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Abstract

Cloud storage services offer a variety of benefits that make them extremely
attractive for the management of large amounts of data. These services,
however, raise some concerns related to the proper protection of data that,
being stored on servers of third party cloud providers, are no longer under the
data owner control. The research and development community has addressed
these concerns by proposing solutions where encryption is adopted not only
for protecting data but also for regulating accesses. Depending on the trust
assumption on the cloud provider offering the storage service, encryption can
be applied at the server side, client side, or through an hybrid approach. In
this thesis, we introduce and implement a novel hybrid approach, named
EncSwift. EncSwift relies on client side encryption for protecting data-at-
rest, and on server-side encryption to enforce efficient access revocation.

An interesting evolution of these data protection solutions is represented
by a different family of encryption techniques to be applied on the client side,
i.e., the all-or-nothing transforms (AONTs). An AONT provides stronger se-
curity guarantees on the data it wraps, and can be exploited for enforcing ef-
ficient access revocation without requiring the support of the cloud provider.
In this thesis, we introduce a novel AONT technique, i.e., Mix&Slice, and
present an interesting application of AONTs to Decentralized Cloud Storage
(DCS) networks. With regard to this, we present an approach enabling data
owners to keep data confidentiality and availability under control, limiting
the owners intervention with corrective actions when availability or confiden-
tiality is at risk.

Finally, another contribution of this thesis consists in a proposal target-
ing efficient access control on data aggregations, when relying on a trusted
provider. Indeed, despite the availability of information, situations like frag-
mented ownership and legal frameworks hinder data processing, requiring
companies to design complex human-driven processes in order to gather, ag-
gregate, and process data in a compliant way. Our proposal in this domain
addresses this lack of automation with an access control mechanism extend-
ing the XACML policy language, and enforcing a novel decision process.
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Chapter 1

Introduction

1.1 Document structure

This thesis is organized in three parts. Part I describes the problem of pro-
tecting data-at-rest while ensuring efficient access control on those data. The
work presented in this part represents also one of the contributions of the
University of Bergamo to the ESCUDO-CLOUD project (www.escudocloud.
eu). The author’s contributions to the ESCUDO-CLOUD project are man-
ifolds. They mainly focus on the design and implementation of techniques
aimed at protecting data stored on cloud providers.

• Chapter 1 introduces the overall scenario, and discusses on the trust
assumptions, together with existing solutions and current limitations.

• Chapter 2 presents EncSwift, i.e., a solution for enforcing both protec-
tion on data-at-rest and efficient access revocation on resources stored
on a cloud provider based on OpenStack Swift.

• Chapter 3 describes the implementation of EncSwift, and discusses on
technical choices and challenges for its integration in Swift.

• Chapter 4 describes the integration of EncSwift with an industrial key
manager provided by one of the partners of the ESCUDO-CLOUD
project, British Telecom.

• Chapter 5 presents some research works related to EncSwift.

• Chapter 6 presents some concluding remarks, and introduces consider-
ations that are developed in the following part of the document.

1
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2 CHAPTER 1. INTRODUCTION

Part II focuses on a particular kind of data encryption techniques: all-
or-nothing transform (AONT). With regard to AONT, many different algo-
rithms have been proposed. This part of thesis presents one of them, pro-
posed by the University of Bergamo in the context of the ESCUDO-CLOUD
project, and discusses on an interesting application of data protection by
means of AONT in decentralized cloud storage solutions.

• Chapter 1 presents another contribution of the University of Bergamo
to the ESCUDO-CLOUD project, i.e., an AONT technique for data-
at-rest protection: Mix&Slice.

• Chapter 2 considers data protection in a different setting, represented
by a Decentralized Cloud Storage (DCS). In this chapter, AONT and
erasure codes are used to provide data confidentiality and availability.
The work presented in this chapter consists in one of the contributions
of the University of Bergamo to the European project MOSAICrOWN
(www.mosaicrown.eu).

• Chapter 3 describes some works related to AONT and its integration
into DCS networks.

• Chapter 4 concludes this part of thesis.

Part III describes the research activity that the author did during his
internship at SAP Labs France. This part of thesis deals with access control
from a more classical perspective, i.e., at the decision level, and aims at
integrating a classical approach to a modern context (e.g., machine learning
and data analytics).

• Chapter 1 presents the core of the internship project, i.e., a novel evalu-
ation strategy for requests of data aggregations, based on an extension
of the XACML policy language and supplied with an engine.

• Chapter 2 compares our approach with the state of the art.

• Chapter 3 concludes this part of thesis, and presents interesting future
works.

1.2 Publications

This section presents a list of papers (already published and/or currently
under revision), that set the basis of this thesis.

