 𝑏𝑠𝑏𝑓 ∀𝑖 ∈ ℐ (2.47)

𝑠𝑖 =
∑︁
𝑏𝑓∈ℬ𝑓

∑︁
𝑏𝑠∈ℬ𝑠

𝜆𝑖𝑏𝑓 𝑏𝑠𝑏𝑠 ∀𝑖 ∈ ℐ (2.48)

𝑞𝑖 ≤
∑︁
𝑏𝑓∈ℬ𝑓

∑︁
𝑏𝑠∈ℬ𝑠

𝜆𝑖𝑏𝑓 𝑏𝑠𝛾𝑖(𝑏𝑓 )
𝑢(𝑏𝑠)

𝑣 ∀𝑖 ∈ ℐ (2.49)

∑︁
𝑏𝑓∈ℬ𝑓

∑︁
𝑏𝑠∈ℬ𝑠

𝜆𝑖𝑏𝑓 𝑏𝑠 = 1 ∀𝑖 ∈ ℐ (2.50)

∑︁
𝑏𝑓∈ℬ+

𝑓 (𝑙𝑓 ,Λ)

∑︁
𝑏𝑠∈ℬ𝑠

𝜆𝑖𝑏𝑓 𝑏𝑠 ≤ 𝜂𝑖𝑙𝑓 ∀𝑙𝑓 = 1, · · · , log2(|Γ𝑓 |),∀𝑖 ∈ ℐ (2.51)

∑︁
𝑏𝑓∈ℬ0

𝑓 (𝑙𝑓 ,Λ)

∑︁
𝑏𝑠∈ℬ𝑠

𝜆𝑖𝑏𝑓 𝑏𝑠 ≤ 1− 𝜂𝑖𝑙𝑓 ∀𝑙𝑓 = 1, · · · , log2(|Γ𝑓 |),∀𝑖 ∈ ℐ (2.52)

∑︁
𝑏𝑓∈ℬ𝑓

∑︁
𝑏𝑠∈ℬ+

𝑠 (𝑙𝑠,Λ)

𝜆𝑖𝑏𝑓 𝑏𝑠 ≤ 𝜂𝑖𝑙𝑠 ∀𝑙𝑠 = 1, · · · , log2(|Γ𝑠|),∀𝑖 ∈ ℐ (2.53)

∑︁
𝑏𝑓∈ℬ𝑓

∑︁
𝑏𝑠∈ℬ0

𝑠(𝑙𝑠,Λ)

𝜆𝑖𝑏𝑓 𝑏𝑠 ≤ 1− 𝜂𝑖𝑙𝑠 ∀𝑙𝑠 = 1, · · · , log2(|Γ𝑠|), ∀𝑖 ∈ ℐ (2.54)

∑︁
𝑏𝑓∈ℬ𝑒𝑣𝑒𝑛𝑓

∑︁
𝑏𝑠∈ℬ𝑜𝑑𝑑𝑠

𝜆𝑖𝑏𝑓 𝑏𝑠 ≤ 𝜉𝑖 ∀𝑖 ∈ ℐ (2.55)

∑︁
𝑏𝑓∈ℬ𝑜𝑑𝑑𝑓

∑︁
𝑏𝑠∈ℬ𝑒𝑣𝑒𝑛𝑠

𝜆𝑖𝑏𝑓 𝑏𝑠 ≤ 1− 𝜉𝑖 ∀𝑖 ∈ ℐ (2.56)

𝜆𝑖𝑏𝑓 𝑏𝑠 ≥ 0 ∀𝑏𝑓 ∈ ℬ𝑓 ,∀𝑏𝑠 ∈ ℬ𝑠,∀𝑖 ∈ ℐ (2.57)

𝜂𝑖𝑙𝑓 , 𝜂
𝑖
𝑙𝑠 ∈ {0, 1} ∀𝑙𝑓 = 1, · · · , log2(|Γ𝑓 |),∀𝑙𝑠 = 1, · · · , log2(|Γ𝑠|) (2.58)

𝜉𝑖 ∈ {0, 1} ∀𝑖 ∈ ℐ (2.59)
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Chapter 3

Integrated Flight Scheduling and

Fleet Assignment with Improved

Supply-demand Interactions

3.1 Introduction

The airline industry is a major economic force in today’s global economy, not only

for its direct economic impact but also for its great multiplicative effect on interna-

tional business and tourism. Alongside the capital-intensive nature and large-scale

operations, the many challenges faced by airlines to keep up with the increasingly

competitive and fast-changing environment make the development of effective plan-

ning processes of outmost importance. In this regard, grounding on accurate forecasts

of air travel demand is crucial. Starting from the longest-term strategic decisions to

daily schedules, relying on proper traffic estimates is key to make optimal decisions

at any stage of the planning process, and eventually deliver airlines’ success.

Traditionally, an airline planning process goes through several sequential steps

(Belobaba et al. 2015, Dong et al. 2016, Jamili 2017). Once the first phase—i.e.

route development—has been addressed and potential city-pairs to serve have been

decided, the next two steps are flight scheduling and fleet assignment. Flight schedul-
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ing involves determining the itineraries to be operated in terms of frequency and

timetable (Vaze and Barnhart 2012), while fleet assignment is about assigning ap-

propriate fleet types to each flight leg such that seat capacity optimally matches the

expected demand, subject to resource balance constraints in the network. Following

the fleet assignment, aircraft rotation and crew scheduling problems are addressed

(see, e.g., Barnhart et al. (2003b) and Gronkvist (2005), respectively, for a review).

Owing to the complexity and large scale of many real-world airline operations,

solving the entire airline planning process simultaneously is unfeasible and not neces-

sarily desirable in light of the different timeframes and levels of detail required by the

respective planning steps. Accordingly, separate models have been proposed for the

respective sub-problems; however, although such models are more practically solvable,

they do not fully capture the interdependencies across planning decisions. One of the

most complex interactions to model is the relationship between demand and supply.

To tackle this issue, researchers have been developing integrated flight scheduling and

fleet assignment models in which demand-supply interactions are explicitly taken into

account.

The motivation for this research comes from the fact that current approaches

focus primarily on the redistribution of passenger flows among competing itineraries

(demand allocation) but tend to overlook the potential demand stimulation effects

that result from improving the air service provision in city-pair markets (demand

generation), or treat them using simplified aggregate models. As a result, such models

are likely to work well in situations in which schedule changes are limited and markets

are dense, while potentially failing to assess realistic development opportunities in

thinner markets or in general situations in which the demand is significantly induced

rather than captured from the existing competition.

This paper’s main contribution is the integration of a hierarchical demand model

based on a nested logit formulation into a flight scheduling and fleet assignment

model, which results in a new flexible, utility-based nonlinear mixed-integer formu-

lation that consistently incorporates the combined effect of demand generation and

allocation on individual itineraries managed by a given airline. The solvability of the
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integrated model for mid-sized hub-and-spoke networks is demonstrated by means of

a comprehensive computational study and the managerial insights that can be de-

rived from its application are illustrated through a case study involving the domestic

and international network of the Italian flag carrier Alitalia based at Milan Linate

airport.

The remainder of this paper is organized as follows. In Section 3.2, we explore

the relevant literature and clarify the contribution of this work. Section 3.3 describes

the model formulation, in which we first present the demand model and then discuss

how to embed it effectively into the optimization model. Section 3.4 provides the

results of the computational experiments, and Section 3.5 describes the application

of the model to the Alitalia network. Finally, in Section 3.6 we conclude the paper

and discuss directions for future research.

3.2 Literature Review

3.2.1 Integrated flight scheduling and fleet assignment models

Flight scheduling and fleet assignment have received increasing attention in the op-

timization literature owing to their high degree of impact on airline profits. Models

of increasing complexity have been developed to embrace the peculiarities of airline

networks, and a variety of solution algorithms have been proposed to accommodate

the large scale of real-world airline operations. Starting from basic leg-based fleet

assignment models (FAM), enhanced models have achieved a greater realism and

wider acceptance among airlines by considering additional features of real-world air-

line networks (for a detailed overview, see Sherali et al. (2006)) such as itinerary-based

demand (IFAM) (Barnhart et al. 2002), flexible departure time (Levin 1971, Rexing

et al. 2000), and re-fleeting mechanisms (Sherali et al. 2005). More recently, re-

searchers have focused on the development of integrated flight scheduling and fleet

assignment models (Lohatepanont and Barnhart 2004, Barnhart et al. 2009, Sherali

et al. 2010, 2013, Pita et al. 2013, 2014, Dong et al. 2016) that involve the simultane-
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ous selection of flight legs to be included in the schedule and the allocation of aircraft

types to these legs. The primary added value of using integrated models rather than

following a sequential approach is that integrated modeling allows for the explicit

consideration of supply-demand interactions, thus enabling superior decision making

and improved schedule plans. Because scheduling and fleeting decisions take demand

as a main input while demand is directly affected by the resulting network capacity

(supply), separating market size estimation and seat capacity allocation fails to fully

capture the reciprocal relationship between demand and supply, potentially resulting

in sub-optimal decisions.

3.2.2 Supply-demand interactions

Generally speaking, there are two primary types of supply-demand interactions, both

of which should be considered in airline planning. First, the overall level of air trans-

port supply provided in an air transport market, i.e., an origin-destination (O&D)

city pair, affects the total number of people willing to travel in that market (demand

generation). In addition to the exogenous strength of the socio-economic attraction

factors between two regions, the level of transportation provided plays a key enabling

role in generating passenger traffic (Grosche et al. 2007, Adler et al. 2018, Boonekamp

et al. 2018). Second, the specific service attributes of itineraries that an airline makes

available in a given market affect the redistribution of passengers and eventually de-

termine the portion of the market that the airline can capture from the competition

(demand allocation) (Coldren et al. 2003).

Demand Allocation

Most previous contributions in this field have focused primarily on the demand

allocation problem, as it is more sensitive to planning decisions. The typical approach

has been to rely on a spill-and-recapture process (Lohatepanont and Barnhart 2004,

Sherali et al. 2010, 2013) under which a fixed and exogenous demand is assumed for

each itinerary and recapture rates, reflecting the likelihood that a passenger whose

preferred itinerary is capacitated will pick an alternative one (see Kniker 1998), are
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used to redirect “spilled” passenger flows. Advancements of this approach have in-

volved the definition of unconstrained demand at the market level and the simul-

taneous estimation of an airline’s market share as an “S-shaped” function of flight

frequency (Vaze and Barnhart 2012, Pita et al. 2013).

Recently, researchers have been relying on discrete choice modeling to circumvent

the primary limitations of the spill-and-recapture approach and to improve the degree

of behavioral realism in the allocation of passengers over available itineraries. The

theory of discrete choice modeling is rooted in random utility theory, in which passen-

gers select their preferred itinerary in a given market according to the relative utilities

provided by all available itineraries. In the air transport field, a number of studies

have been conducted to investigate the factors that affect the itinerary choices of

passengers, highlighting the important role played by connectivity-related attributes

such as frequency, flight and connecting time, and the number of flight legs as factors

that represent, along with airfares and departure times, the disutility of indirect vs.

nonstop itineraries (see, e.g., Koppelman et al. 2008, Lurkin et al. 2017).

Although discrete choice models have often been used to support other stages of

the planning process – e.g. revenue management (Talluri and van Ryzin 2004) –, the

first contribution involving the application of discrete choice modeling to integrated

flight scheduling and fleet assignment was Atasoy et al. (2014). In their model,

scheduling, fleeting and pricing decisions are optimized altogether in a monopoly

framework where passengers are distributed over alternative itineraries based on a

multinomial logit (MNL) formulation. The result is a mixed-integer nonlinear model

that significantly improves the treatment of supply-demand interactions, but is not

applicable to realistic instances because of intractability.

Building on this limitation, Dong et al. (2016) developed a model in which the

nonlinear MNL function is approximated by a set of linear constraints. This makes

the model more tractable and solvable for larger instances and, although this linear

representation is only equivalent to the MNL formulation in the absence of capacity

constraints, it ensures that itinerary market shares are proportional to the attractive-

ness value and produces substitution patterns among itineraries that closely follow
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the MNL formulation. Despite being very practical, this model suffers from the main

limitation of MNL formulations, i.e., the Independence from Irrelevant Alternatives

(IIA) property, which implies that the odds ratios between pairs of alternatives are

independent of the presence of other alternatives and that the relative preferences be-

tween two alternatives are not affected by modifications of the choice set. The MNL

formulation assumes independence between error terms and therefore fails to cap-

ture the correlation between alternatives, potentially yielding unrealistic substitution

patterns.

From the literature on discrete choice, a typical approach to address the IIA

property is to rely on nested logit formulations. Following this approach, Cadarso

et al. (2017) developed a demand allocation model that accommodates the presence of

intermodal competition and properly captures the patterns of correlation between and

within airline types (FCC vs LCC). In a recent paper, Wei et al. (2020) referring to the

optimization of integrated timetable and fleet assignment, presented an alternative

approach to systematically tackling the IIA issue in the context of passenger itinerary

choice based on a generalized attraction model (GAM) (Gallego et al. 2015).

Demand Generation

While the modeling of passenger distribution has been the subject of a number

of studies, the systematic inclusion of trip generation dynamics into flight scheduling

and fleet assignment models has been given much less attention. In most approaches,

market demand is not allowed to change with the allocation of capacity and/or vari-

ations in the level of service in a specific market, thereby reinforcing the underlying

assumption that leg selections do not affect market demand (Sherali et al. 2010).

Lohatepanont and Barnhart (2004) made the first contribution focusing on the

importance of accounting for demand generation within flight scheduling and fleet

assignment optimization. In their model, unconstrained demand for each market is

computed using a schedule evaluation model (SEM) assuming that all itineraries are

flown. Demand correction terms are then introduced to account for network effects in

which demand spill is associated with the deletion of each optional itinerary from the

network configuration. Although correction terms could theoretically be estimated by
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running the evaluation package as many times as the number of possible combinations

of flight additions and deletions, this approach is practically unfeasible, and a solution

heuristic was proposed to handle the model.

In the model developed by Pita et al. (2014), demand per market is linearly

adjusted through elasticities to account for changes in the average airfare. This

approach directly encompasses the demand-stimulating effect of lower prices but fails

to account for other factors such as increased frequency and lower travel time and its

effectiveness is conditioned on the ability of the target airline to influence the average

market price.

Models relying on discrete choice for passenger allocation can include a “no-fly

option” to account for the fact that not all potential demand is currently served

(Dong et al. 2016). In an MNL framework, however, choosing not to fly is considered

to be equivalent to choosing among alternative itineraries and, consequently, the

problem of IIA is exacerbated. To clarify, let us consider an aviation version of the

blue-bus/red-bus paradox, in which there are two itineraries—A and B (which are

nearly identical) —and the current market is split as follows: 20% itinerary A, 20%

itinerary B, and 60% no-fly option. If itinerary A is dropped from the choice set,

according to the MNL formulation 5% of passengers would re-route to itinerary B

while 15% would stop flying, maintaining a constant odds ratio between B and the

no-fly option. However, given the similarity between itineraries A and B, it would

be more reasonable to expect that most of itinerary A’s passengers would opt for

itinerary B rather than stop flying.

An improved approach to addressing the trip generation problem was presented

in Cadarso et al. (2017), who estimated the overall market demand using a multi-

plicative model as a function of the average transport price, travel time, and total

frequency. As these attributes are the same decision variables used by the model

that determines airline choices in a given market (allocation model), the two steps

were combined and solved simultaneously. This model was applied in the context of

frequency planning and approximate timetable development on a pure hub-and-spoke

network and operates under the assumptions that a unique route is provided by the
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airline in each city-pair market such that average attributes (price and total travel

time) can be considered for each time period.

3.2.3 Paper contributions

The aim of this paper is to develop an integrated optimization framework that consis-

tently accounts for supply-demand interactions—both demand generation and alloca-

tion—within itinerary-based integrated flight scheduling and fleet assignment models.

Whereas previous works focused primarily on demand allocation and considered ag-

gregate models to estimate variations in total market demand, in our approach the

utility is defined at the itinerary level to simultaneously model competition among air

travel itineraries and improve the assessment of air trip generation. This allows us to

flexibly consider situations in which an airline provides different routes in a certain

market (e.g., multi-hub systems, hub bypass flights) and appraise the contribution of

specific itinerary attributes to demand generation. In detail, this paper makes the fol-

lowing contributions. First, we develop a mixed-integer programming model for flight

scheduling and fleet assignment, which incorporates a utility-based formulation for

air travel demand in a novel way. Specifically, we leverage an aggregate nested logit

formulation to enable a better and more realistic treatment of supply and demand

interactions by considering both demand allocation and generation dynamics simul-

taneously. Second, we propose and validate a tailored piecewise linearization scheme

based on least squared fit to effectively approximate the nonlinear demand functions.

Third, we investigate the applicability of the proposed modeling and algorithmic

framework by means of computational experiments involving randomly-generated re-

alistic problem instances of different sizes. The results reveal that the model can

handle mid-size networks and provide useful insights for larger cases in reasonable

time. Fourth, we illustrate the benefits and practical insights that can be derived

from the application of the proposed approach for the domestic and international

networks of Alitalia (AZ) based on Milan-Linate (LIN) airport. We show how the

model can deliver significant profit increases compared to the baseline scenario and

better unveil opportunities for demand stimulation compared to an inelastic market
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demand scenario that replicates the use of basic MNL models.

3.3 Model Formulation

In this section, we present the formulation of the proposed Integrated demand Gener-

ation and Allocation flight Scheduling and Fleet Assignment Model (IGASFAM). In

Section 3.3.1, we describe the nested logit formulation used to represent itinerary and

total market demand. In Section 3.3.2, we present the notation and formulation of

the optimization model, along with the underlying assumptions. In Section 3.3.3, we

illustrate the the piecewise linearization scheme implemented to address the nonlin-

earities in the model.

3.3.1 Demand model

The demand model is formulated as an aggregate nested logit model inspired by

the works of Wei and Hansen (2005) and Hsiao and Hansen (2011). The nesting

structure is based on the separate grouping of air travel itineraries and the non-air

alternative, i.e., the “outside good,” to provide a choice condition that comprehends

both the no-travel option and traveling via other modes (Berry and Jia 2010). This

pursues the twofold aim of overcoming the primary shortcomings of the IIA property1

in the context of air transport and making demand generation elastic by dynamically

incorporating the composite utility provided by air travel itineraries into the trip

generation stage.

