
Using Model-Based Testing to Repair
Models of Configurable Software

Systems

Marco RADAVELLI
Ph.D. course in Engineering and Applied Sciences

XXXII Cycle

Advisor: Prof. Angelo Gargantini

Università degli Studi di Bergamo, Italy
Department of Management, Information and

Production Engineering

January, 2020

Abstract

Software testing is an important phase in the software development process, aim-
ing at locating faults in artifacts, in order to achieve a degree of confidence that the
software behaves according to its specification. While most of the techniques in soft-
ware testing are applied to debugging, fault-localization, and repair of code, to the
best of our knowledge there are fewer works regarding the application of software
testing to locate faults in models, and to the automated repair of such faults. The
goal of this PhD thesis is to study how testing, and specifically model-based testing,
can be applied to repair models of configurable software systems. We describe the
research approach, and discuss the application cases of configuration constraints in
combinatorial models, feature models, and clock guards in timed automata. In addi-
tion to evaluating the process on different versions of real-world systems, we show
an application of repair of configuration constraints for the detection of security vul-
nerability conditions among parameters of XSS attack vectors. Empirical evaluation
shows that, on average, the process achieves around 37% accuracy in combinatorial
model repair, 79% accuracy in XSS vulnerability detection, 89% accuracy for the fea-
ture model repair through mutations, and 100% accuracy on variability constraints
and timed automata clock-guards repair, although these values have been obtained
in the optimal conditions for fault localization, that is an important factor influenc-
ing accuracy. We also present CTWEDGE and MIXTGTE, two tools developed to
support combinatorial testing and failure-inducing combination detection respec-
tively, that are two important preliminary activities for the actual model repair. We
then discuss future work to overcome the current limitations of the approach, and
for applying testing to repair other types of models of software systems.

Acknowledgements

I would like to thank my supervisor Prof. Angelo Gargantini, for his patient guid-
ance, support and help during my PhD. I also wish to thank Prof. Paolo Arcaini for
his patient support and guidance, and for inviting me to work with him at ERATO
Metamathematics for Systems Design Project, at NII in Tokyo. I thank also Prof.
Ichiro Hasuo for accepting my visit and for his suggestions and kindness.

Special thanks go to my family for the endless support, and to all the co-authors
and colleagues at university, in particular Justyna Petke, Paolo Vavassori, Silvia Bon-
fanti, and Andrea Bombarda, for their contribution throughout my PhD, not only
scientifically, but also on a human perspective. A special thank I wish to give to Yu
Lei, his family and his team at University of Texas at Arlington for the encourage-
ment and the support in research activities. Thanks to Dimitris Simos and his team
at SBA Research in Vienna, for his guidance and openness in collaborating with me.

Thanks also to the co-supervisor of my M.Sc. thesis, Prof. Sarah Nadi, for having
solicited in me a curiosity for the topics in software product lines, and giving me
many clues on how to approach research.

Finally, I wish to thank the many kind people (researchers and not) with whom
I had the pleasure to interact during the journey to produce this thesis.

I would like to thank the University of Bergamo for making it possible.

Contents

1 Introduction 11
1.1 Research Questions and Objective . 12
1.2 Contributions . 14

1.2.1 Other publications . 17
1.3 Note on conventions . 18

I State of the Art 19

2 Background 20
2.1 The Role of Models in Software Engineering 20

2.1.1 Combinatorial Models . 22
2.1.2 Feature Models . 23
2.1.3 Model Repair and Program Repair 23

2.2 Software Engineering Techniques for Model Repair 24
2.2.1 Combinatorial Interaction Testing 24
2.2.2 The Oracle Problem . 25
2.2.3 SAT and SMT solvers . 25
2.2.4 BDDs and MDDs . 26

II Test-Driven Model Repair Approach 28

3 Automated Model Repair 29
3.1 Research Hypothesis . 30

3.1.1 Assumptions . 30
3.2 Contribution . 30
3.3 Research Approach . 31
3.4 Results . 31

3

4 Contents

3.4.1 Repair of Configuration Constraints 32
3.4.2 Repair of Feature Models . 32
3.4.3 Repair of Timed Automata . 33

4 Repair of Constraints Among Parameters 34
4.1 Validation of Constraints Among Configuration Parameters Using

Search-Based Combinatorial Interaction Testing 35
4.1.1 Combinatorial Models of Configurable Systems 36
4.1.2 Basic Definitions . 38
4.1.3 Finding Faults by Combinatorial Testing 39
4.1.4 Combinatorial Testing Policies 40
4.1.5 Experiments . 43
4.1.6 Related Work . 48

4.2 Combinatorial Interaction Testing for Automated Constraint Repair . 49
4.2.1 Combinatorial Models and Testing of Configurable Systems . 52
4.2.2 Combinatorial Testing Policies 53
4.2.3 Definitions . 55
4.2.4 The constraint repair process 59
4.2.5 Experiments . 61
4.2.6 Related Work . 68

4.3 Using Iterative Constraint Repair to Detect XSS Vulnerabilities 70
4.3.1 Preliminaries . 71
4.3.2 Process for Model Evolution 73
4.3.3 Experiments . 75
4.3.4 Related Work . 78

4.4 Conclusion and Future Work . 78

5 Repair of Feature Models 80
5.1 Achieving change requirements of feature models by an evolutionary

approach . 80
5.1.1 Basic definitions . 81
5.1.2 Specifying an update request 83
5.1.3 Evolutionary updating process 88
5.1.4 Experiments . 96
5.1.5 Threats to validity . 103
5.1.6 Related work . 104

5.2 A Process for Fault-Driven Repair of Constraints Among Features . . 105
5.2.1 Basic Definitions . 107
5.2.2 Fault-driven Repair . 109
5.2.3 Evaluation . 114
5.2.4 Threats to Validity . 119

Contents 5

5.2.5 Related Work . 120
5.3 Conclusion . 122

6 Repair of Timed Automata 124
6.1 Definitions . 126

6.1.1 Parametric timed automata . 127
6.1.2 Reachability synthesis . 128

6.2 A repairing process using abstraction and testing 129
6.2.1 Overview of the method . 129
6.2.2 Step À: Abstraction . 130
6.2.3 Step Á: construction of the extended parametric zone graph . 131
6.2.4 Step Â: Test data generation . 132
6.2.5 Step Ã: Test labeling . 133
6.2.6 Step Ä: Generating constraints from timed words 134
6.2.7 Correctness . 135
6.2.8 Step Å: Instantiation of a repaired TA 135

6.3 Experimental evaluation . 136
6.3.1 Results . 137

6.4 Related Work . 140
6.5 Conclusions . 141

III Tools to Support Model Repair 142

7 CTWEDGE: Migrating Combinatorial Interaction Test Modeling and Gen-
eration to the Web 143
7.1 A simple language for CIT models . 145

7.1.1 Constraints . 146
7.1.2 Xtext . 148

7.2 CTWEDGE: CT Web Editor and Generator 149
7.2.1 Combinatorial Testing Web Editor 149
7.2.2 Test generator web service . 150

7.3 Related Work . 154
7.4 Future Work . 159
7.5 Conclusions . 161

8 MixTgTe: Efficient and Guaranteed Detection of t-Way Failure-Inducing
Combinations 162
8.1 Background . 164
8.2 Definitions . 167
8.3 The MIXTGTE method . 168

6 Contents

8.3.1 MIXTGTEt . 169
8.4 Properties of the MIXTGTE process . 173
8.5 Evaluation . 175

8.5.1 Benchmarks . 176
8.5.2 Compared approaches . 177
8.5.3 Results . 178

8.6 Related Work . 182
8.7 Conclusions . 183

9 Conclusion 184

Bibliography 186

List of Figures

2.1 Conceptualization level and implementation level in Model-Driven
Software Engineering . 21

3.1 Test-Driven process to repair models 32

4.1 Combinatorial interaction CITLAB models 37
4.2 Validating constraints by CIT . 39
4.3 HeartbeatChecker CIT model . 45
4.4 Fault detection capability . 48
4.5 An example CIT model of a washing machine. 54
4.6 The space of test cases for system S and its model M. Failing test cases

appear in the regions M/S and S/M, i.e., where valM(t) 6= oracleS(t). 56
4.7 The constraint repair process. 59
4.8 Effort of the repair process . 64
4.9 Repair capability . 65
4.10 Django models obtained by repairing the manual model using differ-

ent testing policies . 69
4.11 Knowledge base K3 for NavigateCMS: abstract attack model (initially

it had no constraints), with detected XSS vulnerability constraints, in
CTWedge . 72

4.12 Condition detection meta-process . 74
4.13 Achieved F1 score of final model by varying ThS, when Tht = 4 . . . 77

5.1 Example of feature model (taken from [171]) 82
5.2 Added and removed products . 85
5.3 Faults . 90
5.4 Updated feature model . 90
5.5 Proposed evolutionary approach . 91
5.6 Relation between the initial fault ratio and the fault ratio reduction . 101
5.7 Example of problem and solution spaces 106

7

8 List of Figures

5.8 Fault-driven repair of variability models 107
5.9 Context of the process to repair constraints among features in vari-

ability models . 110
5.10 Single iteration of the optimized repair approach 112

6.1 Running example . 127
6.2 Automatic repair process . 129
6.3 Parametric zone graph of 6.1b . 132
6.4 Translation of timed word (a, 0.5)(c, 5) 134
6.5 Repairing TAs with different structures – Another oracle TA 139

7.1 A smartphone example . 145
7.2 CitModel rule diagram . 148
7.3 CTWEDGE architecture . 150
7.4 CTWEDGE web editor . 151
7.5 Examples of CTWEDGE validation errors 152
7.6 Generator URL example . 152
7.7 Message of operations not supported in constraints for CASA gener-

ator tool . 153
7.8 CTWEDGE visualization of the generated test suite 154

8.1 Overview of the user-driven iterations of the process alternating test
generation and detection of isolated mfics 168

8.2 MIXTGTEt process to find and isolate mfics up to accuracy of strength t 169
8.3 Status evolution of a tuple c throughout the process 173

List of Tables

4.1 Test suites with faults (in gray) . 35
4.2 Benchmark data. vr is the validity ratio, defined as the percentage of configura-

tions that are valid. 45
4.3 Valid pairwise parameter interactions covered by six test generation

policies. (Shaded cells are covered in the prose.) Out of memory
errors are due to constraint conversion into the CNF format required
by CASA. In particular, as known in the literature, the size in CNF of
the negation of a constraint can grow exponentially. 46

4.4 An example test case triggering a conformance fault in the washing
machine model. 56

4.5 All tests containing the failure-inducing combination HalfLoad and
Spin=Spin.High. 57

4.6 The benchmark data (for CNF size ab means b clauses with a literals each.) 62
4.7 Means of the quantities over all the mutations 66
4.8 Django inference and repair results . 67
4.9 XSS reflection sites on WAVSEP benchmarks 75
4.10 Quality metrics for the inferred models (ThBEN = 3, and ThS = 0) . . 76

5.1 Mutation operators . 95
5.2 Benchmark properties . 97
5.3 Performance of the updating process 99
5.4 Performance of the updating process with the two versions of the fitness102
5.5 Test suites with faults (in gray) . 109
5.6 Benchmarks size . 115
5.7 Experimental results (mut.: mutation type; s.: strengthening repairs;

w.: weakening repairs; ED: edit distance; CD: complexity distance; t:
time in milliseconds, T/O: timeout occurred). In gray the best results
(CD and ED over all the approaches, time over the simplification ap-
proaches) . 117

9

10 List of Tables

5.8 Detailed results of the execution time for BENCHREAL 119

6.1 Description of the states of the extended parametric zone graph . . . 132
6.2 Benchmarks . 137
6.3 Experimental results . 138
6.4 Experimental results – Different oracle 140

7.1 Rules of CTWEDGE Language Validator for Constraints 147
7.2 Request parameters to CTWEDGE generation service 153
7.3 Tool resource links . 155
7.4 A comparison with other SaaS for CT 156

8.1 Test suites for running example . 166
8.2 Example of MIXTGTE for detecting mfics of different sizes with a

strength up to t = 3 . 174
8.3 Benchmark properties . 176
8.4 Experimental results (P: precision, R: recall, F: F-score, time is in ms) 179
8.5 Execution trace of SOFOT on example SUT 181

Chapter 1

Introduction

Traditional testing techniques provide test generation, fault localization and pro-
gram repair. If we assume a fault to be a discrepancy between a model (problem
space) and the system implementation (solution space) for a particular test case, we
can distinguish two scenarios: (1) the model is correct and the implementation is
faulty, and (2) the implementation is correct and the model is faulty. While the most
common case is that the model reflects the specification, and the error resides in the
system implementation, this is not always the case. The specification may change
throughout the software system life cycle, and it may happen that the implementa-
tion is updated but the model(s) remain(s) outdated, leading to inconsistencies that
reduce system maintainability [177]. Such inconsistencies are often due to budget
constraints, as updating models is a difficult and error-prone activity to perform
manually. In other cases, the model is derived from the software implementation,
often even long time after the program is put in operation. Moreover, with the in-
crease of complexity of software systems, also their models are becoming larger: the
Linux Kernel, for instance, has currently more than 13,000 features (in release 3.9)
[165]. The goal of this thesis is to study how model-based testing techniques can
be applied to drive automatic repair of software models. Model repair can be useful
whenever the model is outdated w.r.t. the implementation, or a defined oracle or the
specification. Sometimes an engineer also wants to detect which is the correct model
of a current aspect of an implemented system, and can use testing techniques not
only to find bugs in a system, but also to repair or to entirely learn a model from the
system implementation. Outcomes of this project may have an impact in reducing
the effort of software maintenance, which is one of the costliest phases in software
life cycle [218].

11

12 Chapter 1. Introduction

1.1 Research Questions and Objective

The goal of this thesis is to study how model-based software testing, and in partic-
ular combinatorial interaction testing (CIT), can be applied to drive automatic repair
of models of software variability. The thesis is divided into seven chapters. Each
chapter (introduction excluded) tries to answer a research question (RQ).

RQ1: What are the main techniques and applications of software testing and program re-
pair?

This is shown in Chapter 2 in which relevant books and papers are analyzed. Dif-
ferent types of software models are presented (namely software product lines and
combinatorial models, with a reference to timed automata), and currently available
techniques to support engineers in automatically updating and repairing programs
and models are analyzed. In particular, techniques such as mutation, together with
evolutionary algorithms, are discussed. In this chapter is also given a background
on existing ways to encode and reason on configuration space, such as SAT and
SMT solvers, and binary decision diagrams.

RQ2: How to increase software engineer productivity by automatically repair non-conformant
models?

Often during software development lifecycle, models may become non-conformant
with respect to the system implementation. Automatically repair the model in order
to maintain conformance, by applying small edits to it, is the goal of the approach
presented in Chapter 3. The devised process uses information coming from tests
on the real system, and it represents the framework shared by all the specific meth-
ods described in the following chapters. Chapter 3 answers this research question,
and discusses how also academic tools can improve engineers perform the different
phases of this model repair process.

RQ3: How to repair configuration constraints using software testing?

Part of the goal of the thesis is the application of model repair technique directly
to configuration constraints, i.e., constraints under which (and only under which) the
system is supposed to work correctly, or shows a certain property. Chapther 4 de-
scribes a possible approach to automatically repair constraints using combinatorial
interaction testing, and a case study on the application of this method to software
security, for the detection of XSS vulnerabilities in web applications.

RQ4: How to repair feature models?

1.1. Research Questions and Objective 13

A widely used notation to model software variability is feature model. Feature mod-
els are used in software product lines (SPL) engineering. Many software products
have configuration files with parameter-value pairs, and such configuration files
can be, for example, modeled by feature models. Although feature models are not
yet widely used to model configurable software applications, there are many com-
panies, in particular in the automotive sector, that use feature models to represent
domain knowledge for SPLs (see this list [72] of some companies using feature mod-
els). Model repair is a challenging problem as the number of configurations grows
exponentially with the number of modeled features (i.e., parameters), and some
software have hundreds or even thousands of features: the Linux Kernel, for in-
stance, has currently over 18 000 features [201]. Chapter 5 presents two approaches
for automated repair of feature models: the first is targeted towards repairing the
hierarchical relations among features and the simple constraints of type requires and
excludes, while the second is targeted towards repairing arbitrary constraints among
features.

RQ5: How to repair timed automata clock guards?

Many software systems have a behavior that involves timed constraints, and can be
modeled by timed automata (TA), and parametric timed automata (PTA) [21, 13, 22].
They can range from electrical automated machines such as coffee machines and
washing machines (where time automata model, e.g., the maximum amount of sec-
onds after which, if the user has not selected any type of coffee, the inserted coins
have to be given back to the user), to protocol implementation in the railway, au-
tomotive and aerospace industry. Chapter 6 describes a process to automatically
repair this particular types of model, i.e., timed automata, by generating (from that
initial model) and executing test cases (i.e., sequences in the automata), and itera-
tively repair the potential inconsistencies between the model and the system.

RQ6: How combinatorial testing editing and generation can be made easy to perform?

As part of the thesis, we have also the goal to investigate a tool that supports the ac-
tivity of combinatorial test generation, that is often used in the presented processes
for model repair. Chapter 7 presents a comparative study among the existing tools
for combinatorial testing, and proposes a SaaS (Software-as-a-Service) web-based
tool, that does not require any installation, to make the test generation activity easy
for engineers.

RQ7: How can the detection of failure-inducing combinations be improved?

One of the steps of the test-driven processes to automatically repair models is the
detection of the combinations of parameters that cause inconsistencies between the

14 Chapter 1. Introduction

model and the system: the failure-inducing combinations (fccs). There are tools
for failure-inducing combination detection, such as BEN [97, 98], IterAIFL [209],
AIFL [185], FIC [220], SOFOT [156], and ICT [160]. In Chapter 8 we present MIXTGTE,
a new method to detect failure-inducing combinations guaranteeing to achieve com-
plete accuracy up to a certain strength t. This tool could be used not only to improve
the constraint repair method devised (described in Chapter 4), but also as an alter-
native fault localization technique.

1.2 Contributions

We give below an overview of the contributions of this PhD thesis in terms of pub-
lished or accepted peer-reviewed papers, in international conferences or scientific
journals. The list is in chronological order, and for each paper is shown a short
summary and a description of the role of M. Radavelli in the work.

A. [89] Angelo Gargantini, Justyna Petke, Marco Radavelli, and Paolo Vavassori.
Validation of constraints among configuration parameters using search-based
combinatorial interaction testing. In Search Based Software Engineering - 8th In-
ternational Symposium, SSBSE 2016, Raleigh, NC, USA, October 8-10, 2016, Pro-
ceedings, pages 49–63, 2016

In this paper, we study the effectiveness of different combinatorial test genera-
tion criteria in detecting faults in system whose combinatorial model contains
constraints among parameters. M. Radavelli contributed in the discussion of
ideas between co-authors, in implementing part of the experiments (in par-
ticular, the evaluation with the benchmark Django), and in writing about it.
The co-authors further contributed in writing the paper, implementing the
approach, in writing the code to report data from evaluation, and in further
discussions and proof reading.

B. [88] Angelo Gargantini, Justyna Petke, and Marco Radavelli. Combinatorial
Interaction Testing for Automated Constraint Repair. In 2017 IEEE Interna-
tional Conference on Software Testing, Verification and Validation Workshops (ICSTW),
pages 239–248. IEEE, March 2017

In this paper, we present a process for finding and fixing conformance faults in
models of parameter configuration of software systems. We compare effective-
ness among the CIT policies introduced in the previous paper [89] in repairing
the constraints, and also in completely inferring the constraints, for the bench-
mark Django. M. Radavelli contributed to the discussion of ideas between
co-authors, to the implementation of part of the evaluation, and in writing the
paper. The co-authors further contributed in writing the paper, implementing

1.2. Contributions 15

the approach, reporting the data from evaluation, and in further discussions
and proof reading.

C. [26] Paolo Arcaini, Angelo Gargantini, and Marco Radavelli. An evolutionary
process for product-driven updates of feature models. In Proceedings of the
12th International Workshop on Variability Modelling of Software-Intensive Systems,
VAMOS 2018, pages 67–74, New York, NY, USA, 2018. ACM, ACM

This paper presents an approach to automatically repair feature models. Given
a set of change requirements in terms of features and products to add/remove
from a feature model, the evolutionary process tries to mutate that feature
model such that the obtained model exactly captures the specified require-
ments. M. Radavelli contributed in the process definition, implemented the
process in Java, selected the benchmarks, performed the experiments on them,
and produced tables and charts. M. Radavelli contributed in writing the pa-
per. The co-authors further contributed in discussions, writing the paper, and
proof reading.

D. [90] Angelo Gargantini and Marco Radavelli. Migrating combinatorial inter-
action test modeling and generation to the web. In 2018 IEEE International Con-
ference on Software Testing, Verification and Validation Workshops (ICSTW), pages
308–317, 2018

This paper presents CTWEDGE, a novel tool that offers a complete SaaS (Soft-
ware as a Service) environment for combinatorial testing modeling and gener-
ation. This tool is installation-free and download-free, easy to use, and exten-
sible to support more generators. M. Radavelli contributed in the discussion
towards this paper, in the tool implementation using Xtext Web [83, 212], in
the comparison with existing tools, and in writing the paper. The co-author
further contributed in discussions, writing the paper, and proof reading.

E. [27] Paolo Arcaini, Angelo Gargantini, and Marco Radavelli. Achieving change
requirements of feature models by an evolutionary approach. Journal of Sys-
tems and Software, 150:64–76, 2019

This journal paper further extends [26] by improving the process and by per-
forming a more extensive evaluation using real evolutions of feature mod-
els. M. Radavelli contributed in the discussions and in writing the paper (in
particular the experiments and the related works), implemented the process
and performed the experiments. The co-authors further contributed in discus-
sions, writing the paper, and proof reading.

F. [28] Paolo Arcaini, Angelo Gargantini, and Marco Radavelli. Efficient and
guaranteed detection of t-way failure-inducing combinations. In 2019 IEEE

16 Chapter 1. Introduction

International Conference on Software Testing, Verification and Validation Workshops
(ICSTW), pages 200–209. IEEE, IEEE, April 2019

This paper presents MIXTGTE, an iterative process to fault localization aiming
at finding minimal failure-inducing combinations alternating combinatorial
test generation and execution. With respect to existing methods, under the as-
sumption that the maximum strength of the failure-inducing combinations is
known and the process is run up to that strength, it guarantees to find all and
only those minimal failure-inducing combinations. This kind of fault localiza-
tion is used in the processes for model repair devised in our papers [88, 90, 94],
and the method described in this paper could be used to improve those pro-
cesses. M. Radavelli contributed in the discussions between co-authors, in
writing the paper (all sections, although in particular the experiments and the
related work), implemented the process, and performed the evaluation. The
co-authors further contributed in discussions, writing the paper, and proof
reading.

G. [94] Bernhard Garn, Marco Radavelli, Angelo Gargantini, Manuel Leithner,
and Dimitris E. Simos. A fault-driven combinatorial process for model evolu-
tion in XSS vulnerability detection. In Franz Wotawa, Gerhard Friedrich, Ingo
Pill, Roxane Koitz-Hristov, and Moonis Ali, editors, Advances and Trends in Ar-
tificial Intelligence. From Theory to Practice, pages 207–215, Cham, 2019. Springer
International Publishing

This paper applies the automated iterative process for constraints repair de-
scribed in [88] to the field of security testing. It identifies (from an empty
model) constraints among XSS attack parameters that trigger XSS vulnerabili-
ties in web applications. Empirical evaluation on six real-world web applica-
tions shows that the process achieves on average 78.8% accuracy in detecting
XSS vulnerability triggering conditions. M. Radavelli contributed in the dis-
cussions among co-authors, in writing the paper (in particular the sections re-
garding the process description, the evaluation, and related work), and imple-
mented part of the process.The co-authors further contributed in discussions,
in implementing part of the process (web server for test case concretization,
and XSS vulnerability detection), writing part of the paper, and proof reading.

H. [20] Étienne André, Paolo Arcaini, Angelo Gargantini, and Marco Radavelli.
Repairing timed automata clock guards through abstraction and testing. In
Dirk Beyer and Chantal Keller, editors, Tests and Proofs, pages 129–146, Cham,
2019. Springer International Publishing

This paper proposes an iterative approach for automatically repairing timed
automata, in the case where clock guards shall be checked for conformance

1.2. Contributions 17

w.r.t. the system implementation, and be repaired if needed. Our approach
abstracts the initial TA by adding some parameters in the clock guards, gener-
ates some tests, and then refines the abstraction by identifying only those TAs
that correctly evaluate all the tests. M. Radavelli contributed in the discussions
among co-authors, in the implementation of the approach in Java, and he per-
formed the evaluation among the three benchmarks, as well as the comparison
of the process with existing techniques. Co-authors contributed in discussions
(especially precious has been André’s expertise on Timed Automate), in im-
plementing the process, in writing the paper and in proof reading.

I. [29] Paolo Arcaini, Angelo Gargantini, and Marco Radavelli. A process for
fault-driven repair of constraints among features. In Proceedings of the 23rd
International Systems and Software Product Line Conference - Volume B, SPLC ’19,
pages 71:1–71:9, New York, NY, USA, 2019. ACM

In this paper, we proposed a process that, given a (faulty or outdated) variabil-
ity model, and the faults in terms of failure-containing combinations, identi-
fies the constraints involved in the fault, repairs them according to the oracle
value, and simplifies them to make the edit minimal. The process can be seen
as an integration to the evolutionary algorithm we proposed to repair feature
models in [26, 27], that deals with constraints among features expressed in
propositional logic. M. Radavelli contributed in the discussions among co-
authors, in the implementation of the approach in Java, performed the empir-
ical evaluation among the 7 benchmark models and the different simplifica-
tion strategies, and wrote the paper. Co-authors contributed in discussions, in
writing the paper, and in proof reading.

1.2.1 Other publications
Aside the papers that characterize the contributions of this thesis, two extended
abstracts that present the overall contents of this thesis have been accepted for pre-
sentation in two software engineering conferences (A and B in the list below). Fur-
thermore, M. Radavelli contributed to a paper that we here only mention, as it goes
beyond the scope of this thesis. It presents a framework for testing a medical proto-
col using ASM model refinement (paper C in the list below), and it is the fruit of a
collaboration between the FMSE lab at the University of Bergamo 1, and the team of
Prof. Yu Lei at University of Texas at Arlington.

A. [173] M. Radavelli. Using testing to repair models. In 2019 12th IEEE Conference
on Software Testing, Validation and Verification (ICST), pages 489–491, April 2019

1Formal Methods and Software Engineering Lab at University of Bergamo: https://foselab.
unibg.it/

https://foselab.unibg.it/
https://foselab.unibg.it/

18 Chapter 1. Introduction

B. [174] Marco Radavelli. Using software testing to repair models. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, ESEC/FSE 2019,
pages 1253–1255, New York, NY, USA, 2019. ACM

C. [46] Silvia Bonfanti, Andrea Bombarda, Angelo Gargantini, Marco Radavelli,
Feng Duan, and Yu Lei. Combining model refinement and test generation for
conformance testing of the ieee phd protocol using abstract state machines. In
Testing Software and Systems - 31th IFIP WG International Conference, ICTSS 2019,
Paris, France, October 15-17, 2018, Proceedings, 2019

1.3 Note on conventions

Parts of this thesis are based on the aforementioned publications. To be able to
easily distinguish a text included verbatim from the publications, the corresponding
paragraphs are marked with a vertical bar on the side of the text.

[X] This paragraph is an example of the way we mark the text, which is a verbatim
copy. It means that the original text appeared in the paper [X].

Part I

State of the Art

19

Chapter 2

Background

To make this thesis more self-contained, this chapter presents an overview of the
context of model repair, i.e., model-driven software engineering, with some back-
ground over the specific software models targeted in the repair processes, i.e., com-
binatorial constraints, and feature models (Sect. 2.1), and of the main common tech-
niques used in the approaches for model repair proposed in this thesis, i.e., software
testing and fault localization, evolutionary algorithms, SAT and SMT solvers, and
BDD and MDD representations (Sect. 2.2).

More specific concepts, such as timed automata, and further definitions, are de-
scribed in the corresponding chapters throughout the thesis.

2.1 The Role of Models in Software Engineering

MDSE (Model-Driven Software Engineering) or simply MDE (Model-Driven En-
gineering) provides a comprehensive vision for system development. MDSE can
be defined as a methodology for applying the advantages of modeling to software
engineering activities [49, 104]. MDSE seeks for solutions according to two dimen-
sions: conceptualization (columns in the Fig. 2.1, taken from [49]) and implementa-
tion (rows in the figure).

Different levels to model reality are defined in the conceptualization dimension,
while the implementation issue deals with the mapping of the models to some ex-
isting or future running systems. While the conceptualization distinguish a model
from its meta-model (model of the model), the implementation consists of linking the
modeling level with the realization level via a transformation (or automation) level,
where the mappings from the modeling to the realization levels are put in place. For

20

2.1. The Role of Models in Software Engineering 21

the application level, such mappings can be from model to artifacts (code generation,
or model-to-text, M2T, transformation), or from artifacts to model (model inference, or
T2M transformation). In the other levels, we can have model-to-model transforma-
tions (M2M).

Figure 2.1: Conceptualization level and implementation level in Model-Driven Soft-
ware Engineering

There is a literature on how to design high quality models [124], however keep-
ing all the different models conformant to specification and implementation while
code-base evolves, is one of the main challenges in model-based software engineer-
ing.

There are different ways to reach this goal of conformance: methods to check
model validity [164, 35], tools to detect and visualize, and in some cases automati-
caly fix, inconsistent models [78, 81, 77], even inconsistency directly in requirements
[80, 79], reliability analysis, are examples of such methods.

The model repair approaches proposed in this thesis try to improve the state of
the art for model repair, by giving more tools or methods for software engineers to
apply in the industrial practice, or to further extend.

Whereas with the recent advent of agile methodologies, such as the scrum devel-
opment process, the usage of models is sometimes interpreted as being discouraged,
empirical evidence shows that a trade-off on which models to keep, should be found
[45]. As code evolves, models should be updated too to maintain conformance with
code, and this operations take time: therefore which models to keep and which not,
should be a careful decision to make [45]. Indeed, models have the positive effect
of being more easily understandable than code and, among their functions, mod-
els are particularly important in helping engineers to transfer domain knowledge,

22 Chapter 2. Background

and collaborate with others. A trade-off should be found, but models remain cov-
ering an important function in the software development process, therefore all the
model-driven engineering activities are of importance.

In the rest of the section, we describe the three model types that we chose as
target for the repair operations identified in this thesis: combinatorial contraints,
feature models, and timed automata.

2.1.1 Combinatorial Models

In most configurable systems, dependencies exist between configuration parame-
ters. Such constraints may be introduced for several reasons, e.g., to model incon-
sistencies between certain hardware components, limitations of the possible system
configurations, or simply design choices [64]. Software systems can be configured
by setting specific parameter values also at different stages of the software testing
process.

• Compile time Configurations can be set at compile time. An example is shown
in Figure 4.1b. Depending on the value settings of the Boolean variables HELLO
and BYE different messages will be displayed when the program is run.

• Design time Configurations can also be set at design time. For example, in
case of a SPL, a configurability model is built during the design.

• Runtime Another way of setting parameter configurations is at runtime. This
can be usually done by means of a graphical user interface (GUI). In a chat
client, e.g., you can change your availability status as the program is running.

• Launch time We also differentiate the case where parameters are read from a
separate configuration file or given as program arguments, before the system is
run. We say that these parameters are set at launch time of the given applica-
tion. They decide which features of the system should be activated at startup.
Examples of such systems include chat clients, web browsers and others.

A combinatorial model M is composed by a set P of parameters, and a set C of
constraints among them. M can be formally defined as follows.

Definition 2.1. Let P = {p1, . . . , pm} be the set of parameters. Every parameter pi as-
sumes values in the domain Di = {vi

1, . . . , vi
oi
}. Every parameter has its name (it can have

also a type with its own name) and every enumerative value has an explicit name. We denote
with C = {c1, . . . , cn} the set of constraints.

Constraints ci are given in general form, using the language of propositional
logic with equality and arithmetic.

2.1. The Role of Models in Software Engineering 23

2.1.2 Feature Models

Software Product Line (SPL) engineering is an approach for the systematic reuse
of software artifacts across a very large number of similar products. Various do-
mains apply SPL engineering successfully to improve the overall project success, by
increasing quality, saving costs for development and maintenance, and decreasing
time-to-market [7]. SPLs offer a systematic reuse of software artifacts within a range
of products sharing a common set of features (i.e., units of functionality) [103]. Ac-
cording to IEEE a feature is a distinguishing characteristic of a software item (e.g.
concerning its performance, portability, or functionality) [6].

The central aspect of systematic reuse is the concept of variability. This concept
provides the possibility to define particular artifacts (features) for the entire SPL as
not necessarily being part of each product. Variability specifies the point at which
features are selected in combination with other features [67]. The stakeholders of
the SPL generally define where variability occurs and decide which features are
variable e.g. optional or alternate.

Feature models represent variability in software product lines, and are employed
in various domains, in particular for cyber-physical systems, in the IoT and in the
automotive sectors [111]. However, variability model consistency checking, and
repair, in the context of systematic variability management in software, is still chal-
lenging and a relatively new problem [122]. One main reason for the increasing
need of systematic variability management in software is the fact that the majority
of modern features in a car are based on software. Thus, variability moves from
mechanics and hardware to software [47, 161].

An example of feature model is given in Fig. 5.1, and, although there exist multi-
ple, slightly different, formal definitions for feature and feature models, one is given
in Section 3.4.2.

2.1.3 Model Repair and Program Repair

To the best of our knowledge, few studies address the problem of repairing the model
artifacts, instead of the implementation code, and the problem of repair automatically
existing models of software systems w.r.t. the implementation is still an open issue.
Example of works on automated repair of programs are in [155, 133, 36].

In model-driven engineering, there are approaches aiming at repairing incon-
sistencies between models [145]; Tran et al. show a way to address the problem
manually for the Linux Kernel [202]; Nadi et al. present a method to automatically
mine conditions under which a system behaves in a certain way [154], and there
are methods to statistically infer constraints from data [61, 8], but they are not di-
rectly applicable to repair existing models made of sets of constraints and they do
not guarantee complete accuracy. A quality-based model refactoring framework as-

24 Chapter 2. Background

sessing quality of merging operations among SPL models, expressed in UML [178],
supports maintainability of models describing relations among features. It repre-
sents an approach to model repair, although it is specific to one kind of models. The
need of a fault-driven constraint repair process was already envisioned in [108], but
any empirical experiment were yet performed.

2.2 Software Engineering Techniques for Model Repair

Software systems are an integral part of life, from business applications (e.g., bank-
ing) to consumer products (e.g., cars). Most people have had an experience with
software that did not work as expected. Software that does not work correctly can
lead to many problems, including loss of money, time, or business reputation, and
even injury or death. Software testing is a way to assess the quality of the software
and to reduce the risk of software failure in operation.

Software testing is expensive and labor intensive. Software testing requires up
to 50% of software development costs, and even more for safety-critical applications
[18]. Therefore, software testing has been an active area both in research and in in-
dustry. There are several studies and techniques to adapt software testing to specific
scenarios and applications, to improve test suite generation and execution, and to
apply testing techniques to various tasks in software engineering, such as program
repair and model inference and repair. [133, 61, 74, 213]

One of the goals of software testing is to automate as much as possible, thereby
significantly reducing its cost, minimizing human error, and making regression test-
ing easier. [18]

2.2.1 Combinatorial Interaction Testing

Experiments and industrial evidence suggest that software failures are usually caused
by interactions among inputs or parameters of the system [125]. For this reason,
combinatorial interaction testing (CIT), which consists in testing all the interactions
of a given strength, is widely used and efficient in detecting bugs. Combinatorial
Interaction Testing (CIT) is a particular type of model-based, black-box testing tech-
nique that aims at covering the interactions of parameters in a system under test
(SUT), while some combinations may be forbidden by given constraints (forbid-
den tuples) [214]. It explores t-way feature interactions inside a given system, by
effectively combining all t-tuples of parameter assignments in the smallest possi-
ble number of test cases. This allows to budget-constrain the costs of testing while
still having a testing process driven by an effective and exhaustive coverage metric
[63, 127]. The most commonly applied combinatorial testing technique is pairwise
testing, which consists in applying the smallest possible test suite covering all pairs

2.2. Software Engineering Techniques for Model Repair 25

of input values (each pair in at least one test case). In fact, it has been experimen-
tally shown that a test suite covering just all pairs of input values can already detect
a significantly large part (typically 50% to 75%) of the faults in a program [69, 193].
Dunietz et al. [75] compared t-wise coverage to random input testing with respect
to the percentage of structural (block) coverage achieved, showing that the former
achieves better results if compared to random test suites of the same size. Burr and
Young [55] reported 93% code coverage from applying pairwise testing of a large
commercial software system, and many CIT tools (see [162] for an up to date list-
ing) and techniques have already been developed [70, 102, 127] and are currently
applied in practice [50, 125, 189]. CIT is used in a variety of applications for unit,
system, and interoperability testing. It has generated both high-level test plans and
detailed test cases. In several applications, it greatly reduced the cost of test plan
development. Testers can base their input on detailed development requirements
or on a system’s high-level functional requirements.

2.2.2 The Oracle Problem

In software testing, while test case generation, execution and fault localization have
considerably advanced, the quality of the oracle remains an important bottleneck
[112].

The effectiveness of testing depends both on the quality of the test cases and on
the quality of the oracle [37, 192, 210]. The Oracle Problem is the problem of defin-
ing accurate oracles, capable of detecting all and only faulty behaviours exercised
during testing [12], [18], [25], [36], [37], [38]. Without a (good) oracle to determine
whether the test output is correct, test inputs that satisfy the strictest adequacy cri-
teria remain useless and testing is ineffective. The quality of the oracle can be eval-
uated based on two properties: completeness (no false positives), and soundness (no
false negatives: all faults should be rejected by the oracle).

With respect to our proposed model repair process, we assume the existence of
an oracle to assess non-conformancies between the model and the system. In one
case we automated the oracle (we used the implicit oracle), in other cases, the oracle
could be set by the user or predicted. Oracle evaluation is often the longest phase in
software testing, and a bottleneck in testing automation. Indeed, it is where domain
knowledge expertise is needed, and often only human intervention is reliable, as
the oracle is intimately related to domain knowledge representation, and to require-
ments engineering.

2.2.3 SAT and SMT solvers

In computer science, the Boolean satisfiability problem (abbreviated with SAT) is
the problem of determining if there exists an interpretation that satisfies a given

26 Chapter 2. Background

Boolean formula [43]. It asks whether the variables of a given Boolean formula can
be consistently replaced by the values true (>) or false (⊥) in such a way that the
formula evaluates to true, i.e., the formula is satisfiable. If no such assignment exists,
the formula is unsatisfiable.

For example, the formula a ∧ ¬b is satisfiable because one can find the values
a = >∧ b = ⊥, which make (a ∧ ¬b) = >. In contrast, a ∧ ¬a is unsatisfiable.

The SAT problem is NP-complete, but heuristic SAT-algorithms are able to solve
problem instances involving tens of thousands of variables and formulas consisting
of millions of symbols, which is sufficient for many practical SAT problems from,
e.g., artificial intelligence, circuit design, and automatic theorem proving [131, 44].

SAT and SMT (Satisfiability Modulo Theories) solvers are employed in various
applications in software engineering, especially in model checking, program verifi-
cation, and static analysis [56, 147]. In the context of model repair, these techniques
can also be used to identify redundant constraints, for constraints simplification,
and to obtain failure-inducing combinations between two sets of constraints [219].

By definition, the SAT solver needs as input a propositional formula in Conjunc-
tive Normal Form (CNF), normally as DIMACS format, and a variable assignment,
and tells whether it is satisfiable or not.

Although the SAT solver is very fast, transforming a propositional formula in
an arbitrary format into CNF, although always possible, can be computationally
expensive, and may lead to an exponential grow in formula size [182].

This is one of the practical reasons for which for some applications in software
engineering, in certain cases, BDDs are preferred over SAT/SMT solvers.

2.2.4 BDDs and MDDs

Binary Decision Diagrams (BDD) and Multi-Valued Decisions Diagrams (MDD)
are commonly used structures for representing Boolean functions and multi-valued
functions, respectively.

On a more abstract level, BDDs can be considered as a compressed representa-
tion of sets or relations. Unlike other compressed representations, operations are
performed directly on the compressed representation, i.e. without decompression.
Other data structures used to represent Boolean functions include negation nor-
mal form (NNF), Zhegalkin polynomials, and propositional directed acyclic graphs
(PDAG).

BDDs are extensively used in CAD software to synthesize circuits (logic synthe-
sis) and in formal verification [51]. There are several lesser known applications of
BDD, including fault tree analysis, Bayesian reasoning, product configuration, and
information retrieval [96].

Although building a BDD is normally computationally more expensive than

2.2. Software Engineering Techniques for Model Repair 27

solving a SAT problem with a state-of-the-art SAT solver, it allows for a deeper anal-
ysis over the propositional formula that leads to the BDD, in particular:

• Using the BDD representation, it is easy to count the number of satisfiable
configurations. This may be useful in certain contexts such when this number
is a part of a fitness function of a process, or is needed for evaluation.

• BDDs do not need the input formula (or set of constraints) to be in a CNF
representation, therefore avoiding the potentially exponential complexity of
the CNF transformation.

• BDDs can be more convenient, and potentially faster, when multiple assign-
ments are to be evaluated over the same propositional formula, because the
tree is built only once (building the BDD is the complex operation), and then
just traversed many times to check for satisfiability.

Part II

Test-Driven Model Repair Approach

28

Chapter 3

Automated Model Repair

We devise an iterative process to automatically repair models: the model is mod-
ified until all the non-conformances between the model and the system (revealed
by the generated tests), are solved. Fig. 3.1 shows an overview of such test-driven
repair approach. Among testing techniques to be employed, black-box testing is
an effective technique to detect faults in a system focusing on the inputs, without
needing access to the code, but requiring simply an oracle that states if a particu-
lar test passes or fails. Combinatorial Interaction Testing (CIT), in particular, has
shown to achieve high coverage in software systems for which a parametric, config-
urable model can be defined. Moreover, we use mutation analysis and search-based
methods for feature models, a model that has also a graphical tree representation,
and these methods tend to apply small edits to the model, helping preserve domain
knowledge.

Unlike processes that detect faults and repair code, the main hypothesis of this
project is that testing techniques can be used not only for fault detection and lo-
calization, but also for model repair. This methodology aims at changing the model
with less impact as possible (to preserve domain knowledge) to repair the non-conformance
w.r.t. the solution space (it can be the current implementation, a new specification, or
an available oracle). The applied repairs are local and little, based on the competent
modeler assumption, that the model is a little outdated, and minimal changes are
enough.

29

30 Chapter 3. Automated Model Repair

3.1 Research Hypothesis

By making the assumption that the fault resides in the model, and the implemen-
tation is correct, the rationale that drives this PhD proposal is the investigation of
software testing techniques to automatically repair models. Model repair can be use-
ful whenever the model is outdated w.r.t. the implementation, or a defined oracle
or the specification. Sometimes an engineer also wants to detect which is a model
of a current aspect of an implemented system, and can use testing techniques not
only to find bugs in a system, but also to repair or to entirely learn a model from the
system implementation.

The main hypothesis of this research project is that testing techniques can be
used not only for fault detection and localization, but also for model repair.

3.1.1 Assumptions

The applicability of the proposed failure-driven model repair framework is subject
to the following assumptions, that we identified:

• prescriptive model: there should be an initial prescriptive model of the system,
from which tests can be then generated;

• traceability: the parameters in the model can be traced back to variable in the
system. It should be always possible to translate an abstract configuration (i.e.,
a test), into a concrete test;

• oracle definition: there should be the possibility to execute a test towards the
system, and obtain a pass/fail result, e.g., depending if the system compiles
correctly, doesn’t crash, doesn’t expose a vulnerability, etc.

• faulty model: we assume that the fault(s), if present, reside in the model, while
the system is correct, and can be used as oracle.

3.2 Contribution

The contribution of this PhD project is the proposal and evaluation of testing tech-
niques to repair models of software systems. The methodology aims at changing
the model with less impact as possible (to preserve domain knowledge) to repair the
non-conformance w.r.t. the solution space (it can be the current implementation, a
new specification, or an available oracle).

From the initial prescriptive model, (1) we generate and execute tests (test gen-
eration), (2) we detect failing interactions (fault localization), and (3) we repair the

3.3. Research Approach 31

model accordingly (model repair), obtaining a descriptive model of the system, that
we assume to accurately represent the new prescriptive model of the system.

3.3 Research Approach

The research process, designed in accordance with the defined objectives, consists of
two stages: the reviewing stage, and the formulation stage. In the reviewing stage,
we evaluate existing techniques that may be useful for the objective, and explore
possible application scenarios, to determine the kind of models that can be repaired
from software testing results. In the formulation stage, for each scenario, we try
to formulate the concepts and decline the repair problem to that particular kind of
model; then we apply or tailor the existing techniques to propose a solution to the
model repair problem. Among testing techniques to be employed, black-box testing
is an effective technique to detect faults in a system focusing on the inputs, without
needing access to the code, but requiring simply an oracle that states if a particular
test passes or fails. Combinatorial Interaction Testing (CIT), in particular, has shown
to achieve high coverage in software systems for which a parametric, configurable
model can be defined. Mutation analysis and search-based methods are also to take
into consideration, when possible, as they tend to apply small edits to the model,
helping preserve domain knowledge. The process is iterative: the model is modified
until all the non-conformances between the model and the system (revealed by the
generated tests), are solved. Fig. 3.1 shows an overview of such test-driven repair
process. Benchmarks should be selected for evaluation, and tools to implement the
repair process should be reused if existing, or customized or built if needed.

3.4 Results

In the initial stage of the research project we applied the repair process to configurable
models. Configurable models can model, for example, system features decided at
compile time such as preprocessor directives, or decided at operation time such as
configuration files, and also constraints among parameters in a running system.

In the following subsections we briefly describe the results obtained from the ap-
plication of test-driven repair in three kinds of configurable models: combinatorial
models, feature models, and timed automata. Results are then reported in details
in Chapter 4 for combinatorial models, Chapter 5 for feature models, and Chapter 6
for timed automata.

32 Chapter 3. Automated Model Repair

Figure 3.1: Test-Driven process to repair models

3.4.1 Repair of Configuration Constraints

A model for a combinatorial problem consists of parameters which can take various
domain values. Combinatorial models may have also constraints among parame-
ter values to, for example, model inconsistencies between certain hardware compo-
nents, limitations of the possible system configurations, or simply because of design
choices. Some methods have been introduced to automate the process of inferring
constraints, but they do not aim at repairing existing ones [8, 197]. Therefore, in [88]
we proposed an iterative approach that uses a fault-localization tool based on com-
binatorial testing, called BEN, and CIT policies introduced in our previous work
[89] to find failure-inducing combinations of parameter values. The model is then
repaired logically, by translating such failure-inducing combinations as expression
in propositional logic. We also developed a tool to make it easier the editing of such
combinatorial models, and the test suite generation, called CTWedge [90].

Chapter 4 presents results in detail.

3.4.2 Repair of Feature Models

Feature models are a widely used modeling notation for variability management in
software product line (SPL) engineering. In order to keep an SPL and its feature
model aligned, feature models must be changed by including/excluding new fea-
tures and products, either because faults in the model are found or to reflect the

3.4. Results 33

normal evolution of the SPL. Such changes can be complex and error-prone due
to the size of the feature model. Therefore, we try to repair a feature model w.r.t.
a given update request in the form of a set of configurations to be accepted or re-
jected, that may come from failing test cases, or from a change in the specification.
The method is based on an evolutionary algorithm that iteratively mutates the orig-
inal feature models and checks if the update request is semantically fulfilled [26, 27].
The approach has been evaluated on real-world feature models: although it does not
guarantee to completely update all the possible feature models, on average, around
89% of requested changes are applied, with minimal edits, helping in preserving
domain knowledge.Chapter 5 presents results in detail.

3.4.3 Repair of Timed Automata
We apply the repair framework also to timed automata clock guards. In this case, a
test is a timed sequence (i.e., actions associated to an absolute time) that can be exer-
cised on the real system. Our approach generates an abstraction of the initial TA in
terms of a PTA, generates some tests, and then refines the abstraction by identifying
only those TAs contained in the PTA that correctly evaluate all the tests. Chapter 6
presents results in detail.

Chapter 4

Repair of Constraints Among
Parameters

A model for a combinatorial problem consists of parameters which can take various
domain values. Combinatorial models may have also constraints among parame-
ter values to, for example, model inconsistencies between certain hardware compo-
nents, limitations of the possible system configurations, or simply because of design
choices [88].

In this chapter we try to answer the research question RQ3 from Section 1.1:
How to repair configuration constraints using software testing?. To answer this question,
we consider combinatorial models as notation to express configuration constraints,
and we describe an iterative approach to repair combinatorial models that uses a
fault-localization tool based on combinatorial testing, called BEN [98], and combi-
natorial test generation policies to find failure-inducing combinations of parameter
values. The model is then repaired logically, by translating such failure-inducing
combinations into expressions in propositional logic. The repairs are of two types,
depending on whether the model is true and the system (i.e., the oracle) false for
a given test case (in this case, the model is under-constrained) or vice-versa (in this
case, the model is over-constrained). Tab. 4.1 reports possible scenarios in which such
condition may occur in a system with three boolean parameters A, B, C, that map
to directives in a C program in which both B and C can be enabled only if also A is
activated.

Experiments for five real-world systems (Libssh, Telecom, Aircraft, Concurrency,
and Django) show that our approach can repair on average 37% of conformance
faults. Moreover, we also notice that it can infer and repair parameter constraints
for the configurations that lead to a successful startup of Django, a well-known open

34

4.1. Validation of Constraints Among Configuration Parameters Using
Search-Based Combinatorial Interaction Testing 35

source web application framework written in Python.

4.1 Validation of Constraints Among Configuration Pa-
rameters Using Search-Based Combinatorial Inter-
action Testing

The appeal of highly-configurable software systems lies in their adaptability to users’
needs. Search-based Combinatorial Interaction Testing (CIT) techniques have been
specifically developed to drive the systematic testing of such highly-configurable
systems. In order to apply these, it is paramount to devise a model of parameter
configurations which conforms to the software implementation. This is a non-trivial
task. Therefore, we extend traditional search-based CIT by devising 4 new testing
policies able to check if the model correctly identifies constraints among the various
software parameters. Our experiments show that one of our new policies is able to
detect faults both in the model and the software implementation that are missed by
the standard approaches.

Most software systems can be configured in order to improve their capability
to address user’s needs. Configuration of such systems is generally performed by
setting certain parameters. These options, or features, can be created at the soft-
ware design stage (e.g., for software product lines, the designer identifies the features
unique to individual products and features common to all products in its category),
during compilation (e.g., to improve the efficiency of the compiled code) or while
the software is running (e.g., to allow the user to switch on/off a particular func-
tionality). A configuration file can also be used to decide which features to load at
startup.