Papers in Proceedings of International Conferences and Workshops:

www.mosaicrown.eu
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trol Management for Secure Cloud Storage” in 12th EAI International
Conference on Security and Privacy in Communication Networks (Se-
cureComm 2016) [Part I, Chapter 2 and Chapter 3]

• Enrico Bacis, Sabrina De Capitani di Vimercati, Sara Foresti, Daniele
Guttadoro, Stefano Paraboschi, Marco Rosa, Pierangela Samarati, and
Alessandro Saullo. “Managing Data Sharing in OpenStack Swift with
Over-Encryption” in 3rd ACM Workshop on Information Sharing and
Collaborative Security (WISCS 2016) [Part I, Chapter 3]

• Enrico Bacis, Marco Rosa, and Ali Sajjad. “EncSwift and Key Man-
agement: An Integrated Approach in an Industrial Setting” in 3rd
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Chapter 1

Data Protection in Different
Trust Scenarios

1.1 Introduction

The ever increasing availability of off-the-shelf cloud storage platforms has
contributed to the growing of the Storage-as-a-Service (SaaS ) market, with
an increasing trend for users and companies to offload their (possibly sensi-
tive or confidential) data and resources. There are several reasons for using
cloud storage services such as the benefits in terms of availability, scalabil-
ity, performance, and costs as well as the ability to easily share data with
other users. However, this trend also introduces several security and pri-
vacy risks that can slow down the widespread adoption of storage services
(e.g., [32, 50, 73]). In fact, by relying on third parties for the storage of their
data and resources, users and companies lose their control over them: how
can users and companies trust that their data are properly protected when
stored on a third-party server? The research and development communities
have dedicated many efforts in designing solutions for addressing this concern
(e.g., [32]). Encryption is at the basis of many of these techniques: when data
are encrypted they are visible only to the users who know the encryption key.
Encryption has then been adopted not only as a valid solution for protect-
ing data confidentiality (even against adversaries with access to the physical
representation of the data, including the cloud providers themselves), but
also for supporting selective sharing of such data [31]. In this case, the idea
consists in encrypting different portions of the data with different keys and
then sharing the encryption keys only with the users that have the authoriza-
tion for accessing the corresponding encrypted data. Figure 1.1 illustrates
the typical reference scenario when considering cloud storage infrastructures.

7
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CSP

data owner

CSP

CSP

users

Figure 1.1: Reference scenario

As it is visible from the figure, there are three main entities involved in this
scenario: the data owner who wishes to outsource the management of her
data to a third party, the cloud providers (CSPs) offering storage services,
and other users who may need to access the data stored on cloud providers.

A fundamental aspect that needs to be considered when applying encryp-
tion to protect data is the trust assumption on the cloud providers in charge
of storing and managing the data. Cloud providers can be trusted , honest-
but-curious , or lazy/malicious . A trusted provider is fully trusted to access
and manage the data that it stores. A honest-but-curious provider is trust-
worthy for providing services but should not be allowed to know the actual
data content. A lazy or malicious provider is neither trusted nor trustwor-
thy and therefore its behavior should be controlled. Depending on the trust
assumption, encryption can be applied following three different strategies:
server-side, client-side, hybrid . Server-side encryption means that the en-
cryption of the data is managed directly by the cloud provider, which stores
and manages also the encryption keys. In this case, the cloud provider guar-
antees that the data are stored in an encrypted format. However, whenever
the cloud provider’s services require direct visibility of the plaintext data
for access execution, the provider can decrypt the data. Since the cloud
provider has full visibility on the data, it can also enforce access restrictions.
Server-side encryption can be applied only when the cloud provider is fully
trusted. Client-side encryption means that users encrypt their data before
storing them on external cloud providers. In this case, the encryption keys
are stored and managed by the owner of the data and cloud providers can-
not access the data in plaintext form, which limits the functionality that
they can offer. Also, access control restrictions need to be enforced by the
data owner who has to mediate all access requests to the data. This clearly
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Trust Assumption
Encryption type

server-side client-side hybrid

trusted X X X
honest-but-curious × X X
lazy/malicious × X ×
X: applicable; ×: not applicable

Figure 1.2: Encryption scenario depending on the trust assumption on cloud
providers

reduces the advantages of outsourcing the management of data to a third
party. Client-side encryption can be applied under any trust assumption on
the cloud provider. However, it is usually adopted when the cloud providers
are honest-but-curious or lazy/malicious. In the hybrid approach, the encryp-
tion of the data is performed both at the client-side and at the server-side
with the consequence that there are two sets of encryption keys: one man-
aged by the data owner and another one managed by the cloud provider.
The rationale behind the hybrid scenario is that client-side encryption pro-
tects the data from cloud providers while server-side encryption efficiently
enforces changes in the access control policy without the involvement of the
data owner. Clearly, this approach can be applied only when cloud providers
are honest-but-curious (or trusted) but cannot be applied when the cloud
provider is lazy/malicious since there is no guarantee that the provider ap-
plies the required encryption operations. Figure 1.2 summarizes the applica-
bility of the three encryption strategies according to the trust assumptions
that characterize the cloud providers.