For each market, the saturated demand, given as the theoretical maximum num-

ber of trips that can be expected in a given market (city-pair) if there were no travel

impedance, is first broken down into the non-air alternative and the air travel nest,

which is further decomposed into the different air travel itineraries available to pas-

sengers. As such, this nested logit formulation simultaneously describes competition

across itineraries (demand allocation) and their composite contribution to air travel
1Here, a general formulation with only two nesting levels is presented. However, itineraries can be

further grouped to allow for more flexible substitution patterns, for instance, between single airlines,
alliances, or legacy and low-cost carriers.
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utility, which in turn competes with the non-air alternative to capture a higher portion

of demand (demand generation). Following the customary procedure (Berry 1994),

the utility of the outside good is normalized to zero, 𝑉𝑛𝑜𝑛−𝑎𝑖𝑟 = 0, while the composite

utility of the air travel nest can be generally stated as the sum of a market-specific

component (𝛿) and the compound utility from lower nests, here represented by the

inclusive value (𝐼𝑉 ), i.e., 𝑉𝑎𝑖𝑟 = 𝛿 + 𝜃𝐼𝑉 , where 𝐼𝑉 = log
∑︀

𝑗∈𝐼 𝑒
𝑉𝑗/𝜃, 𝐼 is the set of

itineraries available, and 𝑉𝑗 is the utility of itinerary 𝑗. The nesting coefficient (𝜃)

represents the degree of inter- and intra-correlation between and within nests, respec-

tively. In practical terms, 𝜃 governs substitution of air travel for the outside good,

thereby quantifying the extent to which changes in air transport supply affect total

air travel demand. For a given market, let 𝑄 be the total market demand for air travel

and 𝑞𝑖 be the demand for itinerary 𝑖. Consistent with the nested logit formulation, 𝑄

and 𝑞𝑖 can be synthetically expressed as follows:

𝑄 =
𝐷

1 + 𝛾𝑒𝑉 −𝜃
𝑡𝑜𝑡

(3.1)

𝑞 =
𝐷

𝛾𝑒𝑉 1−𝜃
𝑡𝑜𝑡 + 𝑒𝑉𝑡𝑜𝑡

𝑒𝑉𝑖 (3.2)

where 𝐷 is the market saturated demand, 𝑒𝑉𝑡𝑜𝑡 =
∑︀

𝑗∈𝐼 𝑒
𝑉𝑗/𝜃, 𝑒𝑉𝑖 = 𝑒𝑉𝑖/𝜃, and

𝛾 = 1/𝑒𝛿. In Section 3.5.1, we empirically estimate 𝐷 as the geometric mean be-

tween the populations at the market endpoints multiplied by a proportionality factor

and consider a linear-in-parameters itinerary utility depending on key supply-side

attributes, including flight and connecting time, type of service (nonstop vs con-

necting itinerary), and average price. Functions describing 𝑄 and 𝑞𝑖 have desirable

characteristics. As 𝜃 is bounded between zero and one for consistency with the utility-

maximizing theory and 𝛾 is strictly positive, 𝑄 increases with 𝑒𝑉𝑡𝑜𝑡 and is concave

downward, while 𝑞𝑖 is a monotonic decreasing function of 𝑒𝑉𝑡𝑜𝑡 (Figure 3-1). It fol-

lows that the demand stimulation effect resulting from improving air transport (by,

for instance, lowering prices or increasing capacity) will be lower if a market is already

well-served and less than proportional so that itinerary demand still decreases but less
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sharply than if induced demand is ignored. Through the estimation of market-specific

parameters, different degrees of trip generation elastic response can be accommodated

to account for the specificities of each market and implicitly consider the intensity of

intermodal competition2.

Figure 3-1: Itinerary demand function 𝑞𝑖 (left) and total market demand 𝑄 (right)
with 𝐷 = 1, 𝑒𝑉𝑖 = 1, and 𝛾 = 1.

3.3.2 Optimization model

The optimization model is formulated as a multi-commodity network flow model in

which commodities are represented as fleet types to be allocated on a time-space

network (Figure 3-2). Similar to Dong et al. (2016), the time-space network is com-

posed of activity nodes, which represent events, i.e., flight arrivals or departures at a

certain airport, connected by arcs. Arcs can be of two types: flight arcs representing

potential flights that connect activity nodes at different airports; and ground arcs,

which link nodes at the same location, representing aircraft stopped at a specific air-

port. Feasible travel alternatives for passengers are represented by itineraries, which

either coincide with single flight arcs (nonstop itineraries) or comprise a combination

of flight arcs (connecting itineraries).

2While it would be desirable to have explicit data on alternative transport modes for each market,
these data are typically difficult to gather systematically and airlines themselves often lack this infor-
mation on a full network scale. Hence, despite the inherent limitation of assessing demand variations
from changes in specific attributes of competing modes, this modeling approach has the practical
advantage of consistently reflecting the as-is intermodal competition through market specific demand
curves.
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Figure 3-2: Time-space network representation of a simple A-H-B hub and spoke
network.

Before introducing our model notation, we clarify the main assumptions on which

the model is based:

∙ Competition: Demand is computed according to the aggregate nested logit

model outlined in Section 3.3.1. As such, static competition is directly con-

sidered in the estimation of demand, while we ignore the strategic reaction of

competing airlines. We assume that the characteristics of the competition, such

as the schedule and average price, are known and fixed. This is in line with the

literature on flight scheduling and fleet assignment due to the focus on a single

airline and large-scale networks that encompass several markets. To address

this issue, an iterative approach to investigate the competitive dynamics in a

game-theoretical fashion could be implemented (see, e.g., Adler et al. 2010,

Cadarso et al. 2017), but this is out of the scope of this paper.

∙ Pricing : For each itinerary, we assume that average prices for different passenger

types are given. Some researchers have tried to endogenize pricing decisions into

flight scheduling and fleet assignment models (see, e.g., Atasoy et al. 2014, Dong

et al. 2016). However, this leads to severe tractability issues. In addition, given

the tactical nature of IGASFAM, taking itinerary prices as exogenous inputs is

reasonable and widely accepted in the literature, as it indeed reflects current
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practice.

∙ Time-of-day preferences : In our model, the consideration of demand patterns

throughout the day is not achieved by dividing the planning horizon into de-

mand periods (as is done, for example, by Barnhart et al. (2002), and Pita

et al. (2013, 2014)). As formulated, the IGASFAM can accommodate different

demand distributions by augmenting the utility function to include terms that

capture time-of-day preferences, by using, for example, temporal dummies (Col-

dren et al. 2003), continuous departure time of day preference curves (Lurkin

et al. 2017), or schedule delay functions (Koppelman et al. 2008).

∙ Operational considerations : We consider one single day of operations and as-

sume repeatability. Continuity in the network is ensured by introducing a “wrap-

around arc” that connects the last and first events at each airport. Using a

single day of operations is in line with the empirical setting (see Section 3.5)

and the definition of utilities at the itinerary level, but extending the model to

other time horizons would be rather straightforward. Slot and other airport-

specific constraints are explicitly modeled by defining a set of airport-period of

time combinations characterized by a maximum number of aircraft movements.

Eventually, turnaround time and other operational considerations are directly

accounted for in the structuring of the multicommodity time-space network.

Next, we introduce the model notation and formulate the IGASFAM mathemati-

cally.

Decision Variables

𝑥𝑎𝑓 ∈ {0, 1} =1 if aircraft type 𝑎 is assigned to flight arc 𝑓 , = 0 otherwise
𝑦𝑎𝑔 ∈ N+ the flow value of aircraft type 𝑎 through ground arc 𝑔
𝑘𝑖 itinerary status variable (1 if itinerary 𝑖 is operated, 0 otherwise)
𝑒𝑉 𝑡𝑜𝑡

𝑚ℎ total exp-utility in market 𝑚 for passenger type ℎ
𝑑𝑚ℎ equivalent demand in market 𝑚 for passenger type ℎ
𝜙𝑖ℎ the flow of passengers of type ℎ accommodated on itinerary 𝑖
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Inputs: sets and parameters

𝑇 set of event times indexed by 𝑡
𝐴𝑇 set of fleet types indexed by 𝑎
𝑁 set of activity nodes indexed by 𝑛
𝑀 set of markets (city-pairs) indexed by 𝑚
𝐹 set of flight arcs indexed by 𝑓
𝐺 set of ground arcs (including wrap-around arcs) indexed by 𝑔
𝐼 set of itineraries indexed by 𝑖
𝐻 set of passenger types indexed by ℎ
𝑆 set of slots indexed by 𝑠
𝐹𝑚 set of mandatory flight arcs indexed by 𝑓
𝑁𝑜 set of activity nodes belonging to airport 𝑜
𝐶𝐿𝑓 set of flight arcs crossing the count line indexed by 𝑓
𝐶𝐿𝑔 set of ground arcs crossing the count line indexed by 𝑔
𝐹 𝑖𝑛
𝑛 set of inbound flight arcs to activity node 𝑛 indexed by 𝑓
𝐹 𝑜𝑢𝑡
𝑛 set of outbound flight arcs from activity node 𝑛 indexed by 𝑓
𝐺𝑖𝑛
𝑛 set of inbound ground arcs to activity node 𝑛 indexed by 𝑔

𝐺𝑜𝑢𝑡
𝑛 set of outbound ground arcs from activity node 𝑛 indexed by 𝑔

𝐼𝑚 set of itineraries in market 𝑚 indexed by 𝑖
𝐹𝑖 set of flight arcs belonging to itinerary 𝑖 indexed by 𝑓
𝐼𝑓 set of itineraries requiring flight arc 𝑓 indexed by 𝑖
𝐹𝑠 set of flight arcs using slot 𝑠
𝑓𝑙𝑒𝑒𝑡𝑎 fleet size by aircraft type
𝑐𝑎𝑝𝑎 adjusted seat capacity by aircraft type accounting for a maximum

allowable load factor
𝑛𝑙𝑒𝑔𝑠𝑖 number of flight legs in itinerary 𝑖
𝑒𝑉𝑖ℎ exp-utility of itinerary 𝑖 for passenger type ℎ
𝑒𝑉 𝑓𝑖𝑥

𝑚ℎ exogeneous exp-utility provided by competing airlines in market 𝑚
for passenger type ℎ

𝐷𝑚ℎ saturated demand in market 𝑚 for passenger type ℎ
𝜃𝑚ℎ nesting coefficient in market 𝑚 for passenger type ℎ
𝛾𝑚ℎ market-specific constant for market 𝑚 and passenger type ℎ
𝑝𝑖ℎ average ticket price on itinerary 𝑖 for passenger type ℎ
𝑐𝑜𝑝𝑎𝑓 operating costs for an aircraft of type 𝑎 serving flight arc 𝑓
𝑐𝑝𝑎𝑥𝑓 per passenger airport costs for flight arc 𝑓
𝑐𝑚𝑜𝑣𝑎𝑓 per movement airport costs for flight arc 𝑓
𝑚𝑜𝑣𝑠 slot capacity, defined as the maximum number of movements that

can be accommodated in slot 𝑠
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Mathematical formulation

max
∑︁
𝑖∈𝐼

∑︁
ℎ∈𝐻

𝜙𝑖ℎ𝑝𝑖ℎ −
∑︁
𝑓∈𝐹

∑︁
𝑖∈𝐼𝑓

∑︁
ℎ∈𝐻

𝑐𝑝𝑎𝑥𝑓 𝜙𝑖ℎ −
∑︁
𝑎∈𝐴𝑇

∑︁
𝑓∈𝐹

(𝑐𝑜𝑝𝑎𝑓 + 𝑐𝑚𝑜𝑣𝑎𝑓 )𝑥𝑎𝑓 (3.3)

∑︁
𝑓∈𝐹 𝑖𝑛𝑛

𝑥𝑎𝑓 +
∑︁
𝑔∈𝐺𝑖𝑛𝑛

𝑦𝑎𝑔 =
∑︁

𝑓∈𝐹 𝑜𝑢𝑡𝑛

𝑥𝑎𝑓 +
∑︁
𝑔∈𝐺𝑜𝑢𝑡𝑛

𝑦𝑎𝑔 ∀𝑛 ∈ 𝑁, ∀𝑎 ∈ 𝐴𝑇 (3.4)

∑︁
𝑓∈𝐶𝐿𝑓

𝑥𝑎𝑓 +
∑︁
𝑔∈𝐶𝐿𝑔

𝑦𝑎𝑔 ≤ 𝑓𝑙𝑒𝑒𝑡𝑎 ∀𝑎 ∈ 𝐴𝑇 (3.5)

∑︁
𝑎∈𝐴𝑇

𝑥𝑎𝑓 = 1 ∀𝑓 ∈ 𝐹𝑚 (3.6)

∑︁
𝑎∈𝐴𝑇

𝑥𝑎𝑓 ≤ 1 ∀𝑓 ∈ 𝐹 𝑜 (3.7)

𝑘𝑖 −
∑︁
𝑎∈𝐴𝑇

𝑥𝑎𝑓 ≤ 0 ∀𝑓 ∈ 𝐹𝑖,∀𝑖 ∈ 𝐼 (3.8)

𝑘𝑖 −
∑︁
𝑎∈𝐴𝑇

∑︁
𝑓∈𝐹𝑖

𝑥𝑎𝑓 ≥ 1− 𝑛𝑙𝑒𝑔𝑠𝑖 ∀𝑖 ∈ 𝐼 (3.9)

𝑒𝑉 𝑡𝑜𝑡
𝑚ℎ = 𝑒𝑉 𝑓𝑖𝑥

𝑚ℎ +
∑︁
𝑖∈𝐼𝑚

𝑒𝑉𝑖ℎ𝑘𝑖 ∀𝑚 ∈𝑀,∀ℎ ∈ 𝐻 (3.10)

𝑑𝑚ℎ = 𝐷𝑚ℎ/[𝛾𝑚ℎ(𝑒𝑉
𝑡𝑜𝑡
𝑚ℎ)1−𝜃𝑚ℎ + 𝑒𝑉 𝑡𝑜𝑡

𝑚ℎ] ∀𝑚 ∈𝑀,∀ℎ ∈ 𝐻 (3.11)

𝜙𝑖ℎ ≤ 𝑑𝑚ℎ𝑒𝑉𝑖ℎ ∀𝑖 ∈ 𝐼,∀ℎ ∈ 𝐻 (3.12)∑︁
ℎ∈𝐻

∑︁
𝑖∈𝐼𝑓

𝜙𝑖ℎ ≤
∑︁
𝑎∈𝐴𝑇

𝑥𝑎𝑓𝑐𝑎𝑝𝑎 ∀𝑓 ∈ 𝐹 (3.13)

∑︁
𝑓∈𝐹

∑︁
𝑎∈𝐴𝑇

𝑥𝑎𝑓 ≤ 𝑚𝑜𝑣𝑠 ∀𝑠 ∈ 𝑆 (3.14)

𝑥𝑎𝑓 ∈ {0, 1} ∀𝑎 ∈ 𝐴𝑇,∀𝑓 ∈ 𝐹 (3.15)

𝑦𝑎𝑔 ∈ N+ ∀𝑎 ∈ 𝐴𝑇,∀𝑔 ∈ 𝐺 (3.16)

𝑘𝑖 ∈ R+ ∀𝑖 ∈ 𝐼 (3.17)

𝑒𝑉 𝑡𝑜𝑡
𝑚ℎ ∈ R+, 𝑑𝑚ℎ ∈ R+ ∀𝑚 ∈𝑀, ∀ℎ ∈ 𝐻 (3.18)

𝜙𝑖ℎ ∈ R+, ∀𝑖 ∈ 𝐼,∀ℎ ∈ 𝐻 (3.19)
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The objective function (3.3) maximizes the expected operating profits, i.e., the

difference between airline revenues and costs. The revenue term is the product of

the average fare per itinerary and the number of passengers accommodated in each

itinerary. Costs are split into three main categories: variable flight costs proportional

to the number of passengers (airport passenger fees), fixed flight costs (per-movement

airport fees), and direct operating flight costs dependent on the aircraft type being

used. Constraints (3.4)–(3.5) are basic network constraints that ensure flow balance

and resource availability, respectively. Constraints (3.4) force the number of depar-

tures and arrivals per aircraft type at any activity node to be equal, while constraints

(3.5) count the aircraft flows crossing the count line and force this value to be lower

than the actual per-type aircraft availability. Given the presence of wrapped-around

arcs, Constraints (3.4)–(3.5) suffice to ensure schedule repeatability within the plan-

ning period. Constraints (3.6)–(3.7) are coverage constraints ensuring that flight

arcs are flown by at most one aircraft; specifically, mandatory flights must be flown

(3.6), while optional ones may or may not be flown (3.7). Constraints (3.8)–(3.9) are

itinerary status constraints under which the itinerary variable 𝑘𝑖 is set equal to one

when itinerary i is operated (3.9), i.e., if all its flight legs are flown; alternatively, if

at least one flight leg is not flown, constraints ((3.8) force 𝑘𝑖 to be equal to zero. The

next constraints (3.10) compute the total exponential utility for each market 𝑒𝑉 𝑡𝑜𝑡
𝑚ℎ,

given by the sum of the exogenous utility 𝑒𝑉 𝑓𝑖𝑥
𝑚ℎ , i.e., the utility provided by competing

airlines, and the endogenous utility, given by the sum of the exp-utilities of activated

itineraries. Constraints (3.11) takes 𝑒𝑉 𝑡𝑜𝑡
𝑚ℎ and compute what we call equivalent de-

mand (𝑑𝑚ℎ), that is, the estimated demand for an itinerary for which exp-utility

equals one in market 𝑚. Constraints (3.11) are nonlinear but can be properly ap-

proximated by piecewise linearization (Figure 3-3a), as explained below. Constraints

(3.12)–(3.13) ensure that the accepted demand on each itinerary does not exceed the

demand estimated by the model (Figure 3-3b) and enforce a capacity constraint under

which the number of total passengers on each flight arc is lower than the allocated

adjusted seat capacity (𝑐𝑎𝑝𝑎) defined as the aircraft nominal seat capacity multiplied

by a maximum allowable load factor to reflect demand uncertainty and the function-

102



Chapter 3. Integrated Flight Scheduling and Fleet Assignment

ing of revenue management systems. Constraints (3.14) enforce that the number of

flights using a given slot does not exceed its capacity. Finally, Equations (3.15)–(3.19)

define the domain of the variables.