Large configurable systems and software product lines can have hundreds of fea-
tures. It is infeasible in practice to test all the possible configurations. Consider, for
example, a system with only 20 Boolean parameters. One would have to check over
one million configurations in order to test them all (220 to be exact). Furthermore,
the time cost of running one test could range from fraction of a second to hours if

Table 4.1: Test suites with faults (in gray)

(a) under-constraining fault

A B C Mf1 oracle
T T F T F
T F F F F

(b) over-constraining fault

A B C Mf2 oracle
F T T T T
F F T T T
F T F F T
F F F F T

36 Chapter 4. Repair of Constraints Among Parameters

not days. In order to address this combinatorial explosion problem, Combinatorial
Interaction Testing (CIT) has been proposed for testing configurable systems [64]. It
is a very popular black-box testing technique that tests all interactions between any
set of t parameters. There have been several studies showing the successful efficacy
and efficiency of the approach [126, 127, 169].

Furthermore, certain tests could prove to be infeasible to run, because the sys-
tem being modelled can prohibit certain interactions between parameters. Design-
ers, developers, and testers can greatly benefit from modelling parameters and con-
straints among them by significantly reducing modelling and testing effort [169] as
well as identifying corner cases of the system under test. Constraints play a very
important role, since they identify parameter interactions that need not be tested,
hence they can significantly reduce the testing effort. Certain constraints are de-
fined to prohibit generation of test configurations under which the system simply
should not be able to run. Other constraints can prohibit system configurations that
are valid, but need not be tested for other reasons. For example, there’s no point in
testing the find program on an empty file by supplying all possible strings.

Constructing a CIT model of a large software system is a hard, usually manual
task. Therefore, discovering constraints among parameters is highly error prone.
One might run into the problem of not only producing an incomplete CIT model,
but also one that is over-constrained. Even if the CIT model only allows for valid
configurations to be generated, it might miss important system faults if one of the
constraints is over-restrictive. Moreover, even if the system is not supposed to run
under certain configurations, if there’s a fault, a test suite generated from a CIT
model that correctly mimics only desired system behaviour will not find that error.
In such situations tests that exercise those corner cases are desirable.

The objective of this work is to use CIT techniques to validate constraints of the
model of the system under test (SUT). We extend traditional CIT by devising a set
of six policies for generating tests that can be used to detect faults in the CIT model
as well as the SUT.

4.1.1 Combinatorial Models of Configurable Systems

[89] Combinatorial Interaction Testing (CIT), or simply combinatorial testing, aims to
test the software or the system with selected combinations of parameter values.
There exist several tools and techniques for CIT. Good surveys of ongoing research
in CIT can be found in [102, 157], while an introduction to CIT and its efficacy in
practice can be found in [130, 169].

A model for a combinatorial problem consists of several parameters which can
take several domain values. In most configurable systems, dependencies exist be-
tween parameters. Such constraints may be introduced for several reasons, e.g.,
to model inconsistencies between certain hardware components, limitations of the

4.1. Validation of Constraints Among Configuration Parameters Using
Search-Based Combinatorial Interaction Testing 37

possible system configurations, or simply design choices [64]. In our approach, tests
that do not satisfy the constraints in the CIT model are considered invalid.

We assume that the models are specified using CITLAB [91, 58]. This is a frame-
work for combinatorial testing which provides a rich abstract language with precise
formal semantics for specifying combinatorial problems, and an eclipse-based edi-
tor with a rich set of features. CITLAB does not have its own test generators, but it
can utilise, for example, the search-based combinatorial test generator CASA1[95].
CIT problems can be formally defined as follows.

Definition 4.1 (Constrained Model). Let P = {p1, . . . , pm} be the set of parameters.
Every parameter pi assumes values in the domain Di = {vi

1, . . . , vi
oi
}. Every parameter has

its name (it can have also a type with its own name) and every enumerative value has an
explicit name. We denote with C = {c1, . . . , cn} the set of constraints.

Definition 4.2 (Strength of a test suite). The objective of a CIT test suite is to cover all
parameter interactions between any set of t parameters. t is called the strength of the CIT
test suite. For example, a pairwise test suite covers all combinations of values between any
2 parameters.

Model WashingMachine
Definitions:
Number maxSpinHL = 1400;
end
Parameters:
Boolean HalfLoad;
Enumerative Rinse {Delicate Drain Wool};
Numbers Spin { 800 1200 1800 };
end
Constraints:
HalfLoad => Spin < maxSpinHL
Rinse==Rinse.Delicate =>
(HalfLoad and Spin==800) #
end

(a) Washing Machine example

Model Greetings
Parameters:
Boolean HELLO;
Boolean BYE;
end
Constraints:
HELLO != BYE#
end

#ifdef HELLO
char* msg = "Hello!\n";
#endif
#ifdef BYE
char* msg = "Bye bye!\n";
#endif

void main() {
printf(msg);
}

(b) Compile time configurable example, its
CIT model (left) and the source code (right)

Figure 4.1: Combinatorial interaction CITLAB models

Constraints ci are given in general form, using the language of propositional
logic with equality and arithmetic. Fig. 4.1a shows the CITLAB model of a simple
washing machine consisting of 3 parameters. The user can select if the machine has
HalfLoad, the desired Rinse, and the Spin cycle speed. There are two constraints,
including, if HalfLoad is set then the speed of spin cycle cannot exceed maxSpinHL.

1http://cse.unl.edu/~citportal/

http://cse.unl.edu/~citportal/

38 Chapter 4. Repair of Constraints Among Parameters

Software systems can be configured by setting specific parameter values at dif-
ferent stages of the software testing process.
Compile time Configurations can be set at compile time. An example is shown in
Figure 4.1b. Depending on the value settings of the Boolean variables HELLO and BYE
different messages will be displayed when the program is run.
Design time Configurations can also be set at design time. For example, in case of
a SPL, a configurability model is built during the design.
Runtime Another way of setting parameter configurations is at runtime. This can
be usually done by means of a graphical user interface (GUI). In a chat client, e.g.,
you can change your availability status as the program is running.
Launch time We also differentiate the case where parameters are read from a sepa-
rate configuration file or given as program arguments, before the system is run. We
say that these parameters are set at launch time of the given application. They de-
cide which features of the system should be activated at startup. Examples of such
systems include chat clients, web browsers and others.

4.1.2 Basic Definitions

We assume that the combinatorial model represents the specification of the parame-
ters and their constraints for a real system as it has been implemented. We are inter-
ested in checking whether this system specification correctly represents the software
implementation. We assume that the parameters and their domains are correctly
captured in the specification, while the constraints may contain some faults. Speci-
fication S belongs to the problem space while software implementation I belongs to
the solution space [154].

Formally, given an assignment p̄ that assigns a value to every parameter in P of
the model S, we introduce two functions:

Definition 4.3. Given a model S and its implementation I, valS is the function that checks
if assignment p̄ satisfies the constraints in S, while oracleI(p̄) checks if p̄ is a valid configu-
ration according to implementation I.

We assume that the oracle function oracleI exists. For instance, in case of a
compile-time configurable system, we can assume that the compiler plays the role
of an oracle: if and only if the parameters p̄ allow the compilation of the product
then we say that oracle(p̄) holds. We may enhance the definition of oracle by con-
sidering also other factors, for example, if the execution of the test suite completes
successfully. However, executing oracleI may be very time consuming and it may
require, in some cases, human intervention.

On the model side, the evaluation of valS(P) is straightforward, that is, valS(p̄) =
c1[P← p̄] ∧ . . . ∧ cn[P← p̄].

4.1. Validation of Constraints Among Configuration Parameters Using
Search-Based Combinatorial Interaction Testing 39

Definition 4.4. We say that the Constrained CIT (CCIT) model is correct if, for every p,
valS(p) = oracleI(p). We say that a specification contains a conformance fault if there
exists a p̄ such that valS(p̄) 6= oracleI(p̄).

Combinatorial model
Parameters+
Constraints

Configurable system

Validity
in the model

tests
generation

oracle
S

Validity
in the system

val
M
 = oracle

S

Fault found

Test = configuration
(parameter assignments)

val
M

Test suite

false

for each
test case

true

Figure 4.2: Validating constraints by CIT

4.1.3 Finding Faults by Combinatorial Testing

In order to find possible faults as defined in Definition 4.4, the exhaustive explo-
ration of all the configurations of a large software system is usually impractical.
In many cases, the evaluation of oracleI is time consuming and error prone, so the
number of tests one can check on the implementation can be very limited. Instead,
we can apply combinatorial testing in order to select the parameters values and
check that for every generated CIT test valS(p) = oracleI(p) holds. This approach
does not guarantee, of course, finding all possible conformance faults, but we can
assume that faults are due to the interaction of parameters and we can leverage the
success of CIT in finding faults in real configurable systems [127, 169].

We have devised a process that is able to find possible conformance faults. It is
depicted in Figure 4.2 and consists of the following steps:

1. Create a CIT model S that takes constraints into account.

40 Chapter 4. Repair of Constraints Among Parameters

2. Generate a CIT test suite according to one of the policies (see Section 4.1.4).

3. For every test in the test suite,

(a) Compute its validity as specified by the constraints in the CIT model.

(b) Compute oracleI , by executing the software system under each configu-
ration to check if it’s acceptable.

(c) Compare the validity, as defined by the model, with the actual result.

(d) If valS 6= oracleI a fault (either in the model or in the system) is found.

A discrepancy between the model and the real system means that a configuration
is correct according to the model but rejected by the real system (or the other way
around) and this means that the constraints in the model do not correctly describe
constraints in the system under test.

Invalid Configuration Testing. In classical combinatorial interaction testing, only
valid tests are generated, since the focus is on assessing if the system under test
produces valid outputs. However, we believe that invalid tests are also useful. In
particular, they address the following issues.

The CIT model should minimise the number of constraints and the invalid con-
figuration set: invalid configurations, according to the model, should only be those
that are actually invalid in the real system. This kind of test aims at discovering
faults of over-constraining the model. This problem is a variant of the bigger prob-
lem of over-specification. Moreover, critical systems should be tested if they safely
fail when the configuration is incorrect. This means that the system should check
that the parameters are not acceptable (i.e. it must fail) and it should fail in a safe
way, avoiding crashes and unrecoverable errors (it must fail safely). Furthermore,
creation of a CIT model for a large real-world software system is usually a tedious,
error-prone task. Therefore, invalid configurations generated by the model at hand
can help reveal constraints within the system under test and help refine the CIT
model. In line with the scientific epistemology, our research focuses on generating
not only tests (i.e., valid configurations) that confirm our theory (i.e., the model),
but also tests that can refute or falsify it. Since the number of invalid configurations
might be huge, such configurations must be chosen in accordance with some cri-
teria. We choose to use the same t-way interaction paradigm as in standard CIT.

4.1.4 Combinatorial Testing Policies

4.1. Validation of Constraints Among Configuration Parameters Using
Search-Based Combinatorial Interaction Testing 41

We propose to use search-based combinatorial interaction testing techniques to ver-
ify the validity of CIT models. In particular, given a CIT model, we modify it ac-
cording to one of the policies introduced in this section. Next, we use CASA to
generate the test suite satisfying the modified CIT model. We use the term “valid
test" to denote the generated configuration that satisfies all the constraints of the
original CIT model. Conversely, the term “invalid test" is used for a configuration
that does not satisfy at least one of the constraints of the original CIT model. Words
“test" and “configuration" are used interchangeably, though we note in real-world
systems one configuration may lead to multiple tests.

UC: Unconstrained CIT.

In unconstrained CIT, constraints are ignored during CIT test generation. They are
used only to check the validity of the configuration selected during generation. The
main advantage is that test generation is simplified and efficient methods that work
without constraints can be used. Moreover, in principle, both valid and invalid
configurations can be generated - there is no control over model validity. It may
happen that the test generation algorithm generates only valid combinations (i.e.,
valS(t) for every t in the test suite). This may reduce the effectiveness of the test
suite: if only valid tests are generated, one can miss faults only discoverable by
invalid tests, as explained in Section 4.1.3. On the other hand, only invalid tests can
be equally useless.

Example 4.1. In the washing machine example shown in Fig. 4.1a, UC policy will produce
a pairwise test suite with at least 9 test cases, including an invalid test case where HalfLoad
is set to true in combination with Spin equal to 1800.

Test generation. UC can be applied by simply removing the constraints ci from
the original CIT model. The validity of each test can be later computed by checking
if the generated configuration satisfies all the ci. There are several CIT tools that do
not handle constraints (for example, those that use algebraic methods for CIT test
suite generation), hence can be used with this policy.

CC: Constrained CIT.

In this classical approach, constraints are taken into account and only valid combi-
nations among parameters are chosen. Among these parameters a certain level of
desired strength is required. The rationale behind this policy is that one wants to
test only valid combinations. If a certain interaction among parameters is not pos-
sible, then it is not considered even if it would be necessary in order to achieve the
desired level of coverage. The main advantage is that no error should be generated

42 Chapter 4. Repair of Constraints Among Parameters

by the system. However, this technique can only check one side of equation given
in Def. 4.7, namely that valS(p) →oracleI(p), since valS is always true. If the speci-
fication is too restrictive, no existing fault will be guaranteed to be found, if it refers
to configurations that are invalid.

Example 4.2. In the washing machine example shown in Fig. 4.1a, the CC policy produces
7 tests for pairwise, all of which satisfy the constraints. Some pairs are not covered: for
instance HalfLoad=true and Spin=1800 will not be covered.

Test generation. CC is the classical constrained combinatorial testing (CCIT), and
CASA can correctly deal with the constraints and generate only valid configura-
tions. However, CASA requires the constraints in Conjunctive Normal Form (CNF),
so CITLAB must convert the constraints from general form to CNF.

CV: Constraints Violating CIT.

In case one wants to test the interactions of parameters that produce errors, only
tests violating the constraints should be produced. This approach is complementary
with respect to the CC in which only valid configurations are produced. In CV,
we ask that the maximum possible CIT coverage for a given strength is achieved
considering only tuples of parameter values that make at least one constraint false
(i.e. each test violates the conjunction c1 ∧ · · · ∧ cn).

Example 4.3. In the example presented in Fig. 4.1a, the CV policy produces 6 test cases,
all of which violate some constraint of the model. For instance, a test has Rinse=Delicate,
Spin =800, and HalfLoad=false.

Test generation. CV can be applied by modifying the model by replacing all the
constraints with ¬(c1 ∧ · · · ∧ cn) and then classical CC is applied.

CuCV: Combinatorial Union.

One limitation of the CC technique is that with an over-constrained model, certain
faults may not be discovered. On the other hand, by generating test cases violating
constraints only, as in CV, certain parameter interactions may not be covered by
the generated test suite. In order to overcome these limitations we propose the
combination of CC and CV.

Test generation. CuCV is achieved by generating tests using policy CC and policy
CV and then by merging the two test suites. Since every test is either valid (in CC)
or invalid (in CV), merging the test suites consists of simply making the union of
the two test suites.

4.1. Validation of Constraints Among Configuration Parameters Using
Search-Based Combinatorial Interaction Testing 43

ValC: CIT of Constraint Validity.

CuCV may produce rather big test suites, since it covers all the desired parame-
ter interactions that produce valid configurations and all those that produce invalid
ones according to the given CIT model. On the other hand, UC may be too weak
since there is no control over the final constraint validity and therefore there is no
guarantee that the parameter values will influence the final validity of the configu-
ration. On one extreme, UC might produce a test suite without any test violating the
constraints. We propose the ValC policy that tries to balance the validity of the tests
without requiring the union of valid and invalid tests. ValC requires the interaction
of each parameter with the validity of the whole CIT model. That is, both tests that
satisfy all the constraints will be generated as well as those that don’t satisfy any
of the constraints in the given CIT model. Formally, ValC requires that the valid-
ity of each configuration p̄ (i.e., valS(p̄)) is covered in the same desired interaction
strength (see Definition 4.2) among all the parameters.

Example 4.4. For the WashingMachine, CuCV generates 13 test cases (6+7). ValC requires
only 11 test cases.

Test generation. ValC requires to modify the original CIT model by introducing a
new Boolean variable validity and replacing all the constraints with one constraint
equal to validity↔ (c1 ∧ · · · ∧ cn)

CCi: CIT of the Constraints.

Every constraint may represent a condition over the system state. For instance, the
constraint HalfLoad => Spin < maxSpinHL identifies the critical states in which the de-
signer wants a lower spin speed. One might consider each constraint as a property
of the system and be interested in covering how these conditions interact with each
other and with the other parameters. The goal is to make the constraints interact
with the other system parameters.

Test generation. CCi requires the introduction of a new Boolean variable validityi
for every constraint, and replacing every constraint ci with validityi ⇔ ci.

4.1.5 Experiments

In order to test our proposed approach we conducted the following experiments.
We used 4 case studies to evaluate our proposed approach:

1. Banking1 represents the testing problem for a configurable Banking applica-
tion presented in [181].

44 Chapter 4. Repair of Constraints Among Parameters

2. libssh is a multi-platform library implementing SSHv1 and SSHv2 written
in C2. The library consists of around 100 KLOC and can be configured by several
options and several modules (like an SFTP server and so on) can be activated during
compile time. We have analysed the cmake files and identified 16 parameters and
the relations among them. We have built a feature model for it in [33] and we have
derived from that a CITLAB model.

3. HeartbeatChecker is a small C program, written by us, that performs a Heart-
beat test on a given TLS server. The Heartbeat Extension is a standard procedure
(RFC 6520) that tests secure communication links by allowing a computer at one
end of a connection to send a “Heartbeat Request" message. Such a message con-
sists of a payload, typically a text string, along with the payload’s length as a 16-bit
integer. The receiving computer then must send exactly the same payload back to
the sender. HeartbeatChecker reads the data to be used in the Heartbeat from a
configuration file with the following schema:

TLSserver: <IP>
TLS1_REQUEST Length: <n1> PayloadData: <data1>
TLS1_RESPONSE Length: <n2> PayloadData: <data2>

Configuration messages with n1 equal to n2 and data1 equal to data2 represent
a successful Heartbeat test (when the TLS-server has correctly responded to the re-
quest). HeartbeatChecker can be considered as an example of a runtime configurable
system, since thanks to the parameters one can perform different types of tests (with
different lengths and payloads). We have written an abstract version of Heartbeat-
Checker in the combinatorial model shown in Fig. 4.3: we ignore the actual content
of the PayloadData and we model only the lengths: Length represents the declared
lengths and PayloadData_length is the actual length of the PayloadData. The con-
straints represent successful exchanges of messages in the Heartbeat test. The ora-
cle is true if the Heartbeat test has been successfully performed with the specified
parameters.

4. Django is a free and open source web application framework, written in
Python, consisting of over 17k lines of code, that supports the creation of complex,
database-driven websites, emphasizing reusability of components3. Each Django
project can have a configuration file, which is loaded every time the web server that
executes the project (e.g. Apache) is started. Therefore, the configuration parame-
ters are loaded at launch time. In the model we made, among all the possible config-
uration parameters, we selected and considered one Enumerative and 23 Boolean
parameters. We elicited the constraints from the documentation, including several

2https://www.libssh.org/
3https://www.djangoproject.com/

https://www.libssh.org/
https://www.djangoproject.com/

4.1. Validation of Constraints Among Configuration Parameters Using
Search-Based Combinatorial Interaction Testing 45

Model Heartbeat
Parameters:
Range REQ_Length [0 .. 65535] step 4369;
Range REQ_PayloadData_length [0 .. 65535] step 4369;
Range RES_Length [0 .. 65535] step 4369;
Range REQ_PayloadData_length [0 .. 65535] step 4369;
end
Constraints:
// the declared length in the REQUEST is correct
REQ_Length==REQ_PayloadData_length
// the declared length in the RESPONSE is correct
RES_Length==RES_PayloadData_length
// the RESPONSE has the same length as the REQUEST
REQ_Length==RES_Length
end

Figure 4.3: HeartbeatChecker CIT model

forum articles and from the code when necessary. We have also implemented the
oracle, which is completely automated and returns true if and only if the HTTP
response code of the project homepage is 200 (HTTP OK).

Table 4.2: Benchmark data. vr is the validity ratio, defined as the percentage of configurations
that are valid.

name #var #constraints #configurations vr #pairs

Banking1 5 112 324 65.43% 102
Libssh 16 2 65536 50% 480
HeartbeatChecker 4 3 65536 0.02% 1536
Django 24 3 33554432 18.75% 1196

Table 5.2 presents various benchmark data: number of variables and constraints,
size of the state space (the total number of possible configurations), the percentage
of configurations that are valid (i.e. the ratio vr), the number of pairs that repre-
sent the pairwise testing requirements (ignoring constraints). Note that a low ratio
indicates that there are only few valid configurations (see, for example, the Heart-
beatChecker benchmark). We collected models of real-world systems from different
domains, with a good level of diversity (in terms of size, constraints, etc.) in order
to increase the validity of our findings.

46 Chapter 4. Repair of Constraints Among Parameters

Table 4.3: Valid pairwise parameter interactions covered by six test generation poli-
cies. (Shaded cells are covered in the prose.) Out of memory errors are due to con-
straint conversion into the CNF format required by CASA. In particular, as known
in the literature, the size in CNF of the negation of a constraint can grow exponen-
tially.

Banking1 Django libssh HeartbeatChecker
Pol. time size #Val Cov. time size #Val Cov. time size #Val Cov. time size #Val Cov.

UC 0.22 12 11 100% 0.65 10 2 100% 0.25 8 4 100% 447 267 0 100%
CC 0.26 13 13 100% 1.24 10 10 91.8% 0.28 8 8 99.3% 2.74 141 141 6.2%
CV Out of memory 0.32 11 0 100% 0.25 8 0 99.3% Out of memory
CuCV Out of memory 1.58 21 10 100% 0.52 16 8 100% Out of memory
ValC Out of memory 0.31 11 4 100% 0.29 8 5 100% Out of memory
CCi 6.22 12 9 100% 0.58 13 3 100% 0.30 8 2 100% 460 268 0 100%

Experiments were executed on a Linux PC with two Intel(R) i7-3930K CPU (3.2
GHz) and 16 GB of RAM. All reported results are the average of 10 runs with a
timeout for a single model of 3600 secs. Test suites were produced using the CASA
CIT test suite generation tool according to the pairwise testing criterion.

Test generation and coverage

In our first experiment, we are interested in comparing the policies in terms of test
effort measured by the number of tests and by the test suite generation time. Table
4.3 presents the following data:

• The time required to generate the tests and to evaluate their validity (it does
not include the evaluation of the oracleI) in seconds.

• The size in terms of the number of tests and how many of those are valid (#Val),
i.e. valS returns true.

• The percentage of parameter interactions (pairs) that are covered. In the count
of the pairs to be covered, we ignore constraints as in Table 5.2.

From Table 4.3 we can draw the following observations:
• UC usually produces both valid and invalid tests. However, it may produce

all invalid tests (especially if the constraints are strong - see HeartbeatChecker).
Having all invalid tests may reduce test effectiveness.

• CC usually does not cover all the parameter interactions, since some of them
are infeasible because they violate constraints in the original model. On the other
hand, CC generally produces smaller test suites (as in the case of HeartbeatChecker).
However, in some cases, CC is able to cover all the required tuples at the expense of
larger test suites (as in the case of Banking1).

4.1. Validation of Constraints Among Configuration Parameters Using
Search-Based Combinatorial Interaction Testing 47

• CV generally does not cover all the parameter interactions, since it produces
only invalid configurations. However, in one case (Django) CV covered all the inter-
actions. This means that 100% coverage of the tuples in some cases can be obtained
with no valid configuration generated and this may reduce the effectiveness of test-
ing. Sometimes CV is too expensive to perform.

• CuCV guarantees to cover all the interactions and it produces both valid and
invalid configurations. However, it produces the bigger test suites and it may fail
because it relies on CV.

• ValC covers all the interactions with both valid and invalid configurations. It
produces test suites smaller than CuCV and it is generally faster, but as CuCV may
not terminate.

• CCi covers all the interactions, it generally produces both valid and invalid
test. However, it may produce all invalid tests (see HeartbeatChecker), and it pro-
duces a test suite comparable in size with UC. However, it guarantees an interaction
among the constraint validity. It terminates, but it can be slightly more expensive
than UC and CC. If the strength of combinatorial testing is greater or equal to the
number of constraints, it guarantees also that valid and invalid configurations are
generated.

Fault detection capability

We are interested in evaluating the fault detection capability of the tests generated
by the policies presented above. We have applied mutation analysis [117] which
consists of introducing artificial faults and checking if the proposed technique is
able to find them. In our case, we have introduced the faults by hand and then we
have applied our technique described in Section 5.1.3 in order to check if the fault is
detected (or killed). Tables in Fig. 4.4 present a brief description of each introduced
fault and if each policy was able to kill it.

In principle, our technique is able to find conformance faults both in the model
and in the implementation. Indeed, when a fault is found, it is the designer’s re-
sponsibility to decide what is the source of the fault. For libssh we have modified
both the model and the code (the cmake script) (faults Lx). For the HeartbeatChecker
we have modified the model and the source code (faults Hx). Table in Fig. 4.4a
presents the details of each injected fault, including if it refers to the specification (S)
or to the implementation (I).

Table in Fig. 4.4b reports which faults were killed by each policy. We can observe
that the unconstrained CIT (UC) policy performs better than some policies that con-
sider constraints (CC and CV) even if normally their test suites have the same di-
mensions. However, in some cases (L6) CC detected a fault where UC failed. For
CV, CuCV, and ValC we can analyze only the results for libssh, since they did not

48 Chapter 4. Repair of Constraints Among Parameters

lib
ss

h
L1 forgot all the constraints S
L2 remove a constraint S
L3 add a constraint S
L5 remove a dependency I
L6 add a dependency I

H
ea

rt
Be

at
C

he
ck

er H1 remove one constraint S
H2 == to <= S
H4 && to || I
H5 == to != (all) I
H6 == to != (one) I
H7 HeartBleed I

(a) Seeded Faults (S: in Spec,
I: in implementation)

Is the fault detected? mut.
Policy L1 L2 L3 L4 L5 L6 H1 H2 H3 H4 H5 H6 H7 score

UC X X X X X X X X X X 10/13
CC X X X X X X X 7/13
CV X X X X - - - - - - - 4/13
CuCV X X X X X X - - - - - - - 6/13
ValC X X X X - - - - - - - 4/13
CCi X X X X X X X X X X X X 12/13

(b) Fault detection capability of the policies (- means
that the test suite was not generated.)

Figure 4.4: Fault detection capability

complete the test generation for HeartbeatChecker. However, even if we restrict to
libssh, CuCV has a very good fault detection capability (but it produces the biggest
test suite) while ValC and CV scored as well as UC, although they are more expen-
sive, so according to our studies there is no particular reason to justify the use of
ValC and CV alone. However, in one case (L3) CV detected a fault that UC did not.

Overall CCi was the best in terms of fault detection, even with test suites as big
as those for UC. However, it missed one of the injected faults (L6). CCi was the only
one to find the fault H7 (HeartBleed). The HeartBleed fault simulates the famous
Heartbleed security bug of the OpenSSH implementation of the TLS protocol. It
results from improper input validation (due to a missing bounds check) in the im-
plementation of the TLS Heartbeat extension. In detail, the implementation built the
payload length of message to be returned based on the length field in the requesting
message, without regard to the actual size of that message’s payload. In our imple-
mentation, the faulty HeartbeatChecker missed to check that REQ_Length==RES_
Length. This proves that testing how parameters can interact with single constraints
increases the fault detection capability of combinatorial testing. Our new policies
may thus prove useful in detecting faults missed by standard approaches due to the
so-called masking effects [216].

4.1.6 Related Work

The problem of modelling and testing the configurability of complex systems is
non-trivial. There has been much research done in extracting constraints among
parameter configurations from real systems (problem space) and modelling system
configurability [184, 108, 216]. For instance, the importance of having a model of
variability and having the constraints in the model aligned with the implementation

4.2. Combinatorial Interaction Testing for Automated Constraint Repair 49

is discussed in [154]. However, in that paper, authors try to identify the sources of
configuration constraints and to automatically extract the variability model. Our ap-
proach is oriented towards the validation of a variability model that already exists.
Moreover, they target C-based systems that realise configurability with their build
system and the C preprocessor. A similar approach is presented in [194], where
authors extract the compile-time configurability from its various implementation
sources and examine for inconsistencies (e.g., dead features and infeasible options).
We believe that our approach is more general (not only compile-time and C-code)
and can be complementary used to validate and improve automatically extracted
models.

Testing configurable systems in the presence of constraints is tackled in [64] and
[169]. In these papers, authors argue that CIT is a very efficient technique and that
constraints among parameters should be taken into account in order to generate
only valid configurations. This allows to reduce the cost of testing. Also in [57],
authors have shown how to successfully deal with the constraints by solving them
by using a constraint solver such as a Boolean satisfiability solver (SAT). However,
the emphasis of that research is more on testing of the final system not its model of
configurability. CIT is also widely used to test SPLs [168].

In SPL the validation and extraction of constraints between features is generally
given in terms of feature models (FMs). Synthesis of FMs can be performed by iden-
tifying patterns among features in products and in invalid configurations and build
hierarchies and constraints (in limited form) among them. For instance, Davril et al.
apply feature mining and feature associations mining to informal product descrip-
tions [71]. There exist several papers that apply search based techniques, which
generally give better results [105, 137, 84, 139]. However, checking and maintaining
the consistency between a SPL and its feature model is still an open problem. A
preliminary proposal is presented in [33], which however does not use CIT but a
more complex logic based approach. We plan to compare our approach with [33] in
order to check if CIT can provide benefits in terms of easiness in test generation and
shorter generation times.

4.2 Combinatorial Interaction Testing for Automated Con-
straint Repair

This section presents a process to automatically repair constraints of a combinatorial
model, using combinatorial interaction testing, and reflects the content of paper [88].

Combinatorial models can represent an aspect of configurable systems, and con-
straints may be used to encode interactions among those parameters: allowed inter-
actions, or forbidden interactions. It is a fact that most software systems have the

50 Chapter 4. Repair of Constraints Among Parameters

possibility to be configured in order to improve their capability to address users’
needs. Configuration of such systems is generally performed by setting system pa-
rameters. These options, or features, can be created during design time. For instance,
in the case of a software product line, the designer identifies the features unique to in-
dividual products and features common to all products in its category.

Such options can also be decided during compilation time, in order to improve
some characteristics of the compiled code (scalability, efficiency, etc.). For example,
in case of preprocessor directives, the programmer can decide which libraries to use,
what code to execute and what to ignore etc. Software configurations can also be
modified during operation time, when the system is already running and the user
wants to switch on/off a particular feature or functionality. In this case, for example,
the parameters can be saved in a configuration file and modified if necessary. Such
a configuration file can also be used to decide which features to load at startup. In
this scenario, we distinguish between problem space to represent the modeling of the
system configuration parameters and their dependencies, while the solution space is
the technical realization of the system [154], i.e., its implementation.

We use combinatorial interaction testing (CIT) because it showed a high fault
coverage with very few tests, even for a high amount (dozens, or a few hundreds) of
configuration parameters [129]. Large configurable systems and software product
lines, in fact, can have hundreds of features. It is infeasible in practice to test all
the possible configurations. Consider, for example, a system with only 20 Boolean
parameters. One would have to check over one million configurations in order to
test them all.
Furthermore, the time cost of running one test could range from fraction of a second
to hours if not days.

CIT, as introduced in Sect. 2.2.1, is a very popular black-box testing technique
that tests all interactions between any set of t parameters. There have been several
studies showing the successful efficacy and efficiency of the approach [127, 126, 169,
170].

Moreover, certain tests could prove to be infeasible to run, because the system
being modeled can prohibit certain interactions between parameters. Designers, de-
velopers, and testers can greatly benefit from modelling parameters and constraints
among them by significantly reducing modelling and testing effort [169] as well as
identifying corner cases of the system under test. Constraints play a very important
role, since they identify parameter interactions that need not be tested, hence they
can significantly reduce the testing effort. Certain constraints are defined to pro-
hibit generation of test configurations under which the system simply should not
be able to run. Other constraints can prohibit system configurations that are valid,
but need not be tested for other reasons. For example, there’s no point in testing the
find program on an empty file by supplying all possible strings.

4.2. Combinatorial Interaction Testing for Automated Constraint Repair 51

Constructing a CIT model of a large software system is a hard, usually manual
task. Therefore, discovering constraints among parameters is highly error prone.
One might run into the problem of not only producing an incomplete CIT model,
but also one that is over-constrained. Even if the CIT model only allows for valid
configurations to be generated, it might miss important system faults if one of the
constraints is over-restrictive. Moreover, even if the system is not supposed to run
under certain configurations, if there’s a fault, a test suite generated from a CIT
model that correctly mimics only desired system behavior will not find that error.
In such situations tests that exercise those corner cases are desirable.

Software evolution is a typical scenario in which automated repair of the model
of system’s configurations may be useful. The initial model can conform with the
system, but when the system or its configuration space undergo changes, the model
becomes non-conforming and needs to be repaired.

The problem of finding and fixing conformance faults between a given software
system and its combinatorial model is a challenging task. Due to the size and com-
plexity of current software systems, the interactions between different software pa-
rameters are hard to find. Combinatorial models are frequently derived manually,
by expert software engineers. The Software-artefact Infrastructure Repository4, for
instance, contains models of dozens of software systems, which were derived by
hand.

Several methods have been introduced to automate the process of inferring con-
straints. However, they do not guarantee that the derived model will be correct [197].
Therefore,
we introduce a novel automated approach for finding and fixing conformance faults
between the given software system and its combinatorial model.

We use combinatorial interaction testing policies introduced in our previous
work [89] to find such faults and fix them by repairing constraints in the original
CIT model.

We conduct several experiments aiming to answer the following research ques-
tions:

[RQ1:] How effective is our automated constraint repair approach at fixing faults in an
existing CIT model?
In particular, we apply our approach to mutated CIT models and show that our
approach can automatically fix on average 37% of conformance faults.

[RQ2:] How effective is our approach in inferring parameter constraints in real-world
software?
We present a case study that shows that our approach can be used to derive con-
straints for an unconstrained CIT model of a large real-world software system.

4http://sir.unl.edu/portal/index.php

http://sir.unl.edu/portal/index.php

52 Chapter 4. Repair of Constraints Among Parameters

[RQ3:] How efficient is our constraint repair approach?
In order to evaluate the efficiency of our approach, we measure the time taken to
repair constraints in CIT models as well as the number of tests needed for the repair.
On the five systems evaluated, the mutated models were repaired within seconds.

This section reports the content of the paper [88], and it is structured as follows:
Section 4.2.1 gives a brief overview of combinatorial interaction testing activities
with the CITLAB tool; Section 4.2.2 briefly describes CIT policies used in our ap-
proach; Section 4.2.3 presents definitions and notation used throughout the section;
Section 4.2.4 presents our approach to fixing conformance faults between a software
system and its combinatorial model; Section 4.2.5 contains experimental results and
answers to research questions posed; and Section 4.2.6 presents related work. Con-
clusions and future work are discussed jointly at the end of the chapter, in Section
4.4.

4.2.1 Combinatorial Models and Testing of Configurable Systems

[88] Combinatorial Interaction Testing (CIT), often called combinatorial testing or combi-
natorial testing design, aims to test configurable software systems under the various
combinations of its parameter values. There exist several tools and techniques for
CIT. Good surveys of ongoing research in CIT can be found in [102, 157], while an
introduction to CIT and its efficacy in practice can be found in [130, 169].

Combinatorial models and CITLAB

A model for a combinatorial problem consists of several parameters (at least 2)
which can take various domain values. In most configurable systems, constraints
(or dependencies) exist between parameters.

Constraints might be introduced for several reasons, for example, to model in-
consistencies between certain hardware components, limitations of the possible sys-
tem configurations, or simply because of design choices [65]. Constraints were first
described as being important to combinatorial testing in [63] and were introduced
in the AETG system. In our approach tests that do not satisfy the constraints in the
CIT model are considered invalid.

In this section we assume that the models are specified using CITLAB [91, 58].
For the later work presented in Section 4.3, instead, we use the successor of CITLAB:
CTWEDGE (described in Chapter 7).

CITLAB is a framework for combinatorial testing which provides a rich abstract
language with precise formal semantics for specifying combinatorial problems, an
eclipse-based editor with a rich set of features (syntax highlighting, autocompletion,
outline view, and others), and a Java API library which includes utility methods for
generating all the test requirements for combinatorial coverage of given strength.

4.2. Combinatorial Interaction Testing for Automated Constraint Repair 53

CITLAB does not have its own test generators, but it relies on other off-the-shelf
tools, namely ACTS5 and CASA6.

Parameters and constraints are given in a unique file that contains the whole
model. To formally describe a combinatorial problem, the user has to identify at
least 2 parameters and their possible values.

Definition 4.5 (Constrained Model). Let P = {p1, . . . , pm} be the set of parameters.
Every parameter pi can take a value from the domain Di = {vi

1, . . . , vi
oi
}. Every parameter

has a name (it can have also a type with its own name) and every enumerative value has an
explicit name. We denote with Constr = {c1, . . . , cn} the set of constraints. P and Constr
constitute the CIT model.

CITLAB adopts the language of propositional logic with equality and arithmetic
to express constraints. To be more precise, it uses propositional calculus, enriched
with the arithmetic over integers and enumerative symbols. As operators, it admits
the use of equality and inequality for any variable, the usual Boolean operators for
Boolean terms, and the relational and arithmetic operators for numeric terms.

Figure 4.5 shows the CITLAB model of a simple washing machine consisting of 3
parameters. Users can select if the machine has HalfLoad, the desired Rinse, and the
speed of Spin cycle. In the Constraints section there are two constraints: if HalfLoad is
set then the speed of spin cycle cannot be High; if rinse is set to delicate, then HalfLoad
must be true.

Note that the CITLAB model in Fig. 4.5 is a possible variation of the CITLAB
model of a washing machine presented in Fig. 4.1a, representing the same system
but with different value names for the spin, and a difference in the second constraint.

4.2.2 Combinatorial Testing Policies

[88]In our previous work [89] we proposed to use combinatorial interaction testing tech-
niques to verify the validity of CIT models, which is the approach we use in this
work.

In particular, given a CIT model, we modify it according to one of the policies
briefly described below. Next, we use one of the standard CIT tools to generate a
test suite satisfying the modified CIT model.

We use the term “valid test" to denote the generated configuration that satisfies
all the constraints of the original CIT model. Conversely, the term “invalid test" is
used for a configuration that does not satisfy at least one of the constraints of the
original CIT model. Words “test" and “configuration" are used interchangeably.

5http://csrc.nist.gov/groups/SNS/acts/
6http://cse.unl.edu/~citportal/

http://csrc.nist.gov/groups/SNS/acts/
http://cse.unl.edu/~citportal/

54 Chapter 4. Repair of Constraints Among Parameters

Model WashingMachine
Parameters:
Boolean HalfLoad;
Enumerative Rinse { Delicate Drain Wool };
Enumerative Spin { Low Mid High };
end
Constraints:
HalfLoad => Spin != Spin.High
Rinse==Rinse.Delicate => HalfLoad
end

Figure 4.5: An example CIT model of a washing machine.

In classical combinatorial interaction testing, only valid tests are generated, since
the focus is on assessing if the system under test produces valid outputs. However,
we believe that invalid tests are also useful. In particular, a combinatorial model
can be overconstrained, that is, it might restrict generation of test cases that are
valid in the system, yet not be generated due to the constraints in the given model.
Furthermore, critical safety systems should be tested if they failed safely in case
an invalid configuration is entered. Moreover, creation of a CIT model for a large
real-world software system is usually a tedious, error-prone task. Therefore, invalid
configurations generated by the model at hand can help reveal constraints within
the system under test and help refine the combinatorial model.

Two basic policies can be employed in combinatorial testing: UC (Unconstrained
CIT) consists in generating the tests ignoring the constraints, and CC (Constrained
CIT) is the classical testing policy that generates only tests satisfying the constraints.
Aside from UC and CC, we consider three other policies, introduced in our previous
work [89]:

Constraints Violating CIT - CV

This approach produces only the tests violating the constraints, i.e. the produced
test suite contains every tuple of parameter values that makes at least one constraint
false. This approach is complementary with respect to the CC in which only valid
configurations are produced.

4.2. Combinatorial Interaction Testing for Automated Constraint Repair 55

Combinatorial Union - CuCV

CuCV is the union of CC and CV, i.e. it covers all the desired parameter interactions
producing valid configurations and all those producing invalid ones according to the
given CIT model.

CIT of Constraint Validity - ValC

ValC requires the interaction of each parameter with the validity of the whole CIT
model. That is, both tests that satisfy all the constraints will be generated as well
as those that don’t satisfy any of the constraints in the given CIT model. ValC is an
approach that tries to balance the validity of the tests without requiring the union
of valid and invalid tests.

4.2.3 Definitions

We assume that the combinatorial model specifies the parameters and constraints
between them for a given software system. We are interested in checking whether
this system specification correctly represents the software implementation. We as-
sume that the parameters and their domains are correctly captured in the specifi-
cation, while the constraints may contain some faults. Software model M belongs
to the problem space while implementation of the software system S belongs to the
solution space [154]. In our repair process, we assume that the model M may con-
tain faults (in the constraints), as opposed to classical software testing, in which the
implementation S is to be checked against a model that is considered correct.

Formally, given an assignment t that assigns a value to every parameter in P of
the model M, we introduce two functions:

Definition 4.6. Given a model M for a software system S, valM is the function that checks
if assignment t satisfies the constraints in M, while oracleS(t) checks if t is a valid configu-
ration according to the system S.

We assume that the oracle function oracleS exists. For instance, in case of a
compile-time configurable system, we can assume that the compiler plays the role
of an oracle: if the parameter assignment t allows compilation of the product then
we say that oracleS(t) holds. We might enhance the definition of oracle by consider-
ing also other factors, for example, if the execution of the test suite completes suc-
cessfully. However, executing oracleS might be very time consuming and it might
require, in some cases, human intervention.

On the model side, the evaluation of valM(t) is straightforward, that is, valM(t) =
c1[P←t] ∧ . . . ∧ cn[P←t].

56 Chapter 4. Repair of Constraints Among Parameters

Definition 4.7 (Conformance fault). We say that the constrained CIT model is correct if,
for every t, valM(t) = oracleS(t). We say that the model contains a conformance fault if
there exists a t such that valM(t) 6= oracleS(t).

valM(t)
is True

==
oracleS(t)

is True

valM(t)
is False

!=
oracleS(t)

is True

valM(t)
is True

!=
oracleS(t)
is False

valM(t)
is False

==
oracleS(t)
is False

M S

Figure 4.6: The space of test cases for system S and its model M. Failing test cases
appear in the regions M/S and S/M, i.e., where valM(t) 6= oracleS(t).

Figure 4.6 shows two different types of failing tests with respect to all possible
parameter assignments (ignoring constraints). A conformance fault might occur
if valM(t) is True and oracleS(t) is False (i.e., M/S in Figure 4.6). Another type of
conformance fault occurs, when the model does not pass a test case that is allowed
by the system, that is, if oracleS(t) is True, but valM(t) is False (i.e., S/M in Figure
4.6).

Example 4.5. As an example, consider a system S of the washing machine modelled in
Figure 4.5, and as model M the same model in Figure 4.5 without the first constraint: that
conformance fault could be revealed by the following test t:

Parameter Assignments Function Evaluation
Rinse HalfLoad Spin oracleS valM

Delicate True High False True

Table 4.4: An example test case triggering a conformance fault in the washing ma-
chine model.

Definition 4.8 (Combination). Let P be the set of all parameters in a given model. A
combination comb is an assignment of values to every parameter in a (non-empty) subset of
P .

4.2. Combinatorial Interaction Testing for Automated Constraint Repair 57

Definition 4.9 (Failure-inducing). A combination comb is failure-inducing if for every
test t containing comb (i.e., comb ⊆ t), valM(t) 6= oracleS(t).

Example 4.6. Given the System S of the washing machine modelled in Figure 4.5, and
its Model M presented in Figure 4.5 without the first constraint: a failure-inducing com-
bination in this case would be HalfLoad and Spin=Spin.High, because for every possible
configuration t, valM(t) 6= oracleS(t), as shown in the table below:

Rinse HalfLoad Spin oracleS valM
Delicate True High False True

Drain True High False True
Wool True High False True

Table 4.5: All tests containing the failure-inducing combination HalfLoad and
Spin=Spin.High.

Definition 4.10 (Under-constraining and Over-constraining combinations). We say
that a combination comb (i.e., a partial assignment) is over-constraining the CIT model if
for every assignment t containing comb, valM(t) = False and oracleS(t) = True. We say
that a combination comb (i.e., a partial assignment) is under-constraining the CIT model if
for every assignment t containing comb, valM(t) = True and oracleS(t) = False.

When a failure-inducing combination is found, one needs to modify the model
M, i.e. repair the model, so that it faithfully represents the system S that it models.

The technique we present tries to repair the constraints of a combinatorial model
whenever a failure-inducing combination is found.

There are two types of repairs, depending on the type of the failure-inducing
combination:

• If a combination comb is over-constraining, the model must be modified in
order to include also the configurations identified by comb. This can be done
by relaxing the constraints by adding comb to each constraint that currently
prohibits comb by means of a Boolean OR (i.e., Constr← Constr∨ comb).

• If a combination comb is under-constraining, the model must be modified in
order to exclude comb and this can be done by strengthening the constraints
Constr by adding a further constraint ¬comb.

58 Chapter 4. Repair of Constraints Among Parameters

In order to fix the CIT model, we modify its constraints using the failure-inducing
combinations found. If comb is over-constraining the CIT model, we build a new
constraint by allowing comb to be added: Constr← Constr∨ comb. If comb is under-
constraining, we build a new constraint by adding the negation of comb to the old
constraint: Constr← Constr∧ ¬comb.

Definition 4.11 (Relaxing and Constraining Sets). We call a relaxing set the set of all
combinations comb that need to be added to repair the model M. We call a constraining
set the set of all combinations comb that need to be removed to repair the model M.

The aim of our approach is to remove all failure-inducing combinations and thus
fix the constraints in the given CIT model. Visually, we want the two circles in Fig-
ure 4.6 to completely overlap, so that there are no more conformance faults between
the model and the system.

Example 4.7 (Repair with a constraining set). Consider the washing machine system S,
modelled in Figure 4.5. Let M be the model presented in Figure 4.5 without the first con-
straint: a possible failure-inducing combination is HalfLoad=True, Spin=Spin.High, which
is True for valM and False for oracleS, as shown in Example 4.6. The constraint “! (HalfLoad
& Spin==Spin.High)" would then be added to the constraining set and subsequently to the
model M, thus repairing the faulty model.

Example 4.8 (Repair with a relaxing set). Consider the washing machine system S, mod-
elled in Figure 4.5. Let M be the model presented in Figure 4.5 with the first constraint
changed to: “HalfLoad => Spin == Spin.Low": a possible failure-inducing combination is
“HalfLoad=True, Spin=Mid". The model M would then be corrected by appending to all the
constraints, the following combination: " | (HalfLoad & Spin==Spin.Mid)". In this case,
the constraint causing the conformance failure is the first one of the model, which after the
repair becomes "HalfLoad => Spin==Spin.Low | (HalfLoad & Spin==Spin.Mid)", which
is equivalent to "HalfLoad => Spin!=Spin.High". We note here that since we do not use
an exhaustive test suite in our approach (details of which are presented in Section 4.2.4),
the failure-inducing combination derivation might be incorrect. Since we append the same
constraint comb to all the constraints, we might potentially need to further repair the model.

In order to measure the faithfulness of the given model M with respect to the
system it models S, we introduce the following measure that we call the failure index:

Definition 4.12 (Failure Index). Given a model M of a system S, we define the failure
index of M to be the number of (valid and invalid) configurations of M that fail. Formally:

fi =
|{t ∈ T|valM(t) 6= oracleS(t)}|

|T|
where T is the given test suite.

4.2. Combinatorial Interaction Testing for Automated Constraint Repair 59

apply a CIT policy
to generate tests

if for all tests t
valM(t) == oracles(t)Test Suite exit

True

use BEN to generate
failure-inducing
combinations

False

elaborate new tests
produced by BEN

if for all new tests t
valM(t) == oracles(t)

False

not found

found
increase CIT test

suite strength
True

derive new
constraints to be

added to the model

add new tests

2 3

4a

4c.ii

5

4c

4b

increase
strength

add
constraints

BEN
cycle

SystemCIT Model
1

Figure 4.7: The constraint repair process.

Taking the exhaustive test suite as T, we can compute an absolute failure index
(afi) as measure of the quality of a model. However, computing the absolute failure
index afi is infeasible in general. In the experiments, we will be able to compute the
models afi by assuming that we know the exact model of the system. We use multi-
valued decision diagrams (MDDs) [92] in order to calculate the number of tests that
are permitted by the constraints in the model.

4.2.4 The constraint repair process

In this section we present the proposed process for constraint repair in CIT models.
In our previous work [89] we devised a way of finding conformance faults. We use
these techniques to find faults and extend them by proposing an automated way
of fixing the faults found. Figure 4.7 presents an overview of the constraint repair
process.

We first generate a set of test cases of given strength k based on one of the CIT
policies described in Section 4.2.2. We evaluate each of the tests t using the function
valM(t) = oracleS(t). We mark each test for which valM(t) 6= oracleS(t) as a failing
one (since it reveals a conformance fault). We say that the test t passes, otherwise.

60 Chapter 4. Repair of Constraints Among Parameters

We input the generated test suite and the result of valM(t) = oracleS(t) for each
test t into a combinatorial testing-based fault localisation tool called BEN [97]. BEN
uses a heuristic approach to identify a set of failure-inducing combinations of given
size (i.e., combinatorial strength) or larger. Given an initial test suite and the result
for each test, it identifies a set of suspicious parameter-value combinations. Next, it
proceeds in an iterative manner: it generates a set of new tests and queries the user
for the result of these tests; after the user supplies the data, BEN identifies a new
set of suspicious combinations and a new set of tests; the process is repeated until a
set of failure-inducing combinations is found or all tests pass (in which case we can
increase the strength of CIT testing)7. Further details about the heuristic approach
implemented in BEN can be found in the following paper: [97]. We note that the
problem of finding minimum failure-inducing combinations is a challenging task,
since generation of an exhaustive test suite is often infeasible.

Once failure-inducing combinations are found, we modify the constraints of the
original CIT model, as explained in Examples 4.7 and 4.8. We repeat the whole
process until all test cases (generated by the CIT policy of choice and BEN) pass.

Our proposed constraint repair process proceeds as follows:

1. Start with a constrained CIT model containing a set of constraints C.

2. Derive a t-way CIT test suite according to one of the CIT policies described in
Section 4.2.2.

3. If for all test cases, the test result is the same according to the model and ac-
cording to the system, then exit.

4. For all tests t such that valM(t) 6= oracleS(t), mark t as a failing test. t is passing
otherwise. Use BEN to derive failure-inducing combinations:

(a) Produce an initial set of suspicious combinations with new test cases us-
ing BEN.

(b) Add tests produced by BEN to the test suite.

(c) Mark the new test cases as failing or passing according to valM = oracleS.

i. If all new tests pass and BEN has not detected any failure-inducing
combinations, increase the test suite strength.

ii. Otherwise, input the new set of tests to BEN.
7In our experiments we also found there are other cases when BEN terminates. These are, how-

ever, usually error states. We treat these cases the same way in which we deal with the ‘all test pass’
case, that is, we report that BEN did not find any failure-inducing combinations of given strength.