The goal of the first part of this thesis is to provide an overview of the cur-
rent encryption-based solutions for protecting and enforcing selective access
over data stored in the cloud. In particular, for each of the three encryption
strategies discussed above, we first describe its salient aspects along with
the main advantages and disadvantages. We then describe a representative
system that applies the considered strategy.

1.2 Server-side Encryption

With server-side encryption, the cloud provider protects data in storage with
an encryption layer that it can remove when needed to perform access and
query execution (i.e., the cloud provider manages both the data and the en-
cryption keys). In this case, users placing data in the cloud have complete
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trust that the cloud provider will correctly manage the outsourced informa-
tion.

1.2.1 Discussion

Being fully trusted, the management of data is completely delegated to the
cloud provider itself. From the point of view of the users, the main advantage
of this solution is that they can use all the functionality offered by the server
for querying the outsourced data. Furthermore, the data owner can delegate
the cloud provider to enforce access control policies for regulating access to
data. From the point of view of the cloud provider, server-side encryption
allows it to use deduplication techniques to avoid the storage of multiple
copies of the same data, thus saving storage space. Basically, a cloud provider
keeps the hash of every resource it is storing. When a user uploads a resource,
the cloud provider computes the hash of the resources and checks whether
the computed hash corresponds to the hash of a resource it already stores. If
this is the case, the cloud provider discards the storage request and provides
a link to the resource already stored.

Although many of the most well-know public cloud storage providers use
server-side encryption (e.g., Dropbox, Amazon, and Google), this solution
is not always feasible and introduces security risks. In fact, since the en-
cryption keys are stored with the data, an adversary can exploit possible
vulnerabilities of the cloud provider to obtain both the encrypted data and
the encryption keys, thus obtaining the access to the plaintext version of
the data themselves. Furthermore, the cloud provider might be forced by
authorities to provide the stored data in their plaintext form. With respect
to the data deduplication techniques commonly adopted by cloud providers,
they can be exploited for violating data confidentiality. As an example, sup-
pose that an adversary knows that a certain resource is stored on the cloud
provider but does not know the value of some specific bytes (e.g., one value
of a csv file). The adversary might try to generate as many resources as the
possible combinations for the missing bytes and to upload each of them, one
at a time. When the upload operation is not performed, the adversary knows
that the uploaded file corresponds to the one already stored and therefore
knows the value of the missing bytes. We note that these considerations
apply to both public clouds and private clouds (i.e., cloud solutions built
internally by a company).

Examples of public storage services based on server-side encryption are
Dropbox [35], Amazon Simple Storage Service (S3), and Google Cloud Stor-
age (GCS). All these services typically store the encryption keys in their
proprietary key management system and mainly differ in the pricing schema.
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Figure 1.3: OpenStack Swift architecture

Although the companies ensures that no access is performed on users’ data,
they could potentially access all the data they store. In the following, we
present OpenStack Swift as an example of cloud solution offering server-side
encryption.

1.2.2 Case Study: OpenStack Swift IBM Key Rota-
tion

A well-known open source cloud computing platform that adopts server-side
encryption is OpenStack (http://www.openstack.org). OpenStack man-
ages large pools of computing, storage, and networking resources, all con-
trolled by administrators through a dashboard. OpenStack consists of several
components including an object storage system, called Swift . The architec-
ture of Swift is composed of a Proxy Server, a Ring, and an Object Server
(Figure 1.3). The Proxy Server is the key component of Swift and is respon-
sible for processing requests coming from users and interacts with all other
components. The Ring determines the physical device where a file should be
located. In other words, it is responsible for mapping names and physical
location of data. The Object Server is a blob storage (i.e., a storage that can
manipulate unstructured data) in charge of storing, retrieving, and deleting
objects on disks. Each object is stored as a binary file, and its metadata are
stored as extended attributes of the file. Objects stored in Swift are orga-
nized in containers , which loosely corresponds to directories of common file
systems. Containers are organized in tenants (or accounts). For interacting
with Swift, a user sends a valid request to the Proxy Server. The request is
then processed by a pipeline of middlewares, and each of them can enrich,
filter, or drop metadata. In case the request reaches the end of the pipeline,

http://www.openstack.org
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Figure 1.4: Swift-KeyRotate: Key organization

it is dispatched to the relevant Object Server based on the information con-
tained in the Ring. Once the request is processed by the Object Server, a
response is sent to the user, processed again by the middlewares of the Proxy
Server but in reverse order.