Once the model is solved, second-order passenger spill and recapture effects can be

considered by iteratively redistributing spilled demand over activated itineraries ac-

cording to the integrated demand model and dropping capacitated itineraries at each

step, until the unaccommodated demand is zero or (adjusted) capacity is saturated.

This approach follows the intuition that market demand is eventually and simultane-

ously determined by the level of allocated supply. Hence, for a given supply configu-

ration, i.e., a given set of itineraries with their own utility values, recapture rates on

non-activated itineraries should be zero while recapturing on activated itineraries can

be determined using the integrated demand model to consistently represent passen-

gers that will stop traveling because the preferred alternative is no longer available or

will instead re-route to other itineraries. This approach is justified by two main con-

siderations: (1) The demand model underpinning the IGASFAM implicitly considers

capacity; although Q theoretically represents the unconstrained, or true, demand for

air transportation in a given market, it is empirically estimated based on observable

demand (i.e., accommodated passengers including those spilled and recaptured), pro-

viding an estimate of realized demand that partly reflects capacity constraints and

commonly used aircraft. For this reason, recent papers using discrete choice modeling

to represent passenger demand do not consider these second-order spill and recapture

effects (e.g., Dong et al. 2016, Wei et al. 2020); (2) The utility of the no-fly alternative

is likely to be large compared to air travel (Wei and Hansen 2005). From these two

considerations, it follows that recaptured demand will unlikely change the optimal

solution in terms of activated itineraries. Sensitivity analyses were performed to en-

sure that the explicit consideration of spill and recapture in each market separately

never leads to a different optimal solution. We can thus consider spill and recapturing

once the optimization is solved to marginally adjust the passenger figures on activated

itineraries.
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3.3.3 Solution methods

Piecewise linearization

Constraints 3.11 are not linear, thus making the IGASFAM a mixed integer nonlin-

ear problem (MINLP). To solve it, we linearize constraints 3.11 using market-specific

piecewise linear functions. As the IGASFAM assumes different saturation curves for

each market and continuously defined utility functions, using the same piecewise lin-

earization scheme for each O-D pair is not recommended. To improve the accuracy of

the approximation and reduce the computational burden, a domain reduction strat-

egy is adopted and a preprocessing step is performed to optimally define the location

of breakpoints.

For each market and passenger type (subscripts 𝑚 and ℎ omitted), the exogenous

utility 𝑒𝑉𝑓𝑖𝑥 and the set of optional itineraries 𝐼 are known, making it possible to

compute the maximum exponential utility allocated to the market by assuming that

all itineraries are operated, 𝑒𝑉𝑚𝑎𝑥 = 𝑒𝑉𝑓𝑖𝑥 +
∑︀

𝑖∈𝐼 𝑒𝑉𝑖. Therefore, the demand curve

is not to be approximated in its entire domain but can be bounded between these

two values without eliminating any feasible solution (Figure 3-3a). Furthermore, we

can map all possible combinations of itinerary additions by considering the set of

all subsets of 𝐼 (referred to as 𝒫 , indexed by 𝑝) and compute the corresponding

total utility (𝑒𝑉 𝑡𝑜𝑡
𝑝 = 𝑒𝑉𝑓𝑖𝑥 +

∑︀
𝑖∈𝐼𝑝 𝑒𝑉𝑖) and equivalent demand value (𝑑𝑝). Finally,

given the feasible region and the number of linear pieces, the breakpoint locations

are selected to maximize the fit across these points {(𝑒𝑉 𝑡𝑜𝑡
𝑝 , 𝑑𝑝) ∀𝑝 ∈ 𝒫} and thus

minimize the approximation errors.

We now describe the procedure utilized to determine the optimal location of break-

points. Let 𝜂 be the number of breakpoints, which partition the bounded domain into

𝜂−1 segments. For each market, we solve the following bilevel optimization problem:

arg min
b∈ℬ

𝑅𝑆𝑆(b) (3.20)

𝑅𝑆𝑆(b) = min
y∈R𝜂

∑︁
𝑗∈ℒb

∑︁
𝑝∈𝒫𝑗

(𝑑𝑗(𝑒𝑉
𝑡𝑜𝑡
𝑝 , 𝑦𝑗, 𝑦𝑗+1)− 𝑑𝑝)2 (3.21)
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(a) (b)

Figure 3-3: Example of piecewise linearization for the Milan-Rome market in May
2018: (a) Piecewise linearization of constraint (3.11); (b) Itinerary demand for an
average direct itinerary with exp-utility 𝑒𝑉𝑖 (dotted line) and 𝑒𝑉𝑖/2 (dashed line),
respectively, and total market demand (shaded area) as a function of total exp-utility
in the market 𝑒𝑉𝑡𝑜𝑡.

The outer optimization model (Equation 3.20) determines the optimal set of break-

points (on the x-axis), b = (𝑏1, ..., 𝑏𝜂) ∈ ℬ, where ℬ = {(𝑏1, ..., 𝑏𝜂) ∈ R𝜂 : 𝑏1 =

𝑒𝑉𝑓𝑖𝑥, 𝑏𝜂 = 𝑒𝑉𝑚𝑎𝑥, 𝑒𝑉𝑓𝑖𝑥 ≤ 𝑏𝑘 ≤ 𝑒𝑉𝑚𝑎𝑥 ∀ 𝑘 = 1, ..., 𝜂}, that minimize the overall

sum-of-squares of the residuals (𝑅𝑆𝑆(b)). To solve this model we use the Differen-

tial Evolution (DE) algorithm proposed by Storn and Price (1997) which proceeds

iteratively by updating solution candidates that improve the objective function. At

each iteration, the evaluation of the objective function constitutes the inner optimiza-

tion model (Equation 3.21), wherein a least squares fit is performed to determine the

breakpoint values (on the y-axis), y = (𝑦1, ..., 𝑦𝜂), of the best continuous piecewise

linear model for a given set of breakpoint locations (Kundu and Ubhaya 2001, Jekel

and Venter 2019). In Equation 3.21, ℒb represents the set of intervals identified by the

set of breakpoints b, 𝒫𝑗 is the subset of itinerary subsamples that belong to interval

𝑗 ∈ ℒb and 𝑑𝑗(𝑒𝑉 𝑡𝑜𝑡
𝑝 , 𝑑𝑗, 𝑑𝑗+1) are the fitted values in interval 𝑗.

We set the number of linear segments equal to two as this allows us to achieve a

sufficient level of accuracy (above 94%, refer to Section 3.5.4 for details) and apply

a convex combination formulation. Let b𝑚ℎ be the set of optimal breakpoints for

market 𝑚 and passenger type ℎ, obtained by solving the optimization model outlined
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in Equations (3.20)-(3.21). We define ℒb𝑚ℎ as the set of corresponding intervals and

𝜓𝑏𝑗 as a parameter equal to 1 if breakpoint 𝑏 belongs to interval 𝑗, and 0 otherwise.

We further introduce 𝜆𝑏 as a non-negative variable defined over the set of breakpoints,

representing the weights in the convex combination. Eventually, 𝜏𝑗 is a binary variable

equal to 1 if interval 𝑗 is activated, and 0 otherwise. Using this notation, we replace

the nonlinear constraints (3.11) with the following linear constraints (see Vielma et al.

(2010) for more details).

𝑒𝑉 𝑡𝑜𝑡
𝑚ℎ =

∑︁
𝑏∈b𝑚ℎ

𝜆𝑏𝑒𝑉
𝑡𝑜𝑡
𝑏 ∀𝑚 ∈𝑀, ∀ℎ ∈ 𝐻 (3.22)

𝑑𝑚ℎ =
∑︁
𝑏∈b𝑚ℎ

𝜆𝑏{𝐷𝑚ℎ/[𝛾𝑚ℎ(𝑒𝑉
𝑡𝑜𝑡
𝑏 )1−𝜃𝑚ℎ + 𝑒𝑉 𝑡𝑜𝑡

𝑏 ]} ∀𝑚 ∈𝑀, ∀ℎ ∈ 𝐻 (3.23)

∑︁
𝑏∈b𝑚ℎ

𝜆𝑏 = 1 ∀𝑚 ∈𝑀, ∀ℎ ∈ 𝐻 (3.24)

∑︁
𝑗∈ℒb𝑚ℎ

𝜏𝑗 = 1 ∀𝑚 ∈𝑀,∀ℎ ∈ 𝐻 (3.25)

𝜆𝑏 ≤
∑︁

𝑗∈ℒb𝑚ℎ

𝜏𝑗𝜓𝑗𝑏 ∀𝑏 ∈ b𝑚ℎ,∀𝑚 ∈𝑀,∀ℎ ∈ 𝐻 (3.26)

𝜆𝑏 ≥ 0 ∀𝑏 ∈ b𝑚ℎ,∀𝑚 ∈𝑀, ∀ℎ ∈ 𝐻 (3.27)

𝜏𝑗 ∈ {0, 1} ∀𝑗 ∈ ℒb𝑚ℎ ,∀𝑚 ∈𝑀,∀ℎ ∈ 𝐻 (3.28)

Tightening constraints

Following the piecewise linearization of constraints 3.11, the IGASFAM reduces to

a large mixed-integer problem. To improve its solvability, we consider a set of valid

inequalities to tighten the model representation and accelerate convergence to opti-

mality. Specifically, we add the set of tightening constraints outlined in Proposition 6,

which bound the itinerary demand to be less than or equal to its maximum potential

value (i.e., if the itinerary is the only one added to the market) (Eq. 3.30) and the

maximum aircraft capacity.
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Proposition 6 The following is a valid inequality for the IGASFAM.

𝜙𝑖ℎ ≤ min(𝜙𝑖ℎ,max
𝑎∈𝐴𝑇

𝑐𝑎𝑝𝑎)𝑘𝑖 ∀𝑖 ∈ 𝐼,∀ℎ ∈ 𝐻 (3.29)

where

𝜙𝑖ℎ = {𝐷𝑚ℎ/[𝛾𝑚ℎ(𝑒𝑉
𝑓𝑖𝑥
𝑚ℎ + 𝑒𝑉𝑖ℎ)

1−𝜃𝑚ℎ + (𝑒𝑉 𝑓𝑖𝑥
𝑚ℎ + 𝑒𝑉𝑖ℎ)]}𝑒𝑉𝑖ℎ (3.30)

Proof of Proposition 6

The validity of constraint (3.29) directly follows from previous constraints based

on an approach similar to that used in Sherali et al. (2010). If 𝑘𝑖 = 0, than ∃𝑓 ∈

𝐹𝑖|
∑︀

𝑎∈𝐴𝑇 𝑥𝑎𝑓 = 0 (3.8)–(3.9), therefore (3.29) is valid by (3.13). If 𝑘𝑖 = 1, then

𝑒𝑉 𝑡𝑜𝑡
𝑚ℎ ≥ 𝑒𝑉 𝑓𝑖𝑥

𝑚ℎ + 𝑒𝑉𝑖ℎ (3.10) and 𝜙𝑖ℎ ≤ 𝑑𝑚ℎ𝑒𝑉𝑖ℎ ≤ 𝜙𝑖ℎ (3.11), such that 𝜙𝑖ℎ ≤ 𝜙𝑖ℎ.

In addition, (3.13), along with (3.8) and (3.9), imply that 𝜙𝑖ℎ ≤ max𝑎∈𝐴𝑇 𝑐𝑎𝑝𝑎. This

completes the proof. �

In addition to the valid cuts given in Proposition 6, we tested other cuts (e.g.,

Sherali et al. 2010, 2013) but without any further significant computational benefits.
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3.4 Computational Experiments

In this section, the computational tractability of the proposed model is examined

based on the results of numerical experiments using randomly generated problem

instances of various sizes. The objective is to demonstrate the applicability of the

model on real-world-sized networks and to test its computational performance under

different sensible assumptions. We consider a pure hub-and-spoke network and test

different network sizes (500, 1,000, and 2,000 city-pair markets), fleet compositions

(one or two fleet types), and network constraints in terms of percentage of mandatory

flights (0 or 50%). For each network size, five prototypal networks were generated to

produce 60 (3× 2× 2) model instances in total.

To ensure the meaningfulness of the generated scenarios, market characteristics,

such as market distance and endpoint populations, competing services, and costs

were drawn from empirical distributions on an intra-European basis3. For each point-

to-point market, we considered eight to ten optional flight legs randomly allocated

throughout the day. One-stop itineraries were built considering the shortest path and

applying a threshold of below 1.5 on the routing factor (Paleari et al. 2010)4. Util-

ities were computed according to the model outlined in Section 3.5.1, while average

prices were computed using the fare model proposed by Lieshout et al. (2016) and

randomized following a normal distribution. All numerical experiments were carried

out using the CPLEX 12.9 MILP solver on an Intel(R) Core(TM) i7-8700K CPU with

a frequency of 3.70 GHz and 32 GB of RAM, and the maximum computational time

was set to two hours. The piecewise least square fit method was implemented using

the pwlf python package and entailed short preprocessing times (less than 5 minutes)

across all instances.

3Refer to Section 3.5 for details on data available.
4Inconvenient routing substantially undermines an airline’s ability to serve a market through

connecting flights (Burghouwt and Redondi 2013). As a result, the number of relevant city-pair
markets tends to be lower than its maximum value. For instance, if a threshold of below 1.5 is
applied to the routing factor, a hub-and-spoke network with 50 airports—assuming, for simplicity,
independent catchment areas— will correspond to an average of 500 markets, which is far below the
potential number of 2,450 (50 𝑡𝑖𝑚𝑒𝑠 49). This directly follows from the hub location and geographic
dispersion of demand, which is in line with real-world network configurations, as depicted in Figure 3-
4.
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Table 3.1 summarizes the results obtained. For each class of instances, Table 3.1

reports summary statistics on the size of the instances, including the number of

markets (# mkts), the number of variables (# cols) and the number of constraints

(# rows), along with the computational time (Time) in seconds and optimality gaps

(Gap). In general, it was possible to solve to optimality, or quasi-optimality, all of

the instances considered except the most difficult ones—involving the largest network

size (100 airports), two fleet types, and no mandatory flights. For these instances, the

optimality gaps could be significantly reduced by increasing the computation time to

five hours—from 14.4% to 5.9%, on average (values into brackets). Note that, as we

are dealing with tactical planning, time is not a scarce resource and five hours is still

an acceptable time threshold to compute quality solutions.

The experimental results reveal that the model can handle pure scheduling prob-

lems fairly well, even if starting from a blank schedule. As the number of mandatory

flights increases, the number of combinations from which the most profitable mix of

optional itineraries can be selected decreases, thereby reducing the computational ef-

fort required to solve the model. This effect is exacerbated by the similarity of utility

values among optional itineraries, which tends to generate a larger set of similarly

good solutions. Having different fleet types increases the computational burden be-

cause it essentially leads to interacting parallel time-space networks—one for each

aircraft type—that enlarge the solution space of the model.

To evaluate whether the cases considered above properly reflect the real relevant

network size of a company, intended as the number of markets that are strategically

managed by an airline in their planning and not simply formed by sporadic connec-

tions, we consider three well-known European airlines: TAP (TP), Alitalia (AZ), and

Lufthansa (LH). Their continental networks handled 8.8, 13.7, and 29.7 million pas-

sengers in 2018, respectively. Figure 3-4 shows the relation between the number of

passengers and the number of markets. For TAP and Alitalia, the first 500 largest

markets represent approximately 96.5 and 91.7% of their passengers, respectively,

while the first 1,000 represent about 99.2 and 96.7%, respectively. The remaining

markets are numerous and very thin, with a yearly volume of passengers below 1,000
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(i.e., less than three passengers per day). In the case of Lufthansa, the number of

relevant markets is much larger, with the first 2,000 accounting for 81.2% of total

passengers. Therefore, the results of our computational experiments suggest that

the model can handle midsize networks, such as those of TAP and Alitalia, within a

reasonable time, and provide useful insights for networks as large as that of Lufthansa.

Figure 3-4: Real-world airlines’ continental networks.

Markets are sorted from largest to smallest according to the volume of passengers.
Solid lines represent the cumulative distribution of passengers (left-hand y-axis), while
dotted lines represent the number of yearly passengers per market (right-hand y-axis).