4.2. Combinatorial Interaction Testing for Automated Constraint Repair 61

(d) If BEN terminates and produces a set of failure-inducing combinations,
exit BEN.

5. Modify the constraint set C based on the result produced by BEN:
Given the set of failure-inducing combinations combs, for each comb:

(a) If a failure-inducing configuration comb occurs in test cases for which
valM(t) = True and oracleS(t) = False (i.e., belongs to the constraining
set), then Constr← Constr∪ ¬comb.

(b) If a failure-inducing configuration comb occurs in test cases for which
valM(t) = False and oracleS(t) = True (i.e., belongs to the relaxing set),
then for each ci ∈ Constr, add comb to ci, that is, ci ← ci ∨ comb.

6. Go back to point 1.

Note that this approach can be used to infer constraints by supplying an uncon-
strained CIT model to our tool.

The final constraints produced by our process can be further simplified. Since
constraints in our model can be represented in Boolean form, we can use proposi-
tional logic rules. We leave this step as future work.

Another enhancement would be identification of constraints to which combs
from the relaxing set need to be added. However, identification of the set of con-
straints that violate a comb is a non-trivial task. It can be reduced to the problem of
finding minimum unsatisfiable sets in Boolean satisfiability solving (SAT). We leave
this step as future work.

4.2.5 Experiments

In order to test our approach we conducted the following two experiments8. In the
first experiment, we applied mutation to a set of models taken from the literature.
In the second experiment, we used a configurable software system, namely Django,
in order to test our framework on a real case study.

Mutation Analysis

We gathered a set of combinatorial models taken from several papers and applied
our process to mutated versions of these models. In particular, for every model m
in the benchmarks we derived a set M of mutants.

We have applied simple mutation operators to the constraints in the model un-
der test in order to find mutants to be repaired. Our mutation operators are of 4

8All the experiments have been executed on a Linux PC with two Intel(R) i7-3930K CPU (3.2 GHz)
and 16 GB of RAM.

62 Chapter 4. Repair of Constraints Among Parameters

types: add a constraint that excludes a value of a parameter, remove an entire con-
straint, negate a constraint, and change a logical operator to another one (AND to
OR etc.). Then, for each mutant m′ in M, representing a possible faulty model, we
applied our repair process by using the original model m as the oracle (to compute
the oracleS function).

We considered all CIT policies presented Section 4.2.2. We applied our repair
starting with combinatorial strength set to 1 and increase it up to 3 (i.e., we are
only concerned with finding failure-inducing combinations of size 1,2 and 3). We
included combinatorial tests of strength 1 since some faults can be already detected
by a single parameter assignment.

Benchmarks

We used 5 case studies to evaluate our proposed approach:
1. The WashingMachine system, model of which is presented in Figure 4.5. It

represents an abstract view of the human interaction with an embedded system.
2. Concurrency is a testing problem for real-life concurrent system presented in

[181].
3. Telecom is a real-life telecommunication system presented in [181].
4. Aircraft is a small Software Product Line (SPL) found in SPLOT repository

and presented in [205].
5. Libssh is the combinatorial model for cmake of SSH library taken from [33].

Table 4.6: The benchmark data (for CNF size ab means b clauses with a literals each.)

constraints State space validity mut-
name #var # CNF size exp #conf ratio ants

WashingM. 3 2 23 2132 18 66% 18
Concurrency 5 7 243152 25 32 25% 38
Aircraft 8 2 3141 2731 384 82% 25
Libssh 16 2 22 216 65536 50% 42
Telecom 10 21 2113149 2531425161 46080 39% 116

Table 4.6 presents various benchmark data: number of variables, number of con-
straints (including the number of clauses when converted to conjunctive normal
form (CNF)), the size of the state space (the total number of possible configurations),
the percentage of configurations that are valid (i.e. the ratio of valid configurations),
and the number of mutants we generated for each model. Note that a low ratio in-
dicates that there are only few valid configurations. We tried to collect models from

4.2. Combinatorial Interaction Testing for Automated Constraint Repair 63

different domains, with a good level of diversity (in terms of size, constraints, and
so on) in order to increase the validity of our findings.

We ran each constraint repair process 10 times and report averages. We used the
ACTS tool for CIT test suite generation.

Evaluation of Effort and Repair Capability by mutation

In order to evaluate our technique, we wanted first to measure the required effort
and how it varies by changing the CIT policy. To measure the effort we used, for
each mutant:
Tests The number of test cases are generated according to the given testing pol-

icy. Note that for a mutant, test case generation can be invoked several times.
This can happen if, e.g., not all the tests pass and BEN is not able to find the
failure-inducing combination and we have to increase the combinatorial test-
ing strength.

BEN The number of additional tests BEN requires in order to isolate the failure-
inducing combinations.

Oracle The number of times the oracle was called.
Time The total time required to fix a mutated model, including test generation,

BEN invocation, and oracle evaluation.
In this experiment, the time required by the oracle to evaluate a test is negligible,

since we use the original model as an oracle. However, for real software systems a
single invocation of the oracle may take several minutes. Thus the number of oracle
calls is the critical factor as the evaluation of the function oracleS can be expensive,
especially if human input is required.

We are also interested in assessing the repair capability of our approach. We use the
following two measures:
TRM – Totally Repaired Models. The ratio of completely repaired models. In this

experiment, we can check if a repaired model is completely fault free by query-
ing whether it is equivalent to the original model. To check equivalence among
combinatorial models we use an SMT solver [31].

FID – Failure Index Delta. Even if a model is not completely repaired, we are inter-
ested in measuring how many conformance faults were repaired. We define
FID = (afiinit − afi f inal)/afiinit in terms of the absolute failure index presented
in Def. 4.12. FID represents the percentage of conformance faults that are re-
paired.

Figures 4.8 and 4.9 show respectively the effort and the repair capability of each
policy for every model in the benchmark set. The experimental results are also sum-
marized in Table 4.7.

We can observe that the number of tests generated at the beginning of each repair

64 Chapter 4. Repair of Constraints Among Parameters

●

●●

●

●
●●●●●●●

●●
●●

●

●●

●
●

●●
●●●
● ●●

●●

●●●

●
●
●●●●●●●●

●

●
●

●

●●●●●●●

●●

●●●●●●●●●●●●●

2
5
10
20
50
100
200
500
1000
2000
5000

WashingMachine Concurrency Aircraft LibSSH Telecom

testPolicy UC CC CV CuCV ValC

(a) Tests

●●●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●●

●

●

●

●

●

●●

●●
●●
●
●●●●●●●●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●●

0

100

200

300

WashingMachine Concurrency Aircraft LibSSH Telecom

testPolicy UC CC CV CuCV ValC

(b) BEN (additional tests)

(c) Oracle (number of oracle calls)

●●
●

●

●

●●●●●●●

●●

●●

●●

●●

●

●
●
●

●●
●●

●●

●

●

●

●

●

●

●

●

0.1
0.2
0.5
1.0
2.0
5.0
10.0
20.0
50.0
100.0
200.0

1,000.0

WashingMachineConcurrency Aircraft LibSSH Telecom

testPolicy UC CC CV CuCV ValC

(d) Time (seconds)

Figure 4.8: Effort of the repair process

4.2. Combinatorial Interaction Testing for Automated Constraint Repair 65

0.00

0.25

0.50

0.75

1.00

WashingMachine Concurrency Aircraft LibSSH Telecom

testPolicy UC CC CV CuCV ValC

(a) TRM: Totally repaired models (over all the mutations)

●●●●

●●

●

●● ●

●●

●
●

●

●

●●

●

●

●

●

●● ●

●●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●●●

●

●
●

●

●

●

●●
●●

●

●
●

●

●●

0.00

0.25

0.50

0.75

1.00

WashingMachine Concurrency Aircraft LibSSH Telecom

(b) FID: Failure Index Delta

Figure 4.9: Repair capability

66 Chapter 4. Repair of Constraints Among Parameters

Table 4.7: Means of the quantities over all the mutations

Time (seconds) Tests (Initial) BEN (additional tests) FID (%)
name UC CC CV CuCV ValC UC CC CV CuCV ValC UC CC CV CuCV ValC UC CC CV CuCV ValC

WashingM. 0.3 0.2 0.5 0.4 0.5 31.5 9.6 29.7 45.0 36.3 6.6 0.6 6.5 2.5 4.6 95 21 81 82 86
Concurrency 0.4 0.3 0.6 0.8 1.1 27.8 11.3 29.1 47.0 41.9 33.0 8.0 29.9 20.7 30.8 36 13 33 29 36
Aircraft 0.4 0.3 2.0 2.9 1.3 41.1 18.1 74.0 144.5 51.6 33.3 8.6 59.5 50.4 31.5 62 14 79 85 60
Libssh 0.7 0.2 1.8 77.9 2.6 44.0 10.8 66.5 187.5 54.6 23.4 1.0 35.3 46.3 26.0 57 10 63 67 50
Telecom 4.5 4.0 83.0 180.3 107.7 352.1 111.8 532.1 1287.0 435.9 56.1 11.5 70.0 77.6 60.1 25 16 12 35 31

process (Fig. 4.8a) and the number of tests BEN requires in order to find failure-
inducing combinations (Fig. 4.8b) are correlated. If one starts with small test suites,
BEN will require fewer tests (and it likely identifies fewer failure-inducing combos).
In terms of time (Fig. 4.8d), our process is rather fast for small models, but also for
the biggest models, like Telecom, it terminates on average in less than 10 seconds
for weak policies (like UC and CC), and in any case in less than 10 minutes when
using strong policies like CuCV and ValC. Regarding the repair capability, the TRM
is rather small for big specifications, and using more powerful testing policy (like
CuCV) does not help much (Fig. 4.9a). Using our process to obtain a completely
bug-free model seems unrealistic for big models: CIT likely provides an insufficient
coverage for this. However, if we consider the FID in Fig. 4.9b, we can say that
almost always our technique and CIT improve the model except when using CC.
The overall minimum average for FID when using strong policies like CuCV and
ValC is 29%. For big models, there are cases in which we are unable to improve the
constraints, but on average we can still remove around 35% of the faults with CuCV
and ValC. As already observed in [89], the CC policy (that generates only valid
tests) detects fewer conformance faults, and for this reason has the lowest FID. The
average FID over all the mutants is around 37%. The average FID when using CuCV
is 49%: half of faults can be repaired on average if the user chooses this policy.

Repairing the model of Django parameters

Django is a free and open source web application framework, written in Python,
that supports the creation of complex, database-driven websites, emphasizing reusabil-
ity of components9. Each Django project has a configuration file.
It is loaded at launch time, i.e. every time the web server that executes the project (e.g.
Apache) is started. Among all the possible configuration parameters, we selected
and modelled one Enumerative and 23 Boolean parameters. We implemented an
automated oracle which returns true if and only if the HTTP response code of the
Django project homepage is 200 (HTTP OK). This oracle invocation is costly in terms

9https://www.djangoproject.com/

https://www.djangoproject.com/

4.2. Combinatorial Interaction Testing for Automated Constraint Repair 67

of time, since editing the settings of the Django project, starting the Apache server,
and waiting for its response, requires around 6 seconds.

We applied the constraint repair process described in Section 5.2.2 on a default
Django start project running on Apache server (without SSL configuration) called
at address localhost. We started from a model (Django0) with an empty set of con-
straints because we thought that Django was accepting (and amending if necessary)
every possible configuration, and secondly, to test the effectiveness of this technique
to infer (and not only repair) configuration constraints: we call this first experiment
"Inference from Django0". At the end of the process, we obtained different set of con-
straints depending on the policy. For all the policies, we executed the repair process
with test suite strength from 1 to 3.

We noticed that the application of the testing policy CV produces an empty test
suite at the beginning, and an empty set of constraints at the end of the process,
because the initial Django model contains no constraints, and in particular there are
no test cases violating constraints. So we ignored this policy in the experiments.

We manually derived the constraints, based on the Django documentation about
configuration files, and by looking at the results of a few test cases. As a second
experiment, we applied the constraint repair process to this manual model (Manual),
in order to improve its conformance with the real Django system: we call this second
experiment "Repairing Manual".

Table 4.8: Django inference and repair results

Policy Tests BEN Oracle Time Ca Pb fi

Django0 (empty model) 0 0 0.789

in
fe

re
nc

e
fr

om
D

ja
ng

o0

UC 36 20 32 201s 5 6 0.325
CC 173 60 154 1671s 8 9 0.254
CuCV 320 54 335 3570s 9 12 0.081
ValC 288 80 124 1453s 17 19 0.204

Manual 3 4 0.033

re
pa

ir
in

g
M

an
ua

l UC 63 30 51 435s 3 4 0.033
CC 63 30 70 436s 3 4 0.033
CuCV 202 30 167 1354s 4 4 0
ValC 118 30 92 564s 4 4 0

aC: Total number of constraints in the model
bP: Total number of parameters involved in the constraints (without considering duplicates)

Results of this experiment are summarized in Table 4.8, which reports the num-
ber of tests generated by the testing policy, the number of additional tests required

68 Chapter 4. Repair of Constraints Among Parameters

by BEN, the number of oracle calls, the time taken for the whole process, the num-
ber of constraints of the final model, the number of parameters involved in the con-
straints, and the failure index. To compare the different policies in terms of fault
detection capability, in this case, we cannot rely on the absolute failure index, since
the actual model of the Django system remains unknown. We can, however, com-
pute the failure index (see Definition 4.12) where the test suite T is the union of all
the test suites we generated for all the policies.

With regards to inferring constraints, the CuCV policy generates the biggest test
suite and requires also the largest amount of time: around 1h for constraint inference
from Django0 (including oracle invocation). It has also the lowest fi (8%), which
however is not zero: no inferred model is completely fault-free. The UC policy is
the worst in terms of failure index data, but it is the fastest in our experiment.
ValC produces a model with the largest number of constraints and the failure index
(20%) is the second lowest. However, if we compare the failure index of Diango0
(79%), we can say that all the testing policies can substantially improve the initial
empty model. In conclusion, all the models contain a reasonable number of con-
straints and although our best policy (CuCV) does not beat the manual model we
have developed (by using our best efforts), it can produce a rather correct model.

Regarding the problem of repairing the initial manual model, two out of four
testing policies (CuCV and ValC) are able to completely repair the manual model (at
least when considering the failure index based on the set of generated tests), while
the UC and CC policies did not improve the initial model. For constraint repair, the
number of tests and the time required is generally lower (except for UC) than for the
process of inferring constraints. We conclude that the availability of an initial model,
even if it is not completely correct, makes possible to obtain a fault-free model for a
real system when strong testing policies are applied.

Figure 4.10 reports the constraints for Django0 (the initial model with empty set
of constraints), Manual (the model inferred manually), and for the repaired models
produced using CuCV and ValC (starting from Manual). The constraints obtained in
the final models are still readable, making a human inspection possible for further
modifications.

4.2.6 Related Work

The problem of finding and fixing constraints in combinatorial models has been ad-
dressed in the field of software product lines. Henard et al. [108] assumes existence
of valid configurations of the given software system and use a SAT solver to ran-
domly generate configurations for an existing feature model of the system. Once a
conformance fault is found, a constraint is added, removed or altered with certain
probability. The mutated feature model is compared against the original using a
pre-defined fitness function and the best of the two is kept for future evaluation.

4.2. Combinatorial Interaction Testing for Automated Constraint Repair 69

Django0
true

Manual (constraints "inferred " manually)
!PREPEND_WWW
!SECURE_SSL_REDIRECT
// if not DEBUG, "localhost" must be allowed
!DEBUG =>
(ALLOWED_HOSTS==LOCALHOSTIP or ALLOWED_HOSTS==LOCALHOST) #

CuCV (repairing Manual)
!PREPEND_WWW
!SECURE_SSL_REDIRECT
!DEBUG =>
ALLOWED_HOSTS==LOCALHOSTIP or ALLOWED_HOSTS==LOCALHOST #
ALLOWED_HOSTS==IP =>
!DEBUG or PREPEND_WWW or SECURE_SSL_REDIRECT #

ValC (repairing Manual)
!PREPEND_WWW
!SECURE_SSL_REDIRECT
!DEBUG =>
ALLOWED_HOSTS==LOCALHOSTIP or ALLOWED_HOSTS==LOCALHOST #
ALLOWED_HOSTS==IP => !DEBUG or SECURE_SSL_REDIRECT

Figure 4.10: Django models obtained by repairing the manual model using different
testing policies

In contrast to Henard et al.’s work, we derive test cases in a systematic fashion
using combinatorial interaction testing. Moreover, by applying policies presented
in [89], we are able to generate invalid configurations. Therefore, in contrast to
the work by Henard et al., we are able to find conformance faults caused by an
over-constrained model. Finally, we use a systematic approach to fix the model by
utilising BEN to find the minimum fault-inducing configurations.

Some of our policies could be improved by integrating the testing with negative
values technique described in [68], which disallows two invalid values to coexist in
one test case (negative test cases), assuming that every configuration containing at
least one invalid parameter is invalid. We did not consider that technique because
it does not apply to the more general case (which is quite common) of invalid con-
figurations originating from t-way parameter interactions. A possible future work is
to modify our CV and ValC policies to include only configurations that make exactly
one constraint false.

Arcaini et al. [33] used mutation testing to detect and fix conformance faults by
distinguishing a given feature model from its mutants.

70 Chapter 4. Repair of Constraints Among Parameters

The problem of modelling and testing the configurations of complex software
systems is non-trivial. There has been much research done in extracting constraints
among parameter configurations from real systems. For instance, the importance
of having a model of variability and having the constraints in the model aligned
with the implementation is discussed in [154]. However, in that paper, authors try
to identify the source of configuration constraints and to automatically extract the
variability model. Our approach is oriented towards the validation of a variability
model that already exists. Moreover, they target C-based systems that realise con-
figurability with their build system and the C preprocessor. A similar approach is
presented in [194], where the authors extract the compile-time configurability from
its various implementation sources and examine for inconsistencies (for example,
dead features and infeasible options). We believe that our approach is more general
(not only compile-time and C-code) and can be complementary in validating and
improving automatically extracted models.

Testing configurable systems in the presence of constraints is tackled in [64] and
[169]. In these papers, authors argue that CIT is a very efficient technique and that
constraints among parameters should be taken into account in order to generate
only valid configurations. This allows to reduce the cost of testing. Also in [57],
authors showed how to successfully deal with constraints by solving them using a
constraint solver such as a Boolean satisfiability solver (SAT). However, the empha-
sis of that research is more on testing of the final system not its combinatorial model.
CIT is also widely used to test SPLs [168].

In SPL the validation and extraction of constraints between features is generally
given in terms of feature models (FMs). Synthesis of FMs can be performed by iden-
tifying patterns among features in products and in invalid configurations and build
hierarchies and constraints (in limited form) among them. For instance, Davril et
al. applied feature mining and feature associations mining to informal product de-
scriptions [71]. There exist several papers that apply search based techniques, which
generally give better results [105, 137, 84, 139]. However, checking and maintaining
the consistency between a SPL and its feature model is still an open problem.

4.3 Using Iterative Constraint Repair to Detect XSS Vul-
nerabilities

In this Section, we apply model repair to a software security scenario. We consider
the case where a knowledge base consists of interactions among parameter values
in an input parameter model for web application security testing.

The input model gives rise to attack strings to be used for exploiting XSS vulner-
abilities, a critical threat towards the security of web applications. Testing results

4.3. Using Iterative Constraint Repair to Detect XSS Vulnerabilities 71

are then annotated with a vulnerability triggering or non-triggering classification,
and such security knowledge findings are added back to the knowledge base, mak-
ing the resulting attack capabilities superior for newly requested input models. Our
approach is an iterative process that evolves (i.e., repairs) an input model for security
testing. Empirical evaluation on six real-world web application shows that the pro-
cess effectively evolves a knowledge base for XSS vulnerability detection, achieving
on average 78.8% accuracy.

One major threat to web applications is posed by Cross-Site Scripting (XSS),
which continues to be included in the OWASP Top 10 most critical web applica-
tion security risks [87]. Security testing is a vital and expensive part of the software
development lifecycle. An effective testing technique applied to security testing is
Combinatorial Testing (CT), for the capability of detecting failures and fail conditions
with a small amount of tests that need to be executed compared to the whole input
space [187]. Given a discrete finite model of the system under test (SUT), made of pa-
rameters with a finite list of possible values, called input parameter model (IPM), and
given an interaction strength t, CT creates a test suite guaranteeing the appearance
of all t-way interactions of parameter values, for any selection of t parameters [129].
In the case for testing for exploiting XSS vulnerabilities, the IPM specifies an at-
tack grammar and is also called (abstract) attack model. The aim of this work is to
present a way to evolve knowledge bases for security testing. In our approach, the
evolution of a knowledge base consists in the integration of learned constraints, us-
ing BEN [98], into the IPM. In particular, the contribution of this paper consists in
an automated technique to detect all the conditions under which vulnerabilities are
triggered, by using combinatorial testing. Evaluation shows that the process is able
to evolve the knowledge base to achieve, on average over all the benchmarks, 78.8%
accuracy, in 14 minutes computation time.

The rest of the section is structured as follows. In Sect. 4.3.1 we give basic def-
initions, in Sect. 4.3.2 we discuss our proposed process, and Sect. 4.3.3 presents
the results of our case study experiments. We provide a brief overview over related
work in Sect. 4.3.4, and the conclusions are discussed at the end of the chapter, in
Sect 4.4.

4.3.1 Preliminaries

[94]In the course of combinatorial security testing (cf. [187]), attack models have appeared
in the form of a BNF grammar, e.g. [48], [188]. In this paper, we will follow this estab-
lished terminology for designing XSS attack models to be used in conjunction with
combinatorial methods. We denote with Ki a knowledge base at time i, encoded as
an abstract attack model (IPM, see Fig. 4.11). Given an IPM, an abstract test case
f is a particular assignment of values for its parameters. An abstract test suite is
used to derive a concrete test suite, where abstract test cases are being translated

72 Chapter 4. Repair of Constraints Among Parameters

into concrete XSS attack strings via a translation function τ. For example, given the
following abstract test case:

(JSO = 2,WS = 1, INT = 3,EVH = 2,PAY = 2,PAS = 5, JSE = 7)

for each parameter, the respective integer value corresponds to a concrete pa-
rameter value (i.e., a string), and the translated concrete test case is obtained by
concatenating all these strings together in the order given by the IPM:

<script> onError= alert(1)’)’\>

Model wavsep_xss

Parameters:
JSO: { P1 P2 P3 P4 P5 P6 P7 P8} PAY: { P1 P2 P3 P4 P5 }
INT: { P1 P2 P3 P4 P5 P6 P7 P8 P9 P10} EVH: { P1 P2 P3 }
PAS: { P1 P2 P3 P4 P5 P6 P7 P8 P9 P10} WS: Boolean
JSE: { P1 P2 P3 P4 P5 P6 P7 P8 P9}

Constraints:
! JSE==JSE.P2 # # ! JSE==JSE.P3 # # ! JSE==JSE.P4
! INT==INT.P9 # # ! (JSO==JSO.P2 && WS==false && PAS==PAS.P7)
...

Figure 4.11: Knowledge base K3 for NavigateCMS: abstract attack model (initially it
had no constraints), with detected XSS vulnerability constraints, in CTWedge

The resulting string can be submitted against the SUT, and a boolean function
orac decides if the outcome of the execution of the translated test case τ(f) against
the SUT triggers an XSS vulnerability or not. We denote also the function eval(f) :=
oracle(τ(f)), that is true if the test case f triggered an XSS vulnerability (i.e., f is a
vulnerability triggering test case). The generated test vectors aim at producing valid
JavaScript code when these are executed against SUTs. A description of parameters
that appear in the attack model is mentioned in [48, 93, 188]. At any time point i, the
knowledge base Ki may be used to create test cases, and to classify an abstract test
case as either vulnerability-triggering or not, depending on whether the constraints
are satisfied. This capability of the knowledge base is denoted as a model function,
which takes as input an abstract test case, and gives as output a “best guess” that
may or may not be correct w.r.t. the actual result of the function eval. The attack
model initially contains only combinatorial parameters and no constraints. During
the process, the knowledge base is enriched by the conditions used to identify the
vulnerabilities.

4.3. Using Iterative Constraint Repair to Detect XSS Vulnerabilities 73

To put this problem into a formal setting, a knowledge base fault occurs when
a test f is classified as non-vulnerable in the model (¬model(f)), despite it actu-
ally triggers a vulnerability in the SUT (eval(f)) (False Negative: it entails a loss of
potentially valuable information for fixing the vulnerability); or when a test is be-
ing marked as vulnerability-triggering in the model (model(f)), despite it does not
trigger a vulnerability (¬eval(f)) (False Positive: it triggers a false alarm, and the
programmers may consequently waste effort in fixing pieces of code that did not
trigger any vulnerability). When such a discrepancy is fixed by updating the model
function, we say that the knowledge base evolves.

Since in our experiments it yielded better results, we decided to consider the con-
vention for which the initial model function considers any test to be non-vulnerability
triggering; and during the process constraints are added in order to identify and
subsequently exclude all the tests that do not trigger any vulnerability. We call this
convention pessimistic approach, in contrast with the optimistic one in which initially
any test is vulnerability-triggering, and constraints are added to isolate the tests that
actually trigger some vulnerability.

Let us complete some notation for combinatorial analysis. A combination c is an
assignment (i.e. configuration) on a subset Dom(c) of all the possible parameters
P in the attack model, such that Dom(c) ⊆ P. We call size of the combination the
cardinality of Dom(c). A combination c identifies a set of tests: c represents a test f if
all the parameters in c are also present in f , associated to the same values. Formally,
c ⊆ f : ∀p ∈ Dom(c), f (p) = c(p). A combination c is suspicious in a test set F ⊆ Γ
if c represents only failed tests in F. Formally, ∀ f ∈ F : c ⊆ f → model(f) 6= eval(f).
For the purposes of this work, we assume that the constraints are in conjunctive
relation among each other.

4.3.2 Process for Model Evolution

Fig. 4.12 shows an overview of our process to automatically evolve an abstract
attack model initialized without constraints, to detect conditions that trigger XSS
vulnerabilities. The process proceeds according to the following steps:

1. From a defined initial interaction strength t, derive a t-way test suite.
2. Mark the test cases as failing or passing according to the current model and

the evaluator. If all the tests pass and Tht is not yet reached, increment the strength
t ← t + 1, and go to point 1. Otherwise, evaluate the tests. Internally, the evalu-
ator executes the translation function τ to obtain the concrete test string to insert
in the reflection URL to query the SUT. PhantomJS10 then analyzes the HTML code

10PhantomJS (http://phantomjs.org/) is a headless browser environment enabling introspection
of events such as network requests, document edits and JavaScript errors.

74 Chapter 4. Repair of Constraints Among Parameters

Figure 4.12: Condition detection meta-process

returned by the SUT for a specific target function (the alert() function in our case11)
that was included as payload. If any of the target functions were executed, the in-
jection was successful; if the page loads normally and does not produce any errors,
the injection is deemed unsuccessful. Lastly, if JavaScript errors are observed on the
page, it is likely that some content was injected, but not in a form that constitutes a
usable injection (thus resulting in incorrect syntax). Our current approach regards
these test cases as failing, but future evolutionary approaches might take advantage
of this particular classification.

3. Pass the evaluated test suite to BEN [98] to derive suspicious combinations,
together with their suspiciousness level. We call BEN multiple times specifying the
size tBEN of the suspicious combinations to detect12, from 1 to ThBEN. BEN may also
ask for a few additional tests (up to 10 tests at a time: inner BEN cycles) to reduce
the amount of suspicious combinations and improve the accuracy of the computed
suspiciousness levels.

4. The suspicious combinations from BEN are then translated into a set of con-
straints for the current knowledge base Ki, by negating the corresponding boolean
expression (obtained by putting the assignments in conjunction) of every combina-
tion whose suspiciousness value is above the threshold ThS.

Due to low accuracy in the detected suspicious combinations, we noticed that
Ki often results to be a contradiction, which is normally not the case in real-world
systems.Therefore, we post-process the constraints by computing the unsat-cores of Ki

11in theory, any valid JavaScript functions that will not be called during the normal operation of
the SUT can be chosen instead.

12note that tBEN is different from the strength t for generating the initial test suite

4.3. Using Iterative Constraint Repair to Detect XSS Vulnerabilities 75

and removing all such clauses starting from the least-suspicious constraints (accord-
ing to BEN), until Ki is not a contradiction any longer. The process eventually quits
if either the user is satisfied with the quality of Ki

13, or the threshold Tht is reached.
Otherwise, increase t and go to point 1.

4.3.3 Experiments
The process has been implemented in Java using CTWedge [90] to represent and up-
date attack models, ACTS [217] to generate combinatorial test suites of a defined
strength, and BEN [98] as a tool to detect suspicious combinations and compute sus-
piciousness. Experiments were executed on a PC with Intel i7 3.40GHz processor
and 16 GB RAM. We run the process on six real web-applications: four are part
of the WAVSEP14 project, and two are open source content management systems:
MiniCMS and NavigateCMS. Each SUT receives over HTTP one GET parameter
which is rejected on the page in different contexts, and might optionally be altered
by a specific sanitization function. Tab. 4.9 shows, for each SUT, the respective vul-
nerability ratio, i.e., the ratio of tests that triggered an XSS vulnerability (eval(f)) out
of the total number of tests executed, that, given the practical infeasibility of the ex-
haustive test suite, we compute on all the tests generated up to strength t=5 (42830
tests).15

Table 4.9: XSS reflection sites on WAVSEP benchmarks

SUT
ID SUT name Reflection site

vulnerability
ratio (t=5)

1 Tag2HtmlPageScope <body>$input</body> 17.08 %
2 Tag2TagStructure <input type="text" value="$input"> 4.06 %
3 Event2TagScope 4.63 %
4 Event2DoubleQuotePropertyScope 3.45 %
5 MiniCMS /mc-admin/page.php?date=$input 80.2 %
6 NavigateCMS /navigate.php?fid=$input 60.0 %

To assess the quality of the evolved knowledge base from our method, we use
the typical metrics of information retrieval: in particular, precision (TP

TP+FP), and recall
(TP

TP+FN) give a measure of how the process isolates true positives, accuracy gives an
overall ratio of correctly classified tests, and the F1 score is considered to be a good

13in this case, we believe that the suspiciousness average and standard deviation could be useful
indicators of the F1 score that the currently inferred model may have

14WAVSEP: Web Application Vulnerability Scanner Evaluation Project, https://github.com/
sectooladdict/wavsep.

15The tests suites were generated using the IpoF algorithm, implemented in ACTS

https://github.com/sectooladdict/wavsep
https://github.com/sectooladdict/wavsep

76 Chapter 4. Repair of Constraints Among Parameters

candidate synthesis index of the inferred model’s quality. For the experiments, we
set the parameters of the process as follows:

• ThBEN = 3. We limited the size of detected suspicious combinations as the
BEN process becomes too slow when computing suspiciousness of the too
many combinations of size 4 (or larger) on these attack models.

• t, the initial strength of test suite, is set to 2.
• Tht = 4. We limit the maximum strength of the initial test suite since even t=5

(about 36000 tests) would make the BEN process too slow.
• ThS = 0, as we want all the suspicious combinations to be considered.

Table 4.10: Quality metrics for the inferred models (ThBEN = 3, and ThS = 0)

sut
time
(s) constraints

suspiciousness
avg. ± s.d. accuracy precision

recall
(TPR)

specificity
(TNR) F1 score

T
h t

=4

1 246 146 0.254 ± 0.0288 72.6 32.5 55.7 76.1 41.0
2 141 38 0.362 ± 0.00753 93.3 32.6 59.5 94.8 42.1
3 1437 794 0.137 ± 0.0456 87.4 15.7 39.7 89.7 22.5
4 1088 551 0.136 ± 0.0483 89.0 13.7 42.3 90.6 20.7
5 1445 623 0.342 ± 0.0287 78.3 87.0 85.8 48.3 86.4
6 679 80 0.344 ± 0.0147 52.0 66.6 40.0 70.0 50.0

avg 839 372 0.263 ± 0.0289 78.8 41.4 53.8 78.3 43.8

T
h t

=3

1 9.3 644 0.196 ± 0.0423 41.4 19.8 79.8 33.5 31.8
2 4.2 164 0.224 ± 0.0874 78.9 14.2 83 78.7 24.2
3 28.5 764 0.207 ± 0.0628 75.4 12.9 75.7 75.3 22
4 9.3 123 0.125 ± 0.0379 72.3 8.53 73.7 72.2 15.3
5 58.5 1340 0.318 ± 0.0268 80.1 80.2 99.9 0.306 89
6 37.6 2460 0.296 ± 0.0245 62.2 61.8 97.1 9.91 75.5

avg 24.6 915 0.228 ± 0.0470 68.4 32.9 84.9 45.0 43.0

Test suites for interaction strengths t ∈ {3, 4} had 900 and 7200 test cases, re-
spectively. For each SUT, Tab. 4.10 reports the number of constraints included in the
inferred model, the average suspiciousness with its standard deviation, and the ac-
curacy, precision, recall, specificity, and F1 score of the final model, computed over
all tests up to strength 5, as for the vulnerability ratio in Tab. 4.9.

RQ1: What is the quality of the model obtained by the approach?

We observe that the inferred model achieves an average accuracy of 78.8%, with
a maximum of 93.3%. Precision has an average of 41.4%, ranging from 13.7% to
87%, and recall (54% on average) is higher than precision. F1 score is on average
43.8%, with a maximum of 86.4% on SUT5. With relatively few tests (t=4 out of 7

4.3. Using Iterative Constraint Repair to Detect XSS Vulnerabilities 77

parameters), the final model is of good quality, but not completely accurate. We can
also observe that F1 is proportional to the vulnerability ratio of the SUT.

RQ2: How does the quality of the inferred model vary depending on Tht?

By increasing Tht from 3 to 4, the time taken, as expected, increases, while the num-
ber of constraints, in most cases, decreases, meaning that with more tests our process
is able to describe the vulnerability conditions with fewer constraints. On average,
although recall decreases, both precision, accuracy and specificity increase, and F1
slightly increases. This means that the classification improves.

RQ3: Which is the computational effort of the proposed process?

Tab. 4.10 also reports the total execution time, excluding the actual test execution,
as test results are cached, except for the few tests (30 at most) that BEN may ask
during the process. For the first two SUTs, the process takes less than 250 seconds
to complete, but up to 24 minutes are needed for SUT5 with Tht = 4. Most of the
computation time is used internally by BEN; by limiting to 3 the strength of the
initial test suite, the total time is always below 1 minute for every SUT.

RQ4: How does variations of ThS affect model quality?

The highest F1 score is achieved with low values of ThS (see Fig. 4.13), except for
SUT3 and SUT4, for which a ThS ' 0.13 achieves the maximum F1 score. However,
we can notice that at least around 25% of the constraints (starting from the least
suspicious ones) can be removed with negligible impact on the final F1 score.

0

25

50

75

100

0.00 0.25 0.50 0.75 1.00

ThS

F
1

sc
or

e

sut

SUT 1

SUT 2

SUT 3

SUT 4

SUT 5

SUT 6

0

25

50

75

100

0 25 50 75 100

Included constraints (%)

F
1

sc
or

e

sut

SUT 1

SUT 2

SUT 3

SUT 4

SUT 5

SUT 6

Figure 4.13: Achieved F1 score of final model by varying ThS, when Tht = 4

78 Chapter 4. Repair of Constraints Among Parameters

4.3.4 Related Work

XSS vulnerability detection is not a novel topic in computer science research. Duch-
ene et al. [74] used model based testing and fuzzing to discover XSS vulnerabilities;
Melicher et al. [151] proposed improvements on using the DOM model to generate
and detect XSS attacks; Simos et al. [188] proposed a combinatorial approach to find
attack vectors that trigger XSS vulnerabilities; Jia et al. [116] used machine learn-
ing and hyper-heuristic search to improve combinatorial tests; Temple et al. [197]
proposed a machine-learning approach to infer constraints among parameters that,
although not sound, achieves high precision (about 90%) and recall (80%). Although
these works use model-based testing,the usage of combinatorial testing for XSS vul-
nerability detection to classify vulnerabilities based on the input and describe com-
pletely the vulnerability space of a part of a web application, evolving a knowledge
base, is the main novelty of our approach. The first phase of BEN [98] as a failure-
inducing combination detection and ranking tool has been used by Gargantini et
al. [88] to repair constraints in combinatorial models, evaluating different test gen-
eration policies.

4.4 Conclusion and Future Work

In this chapter, we presented an approach that extends CIT and aims to (1) auto-
matically check the validity of the configurability model of the system under test,
(2) automatically finding and fixing faults in models of parameter configurations of
software systems, and (3) evolve an attack model to include conditions among input
parameters that trigger XSS vulnerabilities in web applications.

For checking the validity of the combinatorial model, we devised four original
policies that can help software testers discover faults in the model of system config-
urations as well as faults in the software implementation that the model describes
[89] Several experiments conducted show the efficacy of our approach. We con-
firm that constraints play an important role in configurability testing, but the ex-
periments show that also invalid configurations should be considered in order to
avoid some problems (like over-specification) and to detect a wider range of faults.
Our experiments suggest that techniques including both valid and invalid tests (as
CuCV) have a better fault detection capability than techniques including only valid
(as CC) or invalid tests (as CV). However, producing invalid tests may be not fea-
sible. In these cases we would suggest the tester to use CCi instead of UC and CC.
The experiments suggest that CCi is not very expensive and it offers a superior fault
detection capability. The techniques presented should significantly help software
developers in the modeling and testing process of software systems configurations.

We then used these novel CIT policies in an iterative process for finding and fix-

4.4. Conclusion and Future Work 79

ing conformance faults [88]. This process can help software testers discover faults in
the model of system configurations as well as faults in the software implementation
that the model describes. We call these conformance faults. We then conduct several
experiments on five software systems to validate our approach. We show that we
can successfully repair existing combinatorial models. Furthermore, we also show
how our approach can be utilised to derive constraints between parameters of large
complex software systems. The technique presented should help software devel-
opers derive and fix combinatorial testing models by automating this often purely
manual and thus time-consuming and highly error-prone task.

As third step, in [94], we introduce the notion of suspicious combination, that al-
lows to apply the iterative process devised in [88] to the detection of XSS vulnerability-
triggering conditions among input parameters. Suspicious combinations are com-
binations whose appearance in a test vector would trigger a discrepancy between
the best-guess of the current model, and the actual outcome when executed against
the SUT. Identification of constraints among XSS attack parameters helps to better
understand the root cause of an XSS vulnerability and provides insights about how
to fix a flawed sanitization function. As future work, we plan to improve the process
by reducing the required tests, using information from previous step, and evaluat-
ing alternatives to BEN, such as MixTgTe [28]. We believe that this approach can
be extended to other security vulnerabilities related to sanitization functions, and
to detect discrepancies between a functional system specification and its implemen-
tation. Another direction is to further simplify the detected constraints, to reduce
them in number and present them to the user in a more readable way, applying
methods such as the ones in [29].

Chapter 5

Repair of Feature Models

Feature models are a widely used modeling notation for variability management in
software product line (SPL) engineering. The goal of this chapter is to propose an
answer to the research question RQ4 introduced in Sect. 1.1: "How to repair feature
models?". We present two different techniques to repair feature models. The first
approach allows to repair feature models represented in the hierarchical tree-like
structure, as well as simple constraints (i.e., only in the form of requires and excludes
between couple of features) in propositional logic. The second approach, instead,
applies to feature models represented as arbitrarily complex constraints, expressed
in propositional logic. The two approaches can be combined, as to fully represent
variability, unless complicating the model with a large number of abstract feature,
it is normally more convenient to use general (i.e., complex) constraints, besides the
hierarchical tree-like structure of feature dependencies. In the rest of the chapter,
Sect. 5.1 covers the first approach reporting from paper [27], which includes and
extends the previous paper [26], and Sect. 5.2 covers the second approach, i.e., the
repair of relations among features in the form of constraints in propositional logic,
reflecting the content of the paper [29].

Conclusions on these works are reported jointly in Sect. 5.3, together with lines
for future research on this topic.

5.1 Achieving change requirements of feature models
by an evolutionary approach

We developed an approach that repairs a feature model w.r.t. a given update request
in the form of combinations representing a set of configurations to be accepted or

80

5.1. Achieving change requirements of feature models by an evolutionary
approach 81

rejected, that may be detected by failing test cases, or directly by engineer domain
knowledge. The method is based on an evolutionary algorithm that iteratively mu-
tates the original feature models and checks if the update request is semantically
fulfilled. We employ mutations such as switching an optional feature to mandatory,
or changing an or group to an and group, based on [26]. We generate faults between
two real versions of feature models of the MobileMedia, HelpSystem, SmartHome,
and ERP_SPL systems in the SPLOT repository1, and we notice that although our
approach does not guarantee to completely update all the possible feature models,
on average, around 89% of requested changes are applied, with minimal edits.

5.1.1 Basic definitions

[27]In software product line engineering, feature models are a special type of informa-
tion model representing all possible products of an SPL in terms of features and
relations among them. Specifically, a feature model fm is a hierarchically arranged
set of features F, where each parent-child relation between them is a constraint of
one of the following types2:

• Or: at least one of the sub-features must be selected if the parent is selected.
• Alternative (xor): exactly one of the children must be selected whenever the

parent feature is selected.
• And: if the relation between a feature and its children is neither an Or nor an

Alternative, it is called and. Each child of an and must be either:
– Mandatory: the child feature is selected whenever its respective parent

feature is selected.
– Optional: the child feature may or may not be selected if its parent feature

is selected.
Only one feature in F has no parent and it is the root of fm.
In addition to the parental relations, it is possible to add cross-tree constraints, i.e.,

relations that cross-cut hierarchy dependencies. Simple cross-tree constraints are:
• A requires B: the selection of feature A in a product implies the selection of

feature B. We also indicate it as A→ B.
• A excludes B: A and B cannot be part of the same product. We also indicate it

as A→ ¬B.
Some frameworks for feature models also support complex cross-tree constraints

[120] through general propositional formulas. In our approach, we allow feature
models to contain complex cross-tree constraints.

1http://52.32.1.180:8080/SPLOT/feature_model_repository.html
2As done by FeatureIDE [150], we assume that each feature can be the father of only one group

(either Or, Alternative, or And). This is not a limitation, as having different groups as children can be
obtained by using abstract features [200].

http://52.32.1.180:8080/SPLOT/feature_model_repository.html

82 Chapter 5. Repair of Feature Models

Feature models can be visually represented by means of feature diagrams, and
their semantics can be expressed by using propositional logic [38, 39]: features are
represented by propositional variables, and relations among features by proposi-
tional formulae. We identify with BOF(fm) the BOolean Formula representing a
feature model fm.

Definition 1 (Configuration). A configuration c of a feature model fm is a subset of the
features F of fm (i.e., c ⊆ F).

If fm has n features, there are 2n possible configurations.

Definition 2 (Validity). Given a feature model fm, a configuration c is valid if it contains
the root and respects the constraints of fm. A valid configuration is called product.

For our purposes, we exploit the propositional representation of feature mod-
els for giving an alternative definition of configuration as a set of n literals c =
{l1, . . . , ln} (with n = |F|), where a positive literal li = fi means that feature fi be-
longs to the configuration, while a negative literal li = ¬ fi means that fi does not
belong to the configuration. We will also represent a configuration as a BOolean
Formula as follows: BOF(c) =

∧n
i=1 li.

Furthermore, since in the proposed approach we need to evaluate a feature
model over a possibly wider set of features U, we introduce BOF(fm, U) = BOF(fm)∧∧

f∈U\F ¬ f , where fm explicitly refuses all the configurations containing a feature
not belonging to its set of features F; such technique has been already employed
by different approaches that need to compare feature models defined over different
sets of features [199, 32].

Example 1. Let’s consider the feature model shown in Fig. 5.1. It is the third version

Figure 5.1: Example of feature model (taken from [171])

of the CAR SPL described in [171]. It is composed of eight features F = {CarBody,
MultimediaDevices, OtherFeatures, Radio, Navigation, MonochromeRadioDisplay,
MonochromeNavigationDisplay, ColorNavigationDisplay}. CarBody is the root fea-
ture; its children MultimediaDevices and OtherFeatures are respectively optional

5.1. Achieving change requirements of feature models by an evolutionary
approach 83

and mandatory. MultimediaDevices has two optional children: Radio that is the fa-
ther of the mandatory feature MonochromeRadioDisplay, and Navigation that is the
father of the alternative group between MonochromeNavigationDisplay and Color-
NavigationDisplay.

5.1.2 Specifying an update request

We suppose that the product line engineer wants to update an existing feature
model fmi (initial feature model); although (s)he knows which are the desired up-
dates in terms of products and features to add or remove, (s)he does not know how
to write a feature model fm′ that satisfies all these updates.

In this section, we describe how the user can specify her/his change requirements.
By analysing existing evolutions of feature models described in literature [171, 54,
180, 207, 85], we identified the following five types of change requirements:

• a feature must be identified with a new name. Although this change require-
ment is straightforward to achieve, it is widely used (e.g., for the SmartHome
SPL [180] considered in the Ample Project, we have observed 12 feature re-
names) and it is important to keep track of it, otherwise someone reading the
updated feature model may have the impression that one feature has been
added and one removed (in particular, if also other changes have been done
on the feature model and, therefore, spotting the renamed feature is not easy).

• a feature must be added to the feature model. This change requirement occurs
when a new feature must now be supported by the SPL. For example, in the
CAR SPL [171], the support for DVD entertainment has been introduced in 2012
(documented in the fourth version of the SPL feature model).

• a feature must be removed from the feature model. This change requirement
occurs when a feature is no more supported by the SPL.3 For example, in the
CAR SPL [171], feature Color Radio Display has been removed in 2011 (third
version of the SPL feature model).

• some products must now be accepted by the SPL. This change requirement
occurs when some constraints existing on the SPL (due to technical reasons or
regulations) do not hold anymore and so some configurations that were for-
bidden in the past can now be accepted. For example, in the second version
of the Pick-&-Place (PPU) Unit SPL [54], the system is able to process either
plastic or metal workpieces; in the third version of the SPL, instead, a technical
improvement has allowed to handle plastic and metal workpieces in combi-
nation.

3Note that this change requirement could be achieved by removing all the products containing the
feature (see last change requirement), but not removing the feature from the feature model. However,
in this way, the feature would become dead [39], making the feature model less readable.

84 Chapter 5. Repair of Feature Models

• some products cannot be accepted anymore by the SPL. This change require-
ment happens when some constraints over the SPL emerge (e.g., due to new
regulations). For example, in the HelpSystem SPL [207], the second version of
the SPL does not allow anymore that the sensor only detects either pressure or
not pressure, i.e., the products with only pressure or not pressure are not allowed
and have been removed.

In the following, we provide the formal definition of update request. We assume
that the initial feature model does not contain any dead feature or redundant con-
straint [39, 76]; in case it has any, we can remove them using standard techniques,
as, for example, that provided by FeatureIDE [150].

Definition 3 (Update request). Given an initial feature model fmi defined over a set of
features F, we call update request UR the modifications a user wants to apply to fmi
in order to obtain the desired updated model fm′. An update request is composed of five
change requirements, three regarding the features of the feature model, and two the configu-
rations/products. The first feature-based change requirement regards the features names:

• Rename features: FTBR = { f1, . . . , fm} is a subset of features of F that must be
renamed and ren a renaming function; FR is the set obtained by replacing every feature
fi ∈ FTBR with ren(fi), i.e., FR = (F \ FTBR) ∪

⋃
fi∈FTBR

{ren(fi)}. We identify with
fmren the feature model obtained by renaming the features according to FTBR and ren.4

The other two feature-based change requirements over the features of fmren are:
• Add features: Fadd is a set of features the user wants to add to fmren. For each e

in Fadd, the user has to define in FR ∪ Fadd the parent of e, denoted by parent(e). By
adding a feature e with parent p, we assume that the user wants to duplicate all the
products that contain p by adding also e.5

• Remove features: Frem is a subset of the features of FR to remove; by removing a
feature f , we assume that the user wants to remove f from all the existing products
and prohibit its selection in new products.

We identify with F′ the new set of features that must be used in the updated feature model
fm′, namely (FR ∪ Fadd) \ Frem.

Two product-based change requirements, instead, are related to the products/configu-
rations of the feature model (over the new set of features F′):

• Add products: Crelax is a set of predicates {ρ1, . . . , ρn} over F′ that denote conditions
that must be allowed in fm′. The logical models satisfying ρi are products that must be

4Note that feature renaming is already supported by feature model editors, such as FeatureIDE.
We keep it among our change requirements for completeness with respect to the feature model evo-
lutions observed in literature.

5Note that this corresponds to have e as optional feature of p. However, this could not be always
achievable, as explained in Sect. 5.1.3 (unless abstract features [200] are used); therefore, we define the
change requirement in this more general form, in order to keep the semantics of change requirement
and the way to achieve it clearly distinguished.

5.1. Achieving change requirements of feature models by an evolutionary
approach 85

added to the feature model, provided that they do not violate feature model constraints
defined over features not included in ρi.

• Remove products: Crem is a set of predicates {γ1 . . . , γm} over F′ that denote a set
of products to be removed. Each product (i.e., logical model) satisfying a γi must be
removed from the valid product set.

The meaning of Crelax and Crem is to modify the set of valid products, as depicted
in Fig. 5.2. The new product set (in dotted line) is enriched by configurations iden-

Figure 5.2: Added and removed products

tified by Crelax but deprived of the products identified by Crem; note that Crem could
also remove some products added by Crelax.

If the user wants to include/exclude a specific configuration c, then (s)he simply
adds BOF(c) to Crelax/Crem.6

Well-formedness of an update request

We impose some constraints on the update request to be sure that the different
change requirements are not contradictory and useful (i.e., they actually affect the
product set):

1. Each added feature in Fadd must have an ancestor in FR \ Frem. This implies
that it is not possible to remove by Frem the parents p of features added in Fadd,
i.e., Frem ∩ (

⋃
f∈Fadd

{parent(f)}) = ∅.
2. It is not possible to remove features that have been renamed, i.e., Frem∩ (

⋃
fi∈FTBR

{ren(fi)}) =
∅.

6This is what we actually do in the experiments in Sect. 5.1.4 where update requests are computed
as differences between different versions of feature models, and Crelax and Crem can only be identified
in terms of sets of configurations.

86 Chapter 5. Repair of Feature Models

3. Predicates in Crelax cannot predicate over features that have been removed in
Frem.

4. Crelax actually increases the set of products: for each ρi in Crelax, there exists at
least one non-valid configuration that satisfies ρi.

5. Crem actually deletes some products: for each γi in Crem, there exists at least
one product that satisfies γi.

6. Crem does not remove all the configurations that must be added by Crelax, i.e.,
for each ρi and γj there exists a configuration that satisfies ρi (it must be added)
and it does not satisfy γj.

7. The update request should be achievable by a consistent feature model (i.e.,
accepting at least one product) without dead features (i.e., each feature is se-
lected in at least one model).

Constraints 1, 2, and 3 can be easily checked directly at the syntactical level on
the update request. If one of these constraints is not satisfied, the update request
cannot be applied and we ask the user to fix it.