OpenStack Swift has supported server-side encryption to protect data
at-rest (both objects content and metadata) since the Ocata1 release. To
this purpose, three new middlewares have been added: encrypter, decrypter,
and keymaster . Encrypter and decrypter are middlewares in charge of per-
forming encryption and decryption operations on data and metadata. Key-
master is responsible for deciding whether a resource should (or should not)
be encrypted and which encryption key should be used2. Swift supports a
variety of keymaster implementations, including Swift-KeyRotate3 proposed
by IBM. The Swift-KeyRotate is a hierarchical key management system that
manages three types of keys: a top-level Master Key ; Data Encryption Keys
(DEKs), used to decrypt and encrypt user/system metadata and user data;
and Key Encryption Keys (KEKs), used internally in the keymaster middle-
ware to protect other KEKs and DEKs. As data are hierarchically organized
in accounts, containers, and objects, also KEKs and DEKs are hierarchically

1https://github.com/openstack/swift/blob/master/CHANGELOG
2http://specs.openstack.org/openstack/swift-specs/specs/in progress/at rest encryption.html
3https://github.com/ibm-research/swift-keyrotate
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Figure 1.5: Swift-KeyRotate: An example of KEK hierarchy with two con-
tainers and four objects

organized according to the account/container/object hierarchy (Figure 1.4).
More precisely, a KEK and a DEK are generated for each account, con-
tainer, and object. DEKs associated with accounts and containers are used
to encrypt the metadata of the accounts and containers, respectively. DEKs
associated with objects are used to encrypt both objects and their metadata.
The Master Key (which is stored in the Barbican system, the secret stor-
age of OpenStack) is used to encrypt the KEK associated with an account.
Then, the KEK associated with an entity (i.e., an account, a container, or
an object) is used to encrypt the DEK associated with the same entity and
the KEKs associated with the entities of the level below (if any). Figure 1.4
illustrates the hierarchical organization of KEKs and DEKs. When a user
authenticates to OpenStack via Keystone (the identity server of OpenStack),
the user is associated with an account and therefore she can access a Master
Key that is retrieved from Barbican through the user’s authentication token.

Good key management practice requires a periodic key rotation, meaning
that encryption keys must be periodically changed. The rotation of the Mas-
ter Key stored in Barbican is similar to the approach adopted by systems for
industrial key-lifecycle management [16, 37]. However, in Swift-KeyRotate,
it is not sufficient to rotate the Master Key since an adversary could have
stored the key of a lower level and then could be still able to obtain access
to all the underlying data. Key rotation is then performed on all levels and
is also needed to securely delete objects. We note that key rotation involves
only the KEKs while the DEKs are generated when the corresponding entity
is created and are never changed. As an example, consider two containers,
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C1 and C2, each of which includes two objects, {o11, o12} and {o21, o22}, re-
spectively. Figure 1.5 illustrates the corresponding KEK hierarchy: nodes of
the hierarchy represent keys and an arc from a key k to key k′ means that k′

is encrypted using k (e.g., in the figure an arc from MK1 to AK1 means that
the account KEK is encrypted via the Master Key). Suppose that a user
wishes to delete object o11. In this case, new KEKs have to be generated
for all entities in the key hierarchy that are on the path to object o11 (i.e.,
container C1, account A, and the master). Furthermore, the KEKs of all
entities whose parent KEKs have been changed are re-encrypted with the
new parent key. In our example, the KEK O12K1 of object o12 is encrypted
with the new KEK associated with container C1, say C1K2, the KEK C2K1

of container C2 is encrypted with the new KEK of account key A, say AK2,
and the account key AK2 is encrypted with the new Master Key, say MK2.

1.3 Client-side Encryption

With client-side encryption, the data owner encrypts her data before out-
sourcing them to a cloud provider. The encryption keys are therefore stored
at the client-side and are never exposed to the cloud provider, which cannot
decrypt the outsourced data. This solution is typically applied when the
cloud provider is honest-but-curious or lazy/malicious.

1.3.1 Discussion

Like for the server-side encryption, this solution has some advantages and dis-
advantages for users and the cloud provider. From the point of view of the
users, the main advantage is an increase of the spectrum of cloud providers
to which a data owner can outsource her data. In fact, since the data are en-
crypted at the client-side, the data owner can also leverage the services of less
reputable cloud providers, which are typically cheaper than well-known cloud
providers. The main disadvantages are that the data owner has to directly
manage the encryption keys and has to enforce access control restrictions as
well as changes in the access control policy. In this scenario, access control
can be enforced using an approach based on selective encryption [31]. In-
tuitively, selective encryption means that the data owner encrypts different
portions of her data using different keys and discloses to each user only the
encryption keys used to protect the data they can access. Whenever the
access control policy changes, the data owner must download the involved
data, decrypt and re-encrypt them with a new encryption key, re-upload
the new encrypted data, and share the new encryption key with authorized
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users. Clearly, such an approach puts much of the work at the data owner
side, introducing a bottleneck for computation and communication. Another
disadvantage is that both the client and the server storing the data may
be the subject to attacks from an adversary. Common client-side attacks
include, for example, the man-in-the-browser attack, in which an adversary
takes control over a part of the browser (e.g., browser extension hijacking)
to replace the cryptography algorithms used by the cloud provider with al-
gorithms controlled by the adversary. This attack can also compromise the
key-generation and the client-side integrity checks without the client being
aware of it. The adversary might also try to compromise the server to use it
as a vehicle to send malicious code to the client. For services that provide
access via browser, in fact, the server still plays a central role by providing
the JavaScript code that encrypts the data before upload. If an adversary is
able to replace this code with a malicious one, the adversary can compromise
the confidentiality of the outsourced data collection.