3.5 Real-world study

In this section, we describe a study carried out to demonstrate the benefits that can

be derived from the application of the proposed model to the Alitalia (AZ) continental

flight network based at the Milan-Linate (LIN) airport. Alitalia is the main Italian flag

carrier, which has been under special administration since May 2017. In 2018, Alitalia

carried 21.5 million passengers. Its network has a main hub in Rome Fiumicino

(FCO) and a base at Milan Linate (LIN). LIN serves one of the most populated areas
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Table 3.1: Computational experiments

# Air-
ports

Aircraft
Types

Mandatory
flights

Field # mkts # cols # rows Time (s) Gap (%)

50 1 0% min 462 11178 20710 168 0.00%
50 1 0% mean 492 11785 21956 584 0.00%
50 1 0% max 514 12269 22948 1225 0.00%

50 1 50% min 462 11178 20710 13 0.00%
50 1 50% mean 492 11785 21956 33 0.00%
50 1 50% max 514 12269 22948 54 0.00%

50 2 0% min 462 13075 21831 TL 1.0% (0.8%)
50 2 0% mean 492 13676 23071 TL 1.9% (1.4%)
50 2 0% max 514 14171 24064 TL 3.4% (2.3%)

50 2 50% min 462 13075 21831 398 0.00%
50 2 50% mean 492 13676 23071 818 0.00%
50 2 50% max 514 14171 24064 2227 0.00%

70 1 0% min 882 20153 38043 1077 0.00%
70 1 0% mean 1017 22803 43424 4152 0.40%
70 1 0% max 1124 25062 48075 TL 0.90%

70 1 50% min 882 20153 38043 34 0.00%
70 1 50% mean 1017 22803 43424 114 0.00%
70 1 50% max 1124 25062 48075 181 0.00%

70 2 0% min 882 22793 39592 TL 1.1% (0.6%)
70 2 0% mean 1017 25419 44947 TL 3.5% (2.6%)
70 2 0% max 1124 27663 49581 TL 7.2% (5.8%)

70 2 50% min 882 22793 39592 3375 0.00%
70 2 50% mean 1017 25419 44947 6293 0.50%
70 2 50% max 1124 27663 49581 TL 1.50%

100 1 0% min 1764 38580 74131 2972 0.00%
100 1 0% mean 1928 41663 80313 6359 1.30%
100 1 0% max 2170 46421 89935 TL 3.60%

100 1 50% min 1764 38580 74131 101 0.00%
100 1 50% mean 1928 41663 80313 1693 0.00%
100 1 50% max 2170 46421 89935 4535 0.00%

100 2 0% min 1764 42287 76275 TL 2.7% (0.9%)
100 2 0% mean 1928 45352 82435 TL 14.4% (5.9%)
100 2 0% max 2170 50089 92038 TL 37.4% (11.7%)

100 2 50% min 1764 42287 76275 TL 0.00%
100 2 50% mean 1928 45352 82435 TL 1.30%
100 2 50% max 2170 50089 92038 TL 4.00%

Values into brackets refer to optimality gaps obtained with a computation time of 5 hours.
“TL” stands for time-limit.

in Europe5. This airport is part of a multi-airport system that also includes Milan

Malpensa (MXP) and Milan Bergamo (BGY). The LIN catchment area significantly

overlaps those of MXP and BGY (by 70 and 63%, respectively), leading to strong

5Stretching over central Lombardy and reaching up to eight million inhabitants within a one-hour
driving time (best-guess statistics from Google Maps following Birolini et al. (2019)).
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competitive interactions. Among the three airports, LIN is the closest to the Milan

city center (7 km) and, since 2001, LIN has been subject to slot constraints and traffic

distribution rules to limit its environmental burden and foster the development of

intercontinental services at Milan Malpensa (MXP) 6. Alitalia historically owns the

majority of LIN’s slots, which, given the richness of the catchment area and scarcity

of resources, represent a valuable strategic asset. Alitalia’s priority concern is the

planning and design of a profitable network while retaining the slots at LIN (new

flights cannot be added but only swapped using currently available slots), taking

into account the competition from other carriers, both LCCs and FSCs, on most

of the markets from/to Milan. This makes the AZ-LIN context an ideal setting for

the IGASFAM to deliver significant improvements. In this research, we compare

the current situation as of May 2018 with the profit-maximizing solution resulting

from the application of the model. To highlight the advantages of the proposed

approach, we consider two different scenarios in which (1) demand generation is fixed

and demand allocation follows a simple multinomial logit model or (2) both demand

generation and allocation are endogenized following the integrated nested logit model

(IGASFAM).

3.5.1 Demand estimation

A key requirement for implementing the IGASFAM is to retrieve the coefficients of

the demand model. Estimation data were collected from OAG, specifically, from

two modules—the Schedule Analyzer and Traffic Analyzer7 The resulting sample

comprised itinerary-carrier observations on a monthly basis for medium-haul trips

(distance ≤ 3,000 km) originating, transiting, or arriving in Italy in 2018. The total

number of records was 127,100, corresponding to 4,592 directional city pairs. Due to

6Its capacity has been reduced from the technical capacity down to 18 scheduled commercial
movements/hour, and only domestic or international flights within the EU are allowed (Airport
regulation of Linate Airport (2016)).

7The OAG Schedule Analyzer provides data on schedules and capacity, while the OAG Traffic
Analyzer provides historical data on airfares and passenger demand. Details on data sources can be
found at the provider’s official website, while details on how to assemble the data for estimation can
be found in Birolini et al. (2020).
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data limitations, we could not differentiate between passenger types in the following

application8. Yet, the inclusion of market fixed-effects enables the estimation of

different elastic response functions and substitution patterns to changes in air travel

provision, thus capturing the specificities of each market in aggregate terms.

Consistent with the modeling framework, the saturated demand level in a given

market must be independent of the features of the transport services provided and can

be represented as a function of market demographic and socio-economic characteris-

tics. The empirical estimation of a saturated demand function is challenging owing

to the impossibility of observing saturated demand values. We followed the approach

proposed by Hsiao and Hansen (2011) and computed the saturated demand in each

market as the geometric mean between populations multiplied by a proportionality

coefficient (𝛼) that represents the maximum number of potential trips per capita. Let

𝑃𝑜𝑝𝑜 and 𝑃𝑜𝑝𝑑 be the population at the origin and destination of a given market, then

𝐷 = 𝛼𝑃𝑜𝑝𝑜𝑃𝑜𝑝𝑑. In this study, 𝛼 was taken to be equal to the maximum number of

trips per unit of population in the data sample9 and, for each metropolitan area, the

population was computed considering the number of residents within a radius of 50

km from its centroid10. To account for further factors that may affect trip generation

(e.g., income level, tourism attractiveness), market fixed effects were added to the

utility formulation of the air-travel nest (𝛿). In doing so, different demand patterns

were acknowledged for various markets. In addition, the inclusive value (𝐼𝑉𝑎𝑖𝑟) was

interacted with the distance between market metropolitan areas (𝑑𝑖𝑠𝑡) to proxy the

intensity of competition with other transport modes.

At the itinerary level, the following supply-side variables were considered to proxy

8Although the OAG Traffic Analyzer module provides passenger data differentiated by fare
classes, their use to estimate separate sets of coefficients for different passenger types is not straight-
forward. First, disaggregate data are largely missing; second, especially concerning inter-European
travel, these data only reflects marginal variations in prices and do not suitably represent passengers’
trip purpose. Third, data for fare classes are not homogeneous between FSCs and LCCs.

9This value, which is equal to 0.11, provides a reasonable and sufficiently large estimate to
guarantee the consistency of lower-level coefficients. To ensure the robustness of the estimated
parameters, sensitivity tests were performed for different values of 𝛼. Further details can be found
in Hsiao (2008).

10Data were extrapolated from the GPWv4 dataset provided by the Socio-Economic Data and
Applications Center (SEDAC) - Columbia University.
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the itinerary deterministic utility component (𝑉𝑖): flight time, connecting time, type

of service (nonstop vs. connecting itinerary), and average price.

To estimate the model coefficients, we followed a sequential approach. In or-

der to get consistent coefficients at the daily level, the following specification was

used: 𝑀𝑆𝑖 = 𝑁𝑖𝑒
𝑉𝑖∑︀

𝑗∈𝐼𝑚 𝑁𝑗𝑒
𝑉𝑗

, where 𝑀𝑆𝑖 is the market share and 𝑁𝑖 the frequency of

itinerary-carrier 𝑖. By taking the difference between logarithms of market shares of

two alternatives serving the same market (e.g., 𝑖 and 𝑗), we obtain the following linear

equation, where 𝑋𝑘 refers to the k-th itinerary attribute and 𝛽𝑘 are the coefficients

to be estimated:

log𝑀𝑆𝑖 − log𝑀𝑆𝑗 − log(
𝑁𝑖

𝑁𝑗

) =
∑︁
𝑘

𝛽𝑘(𝑋𝑖𝑘 −𝑋𝑗𝑘) + 𝜉𝑖𝑗 (3.31)

Following Birolini et al. (2020), the estimation was carried out using a bootstrap

procedure to jointly address issues of price endogeneity and airfare data missingness

(28%). At each bootstrap repetition (1,000 in total), the average fare was first approx-

imated using complete cases, including as relevant predictor the low-cost and time

dummies, and the product of distance and jet fuel cost as a valid instrument (Hsiao

and Hansen 2011, Gayle 2013); this first regression was used to provide instrumented

prices for all observations in the bootstrap sample, which were then entered into the

linearized itinerary choice regression in Equation (3.31).

Finally, the itinerary choice coefficients were used to calculate the inclusive values

and estimate the upper level model coefficients involving the choice between the air

travel nest and the outside good. Similar to Equation (3.31), we take the difference

between the logarithms of the air travel market shares and the no-fly option (𝑉𝑛𝑜−𝑎𝑖𝑟 =

0) thus obtaining the following linear function, estimated by OLS:

log𝑀𝑆𝑎𝑖𝑟 − log𝑀𝑆𝑛𝑜−𝑎𝑖𝑟 = 𝛿 + 𝜃𝐼𝑉𝑎𝑖𝑟 + 𝜌𝐼𝑉𝑎𝑖𝑟𝑑𝑖𝑠𝑡+ 𝜉 (3.32)

Tables 3.2 and 3.3 list descriptive statistics for the variables included in the model

and the estimation results. The coefficients are statistically significant and have plau-

sible values. The inferred time values are 14.5 and 7.5 $/h for flight and connecting
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Table 3.2: Descriptive statistics

Variables Average Std dev
Data Range
[25th, 50th, 75th]

Market share 28.70% 33.20% [3.0%, 11.7%, 46.3%]
Flying time (minutes) 190.9 65.3 [145.0, 187.8, 230.0]
Connecting time (minutes) 111.7 84.3 [0, 120.0, 175.2]
Price (2018 US$) 155.6 105.1 [92.0, 133.0,187.0]
Population (million) 2.85 2.7 [1.29, 2.10, 4.13]
Market distance (1,000 km) 1.35 0.64 [0.87, 1.26, 1.72]

Table 3.3: Estimation results

Nest level Variables Coefficient Std err

Demand Allocation (𝑉𝑖) FT - Flight time (minutes) -0.0087*** 0.000
CT - Connecting time (minutes) -0.0045*** 0.000
NS - Nonstop (0/1) 2.5665*** 0.015
P - Price (IV) (2018 US$) -0.0359*** 0.001

𝑅2 adjusted 0.74
Number of observations 90,607

Demand generation (𝑉𝑎𝑖𝑟)
𝛿

Constant -4.204*** 0.426
Market fixed effects YES

𝜃 IV–Inclusive value 0.571*** 0.086
𝜌 IV*dist (1,000 km) -0.088*** 0.033

𝑅2 adjusted 0.95
Number of observations 36,271

Confidence levels: *p < 0.10. ** p < 0.5. *** p < 0.01.
Note: Standard errors are robust to heteroskedasticity, cluster and temporal correlations (Driscoll and Kraay’ standard
errors).

times, respectively, while the inferred premium for nonstop travel is 71.5 $. The

nesting coefficient, which is lower than one and moderate in magnitude, indicates

a significant degree of substitution between the air and non-air alternatives. Dis-

tance is seen to have a negative and relevant impact, confirming the logical intuition

that more distant markets are characterized by lower competitive pressure from other

travel modes. As a main drawback, since data are available on a monthly basis,

we could not estimate significant time-of-day preferences, which were therefore ten-

tatively ignored in the case study analyzed. Yet, to indirectly assess the impact of

time-of-day preferences on model results, we conducted a sensitivity analysis repli-

cating the time-of-day patterns considered in previous studies (see Section 3.5.4, for

details).
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3.5.2 Study data

To implement the IGASFAM, data on flight schedules, competition, passenger de-

mand, average fares, and costs were collected from OAG, official reports, or obtained

from Alitalia. Schedule-related information, such as flight and departure times, were

assembled to compute the set of itineraries and related features for the target airline,

partner, and competitor flights. We only considered nonstop and one-stop connect-

ing itineraries. The baseline network consisted of 244 markets, of which 50 nonstop

and 194 one-stop (Figure 3-5). Alitalia directly operates short- and medium-haul

flights to European capitals and domestic destinations, which are characterized by

high demand and intense competition. Table 3.4 reports statistics on the markets

analyzed.

Figure 3-5: Alitalia’s baseline network (May 2018).

The proportions of local and transfer demand through LIN were 83.7 and 9.7%,

respectively, with beyond/behind traffic accounting for the remaining 6.6%. The
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Table 3.4: Markets data summary

Markets Variable Average
Data Range
[25th, 50th, 75th]

Nonstop Number of competitor airlines 2.4 [2, 2, 3]
Number of direct flights by competitors (daily) 7.6 [3.1, 5.5, 10.5]
AZ market shares 26.00% [12.1%, 17.7%, 35.1%]
Market size (daily O&D pax) 1256.2 [477.1, 1164.8, 1846.8]

One-stop Number of competitor airlines 1.7 [1, 1, 2]
Number of direct flights by competitors (daily) 1.5 [0.3, 0.6, 1.7]
AZ market shares 9.40% [1.8%, 3.9%, 10.6%]
Market size (daily O&D pax) 175.2 [14.8, 76.7, 144.5]

average number of daily flights operated was 180, with a minimum and maximum

of 135 and 201 on Sundays and Wednesdays. Despite the focus of our analyses was

placed on the Alitalia network based at LIN, we had to consider its interactions with

the rest of the network. These interactions relate to Alitalia’s own feeding flights onto

the LIN-FCO route and the behind/beyond itineraries that are partially operated by

partner carriers11. Following a similar approach to that used in Pita et al. (2013), the

potential behind/beyond flight legs were considered to be fixed, and the model was

allowed to allocate passengers over these flight legs as part of connecting itineraries.

In the absence of detailed information on revenue sharing mechanisms, an equivalent

average fare was computed based on the relative portion of travel distance operated

by each airline.

Available flight options were validated with the company and mandatory flights

were defined to ensure hourly frequencies on the LIN-FCO route and to meet the

minimum flight requirements of the PSO routes to Sardinia; collectively, these flights

accounted for about 32% of the total number of flights. Additionally, consistent with

the regulatory requirements at LIN, slot constraints were enforced to ensure that the

number of hourly movements at LIN did not exceed the current number of Alitalia’s

operations. The fleet considered was composed of four aircraft types—5 Airbus A320

with 171 seats, 14 Airbus A319 with 144 seats, 6 Embraer E190 with 100 seats, and

8 Embraer E175 with 88 seats—for a total of 33 aircraft the maximum allowable load

11Members of the same alliance (SkyTeam) or other carriers with which codeshare agreements are
in place.
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factor was set to 80%.

Direct operating costs include fuel, maintenance, and crew costs. Overhead and

fixed costs, including administration and ownership costs, among others, were not

considered as they do not affect the tactical decisions addressed in this study. Airport

charges were collected from official documents. Airport charging schemes vary widely

on a per-country basis, as they are regulated by national authorities. Therefore, we

redirected them to two main components: airport charges that are applied per aircraft

movement (landing and take-off fees, parking charge, and additional fees for the use of

airport centralized infrastructures), and airport charges that are levied per passenger

(boarding, passenger, and hold baggage security fees). Values for different aircraft

types were computed based on their maximum take-off weights (MTOWs) and other

technical specifications provided by the manufacturers.

3.5.3 Numerical results

Table 3.5 compares the main results of the application of the model to the baseline

scenario. The baseline scenario refers to May 2018 considering the actual capacity

allocation under the modeling assumptions and passenger predictions for compara-

bility. Scenario 1 assumes a total market demand that is fixed at the baseline level,

i.e., inelastic trip generation. Let 𝑄̄ be the total (fixed) market demand, then Equa-

tion 3.2 reduces to a basic MNL model, i.e., 𝑞𝑖 = 𝑄̄(𝑒𝑉𝑖/𝑒𝑉𝑡𝑜𝑡) and constraints 3.11 are

adjusted accordingly. In doing so, we only endogenize demand allocation to replicate

the approach used by previous studies (see Section 3.2). By constrast, Scenario 2

involves application of the IGASFAM with both demand generation and allocation

considered simultaneously. For each scenario, we consider two different situations in

which the total number of flights is constrained to be the same as the number of

flights operated in the baseline scenario (a), or it can be arbitrarily lower (b).

Relative to the baseline scenario, the application of IGASFAM yields a significant

increase in the operating profits up to 6.9% by reducing the number of flights by 4.4%

and increasing the average revenue per passenger by 7.8% (Scenario 2b). The margin

of improvement under scenario 1 is significantly lower (4.4%) and involves a stronger

118



Chapter 3. Integrated Flight Scheduling and Fleet Assignment

Table 3.5: Summary of results for the four scenarios (daily values). Variation (%)
compared to the baseline scenario in brackets.

Scenario Operating
profits

Revenues Costs Avg Fare Tot Pax Tot
Flights

Aircraft
Util

Inelastic
market
demand

Scenario 1a (+0.4%) (-3.9%) (-5.9%) (+3.8%)
13,364 180 7.5 h
(-7.4%) (0%) (-5.6%)

Scenario 1b (+4.4%) (-7.3%) (-12.8%) (+5.9%)
12,632 166 6.9 h
(-12.5%) (-7.8%) (-12.2%)

IGASFAM Scenario 2a (+5.0%) (-3.3%) (-7.2%) (+6.8%)
13,064 180 7.4 h
(-9.5%) (0%) (-6.4%)

Scenario 2b (+6.9%) (-5.4%) (-11.3%) (+7.8%)
12,654 172 7.1 h
(-12.3%) (-4.4%) (-10.2%)

reduction of flight frequencies (-7.8%) (Scenario 1b).

The optimization model suggests increasing capacity on northern routes, such

as Luxemburg, Brussels, and Dusseldorf, which are characterized by high potential

demand, lower competition, and advantageous routing factors to connect with desti-

nations in Southern Italy (Figure 3-6). Capacity can be retrieved by dropping fre-

quencies to/from Madrid and main cities in Sicily (Palermo and Catania), where fierce

competition mostly from LCCs tends to push down the revenues per available seat-

kilometer and decrease profits. A comparison of Scenario 1 and 2 highlights the con-

tribution of integrating demand generation and allocation. The results were similar in

both scenarios in terms of routes for which frequencies should be dropped/enhanced

but differed substantially in terms of the magnitude of network change. In particular,

overlooking trip generation led to an optimal solution with a much higher number of

unused slots, which is undesirable given their strategic value at LIN. This is further

evident by comparing scenario 1a and 2a when the total number flights is fixed. While

the application of the IGASFAM may still deliver substantial profit gains (+5.0% in

Scenario 2a), enforcing all slots to be used under a fixed market demand scenario

would leave little margin for schedule and fleet assignment optimization leading to

profit gains of only +0.4% relative to the baseline scenario.

Without considering the contraction effect on total demand, the Scenario 1b re-

sults suggest cutting too many flights leveraging on the expectation of achieving

higher load factors and improving capacity utilization. By contrast, under Scenario
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(a) Scenario 1b (Inelastic market demand) (b) Scenario 2b (IGASFAM)

Figure 3-6: Changes in flight frequencies by markets compared to the baseline
scenario.