Checking constraints 4, 5, and 6, instead, requires to reason over the proposi-
tional representation of fmren (i.e., BOF(fmren)) and the predicates in Crelax and Crem;
for example, checking constraint 4 consists in verifying that, for each ρi ∈ Crelax,
¬BOF(fmren) ∧ ρi is satisfiable. If one of these constraints is not satisfied, the update
request is still consistent, although the corresponding change requirement is useless;
in case of constraint violation, we warn the user about the useless change require-
ment and, if (s)he confirms that the change requirement is indeed not necessary, we
continue the updating process without that requirement.

Checking constraint 7, instead, requires to reason about the interaction of the
different change requirements and can only be done after we define the target, as
explained in the next section.

Example 2. Given the CAR SPL model shown in Fig. 5.1 and described in Ex. 1, an
update request could be the following7:

• Rename features FTBR = {MonochromeRadioDisplay} and ren (MonochromeRadio-
Display) = RadioDisplay.

• Add features Fadd = {DVDEntertainment} and parent(DVDEntertainment) = Multi-
mediaDevices.

• Remove features Frem = {OtherFeatures}.

7Note that the change requirement Fadd is the same reported in [171] for the evolution from the
third version (shown in Fig. 5.1) to the fourth version of the CAR SPL; Crem, instead, is taken from
the evolution from the first to the second version of the same SPL. In order to have a complete
example, the other three change requirements have been identified by us; FTBR and Frem resemble
similar change requirements observed in literature, respectively in the SmartHome SPL [180] and in
the CAR SPL [171].

5.1. Achieving change requirements of feature models by an evolutionary
approach 87

• Add products Crelax = {MultimediaDevices ∧ Navigation ∧ (MonochromeNav-
igationDisplay ↔ ColorNavigationDisplay)}. We also want to allow prod-
ucts with support for navigation, and having both displays or having no dis-
play at all.

• Remove products Crem = {Navigation ∧ ¬Radio}. We want to exclude that
navigation is present when the radio is not.

Update request semantics

We here precisely define the semantics of an update request UR. In order to do this,
we define a formula that accepts and rejects configurations as the updated feature
model should do.

In order to define the semantics of Frem and Crelax, we need to be able to represent
the feature model without some features. We exploit the approach used in [200] to
remove features from feature models. To eliminate a feature f from a propositional
formula, we substitute f by its possible values (true or false).

Definition 4 (Features removal). Given a feature model fm and a set of features K = { f1,
. . . , fk} to remove, we recursively define filter(fm, K) as follows:

filter(fm, K) =

{
BOF(fm) if K = ∅
filter(fm, K′)[f ← >] ∨ filter(fm, K′)[f ← ⊥] if K = K′ ∪ { f }

The formula filter(fm, K) has as logical models the same models as BOF(fm) ex-
cept that all the features in K have been removed.

Exploiting Def. 4, the semantics of Frem is captured by the formula

φrem = filter(fmren, Frem)

whose logical models (i.e., products) are those of fmren without the removed fea-
tures.

In order to capture the semantics of a ρi ∈ Crelax, we need to characterize the set of
configurations to add. These are those that satisfy ρi but still respect the constraints
of φrem, except for those involving the features of ρi. This is captured by

φi
relax = filter(φrem, features(ρi)) ∧ ρi

being features a function returning the features (i.e., propositional variables) con-
tained in a formula. The filter on φrem has the effect of making the features in ρi
unconstrained, i.e., it keeps only the constraints of φrem that do not interfere with ρi.

We can now build the formula that defines the semantics of the whole update
request. We name the formula as target as it will be used as oracle to guide the
proposed updating process (see Sect. 5.1.3).

88 Chapter 5. Repair of Feature Models

Definition 5 (Target). The target t is a propositional formula whose models exactly cor-
respond to the products of the desired updated feature model. Assume an update request
UR = {ren, parent, Frem, Crelax, Crem} defined over a feature model fm, with the functions
ren defined over FTBR and parent defined over Fadd. Let fmren be the feature model renamed
according to ren; the target is defined as:

t =(

remove Frem
from
products︷ ︸︸ ︷

φrem ∨

add prod-
ucts︷ ︸︸ ︷∨

ρi∈Crelax

φi
relax) ∧

add Fadd features
only when possi-
ble︷ ︸︸ ︷∧

f∈Fadd

f → parent(f)∧

disable Frem
features︷ ︸︸ ︷∧
f∈Frem

¬ f ∧

remove
prod-
ucts︷ ︸︸ ︷∧

γ∈Crem

¬γ

The target correctly rejects all the configurations of Crem and those containing a
removed feature in Frem; the accepted configurations are those in Crelax, plus those
of φrem (i.e., the original feature model without the removed features) possibly ex-
tended with each added feature f of Fadd only when parent(f) is present.

Note that the target correctly predicates over all the features FU = F′∪Frem: those
of the original feature model (after renaming), those added, and those removed.

Checking the target On the target, we can finally check constraint 7 described in
Sect. 5.1.2, requiring that the update request does not produce anomalies.

First of all, we check that the target accepts at least one product (i.e., it is satisfi-
able); if not, we warn the user that the update request cannot be applied.

Moreover, we also check that each feature f ∈ F′ can be actually selected in
at least one product; it this is not possible, it means that f is required to be dead
in the final model. If this is the case, we warn the user about this and, if this is the
intended behavior, we move f in Frem, so that we can directly try to remove it during
the repairing process.

5.1.3 Evolutionary updating process

Modifying the initial feature model fmi such that it satisfies the update request as
specified by the target is a challenging task. Note that, in general, there could be no
fm′ that exactly adds and removes the specified configurations and features, unless
complex cross-tree constraints are used. However, we claim that the usage of these
constraints should be discouraged. Urli et al. [203] observe that “they make FMs
complex to understand and maintain”, Reinhartz-Berger et al. [176] experimentally
assessed that they are more difficult to understand than parent-child relationships
(at least, by modelers who are unfamiliar with feature modeling), and Berger et
al. [41] report that “they are known to critically influence reasoners”. Also the au-
thors of FeatureIDE noted that cross-tree constraints “are harder to comprehend

5.1. Achieving change requirements of feature models by an evolutionary
approach 89

than simple tree constraints" and that “relations among features should be rather
expressed using the tree structure if possible” [150].

In this work, we therefore avoid the addition of complex cross-tree constraints,
as we not only aim at correctness (i.e., full achievement of the update request), but
also at readability of the final model.

Some approaches that aim at simplifying complex constraints exist [120, 206], but
they may diminish readability and other qualities, such as compactness, traceability,
and maintainability.8

In this section, we propose a heuristic approach that tries to achieve the update
request as much as possible, by using the target as oracle to compute the fault ratio. The
fault ratio tells how close we are to the correct solution. In Sect. 5.1.3, we give the
definition of fault ratio and then, in Sect. 5.1.3, we describe the updating process we
propose.

Correctness

We can use the target to evaluate whether a feature model fm′ captures the desired
change requirements, i.e., fm′ is equivalent to the target (|= t ↔ BOF(fm′, FU)). In
the following, we will only compare feature models fm′ whose features Ffm′ are, at
most, those in FU, i.e., Ffm′ ⊆ FU.

Although a feature model could not fulfill all the change requirements, it could
satisfy them partially. We give a measure of the difference between a feature model
fm (either the initial one fmi or a modified one fm′) and the target as follows.

Definition 6 (Fault ratio). Given a feature model fm and a target t, the fault ratio of fm
w.r.t. t is defined as follows:

FR(fm, t) =
nsat(BOF(fm, FU) 6= t, FU)

2|FU |

where nsat(ϕ, V) returns the number of logical models of formula ϕ, i.e., all the truth
assignments m to propositional variables V, such that m |= ϕ.9

If the fault ratio is equal to 0, it means that fm accepts as products the same
configurations that are logical models of t; otherwise, there are some configurations
that are wrongly evaluated by fm, as shown in Fig. 5.3: fm could wrongly accept
some configurations and/or wrongly refuse some others.

8In Sect. 5.3, we discuss how complex cross-tree constraints could be used to achieve all the
change requirements and the issues that could be related to that approach.

9In our approach, we represent formulas as Binary Decision Diagrams (BDDs) in JavaBDD that
implements nsat by means of the JavaBDD method satCount that directly computes the cardinality
of the set without enumerating all the models.

90 Chapter 5. Repair of Feature Models

fm t

2|FU |

correct configurations
wrong configurations

Figure 5.3: Faults

Example 3. Fig. 5.4 shows a possible updated model that exactly satisfies all the
change requirements reported in Ex. 2 for the model in Fig. 5.1. Note that the fault

Figure 5.4: Updated feature model

ratio of the initial renamed feature model fmi w.r.t. to the target t (that corresponds
to the final feature model) is 20

29 , as fmi wrongly accepts all its 7 products and wrongly
rejects all the 13 products of the target.

Updating process

The process we propose to update an initial feature model fmi, given an update
request UR, is depicted in Fig. 5.5.

As initial step, we generate the target t as a Binary Decision Diagram (BDD),
as described in Def. 5. Then, we start the updating process, that is composed of
two consecutive macro-phases. We first try to deal with the feature-based change
requirements (see Sect. 5.1.3) and then with the product-based ones (see Sect. 5.1.3).

Dealing with feature-based change requirements

First of all, we apply FTBR to rename features, obtaining the feature model fmren.

5.1. Achieving change requirements of feature models by an evolutionary
approach 91

Figure 5.5: Proposed evolutionary approach

Then, we modify fmren in order to try to achieve the change requirements of Fadd
and Frem. For each f ∈ Fadd, we add f as child of parent(f) as follows: if parent(f) is
the father of an Or or an Alternative group, f is added to the group; in all the other
cases, it is added as Optional child of parent(f). We name as fmA the feature model
obtained after this step. Then, for each feature f ∈ Frem, f is removed from fmA and
replaced by its children Chf (if any). The relation of the moved children Chf of f with
their new parent p is set according to the way FeatureIDE removes features [150]:

1. If f was the only child of p, p takes the group type of f .
2. If p has group type And, (a) if the children Chf are in And relationship, they

keep their type (either Mandatory or Optional) (b) otherwise (they are in Alter-
native or Or), they are set to Optional.

3. Otherwise, if p has group type Alternative or Or, features in Chf are simply
added to the group (regardless of their type).

92 Chapter 5. Repair of Feature Models

We name as fmAR the feature model obtained after this step.
Note that the model fmAR could still be not equivalent to the target, i.e., 6|= t =

BOF(fmAR, FU). This could be due to two reasons. First of all, the update request
could also require to add as products configurations described by constraints in
Crelax and/or remove configurations described by constraints in Crem. Moreover, the
two previous transformations do not guarantee to precisely implement the required
change requirements Fadd and Frem, and they could introduce some wrong configu-
rations (either wrongly accepted or rejected). For example, in order to implement
the addition of a feature f with parent(f) = p and p father of an alternative group,
we add f to the group; however, this is not the exact semantics of Fadd that requires
to duplicate the products containing p and adding f to them.

Dealing with product-based change requirements

Starting from fmAR, we apply an evolutionary updating approach to try to obtain an
updated feature model equivalent to the target. The process is an instance of classi-
cal evolutionary algorithms [82]; an evolutionary algorithm can be understood (in a
metaphor-free language [190]) as an optimization problem in which different solu-
tions are modified by random changes and their quality is checked by an objective
function. Precisely, the steps are as follows:

1. Initial population: at the beginning, a population P is created. P is a set of
candidate solutions.

2. Iteration: the following steps are repeatedly executed:
(a) Evaluation: each member of the population P is evaluated using a given

fitness function, representing the objective function.
(b) Termination: a termination condition is checked in order to decide whether

to start the next iteration. If the termination condition holds, the candi-
date with the best fitness value is returned as final model.

(c) Selection (Survival of the Fittest): some members of P having the best val-
ues of the fitness function are selected as parents of the next generation
and collected in the set PAR.

(d) Evolution: parents PAR are mutated to obtain the offspring to be used as
population in the next iteration. The mutation performs random changes
suitable to improve the existing solutions.

In our approach, we assume that the population P is a multiset (i.e., possibly
containing duplicated elements) with fixed size M equal to H · |F′|, where H is a
parameter of the process. In the following, we describe each step in details.

Initial population As initial population, we generate the set P by cloning fmAR M
times (step 1 in Fig. 5.5). In this way, if fmAR is already correct, it will be returned as
final model in the termination condition phase.

5.1. Achieving change requirements of feature models by an evolutionary
approach 93

Evaluation As first step of each iteration (step 2 in Fig. 5.5), each candidate mem-
ber fm′ of the population P is evaluated using a fitness function that tells how good
the member is in achieving the overall goal. We define the fitness function both in
terms of fault ratio (see Def. 6) and of complexity of the model structure. Indeed, we
would like to avoid that, during the updating process, the feature model becomes
unreadable, unnecessarily complex, and difficult to maintain [41, 203, 176, 150]. We
have decided to consider, at least initially, the number of cross-tree constraints as in-
dicator of complexity, since the constraints among features should be expressed by
structural relationships and cross-tree constraints should be used only when really
necessary. We introduce the following fitness function:

fitnesst(fm′) = 1− FR(fm′, t)− k× ctc(fm′) (5.1)

where ctc is a function returning the number of cross-tree constraints of a feature
model and k a constant. In our approach, the quality of a candidate must be mainly
given by the percentage of configurations that it evaluates correctly, i.e., 1−FR(fm′, t);
if a candidate c1 evaluates correctly more configurations than a candidate c2, its fit-
ness should be guaranteed to be greater than that of c2. However, for models hav-
ing the same fault ratio, the fitness should penalize those that are structurally more
complex. In order to obtain this effect, we use as k:

k =
1

2|FU | × 2|FU|2
(5.2)

Note that 2|FU|2 is a safe strict upper bound on the number of cross-tree con-
straints among the features of the feature model. Indeed, among the possible 2|FU|2
cross-tree constraints, some of them are not introduced because redundant (e.g., two
excludes constraints between (a, b) and (b, a) are redundant and only one is neces-

sary). Therefore, the term ctc(fm′)
2|FU |×2|FU |2

is guaranteed to be less than 1
2|FU |

that is the

minimal possible variation of the fault ratio due to the change of evaluation of a
single configuration. This means that the term can only affect the ranking of feature
models having the same fault ratio.

Termination condition In this step (step 3 in Fig. 5.5), the process checks whether
at least one of the following conditions is met:

• a defined level of fitness Thf is reached, i.e., there exists an fm′ in P with
fitnesst(fm′) ≥ Thf . For example, Thf = 1 means that we want to obtain a com-
pletely correct model without any cross-tree constraint; with Thf = 1− 1

2|FU |+1
,

instead, we still want to have a correct model, but we allow to have any num-
ber of cross-tree constraints;

94 Chapter 5. Repair of Feature Models

• in the previous ThNI iterations there has been no improvement of the fitness
value of the best candidate;

• a maximum number Thi of iterations have been executed;
• a total time threshold Tht has been reached.
If at least one of the previous conditions holds, the fm′ in P with the highest

fitness value is returned as final model.10

Selection In the selection step (step 4 in Fig. 5.5), starting from population P, a
multiset of parents PAR of size p is built, being p a parameter of the evolutionary
process. Different selection strategies have been proposed in literature:

• Truncation: it selects the first n = dK · |P|e members of the population with
the highest fitness value, where K is a parameter specifying a percentage of
the population (0 < K ≤ 1). Then, the first n elements are added to PAR
as many times as necessary to reach the size p. Such strategy could result in
premature convergence, as candidates with lower fitness values are not given
the opportunity to improve their fitness.

• Roulette wheel: p members of the population are selected randomly; each mem-
ber can be selected with a probability proportional to its fitness value. Note
that one or more individuals could be selected multiple times.

• Rank: it is similar to roulette wheel, except that the selection probability is pro-
portional to the relative fitness rather than the absolute fitness, i.e., the prob-
ability of selecting a member is inversely proportional to its ranking number
(where the member with highest fitness has ranking number 1). This strategy
tends to avoid premature convergence by mitigating the selection pressure
that comes from large differences in fitness values (as it happens in truncation
selection).

Evolution In the evolution step (step 5 in Fig. 5.5), the parents PAR are used to
generate the offspring that constitutes the population of the next generation.

The idea we assume here is that the feature model should be updated applying
a limited number of mutations. Making updates through the use of mutation oper-
ators has the benefit of reducing the risk of loss of domain knowledge, by changing
the feature model as less as possible. Note that this assumption is similar to the
competent programmer hypothesis [117] that assumes that the user has defined the
artifact close to the correct one. If our approach is used for removing faults, we
can directly rely on the competent programmer hypothesis. On the other hand, if
the approach is used to evolve the feature model to align it with the SPL, we can

10If there is more than one model with the highest fitness value, we randomly select one of these
models.

5.1. Achieving change requirements of feature models by an evolutionary
approach 95

still assume that the mutation operators are sufficient to obtain the updated model;
indeed, it is unlikely that the updated version of the feature model should be too
different from the initial one.

In order to build the next population P, we mutate all the feature models in PAR
using the operators presented in Table 5.1.

Table 5.1: Mutation operators

Name Description

OptToMan an optional feature is changed to mandatory
ManToOpt a mandatory feature is changed to optional

OrToAl an or group is changed to alternative
OrToAnd an or group is changed to and with all children mandatory

OrToAndOpt an or group is changed to and with all children optional
AlToOr an alternative group is changed to or

AlToAnd an alternative group is changed to and with all children mandatory
AlToAndOpt an alternative group is changed to and with all children optional

AndToAl an and group is changed to alternative
AndToOr an and group is changed to or

PullUp a feature is moved as sibling of its parent
PushDown a feature is moved as child of one of its siblings
PullUpCh all children of a feature are moved as siblings of their parent

PushDownSibl all siblings of a feature are moved as children of that feature

DelConstr a cross-tree constraint (requires or excludes) is deleted
ReqToExcl a requires constraint is changed to an excludes constraint
ExclToReq an excludes constraint is changed to a requires constraint

AddReq a requires constraint is created
AddExc an excludes constraint is created

We set an upper bound M to the size of the new population. If the mutation
operators generate a maximum of M mutants, we take all of them as the new pop-
ulation, otherwise we randomly select M of them. In our approach, the offspring
replaces the entire population.

Description of mutation operators In [32], we have proposed some mutation oper-
ators for feature models, divided in feature-based and constraint-based operators that
are a subset of the edit operations identified in [54]. We use eight of the feature-
based mutation operators proposed in [32], and introduce two new ones (OrToAndOpt
and AlToAndOpt) that provide slightly different versions of OrToAnd and AlToAnd.
Moreover, we also introduce two operators that permit to move a feature as sibling
of the parent (PullUp) or as child of one its siblings (PushDown); we also introduce

96 Chapter 5. Repair of Feature Models

two versions of these operators that move all the children of a feature (PullUpCh)
and all the siblings of a feature (PushDownSibl). Note that we do not allow the
movement of a feature in any part of the feature model as this would produce too
many mutants and could change too much the structure of the feature model. How-
ever, if in order to obtain the correct feature model a feature should be moved far
from its current position, this is still obtainable by a suitable sequence of PullUp and
PushDown mutations.

Finally, we use all the constraint-based operators11 proposed in [32], and introduce
two new ones (AddReq, AddExc) to create requires and excludes constraints; in order to
limit the number of generated mutants, we only create constraints among features
that belong to different sub-trees of the feature model, i.e., neither feature of the
constraint is ancestor of the other. Moreover, we avoid to create constraints that
would be redundant or that would introduce dead features: for instance, A → ¬B
is not added if A → B is already present in the model, because A would become a
dead feature.

Although we allow feature models with constraints also in general form, we
decided to not modify them, nor introduce new ones, in order to avoid the intro-
duction of too many mutants and to achieve better readability of the final model.

In general, we cannot evaluate a priori if a mutant introduces an anomaly; there-
fore, for each mutant, we check if it is infeasible, it contains redundant constraints,
or it has dead features. If it has any of these anomalies, we do not select it.

5.1.4 Experiments

The process12 has been implemented in Java by using Watchmaker13 as evolutionary
framework, FeatureIDE [150] to represent and mutate feature models, and JavaBDD
for BDDs manipulation.

We conducted a set of experiments to evaluate the proposed evolutionary ap-
proach; they have been executed on a Windows 10 system with an Intel i7-3770
3.40GHz processor, and 16 GB RAM.

Benchmarks

For the experiments, we used two sets of benchmarks, both shown in Table 5.2.

Real models The first benchmark set BENCHREAL is constituted by SPLs described in
literature for which different versions of their feature model have been developed.

11Note that the mutation operator DelConstr corresponds to operator MC described in [32].
12The code is available at https://github.com/fmselab/eafmupdate
13https://watchmaker.uncommons.org/

https://github.com/fmselab/eafmupdate
https://watchmaker.uncommons.org/

5.1. Achieving change requirements of feature models by an evolutionary
approach 97

Table 5.2: Benchmark properties

model size UR size
SPL input target |FTBR| |Fadd| |Frem| |Crelax| |Crem|

B
E
N
C
H
R
E
A
L

MobileMedia d1 (V5..8) 18.7 (15-23) 22.3 (18-26) 11.3 (1-17) 4 (3-5) 0.33 (0-1) 26.7 (0-48) 258 (24-560)
MobileMedia d2 (V5..8) 16.5 (15-18) 24.5 (23-26) 12 (11-13) 8 (8-8) 0 (0-0) 64 (48-80) 536 (528-544)
MobileMedia d3 (V5,V8) 15 26 9 11 0 80 1648
HelpSystem (V1, V2) 25 26 0 1 0 672 2016
SmartHome (V2.0, V2.2) 39 60 12 23 2 1.92× 109 2.31× 1010

ERP_SPL (V1, V2) 43 58 0 15 0 0 1.51× 107

PPU d1 (V1..9) 13.9 (9-17) 14.9 (11-17) 0 (0-0) 1.13 (0-4) 0.125 (0-1) 3.75 (0-27) 27.8 (0-183)
PPU d2 (V1..9) 13.4 (9-17) 15.4 (11-17) 0 (0-0) 2.14 (0-6) 0.142 (0-1) 9 (0-27) 54.4 (0-243)
PPU d3 (V1..9) 12.8 (9-17) 16.2 (13-17) 0 (0-0) 3.5 (1-6) 0.167 (0-1) 16 (0-27) 77.5 (9-156)
CAR d1 (V2009..2012) 7 (6-8) 9.33 (7-13) 0 (0-0) 2.67 (1-5) 0.333 (0-1) 5 (0-13) 16 (1-40)
CAR d2 (V2009..2012) 6.5 (6-7) 10.5 (8-13) 0 (0-0) 4.5 (3-6) 0.5 (0-1) 6 (0-12) 34 (9-59)
CAR d3 (V2009,V2012) 6 13 0 7 0 0 87

B
E
N
C
H
M
U
T Register 11 11 0 0 0 11.85 (0-40) 62.28 (0-210)

Graph 6 6 0 0 0 12.71 (0-28) 0 (0-0)
Aircraft 13 13 0 0 0 196.86 (0-315) 53.53 (0-365)
Connector 20 20 0 0 0 8.23 (0-18) 26.02 (0-336)

First, we have identified in the SPLOT repository14 four SPLs that evolved over
time:

• MobileMedia: a program to manipulate multimedia on mobile devices (four
versions) [85];

• HelpSystem: a cyber-physical system with multiple sensors (two versions) [207];
• SmartHome: a set of smart house components (two versions) [180];
• ERP_SPL: an Enterprise Resource Planner (two versions).

Then, we have also considered the industrial case of a Pick-and-Place Unit (PPU) [54];
for this system, the feature model has been changed eight times to adapt to new
requirements (therefore, there are nine feature models available [54]). Finally, we
have also considered the product line model of a CAR [171], for which four different
feature models have been produced.

For each SPL, we identified couples (fmi, fmt) of their feature models: the latest
version was considered as target model15 fmt, and the oldest one as the initial model
fmi we want to update. For SPLs with more than two feature models, in addition
to couples of feature models of consecutive versions, we also considered models
with version distance 2 and 3 (in the table, d1, d2, and d3 indicate the distance). In
this way, we attempt to reproduce update requests of different complexity. In total,
BENCHREAL contains 36 couples of models.

Generated models The second benchmark set BENCHMUT has been built with the

14http://52.32.1.180:8080/SPLOT/feature_model_repository.html
15Note that, in the real usage of our approach, we do not have a target feature model, but an update

request UR from which we generate the target as propositional formula.

http://52.32.1.180:8080/SPLOT/feature_model_repository.html

98 Chapter 5. Repair of Feature Models

aim of evaluating our approach under the assumption we did in Sect. 5.1.3 that
mutation operators are sufficient to update the feature model. We selected four
feature models developed for four SPLs (for which only one model is available):

• Register: a register of supermarkets, adapted from [186];
• Graph: a graph library;
• Aircraft: the configurations of the wing, the engine, and the materials of

airplane models;
• Connector: IP connection configurations.

From these models (used as target models fmt), we automatically generated other
versions to be used as input models fmi; we randomly mutated the target models
(using 1 to 10 mutations), applying the operators described in Table 5.1. For each
target model, we generated 100 input models. Therefore, BENCHMUT contains 400 cou-
ples.

Deriving the update request

In the devised usage of the approach, the user should specify the update request
that must be provided as input to the evolutionary process; however, for our exper-
iments, we do not have any update request available. Therefore, we automatically
generated an update request UR from the initial feature model fmi and the target
feature model fmt of each couple (fmi, fmt) of the benchmarks.

In order to detect renamed features in FTBR, we manually inspected the two fea-
ture models and produced the renamed model fmren. Then, from fmren and fmt, we
automatically identified the differences of their features for building Fadd and Frem;
moreover, using their BDD representation, we identified the configurations that are
differently evaluated in order to build Crelax and Crem (we built a predicate for each
wrongly evaluated configuration16). Note that configurations that are added and
removed by Fadd and Frem are not also specified in Crelax and Crem.

Table 5.2 reports, for all the benchmarks, the size of the input and target mod-
els in terms of number of features, and the number of requirements of the update
request. For the SPLs in BENCHREAL having more than one couple of feature models,
the reported values are aggregated by distance; for each SPL in BENCHMUT, the values
are aggregated among its 100 input models. For these aggregated models, we report
the average, minimum, and maximum number of elements in the update request.
In BENCHMUT, since we did not add or remove features for producing the input mod-
els, their size is the same of that of the target model and so Fadd and Frem are empty;
moreover, we do not even rename features and so also FTBR is empty.

16Note that, in this way, the sets Crelax and Crem are very large because they contain a predicate for
each added and removed configuration. However, in a real setting, the user should specify predicates
capturing sets of configurations and so the sets should be much smaller.

5.1. Achieving change requirements of feature models by an evolutionary
approach 99

Analysis

We now evaluate the proposed approach by a series of research questions. In these
experiments, we set the parameters of the termination conditions as follows: Thf

to 1− ctc(fmi)

2|FU |×2|FU |2
, ThNI to 15, Thi to 25, and Tht to 30 minutes. Note that the value

chosen for Thf requires to have a totally correct model, with at most the same num-
ber of cross-tree constraints of the starting feature model. The parameter H used to
determine the maximum population size M (as defined in Sect. 5.1.3) has been set
to 5, and the parameter p of the selection phase has been set to M/2. All the reported
data are the averages of 30 runs.

In [26], we experimented the effect of the different selection policies of the evo-
lutionary approach and we found that truncation with K=5% is the best policy in
terms of fault ratio reduction, and the second best as execution time. Therefore,
we here select it as selection policy and evaluate the approach using other research
questions.

RQ1: Is the proposed approach able to achieve the change requirements specified by the
update request?

For each benchmark SPL, Table 5.3 reports (among other things) the initial and
final values of FR, and the FR reduction.

Table 5.3: Performance of the updating process

SPL
time
(s)

initial
FR (%)

final
FR (%)

FR
reduction (%)

#
iterations

sem.
eq. (%)

synt.
eq. (%) ctc ED

B
E
N
C
H
R
E
A
L

MobileMedia d1 71.11 4.17e-03 1.10e-04 96.03 8.42 64.44 17.78 0.23 14.86
MobileMedia d2 157.98 3.90e-03 4.41e-04 86.54 16.00 0.00 0.00 0.63 34.32
MobileMedia d3 178.46 2.57e-03 3.57e-04 86.13 16.00 0.00 0.00 0.80 36.97
HelpSystem 112.41 4.01e-03 1.24e-04 96.92 8.80 86.67 0.00 5.57 25.53
SmartHome 1990.40 7.24e-07 8.39e-08 88.42 6.10 0.00 0.00 0.43 57.60
ERP_SPL 2014.30 5.24e-09 8.86e-10 83.08 6.00 0.00 0.00 0.43 18.80
PPU d1 5.98 0.09 2.27e-03 97.44 3.88 86.67 48.33 1.23 7.40
PPU d2 10.23 0.10 0.54e-03 96.48 6.84 68.57 36.67 1.39 11.63
PPU d3 15.90 0.09 0.01 87.43 9.69 48.89 28.89 1.94 17.04
CAR d1 3.85 1.13 0.25 69.81 11.18 57.78 6.67 0.77 8.02
CAR d2 4.21 1.31 0.17 80.31 10.52 50.00 0.00 1.83 10.15
CAR d3 6.59 1.06 0.37 65.52 16.00 0.00 0.00 2.37 20.13

B
E
N
C
H
M
U
T Register 4.35 3.62 0.17 95.84 7.15 80.27 65.20 0.22 2.32

Graph 0.12 19.86 0.00 100.00 1.76 100.00 99.03 2.67e-03 0.02
Aircraft 8.09 3.06 0.07 97.49 6.58 84.53 68.63 0.29 2.89
Connector 28.68 3.27e-03 6.87e-05 98.11 5.80 94.00 68.47 0.20 2.27

100 Chapter 5. Repair of Feature Models

For the models in BENCHREAL, the table reports the averages among couples at the
same distance; for the models in BENCHMUT, instead, it reports the averages among the
100 input models of each SPL.17 We observe that for all models we can reduce the
fault ratio of at least 65%, with an average of 89.1%. Comparing the two benchmark
sets, we notice that the reduction is higher in BENCHMUT (on average, 97.86%) than in
BENCHREAL (on average, 86.15%); this means that, as expected, if the assumption that
the models can be updated using the proposed mutation operators holds, the ap-
proach behaves very well. However, also for general models as those in BENCHREAL,
the performance of the approach is quite good.

RQ2: Which is the computational effort of the proposed approach?

We are here interested in the effort required by the proposed approach in terms of
computation time and iterations of the evolutionary process. Table 5.3 also reports
the total execution time of our process and the number of iterations of the evolu-
tionary approach. For all but two models, the process takes at most 179 seconds;
as expected, smaller models (as CAR, Graph, and Register) are updated faster than
larger models (as MobileMedia, HelpSystem, SmartHome, and ERP_SPL). We observe
that the process terminates when one of these three terminating conditions occurs:
(i) Thf , i.e., the model is completely updated (as in HelpSystem and Graph), (ii) Tht,
i.e., the timeout has occurred (as in SmartHome and ERP_SPL18), or (iii) ThNI, i.e., no
fitness improvement has been observed in the previous 15 iterations (as, for exam-
ple, all the models of MobileMedia d2 and d3, and those of CAR d3). Note that the
process never terminates because of the maximum number of iterations Thi.

RQ3: Is there a relation between the initial fault ratio and its updatability?

We are here interested in investigating whether there is a relation between the
initial fault ratio and its reduction. Fig. 5.6 shows, for each benchmark model (a
point in the plot), its initial fault ratio and the fault ratio reduction.

It seems that there is no proper correlation: we reduce (or do not reduce) the fault
ratio in the same proportion among models having different initial fault ratios. We
checked the correlation with the Spearman rank-order correlation coefficient [211],
and indeed we found a value of 0.23 indicating almost no correlation [110].

RQ4: Are the final models similar to those produced by SPL designers?

17Non-aggregated results are reported online at http://foselab.unibg.it/eafmupdate/
18Note that the time for these two models is around 3.5 minutes above the threshold Tht of 30 min-

utes; indeed, the terminating condition is checked at the end of an evolution step, but the threshold
could be overcame during the step.

http://foselab.unibg.it/eafmupdate/

5.1. Achieving change requirements of feature models by an evolutionary
approach 101

●

●

●●
●
● ●●

●

●

●
●

●
●●

●

●●

●

●
●

●●●

●

●

●

●

●

●
●

● ●●

●
●

●● ●●
●
●

●
●

●

●

●

●
●

●

●●
●●●●●

●

●

●

●
●

●●
●

●

●●

●●
●

●

●

●
●

●● ●●
●

●

●
●
●●

●
●

●

●

●
●●●●

● ●
●●

●

●
●● ●

●

● ●● ●● ●●●●●
●

●● ●●

●

●

●

●

●

●

●

●

●
●● ●
●

●

●

●● ●

●

● ●●●● ●● ●● ●●●● ●●● ●

●

● ●●●● ●●● ●●●
●

●
●

●●

●

●●
●

● ●●● ●
●

●

● ●●●● ●●● ●● ●●●● ●●●● ●●●●● ●●● ●●● ● ●● ● ●●●●●●●●● ●● ●●●●● ●● ●●● ● ●● ●●●● ●●●●● ●●●●●

●

●

●

●

●●

●
●

● ●●● ●●

●

●

●

●

●● ●
●

●●

●●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●●
●

●

●

●●

●

●

●

●

●

●

●

●
●● ●

●●

●

●
●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●●
●

●

●

●

● ●● ●●●●

●

60

80

100

1e−06 1e−03 1e+00

initial FR (%)

F
R

 r
ed

uc
tio

n
(%

)

Figure 5.6: Relation between the initial fault ratio and the fault ratio reduction

The main aim of the proposed approach is to obtain a feature model that satis-
fies all the change requirements; to this purpose, we use the fault ratio as measure
of model correctness. However, the final model we obtain, although correct, may
be not readable by and not useful for an SPL designer. Although we could not ask
real SPL designers to validate our models in terms of usefulness and readability,
we have access to models developed by SPL designers to achieve the same update
requests we tackled in the experiments (models fmt used as target in the experi-
ments). We can assume that SPL designers are likely to find our models useful if
models produced by our process are similar to their models. We therefore mea-
sure the readability of the final model of our process in terms of distance from the
model fmt developed by a designer for the same update request. We compute the
edit distance [166, 167] of the final model fm f from fmt, defined as the number of edits
(insertion, deletion, and rename of tree nodes) that we have to apply to fm f in order
to obtain fmt.

19 Table 5.3 reports also the edit distance (ED) to the target model (av-
erage among the models), and the percentage of models that are syntactically equal
and semantically equivalent to the target model. Of course, models not completely
updated are not syntactically equal to the target and have edit distance greater than
0. Completely correct models (semantically equivalent) are often also syntactically
equal (for example, 86.67% of the PPU d1 models are semantically equivalent and
48.33% are also syntactically equal); however, there are some correct final models
that are different from the target model fmt (for example, HelpSystem is completely
updated 86.67% of the times, but always in a different way than fmt).

19Note that these edit operations are more fine-grained than our mutation operators and we are
always able to compute the distance between two feature models.

102 Chapter 5. Repair of Feature Models

RQ5: Does considering the number of cross-tree constraints in the fitness impact the final
results?

As explained in Sect. 5.1.3, our fitness function (see Eq. 5.1) can also take into
consideration the number of cross-tree constraints (ctc); the value we selected for k
(see Eq. 5.2) has the aim of penalizing models with higher ctc at the same fault ratio
(in order to limit the insertion of such constraints and instead give precedence to
changes of the parental relations). In order to assess the impact of this choice, we
have executed the same experiments presented before with k = 0 in the fitness func-
tion (that becomes fitnesst(fm′) = 1− FR(fm′, t)) and Tht = 1. Table 5.4 reports the
data in terms of average fault ratio reduction, percentage of semantically equiva-
lent, percentage of syntactically equal models, and the average number of cross-tree
constraints.

Table 5.4: Performance of the updating process with the two versions of the fitness

SPL Fitness without constr. (k = 0) Fitness with constr. (k as in Eq. 5.2)

FR
reduction (%)

sem.
eq. (%)

synt.
eq. (%) ctc

FR
reduction (%)

sem.
eq. (%)

synt.
eq. (%) ctc

B
E
N
C
H
R
E
A
L

MobileMedia d1 94.10 61.11 17.78 0.69 96.03 64.44 17.78 0.23
MobileMedia d2 84.83 0.00 0.00 1.85 86.54 0.00 0.00 0.63
MobileMedia d3 85.16 0.00 0.00 2.43 86.13 0.00 0.00 0.80
HelpSystem 97.22 86.67 0.00 5.57 96.92 86.67 0.00 5.57
SmartHome 88.42 0.00 0.00 0.53 88.42 0.00 0.00 0.43
ERP_SPL 82.96 0.00 0.00 0.40 83.08 0.00 0.00 0.43
PPU d1 98.10 87.50 45.83 1.62 97.44 86.67 48.33 1.23
PPU d2 95.89 68.57 37.14 2.11 96.48 68.57 36.67 1.39
PPU d3 87.25 50.00 27.22 2.95 87.43 48.89 28.89 1.94
CAR d1 73.61 55.56 3.33 1.89 69.81 57.78 6.67 0.77
CAR d2 78.06 45.00 0.00 3.22 80.31 50.00 0.00 1.83
CAR d3 62.80 0.00 0.00 4.63 65.52 0.00 0.00 2.37

B
E
N
C
H
M
U
T Register 96.11 82.70 64.03 0.60 95.84 80.27 65.20 0.22

Graph 100.00 100.00 99.37 0.00 100.00 100.00 99.03 0.00
Aircraft 97.43 85.97 68.73 0.42 97.49 84.53 68.63 0.29
Connector 98.05 93.70 63.00 0.48 98.11 94.00 68.47 0.20

For easing the comparison, we also report the same data of the results obtained
with the previous experiment (already reported in Table 5.3). In order to check
whether the consideration of cross-tree constraints has some effect on the final re-
sults, we have applied to the data the classical hypothesis testing by performing

5.1. Achieving change requirements of feature models by an evolutionary
approach 103

the Wilcoxon signed-rank test20 [211] between the results with the two versions of
fitness. The null hypothesis that considering ctc has no impact of the final model
cannot be rejected for the percentage of totally updated models (i.e., semantically
equivalent), but it is rejected for the syntactical equivalence with p-value equal to
0.0038. This confirms that penalizing the usage of cross-tree constraints in the fit-
ness improves the quality (readability) of the final model without compromising the
ability of the approach in achieving the update request.

5.1.5 Threats to validity

We discuss the threats to the validity of our results along two dimensions, external
and internal validity [211].

External validity

Regarding external validity, a threat is that the obtained results could be not gen-
eralizable to real-world (industrial) feature models having specific update requests.
However, as first benchmark, we have selected 9 couples of models showing the
evolution of real SPLs [85, 207, 180] taken from the SPLOT repository, and other 27
couples from the evolution of other two real SPLs described in literature [54, 171]
(see Sect. 5.1.4); moreover, in order to enlarge the set of evaluated models, we gen-
erated 400 input models by randomly mutating other 4 feature models (acting as
target). We believe that this way of selecting the benchmarks reduces the bias w.r.t.
other real models this process may be applied to in the future.

Another threat to the external validity could be that the proposed process does
not scale well to models larger than those considered in the experiments. In par-
ticular, the time for computing the fitness function grows exponentially with the
number of features, as it is based on BDD construction. In order to address this
problem, as future work, we plan to devise a technique that, given a single change
requirement c, identifies the sub-tree st of the feature model affected by c, i.e., c can
be achieved by only modifying st; only considering st would allow to improve the
process performance, as the mutations would be more targeted and the fitness com-
putation would be performed on a smaller BDD.

Another threat to the external validity is that the update requests that we use
in the experiments could be different by those written by SPL designers. However,
update requests have been obtained by computing the difference of consecutive ver-
sions of feature models written by SPL designers. While change requirements FTBR,
Fadd, and Frem are guaranteed to be the same as those specified by SPL designers,
Crelax and Crem are only semantically equivalent. However, this is not a threat, as the

20We performed a non-parametric test as we found, with the Shapiro-Wilk test, that the distribu-
tions are not normal.

104 Chapter 5. Repair of Feature Models

evolutionary approach only considers the semantics of the Crelax and Crem, not their
structure.

Internal validity

Regarding internal validity, a threat is that the obtained results could depend on
the values chosen for the parameters of the evolutionary process (parameters of
termination conditions, and parameters of the selection and evolution phases) and
that, with some other values, the results would have been different (e.g., a given
selection strategy could perform better); although we kept all the parameters fixed,
we believe that the overall result that our approach is able to actually update the
feature model is not affected. However, as future work, we plan to perform a wider
set of experiments in which the effect of each single parameter is evaluated. For
finding the best parameter setting, we could use a parameter-tuning framework as
irace [140].

5.1.6 Related work

Different approaches have been proposed for updating and/or repairing feature
models.

In a previous work, we proposed a technique to generate fault-detecting configu-
rations (tests) able to show conformance faults (i.e., configurations wrongly accepted
or wrongly rejected) in feature models [32]; in [33], we then presented an iterative
process based on mutation that first shows these fault-detecting configurations to
the user who must assess their correct evaluation, and then modifies the feature
model to remove the faults (if any). The approach proposed here is different, since
it is based on an evolutionary approach, it is completely automatic, and does not
require the interaction with the user who must only provide the initial update re-
quest. Moreover, in the current approach we consider update requests not only
coming from failing tests but also from the normal evolution of the SPL.

Another approach trying to remove faults from feature models is presented in [108]:
it starts from a feature model and, through a cycle of test-and-fix, improves it by re-
moving its wrong constraints; the approach uses configurations derived both from
the model and from the real system and checks whether these are correctly eval-
uated by the feature model. The approach is similar to ours in considering wrong
configurations, but does not allow to add and remove features. The main differences
with our approach are that we have a precise definition of target we need to reach,
we rely on an evolutionary approach, and we assume that the model evolution can
be obtained through mutation.

In [34], we proposed an approach to repair variability models by modifying the
constraints of the model using some repairs; that approach differs from the one pre-

5.2. A Process for Fault-Driven Repair of Constraints Among Features 105

sented in this work in different aspects. First of all, the oracle (similar to our target)
in [34] is given by the implementation constraints, while here the target comes from
update requests. Then, the aim of [34] is only to remove faults from the model,
while here we also support the evolution of the model. Finally, the approach in [34]
always improves the conformity index (similar to our fitness function) during the
process, with the risk of obtaining local optima; in the current approach, instead,
we maintain a set of candidate solutions in which some of them may decrease the
fitness function in some iteration, but that could obtain a better result at the end.

Regarding the use of evolutionary algorithms for feature models, the work in [138]
proposes a process to reverse engineer feature models starting from a set of prod-
ucts: the process starts from a population of randomly generated models and evolves
it using as fitness function the number of correctly evaluated products. The ap-
proach is similar to ours in using an evolutionary approach based on mutation
(some used mutation operators are similar to ours), but differs in the aim and in
the starting point: we start from an existing feature model that we want to update
to achieve some change requirements (removing faults or business requirements),
while the approach in [138] wants to build a new feature model starting from some
known products.

Evolutionary approaches have been widely used also for testing and repairing
programs. For example, GenProg [133] is a repair tool based on genetic program-
ming. It uses mutation and crossover operators to search for a program variant that
passes all tests.

5.2 A Process for Fault-Driven Repair of Constraints
Among Features

Constraints exist among system features. They can prohibit system configurations
that are dangerous or undesired, or can describe conditions leading to certain prop-
erties or errors in code, such as preprocessor errors, parser errors, type errors, and feature
effect [154]. Designers, developers, and testers can greatly benefit from modelling
features and constraints among them, as it allows to reduce development effort [169]
and to identify corner cases of the system under test.

Constraints among features can be modeled using variability models, and im-
posed on the implementation by means of preprocessor directives, makefiles, etc.
These two ways of modeling variability are usually known as problem space and so-
lution space [154]. Fig. 5.7 presents an example of a variability model containing
the constraints among three system features (A, B, and C) that are implemented as
preprocessor directives in the C program.

This separation between problem and solution space allows users to model con-

106 Chapter 5. Repair of Feature Models

ModelM Implementation (Sys-
tem S):

A→ B
A→ C

#ifdef C //Hello
char* msg = "Hello !";
#endif
#ifdef B // Bye
char* bye = "Bye";
#endif
#ifdef A // lowercase
msg [0] = ’h’;
bye [0] = ’b’;
#endif

Figure 5.7: Example of problem and solution spaces

figuration without knowledge about low-level implementation details. On the other
hand, these two spaces need to be consistent; code and models, however, are often
not kept synchronized, and repairs are needed. In the evolution of product lines,
two common types of repair are performed: debugging and program repair, when the
variability model is correct but the implementation has to be fixed; and model repair,
when the program is correct, but the variability model is outdated. This latter case
occurs when the description of variability is evolved in the implementation, but not
in the variability model. This work tackles this problem and proposes a technique to
automatically repair variability models. Fig. 5.8 shows an overview of this context.

In order to detect discrepancies between the problem space and the solution
space, classical techniques for testing of propositional formulas (as the constraints
of a variability model) can be used: the classical decision and condition coverage,
the MCDC [62], fault based criteria [30], and also combinatorial testing [32]. In this
work, we assume that some tests have been generated according to some coverage
criterion and some faults (i.e., non-conformances of the model w.r.t. the solution
space acting as oracle) have been detected; our aim is to repair the constraints of the
variability model in order to remove the faults. We propose an automated process
that, upon some failing tests, is able to automatically correct the constraints in such
a way that they maintain their original validity for all the configurations, except for
those found failing.

The rest of the section reflects the content of the paper [29], and it is organized
as follows. Sect. 5.2.1 presents some basic definitions in addition to the ones intro-
duced previously in the chapter. Sect. 5.2.2 presents the basic repair process and
some possible optimizations. Sect. 5.1.4 shows the empirical results. Threats to va-
lidity are tackled in Sect. 5.2.4, whereas an overview of the related work is given in
Sect. 5.2.5. The conclusions, together with lines for future research, are given jointly

5.2. A Process for Fault-Driven Repair of Constraints Among Features 107

Figure 5.8: Fault-driven repair of variability models

at the end of the chapter, in Sect. 5.3.

5.2.1 Basic Definitions

[29]

Definition 7 (Variability Model). A variability model M is made of a set of features
F = { f1, . . . , fn} and a set of constraints Γ = {γ1, . . . , γm} over the features.

The features F represent the system parameters. The expressions in Γ identify
the features configurations for which the actual system is expected to work.

Definition 8 (Configuration). A configuration (or test) t is a particular assignment of
values for all the features F. We identify with t(fi) the value of feature fi in test t. A
configuration is valid if it respects the constraints, i.e., t |= Γ. We also use Γ as predicate to
check the constraint satisfaction: Γ(t) = true iff t |= Γ.

Definition 9 (Test suite). A test suite T is a set of tests. We identify with Te the exhaus-
tive test suite, i.e., the set of all the possible tests.

108 Chapter 5. Repair of Feature Models

Definition 10 (Oracle). The oracle function oracle(t) tells whether the configuration t is
functionally correct for the system S.

We assume that an oracle exists, that tells whether a configuration is valid or not
in the real system.

We assume that the set of features F is known and correctly modeled, while the
constraints could be faulty.

Definition 11 (Model correctness). We say that the model M is correct if it conforms
with the oracle for every possible configuration t, i.e., ∀t ∈ Te : Γ(t) = oracle(t).

Definition 12 (Conformance fault). We say that the model contains a conformance fault
if there exists a configuration t such that Γ(t) 6= oracle(t).

Definition 13 (Combination). A combination (or partial configuration) c is an as-
signment to a subset features(c) of all the possible features F, i.e., features(c) ⊆ F. A
configuration (or test) is thus a particular combination in which features(c) = F. The value
assigned by the combination c to the feature f is denoted as c(f).

Definition 14 (Propositional representation of combinations). A combination c can be
expressed in propositional logic by making the conjunction of the truth value assignments
of its features:

c =

 ∧
{ f∈features(c)|c(f)}

f

 ∧
 ∧
{ f∈features(c)|¬c(f)}

¬ f

Definition 15 (Combination containment). A test (or configuration) t contains a com-
bination c if all features values in c are the same in t. Formally, ∀ fi ∈ features(c) : c(fi) =
t(fi).

Given a test suite T, we identify all the tests containing a combination c as T(c). For-
mally, T(c) = {t ∈ T|c ⊆ t}.

Definition 16 (Combination completeness). Given a test suite T and a combination c,
we say that c is complete w.r.t. T iff T(c) contains all possible tests containing c.

Lemma 5.1. If c is complete w.r.t. a test suite T, then it holds ∀t ∈ Te \ T(c) : c = false.

Definition 17 (Failure-containing combination). A combination c is a failure-containing
combination (fcc) if:

1. c is contained in at least a failing test of T, i.e., ∃t ∈ T(c) : Γ(t) 6= oracle(t).

5.2. A Process for Fault-Driven Repair of Constraints Among Features 109

2. every configuration containing c has the same value in the oracle, i.e., (∀t ∈ T(c) : oracle(t) =
false) ∨ (∀t ∈ T(c) : oracle(t) = true). In the former case, we call c an under-
constraining fcc; in the latter case, an over-constraining fcc.

We further classify a conformance fault as under-constraining fault if it exposed by an
under-constraining fcc, or as over-constraining fault if it is exposed by an over-constraining
fcc.

In the following, we only consider complete fccs.

Example 4 (Under-constraining fcc). Let’s assume that the oracle is the system (C
program) of Fig. 5.7 with features F = {A, B, C} and that we have generated the
test suite shown in Table 5.5a. Given a faulty modelMf1, with only one constraint
Γ = {A→ B}, we observe only one fault which is represented by the fcc c = A∧¬C.

Table 5.5: Test suites with faults (in gray)

(a) under-constraining fault

A B C Mf1 oracle
T T F T F
T F F F F

(b) over-constraining fault

A B C Mf2 oracle
F T T T T
F F T T T
F T F F T
F F F F T

Note that c is a complete fcc that identifies an under-constraining fault, i.e., it proves
that the model is under-constrained.

Example 5 (Over-constraining fcc). Consider now a faulty versionMf2 of the model
in Fig. 5.7, characterized by Γ = {A→ B, C}. Given the test suite shown Table 5.5b,
we detect two over-constraining faults identified by the complete fcc c = ¬A.

5.2.2 Fault-driven Repair
We here propose a process to repair the constraints of a variability model, based on
the detection of conformance faults between the model and the system, represented
as failure-containing combinations. Fig. 5.9 shows the context in which our process
is applied.

We assume that a possibly faulty variability model is translated to a set of boolean
formulas representing the constraints. For example, if the model is a feature model,
semantic transformations presented in [38] can be used. From a sufficiently large
test suite, complete fccs have been identified. To this aim, one can use well-known

110 Chapter 5. Repair of Feature Models

Figure 5.9: Context of the process to repair constraints among features in variability
models

fault localization techniques like [97, 28]. Our process takes as input the fccs and the
constraints and repair them. If the user wants to go back to the initial format of the
variability model, (s)he must apply some reverse engineering (which is out of the
scope of this work).

Naïve repair approach

In Def. 17, we distinguish between two types of failure-containing combinations
(i.e., under-constraining and over-constraining fcc), depending on how the model
fails with respect to the oracle.