From the point of view of the cloud provider, the main advantage is
that the cloud provider should not be worried about the protection of data,
which is guaranteed by client-side encryption. The main disadvantage is
that deduplication techniques cannot be used since the same plaintext data
are encrypted by different data owners using different keys, thus generating
different ciphertexts. A possible approach for addressing this issue consists
in using convergent encryption, a cryptosystem that can generate identical
ciphertexts from identical plaintext data. While interesting, this techniques
is still vulnerable to the brute force attack described in Section 1.2.1.

Examples of cloud storage services supporting client-side encryption are
SpiderOak and MEGA [25]. In the following, we describe the MEGA system.

1.3.2 Case Study: Mega

MEGA system supports browser-based User Controlled Encryption (UCE),
meaning that resources are automatically encrypted on the user’s device be-
fore they are stored on MEGA cloud service [46]. Client-side encryption uses
different encryption keys managed by the data owner: a Master Key is a
user’s key used to protect the symmetric file key adopted for encrypting a
file that is stored on MEGA; a user password is then used to encrypt the
Master Key. File keys encrypted with the Master Key as well as the Mas-
ter Key encrypted with the user password are stored on MEGA. Different
files are encrypted with different file keys and therefore the knowledge of
a file key allows a user to decrypt only the file encrypted with such a key.
This mechanism enforces selective encryption, as illustrated in the previous
section. Note that an adversary compromising a storage server of MEGA
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Figure 1.6: MEGA upload (a) and download (b) process

cannot decrypt the encrypted files stored on the node since the encryption
key is managed at the client-side. Furthermore, MEGA uses HMAC to pro-
vide integrity guarantee to the file stored in MEGA store node. In this way,
an adversary with access to a MEGA store node and the file key of a file
cannot replace the file without the original user who has uploaded the file
noticing that it has been changed.

Figure 1.6 illustrates the MEGA encryption and decryption processes.
When a user wishes to store in the MEGA system a resource, a new file key
is generated with the support of a cryptographically strong random number
with entropy coming from both HTML5 APIs and mouse/keyboard entropy
pool. The file is then encrypted with the file key and AES-128 and the result-
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ing ciphertext is uploaded on MEGA. The encryption operation is performed
either by the MEGA client or directly in the browser, using JavaScript. The
file key is encrypted with the Master Key that in turn is protected with the
user password. The resulting encrypted keys are then uploaded on MEGA
(Figure 1.6(a)). When a user wishes to access a given file, she first provides
her password, which is used to decrypt the Master Key. The file key of the
file of interest is then decrypted, using the Master Key, and it is used to
decrypt the file. Post-download integrity checks are performed via a chunked
variant of the Counter with CBC-MAC (CCM) mode, which is an encryption
mode only defined for block ciphers with a block length of 128 bits. Note
that MEGA supports end-to-end encryption, meaning that encryption and
decryption operations are performed at the client side.

With respect to the ability of supporting deduplication, MEGA can apply
a deduplication process only when a user copies/pastes a file within her cloud
drive or when the file is shared with another user who imports it. In fact,
even if two (or more) users upload the same encrypted file, it will appear
different since the file is encrypted using different keys.

Resource sharing is supported using two different strategies. The first
strategy consists in sharing a public link that will allow a user receiving it to
decrypt the corresponding resource, as the file key used to encrypt the file
is included in the link (it is important to note that the link is generated at
the client side and not at the server side). With this strategy, the public link
can be shared with anyone who may not necessarily have a MEGA account.
The second strategy is only applicable between MEGA users and is based on
asymmetric encryption (RSA-2048). Each user is associated with a public
key and a private key both stored on MEGA: the public key is stored in
plaintext and the private key is stored in encrypted form, using the Master
Key of the user as encryption key. When a user, say A, wishes to share a
resource with another user, say B, A encrypts the corresponding file key with
the public key of B and the resulting ciphertext is stored on MEGA. When B
wishes to access the resource, she first retrieves from MEGA her encrypted
private key, decrypts it using her Master Key and the resulting plaintext
private key is used to decrypt the file key that B can use for decrypting the
file of interest. To provide access revocation to users who were previously
given access to the file key, MEGA applies a classical access control policy
defined by the data owner. A revoked user is therefore prevented access to
the encrypted files. Note that MEGA is trusted to correctly enforce the
access control policy defined by the data owner.
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1.4 Hybrid encryption

The hybrid approach combines client-side encryption with server-side en-
cryption to improve efficiency in data management. Hybrid approaches are
usually based on different layers of encryption with some encryption keys
managed at the client side and other encryption keys managed at the server
side. The latter keys are needed by the cloud provider to correctly enforce
changes in the access control policy.