2b, the two effects that follow from the deletion of itineraries – the spilling of demand

to other itineraries and a reduction in total demand – appear to be better traded-

off. To further emphasise this aspect, Figure 3-7 depicts the patterns of change (in

percentage terms with respect to the baseline) in the level of supply, total market

demand, and itinerary demand across nonstop markets. Under Scenario 1, market

demand is fixed and inelastic; therefore, itinerary demand tends to be overestimated

when supply is reduced, while underestimated when supply is increased. By contract,

under IGASFAM, total market demand correlates to the level of supply, suitably

capturing demand contraction and stimulation effects, and leading to more reason-

able variations of 𝑞𝑖. Consistently, a closer look into the solutions obtained reveals

that, under the full implementation of the IGASFAM (Scenario 2), better opportu-

nities for demand stimulation in underserved markets can be identified. Under the

fixed-demand scenario, by contrast, the model tends to allocate capacity in large and

congested markets, leading to an optimal solution that more closely resembles that of

the baseline scenario. Collectively, these results highlight the practical benefits of ex-

plicitly considering demand generation and allocation dynamics into flight scheduling

and fleet assignment models.
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(a) Scenario 1b (Inelastic market demand) (b) Scenario 2b (IGASFAM)

Figure 3-7: Changes in the level of supply (proxied by 𝑒𝑉𝑡𝑜𝑡), total market demand
𝑄 and itinerary demand 𝑞𝑖.

3.5.4 Sensitivity analysis

Finally, to assess the robustness of the model results, sensitivity analyses were per-

formed on key model parameters and assumptions. First, Table 3.6 summarizes the

computational performance and changes in the optimal solution for a different num-

ber of piecewise segments (1, 2, and 3), which represents a key assumption of the

IGASFAM. While increasing the number of breakpoints reduces the approximation

error, it can lead to a larger instance size and consequently a longer computation

time. Hence, one would like to identify a number of pieces that suitably trades off

the solution quality and computational cost of the model. If only one line segment

is used to approximate the demand function (Equation 3.11), the number of passen-

gers is strongly overestimated (+18,80%) due to the convex nature of the itinerary

demand curve, thus yielding unrealistic and overconfident results (+50.23% increase

in operating profits compared to the base value, i.e., two pieces). On the contrary,

using three pieces leads to the exact solution obtained with two pieces in terms of

allocated capacity. Minor (downward) variations are brought to the selected financial

indicators (+0.44% profits), but the small gain in accuracy comes at the expense of

a much greater computational cost, with the two-pieces approximation taking about
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65 minutes and the three-pieces more than 20h (optimality gap equal to 0.66%) to

solve to optimality. Therefore, the choice of using two linear pieces appears as a valid

and suitable approach for the practical implementation of the IGASFAM.

Table 3.6: Sensitivity analysis for the number of linear pieces referred to the appli-
cation of IGASFAM (Scenario 2b).

Nr. Segments Operating
margin

Revenues Costs Tot Pax Computation
time (s)

Accuracy-𝑅2 [min,
mean, max]

1 +50.23% +19.42% +1.85% 15,033 89 [0.31, 0.93, 0.99]
2 (base value) - - - 12,654 3,917 [0.94, 0.98, 0.99]
3 -0.44% -0.70% -0.84% 12,570 >72,000 [0.98, 0.99, 0.99]

Second, Table 3.7 summarizes the results of the sensitivity analyses with respect

to four aspects — time-of day preferences, competition, saturated demand, and max-

imum allowable load factor. Time-of-day preferences were modeled assuming time-

of-day patterns empirically estimated and used in previous studies. Specifically, we

consider the approaches followed by Atasoy et al. (2014) and Pita et al. (2014), where

the former implies a higher utility for itineraries departing in the morning (between

7 and 11 am), and the second considers two peak periods in the morning (arrival

time between 8 and 10 am) and in the evening (departure time between 6 and 8 pm).

The benefit of traveling during peak periods was assumed to increase the itineraries’

exponential utilities by either 10% or 5%. Results reveal that leveraging time-of-day

preferences could lead to a better optimization of flight departures throughout the

day. Yet, the overall impact on operating profits (ranging between 1.15% and 2.85%)

is limited, thus practically corroborating the IGASFAM tactical insights.

The impact of competition was tested by varying the 𝑒𝑉𝑓𝑖𝑥 parameters. Rea-

sonably, an increase in the level of competition negatively affects airline’s economic

performances (-8.22% and -4.21% in operating profits upfront +10% and +5% in com-

petition, respectively), while a decrease in the competitive pressure results in higher

market shares, which, in turn, enable a significant increase in revenues and prof-

its (+8.53% and +4.23% in operating profits upfront -10% and -5% in competition,

respectively). Increases in economic performances could also be driven by demand

growth. We observe an almost linear improvement of 9.48% (4.85%) in revenues
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when saturated demand increases by 10% (5%) which, along with unvarying costs,

determines significant profit surges (25.22% and 12.86%, respectively). Note, how-

ever, that when relevant changes affect the saturated demand values, a re-estimation

of model coefficients is required to ensure adherence with respect to the normalized

“no-fly option”. Finally, we investigated the impact of variations in the maximum

allowable load factor. An increase in this parameter leads to marginal performance

improvements (2.24% and 1.42% in operating profits for a 100% and 90% maximum

allowable load factor, respectively). By contrast, a decrease in this threshold (be-

low average load factors in practice) would significantly affect the estimated profits

(-3.63% and -11.80% for maximum allowable load factors of 70% and 60%, respec-

tively). Collectively, these analyses corroborate the validity of the proposed modeling

framework.

Table 3.7: Sensitivity analyses to the application of IGASFAM (Scenario 2b).

Parameter Variation Op.
profits

Revenues Costs Avg
Fare

Tot Pax Tot
flights

Avg
Aircraft
Util

Time of day 10% 2.68% 0.59% -0.61% 0.15% 0.44% 0.00% -0.55%
(morn. peak) 5% 1.45% 0.53% 0.01% -0.01% 0.54% 0.00% 0.00%
Time of day 10% 2.85% 1.14% 0.16% -0.08% 1.21% 0.00% 0.00%
(morn./even. peaks) 5% 1.15% 0.61% 0.30% -0.04% 0.64% 0.00% 0.00%

Competition

-10% 8.53% 3.22% 0.19% 0.09% 3.13% 0.00% 0.00%
-5% 4.23% 1.66% 0.19% 0.00% 1.66% 0.00% 0.00%
5% -4.21% -1.54% -0.02% -0.04% -1.51% 0.00% 0.00%
10% -8.22% -3.21% -0.36% -0.07% -3.14% 0.00% 0.00%

Saturated demand

-10% -26.80% -11.10% -2.15% 0.42% -11.47% -1.16% -1.39%
-5% -13.61% -5.66% -1.12% -0.08% -5.58% -1.16% -0.77%
5% 12.86% 4.85% 0.28% 0.14% 4.71% 0.00% 0.00%
10% 25.22% 9.48% 0.50% 0.05% 9.43% 0.00% -0.18%

Maximum
allowable load
factor (base value:
80%)

-20 pp -11.80% -4.90% -0.96% 3.98% -8.53% -1.16% -3.32%
-10 pp -3.63% -2.04% -1.13% 0.40% -2.43% -1.16% -1.69%
+10 pp 1.42% 0.14% -0.58% -0.04% 0.18% 0.00% 0.00%
+20 pp 2.24% 0.35% -0.72% 0.03% 0.33% 0.00% 0.16%

3.6 Conclusion

In addressing the supply-demand interactions in airline planning, this paper con-

tributes to the literature by describing a new formulation to endogenize demand
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within itinerary-based integrated flight scheduling and fleet assignment models in a

utility-consistent manner.

To model demand in an integrated fashion, a nested logit model that includes the

non-air travel alternative is used, which provides sensible substitution patterns and

solves the demand generation and allocation problems simultaneously. The incorpo-

ration of the nested logit formulation leads to a nonlinear mixed-integer formulation

that can be effectively solved by introducing tightening constraints and using a tai-

lored piecewise linearization scheme.

To illustrate the validity of the proposed approach, two separate analyses were con-

ducted. First, the computational tractability of the model was investigated through

computational experiments carried out using randomly-generated realistic problem

instances. Comparison of the results with real-world cases highlighted the tractabil-

ity of the model and demonstrated how it can properly handle midsize networks.

Second, to demonstrate the managerial insights that can be derived from the applica-

tion of the model, it was implemented in a real case study using data on the domestic

and international network of Alitalia through the Milan-Linate airport. A comparison

of data obtained for May 2018 with profit-maximizing solutions obtained through the

application of the IGASFAM highlighted the significant improvements that the model

can deliver relative to the baseline scenario (an increase in operating margin of up

to 6.9%). The specific contribution of integrating demand generation and allocation

was investigated by comparing the model’s optimal solution with that produced by

an inelastic demand-generation scenario. In this case, the expected improvement was

+4.9% and, more importantly, the IGASFAM was shown to be better at revealing

opportunities for demand stimulation in less-served markets. Thus, despite the nec-

essary simplifications in the model, the results indicate that the model can effectively

support airlines’ decision-making.

Extensions of the IGASFAM model can provide further insights into the improve-

ment of airline planning processes. One potential development would relate to the use

of the model for a systematic assessment of route development alternatives and sup-

port entry decisions. In this regard, the model might be able to deal with additional
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complexities that arise from the strategic reaction of competing airlines. A potential

approach would be to solve the IGASFAM model iteratively to explore the compet-

itive dynamics in a game-theoretical framework. From a computational viewpoint,

the nonlinearities and complex interactions in the model make the development of

heuristic methods an interesting research direction for extending its applicability to

large-case scenarios. Eventually, research could be carried out to improve the utility

specification and evaluate how the consideration of additional itinerary attributes,

such as time-of-day preferences, might affect the optimal solution.
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Chapter 4

Integrated Origin-based Demand

Modeling for Air Transportation

4.1 Introduction

The estimation of travel demand is an important priority in the air transport industry

and a key issue in academic research. Demand modeling in an air transport context

poses important challenges arising from its intrinsic unpredictability and the presence

of actors with diverse interests. From the longest-term strategic decisions to daily

schedules, airlines require reliable forecasting to make optimal decisions at all stages

of the planning process (Lohatepanont and Barnhart 2004, Carreira et al. 2017), while

projections of traffic flows are crucial for planning large and irreversible investments

in the expansion, renovation, and maintenance of terminal and flight infrastructures

(Flyvbjerg et al. 2005, Xiao et al. 2016). Preventively understanding the patterns

of passenger growth is also key for policymakers to establish strategic transportation

plans for the future development of national and international connectivity (Park and

Ha 2006, Hakim and Merkert 2016).

The prevailing approach in the demand forecasting literature has been to consider

city pairs as the most appropriate definition of air transport markets (Brueckner et al.

2014). While this is motivated by the gravity-like nature of socioeconomic interac-

tions that originate air travel between origin and destination areas, the estimation
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of air traffic flows in a city pair should not disregard the potential interdependences

with other markets. Taking the Milan-New York city-pair as an example, if a new

destination is served from Milan, e.g., Washington, it is reasonable to expect that

some passengers on the Milan-New York route will instead choose to travel to Wash-

ington, to the extent that there is a similarity of destination and travel purpose.

Adding Washington as a destination might also induce more passengers to fly. Fun-

damentally, this reasoning applies to any change in the air transport supply, ranging

from minor variations in the attributes of existing itineraries to the introduction of

brand-new destinations.

The rationale to account for alternative destinations in the estimation of origin

and destination (O&D) flows draws from the classical transport literature (Ortuzar

and Willumsen 2011), according to which each region has a potential for generating

passenger trips (i.e., trip generation) that are allocated among available destinations

in proportion to their respective attractiveness (i.e., trip distribution). However, in

the air transport industry saturated demand is typically assumed, either implicitly or

explicitly, not to occur at origin zones but rather independently within city-pairs. The

main drawback of this approach is that it overlooks potential substitutions between

markets and, more importantly, can lead to over- or under-estimation of trip-end

totals, i.e., the total amount of trips generated from a given region.

Drawing upon the contributions of Wei and Hansen (2005) and Hsiao and Hansen

(2011), who advanced the assessment of air passenger demand by integrating trip

generation and allocation at the city pair level, in this paper we offer an aggregate

origin-based demand model that assumes trip generation at the origin level and ex-

plicitly accounts for the degree of substitution between destinations. The proposed

model employs a multilevel nested logit (NL) approach that starts from the choice

as to whether or not to travel by air. Branching down the NL tree, we group possi-

ble destinations by trip length and further decompose each city pair into their inner

travel alternatives, i.e., air travel itineraries. The use of an NL formulation allows

for the correlations between alternatives to be captured at different choice levels, the

simultaneous solution of different stages, and the highlighting of travelers’ behavioral
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responses to changes in air travel provisions at both the itinerary and destination

levels. Ultimately, we propose a bootstrap procedure to cope with missing data

and price endogeneity issues within the aggregate logit estimation. The proposed

integrated model was validated through testing over the comprehensive network of

outbound air trips from Italian airports in 2018 using airfare and passenger data

retrieved from the Official Airline Guide (OAG).

The remainder of this paper is organized into eight sections. In Section 4.2, we

explore the theoretical background of the problem through relevant literature and

specify the contribution of this work. Section 4.3 describes the modeling framework,

Section 4.4 focuses on the methodology, and Section 4.5 presents model estimation

issues. In Section 4.6, we present the empirical setting and in Section 4.7 we present

the robustness checks and report our results. Finally, in Section 4.8 we conclude the

paper and discuss directions for future research.

4.2 Theoretical background

In previous studies, air travel demand has primarily been analyzed by dividing the

problem into two main sub-problems: demand generation and demand allocation.

Demand generation refers to the estimation of total air traffic flows while demand

allocation involves the study of factors underpinning the distribution of passengers

over available travel itineraries within a specific market.

Air demand generation is typically modeled via a gravity formulation approach

(Wojahn 2001, de Grange et al. 2010, Adler et al. 2018) in which travel demand be-

tween city pairs is assumed to be positively proportional to the mutual attraction

factors of the respective cities and inversely proportional to the generalized cost of

travel between them. Different cost and incentive factors have been used to evaluate

what impedes, or facilitates, air traffic flows between territories. In general, attractor

(pull) factors depend on regional, geographical, and socio-economic characteristics

(demand-side factors) such as income and population (see Grosche et al. (2007) for

a review), whereas supply-side (push) factors are used to model the ease or difficulty
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of traveling between regions. In its simplest form, travel impedance is modeled as

the distance between considered regions and advanced formulations include specific

characteristics of transportation systems to account for their role in enabling travel.

In this regard, numerous supply-side variables have been considered, primarily in an

aggregate fashion, including frequency, travel time, average price, and the availabil-

ity of low-cost carriers (LCCs) (e.g., Jorge-Calderón 1997, Boonekamp et al. 2018).

Although gravity models have been extensively used, they have a major limitation

in that they assume independence between origin-destination pairs. Another class

of trip generation models is represented by multiplicative models (Belobaba 2009),

which differ from a gravity formulation in their functional form but share similar

limitations concerning the independent treatment of city-pair demand. As demon-

strated by Margaretic et al. (2017), overlooking the spatial dependence between air

transport markets is a relevant issue as it may yield unreliable parameter estimates.

The importance of accounting for correlation between trips that originate from the

same origin zone is further highlighted in de Grange et al. (2011), who proposed a

hierarchical gravity model to accommodate various spatial correlation structures.

Along with the study of demand generation, several passenger allocation models

have also been developed. An important class of allocation models is the so-called

itinerary choice models, which focus on how individuals select among air-travel al-

ternatives within a city-pair market. These models have investigated the role of a

variety of determinants, highlighting the importance of level-of-service, connection

quality and carrier attributes (Coldren et al. 2003) (e.g., airfare, travel and connect-

ing time, number of stops, and frequency), punctuality (Freund-Feinstein and Bekhor

2017) and time-of-day preference (Koppelman et al. 2008, Lurkin et al. 2017). Spe-

cific aspects of demand allocation have been further examined concerning not only the

features of air travel itineraries but also the presence of alternative transport modes

(Adler et al. 2010), the competition between neighboring airports (e.g., Başar and

Bhat 2004, Hess and Polak 2005), and the ground access and egress portions of the

air passenger trip (Pels et al. 2003).

The aggregation of trip generation and demand allocation modeling has received
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increased attention recently as a method for better capturing the interactions be-

tween air transport demand and supply. Although free-standing demand generation

models are known to perform well in estimating macroscopic traffic flows between

territories, they do not fully appraise the specificities of single itineraries and how

changes in their attributes can impact the overall air traffic volume. On the other

hand, demand allocation models provide a valuable tool for estimating itinerary mar-

ket shares, though in most practical applications they rely on a static representation

of air total demand. Departing from these limitations, a few contributions to the

air transportation literature have analyzed both demand generation and allocation

in tandem. (Wei and Hansen 2005) and (Hsiao and Hansen 2011) proposed similar

approaches to tackling the two stages simultaneously based on aggregate NL models.

In the first study, a two-level NL model was developed to investigate the determinants

of airline market share and total air travel demand in a non-stop duopoly market;

in the second, a general three-level NL model was proposed to simultaneously esti-

mate the overall air travel demand in a city pair and distribute it over the available

itineraries. The greatest advantage of such approaches to integrated modeling is that

they make demand generation elastic by dynamically incorporating the compound

utility provided by air travel itineraries at the trip generation stage.

To the best of our knowledge, previous studies that estimate demand on air travel

itineraries have considered each city-pair market separately, with air trip generation

occurring at the city-pair level and independently of other markets. This formulation

is restrictive in that assumes that air travel between two cities is not affected by

changes in air transport supply elsewhere. Although this might be a safe assumption

for separate and disjointed markets, i.e., cases in which neither the origin nor the

destination is common (See Figure 4-1), it is likely not between overlapping ones.

In this context, this paper presents an integrated, origin-based air travel demand

model that assumes saturation of demand at the territorial level. This allows us

to properly consider the originating travel forces by area and suitably capture the

substitution patterns between alternative destinations for originating outbound pas-

sengers. Within this framework, air trips are segmented according to the length of
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Figure 4-1: Overlapping and independence amongst air transport markets (city-
pairs).