We can devise a naïve repair approach that applies a specific type of repair on
the base of the fault type:

1. Strengthening repair: in case of under-constraining fcc c, ¬c is added as a
new constraint to Γ, i.e., the constraints set Γ′ of the repaired model becomes
Γ′ := Γ ∪ {¬c}.

2. Weakening repair: in case of over-constraining fcc c, c is disjuncted with every
constraint in Γ, i.e., the constraints set Γ′ of the repaired model becomes Γ′ =
∪γi∈Γ{γi ∨ c}.

Example 6 (Strengthening repair). The under-constraining fault in Ex. 4 is repaired by
adding¬c = ¬(A∧¬C) ≡ A→ C as a new constraint in Γ. The repaired constraints
become Γ′ = {A→ B, A→ C}.
Example 7 (Weakening repair). The over-constraining fault in Ex. 4 is repaired by
adding c = ¬A in disjunction with all the existing constraints, so that the repaired
constraints become Γ′ = {(A → B) ∨ ¬A, C ∨ ¬A}. Note that the first constraint is

5.2. A Process for Fault-Driven Repair of Constraints Among Features 111

redundant, as it is equivalent to the original constraint A → B. The only necessary
application of the repair is the one in the second constraint, as it correctly allows to
have both features A and C assigned to false (as in the oracle).

Theorem 5.2 (Correctness of the naïve approach). If a combination c is complete w.r.t.
its test suite T(c), the repairs applied by the naïve approach to Γ (obtaining the modified con-
straints set Γ′) are correct, i.e., they remove all existing faults in T(c) and do not introduce
new ones, i.e.,

1. ∀t ∈ T(c) : Γ′(t) = oracle(t);
2. ∀t ∈ Te \ T(c) : Γ′(t) = Γ(t).

Proof. Let’s consider the two kinds of repairs separately:
• Strengthening repair: the repaired constraints are Γ′ = {γ1, . . . , γm, γm+1},

where γm+1 = ¬c.
1. From the definition of under-constraining fcc, we know that it holds ∀t ∈

T(c) : oracle(t) = false. Furthermore, we also know that ∀t ∈ T(c) : Γ′(t) =
false, because the new constraint γm+1 = ¬c falsifies all the tests contain-
ing the fcc c. Therefore, it holds ∀t ∈ T(c) : Γ′(t) = oracle(t).

2. By Lemma 5.1, we know that ∀t ∈ Te \ T(c) : c = false. Therefore, the
added constraint γm+1 = ¬c is always true in tests Te \ T(c). Since
γm+1 has no influence on the evaluation of these tests, it holds ∀t ∈
Te \ T(c) : Γ′(t) = Γ(t).

• Weakening repair: the repaired constraints are Γ′ = {γ1 ∨ c, . . . , γm ∨ c}.
1. From the definition of over-constraining fcc, we know that it holds ∀t ∈

T(c) : oracle(t) = true. Furthermore, we also know that ∀t ∈ T(c) : Γ′(t) =
true, because all the constraints γ′i = γi ∨ c admit all the tests containing
the fcc c. Therefore, ∀t ∈ T(c) : Γ′(t) = oracle(t).

2. By Lemma 5.1, we know that ∀t ∈ Te \ T(c) : c = false. Since c is added as
a disjunction to the existing constraints, it leaves the constraints equiva-
lent to the original ones, i.e., ∀t ∈ Te \ T(c) : Γ′(t) = Γ(t).

Optimized repair approach

The naïve repair approach described in Sect. 5.2.2 could generate some redundancy,
as shown in Ex. 7. Therefore, we introduce techniques for constraint selection and
simplification to reduce the potential redundancy generated by the naïve approach.
The goal is to make fewer edits as possible to the model, since we assume that a
model with fewer edits better preserves domain knowledge.

Fig. 5.10 shows the optimized repair approach.

112 Chapter 5. Repair of Feature Models

Figure 5.10: Single iteration of the optimized repair approach

It consists of three phases: (1) selection of some constraints to modify, (2) modi-
fication of the selected constraints, and (3) simplification of the modified constraints.
Note that the process can be iterative if we identified more than one fcc (as in the
experiments in Sect. 5.2.3). In the following, we consider one iteration of the process.

Update phase: selection and modification

To preserve the domain knowledge embedded in the constraints, we want the pro-
cess to make as few changes as possible to them. Namely, we would like that the
constraints Γ are updated with the following qualities:

1. possibly no more constraints are added;
2. as many constraints as possible are preserved identical;
3. some constraints can be removed.

Therefore, the process performs a pre-processing phase, which selects only the con-
straints ΓS ⊆ Γ containing some configurations in common with the fcc c, and then
modifies them. This phase is specific to the type of repair:
Strengthening repair Only the constraints γi sharing at least one feature with the

fcc c, are selected. Formally, ΓS = {γi ∈ Γ|(features(γi) ∩ features(c)) 6= ∅},
where features collects the features contained in a formula. Then, the modifica-
tion phase updates only one constraint γs selected randomly from ΓS, by con-
juncting ¬c. The repaired constraints set becomes Γ′ = (Γ \ {γs})∪ {γs ∧¬c}.

Weakening repair Only the constraints γi that exclude at least one configuration
contained in the fcc c are selected. Formally, ΓS = {γi ∈ Γ|isSAT(¬γi ∧ c) =
true}, where isSAT tells whether a formula is satisfiable or not. Then, the mod-
ification phase updates all the constraints in ΓS by disjuncting them with c.
The repaired constraints set becomes Γ′ = (Γ \ Γs) ∪

⋃
γi∈Γs{γi ∨ c}.

Simplification phase

5.2. A Process for Fault-Driven Repair of Constraints Among Features 113

The constraint simplification procedure aims at reducing redundancy in the repaired
model, especially when failure-containing combinations involve many features. A
straightforward way to simplify a formula (or make it more readable) is to find
the smallest, but equivalent expression. This problem is known as the minimum-
equivalent-expression problem [53, 107].

We compared the three existing formula minimization techniques, and one min-
imization method based on mutations we have implemented (ATGT):

1. JBool21: a tool that recursively applies logic rules and preprocessing tech-
niques, preserving equivalence [42]: literal removal, negation simplification, and/or
reduplication and flattening, child expression simplification, and propagation, De
Morgan’s law.

2. Quine-McCluskey (QM) [149], a generalization of the Karnaugh Maps method.
It requires the constraints to be in Disjunctive Normal Form (DNF) and its
exponential complexity in the number of features makes it suitable only for
small models (up to 15 features).

3. Espresso22, a faster version of the QM method that relies on some heuristics [179].
4. ATGT23 [56]: a hill-climbing process we implemented that iteratively mutates

a formula randomly and checks it for equivalence.
We propose different methods, as we have seen that, in practice, these techniques

often produce different outputs and none of them is guaranteed to generate an out-
put which is always minimal compared to the others.

Correctness

Does the optimized approach produce correct repairs? A repair r is correct if it is
equivalent to the one obtained by the naïve approach.

Theorem 5.3 (Correctness of the optimized approach). The optimized approach is cor-
rect.

Proof. The techniques applied in the simplification phase preserve equivalence. There-
fore, we only show that the repairs computed in the update phase are equivalent to
those computed by the naïve approach, because the two following properties hold:

• The strengthening repair is correct because of distributivity and commutativ-
ity of boolean conjunction: γ1∧ . . .∧γs ∧ . . .∧γm ∧¬c ≡ γ1∧ . . .∧ (γs ∧¬c)∧
. . . ∧ γm.

• The weakening repair is by definition equivalent to the naïve approach for
all the constraints γi that are selected in ΓS to be modified in the optimised

21JBool: https://github.com/bpodgursky/jbool_expressions
22Espresso logic minimizer, sources available at https://ptolemy.berkeley.edu/projects/

embedded/pubs/downloads/espresso/index.htm
23ATGT: ASM Test Generation Tool. http://fmse.di.unimi.it/atgtBoolean.html

https://github.com/bpodgursky/jbool_expressions
https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/espresso/index.htm
https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/espresso/index.htm
http://fmse.di.unimi.it/atgtBoolean.html

114 Chapter 5. Repair of Feature Models

approach (i.e., it performs the same operation of the naïve approach). It is
correct also for each non-selected constraints γj, since for these constraints it
holds γj ∨ c = γj (as c is false in the non-selected constraints): thus, γj can be
left as it is. In fact, by translating this expression to a satisfiability problem, we
obtain the condition under which the process does not select the constraint:

((γj ∨ c) = γj)⇔ ¬isSAT((γj ∨ c) 6= γj)

⇔ ¬isSAT((γj ∨ c)⊕ γj)

⇔ ¬isSAT((γj ∧ ¬γj) ∨ (c ∧ ¬γj) ∨ (¬γj ∧ ¬c ∧ γj))

⇔ ¬isSAT(¬γj ∧ c)

5.2.3 Evaluation
In order to apply our process, we need a faulty variability modelM, a set of failure-
containing combinations FCC, and an oracle. For the sake of experiments, we take as
oracle another variability modelMo, instead of the real oracle; in this way, we can
also extract the set FCC by comparingM andMo.

Benchmarks

We have built two sets of benchmarks: BENCHMUT with seeded faults, and BENCHREAL
with versioned models.

BENCHMUT (seeded faults) In order to build this benchmark set, we first selected
some models to be used asMo, from previous papers and feature model reposito-
ries:

• example, from Example 4.
• register, a VSpec model for a register typically found in supermarkets, inspired

by [186].
• django, an open source web application framework written in Python. Each

Django project has a configuration file loaded at launch time. We considered
12 Boolean parameters (features), with constraints devised in our previous
work [88].

• tight_vnc from FeatureIDE repository [150].
In order to obtain the initial faulty modelM, we seeded random faults inMo using
the following mutation operators:

5.2. A Process for Fault-Driven Repair of Constraints Among Features 115

• RC: removal of a constraint. There are studies showing that this is the most
common case in practice [142].

• RL: removal of a literal in a constraint.
• SL: substitution of a literal in a constraint.
We generated 30 faulty versions M of each model Mo (10 with each mutation

operator).

BENCHREAL (versioned models) For this benchmark set, we have considered two
versions of variability models of the same system. We use the second version as
oracle Mo, and the first one as the faulty model M. We picked three models of
industrial applications from the SPLOT repository24 [152]:

• the process model rhiscom, between versions 2.0 and 3.0;
• an enterprise resource planner (ERP-SPL);
• a windows accessibility module, between versions 7.0 and 8.0.
Table 5.6 reports the size of all the faulty models M to be repaired in the two

benchmarks, in terms of number of features, number of constraints, and total num-
ber of literals in the constraints. For the constraints and literals of BENCHMUT, it reports

Table 5.6: Benchmarks size

Name # features # constraints # literals
avg(min - max)

B
E
N
C
H
M
U
T example 3 1.67 (1-2) 3.0 (2-4)

register 3 1.67 (1-2) 3.87 (2-5)
django 12 4.6 (4-5) 10.87 (9-12)
tight_vnc 24 11.67 (11-12) 53.2 (45-55)

B
E
N
C
H
R
E
A
L rhiscom 36 70 140

ERP-SPL 43 75 151
windows 335 943 2031

the average number across the 30 mutants and the minimum and maximum number
between parentheses (the number of features is the same across the mutants).

Failure-containing combinations

For the sake of experiments, we obtain the set FCC from the faulty modelM (having
constraints Γ) and the model we use as oracleMo (having constraints Γo), using the
following process:

24http://52.32.1.180:8080/SPLOT/feature_model_repository.html

http://52.32.1.180:8080/SPLOT/feature_model_repository.html

116 Chapter 5. Repair of Feature Models

1. first, we generate a test showing the difference (i.e., conformance fault) be-
tween the two models. The test is built as t = getModel(Γ 6= Γo), where
getModel returns a model of the propositional expression, if it exists, or null
(in this case, the models are equivalent).

2. then, we start from c← t, and,
• if Γo(t), for each feature f ∈ F, if ¬isSAT(¬Γo ∧ rem(f , c)) holds, then we

do c← rem(f , c), where rem removes the assignment of f in c and returns
the modified c.

• if ¬Γo(t), for each feature f ∈ F, if ¬isSAT(Γo ∧ rem(f , c)) holds, then we
do c← rem(f , c).

This way we can obtain fccs that are as minimal as possible, and complete (i.e., the
oracle is always true in case of over-constraining fcc, and always false in case of an
under-constraining fcc).

Repair quality metrics

We want to assess the quality of a repair w.r.t. two goals: (i) simplification of the
constraints, and (ii) minimization of the impact of edits. To this aim, we introduce
two quality metrics that are used to compare Boolean expressions. We apply them
to compare the conjunction of the constraints Γ of the original model M and the
constraints Γ′ of the repaired model M′ obtained as output of the approach. The
metrics are defined as follows:

• Complexity Distance (CD) as difference of formula sizes CD(Γ, Γ′) = literals(Γ)−
literals(Γ′), where literals returns the number of literals in a formula. As in [206],
we also considered other measures (number of operators and node count in
the parsed tree representation), but they do not change the overall results,
therefore we do not report them here.

• Edit Distance (ED) computed between the syntactic trees of the two formulas
Γ and Γ′. ED(Γ, Γ′) is defined as the number of edits (addition, substitution, or
elimination) that we have to apply to Γ in order to obtain Γ′. A node of the
tree can either be a literal or an operator. We use APTED as a tool to efficiently
compute tree edit distances [167].

Experiments

We run experiments on the two benchmark sets BENCHMUT and BENCHREAL: namely, we
applied the naïve approach (see Sect. 5.2.2), the optimized approach (see Sect. 5.2.2)
without the simplification phase (onlySelection), and with the simplification phase (em-
ploying the ATGT, Espresso, JBool and QM methods). Experiment code was written
in Java and experiments were executed on a Linux PC with Intel(R) i7-3770 CPU

5.2. A Process for Fault-Driven Repair of Constraints Among Features 117

(3.4 GHz) and 16 GB of RAM. All reported results are the average of 10 runs with a
timeout for a single repair of 1 hour. The code and the benchmarks are available at
https://github.com/fmselab/VMConstraintsRepair.

Results of the experiments are reported in Table 5.7.

Table 5.7: Experimental results (mut.: mutation type; s.: strengthening repairs; w.:
weakening repairs; ED: edit distance; CD: complexity distance; t: time in millisec-
onds, T/O: timeout occurred). In gray the best results (CD and ED over all the
approaches, time over the simplification approaches)

fccs and repairs Naïve onlySelection simplification
ATGT Espresso JBool QM

name mut. # (s.+w.) size (s./w.) CD ED t CD ED t CD ED t CD ED t CD ED t CD ED t

B
E
N
C
H
M
U
T

example
RC 1.0+0.0 2.0 / – 2.0 5.0 0.1 2.0 5.0 0.4 2.0 5.0 1064 2.0 5.0 53.4 2.0 4.0 5.3 2.0 4.0 24.2
RL 0.3+1.0 2.0 / 1.0 3.8 10.8 0.2 2.2 6.0 0.3 2.2 6.0 1371 2.2 6.0 68.2 1.6 4.2 1.0 1.6 4.2 30.9
SL 0.5+0.3 2.0 / 1.0 1.2 3.2 0.0 1.0 2.6 0.0 1.0 2.6 1060 1.0 3.0 52.4 1.0 2.6 1.1 1.0 2.6 23.3

register
RC 1.0+0.0 2.6 / – 2.3 5.6 0.0 2.3 5.6 0.3 2.3 5.6 1065 2.3 5.6 52.4 2.3 4.9 1.0 2.3 4.9 24.0
RL 0.2+1.1 2.6 / 1.3 5.5 14.6 0.0 2.9 7.7 0.3 2.5 6.9 1388 2.9 8.5 68.1 2.2 6.6 0.6 2.2 6.6 30.8
SL 0.9+0.3 2.1 / 1.4 2.9 7.4 0.2 2.1 5.2 0.2 2.1 5.2 1433 2.1 6.0 69.2 2.1 5.7 1.2 2.1 5.7 32.9

django
RC 0.5+0.0 1.7 / – 0.8 2.2 0.0 0.8 2.2 0.0 0.8 2.2 1062 0.8 2.2 52.2 0.8 1.3 1.0 0.8 1.3 24.2
RL 0.4+1.4 2.0 / 4.0 8.0 22.8 0.0 1.6 4.4 0.6 1.2 3.2 2424 1.6 4.4 119.9 1.2 3.0 2.5 1.2 3.2 58.1
SL 0.8+2.3 1.0 / 4.0 33.3 94.4 0.0 6.5 18.3 2.1 5.8 16.6 3720 6.5 19.2 180.3 7.4 21.7 4.2 5.8 18.4 116.0

tight_vnc
RC 4.7+0.0 2.7 / – 14.0 39.1 0.1 14.0 39.1 11.0 14.0 39.1 8252 14.0 39.1 267 14.0 27.1 23.5 14.0 39.6 11199
RL 0.7+31.8 1.9 / 14.2 2422 6000 1.2 202.2 499.5 402 – – T/O 202.2 499.5 2275 – – T/O – – T/O
SL 1.5+18.5 4.1 / 11.2 3734 8860 0.7 244.0 585.8 165 – – T/O 244.0 585.8 1369 – – T/O – – T/O

B
E
N
C
H
R
E
A
L rhiscom – 9+6 1.2 / 35.3 13977 30634 2 197 504 128 – – T/O 197 511 2717 – – T/O – – T/O

ERP-SPL – 9+232 2.0 / 37.1 723426 1604116 15 16562 37273 8555 – – T/O 16562 37273 16562 – – T/O – – T/O
windows – 989+55 2.3 / 453.8 8537492 17028426 87 175380 1918927 114028 – – T/O 174200 1917875 245532 – – T/O – – T/O

For benchmarks BENCHMUT, results are categorized by the type of mutation. For
each benchmark model, the table reports the number and size of strengthening and
weakening repairs (note that each repair corresponds to one fcc); moreover, for each
process setting, it reports the execution time, and the quality of the final modelM′

in terms of CD and ED distances. Values of the strategies ATGT, JBool and QM for
repairing RL and SL mutations of tight_vnc and for all the benchmarks of BENCHREAL
are not reported, because the experiment exceeded the timeout (T/O) of 1 hour.

We evaluate the process using three research questions.

RQ6: Which quality do the constraints repaired by the process have?

The main goal of this repair process is to not destroy domain knowledge. We
consider the quality measures ED and CD to be proxies for domain knowledge
preservation, under the assumption that having fewer edits means more preserva-
tion of the domain knowledge contained in the constraints. We therefore consider
an approach better than another approach if it has smaller values of the quality mea-
sures.

The process (in all its versions) completely repairs all the benchmarks models,
as the fccs in FCC are complete (see Thms. 5.2 and 5.3). However, the quality of

https://github.com/fmselab/VMConstraintsRepair

118 Chapter 5. Repair of Feature Models

the repaired models depends on the adopted repair approach. The optimized ap-
proach only using selection (onlySelection) always outperforms the naïve process
in terms of quality of the repairs, as it modifies a subset of the constraints, and so
the two measures CD and ED for it are always lower. The simplification approaches
sometimes allow to obtain better repairs than onlySelection, meaning that they re-
move some redundancy introduced by the repair; however, there is no simplifica-
tion method that is always better than the others on all the benchmarks for both
measures (except for ATGT that is never worse than Espresso). We observe that, in
a few cases, CD and ED are higher for a simplification method w.r.t. onlySelection
(e.g., ED of Espresso for register RL): we have checked the example and we found
that the simplification has removed some redundancy that was already present in
the original modelM so modifying the model more than what done by onlySelec-
tion.

RQ7: How efficient is the repair approach?

Computational time varies significantly for the different approaches and models:
from 0-0.1ms of the smallest models, up to 245 seconds for the windows model (the
biggest model having 335 features and 943 constraints) repaired with the Espresso
simplifier.

The naïve approach, and the optimized approach without simplification (onl-
ySelection), have been the fastest approaches; execution times of onlySelection are
higher than the naïve approach for big models, as it uses a SAT solver for identifying
the constraints that must be repaired (see Sect. 5.2.2). Simplification algorithms are
the main responsible for slow performance in terms of computation time. ATGT is
the slowest one, as it internally calls a SAT solver several times, and the algorithm is
yet in a prototypical stage. The second slowest simplification method is Espresso, but
we noticed that it is relatively faster than other methods for large models; indeed,
it is the only approach able to simplify all the benchmark models, while the others
cannot simplify the biggest mutations obtained for tight_vnc and all the models in
BENCHREAL in the given timeout. For small models, JBool is the fastest simplification
method, followed by QM; however, they both timeout for large models.

RQ8: Is there a repair type that our process handles more efficiently?

We are here interested in investigating whether there is an effect of the type of repair
on the performances of the process. In order to better understand the computational
cost of the type of repairs, Table 5.8 reports, for BENCHREAL, the average execution
times of strengthening and weakening repairs in the selection and simplification
phases, and also the average time of any repair (regardless of the type).

We only report the results of Espresso, as it is the only tool that completes before
the timeout of 1 hour.

5.2. A Process for Fault-Driven Repair of Constraints Among Features 119

Table 5.8: Detailed results of the execution time for BENCHREAL

avg. repair time per single repair (ms)
selection simplification

name str. wea. avg. str. wea. avg.

rhiscom 2.6 4.7 3.4 57 54.3 55.9
ERP-SPL 4.3 17.7 17.2 119.8 123.3 123.2
windows 49.5 697.2 83.6 106.9 104.6 106.8

We observe that, in the selection phase, strengthening repairs are faster than
weakening repairs: indeed, the former ones only do a syntactical analysis of the
constraint, while the latter ones need to call a SAT solver (see Sect. 5.2.2). The aver-
age repair time in the selection phase is then influenced by the number of repairs of
the two types: in ERP-SPL, since almost all the repairs are weakening (see Table 5.7),
the average time is mostly influenced by them; in windows, instead, most of the re-
pairs are strengthening (see Table 5.7) and so the average repair time is influenced
by them.

Regarding the simplification phase, there is no significant difference between the
two types of repairs.

5.2.4 Threats to Validity

We discuss the threats to the validity of our results along two dimensions.

External Validity Regarding external validity, a first threat comes from the choice
of the variability models on which we performed the experiments. In the bench-
marks, we totally selected models of seven applications of different sizes, among
them two industrial applications from the SPLOT public repository. Although we
have not tested our process on bigger feature models, we believe that the number
and variety of input data make the results of our evaluation generalizable to other
models of similar size.

In BENCHREAL, we simulated real faults in constraints by enumerating the failure-
containing combinations (and thus the single repairs) between two versions of con-
straints. Such simulated faults may not be accurate with respect to real usages in
some scenarios. However, we believe that such results may be generalizable in cases
when the faults are automatically detected by testing the updated system implemen-
tation, with respect to an outdated model, as we believe that the second version of
the model accurately reflects the underlying system implementation.

120 Chapter 5. Repair of Feature Models

Internal Validity Regarding internal validity, a first threat involves the number of
experiments and the accuracy of results. To this aim, we executed the experiments
10 times.

Another threat comes from the metrics used to assess the effectiveness and effi-
ciency of our approach, not being a good proxy for domain knowledge preservation.
We believe, however, that the chosen metrics well represent the concepts of formula
readability and impact of the changes (ED), that may be useful for successive reason-
ing, for a reverse engineering process from propositional formula to feature model,
and for comprehension by the user.

Regarding our approach in general, we have identified the following two threats
to validity. The first one regards the applicability of our repair technique. We as-
sume that the variability model is given as a set of constraints, while in general
other formats (like feature models) are widely used. However, it is almost always
possible to extract the set of features and the constraints among them, so our ap-
proach is generally applicable. It is true that it may be not easy to go back from the
repaired model to the original format (see Fig. 5.9), but we try to change the model
as little as possible. This should ease the identification of the applied repairs and
facilitate the reverse process to extract the final variability model in another format.

The second threat regards the assumption of the fccs completeness. In general,
we may find some conformance faults, but it may be not enough, since our process
assumes that the fccs are complete. However, we can notice that every failing test is
a complete fcc regardless of the test suite. Trying to extract a smaller failing combi-
nation from a failing test possibly requires new tests, but there already exist several
techniques for fault localization that efficiently can do that [97].

5.2.5 Related Work

There exist methods to statistically infer constraints from sampled configurations [61,
8, 195, 196, 197, 16]: they use a classifier to infer the conditions among parame-
ter values, that determine a particular property, either a parameter above/below
a certain threshold (like in [196]), or directly the configuration being accepted or
rejected by the system (as in [197]). These machine-learning based methods are
well-documented and supported by application studies to real scenarios, such as
learning constraints among parameters in SCAD programs that may cause defects
of configurable objects to 3D print [16]; and, in the case of LATEX, showing that it
is possible to obtain constraints among Boolean or numerical values, to format the
paper to meet desired properties, such as a defined page limit [9]. Another interest-
ing application of inferring constraints using machine learning is the case of mining
temporal and value constraints from rich logs, for event-based monitoring in indus-
trial SoS (Systems of Systems) [123]. The approach, integrated also with techniques

5.2. A Process for Fault-Driven Repair of Constraints Among Features 121

from process mining and specification mining, was applied to the automation sys-
tem of a metallurgical company, and it consists of a ranking phase, based on some
validity ratio metrics on the classification tree outcome, in which constraints that
are more likely to be accepted by the users appear first.

The constraints learned (or mined) with such machine learning methods achieve
a good accuracy (greater than 80% on average [196]), and they are able to completely
infer constraints from scratch, or to specialize the model by adding the new inferred
constraints to the existing ones. Our approach, however, is focused on performing
any kind of repair to an existing set of constraints, and is also able to generalize the
model, or apply arbitrary edits (as described in the classification in [199]). More-
over, our proposed method focuses only on the manipulation of existing constraints,
and not on the actual detection of the failure-containing combinations, that we as-
sume as input of our process. Unlike our approach, that takes the failure-containing
combinations as input, those ML processes also include automatic detection of such
fccs (in the form of constraints), given a sample of configurations classified as valid
or non-valid [196]. For these reasons, the approaches are not alternative but com-
plementary, as our approach is not comparable to those ML methods; however, as
future work, we believe that it could be interesting to combine our process with
those machine learning approaches, to have a more complete process for real case
scenarios.

A quality-based model refactoring framework assessing the quality of merging
operations among SPL models, expressed in UML [178], supports maintainability
of models describing relations among features. It represents another approach to
model repair, although it is not focused on repairing constraints in propositional
logic. There is a comprehensive general work on repair of models by Reder et
al. [175], with a method to detect inconsistencies using a validator, and to gener-
ate a repair tree representing in a compact way all the different viable actions to
repair the model. This approach has been evaluated on UML models and OCL de-
sign rules, and is currently integrated in the Model/Analyzer plug-in for the IBM
Rational Software Architect (RSA).

We believe that our approach, instead, is a particular case of such repair frame-
work in which the repair actions are fixed and determined by the selection and sim-
plification algorithms (i.e., Espresso, QM, etc.), whereas the inconsistency detection
is left to the engineer, who has to provide a set of failure-containing combinations
in input to our process. However, despite our process has a fixed repair type and
in this work we evaluated its application, it may be possible to integrate the idea
of [175] and build a sort of repair-action tree in which the fccs are applied in differ-
ent order, for example, or with a different simplification method for each fcc, and we
believe that the result of following another path in that repair-action tree could give
slightly different results (that could be better or could also be worse).

122 Chapter 5. Repair of Feature Models

Program repair techniques, such as SemFix [155], GenProg [133], and Par [119]
already apply successive patch transformations, but to repair single faults in the
code directly.

A process to detect and repair feature models from conformance faults with re-
spect to another model has been presented in [33]. Our work, however, is able to
handle arbitrary constraints of a variability model, and adds also the simplification
of such modified constraints. The need for a fault-driven constraint repair process
was already envisioned in [108], but no experiments were yet performed.

In the classification of edits to variability models presented in [142], our pro-
cess fits the categories build fix and adherence to changes in code; in the classification
of edits to variability models presented in [199], our process is able to address all
kind of edits: in the case of arbitrary edits, it achieves them by applying specialization
(what we call strengthening repair) and generalization (what we call weakening repair)
sequentially.

A different technique for feature model repair in the context of system evolution,
with different versions of systems, used mutation operators to make the model meet
a specific update request [27, 26]; however, that approach does not handle arbitrary
constraints, and does not guarantee to completely fulfil the update request, and
thus to repair the model. We believe that that approach could be extended with our
process, to be able to repair not only the feature tree, but the constraints as well.

Repair of constraints has usage also in other contexts, such as the repair of pa-
rameter values of timed automata clock guards, by applying tests and specializing
the constraints [20]; and in the detection of constraints among parameters that let
the built attack string trigger an XSS vulnerability in the system [94].

5.3 Conclusion

We proposed a process that, given a (faulty or outdated) variability model, and
the faults in terms of failure-containing combinations, identifies the constraints in-
volved in the fault, repairs them according to the oracle value, and simplifies them
to make the edit minimal. We conducted an empirical evaluation on 7 models of
different sizes, and found that the process of selecting only some constraints is in-
deed more effective than the naïve approach that modifies all of them. Moreover,
we observed that simplification approaches can further improve the quality of the
repair. However, their applicability is limited by the model size, as most of them do
not scale on big models.

As future work, we plan to adapt our approach to larger models and to include
in the evaluation the performances of reverse engineering the final constraints into
a variability model (in case the repairs affected the structure of the initial variability
model). As future work, we also want to address the current limitations; for ex-

5.3. Conclusion 123

ample, by designing better selection and simplification strategies, by extending the
method to non-boolean variables, and by including new simplification techniques.
Furthermore, in order to better preserve domain knowledge, we plan to design an
approach that interacts with domain engineers, for instance by highlighting implicit
constraints as in [19].

Chapter 6

Repair of Timed Automata

In this Chapter, we present the application of the envisioned repair process to timed
automata. Timed automata (TAs) [13] are a widely used formalism to specify sys-
tems having temporal requirements.

Timed automata is proposed by Alur and Dill [13] in the early nineties as an
extension to the classical automata, which is extended with clock variables. Timed
automata theory has become an important research area and been widely studied
in the context of both formal languages and verification of real time systems [121].

One main application of timed automata is the verification of properties using
model checking methods [144], by traversing through all reachable states. Another
application is robustness analysis of systems that can be modeled by a TA [146].

Timed automata have academic and industrial applications for the modeling and
verification of protocols: such as TDMA (Time Division Multiple Access) proto-
col [136], power controller protocols [106], and security protocols such as Kerberos,
TMN, Neumann Stubblebine, Andrew Secure and Wide Mouthed Frog [114, 113].

Timed automata are equipped with of clock variables that record the passage of
time since they have been reset. All clocks are synchronized and they run at the
same speed. The transitions from one state to another are assumed to be instanta-
neous; in other words, time passes only in states, not on edges.

An example of time automaton is given in Fig. 6.1a.
A formal definition of timed automata is given in Sect. 6.1.
One problem of timed automata modeling, however, is that exactly specifying

the system may be difficult, as the user may not know the exact clock constraints
triggering state transitions. To offer a support for the user in his/her modeling
tasks, under the assumption that the user only wrote wrong guard transitions (i. e.,
the structure of the TA is correct, but the guard constraints may not be correct), the

124

125

search space for the correct TA (w.r.t. the system) can be represented by a Parametric
Timed Automaton (PTA), i. e., a TA in which some constants are parametrized.

We selected to repair only an aspect of timed automata, namely clock guards, as
they have a direct impact that can be revealed by testing (using timed words as tests,
as described later in the chapter), tests are meaningful because only one aspect is
supposed to change (the structure of the timed automata is assumed to remain the
same, although we also perform an experiment on a small structure change), and
we believe they are in reality subject to change in system evolution, together with
the number of locations and transitions.

This chapter reflects the content of the paper [20], that introduces a process that
(i) abstracts the initial (faulty) TA tainit in a PTA pta; (ii) generates some test data
(i. e., timed traces) from pta; (iii) assesses the correct evaluation of the traces with
the oracle; (iv) uses the IMITATOR tool for synthesizing some constraints ϕ on the
parameters of pta; (v) instantiate from ϕ a TA tarep as final repaired model. Ex-
periments show that the approach is successfully able to partially repair the initial
design of the user.

Problem A common usage of timed automata is to develop a TA describing the
running system and then apply analysis techniques to it (e. g., [40]). However, ex-
actly specifying the system under analysis may be difficult, as the user may not
know the exact clock constraints that trigger state transitions, or may perform errors
at design time. Therefore, validating the produced TA against the real system is ex-
tremely important to be sure that we are analyzing a faithful representation of the
system. Different testing techniques have been proposed for timed automata, based
on different coverage criteria as, e. g., transition coverage [191] and fault-based cov-
erage [11, 12], and they can be used for TA validation. However, once some failing
tests have been identified, it remains the problem of detecting and removing (repair)
the fault from the TA under validation. How to do this in an automatic way is chal-
lenging. One possible solution could be to use mutation-based approaches [11, 12]
in which mutants are considered as possible repaired versions of the original TA;
however, due to the continuous nature of timed automata, the number of possi-
ble mutants (i. e., repair actions) is too big also for small TAs and, therefore, such
approaches do not appear to be feasible. We here propose to use a symbolic repre-
sentation of the possible repaired TAs and we reduce the problem of repairing to
finding an assignment of this symbolic representation.

Contribution In this work, we address the problem of testing/validating TAs un-
der the assumption that only clock guards may be wrong, that is, we assume that
the structure (states and transitions) is correct. Moreover, we assume to have an or-
acle that we can query for acceptance of timed traces, but whose internal structure is

126 Chapter 6. Repair of Timed Automata

unknown: this oracle can be a Web-service, a medical device, a protocol, etc. In or-
der to symbolically represent the search space of possible repaired TAs, we use the
formalism of parametric timed automata (PTAs) [15] as an abstraction to represent
all possible behaviors under all possible clock guards.

We propose a framework for automatic repair of TAs that takes as input a TA
tainit to repair and an oracle. The process works as follows:

1. starting from tainit, we build a PTA pta where to look for the repaired TA;

2. we build a symbolic representation of the language accepted by pta in terms
of an extended parametric zone graph EPZG;

3. we then generate some test data TD from EPZG;

4. we assess the correct evaluation of TD by querying the oracle, so building the
test suite TS;

5. we feed the tests TS to the IMITATOR tool that finds some constraints ϕ that
restrict pta only to those TAs that correctly evaluate all the tests in TS;

6. as the number of TAs that are correct repairs may be infinite, we try to obtain,
using a constraint solver based on local search, the TA tarep closest to the ini-
tial TA tainit. Note that trying to modify as little as possible the initial TA is
reasonable if we assume the competent programmer hypothesis [163].

To evaluate the feasibility of the approach, we performed some preliminary ex-
periments showing that the approach is able to (partially) repair a faulty TA.

Outline In the rest of the chapter, Sect. 6.1 explains the definitions we need in our
approach. Then 6.2 presents the process we propose that combines model abstrac-
tion, test generation, constraint generation, and constraint solving. 6.3 describes ex-
periments we performed to evaluate our process. Finally, 6.4 reviews some related
work, and 6.5 concludes the chapter.

6.1 Definitions

[20] A timed word [13] over an alphabet of actions Σ is a possibly infinite sequence of the
form (a0, d0)(a1, d1) · · · such that, for all integer i ≥ 0, ai ∈ Σ and di ≤ di+1. A timed
language is a (possibly infinite) set of timed words.

We assume a set X = {x1, . . . , xH} of clocks, i. e., real-valued variables that evolve
at the same rate. A clock valuation is µ : X → R≥0. We write ~0 for the clock
valuation assigning 0 to all clocks. Given d ∈ R≥0, µ + d is s.t. (µ + d)(x) = µ(x) +

6.1. Definitions 127

d, for all x ∈ X. Given R ⊆ X, we define the reset of a valuation µ, denoted by [µ]R,
as follows: [µ]R(x) = 0 if x ∈ R, and [µ]R(x) = µ(x) otherwise.

We assume a set P = {p1, . . . , pM} of parameters. A parameter valuation v is
v : P → Q+. We assume ./ ∈ {<,≤,=,≥,>}. A clock guard g is a constraint over
X ∪ P defined by a conjunction of inequalities of the form x ./ ∑1≤i≤M αi pi + d,
with pi ∈ P, and αi, d ∈ Z. Given g, we write µ |= v(g) if the expression obtained
by replacing each x with µ(x) and each p with v(p) in g evaluates to true.

6.1.1 Parametric timed automata

Definition 6.1 (PTA). A PTA A is a tuple A = (Σ, L, `0, F, X, P, I, E), where: i) Σ is a
finite set of actions, ii) L is a finite set of locations, iii) `0 ∈ L is the initial location, iv) F ⊆ L
is the set of accepting locations, v) X is a finite set of clocks, vi) P is a finite set of parameters,
vii) I is the invariant, assigning to every ` ∈ L a clock guard I(`), viii) E is a finite set of
edges e = (`, g, a, R, `′) where `, `′ ∈ L are the source and target locations, a ∈ Σ, R ⊆ X

is a set of clocks to be reset, and g is a clock guard.

Given e = (`, g, a, R, `′), we define Act(e) = a.

Example 6.1. Consider the PTA in 6.1b, containing two clocks x and y and three parame-
ters p2, p3 and p4. The initial location is `1.

`1 `2 `3

`4 `5

x ≤ 4

x ≤ 3

x ≤ 6

x ≤ 3
a

x = 3∧ y ≥ 4

bx > 2
a

y := 0

y > 1∧ x > 4
c

(a) A TA to be repaired

`1 `2 `3

`4 `5

x ≤ 4

x ≤ p3

x ≤ 6

x ≤ p3

a
x = p3 ∧ y ≥ 4

bx > p2
a

y := 0
y > 1∧ x > p4

c

(b) An abstract PTA

Figure 6.1: Running example

Given v, we denote by v(A) the non-parametric structure where all occurrences
of a parameter pi have been replaced by v(pi).

We denote as a timed automaton any such structure v(A).
The synchronous product (using strong broadcast, i. e., synchronization on a given

set of actions), or parallel composition, of several PTAs gives a PTA.

Definition 6.2 (Concrete semantics of a TA). Given a PTA A = (Σ, L, `0, F, X, P,
I, E), and a parameter valuation v, the semantics of v(A) is given by the timed transition
system (TTS) (S, s0,→), with

128 Chapter 6. Repair of Timed Automata

• S = {(`, µ) ∈ L×RH
≥0 | µ |= v(I(`))}, s0 = (`0,~0),

• → consists of the discrete and (continuous) delay transition relations: i) discrete tran-
sitions: (`, µ)

e7→ (`′, µ′), if (`, µ), (`′, µ′) ∈ S, and there exists e = (`, g, a, R, `′) ∈
E, such that µ′ = [µ]R, and µ |= v(g). ii) delay transitions: (`, µ)

d7→ (`, µ + d),
with d ∈ R≥0, if ∀d′ ∈ [0, d], (`, µ + d′) ∈ S.

Moreover we write (`, µ)
(e,d)−→ (`′, µ′) for a combination of a delay and discrete

transition if ∃µ′′ : (`, µ)
d7→ (`, µ′′)

e7→ (`′, µ′).
Given a TA v(A) with concrete semantics (S, s0,→), we refer to the states of S

as the concrete states of v(A). A run of v(A) is an alternating sequence of concrete
states of v(A) and pairs of edges and delays starting from the initial state s0 of the

form s0, (e0, d0), s1, · · · with i = 0, 1, . . . , ei ∈ E, di ∈ R≥0 and si
(ei,di)−→ si+1. The

associated timed word is (Act(e0), d0)(Act(e1), ∑0≤i≤1 di) · · · . A run is maximal if it is
infinite or cannot be extended by any discrete action. The (timed) language of a
TA, denoted by L(v(A)), is the set of timed words associated with maximal runs
of v(A). Given s = (`, µ), we say that s is reachable in v(A) if s appears in a run
of v(A). By extension, we say that ` is reachable in v(A); and by extension again,
given a set T of locations, we say that T is reachable if there exists ` ∈ T such that `
is reachable in v(A).
Example 6.2. Consider the TA A in 6.1a. Consider the following run ρ of A:(

`1,
(

x = 0
y = 0

))
, (a, 2.5),

(
`4,
(

x = 2.5
y = 0

))
, (c, 2),

(
`5,
(

x = 4.5
y = 2

))
We write “x = 2.5” instead of “µ such that µ(x) = 2.5”. The associated timed word is

(a, 2.5)(c, 4.5).

6.1.2 Reachability synthesis

We will use reachability synthesis to solve the problem in 6.2. This procedure, called
EFsynth, takes as input a PTA A and a set of target locations T, and attempts to syn-
thesize all parameter valuations v for which T is reachable in v(A). EFsynth(A, T)
was formalized in e. g., [118] and is a procedure that traverses the parametric zone
graph of A; EFsynth may not terminate (because of the infinite nature of the graph),
but computes an exact result (sound and complete) if it terminates.

Example 6.3. Consider again the PTA A in 6.1b. EFsynth(A, {`5}) returns 0 ≤ p2 <
4 ∧ 0 ≤ p4 ≤ 6 ∧ p3 ≥ 0. Intuitively, this corresponds to all parameter constraints in the
parametric zone graph in 6.3 associated to symbolic states with location `5 (there is a single
such state).

6.2. A repairing process using abstraction and testing 129

6.2 A repairing process using abstraction and testing

In this work, we address the guard-repair problem of timed automata.
Given a reference TA tainit and an oracle O knowing an unknown timed lan-

guage T L, our goal is to modify (“repair”) the timing constants in the clock guards
ofA such that the repaired automaton matches the timed language T L. The setting
assumes that the oracleO can be queried for acceptance of timed words by T L; that
is, O can decide whether a timed word belongs to T L, but the internal structure of
the object leading to T L (e. g., an unknown timed automaton) is unknown. This
setting makes practical sense when testing black-box systems.

guard-repair problem:
INPUT: an initial TA tainit, an unknown timed language T L
PROBLEM: Repair the constants in the clock guards of tainit so as to obtain a
TA tarep such that L(tarep) = T L

While the ultimate goal is to solve this problem, in practice the best we can hope
for is to be as close as possible to the unknown oracle TA, notably due to the undecid-
ability of language equivalence of timed automata [13] (e. g., if T L was generated
by another TA).

6.2.1 Overview of the method

From now on, we describe the process we propose to automatically repair an initial
timed automaton tainit. 6.2 describes the approach:

Figure 6.2: Automatic repair process

Step À a PTA pta is generated starting from the initial TA tainit.

130 Chapter 6. Repair of Timed Automata

Step Á the extended parametric zone graph EPZG (an extension of PZG) is built.

Step Â a test generation algorithm generates relevant test data TD from EPZG.

Step Ã TD is evaluated using the oracle, therefore building the test suite TS.

Step Ä some constraints ϕ are generated, restricting pta to the TAs that evaluate
correctly the generated tests TS.

Step Å one possible TA satisfying the constraints ϕ is obtained.

1 formalizes steps À–Ä for which we can provide some theoretical guarantees
(i. e., the non-emptiness of the returned valuation set, and its inclusion of T L).

Algorithm 1 Automatic repair process Repair(tainit,O)
Require: tainit: initial timed automaton to repair
Require: O: an oracle assessing the correct evaluation of timed words
Ensure: ϕ: set of valuations repairing tainit

1: pta← AbstractInPta(tainit)
2: EPZG ← BuildEpzg(pta)
3: TD← GenerateTestData(EPZG) . Generate test data from EPZG
4: TS← LabelTests(TD,O) . A test is a pair (trace, assessment)

return ϕ← GenConstraints(pta, TS)

Algorithm 2 GenConstraints(pta, TS)
1: MBA← {w | (w, true) ∈ TS} . Tests that must be accepted
2: MBR← {w | (w, false) ∈ TS} . Tests that must be rejected

return
∧

w∈MBA ReplayTW(pta, w) ∧∧w∈MBR ¬ReplayTW(pta, w)

For step Å, instead, different approaches could be adopted: in this work, we
discuss a possible one. We describe each phase in details in the following sections.

6.2.2 Step À: Abstraction
Starting from the initial tainit, through abstraction, the user obtains a PTA pta that
generalizes tainit in all the parts that can be possibly changed in order to repair tainit
(1 in 1). For instance, a clock guard with a constant value can be parametrized.
Therefore, pta represents the set of all the TAs that can be obtained when repairing
tainit. pta is built on the base of the domain knowledge of the developer who has a
guess of the guards that may be faulty.

Example 6.4. Consider again the TA in 6.1a. A possible abstraction of this TA is the PTA
in 6.1b, where we chose to abstract some of the timing constants with parameters. Note that
not all timing constants must necessarily be substituted with parameters; also note that a
same parameter can be used in different places (this is the case of p3).

6.2. A repairing process using abstraction and testing 131

Assumption We define below an important assumption for our method; we will
discuss in 6.2.8 how to lift it.

Assumption 1. We here assume that pta is a correct abstraction, i. e., it contains a TA that
precisely models the oracle. That is, there exists voracle such that L(voracle(pta)) = T L.

Note that this assumption is trivially valid if faults lay in the clock guards (which
is the setting of this work), and if all constants used in clock guards are turned to
parameters.

6.2.3 Step Á: construction of the extended parametric zone graph

Starting from pta, we build a useful representation of its computations in terms of
an extended parametric zone graph EPZG (2 in 1). This original data structure will be
used for test generation. In the following, we describe how we build EPZG from
PZG.

We extend the parametric zone graph PZG with the two following pieces of
information:

the parameter constraint characterizing each symbolic state: from a state (`, C), the
parameter constraint is C↓P and gives the exact set of parameter valuations for
which there exists an equivalent concrete run in the automaton. That is, a state
(`, C) is reachable in v(A) iff v |= C (see [118] for details).

the minimum and maximum arrival times: that is, we compute the minimum (mi)
and maximum (Mi) over all possible parameter valuations of the possible ab-
solute times reaching this symbolic state.

While the construction of the first information is standard, the second one is original
to our work and requires more explanation. We build for each state a (possibly un-
bounded) interval that encodes the absolute minimum and maximum arrival time.
This can be easily obtained from the parametric zone graph by adding an extra clock
never reset (that encodes the absolute time), and projecting the obtained constrained
on this extra clock, thus giving minimum and maximum times over all possible pa-
rameter valuations.

Example 6.5. Consider again the PTA A in 6.1b and its parametric zone graph in 6.3.
The parameter constraints associated to each of the symbolic states, and the possible absolute
reachable times, are given in 6.1.

Remark 6.1. If all locations of the original PTA contain an invariant with at least one
inequality of the form x / p or x / d, with / ∈ {<,≤}, and if the parameters are bounded,
then the maximum arrival time in each symbolic state will always be finite. Note that this

132 Chapter 6. Repair of Timed Automata

s1 s2 s3

s4 s5

e1 e2

e3
e4

s1 = (`1 , 0 ≤ x = y ≤ 4∧ p2 ≥ 0∧ p3 ≥ 0∧ p4 ≥ 0)
s2 = (`2 , 0 ≤ x = y ≤ p3 ∧ p2 ≥ 0∧ p3 ≥ 0∧ p4 ≥ 0)
s3 = (`3 , x = y ≥ p3 ∧ p2 ≥ 0∧ p3 ≥ 4∧ p4 ≥ 0)
s4 = (`4 , p2 < x ≤ 6∧ y ≥ 0∧ p2 < x− y ≤ 4∧ 4 > p2 ≥ 0∧ p3 ≥ 0∧ p4 ≥ 0)
s5 = (`5 , p2 < x ∧ p4 < x ∧ y > 1∧ p2 < x− y ≤ 4∧ 4 > p2 ≥ 0∧ p3 ≥ 0∧ 6 > p4 ≥ 0)

Figure 6.3: Parametric zone graph of 6.1b

Table 6.1: Description of the states of the extended parametric zone graph

Symbolic states Parameter constraint Reachable times
s1 p2 ≥ 0∧ p3 ≥ 0∧ p4 ≥ 0 xabs = 0
s2 p2 ≥ 0∧ p3 ≥ 0∧ p4 ≥ 0 xabs ∈ [0, 4]
s3 p2 ≥ 0∧ p3 ≥ 4∧ p4 ≥ 0 xabs ∈ [4, ∞)
s4 4 > p2 ≥ 0∧ p3 ≥ 0∧ p4 ≥ 0 xabs ∈ (0, 4]
s5 4 > p2 ≥ 0∧ p3 ≥ 0∧ 6 > p4 ≥ 0 xabs ∈ (1, 6]

condition is not fulfilled in 6.5 because `2 features an invariant x ≤ p3, with p3 unbounded,
thus allowing to remain arbitrarily long in `2 for an arbitrarily large value of p3. Therefore,
the arrival time in `3 is xabs ∈ [4, ∞).

6.2.4 Step Â: Test data generation

Starting from EPZG, we generate some test data (3 in 1) in terms of timed words.

Constructing timed words

We use the minimal and maximum arrival times in the abstract PTA to generate test
data. That is, we will notably use the boundary information, i. e., runs close to the
fastest and slowest runs, to try to discover the actual timing guards of the oracle.

The procedure to generate a timed word from the EPZG is as follows:
1. Pick a run s0e0s1 · · · . . . sn from EPZG.
2. Construct the timed word (a0, d0)(a1, d1) · · · (an−1, dn−1), where ai = Act(ei)

and di belongs to the interval of reachable times associated with symbolic
state si+1, for 0 ≤ i ≤ n− 1. Note that, depending on the policy (see below),
we sometimes choose on purpose valuations outside of the reachable times.

Given an EPZG, we generate, for each finite path of the EPZG up to a given
depth K, one timed word. In order to chose a timed word from a (symbolic) path of
the EPZG, we identified different policies.

6.2. A repairing process using abstraction and testing 133

Policies

For each k < K, we instantiate (a0, d0) (a1, d1) · · · (ak, dk) by selecting particular
values for each di using different policies:

• P±1: dj ∈ I±1, where I±1 = {mi − 1, mi, mi + 1, Mi − 1, Mi, Mi + 1} and mi and
Mi are the minimum and maximum arrival times of the symbolic state.

• PminMax2: dj ∈ IminMax2 with IminMax2 = I±1 ∪ {(mi + Mi)/2}.
• PminMax4: dj ∈ IminMax4 with IminMax4 = IminMax2 ∪ {mi + (Mi − mi)/4, mi +

((Mi −mi)/4) ∗ 3}.
• Prnd: dj being a random value such that mi ≤ dj ≤ Mi.

Example 6.6. Consider again the PTA A in 6.1b and its parametric zone graph in 6.3
together with reachable times in 6.1. Pick the run s1e3s4e4s5. First note that Act(e3) = a
and Act(e4) = c. According to 6.1, the reachable times associated with s4 are (0, 4] while
those associated with s5 are (1, 6]. Therefore, a possible timed word generated with P±1 is
(a, 1)(c, 5). Note that this timed word does not belong to the TA to be repaired (6.1a) because
of the guard x > 2; however, it does belong to an instance TA of 6.1b for a sufficiently small
value of p2 (namely v(p2) < 1).

6.2.5 Step Ã: Test labeling

Then, every test sequence in TD is checked against the oracle in order to label it as
accepted or not (4 in 1), therefore the test suite TS; a test case in TS is a pair (w,
O(w)), being w a timed word, and O(w) the evaluation of the oracle, i. e., O(w) is
defined as a Boolean the value of which is w ∈ T L.1 A test case fails if tainit(w) 6=
O(w), i. e., the initial TA and the oracle timed language disagree. Note that, if is no
test case fails, tainit is considered correct2 and the process terminates.