1.4.1 Discussion

The main advantage of the hybrid approach is the efficient enforcement of
changes in the access control policy without impacting the confidentiality of
the resources. In fact, while with client-side encryption changes in the access
control policy must be enforced by the data owner (Section 1.3), with a hybrid
approach such changes can be enforced directly by the cloud provider. This
approach can therefore be applied only when the cloud provider is honest-but-
curious, since the provider has to correctly enforce the changes as dictated by
the data owner. An example of commercial solution adopting this approach
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is BeSafe SkyCryptor4, a commercial platform providing end-to-end encryp-
tion. BeSafe is based on a honest-but-curious proxy (BeSafe Key Server)
performing a proxy re-encryption [7, 17] on encryption keys, and on a public
cloud storage provider storing the encrypted data. Proxy re-encryption is a
cryptographic technique that transforms a ciphertext generated with a key
k into a ciphertext that can be decrypted using a different key k′, without
the need for decryption the original ciphertext. Hence, it can be performed
also by a party not trusted for the plaintext content of the data. Each user
of the BeSafe SkyCryptor has a pair of public and private keys. Whenever
a user wants to store a resource at the public cloud provider, the resource is
first encrypted at the client side using a symmetric encryption key, called file
key . The encrypted resource and the file key, encrypted with the public key
of the user, are then stored on the cloud provider. Resources can be shared
only among users with a BeSafe account. Figure 1.7 shows an example of
sharing between user A and user B. User A first generates a new proxy key ,
encrypts such a key with her public key, and sends the resulting ciphertext
to the BeSafe Key Server (1). B downloads the encrypted resource (2) from
the public cloud storage provider, along with the corresponding encrypted
file key (3). The encrypted file key is then sent to the BeSafe Key Server
(4) that proxy-re-encrypts it using the proxy key generated by A. The result
of the proxy re-encryption is sent to B (5) who can decrypt it through her
private key for retrieving the file key and then can use the retrieved file key
to decrypt the resource [52].

Differently from the previous sections, we do not present a case study
here: due to its complexity and size, we leave the dissertation of the hybrid
encryption case study, i.e., EncSwift [10, 11], to the next chapters.

4https://besafe.io/
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Chapter 2

EncSwift

EncSwift is a solution for providing data-at-rest encryption and enforcing
access control when relying on an honest-but-curious cloud provider. This
tool is based on OpenStack Swift where, as already discussed in Section 1.2.2,
data are hierarchically organized in accounts, containers, and objects. The
access control enforcement mechanism implemented by EncSwift is based
on selective encryption (introduced in Section 1.3.1) and over-encryption
approaches [30, 26].

2.1 Basic Concepts

We consider a scenario where users wish to outsource data to an external
cloud service provider (CSP) and selectively share their data with others.
Different data (owned by the same user) may be accessible by different sets
of users. Every data owner has an access control policy specifying authoriza-
tions on her data.

As mentioned before, we assume that the CSP is based on the Open-
Stack framework, which includes the Swift module as an object storage ser-
vice. Swift enforces discretionary access control restrictions over the objects
it stores by associating a read access control list and a write access con-
trol list with each container and tenant in the system. These access control
lists identify the users who can read and write the container/tenant. To
enforce access control restrictions, Swift relies on Keystone for users authen-
tication. As already mentioned, Keystone is an OpenStack component acting
as identity server, which provides a central directory of users mapped to the
OpenStack services they can access. Besides, Barbican offers a RESTful API
designed for the secure storage, provisioning, and management of secrets such
as passwords, encryption keys, and X.509 certificates.

21
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Figure 2.1: An example of authorization policy defined by user Alice (a) and
corresponding policy-based encryption (b)

We recall that we assume the cloud service provider to be honest-but-
curious , that is, trusted to correctly manage the data (i.e., trustworthy) but
not trusted for accessing the content of objects. Consistently with our focus
on data confidentiality, in this chapter we are concerned with the represen-
tation and enforcement of an access control policy regulating read access to
objects. We note however that our approach can be extended to the con-
sideration of write authorizations [27]. In the following, acl(o) denotes the
read access control list of object o and Au is the set of read access control
lists defined by user u for her objects. Figure 2.1(a) illustrates an example of
authorization policy defined by user Alice. In this example, we assume that
there are three users, Alice (A), Bob (B), and Dave (D), and four objects
(o1, o2, o3, and o4) owned by Alice. In the matrix in Figure 2.1(a), entry
[u,o] has value 1 if u is authorized to read o (i.e., u∈acl(oi)) and 0 if u is not
authorized to read o (i.e., u 6∈acl(oi)).