Each circle in 4-1 represents an independent catchment area; i.e. multi-airport re-
gions. Hereafter, we refer to overlapping markets as city-pair markets with the same
origin or destination. Unlike commuter trips or intercity travel, in the case of air
transportation we do not assume that a fixed saturation level exists for the number of
trips attracted by each destination (e.g. as a function of jobs in the area). However,
return trips on O-D and O-D’ (Fig. 1c) are determined by the prior choice of people
living in D to travel to O and O’, respectively, which, among other things, strongly de-
pends upon the availability of destination markets from D and the available transport
service.

haul with the goal of accounting for differences in passengers’ choice behavior and the

travel determinants that affect long- vs. short-haul travel. Along with other issues

(e.g., period of stay, overall cost of travel, etc.), the value that passengers place on air-

travel-related features (e.g., travel time, travel cost, frequency, number of connections,

in-flight services) is likely to vary with the length of haul, especially when comparing

very long-distance trips with short/medium-haul ones. In this respect, separate mod-

eling yields a better understanding of the dynamics of trip generation and allocation

and provides insights into their elasticities and sensitivities to parameters of trips with

different haul lengths. Previous studies have examined, for example, the differences

between long- and short-haul trips in terms of passenger sensitivity to changes in air-

fare (Crouch 1994), connecting flights (Francis et al. 2007), and time of day (Lurkin

et al. 2017). However, the study of how modifications to itinerary attributes can

impact air trip generation and demand stimulation, and the substitutability between

destinations at different haul lengths has remained a largely unexplored topic.
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Building on these gaps, this paper presents the first systematic attempt to apply

an origin-based approach to integrated demand generation and allocation modeling.

This contributes to advancing the literature on air travel demand estimation by si-

multaneously considering the allocation of passengers over itineraries and alternative

destinations, while constraining air trip generation on a regional basis.

4.3 Modeling framework

In this section, we describe the notation and theoretical considerations underpinning

the modeling framework designed to represent our integrated origin-based air travel

demand model. We denote the sets of origins and destinations as 𝑂 and𝐷 to represent

the geographical territories from which trips are generated and to which trips are

attracted, respectively. Origins and destinations are not restricted to single airports

but represent urban agglomerations closely bound to an attractor center by commerce

or tourism, also referred to as metropolitan areas1. The total number of trips that

an originating area can generate is constrained by its number of residents along with

their propensity to fly (number of air trips per capita) as a function of regional socio-

economic characteristics and the overall level of air service supply.

For each origin 𝑜, 𝐷𝑜 ⊂ 𝐷, indexed by 𝑑, is defined as the subset of air-reachable

destinations. As discussed in Section 4.2, not all destinations are evaluated homoge-

nously as comparable alternatives for possible travel in any choice situation. For

instance, it is unlikely for a passenger from Milan to consider a two-hour flight to

London as an alternative on the same footing as traveling to New York for a week-

end getaway (Figure 4-2). In addition to individual considerations and city-specific

features, these two destinations are generally not perceived by passengers from Milan

1A number of contributions in the literature have focused on the proper identification of origin
and destination areas in defining air transport markets (Brueckner et al. 2014). In place of a single
airport’s catchment area, these formulations attempt to represent multi-airport regions in which
airports with competitive interactions are grouped. For example, as shown in Figure 4-2, the Milan
metropolitan area is served by three main airports—Milan-Malpensa (MXP), Milan-Linate (LIN),
and Milan-Bergamo (BGY)—which compete for local passengers and provide access to the region for
incoming passengers. In this work, we assume there are no spatial interactions between metropolitan
areas and we consider for simplicity a fixed “as the crow flies” radius around each zonal centroid.
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as direct competitors: while New York can be seen as a closer substitute to Tokyo

(ceteris paribus), London is likely seen as a more similar destination to Paris or any

other large city with similar characteristics that could be reached by incurring a com-

parable generalized cost of travel. To account for systematic differences in preference

between flight lengths, destinations can be further categorized into H lengths of haul,

e.g. long-, medium-, and short-haul2, and treated separately.

Figure 4-2: Origin-based framework.

Within a single city pair, e.g., Milan–New York (Figure 4-2), air transport supply

can be well-diversified, offering passengers numerous choices of alternative routes.

The set of air travel itineraries between an origin 𝑜 and destination 𝑑, indicated by

𝐼𝑜𝑑 ⊂ 𝐼, constitutes the elemental alternatives in the choice set available to passengers.

Itineraries represent feasible travel options in a given market, can be nonstop or
2There is no international standard for the definition of route categories based on travel length.

Commercial flights tend to rely on the conventional three-way classification into long-, medium-, and
short-haul flights, although geographical differences lead to different cut-off conditions. In Europe,
Eurocontrol defines short-, medium-, and long-haul routes as shorter than 1,500 km, between 1,500
and 4,000 km, and longer than 4,000 km, respectively [Source: Eurocontrol]. Other sources propose
instead a classification based on the non-stop flight time; for instance, IATA [Global Passenger Survey
(GPS)] distinguishes between short-/medium- (less than 5 h flight time) and long-haul routes (5 h
or more). The proposed approach is applicable irrespective of the specific classification used as long
as it can adequately reflect different preferences in travel.

134



Chapter 4. Origin-Based Demand Modeling

multi-step, and are uniquely identified by the combination of airports, including the

departure and arrival airports as well as any potential intermediate transfer hubs, and

air carriers operating the flights. For example, the itinerary LIN–FCO–JFK (AZ) in

Figure 4-2 represents the single connecting itinerary from Milan Linate (LIN) to New

York John F. Kennedy (JFK) through Rome Fiumicino (FCO) operated by Alitalia

(AZ), while MXP–JFK (AA) represents a competing nonstop itinerary provided by

American Airlines (AA) from Milan Malpensa (MXP).

The proposed modeling approach estimates the originating outbound air traffic

flows on each itinerary (𝑄𝑖) as a share of the maximum potential trips generated by a

given area. We define 𝑇𝑜, the saturated demand at origin 𝑜, as the maximum number

of trips that can be generated from that area; 𝑇𝑜 includes trips that are currently made

either by air or other transport modes and others that could be made but are not

as a result of existing travel impedance. Assuming that 𝑇𝑜 is known, the originating

outbound air traffic flows on itinerary i are given as:

𝑄𝑖 = 𝑇𝑜𝑃𝑖 (4.1)

where 𝑃𝑖 models the simultaneous choice to travel by air to a given destination using

a specific itinerary 𝑖 at an aggregate level, representing the absolute market share of

itinerary 𝑖 over the entire set of alternatives from origin 𝑜. 𝑃𝑖 is assumed to be a

function of a number of itinerary-specific service level characteristics, such as air fare

and flying and connecting time, as well as destination-specific attributes (see 4.5.2).

Equation 4.1 resembles the formulation proposed by Hsiao and Hansen (2011), differ-

ing primarily in that it defines the saturated demand uniquely at the territorial level

rather than for each city pair. In our origin-based framework, this formulation replaces

the origin-destination flow generation principle with an origin-based conservation of

flow constraint. As the number of trips between city pairs is not independently deter-

mined, this modeling approach has the advantage of explicitly considering the degree

of correlation between alternative destinations, such that stimulation of air travel de-

mand in and out of a region can be achieved by improving the air transport supply,
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both through incremental modifications to the attributes of existing alternatives and,

more importantly, the development of new itineraries and destinations.

As in Li and Wan (2019), this study takes a directional approach to estimating

the outbound trips originating from each origin area, herein referred to as originating

outbound trips. Given that consumers in an air transport market typically start their

trips in the origination region (the outbound portion of a passenger air trip) and

return there after a trip of varying duration (the inbound portion of a passenger air

trip), returning inbound flows may also be approximated by the modeling framework

proposed in this paper. In addition, the supply of air service in each air travel market

is shared with the respective opposite market that consists of passengers who originate

their trips from the destination region. Two different models can be used to addressed

this issue, one centered on the origin region and the other centered on the destination

region. Consider for instance the Milan-New York city pair shown in Figure 4-3.

The portion of originating outbound trips, representing the passengers originating

from Milan in their outbound trip (MIL-NYC), is estimated using the Milan-centered

model while the number of passengers that are returning to New York (MIL-NYC)

can be approximated using a New York-centered model. The inverse is also true in

relation to trips originated in New-York (NYC-MIL) and returning trips to Milan

(NYC-MIL).

4.4 Methodology

To practically estimate the origin-based air travel demand model while accounting for

differences in lengths of haul, we propose two different aggregate NL formulations3.

Formulation 1 (NL1): The first formulation (Figure 4-4a) is a four-level NL model

in which different lengths of haul represent the first level of nesting following the
3The NL specification has some practical advantages in estimating aggregate supply-demand

models. First, it accommodates different correlation patterns within and between nests, making
explicit the degree to which the utility obtained from the lower-level choice situation influences the
upper model Train (2003). Second, the NL approach is based on the assumption of simultaneous
choice; despite its tree structure representation, the NL model does not imply any sequentiality in
the choice process, thereby avoiding the problem of inelastic trip generation. Third, NL models can
be calibrated consistently using aggregate data, as discussed in Section 4.5.1
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Figure 4-3: Representation of outbound and inbound traffic flows in a city-pair.

Solid arrows represent originating outbound traffic flows whereas dotted arrows stand
for returning inbound traffic flows related to passengers who originated their trip in
the model’s center region (underlined city code).

decision to travel by 𝑎𝑖𝑟. This implies that trip making is not independent of length of

haul and allows for changes in the attributes of an alternative to affect, to some extent,

the overall travel demand on other haul lengths. In this respect, the nested structure

accommodates flexible patterns of substitution that are expected to exist within and

between haul length categories. Indicating the choice to fly as 𝑎𝑖𝑟, the integrated

travel decision-making can be generalized as the following probability choice system:

𝑃𝑖 = 𝑃𝑖|𝑑,ℎ,𝑎𝑖𝑟𝑃𝑑|ℎ,𝑎𝑖𝑟𝑃ℎ|𝑎𝑖𝑟𝑃𝑎𝑖𝑟 (4.2)

Formulation 1 (NL2): The second formulation (Figure 4-4b) assumes that trips

over different lengths of haul exhibit significantly different features and therefore

need to be modeled independently. As pointed out in Section 4.2, factors affecting

the inertia and nature of travel can differ widely according to the scope of travel,

particularly between short-haul and long-haul routes, eventually resulting in different

propensities to fly and associated demand elasticities. Under this formulation, a

separate three-level nested structure is estimated for each length of haul, with the

choice to fly further partitioned into destination and itinerary nests. Indicating the
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choice to travel by air over the haul length category ℎ as 𝑎𝑖𝑟ℎ, the integrated trip

decision-making process can be formulated as follows:

𝑃𝑖 = 𝑃𝑖|𝑑,𝑎𝑖𝑟ℎ𝑃𝑑|𝑎𝑖𝑟ℎ𝑃𝑎𝑖𝑟ℎ (4.3)

Figure 4-4: Nesting structures. (a). NL1, (b). NL2.

Both formulations imply hierarchical grouping of air travel itineraries by mode

first (air/non-air) and then by destination as in Furuichi and Koppelman (1994). This

nesting structure is practically convenient for estimating the demand for air travel in

that, lacking specific data on competing modes of transport in each O&D pair (which

is a common issue in practice), it allows for the normalization of a unique outside

good at the root level and the estimation of consistent substitution patterns among

air transport alternatives. The choice of the most appropriate formulation should be

guided by theoretical considerations based on the given situation and confirmed by

the empirical consistency of the nested structure with respect to utility maximization

theory (Train 2003, Gil-Moltó and Hole 2004). The assumption of trip generation

independence appears to be more or less restrictive according to the haul length

classification being used. Other relevant factors are the travel purpose, which directly

affects the propensity to consider alternative destinations, and the journey type, e.g.,

weekend getaway vs. two-week holiday, which inevitably affects the inclination to
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look at faraway and more commoditized short-haul destinations as alternatives on

the same footing.

Tables 4.1 and 4.2 contain the general formulation of the four-level nested logit

model (NL1)4. At each level of the tree, the corresponding conditional probability

takes the form of a multinomial logit formulation among nests. The deterministic

utility component of each nest 𝑉 ) can be divided into two parts: a vector of specific

explanatory variables that differ between nests but are common to all alternatives

within the same nest; and the so-called inclusive value (𝐼𝑉 ), which incorporates the

composite utility derived from the lower branches. The formulation in Table 4.2

originates from the adoption of the Random Utility Model 2 (RU2) normalization

proposed by Hensher and Greene (2002)5. For the purpose of identification, scale

parameters are normalized at the upper level and are restricted to constant values

within each nest at the itinerary level. Unrestricted coefficients can be estimated

at the destination level, but as this would result in a different set of estimated co-

efficients for each destination, complicating the generalization and interpretation of

model results, different scale parameters are only estimated across the haul length

nodes to capture differences in substitution and contribution to overall travel demand

by flights on different hauls.

4Although referred to as NL1, these equations can be applied to NL2 by dropping the haul length
level and estimating separate models for each haul length category. Additionally, the model may
be extended to allow for more flexible substitution patterns among itineraries by further grouping
them based on, for example, the time-of-day (Coldren and Koppelman 2005), departure, arrival,
or hub airport (e.g., Hsiao and Hansen 2011), and carrier type (LCCs vs FSCs) (Cadarso et al.
2017). Because the main objective of this paper is to present the upper part of the modelling
framework—from the saturated demand to itineraries, which already entails three (NL2) to four
(NL1) nesting levels—to demonstrate the usefulness of adopting an origin-based approach, we do
not focus specifically on how to further branch down the itinerary nests and therefore tentatively
ignore any further correlation patterns that might exist among them.

5There has been significant debate in the literature on the normalization and equivalence of
NL models. It is widely acknowledged that RU2, which is equivalent to the utility maximizing
nested logit (UMNL) specification (Koppelman and Wen 1998) is preferable to RU1/NNNL because
it is consistent with utility maximization behavior in general cases. In particular, RU2 is able to
provide consistent probability estimates for general model formulations involving unrestricted scale
parameters across nodes on the same level of a tree or in the presence of generic attribute parameters
(for a detailed overview, see Carrasco and de Dios Ortúzar (2002).
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The equations in Table 4.2 provide the conditional probabilities for the estima-

tion of 𝑃𝑖. The saturated demand 𝑇𝑜 (Equation 4.1) is modeled as the product of

the population at the origin and a multiplicative factor, i.e., 𝑇𝑜 = 𝑃𝑜𝑝𝑜𝛼, where 𝛼

represents the maximum trips per capita that can be achieved by boosting connec-

tivity and making transportation as seamless as possible. This coefficient (𝛼) can be

either empirically estimated as a function of socioeconomic features (e.g. GDP) or

assumed to be equal to a given maximum trip potential. Following similar reasoning

as in Hsiao and Hansen (2011), we assume 𝛼 to be fixed and equal to 1 (i.e., one trip

per capita per month), and test the consistency and robustness of the results through

sensitivity analysis6. Branching down the tree, the saturated demand is split between

air and non-air alternatives, with the latter representing the “outside good” for the

choice situation that encompasses both the no-travel and travel-by-other-modes alter-

natives. Following the customary procedure (Berry 1994), the utility for the non-air

alternative, 𝑉𝑛𝑜𝑛−𝑎𝑖𝑟, is set to zero7.

4.5 Model specification and estimation issues

4.5.1 Estimation

NL models can be estimated either simultaneously using maximum likelihood or se-

quentially by decomposing the NL tree into separate multinomial nested logit (MNL)

models from the bottom to the top level. Although the simultaneous approach has

proven to be more efficient than the sequential approach, the latter still provides

consistent estimates and it has been largely used when dealing with aggregate data

6Hsiao and Hansen (2011) take the geometric mean of the populations in a city-pair market mul-
tiplied by a proportionality coefficient (arbitrarily set to 10 per quarter, i.e. about three potential
trips per capita per month) to approximate the saturated demand in each city-pair market. Consis-
tent with our origin-based framework, we consider the population at the origin instead. Although
simple, this approach does not compromise the estimation of consistent parameters; for relatively
high values of 𝛼, variations in the multiplier virtually only affect the intercept coefficients due to
the difference-in-difference estimation resulting from the linearization of the MNL formula (refer to
Hsiao (2008) for a more rigorous demonstration).

7The normalization of an outside good’s utility is commonly reported in the literature as a
method for overcoming a lack of information on unobserved alternatives and consistently estimating
the model parameters.
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(Allenby et al. 1991, Forinash and Koppelman 1993, Train 2003). In this paper, we

rely on a sequential approach to enable the bootstrap procedure outlined in 4.5.3,

which must be conducted separately for the bottom nests (itinerary choice).

The first step in the sequential approach is to estimate the lower level models

(choice within a nest). The estimated coefficients, including the scale parameters, are

then used to compute the inclusive values to be entered into the deterministic utility

component of the parent nests in the upper model (choice between nests) (Train 2003,

Hensher et al. 2005). By applying a linear transformation to the 𝑃𝑖|𝑑,ℎ,𝑎𝑖𝑟 equation

(Table 4.2), the vector of itinerary choice coefficients 𝛽′ = 𝜇𝛽 is obtained from the

following equation (conditional subscripts omitted):

log𝑃𝑖 − log𝑃𝑖′ = 𝜇𝛽(𝑋𝑖 −𝑋𝑖′) + 𝜉𝑖𝑖′ ∀𝑖, 𝑖′ ∈ 𝐼𝑜𝑑 (4.4)

where 𝜉𝑖𝑖′ is the difference between the unobserved utility components of itineraries

𝑖 and 𝑖′. Treating 𝜉𝑖𝑖′ as an unobserved error term, Equation 4.4 can be estimated by

regressing the difference between the log market shares on the difference-in-attribute

variables. Similarly, the 𝑃𝑑|ℎ,𝑎𝑖𝑟 equation (Table 4.2) can be transformed as follows:

log𝑃𝑑 − log𝑃𝑑′ = 𝜆ℎ𝛾(𝑋𝑑 −𝑋𝑑′) +
𝜆ℎ
𝜇

(𝐼𝑉𝑑 − 𝐼𝑉𝑑′) + 𝜉𝑑𝑑′ ∀𝑑, 𝑑′ ∈ 𝐷𝑜ℎ (4.5)

The ratio of scale parameters is given by the coefficient of the difference between

the inclusive values, which reflects the degree of intra-nest correlation and the extent

to which changes in lower branches affect the choice probability of their nest.