In different settings, different oracles can be used. In this work, we assume that
the oracle is the real system of which we want to build a faithful representation;
the system is black-box, and it can only be queried for acceptance of timed words.
In another setting, the oracle could be the user who can easily assess which words
should be accepted, and wants to validate their initial design. Of course, the type of
oracle also determines how many test data we can provide for assessment: while a
real implementation can be queried a lot (modulo the time budget and the execution
time of a single query), a human oracle usually can evaluate only few tests.

1To limit the number of tests, we only keep the maximal accepted traces (i. e., we remove accepted
traces included in longer accepted traces), and the minimal rejected traces (i. e., we remove rejected
traces having as prefix another rejected trace).

2This does not necessarily mean that both TAs have the same language, but that the tests did not
exhibit any discrepancy.

134 Chapter 6. Repair of Timed Automata

6.2.6 Step Ä: Generating constraints from timed words

Given the test suite TS, our approach generates constraints ϕ that restrict pta to only
those TAs that correctly evaluate the tests (4 in 1).

In this section, we explain how to “replay a timed word”, i. e., given a PTA A,
how to synthesize the exact set of parameter valuations v for which a finite timed
word belongs to the timed language of v(A). Computing the set of parameter valua-
tions for which a given finite timed word belongs to the timed language can be done
easily by exploring a small part of the symbolic state space. Replaying a timed word
is also very close to the ReplayTrace procedure in [24] where we synthesized valu-
ations corresponding to a trace, i. e., a timed word without the time information—
which is decidable.

From timed words to timed automata

First, we convert the timed word into a (non-parametric) timed automaton. This
straightforward procedure was introduced in [23], and simply consists in converting
a timed word of the form (a1, d1), · · · , (an, dn) into a sequence of transitions labeled
with ai and guarded with xabs = di (where xabs measures the absolute time, i. e., is
an extra clock never reset). Let TW2PTA denote this procedure.3

Example 6.7. Consider again the timed
word w mentioned in 6.6: (a, 0.5)(c, 5). The
result of TW2PTA(w) is given in 6.4.

`TW
0 `TW

1 `TW
2

xabs = 0.5
a

xabs = 5
c

Figure 6.4: Translation of timed word
(a, 0.5)(c, 5)

Synchronized product and synthesis

The second part of step Ä consists in performing the synchronized product of TW2PTA(w)
and A, and calling EFsynth on the resulting PTA with the last location of the timed
word as the target of EFsynth. Let ReplayTW(pta, w) denote the entire procedure of
synthesizing the valuations associated that make a timed word possible.

Example 6.8. Consider again the PTA A in 6.1b and the timed word (a, 0.5)(c, 5) trans-
lated to a (P)TA in 6.4. The result of EFsynth applied to the synchronized product of these
two PTAs with {`TW

2 } as target location set is

0 ≤ p4 < 5∧ 0 ≤ p2 <
1
2
∧ p3 ≥ 0.

3This procedure transforms the word to a non-parametric TA; we nevertheless use the name
TW2PTA for consistency with [23].

6.2. A repairing process using abstraction and testing 135

This set indeed represents all possible valuations for which (a, 0.5)(c, 5) is a run of the
automaton. Note that the result can be non-convex. If we now consider the simpler timed
word (a, 3), then the result of ReplayTW(A, w) becomes

p3 ≥ 3∧ p2 ≥ 0∧ p4 ≥ 0 ∨ p2 < 3∧ p3 ≥ 0∧ p4 ≥ 0

This comes from the fact that the action a can correspond to either e1 (from `1 to `2) or e3
(from `1 to `4) in 6.1b.

Remark 6.2. Despite the non-guarantee of termination of the general EFsynth procedure,
ReplayTW not only always terminates, but is also very efficient in practice: indeed, it only
explores the part of the PTA corresponding to the sequence of (timed) transitions imposed by
the timed word.

Lemma 6.1. Let pta be a PTA, and w be a timed word. Then ReplayTW(pta, w) terminates.

6.2.7 Correctness

Recall that 1 assumes that there exists a valuation voracle such that L(voracle(pta)) =
T L. We show that, under 1, our resulting constraint is always non-empty and con-
tains the valuation voracle.

Theorem 6.1. Let ϕ = Repair(tainit,O). Then ϕ 6= ⊥ and voracle |= ϕ.

6.2.8 Step Å: Instantiation of a repaired TA

Any assignment satisfying ϕ characterizes a correct TA w.r.t. the generated tests in
TS; however, not all of them exactly capture the oracle behaviour. If the user wants
to select one TA, (s)he can select one assignment vrep of ϕ, and use it to instantiate
the final repaired TA tarep.

In order to select one possible assignment vrep, different strategies may be em-
ployed, on the base of the assumptions of the process. In this work, we assume the
competent programmer hypothesis [163] that the developer produced an initial TA tainit
close to be correct; therefore, we want to generate a final TA tarep that is not too dif-
ferent from tainit. In particular, we assume that the developer did small mistakes on
setting the values of the clock guards.

In order to find the closest values of the clock guards that respect the constraints,
we exploit the local search capability of the constraint solver Choco [172]:

136 Chapter 6. Repair of Timed Automata

1. we start from the observation that tainit is an instantiation of pta. We therefore
select the parameter evaluation vinit that generates tainit from pta, i. e., tainit =
vinit(pta);

2. we initialize Choco with vinit; Choco then performs a local search trying to find
the assignment closest to vinit that satisfies ϕ.

Discussing 1

1 assumes that the user provides a PTA pta that contains the oracle. If this is not the
case, the test generation phase (6.2.6) may generate a negative test (i. e., not accepted
by any instance of pta) that is instead accepted by the oracle or a positive test that
is not accepted by the oracle; in this case, the constraints generation phase would
produce an unsatisfiable constraint ϕ. In this case, the user should refine the ab-
straction by parameterizing some other clock guards, or by relaxing the constraints
on some existing parameters.

Moreover, it could be that the correct oracle has a different structure (additional
states and transitions): as future work, we plan to apply other abstractions as CoPtA
models [143] that allow to parametrize states and transitions.

Note that, even if the provided abstraction is wrong, our approach could still be
able to refine it. In order to do this, we must avoid to use for constraint generation
(step Ä) tests that produce unsatisfiable constraints. We use a greedy incremental
version of GenConstraints in which ReplayTW is called incrementally: if the constraint
generated for a test w is not compatible with the other constraints generated previ-
ously, then it is discarded; otherwise it is conjuncted.

6.3 Experimental evaluation

In order to evaluate our approach, we selected some benchmarks from the literature
to be used as initial TA tainit: the model of a coffee machine (CF) [12], of a car alarm
system (CAS) [12], and the running case study (RE). For each benchmark model, 6.2
reports its number of locations and transitions.

The proposed approach requires that the developer, starting from tainit, provides
an abstraction in terms of a PTA pta. For the experiments, as we do not have any
domain knowledge, we took the most general case and we built pta by adding a pa-
rameter for each guard constant; the only optimization that we did is to use the same
parameter when the same constant is used on entering and/or exiting transitions of
the same location (as in 6.1b).

In the approach, the oracle should be the real system that we can query for accep-
tance; in the experiments, the oracle is another TA tao that we obtained by slightly

6.3. Experimental evaluation 137

Table 6.2: Benchmarks

Benchmark size of tainit # params SD SC (%)
#locs. #trans.

RunningEx (RE) 5 3 5 2 98.33
Coffee (CF) 5 6 9 11 99.18
CarAlarmSystem (CAS) 16 10 10 12 84.24
RunningEx – different oracle (REdo) 5 3 5 - 98.72

changing some constants on the guards. The oracle has been built in a way that it is
an instance of pta, following 1.

In order to measure how much a TA (either the initial one tainit or the final one
tarep) is different from the oracle, we introduce a syntactic and a semantic measure,
that provide different kinds of comparison with the oracle tao.

Given a model ta, the oracle tao, and a PTA pta having parameters p1, . . . , pn, let
v and vo be the corresponding evaluations, i. e., ta = v(pta) and tao = vo(pta). We
define the syntactic distance of ta to the oracle as follows:

SD(ta) = ∑n
i=1 |v(pi)− vo(pi)|

The syntactic distance roughly measures how much ta must be changed (under
the constraints imposed by pta) in order to obtain tao.

The semantic conformance, instead, tries to assess the distance between the lan-
guages accepted by ta and the oracle tao. As the set of possible words is infinite,
we need to select a representative set of test data TDSC; to this aim, we generate,
from tainit and tao, sampled test data in the two TAs; moreover, we also add nega-
tive tests by extending the positive tests with one forbidden transition at the end.
The semantic conformance is defined as follows:

SC(ta) = |{t∈TDSC|(t∈L(ta)∧t∈L(tao))∨(t 6∈L(ta)∧t 6∈L(tao))}|
|TDSC|

6.2 also reports SD and SC of each benchmark tainit.
Experiments have been executed on a Mac OS X 10.14, Intel Core i3, with 4 GiB of

RAM. Code is implemented in Java, IMITATOR 2.11 “Butter Kouign-amann” is used
for constraint generation, and Choco 4.10 for constraint solving. The code and the
benchmarks are available at https://github.com/ERATOMMSD/repairTAsThroughAbstraction.

6.3.1 Results

6.3 reports the experimental results.
For each benchmark and each test generation policy (see 6.2.4), it reports the ex-

https://github.com/ERATOMMSD/repairTAsThroughAbstraction

138 Chapter 6. Repair of Timed Automata

Table 6.3: Experimental results

Bench. Policy time (s) # failed tests/ tarep
total Steps Á-Â Step Ã Step Ä Step Å # tests SD SC (%)

RE P±1 1.070 0.010 0.008 1.030 0.019 1/ 38 0 100.00
RE PminMax2 1.148 0.007 0.006 1.130 0.005 1/ 41 0 100.00
RE PminMax4 1.191 0.004 0.004 1.177 0.004 1/ 41 0 100.00
RE Prnd 0.006 0.006 0.001 0.000 0.000 0/ 3 2 98.33
CF P±1 25.921 0.050 0.267 25.546 0.045 45/293 8 99.86
CF PminMax2 32.717 0.129 0.578 31.845 0.147 62/422 7 100.00
CF PminMax4 76.137 0.857 1.907 73.058 0.769 102/737 7 100.00
CF Prnd 0.134 0.098 0.035 0.000 0.000 1/ 11 8 99.96
CAS P±1 59.511 0.043 0.160 59.261 0.037 174/392 2 100.00
CAS PminMax2 61.791 0.040 0.159 61.544 0.036 199/416 2 100.00
CAS PminMax4 68.341 0.716 0.467 67.037 0.584 245/464 2 100.00
CAS Prnd 0.024 0.017 0.007 0.000 0.000 0/ 20 12 84.24

ecution time (divided between the different phases), the total number of generated
tests, the number of tests that fail on tainit, and SD and SC of the final TA tarep.

We now evaluate the approach answering the following research questions.

RQ1: Is the approach able to repair faulty TAs?

We evaluate whether the approach is actually able to (partially) repair tainit. From
the results, we observe that, in three cases out of four, the process can completely
repair RE since SD becomes 0, meaning that we obtain exactly the oracle (therefore,
also SC becomes 100%). For CF and CAS, it almost always reduces the syntactical
distance SD, but it never finds the exact oracle. On the other hand, the semantic
conformance SC is 100% in five cases. Note that SC can be 100% with SD different
from 0 for two reasons: either the test data TDSC we are using for SC are not able
to show the unconformity, or tarep is indeed equivalent to the oracle, but with a
different structure of the clock guards.

RQ2: Which is the best test generation strategy?

In 6.2.4, we proposed different test generation policies over EPZG. We here
assess the influence of the generation policy on the final results. P±1, PminMax2, and
PminMax4 obtain the same best results for two benchmarks (RE and CAS), meaning
that the most useful tests are those on the boundaries of the clock guards: those are
indeed able to expose the failure if the fault is not too large. On the other hand, for

6.3. Experimental evaluation 139

CF, P±1 performs slightly worse than the other two, meaning that also generating
tests inside the intervals (as done by PminMax2 and PminMax4) can be beneficial for
repair. Prnd is able to improve (but not totally repair) only CF; for the other two
benchmarks, instead, it is not able to improve neither SD nor SC.

RQ3: How long does the approach take?

The time taken by the process depends on the size of tainit and on the test generation
policy. The most expensive phase is the generation of the constraints, as it requires
to call IMITATOR for each test that must be accepted. As future work, we plan to
optimize this phase by modifying IMITATOR to synthesize valuations guaranteeing
the acceptance of multiple timed words in a single analysis. In the experiments, we
use as oracle another TA that we can visit for acceptance; this visit is quite fast and
so step Ã does not take too much time. However, in the real setting, the oracle is the
real system whose invocation time may be not negligible; in that case, the invocation
of the oracle could become a bottleneck and we would need to limit the number of
generated tests.

`1 `2 `3

`4

`5

x ≤ 4 x ≤ 5

x ≤ 6

x ≤ 3
a

x = 5
b

x ≥ 4
c

x ≥ 8

d

Figure 6.5: Repairing TAs with different structures – Another oracle TA

RQ4: Which is the process performance if pta does not include the oracle?

1 assumes that the user provides a PTA that contains the oracle. In 6.2.8, we
discussed about the possible consequences when this assumption does not hold.
We here evaluate whether the approach is still able to partially repair tainit using
an oracle having a different structure. We took the TA shown in 6.5 as oracle of
the running example, that is structurally different from tainit and pta shown in 6.1
(we name this experiment as REdo); the semantic conformance SC of tainit w.r.t. the
new oracle is shown at the last row of 6.34. We performed the experiments with
the new oracle using the greedy approach described in 1, and results are reported
in 6.4. We observe that policies P±1, PminMax2, and PminMax4, although they find
some failing tests, they are not able to improve SC. This is partially due to the fact

4Note that it does not make sense to measure the syntactical distance, as the structure of the oracle
is different.

140 Chapter 6. Repair of Timed Automata

Table 6.4: Experimental results – Different oracle

Bench. Policy time (s) # failed tests/ tarep
total Steps Á-Â Step Ã Step Ä Step Å # tests SC (%)

REdo P±1 2.083 0.007 0.005 2.055 0.013 10/ 44 98.72
REdo PminMax2 2.718 0.005 0.004 2.693 0.013 11/ 47 98.72
REdo PminMax4 2.686 0.004 0.003 2.658 0.012 11/ 47 98.72
REdo Prnd 0.763 0.007 0.001 0.676 0.075 1/ 3 99.5

that SC is computed on some timed words TDSC that may be not enough to judge
the improvement. On the other hand, as the three policies try to achieve a kind of
coverage of pta (so implicitly assuming 1), it could be that they are not able to find
interesting failing tests (i. e., they cannot be repaired); this seems to be confirmed by
the fact that the random policy Prnd is instead able to partially repair the initial TA
using only three tests, out of which one fails. We conclude that, if the assumption
does not hold, trying to randomly select tests could be more efficient.

6.4 Related Work

Testing timed automata Works related to ours are approaches for test case gen-
eration for timed automata. In [12, 10], a fault-based approach is proposed. The
authors defined 8 mutation operators for TAs and a test generation technique based
on bounded-model checking; tests are then used for model-based testing to check
that System Under Test (SUT) is conformant with the specification. Our approach
is different, as we aim at building a faithful representation of the SUT (i. e., the ora-
cle). Their mutation operators could be used to repair our initial TA, as done in [27];
however, due to continuous nature of TAs, the possible mutants could be too many.
For this reason, our approach symbolically represents all the possible variations of
the clock guards (similar to “change guard” mutants in [12]). Other classical test
generation approaches for timed automata are presented in [191, 109]; while they
aim at coverage of a single TA, we aim at coverage of a family of TAs described by
pta.

Learning timed systems In a different direction, learning timed systems has been
studied in the past. Learning consists in retrieving an unknown language, with
membership and equivalence queries made to a teacher. The (timed) language in-
clusion is undecidable for timed automata [13], making learning impossible for this
class. In [101, 135], timed extensions of the L∗ algorithm [25] were proposed for

6.5. Conclusions 141

event-recording automata [14], a subclass of timed automata for which language
equivalence can be decided. Learning is essentially different from our setting, as
the system to be learned is usually a white-box system, in which the equivalence
query can be decided. In our setting, the oracle does not necessarily know the struc-
ture of the unknown system, and simply answers membership queries. In addition,
we address in our work the full class of timed automata, for which learning is not
possible.

6.5 Conclusions

In this section we propose an approach for automatically repairing timed automata
clock guards. Our approach first parameterizes the initial timed automata, abstract-
ing it into a PTA, generates some tests, and then refines the abstraction by identify-
ing only those TAs contained in the PTA that correctly evaluate all the tests.

As future work, we plan to adopt also other formalisms to build the abstrac-
tion where to look for the repaired timed automata; The CoPtA model [143], for
example, extends timed automata with feature models and allows to specify ad-
ditional/alternative states and transitions. In addition, when the oracle acts as a
white-box, i. e., when the oracle is able to test language equivalence, we could also
make use of learning techniques for timed automata despite the undecidability of
the language inclusion problem, using the almost-always terminating procedure for
language inclusion in [208].

Part III

Tools to Support Model Repair

142

Chapter 7

CTWEDGE: Migrating Combinatorial
Interaction Test Modeling and
Generation to the Web

This chapter presents a tool to support combinatorial interaction testing (CIT) gen-
eration. Our model repair process can be performed only when faults are local-
ized, and testing, in particular combinatorial testing, is a way to generate highly
informational tests (i.e., it allows to achieve high coverage with very few tests) for
configurable models, in an automated way. The presence of tools for combinato-
rial interaction testing (CIT) is of fundamental importance because performing CIT
activities manually can be error prone and time consuming. The site pairwise.org1

lists at least 43 tools supporting several CIT activities while the paper [157] reviewed
the CIT literature and found around 20 tools.

Most of the tools are classical programs or plugins of existing programs/plat-
forms. In all these cases, the user has to download, install, and execute the program
on his/her machine. Some tools offer a GUI interface, for example, for defining the
models and run the test generation, while others rely on other programs for some
activities (like PICTMaster, based on PICT [68], that works entirely inside Microsoft
Excel). In [91] the authors presented a plugin for the eclipse IDE that helps the
user in writing CIT models with constraints by leveraging all the expected features
of a modern IDE, and it generates combinatorial test suites by using third party
programs (like CASA or ACTS). However, this classical approach poses some chal-
lenges. First, the user must install the chosen CIT tool, which in turn may require
some dependencies, like java, or in case of plugin, it requires the installation of an-

1See http://www.pairwise.org/tools.asp

143

http://www.pairwise.org/tools.asp

144
Chapter 7. CTWEDGE: Migrating Combinatorial Interaction Test Modeling and

Generation to the Web

other program or application like eclipse, excel and so on. Then the user must use
his/her machine for running the test generation algorithms. For experienced users
with powerful machines they can administer, this is not a real problem. However,
for novice users with not so powerful computer, or students that are just learning
the CIT principles, or software developers using computer they cannot administer,
this can become a cost to be considered and it may be an obstacle for the use of CIT.

Second, from the point of view of tool developers, the distribution of programs
means that they have little or no control on the software once is installed: when a
bug is discovered the developer has to fix the bug, publish a new version of the tool
and hope that the users will update their software. Moreover, the developer has no
idea about how the software is used: what are the typical scenarios of use (big or
small models, for example), what are the features that are mostly used (for example,
what modeling features are more used). Furthermore, it is difficult for tool develop-
ers to apply a cost model able to reward their effort in developing and deploying the
CIT tool. Indeed, most of the tools are given away for free by researchers supported
by their own organization.

A possible solution of these problems could be the offer of CIT features as soft-
ware as a service (SaaS). SaaS is software that is accessed through Internet by using a
classical web browser. The SaaS software is actually hosted on the vendor’s servers,
and the customers log in and perform tasks as necessary. The vendor is the one
who is ultimately responsible for hosting, upgrading and maintaining the program
as needed. There is an extensive literature about SaaS and the advantages (together
with limitations) are well known [153].

There are already experiences in using the web for CIT. For instance, CTWeb
Classic [204], CTWeb Plus [5], TestCover [198], Hexawise [2], and PairWiser [3].

However, as we will discuss in the related work section, each tool has its own
specific language to define combinatorial models, with its own predefined output
formats and a (limited) set of supported existing or in-house algorithms for test
case generation. Not all those tools are equally powerful or easy to use, and many
of them are commercial or require registration.

For this reason, starting from CITLAB [91], we have worked on a web based
application that allows the user to write CIT models in a similar way he/she would
do in a classical IDE and it offers test suite generation by means of server using
known and community evaluated test generation algorithms. Our system, called
CTWEDGE (Combinatorial Testing Web EDiting and GEneration), introduces a rich
language for combinatorial models, offers a powerful web editor, and allows the
user to generate the CIT test suites on a server. The only software needed to use
CTWEDGE is a modern web browser.

The chapter reflects the content of the paper [90] and it is organized as follows.
In Sect. 7.1 we present the modeling language (in an abstract way) we use to define

7.1. A simple language for CIT models 145

CIT models. In Sect. 7.2 we introduce our tool, its architecture, its web editing
capabilities, and the generator engine. A detailed comparison with other similar
web based tools is presented in Sect. 7.3. Future works and possible directions of
extension are presented in Sect. 7.4. Conclusions are reported in Sect. 7.5.

7.1 A simple language for CIT models

[90]We have devised a simple textual language for CIT models which is suitable to be
used in web editors. It allows the definition of parameters, each with its name and
(finite) domain, and it is based on our previous language defined for CITLAB [91].
We allow the following parameter types:

1. Boolean with only two possible values true and false (all lower or all upper
case). The two boolean constants are also considered of Boolean type.

2. Ranges that are integer intervals defined by their lower bound l and upper
bound u. With [l..u] we denote all the integers between l and u included.

3. Enumerative that are a list of possible values between {}. We are rather liberal
about the elements and we allow identifier starting also with a number, natural
numbers, and strings. For example, one could define a enumerative values in
this way:

values : {100, 1M, "my name", cit}

A simple example of combinatorial model with three parameters is shown in Fig.
7.1.

Model Phone
Parameters:
emailViewer : Boolean
textLines: [25 .. 30]
display : {16MC, 8MC, BW}

Figure 7.1: A smartphone example

There are some semantic rules about the parameters and their definitions, de-
fined as follows:

146
Chapter 7. CTWEDGE: Migrating Combinatorial Interaction Test Modeling and

Generation to the Web

1. The name of each parameter must be unique.

2. In Ranges, the lower bound l must be less than the upper bound u.

3. The elements in each Enumerative must be distinct. We allow two enumerative
parameters to share some elements, though.

7.1.1 Constraints

A distinctive feature of our language is the support of modeling constraints among
parameters. In most configurable systems, constraints or dependencies exist be-
tween parameters. Constraints may be introduced for several reasons, for example,
to model inconsistencies between certain hardware components, limitations of the
possible system configurations, or simply design choices [65]. In our approach, tests
that do not satisfy the constraints are considered invalid and do not need to be pro-
duced. For this reason, the presence of constraints may reduce the number of tests
of the final test suite (but it may also increase it [65]). However, the generation of
tests considering constraints is generally more challenging than the generation with-
out them, and several test generation techniques still do not support constraints, at
least not in a direct manner. In CTWEDGE we decided to focus more on techniques
supporting constraints.

In CTWEDGE, we adopt the language of propositional logic (with the usual logi-
cal operators) with equality and arithmetic to express constraints. To be more pre-
cise, we use propositional calculus, enriched by the arithmetic over the integers and
enumerative symbols. As operators, we admit the use of equality and inequality for
any variable, the usual Boolean operators for Boolean terms, and the relational and
arithmetic operators for numeric terms. To be more precise, Table 7.1 reports all the
rules we have defined to check if a constraint is semantically correct.

For example, we can write constraints in this way:

Model Phone
..
Constraints:
emailViewer => textLines > 28
emailViewer and display != 16MC => textLines > 28 + 3#

Many test suite generation tools provide a limited support for constraints. For
instance, AETG [63, 141] allows only simple constraints of type if then else or re-
quires. The language of CTWEDGE is in this aspect more expressive, as it is targeted
to be more general than existing tools. In the specific case of AETG, the translation

7.1. A simple language for CIT models 147

Expression Case Correct iff

e1 op e2 with op ∈ {=, 6=} → boolean
e2 op e1 with op ∈ {=, 6=} → boolean

e1 enumerative, e2 element e2 belongs to e1 elements
e1 enumerative, e2 enumerative e1 and e2 share at least one element
e1 range, e2 range e1 and e2 share at least one number
e1 range, e2 number always
e1 number, e2 number always
e1 boolean, e2 boolean always

e1 op e2 with op ∈ {<,≤,>,≥} → boolean
e2 op e1 with op ∈ {<,≤,>,≥} → boolean

e1 range, e2 range e1 and e2 share at least one number
e1 range, e2 number always
e1 number, e2 number always

e1 op e2 with op ∈ {∧,∨,→} → boolean
e2 op e1 with op ∈ {∧,∨,→} → boolean e1 boolean, e2 boolean always

¬e→ boolean e boolean always

e1 op e2 with op ∈ {+,−, ∗, /, %} → number

e1 number, e2 number e2 6= 0 if op = / or op = %
e1 range, e2 range always
e1 range, e2 number e2 6= 0 if op = / or op = %
e1 number, e2 range always

Table 7.1: Rules of CTWEDGE Language Validator for Constraints

of those templates into our logic is straightforward. For example the if then else
constraint can be translated by two implications. Other tools [65] allow constraints
only in the form of forbidden combinations [100]. Our language is more general,
as a forbidden tuple would be translated as a not statement. For instance, a forbid-
den pair emailViewer = false; display = 16MC would be represented by the following
constraint:

not (emailViewer = false and display = 16MC)

However, the explicit list of the forbidden combinations may explode and it may
become impractical and error-prone to represent it. For example, if the model of
mobile phones presented in Fig. 1 had a constraint that

"A front video camera requires also a 16MC display". This constraint would be trans-
lated into two forbidden tuples:

(emailViewer = true, display = 8MC);

(emailViewer = true, display = BW);

However, the translation as constraint in general form would be simply:

emailViewer => display = 16MC

which is more compact and more similar to the informal requirement.
In our language semantics, a test case is valid only if it does not contradict any

constraint in the specification. Others [52] distinguish between combinations to
be avoided if possible (soft constraints), and the forbidden combinations (hard con-
straints), which must always be avoided (our case).

148
Chapter 7. CTWEDGE: Migrating Combinatorial Interaction Test Modeling and

Generation to the Web

Figure 7.2: CitModel rule diagram

Other tools, like CASA [59], support only constraints in conjunctive normal
form, without arithmetic or relational operators.

7.1.2 Xtext

There are countless ways to define a language together with its parser. One emerg-
ing technique for Domain Specific Language modeling is the use of Xtext [83]. By
defining the grammar of the DSL of choice by means of a Xtext grammar, the lan-
guage designer obtains a parser, APIs to programmatically access models, a se-
rializer and a smart editor for it. The editor provides many features out-of-the-
box, such as syntax highlighting, content-assist, folding, jump-to-declaration and
reverse-reference lookup across multiple files. We had already used Xtext for defin-
ing the language in CITLAB [91]. Xtext support also the generation of a web editor,
as we present in the following section.

Grammar rules written in Xtext are very close to the standard (E)BNF production
rules. For instance, the main grammar rule that defines the whole CIT model is
defined as follows:

CitModel:
'Model' name=ID
'Parameters' ':' (parameters+=Parameter)+
('Constraints' ':' (constraints+=Constraint)+)?

Xtext can display the production rules by means of syntax diagrams, also known
as railroad diagrams. For example, the rule presented before for CitModel is shown
in Fig. 7.2.

Because Xtext is based on ANTLR, it does not allow left recursive parser rules
and parsing nested expressions is not as simple as writing a EBNF rule. The CTWEDGE
language parses the constraints by defining the precedence among operators implic-
itly by left-factoring expression definitions. For example, in order to parse the AND
operators before the OR operators, CTWEDGE introduces the following two rules
that are not left recursive:

OrExpression returns Expression:
AndExpression ({OrExpression.left=current}

7.2. CTWEDGE: CT Web Editor and Generator 149

OR_OPERATOR (right=AndExpression))*;

AndExpression returns Expression:
EqualExpression ({AndExpression.left=current}
AND_OPERATOR (right=EqualExpression))*;

The definitions of semantic constraints in Xtext is performed by user-defined val-
idator classes written in Java or in Xtend containing methods annotated by @Check.
For instance, to check that in the definition of any range domain of our CIT models
the upper bound is greater than the lower bound, we have introduced the following
checking method:
@Check
def checkRangeIsCorrect(Range range) {
if (range.getBegin() >= range.getEnd())
error("The second term must be greater ...");
}

7.2 CTWEDGE: CT Web Editor and Generator

In this section, we present our tool CTWEDGE. As we can see in Fig. 7.3, the tool is
composed by a language definition component (with its Xtext parser and validator),
a web-based editor for the CTWEDGE language, with some options for test genera-
tion and a test suite visualizer and exporter, and a test suite generator that exploits
third-party test generation tools.

The tool is written in Java and Xtext, and can be deployed on any Web-application
server, such as Apache Tomcat. It is publicly available at: http://foselab.unibg.
it/ctwedge/.

7.2.1 Combinatorial Testing Web Editor
In order to implement a web-based editor, we can leverage the Xtext framework,
since Xtext starting from version 2.9 offers an interface for integration of text editors
in web applications. The text editors are implemented in JavaScript, and language-
related services such as code completion are realized through HTTP requests to a
server-side component.

The Xtext web-based editor provides several features, like content assist to help
the user to complete the models, validation to check the correctness, syntax coloring,
and formatting.

http://foselab.unibg.it/ctwedge/
http://foselab.unibg.it/ctwedge/

150
Chapter 7. CTWEDGE: Migrating Combinatorial Interaction Test Modeling and

Generation to the Web

Figure 7.3: CTWEDGE architecture

The CTWEDGE web editor is based on Ace (Ajax.org Cloud9 Editor)2, but other
web editors (like Orion and CodeMirror) are available. Xtext does not yet provide
support for the recently standardized Language Server Protocol [1], which we plan
to include in our tool as a future work. A screenshot of the CTWEDGE web editor is
shown in Fig. 7.4. The web editor provides an immediate feedback while writing
by means of syntax highlighting, auto completion, and errors markings.

The validation of the model is performed run-time while the user writes it. If the
validator finds an error in the model, it generates an error message. The nature of
the error is indicated in the pop-up box appearing when positioning the cursor over
the error sign, and the point in which the error occurs is marked in the editor. Fig.
7.5 shows how model validation errors are displayed to the test engineer.

The editor allows to load predefined examples of combinatorial models, selected
from literature [181] and converted into CTWEDGE language format (with extension
.ctw).

Graphical components (buttons and option selectors) are built using the JavaScript
frameworks JQuery3 and Bootstrap4. The web application is fully compatible also
with mobile devices (Android and iOS), from any recent Web browser with JavaScript
enabled.

7.2.2 Test generator web service

2See https://ace.c9.io/
3JQuery: https://jquery.com/
4Bootstrap: https://getbootstrap.com/

https://ace.c9.io/
https://jquery.com/
https://getbootstrap.com/

7.2. CTWEDGE: CT Web Editor and Generator 151

Figure 7.4: CTWEDGE web editor

The function of actually generating a test suite from the test model and option pa-
rameter is web-served and performed by the test generation service which is the
component of CTWEDGE. The test generation service is composed by two modules:
a REST5 service and a language translator.

The REST service handles input model and option parameters for the generation,
calls the generators from which it gets back the tests and it is responsible to deliver
them to the web browser.

The test generator acts as a driver between CTWEDGE and the various third party
combinatorial test generation tools, which are usually accessible via their own APIs,
or via command line. The test generator exports the combinatorial model along
with the generator options, into the the specific language of the external tool, or
directly into the tool’s APIs. Then, it waits for the generator to compute the test
suite, and once ready, it passes it back to the REST service. If necessary, the generator
also maps any parameter values back to the original CTWEDGE model format. Each
external program needs its own translator.

The REST service accepts an HTTP GET or POST request with parameters as
described in Tab. 7.2. For sake of brevity, an example URL request to the web
generator service is shown in Fig. 7.6.

So far, we interfaced CTWEDGE with ACTS [217] and CASA [59]. ACTS is ac-
cessed via it internal APIs whereas CASA is called via command line.

The resulting test suite is returned in CSV6 format. The header line contains the
parameter names, and each following line represents a single test, with parameter

5REST: Representational State Transfer
6CSV: Comma Separated Values

152
Chapter 7. CTWEDGE: Migrating Combinatorial Interaction Test Modeling and

Generation to the Web

(a) Validation of Range parameter

(b) Code recommender. Unknown symbol error.

(c) Validation of relational operations

Figure 7.5: Examples of CTWEDGE validation errors

http://foselab.unibg.it/ctwedge.generator?model=Model%20Phone%
↪→ 20Parameter:%20...>28%20#&strength=2&generator=acts&ignConstr=
↪→ false

Figure 7.6: Generator URL example

values. The web front-end allows to download CSV file to further local use, and
shows the test suite in the browser by converting it into an HTML table. Conversion
is straightforward and done client-side via Javascript.

Arithmetic operations and relational operators (>, <, ≤, ≥) are not natively

7.2. CTWEDGE: CT Web Editor and Generator 153

Table 7.2: Request parameters to CTWEDGE generation service

Parameter type description values

model String the combinato-
rial model

as written and vali-
dated by the editor
(see Sec. 7.1)

strength Int the combinato-
rial interaction
strength

any integer above 1
(default is 2: pair-
wise)

generator Enum the tool to be
used

["acts", "casa"] (so far)

ignConstr Boolean if constraints
should be ig-
nored in test
generation

["true", "false"] (de-
fault is false)

supported by CASA, and in presence of such constraints, an error is reported to the
user, as in Fig. 7.7.

Figure 7.7: Message of operations not supported in constraints for CASA generator
tool

The HTML table showing the generated test cases is located below the editor
on the same window. This location is less invasive than a brand new tab as it does
not hide or replace the current combinatorial model in the editor. Despite it is not
immediately visible to the user, who may think the output is hidden, we believe
that it preserving the access to the current screen is the most important aspect to be
preserved.

The generator is called by the editor by AJAX, with an asynchronous XmlHttpRe-
quest.

A screenshot of how the generated test suite is presented to the user is shown in

154
Chapter 7. CTWEDGE: Migrating Combinatorial Interaction Test Modeling and

Generation to the Web

Figure 7.8: CTWEDGE visualization of the generated test suite

Fig. 7.8. It is shown as plain HTML table, with the possibility to download the data
as CSV.

7.3 Related Work

7.3. Related Work 155

With the success of the SaaS pattern, web-based tools have rapidly gained popular-
ity due to their portability and ease of use. There exist some web-based services also
for combinatorial test case generation, each with its own peculiarities. SaaS tools,
however, still represents a small number of all the available tools for test case gen-
eration: IDE plugins and desktop applications represent almost the totality of the
current tools. We looked for tools from the pairwise.org7 and softwaretesters.net8

tool catalogs, and from the web, to the best of our searching skills.

Tool URL Documentation

TestCover https://testcover.com https://testcover.com/sub/
instructions.php (visible after

registration)

CTWebClassic http://alarcostest.esi.uclm.
es/CombTestWeb/

combinatorial.jsp

http://alarcostest.esi.uclm.
es/CombTestWeb/stuff/

usersManual.pdf

CTWebPlus http:
//www.testcasegeneration.com
or http://www.ctwebplus.com/

http://www.ctwebplus.com/
stuff/userManual.pdf

HexaWise https://hexawise.com/ https://hexawise.com/
Hexawise_Introduction.pdf

PairWiser https:
//inductive.no/pairwiser/

https://inductive.no/
pairwiser/knowledge-base/

Table 7.3: Tool resource links

We compare the following five SaaS for CIT, listed in Tab. 7.3:

• TestCover [198] is a commercial web-based combinatorial test case generator
supported by Testcover.com, LLC, founded in 2003. The tool was also pre-
sented at IWCT 2016 [183].

• CTWeb Classic [204] is a free online tool for combinatorial testing and state
machine test case generation, developed at University of Castilla-La Mancha
(Spain).

• CTWeb Plus [5], an academic combinatorial test generation tool developed as
improvement of CTWeb Classic. CTWeb Plus is now commercially supported.

• HexaWise [2], a commercial combinatorial test case editor and generator, launched
in 2009 by Hexawise, Inc.

7See http://www.pairwise.org/tools.asp
8See https://softwaretesters.net/zbxe/index.php?mid=downloadtool&category=4258006&

sort_index=readed_count&order_type=desc

https://testcover.com
https://testcover.com/sub/instructions.php
https://testcover.com/sub/instructions.php
http://alarcostest.esi.uclm.es/CombTestWeb/combinatorial.jsp
http://alarcostest.esi.uclm.es/CombTestWeb/combinatorial.jsp
http://alarcostest.esi.uclm.es/CombTestWeb/combinatorial.jsp
http://alarcostest.esi.uclm.es/CombTestWeb/stuff/usersManual.pdf
http://alarcostest.esi.uclm.es/CombTestWeb/stuff/usersManual.pdf
http://alarcostest.esi.uclm.es/CombTestWeb/stuff/usersManual.pdf
http://www.testcasegeneration.com
http://www.testcasegeneration.com
http://www.ctwebplus.com/
http://www.ctwebplus.com/stuff/userManual.pdf
http://www.ctwebplus.com/stuff/userManual.pdf
https://hexawise.com/
https://hexawise.com/Hexawise_Introduction.pdf
https://hexawise.com/Hexawise_Introduction.pdf
https://inductive.no/pairwiser/
https://inductive.no/pairwiser/
https://inductive.no/pairwiser/knowledge-base/
https://inductive.no/pairwiser/knowledge-base/
http://www.pairwise.org/tools.asp
https://softwaretesters.net/zbxe/index.php?mid=downloadtool&category=4258006&sort_index=readed_count&order_type=desc
https://softwaretesters.net/zbxe/index.php?mid=downloadtool&category=4258006&sort_index=readed_count&order_type=desc

156
Chapter 7. CTWEDGE: Migrating Combinatorial Interaction Test Modeling and

Generation to the Web

• PairWiser [3], a commercial web-based tool provided by Inductive AS. The
online version was shut down January 15th, 2018. After that date, only the
standalone application, for own-server installation, is available.

All tools are well documented, with examples and tutorials. Links of on-line
editors and official documentation resources of these tools are shown in Tab. 7.3

TestCover [198] CTWeb Classic [204] CTWeb Plus [5] HexaWise [2] PairWiser [3] CTWEDGE
Language

Parameter Definition Enumerative Enumerative Enumerative Enumerative, Ranges (via
value expansion)

Enumerative Boolean, Enumerative,
Ranges

Constraints format in DPB notation: via
blocks (i.e., sets of allowed

combinations)

as if-then-else AND, OR, Else operators,
not nested

invalid pairs (if..then..) guided by select boxes
with rich choice of

operators

arbitrary formula

Numeric operators 3(in PHP functions) 7 3 3 7 3
State Machine support 3 3 3 7 7 7

Editing
Web-based editor text area text fields and buttons +

file upload
text fields, buttons,

drawing area
text fields and buttons text fields and buttons text area

Model Import/Export 3(Copy&Paste as text) 3 7 7 7 3(Copy&Paste as text)
Helping facilities 7 button-guided (no

facilities to build input
file to upload)

button-guided button-guided button-guided content-assist, syntax
highlight, in-line error

reporting
Example Models 3 3 to be rebuilt from

documentation file, not
one-click loadable

3 in the documentation 3

Generation
n-wise pairwise pairwise pairwise up to 6-way interaction +

mixed strength
up to 3-way interaction +

mixed strength
3

Supported generators All-pairs AETG, PROW, All
combinations, Each

choice, Random,
Bacteriologic

AETG, Pairwise,
All-combinations,

Each-choice, Comb,
Random

not specified not specified ACTS, CASA

Export formats HTML, WSDL interface HTML, CSV HTML HTML, Excel, CSV,
OPML

Excel, Jira issues CSV, HTML

Generate test scripts 3(for Selenium) 3(custom) 3(custom) 7 3(custom) 7
Coverage visualization 3 7 7 3 3 7

Other information
License Commercial Free Commercial Commercial Commercial Free
Registration subscription required optional subscription required subscription required own-server installation 7
Online storage 3 7 3 3 3(on own server) 7
Additional notes Functions in PHP into

constraints. Also
accessible via WSDL

interface.

Registration required for
models with more than 5

parameters

Features a drawing area
to represent states and

transition of a state
machine. The

combinatorial model
must be in the form of a

state machine.

Has also a chart showing
the interaction coverage

after each test

Pairwiser online was
shut down January 15,
2018. Available only for
own-server installation.

Allows to specify
combinations to include

in test suite.

–

Table 7.4: A comparison with other SaaS for CT

To compare the SaaS tools among them and w.r.t. CTWEDGE, we consider the
following aspects, that we believe to be among the most relevant for a test engineer
interested in using a web-based combinatorial test generation tool:

• Language. We look into the expressiveness of the accepted format for the
combinatorial model in input. This evaluation includes:

– Parameter definition: how the parameter types and values can be de-
fined. For instance, a tool may support Boolean parameters or ranges
of integers to express an enumerative made of all integers between two
numbers.

– Constraint format: if the constraints can be expressed as free combina-
tions of logical and arithmetic operations among parameters, or have spe-

7.3. Related Work 157

cial formats, such as a set of forbidden tuples, a set of implications, or a
set of if-then-else conditions.

– Numeric Operations: if constant numbers and basic numeric operations
(+, -, *, /) are allowed in the constraints and/or in the generated code of
test cases.

– State Machine support: if the language supports an easy input of state
machines, to generate combinatorial tests for their execution.

• Editing. We evaluate how simple is for the test-engineer to input the combi-
natorial model into the tool. This category includes the following aspects:

– Web-based editor structure: how is the GUI of the web editor for writing
the combinatorial model to be given in input to the tool; for example, if it
is made by a single text area, or some buttons and text fields. Some tools
use a single text area for the whole model, whereas some other tools use
text inputs for individual parameters, reducing the need for parsing and
text-highlighting.

– Import and export models: how the models can be exported to the file
system and imported. For example, a tool may allow importing a text file
written with another editor.

– Helping facilities: how the test engineer is guided in the input of the
model in the web editor; for example with syntax highlighting, content
assist, in-line error reporting, warning messages, or single text input fields
to fill, and self-explanatory buttons to click.

– Predefined example models: if there are examples of combinatorial mod-
els that can be easily loaded into the tool and executed to generate a test
suite.

• Generation. We evaluate how the test suite generation is performed and how
the output is presented to the user. This category includes the following as-
pects:

– n-wise: which interaction strengths of the generated test suite are allowed

– supported generators: which existing combinatorial test generation algo-
rithms are supported

– export formats: in which formats the output is made available to the test-
engineer

– Test-script generation: if there is a mechanism to allow the generated test
vectors to be directly inserted into test cases written in custom code.

158
Chapter 7. CTWEDGE: Migrating Combinatorial Interaction Test Modeling and

Generation to the Web

– Coverage visualization: if there is indication (textual or with charts) of
the coverage reached after the execution of each test in the generated test
suite.

• Other information. We consider aspects about the accessibility of the tool, and
related features. We look the following aspects

– License: if commercial, free, or open source.

– Registration: if it is mandatory, optional or not made available.

– Online storage: if any data (input models, or output test suites) can be
stored online.

– Additional notes: any other additional information that we consider worth
being noted.

Table 7.4 compares the five tools and CTWEDGE according to all these aspects.
Concerning the web editor, while TestCover uses, as CTWEDGE, a single text area

for combinatorial model input, all the others (CTWeb Classic, CTWeb Plus, Hexa-
Wise and PairWiser) feature a composer of combinatorial model guided by multiple
selectors, text fields, and buttons. This approach of using buttons and text input
fields, has the advantage of a quicker learning curve, and it does not need a lan-
guage grammar, nor a parser, nor the helping facilities typical of text-based editors,
such as auto-completion and syntax highlighting. However, it is not always the
preferable way to input combinatorial models in the tool. In fact, the availability of
a domain-specific language makes it possible to quickly and easily write, edit and
copy-paste combinatorial input models, and export, translate or port them to other
platforms and tools.

CTWeb Classic comes both with a guided editor and a form to upload a text file
containing the input of the tool, written in a domain specific language. Regarding
the textual way of proving input for test case generation, however, although CTWeb
Classic and TestCover have a good documentation, they have no facilities to help the
test engineer in writing models. CTWeb Classic does not have an online editor for
its own language (as it comes with just a file upload button), and TestCover has a
simple text area, lacking support for auto-completion, syntax-highlighting and all
the features proper of an IDE.

All the tried tools offer support for test case generation with constraints, to be
specified in their specific formats. TestCover even allows to specify custom func-
tions - in PHP code - to express constraints [183].

TestCover and CTWeb (Classic and Plus) offer pairwise test case generation, that
is very often the chosen interaction strength by test-engineers. For some applica-
tions, however, higher interaction strength is preferred. HexaWise supports up to

7.4. Future Work 159

6-way interaction strength, while PairWiser up to 3-way. CTWEDGE is, instead, the
only tool that does not pose limitation (in theory) on the interaction strength of the
test suite. However, HexaWise and PairWiser come with the additional possibility
to specify a mixed test suite strength, i.e., values of each single parameter may be
covered with different strength.

Still none of the tools supports the Microsoft Language Server Protocol [1], a
new common open protocol for language servers which provides programming
language-specific features to source code editors or integrated development envi-
ronments (IDEs). The main goal of the standard is to support programming in any
given language independently of editors or IDEs. We plan to extend CTWEDGE in
order to support LSP.

7.4 Future Work

There are several directions in which we plan to work.

Language extensions Adding expressive power to the language for combinatorial
models, in particular to express test seeds and goals, represents a direction for future
work. Test seeds allow a tester to force the inclusion of certain test cases in the
generated test suite [52]. Test seeds may be complete or partial. Test goals are extra-
constraints: relations among parameters to be satisfied by at least one test in the
generated test suites.

Some CIT approaches [181] introduce weights for parameter values. Weights re-
flect the importance of different values for a given parameter. The user can express
further requirements over the solution involving weights. Even if the same con-
straints may be expressed in our language, it may become impractical. We plan to
extend the CTWEDGE language in order to include user defined functions depend-
ing on parameter values. A possible function could be the weight of a parameter.
Constraints and test goals could use such functions to express complex testing re-
quirements.

Combinatorial model editor To make the transition to CTWEDGE easier, a possible
direction for future improvement is an importer that translates models written in
other generator formats, into CTWEDGE language format.

Secondly, although CTWEDGE already follows the SaaS approach, there are still
several features that could be added in order to offer new cloud-based services. The
web site could offer a storage and persistence service, and the logged user could
save his/her models on the CTWEDGE server and later recall the saved files and
export/import them in other formats. The CTWEDGE could offer analysis services,
like those presented in [31], able to find modeling faults. The user could use such

160
Chapter 7. CTWEDGE: Migrating Combinatorial Interaction Test Modeling and

Generation to the Web

techniques to check that the constraints are consistent, that there is no constraint
implied by other constraints, and that the parameters and their values are really
necessary. Also coverage measurement and analysis on the generated tests could be
useful in order to check that they actually cover all the testing requirements.

Another future direction is the visualization of the individual t-tuples, as covered
by each test in the test suite.

Another direction regards the way tests are generated. CTWEDGE produces the
tests in a synchronous mode: when the user calls the generator, the service starts
producing the tests. This approach is not feasible in case there are many requests or
the models become big. We plan to move to an asynchronous approach, in which
the user requests the test generation, the server queues all the requests and make
available on the server the test suites when they are generated.

Test case generation[90] Another direction for future work regards test case genera-
tion. The server is configured to run CTWEDGE generator in a synchronous mode:
the generator starts producing the test suite immediately, trying to serve all the re-
quests. The server could have performance issues due to overloading in case for
example there are many requests with large models. The web service could be im-
proved by attaching a process scheduler and a load balancer. Test suite generation
becomes therefore asynchronous also on the server, which queues the requests and
makes the test suites available as soon as they are generated.

External generation tool support An additional feature direction consists in the
expansion of the support for test case generators, as PROW [132], PICT [4], HSST9

[158], Medici [92], as well as an expansion on the customizations of each selected test
generator tool, such as the selection of the test generation algorithm inside ACTS:
IPOG [134], IPOG-D [134], IPOG-F [86], IPOG-F2 [86] and PaintBall [17]. The pos-
sibility to download the translated input file along with the executable command
parameters for each of the generators allows further customization and therefore
can be an interesting future extension of the tool.

Offline extensions Combinatorial test case generation is used as a part of an auto-
mated process for application testing. Thus running the test generation tool off-line
is needed, in certain scenarios, to ease interfacing with automated tools or with
IDEs during development process. We therefore plan to release a version of the
CTWEDGE editor as Eclipse plugin. Xtext, already generates an eclipse-based de-
velopment environment providing editing experience known from modern IDEs,
featuring a content assist, quick fixes, a project wizard, template proposal, outline
view, hyperlinking, and syntax coloring.

9HSST: Heuristic based on solution space tree

7.5. Conclusions 161

7.5 Conclusions

Generation of combinatorial test suites via web offers great advantages w.r.t. clas-
sical desktop applications. It is nowadays supported by a pool of tools, both open
source and commercial. However, to the best of our knowledge, none of them has
an integrated web editor support and a complete support of constraints. To work,
they have their own language, with often just examples as unique description, and
expect the user to write a file locally before uploading to the web-based tool. This
process requires the test engineer to use another tool, may it be just a stand-alone
text editor, with no auto-completion for that particular language, or a custom stand-
alone editor with some grade of code recommendation.

To offer a complete SaaS environment for CIT, we have developed and deployed
CTWEDGE. CTWEDGE was designed with three principles in mind: (1) installation-
free and download-free, (2) ease of use, and (3) extensibility to support more gen-
erators. By using Xtext, we have defined a simple textual language which includes
also the possibility to define complex constraints. Thanks to Xtext, a web editor can
be easily deployed and it offers classical editing features like syntax highlighting
and coloring, syntax validation, auto completion, and error messages. We have also
developed a REST service that is able to generate CIT test suites exploiting third-
party test generator programs. This test generators runs on the server and it can be
called from the editor, thus providing a complete SaaS experience to the tester.

Chapter 8

MixTgTe: Efficient and Guaranteed
Detection of t-Way Failure-Inducing
Combinations

This chapter presents a tool to support our model repair process by improving the
fault localization effectiveness, namely the failure-inducing combination detection.

By testing all the interactions till a given strength t, we can validate the system
or discover if it contains parameter combinations that cause failure. An interaction
of size t (or t-way interaction) is an assignment of a specific value to each of the
selected t parameters. Although the size of combinations causing faults is almost
always unknown, experiments show that generally even a low degree of interaction
is enough to discover faults [130]. One of the main goal of CIT research is to find
techniques that are able to cover all the interactions of a given strength with as few
tests as possible. In this way, the faults can be found by running only a possibly
small number of tests.