The work presented in this chapter is based on the policy-based encryp-
tion and over-encryption approach proposed in [29, 30], and aims at their rep-
resentation and enforcement with Swift, which also require some re-definition
and adjustment of these concepts. Essentially, each user is associated with
a symmetric key, and each object is encrypted using a symmetric key that
depends on the access control policy. Keys are organized in such a way that
a user u can derive (via public tokens), all and only the keys of the objects oi
she is authorized to access (i.e., u∈acl(oi)). Yet, policy updates, i.e., changes
in the acl connected to a resource, would require to change the key and
re-encrypt objects affected by revocation. This would entail download and
re-upload operations by owners, which could become cumbersome and affect
the performance of the system. In order to avoid such a situation, policy
updates are enforced by super-imposing a second layer of encryption on the
encrypted object itself. Hence, every object can then have a first layer of
encryption (BEL, Base Encryption Layer) imposed by the data owner for



2.2. ACCESS CONTROL ENFORCEMENT IN SWIFT 23

protecting the confidentiality of the data from unauthorized users as well
as from the CSP, and a second layer of encryption (SEL, Surface Encryp-
tion Layer) applied by the CSP for protecting the object from users who
are not be authorized to access the object but who might know the under-
lying BEL key. A user will be able to access an object only if she knows
both the SEL key and the BEL key with which the object is encrypted.
In the following, we use notation Eu to denote the policy-based encryption
equivalent to the authorization policy Au defined by user u. Figure 2.1(b)
illustrates the policy-based encryption equivalent to the authorization policy
in Figure 2.1(a). In this figure, keys mA,mB,mD are the symmetric keys
of the users and keys k1, k2, k3, k4 are the symmetric keys used to encrypt
the objects. Notation mx  ky represents the fact that key ky is derivable
from key mx. In the remaining sections, we first describe how a policy-based
encryption can be realized in Swift (Section 2.2), and then illustrate how to
enforce policy updates (Section 2.3).

2.2 Access Control Enforcement in Swift

Our approach translates the authorization policy defined by a user into a
policy-based encryption that relies on the use of different keys and ad-hoc
structures supporting the client-based Swift encryption. In this section, we
describe such keys and ad-hoc structures (which are stored as traditional
Swift objects), and then illustrate how policy-based encryption can be im-
plemented.

2.2.1 Keys and User-Based Repositories

Our approach is based on the definition and management of different keys.
There are (symmetric) keys associated with objects for objects’ encryption
(enforcing the self-protection mentioned in the introduction). Also, each user
is associated with a (symmetric) key as well as with two pairs of asymmetric
keys to support identity management and signature, respectively. Finally,
authorizations are realized by encrypting object keys with user keys. This
allows users to retrieve the key of objects they are authorized to access,
providing the same functionality that public-tokens provided in [29, 30].

We describe the different keys and their characteristics and functionality
in the following.

Data Encryption Key (DEK) ki. Every object oi is protected by sym-
metric encryption using a DEK ki. Each DEK ki has a given size, is asso-
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ciated with an encryption algorithm, and has an identifier, denoted id(ki),
that identifies the key among all the keys used in the system.

Master Encryption Key (MEK) mu. Every user u has a personal sym-
metric master encryption key mu . The knowledge of this key permits to
access, directly or indirectly, all the objects that user u is authorized to see.
Given the user identity loss that would derive from a compromise of the
MEK, it is assumed that the user keeps the MEK only on the client-side,
never exposing it to the server or to other users.

User encryption key pair 〈pu, su〉. Each user u is associated with an
asymmetric key pair 〈pu ,su〉 for encryption (our implementation adopts
RSA). As we show later on, the availability of asymmetric cryptography
supports the realization of a cooperative cloud storage service, where each
user may make her objects available to other users. Note that in most ap-
plication domains, the correspondence between a user identity and a public
key is supported by certificates issued by a trusted Certification Authority.
Swift can instead benefit from the availability of Keystone, which already
centralizes the management of user identities, and the public key is assumed
to be available in the user profile managed by Keystone.

User signing key pair 〈spu, ssu〉. Each user u is associated with an asym-
metric key pair 〈spu ,ssu〉 for signing messages (our implementation adopts
EC-DSA). The reason for having a signing key pair is that it is common
in security systems to separate the encrypting and signing identities. This
improves security and flexibility, giving the option to use a dedicated cryp-
tographic technique for each function. Signatures are used to guarantee the
integrity of objects and of the information that users adopt for deriving the
DEKs. Like for asymmetric encryption, the public key for signatures is also
stored in the Keystone profile of users.