Similar to 𝑃𝑖|𝑑,ℎ,𝑎𝑖𝑟 (Equation 4.4) and 𝑃𝑑|ℎ,𝑎𝑖𝑟 (Equation 4.5), 𝑃ℎ|𝑎𝑖𝑟 and 𝑃𝑎𝑖𝑟 can

also be linearized and sequentially estimated using linear regression models. The

calibration dataset used in this study features a number of cross-sectional units, i.e.,

flight itineraries clustered by origin area, resulting in the likely violation of cross-

sectional independence. Accordingly, we rely on Driscoll and Kraay’s standard errors

(Driscoll and Kraay 1998, Hoechle 2007), which are robust to heteroskedasticity as

well as general forms of temporal and cross-sectional dependences.
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4.5.2 Variable selection

As clarified in Section 4.4, under an NL formulation, specific explanatory variables can

be entered at different stages of the tree structure. In this study, sets of variables are

identified at the itinerary, destination, and origin levels, and a linear-in-parameters

utility specification is used. The itinerary-specific variables (𝑋𝑖) are the airfare, fre-

quency, flying and connecting times, and type of service (non-stop vs one-stop). These

factors were selected for their ability to capture important determinants of itinerary

choice while being generally available at an aggregate level for large samples. Accord-

ing to the literature, airfare is an essential element of itinerary choice (e.g., Lurkin

et al. 2017, Lhéritier et al. 2018) that generally represents the major out-of-pocket

outlay incurred by passengers along their overall air trip, and its inclusion within

the utility formulation allows for inference of the implied values of attributes as a

key output of discrete choice models. Service frequency is used as a proxy for the

allocated capacity on a city-pair market and also provides an indication of the flex-

ibility of travel alternatives at passengers’ disposal. Along with the airfare, service

frequency is a major discretionary factor that an airline can leverage to effectively

increase its market share (Wei and Hansen 2005). Type of service, flying time, and

connecting time capture a number of multifaceted aspects of passenger utility when

facing the trade-off between hasty-fast and comfortable-tardy connections. Addition-

ally, we introduce airline dummies to represent preferences for a given airline due

to relevant choice factors that are not made explicit in the itinerary utility function

(e.g., frequent flyer programs, comfort, reliability, etc.) (Ishii et al. 2009).

At the destination level, demographic and socioeconomic destination-specific vari-

ables, namely the population of the metropolitan area to which access is granted and

its economic activity measured in terms of the GDP per capita, are considered to re-

flect the destination quality (Allroggen et al. 2015). Further factors may be considered

to capture, for example, the tourism orientation of each city or trade flows between

origin and destination areas. As retrieving these variables for every metropolitan

area is generally difficult, especially on a worldwide scale, destination fixed effects are
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included in the model to account for unobserved features and specificities of destina-

tions that affect their overall level of attractiveness. Supply-side variables, such as

travel times and costs, are considered in the destination choice by the inclusive value

computed based on the itinerary choice model.

Similarly, the air travel nest utility for each origin is defined as a function of

the inclusive value derived from destination sub-nests, which combine the breadth

of destinations available and the quality of air transport services to reach them,

and origin dummies to capture intrinsic unobserved features that affect an origin

area’s ability to generate air trips (e.g., income, availability of other modes, etc.).

This approach accommodates different substitution patterns between the air travel

nest and the outside good, therefore obtaining origin-specific demand elasticities to

changes in air transport supply.

4.5.3 Treatment of endogeneity and missing data

As noted in the previous section, airfare is widely acknowledged to be a major deter-

minant of air travel behavior that should not be ignored in the modeling of air travel

itinerary market share. From a practical point of view, the direct inclusion of airfare

in the itinerary utility function poses two main challenges.

First, collecting proper and complete data reflecting the cost of flying is generally

difficult. As a result of the complex and dynamic pricing strategies adopted by air

carriers, it is both problematic and data-intensive to compute reliable average fares

paid by customers based on posted prices. Flight data sources such as the Marketing

Information Data Tapes (MIDT) provided by the OAG corporation contain consistent

fare data at the itinerary-carrier level, although these are only partially complete. As

missing airfare values are likely to be Missing at Not Random, e.g., most LCCs do

not rely on the global distribution system (GDS), removing observations with missing

values (listwise deletion) can produce a bias and yield unreliable parameter estimates

(Rubin 1976, Saunders et al. 2006).

The second concern refers to the potential endogeneity between airfare and itinerary
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choice8. (Mumbower et al. 2014, Lurkin et al. 2017). This is an important issue as

it prevents us from directly entering observed airfare values into the OLS regression

outlined in Equation 4.4.

To overcome these two problems, we propose a bootstrap procedure that com-

bines regression-based imputation with the treatment of endogeneity. For 𝑁 random

samples drawn (with replacement) from the original data, the following three steps

are performed on each bootstrap data set:

1. Estimate a first stage regression to proxy the airfare, using cases with com-

plete data to calibrate the regression equation. Among the relevant predictors

used—including the LCC and time dummies, which respectively capture low-

cost business orientation and seasonality as important predictors of airfare—the

product of distance and jet fuel cost is considered. According to Hsiao and

Hansen (2011), this is a valid instrumental variable as it is highly correlated

with airfare and not confounded with market share.

2. Use the estimated coefficients to perform imputation over all observations—both

complete and non-complete cases. This produces an instrumented price that

extrapolates the orthogonal component of price to the error term and is no

longer endogenous to the market share.

3. Estimate the itinerary choice regression (Equation 4.4) replacing the observed

price with the instrumented price as a predictor.

This process builds a sample of replicated beta estimates that constitute a sam-

pling distribution of regression coefficients to be used for estimating standard errors

and drawing statistical inference. The approach outlined in steps 1–3 above implies
8Other endogenous relationships may exist, specifically related to service attributes, such as flight

frequency. However, in light of the dichotomy of supply and demand in air transport markets, such
that the supply provided by each flight leg is shared by many city-pair markets (Belobaba 2009),
and considering the exogenous constraints that to a large degree characterize frequency planning in
practice (e.g. slot availability, mandatory flights, etc.), the problem of supply endogeneity appears
limited and is tentatively not addressed in this study. Following Gayle (2013), we include airline
dummies in the itinerary mean utility function, such that only non-airline-specific unobserved char-
acteristics are captured by the error term, therefore making the assumption that observed service
attributes are uncorrelated to unobserved quality even more reasonable.
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imputation on each dataset, which, according to Shao and Sitter (1996), yields con-

sistent bootstrap estimates and a better modeling of the uncertainty present in the

missing values. Additionally, bootstrapping is an alternative approach to overcoming

the main limitation of sequential 2SLS, i.e., the inability to obtain proper standard

errors, when simultaneous 2SLS is not applicable (Guan 2003, Guevara-Cue 2010).

4.6 Empirical setting

4.6.1 Data collection

In this section, we describe the data used to assess the proposed NL model. A

comprehensive data set for originating outbound trips from Italy covering a ten-

month period from January to October 2018 was assembled from four main data

sources.

To evaluate the air trips generated from each metropolitan area and track their al-

location over the full range of available air travel alternatives, data on O&D passenger

flows and one-way airfares were collected from the OAG Traffic Analyser by selecting

information for itineraries from any Italian airport to all final destinations worldwide

and restricting the sample based on point of sales (POS) to originating outbound

trips. For example, Figure 4-5 represents the portfolio of destinations that could be

reached from Rome in January 2018. The most detailed information provided by the

OAG Traffic Analyser is made available at the itinerary-carrier level on a monthly

basis. For instance, the tuple (LIN, FCO, JFK, AZ, 201801) uniquely indexes the

one-stop itinerary from Milan Linate (LIN) to New York John F. Kennedy (JFK)

through Rome Fiumicino (FCO) operated by Alitalia (AZ) during January 20189.

Two filtering rules were applied to remove non-significant observations and ensure

the reliability of the empirical analysis: only non-stop and one-stop itineraries were

considered, which represented about 98.8% (83.6% non-stop and 15.1% one-stop) of

total trips from Italy in 2018, and we only used itineraries that consistently carried

9Due to limitations arising from the use of aggregate data, a lack of customer information pre-
vented us from segmenting them according to their purpose of travel.
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Figure 4-5: Reachable destinations from Rome (January 2018).

O&D traffic over at least six months to identify significant patterns of connectivity

and remove sporadic connections10.

After selecting the relevant itineraries, each observation was complemented with

detailed data on transport supply (scheduled flight time, frequency, and connecting

time) sourced from the OAG Schedule Analyser. Although this information is readily

available for non-stop flights, it is not easy to obtain for connecting flights, for which

it was therefore calculated based on the schedules of the respective flight legs. In our

study, links were formed by relying on an itinerary building procedure that selected

the quickest path for any given scheduled departure time (e.g., Malighetti et al. 2008).

This approach accounts for the variety of alternatives at passengers’ disposal without

overestimating the frequency of connecting itineraries. Additionally, a loose cut-off

condition was set to limit connecting times to within 1-6 h.

Demographic data were extrapolated from the latest version of the Gridded Pop-

ulation of the World collection (GPWv4), produced by the Socioeconomic Data and

Applications Center (SEDAC) at Columbia University, which contains disaggregated

population data at a resolution of 30 arc-seconds. For simplicity, we considered the

population of each metropolitan area as the number of people living within a fixed

10As many O&D markets, particularly those that are only served by indirect flights, are thin, we
opted for a filtering strategy based on recurrent connectivity patterns rather than setting an absolute
cut-off condition on the absolute volume of O&D air passenger flows.
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radius of 50 km “as the crow flies”. Data on gross domestic product (GDP) per

capita at the country level were retrieved from the World Bank’s World Development

Indicators (WDI) database.

4.6.2 Descriptive statistics

After data filtering and cleaning, the resulting sample set consists of 101,397 monthly

itinerary-carrier observations corresponding to 12,831 unique itineraries and 3,934

airport pairs. Airports are grouped within metropolitan areas (multi-airport regions)

according to the classification provided by OAG to identify 29 origin and 602 destina-

tion areas, resulting in 2,876 unique city pairs. The data sample contains 200 unique

carriers, including both point-to-point low-cost carriers (31) and hub-and-spoke legacy

carriers (169).

The empirical distribution of origin-destination air passenger flows is highly skewed

and varies widely within the data sample. The monthly average air passenger flow

is 1,077 with a standard deviation of 3,277. The busiest route in the data sample,

Milan to London, features an average of 55,300 originating outbound passengers per

month. On average, each originating area is connected to 117 destinations. The

Italian metropolitan region with the highest number of destinations is Rome, which

is included in 516 city pairs, of which 57 are connected via non-stop flights, 342 via

one-stop flights, and 117 via both non-stop and one-stop flights (Figure 4-5).

In accordance with the objectives of the study, we divide the destinations into two

length-of-haul categories: Medium-Haul (MH: 500 km ≤ distance < 3,000 km), and

Long-Haul (LH: distance > 3,000 km). Very short-haul destinations (distances less

than 500 km) are not considered in the analysis. Within the short haul travel range,

air transport is subject to greater competition from other modes and to a higher

degree of modal substitution (Lieshout et al. 2016), such that considering the outside

good as a market fixed effect would be rather limiting. The empirical distribution

of destinations served from Italy is represented as a function of distance (great circle

method) in Figure 4-6. The distance threshold is set to 3,000 km to delineate the

subsets of continental and intercontinental destinations, and a sensitivity analysis is
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conducted to assess the robustness of estimates to different-cut-off values (See Section

7.2). Based on this partition, out of the 101,397 valid observations, 53,823 and 47,574

are designated as MH and LH, respectively.

Figure 4-6: Distribution of destinations as a function of distance (km)

Table 4.3 lists descriptive statistics related to the itinerary choice variables. In

general, an average non-stop itinerary occupies more than the double the market share

of a one-stop route (57% vs 22%) but with a much lower frequency (-37% on LH vs

-44% on MH). However, the role of connecting itineraries cannot be neglected, as

demonstrated by their relevant contribution to both the LH and MH markets. One-

way airfares have reasonable values ($560 and $123 for an average one-stop flight

on LH and MH routes, respectively) and exhibit high variability, particularly among

connecting itineraries. Similar to other studies in the literature (Mumbower et al.

2014), a major problem with our dataset is the significant amount of missing airfare

data (31,398 records, i.e., 30.9%). As detailed in Section 4.5.3, we implement an

ad-hoc procedure to address this problem and ensure the reliability of regression

estimates.
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Table 4.3: Descriptive Statistics – Itinerary choice.

Haul-
length

Itinerary Variable Mean Std dev 5% 50% 95%

MH

Non-stop

Market share 57.3% 31.6% 9.3% 55.1% 100.0%
Flying time 130.2 41.4 80 120.4 210
Connecting time - - - - -
Frequency (monthly) 29.6 35.3 4 17 101.3
Price 122.6 59.2 47 113 233.9

One-stop

Market share 22.2% 28.6% 0.3% 8.9% 99.2%
Flying time 213.4 54.5 135 210 315
Connecting time 156.2 59.2 74.3 150 261
Frequency (monthly) 52.4 48.1 4 37.2 136
Price 169.3 111.9 56 144 370.3

LH

Non-stop

Market share 57.1% 26.8% 12.8% 56.4% 100.0%
Flying time 528.6 168 275 565 755
Connecting time - - - - -
Frequency (monthly) 18.7 16.2 3 14 40.9
Price 489.2 241.2 150.1 476 915.8

One-stop

Market share 21.5% 24.9% 1.0% 11.9% 88.0%
Flying time 712.1 156.4 408.4 730 936
Connecting time 170.9 64.7 78.9 165 290
Frequency (monthly) 29.7 24.2 4.4 25.3 74.2
Price 560.2 535 114 418 1482.1

4.7 Results

4.7.1 Econometric results

Table 4.4 reports the results of four different models used to assess the validity of

our modeling approach. Model 1 (NL-ALL OLS) estimates all stages sequentially

using OLS without differentiating by length of haul. Model 2 (NL-ALL) applies the

bootstrap procedure to examine the effects of adjusting for endogeneity and missing

data. Models 3 (NL2-MH) and 4 (NL2-LH) report the results of the NL2 formulation

for medium- and long-haul trips, respectively. As they were not generally consistent

with utility maximization theory, the results of NL1 are not reported; by contrast, for

the sample at hand the NL2 formulation provides robust and consistent estimates,

i.e., log-sum coefficients between zero and one, suggesting that air trip generation

is rather independent across lengths of haul and, therefore, that separate modeling

is preferable. The saturation demand multiplier (𝛼) and the number of bootstrap

samples are arbitrarily set to 1 and 500, respectively (see Section 4.7.2 for robustness
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tests).

Table 4.4: Estimation Results.

Nest Level Variable
(1)NL-ALL (2)NL-ALL (3)NL2-MH (4)NL2-LH
OLS BTSRP-IV BTSRP-IV BTSRP-IV

Itinerary

Frequency (flights per month)
0.0118*** 0.0110*** 0.0104*** 0.0111***
[0.0000] [0.0003] [0.0003] [0.0007]

Flight time (minutes)
-0.0056*** -0.0054*** -0.0113*** -0.0040***
[0.0000] [0.0002] [0.0005] [0.0002]

Connecting time (minutes)
-0.0032*** -0.0036*** -0.0043*** -0.0030***
[0.0000] [0.0001] [0.0002] [0.0001]

Type of service (=1, non-stop)
2.6203*** 2.5921*** 2.2320*** 2.4272***
[0.0610] [0.0320] [0.0473] [0.0640]

Price (2018 US$)
7.60E-05
[4.87E-05]

Price (IV) (2018 US$)
-0.0159*** -0.0171*** -0.0012
[0.0017] [0.0019] [0.0009]

Airline fixed effects YES YES YES YES

R2 adjusted 0.574 0.521 0.658 0.3028

Destinations

Population (millions of people)
0.0407*** 0.1009*** 0.0940*** 0.0272***
[0.0048] [0.0038] [0.0032] [0.0032]

GDP per capita (’000 US$)
-0.0227*** -0.0043* 0.0065*** 0.0124***
[0.0021] [0.0025] [0.0012] [0.0020]

Inclusive value ( 𝜌𝑎𝑖𝑟
𝜇

) 0.9858*** 0.7736*** 0.8257*** 0.8995***
[0.0280] [0.0250] [0.0219] [0.0230]

Destination fixed effects YES YES YES YES

R2 adjusted 0.877 0.826 0.851 0.767

Air/non-air

Constant
-6.2041*** -5.2511*** -5.0894*** -7.8968***
[0.1800] [0.2816] [0.1880] [0.1165]

Inclusive value ( 1
𝜌𝑎𝑖𝑟

) 0.8189*** 0.6971*** 0.8307*** 0.7516***
[0.0430] [0.0572] [0.1119] [0.0698]

Origin fixed effects YES YES YES YES

R2 adjusted 0.979 0.959 0.964 0.93

Confidence levels: *p < 0.10. ** p < 0.5. *** p < 0.01.
Note: Driscoll and Kraay’ standard errors into brackets.

As shown in Table 4.4, the use of OLS in Model 1 yields an insignificant coefficient

for airfare as a bias that arises when endogeneity is ignored. The bootstrap procedure,

on the other hand, appears to properly address the issue of confounding and missing

data to produce more reasonable results. A comparison of the results of Model 2 with

those of Models 3 and 4 reveals that consideration of trip length highlights significant

differences in sensitivity to travel determinants and, accordingly, helps clarify trip

generation and allocation dynamics.

Overall, the model coefficients are statistically significant and their signs are con-

sistent with expectations. Both the frequency and type of service have a positive
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impact on itinerary market share and neither varies notably across trip length (Fig-

ure 4-7). Increasing either the connecting or flight times worsens the attractiveness

of itineraries. In absolute terms, their impacts are found to be more burdensome

at shorter distances; specifically, the marginal effects of connection and flight times

on LH flights are estimated to be 30 and 65% less, respectively, than on MH flights

(Figure 4-7). In addition to having an overall longer trip duration, LH demand is

heavily reliant on connecting traffic, with 63% of LH traffic involving a connection

(7% domestically) against 37% flying non-stop; the corresponding split for MH flights

is 7% (40% domestically) and 93%, respectively. Given the scattered distribution of

LH point-to-point markets, passengers on LH travel are in general more willing to

accept longer travel times and to consider indirect itineraries as a valid travel option.