While test generation for CIT is a well-studied topic, fault detection and local-
ization is still an open problem, although there are now some works targeting diag-
nosis and bug characterization [115]. When a failing test has been found, it remains
unclear which combination in the failing test is responsible for the failure, since a
test contains many combinations of different sizes. Knowing the interaction (and,
therefore, also all the input configurations) that trigger failures is of help not only in
correcting bugs, but also in understanding the impact of them. The particular inter-
acting configuration that induces a failure, often directly reflects a use case scenario,
which can be traced back from the input configuration. Knowing only the test that
causes a fault, instead, often makes it impossible to trace back to the general use-

162

163

case scenario (maybe involving several other input configurations) that caused the
fault.

The problem is how to locate the combination that causes a failure when a fault
is discovered [159, 160]. Indeed, in case of failure, there is a masking effect among
the interactions [159] that makes hard the precise localization of the right combi-
nation. In order to avoid this masking effect, new tests are needed besides those
necessary to cover all the interactions as required by CIT. Moreover, the test suite
size optimization can play against fault localization: having each test to cover as
many interactions as possible reduces the size of the test suite, but it may make the
fault localization harder.

Classically, test generation and fault localization are done sequentially. First, a
combinatorial test suite is generated and then executed against the real system.
Then, if a fault has been found, new tests are built to try to locate the faulty combina-
tions. This process is not very efficient (no information about failures is used during
generation) and it generally does not guarantee to discover all the faulty combina-
tions. Lately, there have been some approaches that interleave test generation, test
execution, and fault localization [160]. Our approach follows this new trend and
tries to efficiently build test suites taking into account possible test failures during
test execution.

Most works do not guarantee to detect the real failure inducing combinations.
Most approaches show that they are able to identify very suspicious combinations
that are likely to be failure inducing [97], but no guarantee is given. However, under
some precise assumptions, also testing can locate bugs. For instance, if one knows
the maximum number and maximum strength of failure inducing interactions in
advance [66], also particular combinatorial test suites statically generated (called
locating arrays) can be used to identify those interactions. Our approach follows this
trend as well: under some rather general assumptions, we are able to (dynamically)
generate test suites that guarantee the detection of failure-inducing combinations.

The contribution is therefore twofold:
1. detect and identify all the failure-inducing interactions in a system, up to a

certain size t, if they exist;
2. doing it with a smaller test suite (compared to other techniques) by exploiting

information coming during test execution about possible failure of tests.
During test generation, our approach collects tuples that seem to cause failures

and tries to isolate them by finding those tuples that instead are passing. By using
this information, tests are generated and immediately executed, and the knowledge
base of the system updated accordingly.

The chapter reflects the content of the paper [28], and it is structured as follows.
Sect. 8.1 introduces the necessary background, Sect. 8.2 explains the definitions we
need in our approach, Sect. 8.3 presents the iterative process we propose that com-

164
Chapter 8. MixTgTe: Efficient and Guaranteed Detection of t-Way

Failure-Inducing Combinations

Model totinfo

Parameters:
tables: {t0, t1, t2}
row: {r0, r1, r2}
column: {c0, c1, c2}
table_attribute: {ta0, ta1, ta2, ta3, ta4, ta5}
input_attribute: {i0, i1, i2, i3, i4}
maxline: {m1, m2, m3, m4, m5}

Code 1: A combinatorial model of the input of totinfo program, in CTWedge

bines test generation, test execution, and identification of failure inducing combina-
tions. Sect. 8.4 discusses about the assumptions of the process and introduces some
theorems about its capabilities. Finally, Sect. 8.5 describes some experiments we per-
formed to evaluate the process, Sect. 8.6 reviews some related work, and Sect. 8.7
concludes the chapter.

8.1 Background

[28] We assume that the software under test (SUT) has m input parameters that are de-
scribed by a combinatorial model defined as follows.

Definition 8.1 (Combinatorial Model). Let P = {p1, . . . , pm} be the set of parameters.
Every parameter pi assumes values in the domain Di = {vi

1, . . . , vi
oi
}.

In order to model and manipulate combinatorial models, we use the tool CTWedge
[90]. Note that a combinatorial model may also contain constraints that, however,
are not considered in this work.

Example 8.1. Let’s consider the combinatorial model (originally proposed by Ghandehari
et al. [99]) of the totinfo program from the Siemens Suite in the Software Infrastructure
Repository (SIR) [73]; the model has m=6 parameters, namely P={tables, row, column,
table_attribute, input_attribute, maxline}, having enumerative values. Code 1 shows the
representation of such model in CTWedge. In the following, for presentation purposes, we
consider as running example a simpler combinatorial model M having 3 boolean parameters
P={A, B, C}.

Definition 8.2 (Test case). Given a combinatorial model M, a test case is an assignment of
values to every parameter {p1, . . . , pm} of M. Formally, a test f is an m-tuple f = (p1=v1,

8.1. Background 165

p2=v2, . . ., pm=vm), where vi ∈ Di, for i ∈ {1, . . . , m}. We identify with f (pi) the value
vi of parameter pi in test f . We use the function result(f) to indicate whether a test in a test
suite TS passes or fails on a system SUT:

result : TS→ {pass, fail}

i.e., result(f) is fail if and only if the test f fails, for example, because the SUT executed
with f produces a wrong value or because an error or an exception occurs; result(f) is pass
otherwise.

Note that other approaches [159] assume that different tests can fail in a different
way, i.e., they can be distinguished by exception traces, state conditions, etc. In our
setting, all the failing tests fail in the same way.

Example 8.2. Given the model M in Ex. 8.1, a possible test case is f =(A=0, B=1, C=0).
When a parameter is boolean, it can be denoted just with its name if its value is true (1), and
with a bar above its name if its value is false (0). The example then becomes f =ĀBC̄.

Definition 8.3 (Combination). A combination (or partial test, or tuple or schema) c is an
assignment to a subset Dom(c) of all the possible parameters P, formally Dom(c) ⊆ P. A
test is thus a particular combination in which Dom(c) = P. We identify with Ct the set of
all the combinations of size t for a given set of parameters P.

Example 8.3. For the model M introduced in Ex. 8.1, a possible combination is c=ĀB.

Definition 8.4 (Combination Containment). A combination c1 contains a combination
c2 if all the parameters of c2 are also parameters of c1, and their values are the same. For-
mally: Dom(c2) ⊆ Dom(c1) ∧ (∀pi ∈ Dom(c2) : c1(pi) = c2(pi)).

Example 8.4. For instance, for the running example M, the test f =ĀBC̄ contains the
combination c=ĀB.

Definition 8.5 (Test Suite). A test suite TS is a set of test cases. We denote with ETS the
Exhaustive Test Suite that contains all the possible tests that can be formed from the specified
combinatorial model; with CTSt, instead, we identify a Combinatorial Test Suite of strength
(at least) t, i.e., a test suite in which all the possible t-way interactions are covered by at least
one test.

Definition 8.6 (Failure-inducing combination). A combination c is a failure-inducing
combination (fic) for a test suite TS if each test that contains c fails. Formally, ∀ f ∈
TS : c ⊆ f → result(f)=fail. We identify with isFic(c, TS) the predicate that tells whether
the combination c is a failure inducing combination for a certain test suite TS.

We call c a true-failure-inducing combination if we consider all the tests in the exhaustive
test suite ETS, i.e., if isFic(c, ETS) holds. We call c a t-failure-inducing combination (fict),
if we consider all the tests in a CTSt, i.e., if isFic(c, CTSt) holds.

166
Chapter 8. MixTgTe: Efficient and Guaranteed Detection of t-Way

Failure-Inducing Combinations

Observation 1. From Def. 8.6, we observe that a combination c is guaranteed not to
be failure-inducing if there exists a test that contains it and does not fail.

Example 8.5. Let’s consider the model M introduced in Ex. 8.1 and the test suite shown in
Table 8.1a. By definition, all the failing tests (# 3, 5, 6, 7, and 8) are failure-inducing com-

Table 8.1: Test suites for running example

(a) ETS

test A B C result

1 0 0 0 pass
2 0 0 1 pass
3 0 1 0 fail
4 0 1 1 pass
5 1 0 0 fail
6 1 0 1 fail
7 1 1 0 fail
8 1 1 1 fail

(b) CTS2

test A B C result

7 1 1 0 fail
6 1 0 1 fail
4 0 1 1 pass
1 0 0 0 pass

binations. In addition, we can notice that also the 2-way combinations AB, AB̄, AC, AC̄,
and BC̄ are failure-inducing combinations, since all the tests containing them fail. Moreover,
also the 1-way combination A is failure-inducing. In this example, the test suite is an ex-
haustive test suite, therefore these combinations are also true-failure-inducing combinations.

Definition 8.7 (Minimal failure-inducing combination). A failure-inducing combina-
tion c is minimal (mfic) if and only if all the combinations in c (except c itself) are not failure
inducing in the test suite TS. Formally, isMfic(c, TS) if and only if isFic(c, TS) ∧ (∀c′ ⊂
c : ¬isFic(c′, TS)). If we consider a combinatorial test suite CTSt, we call c a t-minimal-
failure-inducing combination (mfict).

Example 8.6. In the test suite shown in Table 8.1a, the combinations c1=A and c2=BC̄ are
both minimal.

8.2. Definitions 167

8.2 Definitions

First we want to define when a failure-inducing combination has been located and
isolated by a suitable test suite TS.

Definition 8.8 (Isolated mfic). An mfic c is isolated by a test f of a test suite TS if and
only if c is the only fic in f , i.e.,

isIsoMfic(c, f , TS) ≡
isMfic(c, TS) ∧ c ⊆ f ∧ (∀(c′ 6= c) ⊂ f : ¬isMfic(c′, TS))

We say that a test suite TS isolates an mfic c iff

isIsoMfic(c, TS) ≡ (∃ f ∈ TS : isIsoMfic(c, f , TS))

Note that being able to isolate an mfic is particularly important for fault local-
ization (that should follow our process); indeed, if two or more mfics are present
in each failing test, it is more difficult to localize the fault as the mfics mask each
other [159]. However, it is not always possible to isolate mfics. Consider, for exam-
ple, a SUT with boolean parameters {A, B, C}, whose true-mfics are AB, AC, and
BC̄: AB cannot be isolated in this case.

Theorem 8.1. If the SUT has a true-mfic of strength t, in any combinatorial test suite CTSt
there exists a failing test case.

Proof. By definition of combinatorial test suite.

A consequence of the theorem is the next corollary.

Corollary 1. If there is no failing test in a combinatorial test suite CTSt, then there is no
true-mfic of size t.

However, this property is not sufficient to isolate mfics of size t, as stated by the
following theorem.

Theorem 8.2 (Insufficient accuracy of CTSt). A CTSt does not guarantee to isolate mfics
of size t.

Proof. Consider the running example whose true-mfics are A and BC̄. The combina-
torial test suite of strength t=2 shown in Table 8.1b only has ABC̄ and AB̄C as failing
tests. The detected mfics are A, BC̄, and B̄C. We would need at least one more pass-
ing test containing B̄C to correctly classify it (test #2 in Table 8.1a). Moreover, in
order to isolate BC̄, we would need one more test in which it fails alone (tests #3 in
Table 8.1a).

168
Chapter 8. MixTgTe: Efficient and Guaranteed Detection of t-Way

Failure-Inducing Combinations

8.3 The MIXTGTE method

Finding true-mfics can only be obtained using the exhaustive test suite ETS.
However, exhaustive testing is in general not possible; therefore, we propose the
approach MIXTGTE (Mix Test Generation and Test Execution) that tries to identify
and isolate mfics up to a given strength t. In order to do this, it uses combinatorial
test suites CTSt.

MIXTGTE is an iterative process, as shown in Fig. 8.1 and Alg. 3. It starts from

Figure 8.1: Overview of the user-driven iterations of the process alternating test
generation and detection of isolated mfics

Algorithm 3 MIXTGTE
1: ISOMFICS← ∅
2: FT ← ∅
3: TS← ∅
4: t← 1
5: while t ≤ |P|∧ User decides to continue do
6: MIXTGTEt(t, ISOMFICS, TS)
7: t← t + 1
8: end while

identifying combinations of size t=1 using the procedure MIXTGTEt, and progres-
sively repeats the search algorithm to combinations with higher size, until the user
(who, at every iteration, can inspect the set ISOMFICS of discovered isolated mfics
of size less or equal to t) decides to stop the process, or t reaches the number of pa-
rameters |P| of the system under test. The latter condition, however, is equivalent to

8.3. The MIXTGTE method 169

exercising the exhaustive test suite, and it is normally infeasible in practice, except
for trivial systems.

At each step, to keep limited the number of tests to execute on the SUT, the mini-
mal strength of the test suite used is equal to the size t of the detected combinations.
Indeed, by Thm. 8.1, we can observe that this guarantees to have in the test suite
all the mfics of size t. However, it could be some mfics are not isolated; therefore, at
each iteration, we also generate additional tests to isolate all the discovered mfics.

At each step, the user checks the returned sets of ISOMFICS to determine if it is
the case to continue to search for mfics of higher strength. The choice to continue or
not is based on the available budget, but may also depend on the returned mfics in
ISOMFICS and the test suite TS.

8.3.1 MIXTGTEt

Fig. 8.2 depicts the procedure MIXTGTEt that, given a certain combination size t,
and a set of previously executed tests, produces a combinatorial test suite of strength
t able to detect and isolate mfics of strength up to t. The process is described in detail

Figure 8.2: MIXTGTEt process to find and isolate mfics up to accuracy of strength t

in Alg. 4 and in the rest of the section.

170
Chapter 8. MixTgTe: Efficient and Guaranteed Detection of t-Way

Failure-Inducing Combinations

Algorithm 4 MIXTGTEt
Require: t: strength
Require: ISOMFICS: isolated mfics computed at step t-1 (empty if t=1)
Require: FT: failing tuples found at step t-1 (empty if t=1)
Require: TS: test suite computed at step t-1 (empty if t=1)

1: PT ← {c ⊆ f | f ∈ TS∧ result(f) = pass∧ c ∈ Ct}
2: FT ← FT ∪ {c ⊆ f | f ∈ TS∧ result(f) = fail∧ c ∈ Ct} \ PT
3: UT ← Ct \ (PT ∪ FT)
4: while ¬(UT = ∅ ∧ (FT = ∅ ∨ (∀c ∈ FT : isExplained(c, TS)))) do
5: f ← buildTest(UT, FT)
6: TS← TS∪ { f }
7: UPDATETUPLESETS(f , PT, FT, UT, ISOMFICS)
8: UPDATEMFICS(TS, FT, ISOMFICS)
9: end while

MIXTGTEt works on the following sets of combinations:

• UT (Unknown Tuples): the combinations of size t not appeared yet in any test
during the process;

• PT (Passing Tuples): the combinations of size ≤ t that were contained in at
least one passing test executed so far in the process;

• FT (Failing Tuples): the combinations of size ≤ t that were contained only by
failing tests, among all the tests executed so far in the process, excluding the
isolated mfics.

• ISOMFICS: the set of isolated mfics detected so far (of size ≤ t).

In addition, the process keeps track of the set of tests already run in the test suite
TS, together with the value of their result (either pass or fail).

We give a further definition that is used in the process.

Definition 8.9 (Explained fic). Given the set ISOMFICS and a fic c ∈ FT, c is said to be
explained if it implies one or more isolated mfics, i.e.,

isExplained(c, ISOMFICS) ≡
∃S ∈ P(ISOMFICS) : c→ ∧

m∈S
m

The rationale is that if a fic c contains1 one or more iso-mfics, the failure of the tests
Tc in which c fails can be explained. Of course, this is just a heuristic, and some other
test could show that actually c is the true mfic. The definition of explained fic will
be used in the process to balance between exploitation at strength t and exploration of
higher strengths.

1Note that, for conciseness, in the definition we use the propositional representation of tuples.

8.3. The MIXTGTE method 171

Tuple sets initialization

Initially, PT contains all the tuples of size t that are contained in a passing test of
TS (line 1); FT, instead, inherits the failing tuples from previous iteration, and is
enriched with t-tuples that are contained in a failing test, but not in a passing test
(line 2). UT is initialized with the remaining tuples of size t (line 3). ISOMFICS is
kept from the previous step.

Exit condition

The process exits as soon as no unknown tuples UT are present, and either there are
no failing tuples or all the failing tuples are explained (see Def. 8.9), i.e.,

UT = ∅ ∧ (FT = ∅ ∨ (∀c ∈ FT : isExplained(c, TS))) (8.1)

Test case generation

If the exit condition is not met (i.e., there is at least an unknown tuple (UT) or a
failing tuple (FT) that is not explained), the function buildTest generates a test f that
contains at least one tuple belonging to either UT, or to FT without being explained
by any subset of mfics in ISOMFICS. The generation works as shown in Alg. 5 and
described as follows:

Algorithm 5 BUILDTEST: Test case generation
Require: TS: the tests generated so far
Require: UT: unknown tuples
Require: FT: failing tuples

1: f ← ∅
2: if UT 6= ∅ then
3: for c ∈ UT do
4: if compatible(c, f) then
5: f ← f ∪ c
6: end if
7: if isCompleteTest(f) then
8: return f
9: end if

10: end for
11: f ← completeRnd(f)
12: return f
13: else
14: cne ← pickRnd({c ∈ FT|¬isExplained(c, TS)})
15: φ← cne ∧

∧
{ f∈TS|cne⊆ f }¬ f

16: return getModel(φ) . A test is a satisfying assignment
17: end if

172
Chapter 8. MixTgTe: Efficient and Guaranteed Detection of t-Way

Failure-Inducing Combinations

• if UT is not empty, we merge together as many tuples c ∈ UT as possible
(lines 3-12). Two tuples c and c′ cannot be merged if, for a given parameter pi,
pi has different values in c and in c′ (this is captured by predicate compatible
at line 4). If after this phase some parameters have no associated value, we
randomly generate values for them (line 11);

• if instead UT is empty, we randomly select a not-explained failing tuple c
(line 14); then, in lines 15-16 we ask the SMT solver to find a test that con-
tains c, but it is different from previous tests in TS (this is guaranteed to exist,
as shown in Thm. 8.3).

Test execution and tuple sets update

After each test f is generated, it is immediately executed, and, depending on the
result (pass/fail), the tuple sets are updated as described in Alg. 6:

Algorithm 6 UPDATETUPLESETS: Tuple sets update
Require: f : a test

1: if result(f) = fail then
2: MOVE(f , UT, FT)
3: else
4: MOVE(f , UT, PT)
5: MOVE(f , FT, PT)
6: MOVE(f , ISOMFICS, PT)
7: end if

8: procedure MOVE(f , sourceSet, destSet)
9: toMove← {(c ∈ sourceSet)|c ⊆ f }

10: sourceSet← sourceSet \ toMove
11: destSet← destSet∪ toMove
12: end procedure

1. If the test f fails, all combinations that are contained both in f and in the set
UT, are moved from UT to FT;

2. If the test passes, we can exploit Obs. 1 and modify the sets as follows:
(a) all combinations that are contained both in f and in the set UT, are moved

from UT to PT (line 4);
(b) all combinations that are contained both in f and in the set FT, are moved

from FT to PT (line 5);
(c) all combinations that are contained both in f and in the set ISOMFICS,

are moved from ISOMFICS to PT (line 6).
At this point, we can evaluate whether there are new isolated mfics, with the pro-

cedure shown in Alg. 7. If a tuple c ∈ FT turns out to be the only one (amongst all

8.4. Properties of the MIXTGTE process 173

Algorithm 7 UPDATEMFICS: ISOMFICS set update
Require: TS: the tests generated so far
Require: ISOMFICS: isolated mfics
Require: FT: failing tuples

1: for c ∈ FT do
2: if isIsoMfic(c, TS) then
3: FT ← FT \ {c}
4: ISOMFICS← ISOMFICS∪ {c}
5: end if
6: end for

the possible tuples) to explain the failure of a test f (i.e., it is isolated in f according
to Def. 8.8), it is added to ISOMFICS.

In summary, the status evolution of a combination c is depicted in the state ma-
chine shown in Fig. 8.3.

UT PT

FT ISOMFICS

pass

fail
pass pass

isIsoMfic(c, TS)

Figure 8.3: Status evolution of a tuple c throughout the process

Example 8.7. 1On model M presented in Ex. 8.1, if the true-mfics were A and BC̄, a possible
trace table of the process, with tests separated by the incremental maximum strength t, would
be the one presented in Table 8.2 (the scenario with test 8a). We observe that the true-mfics
have been correctly identified with the first two executions of MIXTGTEt (till test 6), i.e.,
tests 7 and 8a (for strength t=3) are not necessary, since the maximum strength of the true-
mfics is 2.

Instead, if the true mfics were AB̄, AC, and ĀBC̄, the process should be run three times
for correctly identifying them (using test 8b), since there is a true-mfic of size 3.

8.4 Properties of the MIXTGTE process

174
Chapter 8. MixTgTe: Efficient and Guaranteed Detection of t-Way

Failure-Inducing Combinations

Table 8.2: Example of MIXTGTE for detecting mfics of different sizes with a strength
up to t = 3

A B C result ISOMFICS FT PT UT

t
=

1

Fill FT-PT-UT {} {} {} {A, B, C, Ā, B̄, C̄}

1 0 0 0 pass {} {} {Ā, B̄, C̄} {A, B, C}

2 1 1 1 fail {} {A, B, C} {Ā, B̄, C̄} {}

3 0 1 1 pass {} {A} {Ā, B̄, C̄, B, C} {}

updatedMfics {A} {} {Ā, B̄, C̄, B, C} {}

t
=

2

Fill FT-PT-UT {A} {AB, AC} {ĀB̄, ĀC̄, B̄C̄, ĀB, ĀC, BC} {AB̄, AC̄, B̄C, BC̄}

4 1 0 0 fail {A} {AB, AC, AB̄, AC̄} {ĀB̄, ĀC̄, B̄C̄, ĀB, ĀC, BC} {BC̄, B̄C}

5 0 1 0 fail {A} {AB, AC, AB̄, AC̄, BC̄} {ĀB̄, ĀC̄, B̄C̄, ĀB, ĀC, BC} {B̄C}

updatedMfics {A, BC̄} {AB, AC, AB̄, AC̄} {ĀB̄, ĀC̄, B̄C̄, ĀB, ĀC, BC} {B̄C}

6 0 0 1 pass {A, BC̄} {AB, AC, AB̄, AC̄} {ĀB̄, ĀC̄, B̄C̄, ĀB, ĀC, BC, B̄C} {}

t
=

3

Fill FT-PT-UT {A, BC̄} {AB, AC, AB̄, AC̄, ABC, ĀBC̄, AB̄C̄} {ĀB̄C̄, ĀBC, ĀB̄C} {AB̄C, ABC̄}

7 1 0 1 fail {A, BC̄} {AB, AC, AB̄, AC̄, AB̄C, AB̄C̄, ABC, ĀBC̄} {ĀB̄C̄, ĀBC, ĀB̄C} {ABC̄}

a) Scenario in which test 8 fails

8a 1 1 0 fail {A, BC̄} {AB, AC, AB̄, AC̄, AB̄C, AB̄C̄, ABC, ĀBC̄, ABC̄} {ĀB̄C̄, ĀBC, ĀB̄C} {}

b) Scenario in which test 8 passes

8b 1 1 0 pass {} {AB̄, AC, AB̄C, AB̄C̄, ABC, ĀBC̄} {A, BC̄, AB, AC̄, ĀB̄C̄, ĀBC, ĀB̄C, ABC̄} {}

updatedMfics {AB̄, AC, ĀBC̄} {AB̄C, AB̄C̄, ABC} {A, BC̄, AB, AC̄, ĀB̄C̄, ĀBC, ĀB̄C, ABC̄} {}

In this section, we introduce some theorems assessing the capabilities of the pro-
posed process.

We first make an assumption that is needed for our process.

Assumption 2. All true-mfics can be isolated.

Theorem 8.3 (Test case generation). In the test case generation (see Sect. 8.3.1), it is
always possible to generate a test case.

Proof. When UT is not empty, the test f is generated by merging compatible tuples
from UT and then randomly selecting values for other parameters; since tuples in
UT are those that have never been observed in any test, the new test f is guaranteed
to exist. When UT is empty, the generated test must be an assignment satisfying
formula φ at line 15 of Alg. 5. Let’s assume that such test does not exist; it would
mean that all the possible tests Tcne containing cne have already been generated; there
would be two cases:

• at least one of the tests in Tcne passes; this is not possible, as, in this case, cne
would be in PT;

• all the tests in Tcne fail; also this is not possible, as, in this case, cne would be
either in ISOMFICS or explained by a subset of tuples in ISOMFICS.

Theorem 8.4 (Termination). The process is guaranteed to terminate.

8.5. Evaluation 175

Proof. The outer process MIXTGTE terminates when the user (i.e., the test engineer)
decides not to continue it, or when t = |P|.

The inner process MIXTGTEt terminates when the exit condition (see Eq. 8.1) is
met. The test generation phase (see Sect. 8.3.1) directly aims at emptying UT and
explaining all the not explained tuples in FT. Since, by Thm. 8.3, the generation is
always possible, the exit condition will be eventually met.

We want to prove that, under the assumption that the SUT has only true mfics of
limited strength, by running the process till that strength, we will find them.

Assumption 3. Each true-mfic has maximum strength t.

Theorem 8.5 (True-mfics found). If TRUE_MFICS is the set of true mfics and each c in
TRUE_MFICS has maximum strength t, then by running the process with strength equal
or greater than t, ISOMFICS is equal to TRUE_MFICS.

Proof. Under the stated assumption, the property is twofold: if c is a true-mfic, the
MIXTGTE will find it and if the MIXTGTE finds a c as mfic, then c is a true-mfic.

1. If c is a true-mfic then ISOMFICS will contain c. Let’s assume that c is a true-
mfic but ISOMFICS does not contain it at the end. By Thm. 8.1, c is contained
in a failing test of TS and so it is in FT at a given point. When the process
terminates, FT is either empty (and so c is in ISOMFICS), or all the tuples in
FT are explained (by Def. 8.9), i.e., they contain one or more iso-mfic. However,
the latter case is not possible, as c would not be minimal.

2. If c is in ISOMFICS, it is a true-mfic. Let’s assume that c is in ISOMFICS, but
it’s not a true-mfic. If c is in ISOMFICS, all tests containing it fail, and there
exists a test in which it is the only mfic; if it is not a true-mfic, it means that in
each test containing c there must be a combination c′ such that c ⊂ c′ and c′ is a
true-mfic and, therefore, added to ISOMFICS by point 1: in this case, c′ would
violate the minimality requirement. Note that, if c has size t, there cannot be a
true-mfic c′ of higher strength containing c by Assumption 3.

8.5 Evaluation

In this section, we evaluate the process and we compare it with other techniques for
fault interaction detection.

176
Chapter 8. MixTgTe: Efficient and Guaranteed Detection of t-Way

Failure-Inducing Combinations

8.5.1 Benchmarks

For the experiments, we selected some benchmarks, each one constituted by a faulty
version of the SUT S f and an oracle O. The assessment of the execution of a test f
(i.e., result in Def. 8.2) is performed by comparing the evaluations of f over S f and
O. For practicality, we build a combinatorial model M having the same parameters
of S f

2 and constraints that accept only the tests for which S f and O agree (the con-
straints are the negation of the true-mfics).3 Therefore, for each benchmark, we also
know the true-mfics in S f .

We used two sets of benchmarks described in Table 8.3. The first benchmark

Table 8.3: Benchmark properties

name |P| size TRUE_MFICS
(size (#))

B
E
N
C
H
A
R
T

runExA 3 23 1(1), 2(1)
runExB 3 23 2(2), 3(1)
art1 3 23 2(1)
art2 3 23 2(2)
art3 3 23 1(1), 2(1)
art4 7 27 2(1), 3(1)
art5 7 27 2(1)
art6 5 233151 3(1)

B
E
N
C
H
R
E
A
L

aircraft 8 2731 3(1), 4(1)
tomcat 12 283141 1(1), 2(2)
hsqldb 10 2961 1(1), 3(2)
gcc 10 283141 3(4)

jflex 13 2103241 2(1)

set, BENCHART, is constituted by artificial models of systems; we generated some of
these models with one true-mfic (art1, art5, and art6), and others with multiple
true-mfics. BENCHART also contains the running example, in its two versions shown in
Table 8.2. The second benchmark set, BENCHREAL, represents real systems: aircraft
is a Software Product Line model presented in [205] and taken from the SPLOT
repository4, and the others four are benchmarks used in Niu et al. [160].

2Note that S f and O have the same parameters and they only differ on the behaviour.
3Note that these constraints are not related to the combinatorial problem that, as stated in Sect. 8.1,

is unconstrained in our setting.
4http://www.splot-research.org/

8.5. Evaluation 177

In Table 8.3, column size reports the size of model M, presented in the abbre-
viated form k#paramsk × . . ., where k∈N+ and paramsk are the parameters having k
values; for example, 283141 indicates that the SUT has 8 parameters that can take
2 values, one parameter taking 3 values, and one parameter taking 4 values. Col-
umn TRUE_MFICS reports the number and size of true-mfics in M f ; we report each
possible size with the number of mfics of that size in parentheses. We also mark in
bold face the maximum strength of the true-mfic; in the experiments, we assume As-
sumption 3, and so we apply the approach only up to the known maximal strength
(according to Thm. 8.5, this guarantees to find all the mfics).

Note that we introduced a set of artificial benchmarks, BENCHART, as part of our
evaluation process, for different reasons, namely: (1) to study the behavior of our
process, MIXTGTE, on models known to have a single true-mfic, while varying the
size of the true-mfic and of the model; (2) to have a fair comparison with other exist-
ing methods (in particular FIC and SOFOT, which will be presented below, in Sect.
8.5.2), that work accurately only when there is a single mfic; (3) to observe the be-
havior of MIXTGTE when applied to models of gradually increasing complexity, from
models as simple as the running example, till slightly smaller models than the ones
in BENCHREAL; (4) to collect and show experiment results on the different behavior of
MIXTGTE with models made only by boolean parameters (and true-mfic of different
sizes), w.r.t. models with multi-value parameters, but a single true-mfic.

8.5.2 Compared approaches

[28]We compare our approach with some existing methods from literature, namely:
BEN: a process based on the first phase of the BEN tool proposed by Ghandehari

et al. [97]. The process consists in calling BEN for failure-inducing combination
detection, by providing an initial combinatorial test suite of a certain strength t, and
iterating over the size of the failure-inducing combinations to try to detect them.
This process has already been used for constraints validation and repair [89, 88].
The BEN tool is included in our experimental process as a jar file.

SOFOT: the Simplified One Factor One Time method to infer the Minimal Failure-
causing Schema (MFS) from a given failing test case, from Nie et al. [156]. This
method takes as input a set of failing tests, and tries to reduce each test to an mfic.
For each failing test f , it generates new tests by changing the value of each parame-
ter in f one by one. Note that the source code of this method is available in Python
from a later work by Zhang and Zhang [220]. As our automated evaluation script is
written in Java, we program it so that it calls Python via command line. This causes
some overhead which affects the total execution time in the experiments.

FIC: the Faulty Interaction Characterization method proposed by Zhang et al. [220].
It is similar to SOFOT, in the sense that it accepts in input a set of tests known to be
failing, and it tries to isolate the minimal failure-inducing combination(s) from it.

178
Chapter 8. MixTgTe: Efficient and Guaranteed Detection of t-Way

Failure-Inducing Combinations

It proceeds by considering one failing test a time, and changing the value of a pa-
rameter at a time, but, unlike SOFOT, it keeps the value changed. Furthermore, it
performs a few iterations until the original failing test, with the value of the detected
minimal failure-inducing combinations changed, passes. If there are two different
failure-inducing combinations in the same tests, it may find them, but without a
guarantee to be correct. We made a Java implementation of the algorithm described
in the paper [220].

ICT: the Interleaving CT approach proposed by Niu et al. [160]. It is a signifi-
cant improvement of SOFOT that alleviates its three main problems: redundant test
cases, multiple mfics, and masking effects (where multiple mfics are present in the
same test). Like SOFOT, it is composed of two phases, generation and identification.
Test generation is here made adaptive, one test at a time, in a similar way as the one
of our approach. This reduces the amount of tests needed, by forbidding the gen-
eration of new tests containing already discovered failure-inducing combinations.
The identification phase has a novel feedback checking mechanism (based on in-
formation coming from the execution of a few new proposed test cases), which can
check, up to a certain extent, whether the identified mfic is a true-mfic or not; and it
significantly improves the accuracy of the results w.r.t. SOFOT. The method is very
recent, and, although we could not manage to re-run the tool on new benchmarks,
we compared the results of MIXTGTE with the results of ICT reported in that paper
for a common set of benchmarks.

Since FIC and SOFOT require failing tests as input, but do not say how to find
such failing tests, we need to build a test suite to find such failing tests. In order to
try to make the comparison fair, we use, for all the methods5, an initial combinatorial
test suite CTSt of strength t= max

c∈TRUE_MFICS
|size(c)|, being TRUE_MFICS the set of

true-mfics (as shown in Table 8.3). CTSt is generated using ACTS6 for FIC, BEN,
and SOFOT. MIXTGTE, instead, generates tests in an adaptive way, as described in
Sect. 8.3.1. ICT, instead, uses AETG [63].

In the following, DET_MFICS denotes the set of mfics returned by a method; in
our case, it corresponds to ISOMFICS.

8.5.3 Results

We run our method and the compared 4 methods 10 times for each benchmark; re-
sults are the average across the runs. Experiments have been executed on a Mac OS
X 10.14, Intel Core i3, with 4GB of RAM. Code was written in Java, using CTWedge
libraries for combinatorial modeling, test generation, and test execution [90]. The
code and all the benchmarks are available online at https://github.com/fmselab/mixtgte.

5Note that MIXTGTE, BEN, and ICT already require a combinatorial test suite.
6https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software

8.5. Evaluation 179

Table 8.4 shows the results of the experiments. For each method, it reports the

Table 8.4: Experimental results (P: precision, R: recall, F: F-score, time is in ms)

model MIXTGTE FIC BEN SOFOT ICT
tests P R F time tests P R F time tests P R F time tests P R F time tests P R F time

B
E
N
C
H
A
R
T

runExA 7.6 1 1 1 15.9 8 1.00 1.00 1.00 0.4 7 0.20 0.50 0.29 53.2 8 0.75 0.50 0.58 518 – – – – –
runExB 8.0 1 1 1 4.9 8 0.75 1.00 0.86 0.6 8 0.25 0.33 0.29 9.4 8 0.75 1.00 0.86 735 – – – – –
art1 6.6 1 1 1 3.2 5 1.00 1.00 1.00 0.5 7 1.00 1.00 1.00 13.0 7 1.00 1.00 1.00 269 – – – – –
art2 8.0 1 1 1 5.4 7 1.00 1.00 1.00 0.6 7 0.50 0.50 0.50 13.8 8 0.50 0.50 0.50 396 – – – – –
art3 7.6 1 1 1 2.7 8 1.00 1.00 1.00 0.7 7 0.00 0.00 – 15.1 8 1.00 0.50 0.67 403 – – – – –
art4 36.9 1 1 1 79.7 29 0.67 1.00 0.80 1.8 26 0.00 0.00 – 64.8 61 1.00 1.00 1.00 2772 – – – – –
art5 14.7 1 1 1 5.0 12 1.00 1.00 1.00 0.5 18 1.00 1.00 1.00 14.1 20 1.00 1.00 1.00 769 – – – – –
art6 45.4 1 1 1 17.1 35 0.50 1.00 0.67 3.2 38 1.00 1.00 1.00 21.1 52 1.00 1.00 1.00 1830 – – – – –

B
E
N
C
H
R
E
A
L

aircraft 89.8 1 1 1 156.5 71 1.00 1.00 1.00 18.4 62 0.00 0.00 – 56.4 115 1.00 1.00 1.00 4157 – – – – –
gcc 88.5 1 1 1 134.5 64 0.50 0.50 0.50 8.9 60 1.00 0.50 0.67 56.1 142 0.75 0.75 0.75 4934 89.0 0.77 0.65 0.70 1118

hsqldb 169.8 1 1 1 3752.8 97 1.00 1.00 1.00 36.6 55 0.00 0.00 – 532.2 443 1.00 0.67 0.80 19612 88.3 1.00 1.00 1.00 2094
jflex 22.9 1 1 1 9.1 15 1.00 1.00 1.00 1.6 23 1.00 1.00 1.00 15.2 31 1.00 1.00 1.00 978 31.6 1.00 1.00 1.00 187
tomcat 65.9 1 1 1 111.9 28 0.67 0.67 0.67 4.1 23 0.00 0.00 – 31.5 128 1.00 1.00 1.00 5675 128 1.00 1.00 1.00 5671

Average 44.0 1 1 1 331 29.8 0.85 0.94 0.88 5.99 26.2 0.46 0.45 0.44 68.9 79.3 0.90 0.84 0.86 3311 67.4 0.94 0.91 0.92 988

total number of different tests required to complete the detection7, and the execu-
tion time in milliseconds. Moreover, in order to measure the quality of the returned
mfics, we use classical measures as precision (P), recall (R), and F-score (F). Precision
is defined as:

precision =
|DET_MFICS∩ TRUE_MFICS|

|DET_MFICS|
Precision measures the percentage of found mfics that are true-mfics. If precision is
not 1, the developer will spend some time in doing fault localization for a fic that is
not a true-mfic (those in DET_MFICS \ TRUE_MFICS).

Recall is defined as:

recall =
|DET_MFICS∩ TRUE_MFICS|

|TRUE_MFICS|

It measures how many true-mfics are actually identified. If the recall is not 1, the
developer is not aware of a true-mfic that causes a fault (those in TRUE_MFICS \
DET_MFICS).

The F-measure is the combination of precision and recall, defined as follows:

F-score =
2× precision× recall

precision + recall

We now evaluate the approach answering the following three research questions.

7If a test is generated twice by a method, we count it only once.

180
Chapter 8. MixTgTe: Efficient and Guaranteed Detection of t-Way

Failure-Inducing Combinations

RQ1: How is the effectiveness (in terms of precision and recall) of MIXTGTE w.r.t. other
techniques?

From the results presented in Table 8.4, we observe that MIXTGTE always achieves
maximum precision and recall; this is expected, as Thm. 8.5 guarantees that, un-
der the assumption that we know the maximum strength t, executing MIXTGTE till
strength t produces an ISOMFICS set (i.e., DET_MFICS) equal to TRUE_MFICS. All
the other techniques do not provide this theoretical guarantee.

Among the other methods, ICT has the highest values for precision, recall, and F-
score (92% on average) on the 4 available benchmarks [160]. For 3 benchmarks, ICT
correctly identified all the TRUE_MFICS; only for gcc, some are wrongly identified
(precision 77%) and some are not found (recall 65%).

Also FIC and SOFOT showed to be able to correctly identify the true-mfics in
many occasions, although not with the same overall accuracy as ICT in terms of
F-score (88% and 86%). We believe that this is due not only to the fixed amount
of tests asked for the identification phase of those methods (they change always one
parameter at a time, and only once), but also to the masking effect, i.e., when there
are two mfics present in a same test. This effect may happen in general, as explained
in Thm. 8.2. As an example of this fact, consider the running example described in
Ex. 8.1 and the test suite generated by SOFOT shown in Table 8.5. Let’s recall that
the SUT is made of three binary parameters {A, B, C}, with two true-mfics, A and
BC̄. By providing to SOFOT the faulty test cases observed with a combinatorial test
suite of strength t = 2 (that it is also the maximum strength of the true-mfics, so
the correct settings for the experiments) generated with ACTS, the SOFOT method
is able to correctly identify only the mfic A. Table 8.5 reports, at the beginning, the
CTS2 generated by ACTS; it contains two failing tests for which SOFOT tries to find
the mfic. In test ¬, both true-mfics A and BC̄ are contained; all the additional tests
generated by SOFOT for this test (obtained by changing one parameter at a time)
fail. Therefore, for test ¬, SOFOT does not find any mfic, i.e., it does not find A
nor BC̄. This is due to the masking effect in test ¬ between A and BC̄. The tests
generated for the failing test , instead, correctly identifies A as mfic.

BEN is the method with the lowest F-score; this is because BEN is configured to
produce few additional tests and uses heuristics to measure the suspiciousness of a
failing tuple, and this may lead to wrong results.

RQ2: How does our approach compare with the others in terms of number of tests?

Overall, the number of tests required by MIXTGTE is comparable to ICT. On the
four real benchmarks in common, MIXTGTE requires slightly fewer tests for gcc

8.5. Evaluation 181

Table 8.5: Execution trace of SOFOT on example SUT

Generation of CTS2 with ACTS (to have some failing test)

A B C result
1 1 1 0 failing test ¬
2 1 0 1 failing test
3 0 1 1 pass
4 0 0 0 pass

Identification by SOFOT (tests added to find mfics)

additional tests for failing test ¬

A B C result
5 0 1 0 fail
6 1 0 0 fail
7 1 1 1 fail

No mfic found

additional tests for failing test

A B C result
8 0 0 1 pass
– 1 1 1 fail
– 1 0 0 fail

A identified as mfic

and jflex, but more tests for the other two benchmarks. For hsqldb, MIXTGTE re-
quires almost the double of the tests. This is due to the fact that ICT applies efficient
heuristics to limit the number of tests that are asked in addition to the initial combi-
natorial test suite; MIXTGTE, instead, does not have such strong optimizations, that
we plan to investigate as future work. For this particular benchmark hsqldb, ICT
is better (or equal) than our approach on any aspect (it also achieves 100% F-score);
however, it does not provide any particular correctness guarantee.

SOFOT requires the highest amount of tests, and it obtains a lower recall, but a
higher precision than FIC. The other two analyzed methods (FIC and BEN) require
fewer tests (almost half of the test of MIXTGTE on average), but, as described in
RQ1, they also achieve less precision and recall than both MIXTGTE and ICT.

RQ3: How does our approach compare with the others in terms of time?

All the reported times (for all the approaches) do not include the time for actually
exercising the real system to determine the result (pass/fail) of the test. Indeed, the
real system has been mocked by a model, since we know the true-mfics beforehand.

182
Chapter 8. MixTgTe: Efficient and Guaranteed Detection of t-Way

Failure-Inducing Combinations

We cannot directly compare the execution time of ICT and SOFOT. Indeed, we
were not able to rerun ICT on our machine (we report the results of the original
paper [160]). For SOFOT, instead, we need to perform calls to an external Python
program from Java, that introduce a big overhead.

The execution time for our process varies a lot depending on the number of
generated tests, and the maximum strength achieved. It is less than 20ms for more
than half of the benchmarks; however, it takes around 3.8 secs for hsqldb, which has
two true-mfics of size 3, and one of size 1. The mfic of size 1 causes several tests to
fail, masking the effect of the 3-way mfics. Note that, although gcc has four 3-way
true-mfics, it takes less computation time because less tests are needed to isolate the
mfics from the other failing tuples, as more tests are passing.

Generally, BEN is quite fast as it does not produce too many tests, and the time
is not affected too much by the model size; in our case, instead, time is more depen-
dent on the benchmark characteristics (model size, number of true-mfics, presence
of masking effect, etc.).

FIC is the fastest method, as it only requires, on average, around 6ms per bench-
mark, with a maximum time of 36.6ms for hsqldb.

8.6 Related Work

Identifying the real failure inducing combinations is an area of active research in
combinatorial testing [156, 128].

Previous works in detecting failure-inducing interactions are based on post-analysis
of the test results of covering arrays (CAs), or on adaptive or non-adaptive test gen-
eration techniques. Yilmaz et al. [215] applied a post-analysis classification tree tech-
nique to analyze the result of CAs to find the differences between passing and fail-
ing tests. However, CA is not suitable to detect mfics precisely. Among non-adaptive
methods, there is an approach based on pseudo-Boolean constraint solving and op-
timization, but its accuracy is highly affected by the chosen test suite [219]. Locating
and detecting arrays (LDAs) [66], and error locating arrays (ELAs) [148] are other
non-adaptive approaches: they require a given strength t and a maximum number
of faulty interactions d, and they can detect and locate at most d faulty interactions
of size up to t. However, the size of the test suite often becomes very large. That is
why, recently, adaptive methods appear to be more studied in literature. They in-
clude Wang’s IterAIFL method [209], which is based on AIFL by Shi et al. [185], two
adaptive algorithms proposed by Martinez et al. [148], and all the methods used
to compare our process in the experiments: FIC (and also the variant FIC_BS) by
Zhang et al. [220], BEN [98], SOFOT [156], and ICT [160].

8.7. Conclusions 183

While InterAIFL, FIC and SOFOT may not correctly identify multiple mfics in a
system, since they may be overlapping or there is a masking effect, the two adap-
tive algorithms of Martinez work better but they can only locate mfics up to size
2. The ICT approach by Niu et al. [160], still derived from SOFOT, overcomes its
limitations, making a significant improvement in the accuracy of the detected com-
binations. BEN [98] is tailored to locate faults in the code, but in the first phase it
provides an algorithm to detect suspicious combinations and, with some heuristics,
failure-inducing combinations. However, as implemented so far, it is not very ac-
curate with the initial test suites provided as input: an initial test suite of higher
strength could improve accuracy of the detected mfics. Unlike the other methods,
MIXTGTE does not distinguish between the two phases of the input test generation
and additional adaptive test, but it merges those phases into one single process, that
keeps track of the status of all the possible t-way tuples throughout the process. This
way, MIXTGTE has shown to correctly detect all the mfics of a system, up to a cer-
tain strength t decided by the user, and it guarantees them to be correct under the
assumption that there are no faults caused by an interaction of strength higher than
t.

8.7 Conclusions

In this chapter we propose an approach for finding minimal failure-inducing combi-
nations (mfics), that alternates test generation and test execution. Under the assump-
tion that the maximum strength of true-mfics is limited to t, running the process till
strength t guarantees to find all and only the true-mfics; experimental comparison
with state of the art approaches confirmed this fact. Achieving this total correctness
does not affect too much the test suite size and the execution time: w.r.t. the second
best approach (ICT) in terms of accuracy, MIXTGTE produces slightly fewer tests in
reasonable time.

The current work does not support constraints in the combinatorial model; their
handling is planned as future work.

Chapter 9

Conclusion

In this thesis, we have proposed a method consisting in using model-based software
testing techniques to drive the inference and repair of models of software systems.
It consists in novel applications of model-based testing that go beyond detecting
and localizing faults in code, and that perform little repairs to preserves domain
knowledge and support engineers in maintaining consistency between all the soft-
ware artifacts, and localizing faults also in the model. We presented applications
to repair combinatorial models, feature models, and timed automata. The works
presented in this thesis have been published in different forms in a journal paper,
and in conference papers. The list of publications is reported in Sect. 1.2. In the next
sections, we summarize the contribution of the thesis and describe some possible
future lines of research.

Contributions of the thesis

We introduced the goal of this thesis, summarized the contributions, and gave a list
of the published papers, in Chapter 1. In Chapter 2, we described the state of the art
of the main techniques in software engineering to support solutions to the problem
of model repair.

In Chapter 3, we presented our novel iterative, test-driven automated approach
to repair software models. It is composed by three main operations: test generation,
fault localization, and model repair.

This framework has been applied for three different types of software model,
each of them is treated in a different chapter. In Chapter 4 describe the application of
the automated approach to combinatorial models, having configuration constraints.
Specifically, in Sect. 4.1 we evaluated the quality of combinatorial test generation

184

185

policies, we described the actual CIT model repair process in Sect. 4.2, and in Sect.
4.3 we showed an application of it to detect constraints among parameters in XSS
attack strings, that trigger vulnerability. Empirical evaluation shows that the pro-
cess achieves on average 37% accuracy on the combinatorial model benchmarks,
and 78.8% accuracy for XSS vulnerability condition detection.

In Chapter 5 we presented the application of the repairing process to feature
models, in the context of software product line engineering. Specifically, the process
is applied to the hierarchical and simple cross-tree constraints in Sect. 5.1 using
mutations, and to arbitrarily complex constraints among features in Sect. 5.2 using
logical manipulation of propositional formulas. Due to the complexity of the repair
phase on its own, both techniques focus only on the model repair part, assuming
an update request is given in input. Such update request can potentially obtained by a
fault localization technique, or can come directly from a change in the requirements.
Empirical analysis on the devised process that uses mutations to update feature
models shows that, on average, around 89% of the requested changes are applied.

Chapter 4 presents the application of the devised repair approach to the sce-
nario of timed automata. By parametrizing the clock guards of the timed automata,
and exercising the real-time system with timed words as tests, we can constrain the
clock-guards values into ranges, and pick a value inside these ranges to obtain the
repaired timed automata. The approach has been evaluated on systems with up
to 16 locations and 10 parameters, achieving almost 100% accuracy in most of the
cases.

Finally, in Chapter 7 and Chapter 8 we presented two tools to support the first
two phases of our process for model repair, respectively testing (CTWEDGE) and
fault localization (more precisely, failure-inducing combinations detection: MIXTGTE).

Future Work

As future work, we plan to apply test-driven repair of other model types, if nec-
essary through an abstraction and parametrization process (as did in Timed Au-
tomata, see Chapter. 6). A possible model is abstract state machines. In addition to
following the future directions given in the single chapters, we also plan to improve
the process of combinatorial models repair by improving the accuracy of the fault
localization strategy.

Although these contributions have also been implemented, the tools are tailored
towards producing experiments tables on the benchmarks proposed in the differ-
ent papers: they need a revision to make them user-friendly. Apart from CTWedge
(Chapter 7), which is even hosted and usable as a SaaS, the rest, although the code is
accessible on Github, have room for improvement to make them more user-friendly
for researchers and engineers: this step could further promote the further develop-
ment of the findings of our research.

186 Chapter 9. Conclusion

Another future work direction consists in making the processes more automated.
In some cases, in fact, manual intervention is needed (to asses the oracle, to decide
process parameters, and even just for moving, renaming some files, or translating
between file formats), especially for timed automata repair (Chapter 6) and for XSS
vulnerabilities conditions detection (Sect. 4.3).

Finally, further work needs to be done to improve scalability of the approch.
So far, evaluation shows that these methods terminate in a reasonable amount of
time with models having up to 100 parameters, and with small numbers in other
parameter values (such as maximum test suite strength, or population size for the
evolutionary approach of feature models). Further studies and improvements are
needed to extend the approach to models of larger size.

Bibliography

[1] https://github.com/microsoft/language-server-protocol.

[2] https://hexawise.com/.

[3] https://inductive.no/pairwiser/.

[4] https://osdn.net/projects/pictmaster/.

[5] http://www.ctwebplus.com/.

[6] Ieee standard glossary of software engineering terminology. IEEE Std 610.12-
1990, pages 1–84, Dec 1990.

[7] Software Product Lines: Practices and Patterns. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2001.

[8] Hadil Abukwaik, Mohammed Abujayyab, Shah Rukh Humayoun, and Di-
eter Rombach. Extracting conceptual interoperability constraints from API
documentation using machine learning. In Proceedings of the 38th International
Conference on Software Engineering Companion - ICSE '16, pages 701–703. ACM
Press, 2016. 00002.

[9] Mathieu Acher, Paul Temple, Jean-Marc Jézéquel, José A. Galindo, Jabier Mar-
tinez, and Tewfik Ziadi. Varylatex: Learning paper variants that meet con-
straints. In Proceedings of the 12th International Workshop on Variability Modelling
of Software-Intensive Systems, VAMOS 2018, pages 83–88, New York, NY, USA,
2018. ACM.