Figure 4-7: Comparison of coefficients – MH vs LH (normalized to MH coefficients).

For MH flights, airfare is found to have a significant negative impact on the

itinerary choice; although the impact for LH flights is also negative, it appears to

be negligible. This can be explained by intrinsic features of LH travel and the data

samples used. Price elasticity on LH flights is expected to be lower as a result of the

shortage of inter-modal alternatives and the higher typical cost of intercontinental

transportation (for a detailed overview of the determinants of price elasticities, see

Brons et al. (2002)). Additionally, LH flight choice is likely to be more affected by
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the business component in terms of both price differential over the leisure counter-

part and a reduced propensity to switch to economy class “no-frills” service (Francis

et al. 2007). With regards to the empirical setting, the LH segment is highly het-

erogeneous, encompassing geographic markets with both low and high elastic price

responses (e.g., Europe–Asia and Europe–North America, respectively) (Smyth and

Pearce 2008). Intra-Europe routes, by contrast, are characterized by a high degree of

substitution, strong competition, and price-sensitive demand.

Model 3 produces a consistent adjusted 𝑅2 value of 0.66, demonstrating that the

included explanatory variables are able to accurately capture itinerary choice behavior

in MH markets. The explanatory variables are also relevant for LH flights, although

their compound explanatory power is smaller (0.30), reflecting the important role

played by additional features and the fact that more frills are required in the LH

sector (Francis et al. 2007).

To facilitate a comparison of coefficients in terms of magnitude, we compute the

value of time (VOT) measures under those models reporting significant betas for

airfare. For Model 2 (NL-ALL), the average VOTs are 20.4 and $13.6/h for flight and

connecting times, respectively. These are reasonable values and of the same order

of magnitude as those reported in the literature11. In the MH markets, these VOTs

increase to 39.7 and $15.1/h, respectively. In terms of frequency, an additional daily

flight is assigned a marginal equivalent value of $18.3/h, while the inferred monetary

value for non-stop itineraries is $130.5/h.

At the destination level, the GDP per capita and population are found to positively

impact the attractiveness of destinations, with the model indicating a good fit in

terms of adjusted 𝑅2—0.85 and 0.77 for NL2-MH and NL2-LH, respectively—as a

result of the fixed effects in the model. The nesting coefficients are considerably

high, particularly for the LH markets, demonstrating the significance of the origin-

based approach. Although itineraries serving the same city pair are correlated—with

11For instance, Hsiao and Hansen (2011) report different VOTs for scheduled flight times on direct
and indirect routes of 16.8 and $24.1/h, respectively, while Lurkin et al. (2017) compute the value
of time for the total elapsed time for high- and low-yield products, equal to 83.30 ad $43.36/h,
respectively.
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nesting coefficients below one, confirming the validity of the nesting structure—their

impact on destination choice is not negligible. Variations in itineraries such as the

introduction of a new flight, lower prices, and improved service levels do not solely shift

traffic between competing itineraries but considerably affect passenger distribution

among destinations.

In the trip generation stage, the scale parameters, i.e., 1
𝜌𝑎𝑖𝑟

, are statistically signif-

icant, consistent with utility-maximization theory, and moderate in magnitude (0.83

and 0.75 for MH and LH, respectively). Thus, the introduction of new destinations

and the increased number of flight options in certain markets alter the destination

market shares while also significantly impacting the total number of people traveling

by air.

4.7.2 Robustness checks

This section presents three robustness checks to corroborate the results of the empir-

ical analysis. In detail, we test how changes in key assumptions of the model, i.e.,

the length of haul threshold, the saturated demand multiplier (𝛼), and the number of

bootstrap samples (𝑁), affect the NL2-estimated coefficients presented in Table 4.4.

Table 4.5 reports the itinerary choice coefficients for different MH/LH threshold val-

ues (3,000 ± 500 km). The stability of these results confirms the validity of the

length-of-haul partition for the Italian case.

Table 4.5: Sensitivity Analysis – MH/LH distance thresholds

Haul-length Frequency Flight Time Connecting Time Type of service Price (IV)

coef std coef std coef std coef std coef std

MH ≤ 2, 500 0.011 0.000 -0.011 0.001 -0.004 0.000 2.252 0.054 -0.015 0.001
≤ 3, 000 0.010 0.000 -0.011 0.001 -0.004 0.000 2.232 0.047 -0.017 0.002
≤ 3, 500 0.011 0.000 -0.011 0.000 -0.004 0.000 2.222 0.040 -0.017 0.002

LH > 2,500 0.011 0.001 -0.004 0.000 -0.003 0.000 2.423 0.064 -0.004 0.001
> 3,000 0.011 0.001 -0.004 0.000 -0.003 0.000 2.427 0.064 -0.001 0.001
> 3,500 0.011 0.001 -0.004 0.000 -0.003 0.000 2.461 0.071 -0.001 0.001

Another relevant assumption to investigate is the maximum number of monthly

trips per capita (𝛼). As shown in Table 4.6, when 𝛼 is varied from 1 (one trip per
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person per month) to 5 (five trips per person per month), the air travel stimulation

coefficients, i.e., 1/𝜌𝑎𝑖𝑟, remain statistically significant and their magnitude is largely

unaffected, while the constant term changes widely. Given our goal of demonstrat-

ing the significance of adopting an origin-based approach to demand forecasting, this

corroborates the findings discussed in the previous section. However, studies with

different purposes may require other approaches to evaluate 𝛼 and each region’s sat-

uration demand.

Table 4.6: Sensitivity Analysis – Saturation demand parameter (𝛼).

𝛼 MH LH

Inclusive value Constant Inclusive value Constant

coef std coef std coef std coef std

1 0.8307 0.1119 -5.0894 0.188 0.7516 0.0699 -7.8968 0.1165
2 0.7873 0.1034 -5.706 0.1691 0.7514 0.0698 -8.5903 0.1165
3 0.7749 0.1011 -6.0903 0.1641 0.7513 0.0698 -8.9958 0.1165
4 0.7689 0.1000 -6.3681 0.1619 0.7513 0.0698 -9.2835 0.1165
5 0.7654 0.0994 -6.5855 0.1605 0.7513 0.0698 -9.5067 0.1165

Figure 4-8 illustrates the coefficients’ sampling distribution for different numbers of

bootstrap samples (100, 500, and 1,000). While the green distributions (100) display

irregular patterns and produce unstable coefficient estimates, the red (500) and blue

(1,000) lines are “normal-shaped” and nearly identical. Ultimately, we selected a

number of random draws equal to 500 as this provides sufficiently accurate (and

stable) distributions while reducing the computation time12.

4.8 Conclusions

Over the past few decades, air travel estimation has received a good deal of interest

from both academics and practitioners developing tools and quantitative methods to

address the challenges and the increasing complexity of the aviation industry. This

paper makes three main contributions to the modeling of air travel demand: (1) it

proposes a new integrated origin-based air travel demand model that considers the

12The iterative bootstrap procedure outlined in Section 4.5.3 was implemented in Python 3.6,
using the Statsmodels package [www.statsmodels.org] for econometric implementation.
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Figure 4-8: Sensitivity analysis – Number of bootstrap samples. (a). Medium-haul,
(b). Long-haul.

originating travel forces of each area and explicitly considers substitutability between

alternative destinations; (2) it develops two general aggregate NL formulations to

reflect the level of independence between lengths of haul and account for differences

in passengers’ choice behavior and sensitivity to itinerary attributes; (3) it applies

an ad-hoc bootstrap procedure to jointly address endogeneity arising between airfare

and itinerary market share and data missingness.

The proposed integrated model is tested over the entire network of outbound air

trips from Italian airports in 2018, with the findings indicating that medium- and

long-haul trips exhibit considerably different features. Connecting time, flight time,

and airfare play a more decisive role in itinerary choice for medium- than for long-haul

trips, while frequency and type of service are found to have similar impacts on the two

haul distances. Air transport supply is found to significantly affect the destination

choice and potentially stimulate new air traffic.

The implementation of the proposed integrated demand model can support actors

in the industry in carrying out planning activities and strategic decision-making.

Airports might benefit from a thoughtful assessment of outbound trip generation and
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demand saturation that would enable them to detect the most promising trajectories

for development. Airlines could leverage an origin-based approach to obtain valuable

insights into route development and network planning. Policymakers could benefit

from the estimation of newly generated demand and passenger distributions among

both itineraries and destinations to better assess the consequences of stimulation (or

restriction) policies aimed at enabling (or hindering) the expansion of the aviation

sector.

However, the proposed model is not without limitations. One major limitation

follows directly from the lack of information on other modes of transport, which

kept us from assessing alternative nesting structures. In particular, the grouping

of alternatives first by destination and then by air/non-air routes was not possible

because of a lack of specific information on the relevance of intermodal competition

in each O&D market.

Promising avenues for future research lay in increasing the model’s estimation

accuracy and applicability. First, one approach will be to segment air trips into

homogeneous groups according to their travel purpose, e.g., leisure vs business, and

journey type, each of which are important features affecting the travel decision-making

process. Second, a promising research direction will involve further development of

the saturated demand function. Although not strictly necessary in the investigation

of trade-offs between choice determinants and substitution patterns within a multi-

level NL framework, the careful assessment of each region’s trip generation potential

is key to inferring stimulated trips and producing reasonable traffic estimates when

substantial variations are made to air transport supply. Third, the inclusion of airport

ground access (and egress) considerations will further improve the model by account-

ing for passenger allocation over neighboring airports within the same metropolitan

area and tracking each step along the comprehensive air passenger trip from their

originating point to their final destination. Fourth, given that this research focuses

on the demand function and does not jointly estimate a supply function, the more

explicit treatment of supply and quality choices can be subject of future research.
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Conclusion

This thesis has addressed the modeling of supply-demand interactions in the opti-

mization of air transport networks. Starting from the longest-term strategic decisions

to daily schedules, demand represents perhaps the most important input to the de-

sign, planning, and allocation of aviation resources. Demand, however, is hard to

predict and it is inextricably tied to air transport supply. While the added value of

capturing the two-way relationship between supply and demand is not under debate,

the explicit modeling of supply-demand interactions requires addressing a number

of challenges—both related to the empirical estimation of advanced demand models

as well as their integration into optimization models supporting the airline planning

process—and has been substantially underrepresented in the literature. This the-

sis aims to contribute to this important stream of research by developing integrated

models that organically integrate demand modeling and mathematical programming.

Throughout Chapters 2-4, we have illustrated these models and highlighted their

capability to deliver valuable insights and practically aid decision-making.

The first contribution (Chapter 2) has dealt with airline network planning. In

this paper, we have developed an original modeling framework that captures the

interdependencies between supply (service frequency and network structure) and de-

mand—referred to as Airline Network Planning with Supply and Demand interactions

(ANPSD). The ANPSD contributes to the literature in three major ways. First, de-

cision support tools are much less prevalent in airline strategic planning, as compared
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to the pervasive use of operations research in support of other stages of the airline

planning process. In this respect, the ANPSD constitutes probably the first data-

driven approach that comprehensively and simultaneously addresses network planning

problem decisions, spanning route planning, flight frequency and fleet composition,

capturing the interdependencies between demand and supply in airline strategic plan-

ning. Second, the demand model has been estimated empirically based on historical

data and the form of the empirical demand function has led the ANPSD to be for-

mulated as a non-linear, non-convex mixed-integer optimization problem—which is

highly challenging to solve. Hence, we have developed an original exact cutting-plane

algorithm, named 2𝛼ECP, which leverages the structure of the demand function but

also represents a novel solution method for a broader class of nonconvex MINLPs.

The validity of the proposed approach has been evaluated through a set of comprehen-

sive computational experiments based on real-world-like instances and a case-study

involving the continental network of Alitalia. Computational results suggest that the

2𝛼ECP algorithm yields stronger solutions than state-of-the-art benchmarks based on

discretization and linearization, and, after two hours of computation time, terminates

within 1%–5% optimality gaps in realistic instances. Finally, practical results demon-

strate that the ANPSD enacts more rationale and meaningful strategic insights, as

compared to conventional approaches relying on inelastic demand, or entailing only a

partial representation of supply-demand interactions. Results also show how ANPSD

practically aids decision-making concerning network expansions, being able to suit-

ably appraise the most promising development opportunities and drive the synergic

evolution of fleet and network.

The second contribution (Chapter 3) has dealt with airline tactical planning. In

this paper, we have developed a novel mixed-integer nonlinear flight scheduling and

fleet assignment optimization model wherein air travel demand generation and alloca-

tion are simultaneously and consistently endogenized (IGASFAM). Different from the

ANPSD, the optimization literature on airline tactical planning is rather vast and the

study of supply-demand interactions has been subject to a number of (recent) studies.

Yet, these contributions have focused primarily on the demand allocation problem,
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using basic “S-curve” or MNL models to express the relationship between supply and

demand. As a main drawback, these models do not properly capture (or do not cap-

ture at all) the demand generation (or degeneration) effects of increased (or decreased)

level of service. The IGASFAM significantly contributes to this body of knowledge by

enhancing the representation of supply-demand interactions to simultaneously con-

sider both demand generation and allocation dynamics. This is achieved by using a

nested logit models that simultaneously capture demand generation and allocation

among air travel itineraries. To deal with the resulting nonlinearities in the mathe-

matical formulation, a piecewise linearization scheme and tightening constraints are

introduced, which improve the tractability of the model and make it solvable for

rather large instances. The validity of the proposed model has been demonstrated

by both computational experiments and a real-world case study involving a major

European airline (Alitalia). Results have demonstrated how the IGASFAM can solve

mid-size hub-and-spoke networks in reasonable times and that substantial profit gains

(+6.9%) could be achieved through its application, thus representing a valuable tool

for supporting the airline planning process.

Finally, in the third contribution (Chapter 4), we have proposed a novel demand

model for air transportation. This paper contributes to the literature by addressing a

key limitation of existing modeling approaches, which estimate air travel demand in-

dependently within city-pairs. This formulation is quire restrictive in that it assumes

that air travel between two cities is not affected by changes in air transport supply

elsewhere. However, if the two markets are overlapped (i.e. they share the same

origin or destination) it is likely the case that adding or removing destinations may

affect the resulting flows in the other markets. More importantly, taking a city-pair

perspective overlooks the saturation of demand at the origin, resulting in the over-

or under- overestimation of the number of trips generated from a given region when

substantial variations are made to air transport supply (e.g., the addition or deletion

of routes from a given origin area). To address this issue, this paper has developed an

origin-based air travel demand model that assumes saturation at the origin level and

explicitly accounts for substitutability between destinations. The proposed approach
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simultaneously integrates demand generation and allocation using a multilevel aggre-

gate nested logit formulation that covers the choices of whether or not to travel by

air, where to travel (destination), and how to travel (itinerary). Two specifications

have been proposed to reflect systematic differences between lengths of haul and the

bootstrap has been applied to jointly address endogeneity issues and data missing-

ness. The output of the proposed model can serve as a useful planning and strategy

tool by airports and airlines to detect the most promising development trajectories

in both saturated and developing catchment areas. Also, policymakers could bene-

fit from the estimation of newly generated demand and passengers diverting among

both itineraries and destinations enabled by the model, for better assessing the wel-

fare implications of stimulation (restriction) policies aimed at enabling (hindering)

the expansion of the aviation sector.

Collectively, these three works contribute to the literature on air transport plan-

ning by developing tools and methodologies that are applicable to real-world cases

and practically support decision-making through an advanced representation of the

interdependencies between supply and demand. Furthermore, the modeling and al-

gorithmic frameworks proposed in this thesis provide valid foundations for future

research toward a systematic and comprehensive integration of supply-demand inter-

actions in decision support tools for air transport network planning.

Besides the specific points identified in each chapter, three main directions for

future research are identified.

First, the models presented in this thesis have all relied on parametric techniques

to estimate demand models. Recently, the use of machine learning methods has

also gained popularity in the OR literature (e.g., Jaquillat 2020, Beulen et al. 2020).

Different from parametric models, machine learning methods do not provide a closed-

form expression that can be directly embedded into mathematical formulations and

do not inform on causal relationships. On the other hand, machine learning meth-

ods are acknowledged to better capture nonlinear and complex relationships among

variables, potentially yielding superior prediction performances. The application of

these methods in the context of supply-demand interactions is scant, but certainly
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constitutes an interesting direction for future research.

Second, all the proposed approaches have considered a deterministic demand

model. However, besides the simultaneity between supply and demand, another key

aspect relates to the intrinsic uncertainty of demand, especially in the long term.

Stochastic and robust optimization approaches have been subject to extensive re-

search—also applied to airline planning (e.g., Marla et al. 2018, Cadarso and de Celis

2017). Yet, none of these contributions has developed a comprehensive modeling

framework that incorporates both demand uncertainty and supply-demand interac-

tions. This will requite to identify and characterize the determinants of air travel

demand, and model uncertainties regarding their future evolution. Although chal-

lenging, both empirically and computationally, this approach could lead to a more

effective mapping of uncertainty, ultimately resulting in superior decision making.

Third, an interesting research direction relates to the third contribution. The

origin-based model presented in chapter 4 has been illustrated as a stand-alone de-

mand model. Future works may be devoted, first, to evaluate the potential benefits

that can be derived from its application in the context of network planning. Addi-

tionally, the ability to capture saturation at the origin level and correlations between

destinations and itineraries, makes the origin-based model developed in this thesis

particularly suitable for airport network planning. Airports in general have been

much less active in route development than airlines. However, in the last years - and

before the brutal halt due to Covid-19 - airports have been facing growing and press-

ing environmental concerns, and the scarcity of airport resources (compared to the

exponential growth of air travel) has led to increasing congestion issues, especially at

major hubs. Hence, it is always more crucial for airport planners and strategists to

carefully plan the most promising directions for future developments in order to bal-

ance off the often conflicting interests related to the consolidation of hub operations

and the overall welfare impact for the local community.

Air travel will recover from Covid-19 and hopefully restore to a sustained growth

pattern. By developing advanced methodologies to account for supply-demand in-

teractions, this thesis strives to contribute to the rebuilding of global air transport
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networks and to the upcoming challenges facing the aviation industry.
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