[10] Bernhard K. Aichernig, Klaus Hörmaier, and Florian Lorber. Debugging
with timed automata mutations. In Andrea Bondavalli and Felicita Di Gi-
andomenico, editors, SAFECOMP, volume 8666 of Lecture Notes in Computer
Science, pages 49–64. Springer, 2014.

187

188 Bibliography

[11] Bernhard K. Aichernig, Elisabeth Jöbstl, and Stefan Tiran. Model-based mu-
tation testing via symbolic refinement checking. Science of Computer Program-
ming, 97(P4):383–404, January 2015.

[12] Bernhard K. Aichernig, Florian Lorber, and Dejan Nickovic. Time for mutants
– Model-based mutation testing with timed automata. In Margus Veanes and
Luca Viganò, editors, TaP, volume 7942 of Lecture Notes in Computer Science,
pages 20–38. Springer, 2013.

[13] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Com-
puter Science, 126(2):183–235, April 1994.

[14] Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock automata: A
determinizable class of timed automata. Theoretical Computer Science, 211(1-
2):253–273, 1999.

[15] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-time
reasoning. In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors,
STOC, pages 592–601, New York, NY, USA, 1993. ACM.

[16] Benoit Amand, Maxime Cordy, Patrick Heymans, Mathieu Acher, Paul Tem-
ple, and Jean-Marc Jézéquel. Towards learning-aided configuration in 3d
printing: Feasibility study and application to defect prediction. In Proceedings
of the 13th International Workshop on Variability Modelling of Software-Intensive
Systems, VAMOS ’19, pages 7:1–7:9, New York, NY, USA, 2019. ACM.

[17] P. Ammann and J. Offutt. Using formal methods to derive test frames in
category-partition testing. In Computer Assurance, 1994. COMPASS ’94 Safety,
Reliability, Fault Tolerance, Concurrency and Real Time, Security. Proceedings of the
Ninth Annual Conference on, pages 69–79, Jun 1994.

[18] Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge Uni-
versity Press, 2008.

[19] Sofia Ananieva, Matthias Kowal, Thomas Thüm, and Ina Schaefer. Implicit
constraints in partial feature models. In Proceedings of the 7th International
Workshop on Feature-Oriented Software Development, FOSD 2016, pages 18–27,
New York, NY, USA, 2016. ACM.

[20] Étienne André, Paolo Arcaini, Angelo Gargantini, and Marco Radavelli. Re-
pairing timed automata clock guards through abstraction and testing. In Dirk
Beyer and Chantal Keller, editors, Tests and Proofs, pages 129–146, Cham, 2019.
Springer International Publishing.

Bibliography 189

[21] Étienne André, Thomas Chatain, Emmanuelle Encrenaz, and Laurent Fri-
bourg. An inverse method for parametric timed automata. International Jour-
nal of Foundations of Computer Science, 20(5):819–836, October 2009.

[22] Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat. IMITA-
TOR 2.5: A tool for analyzing robustness in scheduling problems. In Dimitra
Giannakopoulou and Dominique Méry, editors, FM, volume 7436 of Lecture
Notes in Computer Science, pages 33–36. Springer, August 2012.

[23] Étienne André, Ichiro Hasuo, and Masaki Waga. Offline timed pattern match-
ing under uncertainty. In Anthony Widjaja Lin and Jun Sun, editors, ICECCS,
pages 10–20. IEEE CPS, 2018.

[24] Étienne André and Shang-Wei Lin. Learning-based compositional parame-
ter synthesis for event-recording automata. In Ahmed Bouajjani and Silva
Alexandra, editors, FORTE, volume 10321 of Lecture Notes in Computer Science,
pages 17–32. Springer, 2017.

[25] Dana Angluin. Learning regular sets from queries and counterexamples. In-
formation and Computation, 75(2):87–106, 1987.

[26] Paolo Arcaini, Angelo Gargantini, and Marco Radavelli. An evolutionary pro-
cess for product-driven updates of feature models. In Proceedings of the 12th
International Workshop on Variability Modelling of Software-Intensive Systems, VA-
MOS 2018, pages 67–74, New York, NY, USA, 2018. ACM, ACM.

[27] Paolo Arcaini, Angelo Gargantini, and Marco Radavelli. Achieving change re-
quirements of feature models by an evolutionary approach. Journal of Systems
and Software, 150:64–76, 2019.

[28] Paolo Arcaini, Angelo Gargantini, and Marco Radavelli. Efficient and guar-
anteed detection of t-way failure-inducing combinations. In 2019 IEEE In-
ternational Conference on Software Testing, Verification and Validation Workshops
(ICSTW), pages 200–209. IEEE, IEEE, April 2019.

[29] Paolo Arcaini, Angelo Gargantini, and Marco Radavelli. A process for fault-
driven repair of constraints among features. In Proceedings of the 23rd Interna-
tional Systems and Software Product Line Conference - Volume B, SPLC ’19, pages
71:1–71:9, New York, NY, USA, 2019. ACM.

[30] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. How to optimize
the use of SAT and SMT solvers for test generation of Boolean expressions.
The Computer Journal, 58(11):2900–2920, 2015.

190 Bibliography

[31] Paolo Arcaini, Angelo Gargantini, and Paolo Vavassori. Validation of mod-
els and tests for constrained combinatorial interaction testing. In The 3rd In-
ternational Workshop on Combinatorial Testing (IWCT 2014) In conjunction with
International Conference on Software Testing ICSTW, pages 98–107. IEEE, 2014.

[32] Paolo Arcaini, Angelo Gargantini, and Paolo Vavassori. Generating tests for
detecting faults in feature models. In Software Testing, Verification and Validation
(ICST), 2015 IEEE 8th International Conference on, pages 1–10, April 2015.

[33] Paolo Arcaini, Angelo Gargantini, and Paolo Vavassori. Automatic detection
and removal of conformance faults in feature models. In 2016 IEEE Interna-
tional Conference on Software Testing, Verification and Validation (ICST), pages
102–112, April 2016.

[34] Paolo Arcaini, Angelo Gargantini, and Paolo Vavassori. Automated repairing
of variability models. In Proceedings of the 21st International Systems and Soft-
ware Product Line Conference - Volume A, SPLC ’17, pages 9–18, New York, NY,
USA, 2017. ACM.

[35] Paolo Arcaini, Pavel Ježek, and Jan Kofroň. Modelling the hybrid ertms/etcs
level 3 case study in s pin. In International Conference on Abstract State Machines,
Alloy, B, TLA, VDM, and Z, pages 277–291. Springer, 2018.

[36] Andrea Arcuri. Evolutionary repair of faulty software. Applied Soft Computing,
11(4):3494 – 3514, 2011.

[37] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.
The Oracle Problem in Software Testing: A Survey. IEEE Transactions on Soft-
ware Engineering, 41(5):507–525, May 2015.

[38] Don Batory. Feature models, grammars, and propositional formulas. In Pro-
ceedings of the 9th International Conference on Software Product Lines, SPLC’05,
pages 7–20, Berlin, Heidelberg, 2005. Springer-Verlag.

[39] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated anal-
ysis of feature models 20 years later: A literature review. Information Systems,
35(6):615–636, 2010.

[40] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and
tools. In Jörg Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lec-
tures on Concurrency and Petri Nets, Advances in Petri Nets, volume 3098 of Lec-
ture Notes in Computer Science, pages 87–124. Springer, 2003.

Bibliography 191

[41] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wąsowski. A survey of variability model-
ing in industrial practice. In Proceedings of the Seventh International Workshop
on Variability Modelling of Software-intensive Systems, VaMoS ’13, pages 7:1–7:8,
New York, NY, USA, 2013. ACM.

[42] Armin Biere. Preprocessing and inprocessing techniques in SAT. In Kerstin
Eder, João Lourenço, and Onn Shehory, editors, Hardware and Software: Verifi-
cation and Testing, pages 1–1, Berlin, Heidelberg, 2012. Springer Berlin Heidel-
berg.

[43] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Sym-
bolic model checking without bdds. In International conference on tools and
algorithms for the construction and analysis of systems, pages 193–207. Springer,
1999.

[44] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability,
volume 185. IOS press, 2009.

[45] Darius Blasband. The Rise and Fall of Software Recipes. Reality Bites Publishing,
2016.

[46] Silvia Bonfanti, Andrea Bombarda, Angelo Gargantini, Marco Radavelli, Feng
Duan, and Yu Lei. Combining model refinement and test generation for con-
formance testing of the ieee phd protocol using abstract state machines. In
Testing Software and Systems - 31th IFIP WG International Conference, ICTSS
2019, Paris, France, October 15-17, 2018, Proceedings, 2019.

[47] Jan Bosch. Software product families in nokia. In Henk Obbink and Klaus
Pohl, editors, Software Product Lines, pages 2–6, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[48] Josip Bozic, Bernhard Garn, Ioannis Kapsalis, Dimitris Simos, Severin Win-
kler, and Franz Wotawa. Attack pattern-based combinatorial testing with
constraints for web security testing. In IEEE Int. Conf. on Software Quality,
Reliability and Security, 2015.

[49] M. Brambilla, J. Cabot, and M. Wimmer. Model-Driven Software Engineering in
Practice. Morgan & Claypool, 2012.

[50] R. Brownlie, J.Prowse, and M.S. Phadke. Robust testing of AT&T PMX/star-
MAIL using OATS. AT&T Technical Journal, 71(3):41–47, 1992.

192 Bibliography

[51] Randal E Bryant. Binary decision diagrams. In Handbook of model checking,
pages 191–217. Springer, 2018.

[52] Renée C. Bryce and Charles J. Colbourn. Prioritized interaction testing for
pair-wise coverage with seeding and constraints. Information and Software
Technology, 48(10):960 – 970, 2006. Advances in Model-based Testing.

[53] David Buchfuhrer and Christopher Umans. The complexity of boolean for-
mula minimization. J. Comput. Syst. Sci., 77(1):142–153, January 2011.

[54] Johannes Bürdek, Timo Kehrer, Malte Lochau, Dennis Reuling, Udo Kelter,
and Andy Schürr. Reasoning about product-line evolution using complex
feature model differences. Automated Software Engineering, 23(4):687–733, Dec
2016.

[55] K. Burr and W. Young. Combinatorial test techniques: Table-based automa-
tion, test generation, and code coverage. In Proceedings of the Intl. Conf. on
Software Testing Analysis and Review, pages 503–513, October 1998.

[56] Andrea Calvagna and Angelo Gargantini. Combining satisfiability solving
and heuristics to constrained combinatorial interaction testing. In Catherine
Dubois, editor, TAP, volume 5668 of Lecture Notes in Computer Science, pages
27–42. Springer, 2009.

[57] Andrea Calvagna and Angelo Gargantini. A formal logic approach to con-
strained combinatorial testing. Journal of Automated Reasoning, 45(4):331–358,
2010. Springer.

[58] Andrea Calvagna, Angelo Gargantini, and Paolo. Vavassori. Combinatorial
interaction testing with CitLab. In Sixth IEEE International Conference on Soft-
ware Testing, Verification and Validation - Testing Tool track, 2013.

[59] CASA: Covering arrays by simulated annealing.

[60] Daniele Catteddu. Cloud computing: benefits, risks and recommendations
for information security. In Web application security, pages 17–17. Springer,
2010.

[61] Fei Chiang and Renee J. Miller. A unified model for data and constraint repair.
In Data Engineering (ICDE), 2011 IEEE 27th International Conference on, pages
446–457. IEEE, 2011. 00046.

[62] John Joseph Chilenski and Steven P. Miller. Applicability of modified condi-
tion/decision coverage to software testing. Software Engineering Journal, 9:193–
200(7), September 1994.

Bibliography 193

[63] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG system:
An approach to testing based on combinatorial design. IEEE Transactions On
Software Engineering, 23(7):437–444, Jul 1997.

[64] M.B. Cohen, M.B. Dwyer, and Jiangfan Shi. Constructing interaction test
suites for highly-configurable systems in the presence of constraints: A greedy
approach. Software Engineering, IEEE Trans. on, 34(5):633–650, 2008.

[65] Myra Cohen, Matthew B. Dwyer, and Jiangfan Shi. Interaction testing of
highly-configurable systems in the presence of constraints. In ISSTA Inter-
national symposium on Software testing and analysis, ISSTA ’07, pages 129–139,
New York, NY, USA, 2007. ACM, ACM Press.

[66] Charles J. Colbourn and Daniel W. McClary. Locating and detecting arrays for
interaction faults. Journal of Combinatorial Optimization, 15(1):17–48, January
2008.

[67] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Meth-
ods, Tools, and Applications. 01 2000.

[68] Jacek Czerwonka. Pairwise testing in the real world: Practical extensions to
test-case scenarios. In Proceedings of 24th Pacific Northwest Software Quality
Conference, Citeseer, pages 419–430, 2006.

[69] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton, and
B. M. Horowitz. Model-based testing in practice. In International Conference on
Software Engineering ICSE, pages 285–295, New York, May 1999. Association
for Computing Machinery.

[70] S.R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, and C.M. Lott. Model-based
testing of a highly programmable system. In Software Reliability Engineering,
1998. Proceedings. The Ninth International Symposium on, pages 174–179, 1998.

[71] Jean-Marc Davril, Edouard Delfosse, Negar Hariri, Mathieu Acher, Jane
Clelang-Huang, and Patrick Heymans. Feature model extraction from large
collections of informal product descriptions, August 22 2013.

[72] Edwin D. de Jong, Richard A. Watson, and Jordan B. Pollack. Reducing bloat
and promoting diversity using multi-objective methods. In Proceedings of the
3rd Annual Conference on Genetic and Evolutionary Computation, GECCO’01,
pages 11–18, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers
Inc.

194 Bibliography

[73] Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel. Supporting con-
trolled experimentation with testing techniques: An infrastructure and its
potential impact. Empirical Software Engineering: An International Journal,
10(4):405–435, 2005.

[74] Fabien Duchene, Roland Groz, Sanjay Rawat, and Jean-Luc Richier. Xss vul-
nerability detection using model inference assisted evolutionary fuzzing. In
IEEE Int. Conference on Software Testing, Verification and Validation (ICST), pages
815–817, 2012.

[75] I. S. Dunietz, W. K. Ehrlich, B.D. Szablak, C.L. Mallows, and A. Iannino. Ap-
plying design of experiments to software testing. In IEEE/Computer Society,
editor, Proc. Int’l Conf. Software Eng. (ICSE), pages 205–215, 1997.

[76] Amador Durán, David Benavides, Sergio Segura, Pablo Trinidad, and Anto-
nio Ruiz-Cortés. FLAME: a formal framework for the automated analysis of
software product lines validated by automated specification testing. Software
& Systems Modeling, 16(4):1049–1082, Oct 2017.

[77] A. Egyed. Scalable consistency checking between diagrams - the VIEWIN-
TEGRA approach. In Proceedings 16th Annual International Conference on Au-
tomated Software Engineering (ASE 2001), pages 387–390, San Diego, CA, USA,
2001. IEEE Comput. Soc.

[78] A. Egyed. A scenario-driven approach to trace dependency analysis. IEEE
Transactions on Software Engineering, 29(2):116–132, February 2003.

[79] A. Egyed and P. Grunbacher. Automating requirements traceability: Beyond
the record & replay paradigm. In Proceedings 17th IEEE International Conference
on Automated Software Engineering,, pages 163–171, Edinburgh, UK, 2002. IEEE
Comput. Soc.

[80] A. Egyed and P. Grunbacher. Identifying requirements conflicts and coop-
eration: how quality attributes and automated traceability can help. IEEE
Software, 21(6):50–58, November 2004.

[81] Alexander Egyed. Fixing Inconsistencies in UML Design Models. In 29th
International Conference on Software Engineering (ICSE’07), pages 292–301, Min-
neapolis, MN, USA, May 2007. IEEE.

[82] Agoston E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.
Springer Verlag, 2003.

Bibliography 195

[83] Moritz Eysholdt and Heiko Behrens. Xtext: Implement your language faster
than the quick and dirty way. In Proceedings of the ACM International Conference
Companion on Object Oriented Programming Systems Languages and Applications
Companion, OOPSLA ’10, pages 307–309, New York, NY, USA, 2010. ACM.

[84] Johnny Maikeo Ferreira, Silvia Regina Vergilio, and Marcos Antonio Quinái-
aferreia. A mutation approach to feature testing of software product lines. In
The 25th International Conference on Software Engineering and Knowledge (SEKE)
Engineering, Boston, MA, USA, June 27-29, 2013, pages 232–237. Knowledge
Systems Institute Graduate School, 2013.

[85] Eduardo Figueiredo, Nelio Cacho, Claudio Sant’Anna, Mario Monteiro, Uira
Kulesza, Alessandro Garcia, Sérgio Soares, Fabiano Ferrari, Safoora Khan,
Fernando Castor Filho, and Francisco Dantas. Evolving software product
lines with aspects: An empirical study on design stability. In Proceedings of
the 30th International Conference on Software Engineering, ICSE ’08, pages 261–
270, New York, NY, USA, 2008. ACM.

[86] Michael Forbes, Jim Lawrence, Yu Lei, Raghu N Kacker, and D Richard
Kuhn. Refining the in-parameter-order strategy for constructing covering ar-
rays. Journal of Research of the National Institute of Standards and Technology,
113(5):287, 2008.

[87] OWASP Foundation. OWASP Top 10 2017. https://www.owasp.org/index.
php/Top_10-2017_A7-Cross-Site_Scripting_(XSS). [Online; accessed 19-
April-2018].

[88] Angelo Gargantini, Justyna Petke, and Marco Radavelli. Combinatorial In-
teraction Testing for Automated Constraint Repair. In 2017 IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW),
pages 239–248. IEEE, March 2017.

[89] Angelo Gargantini, Justyna Petke, Marco Radavelli, and Paolo Vavassori. Val-
idation of constraints among configuration parameters using search-based
combinatorial interaction testing. In Search Based Software Engineering - 8th
International Symposium, SSBSE 2016, Raleigh, NC, USA, October 8-10, 2016,
Proceedings, pages 49–63, 2016.

[90] Angelo Gargantini and Marco Radavelli. Migrating combinatorial interaction
test modeling and generation to the web. In 2018 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW), pages 308–
317, 2018.

https://www.owasp.org/index.php/Top_10-2017_A7-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10-2017_A7-Cross-Site_Scripting_(XSS)

196 Bibliography

[91] Angelo Gargantini and Paolo Vavassori. CitLab: a laboratory for combinato-
rial interaction testing. In Workshop on Combinatorial Testing (CT) In conjunction
with International Conference on Software Testing (ICST 2012, April 17-21), pages
559–568, Montreal, Canada, 2012.

[92] Angelo Gargantini and Paolo Vavassori. Efficient combinatorial test genera-
tion based on multivalued decision diagrams. In Eran Yahav, editor, Hardware
and Software: Verification and Testing, Haifa Verification Conference HVC 2014,
volume 8855 of Lecture Notes in Computer Science, pages 220–235, Cham, 2014.
Springer International Publishing.

[93] Bernhard Garn, Ioannis Kapsalis, Dimitris E Simos, and Severin Winkler. On
the applicability of combinatorial testing to web application security testing: a
case study. In Proceedings of the 2014 Workshop on Joining AcadeMiA and Industry
Contributions to Test Automation and Model-Based Testing, pages 16–21. ACM,
2014.

[94] Bernhard Garn, Marco Radavelli, Angelo Gargantini, Manuel Leithner, and
Dimitris E. Simos. A fault-driven combinatorial process for model evolution
in XSS vulnerability detection. In Franz Wotawa, Gerhard Friedrich, Ingo Pill,
Roxane Koitz-Hristov, and Moonis Ali, editors, Advances and Trends in Artifi-
cial Intelligence. From Theory to Practice, pages 207–215, Cham, 2019. Springer
International Publishing.

[95] B. J. Garvin, M. B. Cohen, and M. B. Dwyer. An improved meta-heuristic
search for constrained interaction testing. In 1st International Symposium on
Search Based Software Engineering, SSBSE ’09, pages 13–22, Washington, DC,
USA, May 2009. IEEE Computer Society.

[96] Daochuan Ge, Meng Lin, Yanhua Yang, Ruoxing Zhang, and Qiang Chou.
Quantitative analysis of dynamic fault trees using improved sequential binary
decision diagrams. Reliability Engineering & System Safety, 142:289–299, 2015.

[97] Laleh Sh Ghandehari, Jaganmohan Chandrasekaran, Yu Lei, Raghu Kacker,
and D. Richard Kuhn. BEN: A combinatorial testing-based fault localization
tool. In Software Testing, Verification and Validation Workshops (ICSTW), 2015
IEEE Eighth International Conference on, pages 1–4. IEEE, 2015.

[98] Laleh Sh Ghandehari, Yu Lei, Raghu Kacker, D Richard Rick Kuhn, David
Kung, and Tao Xie. A combinatorial testing-based approach to fault localiza-
tion. IEEE Transactions on Software Engineering, 2018.

[99] Laleh Shikh Gholamhossein Ghandehari, Mehra N. Bourazjany, Yu Lei,
Raghu N. Kacker, and D. Richard Kuhn. Applying Combinatorial Testing to

Bibliography 197

the Siemens Suite. In 2013 IEEE Sixth International Conference on Software Test-
ing, Verification and Validation Workshops, pages 362–371. IEEE, March 2013.

[100] Martin Charles Golumbic and Irith Ben-Arroyo Hartman. Graph Theory, Com-
binatorics and Algorithms: Interdisciplinary Applications. Springer Publishing
Company, Incorporated, 2011.

[101] Olga Grinchtein, Bengt Jonsson, and Martin Leucker. Learning of event-
recording automata. Theoretical Computer Science, 411(47):4029–4054, 2010.

[102] Mats Grindal, Jeff Offutt, and Sten F. Andler. Combination testing strategies:
a survey. Softw. Test, Verif. Reliab, 15(3):167–199, 2005.

[103] Martin L. Griss. Implementing product-line features by composing aspects.
In Proceedings of the First Conference on Software Product Lines : Experience and
Research Directions: Experience and Research Directions, pages 271–288, Norwell,
MA, USA, 2000. Kluwer Academic Publishers.

[104] Jamal El Hachem, Vanea Chiprianov, Ali Babar, and Philippe Aniorte. To-
wards methodological support for secure architectures of software-intensive
systems-of-systems. In Proceedings of the International Colloquium on Software-
intensive Systems-of-Systems at 10th European Conference on Software Architecture,
page 9. ACM, 2016.

[105] M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke, and Y. Zhang. Search
based software engineering for software product line engineering: A survey
and directions for future work. In Proceedings of the 18th International Software
Product Line Conference (SPLC ’14), SPLC ’14, pages 5–18, New York, NY, USA,
2014. ACM.

[106] Klaus Havelund, Kim Guldstrand Larsen, and Arne Skou. Formal verification
of a power controller using the real-time model checker uppaal. In Joost-Pieter
Katoen, editor, Formal Methods for Real-Time and Probabilistic Systems, pages
277–298, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[107] Edith Hemaspaandra and Henning Schnoor. Minimization for generalized
boolean formulas. In Proceedings of the Twenty-Second International Joint Con-
ference on Artificial Intelligence - Volume Volume One, IJCAI’11, pages 566–571.
AAAI Press, 2011.

[108] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, and
Yves Le Traon. Towards automated testing and fixing of re-engineered feature
models. In Proceedings of the 2013 International Conference on Software Engineer-
ing, pages 1245–1248. IEEE Press, 2013.

198 Bibliography

[109] Anders Hessel, Kim Guldstrand Larsen, Marius Mikucionis, Brian Nielsen,
Paul Pettersson, and Arne Skou. Testing real-time systems using UPPAAL.
In Robert M. Hierons, Jonathan P. Bowen, and Mark Harman, editors, Formal
Methods and Testing, An Outcome of the FORTEST Network, Revised Selected Pa-
pers, volume 4949 of Lecture Notes in Computer Science, pages 77–117. Springer,
2008.

[110] D.E. Hinkle, W. Wiersma, and S.G. Jurs. Applied Statistics for the Behavioral Sci-
ences. Number 663 in Applied Statistics for the Behavioral Sciences. Houghton
Mifflin, 2003.

[111] Daniel Hinterreiter, Herbert Prähofer, Lukas Linsbauer, Paul Grünbacher, Flo-
rian Reisinger, and Alexander Egyed. Feature-oriented evolution of automa-
tion software systems in industrial software ecosystems. In 2018 IEEE 23rd In-
ternational Conference on Emerging Technologies and Factory Automation (ETFA),
volume 1, pages 107–114. IEEE, 2018.

[112] Gunel Jahangirova, David Clark, Mark Harman, and Paolo Tonella. An Em-
pirical Validation of Oracle Improvement. IEEE Transactions on Software Engi-
neering, pages 1–1, 2019.

[113] Gizela Jakubowska and Wojciech Penczek. Modelling and checking timed
authentication of security protocols. Fundamenta Informaticae, 79(3-4):363–378,
2007.

[114] Gizela Jakubowska, Wojciech Penczek, and Marian Srebrny. Verifying security
protocols with timestamps via translation to timed automata. In Proc. of the In-
ternational Workshop on Concurrency, Specification and Programming (CS&P’05),
pages 100–115. Citeseer, 2005.

[115] Rekha Jayaram and R. Krishnan. Approaches to Fault Localization in Com-
binatorial Testing: A Survey. In Smart Computing and Informatics, volume 78,
pages 533–540. Springer Singapore, Singapore, 2018.

[116] Yue Jia, Myra B. Cohen, Mark Harman, and Justyna Petke. Learning combi-
natorial interaction test generation strategies using hyperheuristic search. In
Proceedings of the Int. Conf. on Software Engineering - Volume 1, ICSE ’15, pages
540–550, 2015.

[117] Yue Jia and Mark Harman. An analysis and survey of the development of
mutation testing. IEEE Trans. Softw. Eng., 37(5):649–678, September 2011.

Bibliography 199

[118] Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. Integer parame-
ter synthesis for real-time systems. IEEE Transactions on Software Engineering,
41(5):445–461, 2015.

[119] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic
patch generation learned from human-written patches. In 2013 35th Interna-
tional Conference on Software Engineering (ICSE), pages 802–811, San Francisco,
CA, USA, May 2013. IEEE.

[120] Alexander Knüppel, Thomas Thüm, Stephan Mennicke, Jens Meinicke, and
Ina Schaefer. Is there a mismatch between real-world feature models and
product-line research? In Proceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2017, pages 291–302, New York, NY,
USA, 2017. ACM.

[121] A. Koltuksuz, B. Kulahcioglu, and M. Ozkan. Utilization of timed automata as
a verification tool for security protocols. In 2010 Fourth International Conference
on Secure Software Integration and Reliability Improvement Companion, pages 86–
93, June 2010.

[122] Roland Kretschmer, Djamel Eddine Khelladi, Andreas Demuth, Roberto E
Lopez-Herrejon, and Alexander Egyed. From abstract to concrete repairs of
model inconsistencies: An automated approach. In 2017 24th Asia-Pacific Soft-
ware Engineering Conference (APSEC), pages 456–465. IEEE, 2017.

[123] Thomas Krismayer, Rick Rabiser, and Paul GrUnbacher. Mining constraints
for event-based monitoring in systems of systems. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 826–
831, Urbana, IL, October 2017. IEEE.

[124] John Krogstie. Model-Based Development and Evolution of Information Systems:
A Quality Approach. Springer Publishing Company, Incorporated, 2012.

[125] D. R. Kuhn and M. J. Reilly. An investigation of the applicability of design
of experiments to software testing. In IEEE/Computer Society, editor, 27th
NASA/IEEE Software Engineering workshop, pages 91–95, 2002.

[126] D. Richard Kuhn and Vadim Okun. Pseudo-exhaustive testing for software.
In 30th Annual IEEE / NASA Software Engineering Workshop (SEW-30 2006), 25-
28 April 2006, Loyola College Graduate Center, Columbia, MD, USA, volume 0,
pages 153–158, Los Alamitos, CA, USA, 2006. IEEE Computer Society.

200 Bibliography

[127] D. Richard Kuhn, Dolores R. Wallace, and Albert M. Gallo. Software fault
interactions and implications for software testing. IEEE Trans. Software Eng,
30(6):418–421, 2004.

[128] D.R. Kuhn, R.N. Kacker, and Y. Lei. Practical combinatorial testing. Special
publication, NIST, 2010.

[129] D.R. Kuhn, R.N. Kacker, and Y. Lei. Introduction to Combinatorial Testing. Chap-
man & Hall/CRC, 2013.

[130] R. Kuhn, R. Kacker, Yu Lei, and J. Hunter. Combinatorial software testing.
Computer, 42(8):94 –96, aug. 2009.

[131] Jean-Marie Lagniez and Armin Biere. Factoring out assumptions to speed
up MUS extraction. In International Conference on Theory and Applications of
Satisfiability Testing, pages 276–292. Springer, 2013.

[132] Beatriz Pérez Lamancha, Macario Polo, and Mario Piattini. PROW: A pair-
wise algorithm with constRaints, order and weight. J. Syst. Softw., 99(C):1–19,
January 2015.

[133] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley
Weimer. A systematic study of automated program repair: Fixing 55 out of
105 bugs for $8 each. In Software Engineering (ICSE), 2012 34th International
Conference on, pages 3–13. IEEE, 2012.

[134] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence. Ipog: A general strat-
egy for t-way software testing. In 14th Annual IEEE International Conference
and Workshops on the Engineering of Computer-Based Systems (ECBS’07), pages
549–556, March 2007.

[135] Shang-Wei Lin, Étienne André, Yang Liu, Jun Sun, and Jin Song Dong. Learn-
ing assumptions for compositional verification of timed systems. Transactions
on Software Engineering, 40(2):137–153, mar 2014.

[136] H. Lonn and P. Pettersson. Formal verification of a tdma protocol start-up
mechanism. In Proceedings Pacific Rim International Symposium on Fault-Tolerant
Systems, pages 235–242, Dec 1997.

[137] Roberto E. Lopez-Herrejon, Lukas Linsbauer, and Alexander Egyed. A sys-
tematic mapping study of search-based software engineering for software
product lines. Information and Software Technology, 61:33 – 51, 2015.

Bibliography 201

[138] Roberto E. Lopez-Herrejon, Lukas Linsbauer, José A. Galindo, José A. Parejo,
David Benavides, Sergio Segura, and Alexander Egyed. An assessment of
search-based techniques for reverse engineering feature models. Journal of
Systems and Software, 103:353–369, may 2015.

[139] Roberto Erick Lopez-Herrejon, José A. Galindo, David Benavides, Sergio Se-
gura, and Alexander Egyed. Reverse engineering feature models with evolu-
tionary algorithms: An exploratory study. In Search Based Software Engineering,
pages 168–182. Springer, 2012.

[140] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro
Birattari, and Thomas Stützle. The irace package: Iterated racing for auto-
matic algorithm configuration. Operations Research Perspectives, 3:43–58, 2016.

[141] C. Lott, A. Jain, and S. Dalal. Modeling requirements for combinatorial soft-
ware testing. ACM SIGSOFT Software Engineering Notes, 30(4):1–7, jul 2005.

[142] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and Andrzej
Wąsowski. Evolution of the linux kernel variability model. Software Product
Lines: Going Beyond, pages 136–150, 2010.

[143] Lars Luthmann, Timo Gerecht, Andreas Stephan, Johannes Bürdek, and Malte
Lochau. Minimum/maximum delay testing of product lines with unbounded
parametric real-time constraints. Journal of Systems and Software, 149:535–553,
2019.

[144] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. 1999.

[145] Nuno Macedo, Tiago Guimaraes, and Alcino Cunha. Model repair and trans-
formation with echo. In 2013 28th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE), ASE’13, pages 694–697, Piscataway, NJ,
USA, nov 2013. IEEE.

[146] Nicolas Markey. Robustness in real-time systems. SIES, 11:28–34, 2011.

[147] Joao Marques-Silva. Practical applications of Boolean Satisfiability. In 2008
9th International Workshop on Discrete Event Systems, pages 74–80, Goteborg,
Sweden, 2008. IEEE.

[148] Conrado Martínez, Lucia Moura, Daniel Panario, and Brett Stevens. Locat-
ing Errors Using ELAs, Covering Arrays, and Adaptive Testing Algorithms.
SIAM Journal on Discrete Mathematics, 23(4):1776–1799, January 2010.

[149] E. J. McCluskey. Minimization of boolean functions*. Bell System Technical
Journal, 35(6):1417–1444, 1956.

202 Bibliography

[150] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Le-
ich, and Gunter Saake. Mastering Software Variability with FeatureIDE. Springer,
2017.

[151] William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and Limin Jia.
Riding out DOMsday: Towards Detecting and Preventing DOM Cross-Site
Scripting. In Proceedings of Network and Distributed System Security Symposium.
Internet Society, 2018.

[152] Marcilio Mendonca, Moises Branco, and Donald Cowan. Splot: software
product lines online tools. In Proceedings of the 24th ACM SIGPLAN confer-
ence companion on Object oriented programming systems languages and applica-
tions, pages 761–762. ACM, 2009.

[153] Ivanka Menken. SaaS - The Complete Cornerstone Guide to Software As a Service
Best Practices Concepts, Terms, and Techniques for Successfully Planning, Imple-
menting and Managing SaaS Solutions. Emereo Pty Ltd, London, UK, UK, 2008.

[154] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki.
Mining configuration constraints: static analyses and empirical results. In
Pankaj Jalote, Lionel C. Briand, and André van der Hoek, editors, ICSE, ICSE
2014, pages 140–151, New York, NY, USA, 2014. ACM.

[155] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish
Chandra. SemFix: Program repair via semantic analysis. In 2013 35th Inter-
national Conference on Software Engineering (ICSE), pages 772–781. IEEE, may
2013.

[156] Changhai Nie and Hareton Leung. The Minimal Failure-Causing Schema of
Combinatorial Testing. ACM Transactions on Software Engineering and Method-
ology, 20(4):1–38, September 2011.

[157] Changhai Nie and Hareton Leung. A survey of combinatorial testing. ACM
Comput. Surv, 43(2):11, 2011.

[158] Changhai Nie, Baowen Xu, Liang Shi, and Ziyuan Wang. A new heuris-
tic for test suite generation for pair-wise testing. In Kang Zhang, George
Spanoudakis, and Giuseppe Visaggio, editors, SEKE, pages 517–521, 2006.

[159] X. Niu, N. Changhai, Y. Lei, H. K. N. Leung, and X. Wang. Identifying failure-
causing schemas in the presence of multiple faults. IEEE Transactions on Soft-
ware Engineering, pages 1–1, 2018.

Bibliography 203

[160] X. Niu, N. Changhai, H. K. N. Leung, Y. Lei, X. Wang, J. Xu, and Y. Wang. An
interleaving approach to combinatorial testing and failure-inducing interac-
tion identification. IEEE Transactions on Software Engineering, pages 1–1, 2018.

[161] Sebastian Oster. Feature Model-based Software Product Line Testing. page
236. PhD Thesis.

[162] Pairwise web site. http://www.pairwise.org/.

[163] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. Mutation testing advances: An analysis and survey. In Advances in
Computers, Advances in Computers. Elsevier, 2018.

[164] Pavel Parizek, Frantisek Plasil, and Jan Kofron. Model checking of soft-
ware components: Combining java pathfinder and behavior protocol model
checker. In 2006 30th Annual IEEE/NASA Software Engineering Workshop, pages
133–141. IEEE, 2006.

[165] Leonardo Passos, Rodrigo Queiroz, Mukelabai Mukelabai, Thorsten Berger,
Sven Apel, Krzysztof Czarnecki, and Jesus Padilla. A study of feature scatter-
ing in the linux kernel. IEEE Transactions on Software Engineering, 2018.

[166] Mateusz Pawlik and Nikolaus Augsten. Efficient Computation of the Tree
Edit Distance. ACM Transactions on Database Systems, 40(1):1–40, March 2015.

[167] Mateusz Pawlik and Nikolaus Augsten. Tree edit distance: Robust and
memory-efficient. Information Systems, 56:157–173, March 2016.

[168] Gilles Perrouin, Sagar Sen, Jacques Klein, Benoit Baudry, and Yves Le Traon.
Automated and scalable t-wise test case generation strategies for software
product lines. In Proc. of the International Conference on Software Testing (ICST),
pages 459–468, Paris, France, April 2010. IEEE.

[169] Justyna Petke, Myra B. Cohen, Mark Harman, and Shin Yoo. Practical com-
binatorial interaction testing: Empirical findings on efficiency and early fault
detection. IEEE Trans. Software Eng., 41(9):901–924, 2015.

[170] Justyna Petke, Shin Yoo, Myra B. Cohen, and Mark Harman. Efficiency and
early fault detection with lower and higher strength combinatorial interac-
tion testing. In Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26, 2013, pages
26–36, 2013.

204 Bibliography

[171] Andreas Pleuss, Goetz Botterweck, Deepak Dhungana, Andreas Polzer, and
Stefan Kowalewski. Model-driven support for product line evolution on fea-
ture level. Journal of Systems and Software, 85(10):2261–2274, 2012.

[172] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco Docu-
mentation. TASC - LS2N CNRS UMR 6241, COSLING S.A.S., 2017.

[173] M. Radavelli. Using testing to repair models. In 2019 12th IEEE Conference on
Software Testing, Validation and Verification (ICST), pages 489–491, April 2019.

[174] Marco Radavelli. Using software testing to repair models. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE 2019, pages
1253–1255, New York, NY, USA, 2019. ACM.

[175] Alexander Reder and Alexander Egyed. Computing repair trees for resolving
inconsistencies in design models. In Proceedings of the 27th IEEE/ACM Inter-
national Conference on Automated Software Engineering - ASE 2012, page 220,
Essen, Germany, 2012. ACM Press.

[176] Iris Reinhartz-Berger, Kathrin Figl, and Øystein Haugen. Comprehending
feature models expressed in CVL. In Juergen Dingel, Wolfram Schulte, Isidro
Ramos, Silvia Abrahão, and Emilio Insfran, editors, Model-Driven Engineer-
ing Languages and Systems, pages 501–517, Cham, 2014. Springer International
Publishing.

[177] Dominik Rost, Matthias Naab, Crescencio Lima, and Christina von Flach Gar-
cia Chavez. Software architecture documentation for developers: a survey. In
European Conference on Software Architecture, pages 72–88. Springer, 2013.

[178] Julia Rubin and Marsha Chechik. Quality of merge-refactorings for product
lines. In International Conference on Fundamental Approaches to Software Engi-
neering, pages 83–98. Springer, 2013.

[179] Richard L. Rudell. Multiple-valued logic minimization for pla synthesis. Tech-
nical Report UCB/ERL M86/65, EECS Department, University of California,
Berkeley, 1986.

[180] Alcemir Rodrigues Santos, Raphael Pereira de Oliveira, and Eduardo Santana
de Almeida. Strategies for consistency checking on software product lines: A
mapping study. In Proceedings of the 19th International Conference on Evaluation
and Assessment in Software Engineering, EASE ’15, pages 5:1–5:14, New York,
NY, USA, 2015. ACM.

Bibliography 205

[181] Itai Segall, Rachel Tzoref-Brill, and Eitan Farchi. Using binary decision di-
agrams for combinatorial test design. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis, ISSTA ’11, pages 254–264, New
York, NY, USA, 2011. ACM.

[182] Daniel Sheridan. The optimality of a fast cnf conversion and its use with sat.
SAT, 2, 2004.

[183] George B Sherwood. Embedded functions for constraints and variable
strength in combinatorial testing. In Software Testing, Verification and Validation
Workshops (ICSTW), 2016 IEEE Ninth International Conference on, pages 65–74.
IEEE, 2016.

[184] Jiangfan Shi, Myra B. Cohen, and Matthew B. Dwyer. Integration testing of
software product lines using compositional symbolic execution. In Fundamen-
tal Approaches to Software Engineering - 15th International Conference, FASE 2012,
pages 270–284, 2012.

[185] Liang Shi, Changhai Nie, and Baowen Xu. A software debugging method
based on pairwise testing. In Proc. of the 5th Int. Conference on Computational
Science, ICCS’05, pages 1088–1091, Berlin, Heidelberg, 2005. Springer-Verlag.

[186] Daisuke Shimbara and Øystein Haugen. Generating Configurations for System
Testing with Common Variability Language, pages 221–237. Springer Interna-
tional Publishing, Cham, 2015.

[187] D. E. Simos, R. Kuhn, A. G. Voyiatzis, and R. Kacker. Combinatorial methods
in security testing. IEEE Computer, 49:40–43, 2016.

[188] Dimitris E. Simos, Kristoffer Kleine, Laleh Shikh Gholamhossein Ghandehari,
Bernhard Garn, and Yu Lei. A Combinatorial Approach to Analyzing Cross-
Site Scripting (XSS) Vulnerabilities in Web Application Security Testing. In
Testing Software and Systems. Springer, 2016.

[189] B. D. Smith, M. S. Feather, and N. Muscettola. Challenges and methods in
validating the remote agent planner. In CO Breckenridge, editor, Proceedings of
the Fifth International conference on Artificial Intelligence Planning Systems (AIPS),
2000.

[190] Kenneth Sörensen. Metaheuristics – the metaphor exposed. International
Transactions in Operational Research, 22(1):3–18, feb 2013.

[191] Jan Springintveld, Frits Vaandrager, and Pedro R. D’Argenio. Testing timed
automata. Theoretical Computer Science, 254(1-2):225–257, March 2001.

206 Bibliography

[192] Matt Staats, Michael W. Whalen, and Mats P.E. Heimdahl. Programs, tests,
and oracles: the foundations of testing revisited. In Proceeding of the 33rd
international conference on Software engineering - ICSE ’11, page 391, Waikiki,
Honolulu, HI, USA, 2011. ACM Press.

[193] K. C. Tai and Y. Lie. A test generation strategy for pairwise testing. IEEE Trans.
Softw. Eng., 28(1):109–111, 2002.

[194] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schröder-
Preikschat. Feature consistency in compile-time-configurable system soft-
ware: Facing the linux 10,000 feature problem. In Proceedings of the Sixth Con-
ference on Computer Systems, EuroSys ’11, pages 47–60, New York, NY, USA,
2011. ACM.

[195] Paul Temple, Mathieu Acher, Battista Biggio, Jean-Marc Jézéquel, and Fabio
Roli. Towards adversarial configurations for software product lines. CoRR,
abs/1805.12021, 2018.

[196] Paul Temple, Mathieu Acher, Jean-Marc Jezequel, and Olivier Barais. Learn-
ing Contextual-Variability Models. IEEE Software, 34(6):64–70, November
2017.

[197] Paul Temple, José Angel Galindo Duarte, Mathieu Acher, and Jean-Marc
Jézéquel. Using machine learning to infer constraints for product lines. In
Proceedings of the 20th International Systems and Software Product Line Confer-
ence, SPLC ’16, pages 209–218, New York, NY, USA, 2016. ACM.

[198] TestCover tool. http://www.testcover.com/.

[199] Thomas Thüm, Don Batory, and Christian Kastner. Reasoning about edits to
feature models. In Proceedings of the 31st International Conference on Software
Engineering, ICSE ’09, pages 254–264, Washington, DC, USA, 2009. IEEE Com-
puter Society.

[200] Thomas Thüm, Christian Kastner, Sebastian Erdweg, and Norbert Siegmund.
Abstract features in feature modeling. In Proceedings of the 2011 15th Interna-
tional Software Product Line Conference, SPLC ’11, pages 191–200, Washington,
DC, USA, 2011. IEEE Computer Society.

[201] Thomas Thüm, Leopoldo Teixeira, Klaus Schmid, Eric Walkingshaw, Muke-
labai Mukelabai, Mahsa Varshosaz, Goetz Botterweck, Ina Schaefer, and Timo
Kehrer. Towards efficient analysis of variation in time and space. In Proceed-
ings of the 23rd International Systems and Software Product Line Conference volume
B - SPLC ’19, pages 1–8, Paris, France, 2019. ACM Press.

Bibliography 207

[202] John B. Tran and Richard C. Holt. Forward and reverse repair of software
architecture. In Proceedings of the 1999 Conference of the Centre for Advanced
Studies on Collaborative Research, CASCON ’99, pages 12–. IBM Press, 1999.

[203] S. Urli, A. Bergel, M. Blay-Fornarino, P. Collet, and S. Mosser. A visual support
for decomposing complex feature models. In 2015 IEEE 3rd Working Conference
on Software Visualization (VISSOFT), pages 76–85, Sept 2015.

[204] Macario Polo Usaola and Beatriz Pérez Lamancha. A framework and a web
implementation for combinatorial testing. Technical report, Informe técnico,
University of Castilla-La Mancha, 2010.

[205] Markus Voelter. Using domain specific languages for product line engineer-
ing. In Proceedings of the 13th International Software Product Line Conference,
SPLC ’09, pages 329–329, Pittsburgh, PA, USA, 2009. Carnegie Mellon Univer-
sity.

[206] Alexander von Rhein, Alexander Grebhahn, Sven Apel, Norbert Siegmund,
Dirk Beyer, and Thorsten Berger. Presence-condition simplification in highly
configurable systems. In Proceedings of the 37th International Conference on Soft-
ware Engineering - Volume 1, ICSE ’15, pages 178–188, Piscataway, NJ, USA,
2015. IEEE Press.

[207] Vytautas Štuikys, Renata Burbaitė, Kristina Bespalova, and Giedrius Ziberkas.
Model-driven processes and tools to design robot-based generative learning
objects for computer science education. Science of Computer Programming,
129:48–71, 2016. Special issue on eLearning Software Architectures.

[208] Ting Wang, Jun Sun, Yang Liu, Xinyu Wang, and Shanping Li. Are timed
automata bad for a specification language? Language inclusion checking for
timed automata. In Erika Ábrahám and Klaus Havelund, editors, TACAS,
volume 8413 of Lecture Notes in Computer Science, pages 310–325. Springer,
2014.

[209] Ziyuan Wang, Baowen Xu, Lin Chen, and Lei Xu. Adaptive Interaction Fault
Location Based on Combinatorial Testing. In 2010 10th International Conference
on Quality Software, pages 495–502. IEEE, July 2010.

[210] E. J. Weyuker. On Testing Non-Testable Programs. The Computer Journal,
25(4):465–470, November 1982.

[211] Claes Wohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn Regnell,
and Anders Wessln. Experimentation in Software Engineering. Springer Pub-
lishing Company, Incorporated, 2012.

208 Bibliography

[212] Xtext. http://www.eclipse.org/xtext/.

[213] Jifeng Xuan, Matias Martinez, Favio DeMarco, Maxime Clement, Sebas-
tian Lamelas Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monper-
rus. Nopol: Automatic repair of conditional statement bugs in java programs.
IEEE Transactions on Software Engineering, 43(1):34–55, jan 2017.

[214] Akihisa Yamada, Armin Biere, Cyrille Artho, Takashi Kitamura, and Eun-Hye
Choi. Greedy combinatorial test case generation using unsatisfiable cores.
pages 614–624. ACM Press, 2016.

[215] Cemal Yilmaz, Myra B. Cohen, and Adam A. Porter. Covering arrays for
efficient fault characterization in complex configuration spaces. IEEE Trans.
Software Eng, 32(1):20–34, 2006.

[216] Cemal Yilmaz, Emine Dumlu, Myra B. Cohen, and Adam A. Porter. Reduc-
ing masking effects in combinatorial interaction testing: A feedback driven
adaptive approach. IEEE Trans. Software Eng., 40(1):43–66, 2014.

[217] Linbin Yu, Yu Lei, Raghu N Kacker, and D Richard Kuhn. Acts: A combinato-
rial test generation tool. In IEEE Int. Conf. on Software Testing, Verification and
Validation, 2013.

[218] Ruediger Zarnekow and Walter Brenner. Distribution of cost over the appli-
cation lifecycle-a multi-case study. ECIS 2005 Proceedings, page 26, 2005.

[219] Jian Zhang, Feifei Ma, and Zhiqiang Zhang. Faulty interaction identification
via constraint solving and optimization. In Alessandro Cimatti and Roberto
Sebastiani, editors, Theory and Applications of Satisfiability Testing – SAT 2012,
pages 186–199, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[220] Zhiqiang Zhang and Jian Zhang. Characterizing failure-causing parameter
interactions by adaptive testing. In Proceedings of the 2011 International Sym-
posium on Software Testing and Analysis, ISSTA ’11, pages 331–341, New York,
NY, USA, 2011. ACM.

	Introduction
	Research Questions and Objective
	Contributions
	Other publications

	Note on conventions

	I State of the Art
	Background
	The Role of Models in Software Engineering
	Combinatorial Models
	Feature Models
	Model Repair and Program Repair

	Software Engineering Techniques for Model Repair
	Combinatorial Interaction Testing
	The Oracle Problem
	SAT and SMT solvers
	BDDs and MDDs

	II Test-Driven Model Repair Approach
	Automated Model Repair
	Research Hypothesis
	Assumptions

	Contribution
	Research Approach
	Results
	Repair of Configuration Constraints
	Repair of Feature Models
	Repair of Timed Automata

	Repair of Constraints Among Parameters
	Validation of Constraints Among Configuration Parameters Using Search-Based Combinatorial Interaction Testing
	Combinatorial Models of Configurable Systems
	Basic Definitions
	Finding Faults by Combinatorial Testing
	Combinatorial Testing Policies
	Experiments
	Related Work

	Combinatorial Interaction Testing for Automated Constraint Repair
	Combinatorial Models and Testing of Configurable Systems
	Combinatorial Testing Policies
	Definitions
	The constraint repair process
	Experiments
	Related Work

	Using Iterative Constraint Repair to Detect XSS Vulnerabilities
	Preliminaries
	Process for Model Evolution
	Experiments
	Related Work

	Conclusion and Future Work

	Repair of Feature Models
	Achieving change requirements of feature models by an evolutionary approach
	Basic definitions
	Specifying an update request
	Evolutionary updating process
	Experiments
	Threats to validity
	Related work

	A Process for Fault-Driven Repair of Constraints Among Features
	Basic Definitions
	Fault-driven Repair
	Evaluation
	Threats to Validity
	Related Work

	Conclusion

	Repair of Timed Automata
	Definitions
	Parametric timed automata
	Reachability synthesis

	A repairing process using abstraction and testing
	Overview of the method
	Step ➀: Abstraction
	Step ➁: construction of the extended parametric zone graph
	Step ➂: Test data generation
	Step ➃: Test labeling
	Step ➄: Generating constraints from timed words
	Correctness
	Step ➅: Instantiation of a repaired TA

	Experimental evaluation
	Results

	Related Work
	Conclusions

	III Tools to Support Model Repair
	ctwedge: Migrating Combinatorial Interaction Test Modeling and Generation to the Web
	A simple language for CIT models
	Constraints
	Xtext

	ctwedge: CT Web Editor and Generator
	Combinatorial Testing Web Editor
	Test generator web service

	Related Work
	Future Work
	Conclusions

	MixTgTe: Efficient and Guaranteed Detection of t-Way Failure-Inducing Combinations
	Background
	Definitions
	The MixTgTe method
	MixTgTet

	Properties of the MixTgTe process
	Evaluation
	Benchmarks
	Compared approaches
	Results

	Related Work
	Conclusions

	Conclusion
	Bibliography