Key Encryption Key (KEK). A KEK is at the basis of the mechanism
that translates the access control policy defined by a user into an equivalent
policy-based encryption. DEKs are encrypted and stored in the form of
Key Encryption Keys (KEKs), which should not be confused with the KEK
used in the Swift-KeyRotate approach illustrated in the previous chapter
(Section 1.2.2). For each container that a user is authorized to access, there
is therefore a KEK that the user can decrypt to obtain the DEK used for
encrypting the objects in the container. As we will see in the following
sub-section, there are two variants of KEKs, depending on the cryptographic
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technique used to protect them: symmetric KEKs, encrypted with the MEKs
of users, and asymmetric KEKs, encrypted with the public keys of users. The
KEKs that allow a user u to derive the keys of the objects she is authorized
to access are stored in a user-based repository, denoted Ru . Each KEK is
characterized by the following information: a KEK identifier, the identifier
of the protection key, the identifier of the encrypted key, a timestamp, the
identifier of the creator (only for asymmetric KEKs), an authentication code,
and the encrypted key. The authentication code is used to verify the integrity
of a KEK and is generated with the symmetric key of the user who creates
the KEK (in case of symmetric KEK) or with the private signing key of
the creator (in case of asymmetric encryption). Functions are available that
allow the user to extract from her repository the KEK associated with a
given protected key identifier.

The identifier of the DEK used to protect an object is maintained in
the descriptor of the object itself. Such a piece of information is needed,
whenever a user accesses an object, to retrieve the right KEK that allows
the user to derive the corresponding DEK. Analogously, the descriptor of a
container includes the identifier of the key to be used to encrypt the objects
that will be inserted in the container. At initialization time, the key identifier
in the descriptor of the objects stored in a container coincides with the key
identifier in the container descriptor. As we will discuss in Section 2.3, due to
policy changes, the key associated with a container may change and objects
in the container may still be protected with a previous container key.

2.2.2 Policy-Based Encryption

All users in the system can define an access control policy for the objects
they own. We now describe how the authorization policy Au defined by user
u is translated into an equivalent policy-based encryption Eu using the keys
illustrated in the previous section.

User u creates as many containers C1, . . . , Cm as needed and, for each
of them, creates a DEK ki, i = 1, . . . ,m, using a robust source of entropy.
Consistently with Swift working, we assume that all objects in a container
have the same acl. User u then encrypts all objects in a container Ci with
the DEK ki of the container and stores them in Ci, which will have therefore
the same acl for all the objects in it. Each DEK ki is encrypted with the
MEK mu of the user who created the container and the resulting KEK is
stored in the user’s repository Ru . For each user uj in the acl corresponding
to container Ci, user u encrypts DEK ki with uj’s public key puj

and signs
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Figure 2.2: Policy-based encryption EA equivalent to the authorization policy
AA in Figure 2.1(a)

it using ssu , thus producing an asymmetric KEK usable by uj. This KEK is
stored in uj’s repository Ruj

.

Example 1. Consider the authorization policy of Alice in Figure 2.1(a).
Figure 2.2 shows how this policy is translated into an equivalent policy-based
encryption. Alice creates two containers C1 and C2 and stores objects o1

and o3 both encrypted with key k1 in C1, objects o2 and o4 both encrypted
with k2 in C2. She then creates her KEKs as well as the KEKs that Bob
and Dave can use to access the objects for which they are authorized. In
particular, Alice encrypts DEKs k1 and k2 with her MEK mA and stores
the resulting KEKs in her repository RA. Then, she encrypts DEK k1 with
Bob’s public key pB and DEK k2 with public keys pB and pD of Bob and
Dave, respectively. The resulting KEKs are stored in repositories RB and
RD, respectively. The figure also illustrates the profiles of Alice, Bob, and
Dave managed by Keystone. These profiles contain the public keys of the
users.

When a user uj wishes to access an object ol, the object descriptor is
first accessed to retrieve the identifier of the DEK used to encrypt ol. This
identifier is then used to retrieve the corresponding KEK from repositoryRuj

and then derive the DEK kl. Derivation will require user uj either to use
her own MEK muj

(for symmetric KEK), or to apply the private encryption
key suj

(for asymmetric KEK). To improve the efficiency of the subsequent
accesses to the key and simplify the procedure, once a DEK provided by
another user is extracted from an asymmetric KEK, the KEK is replaced
in the repository by a symmetric KEK built using the user own MEK. For
instance, suppose that Bob requires access to object o1. Bob first retrieves
from the descriptor of object o1 the identifier id(k1) of DEK k1. Then, it
retrieves from RB the corresponding KEK, decrypts it using his private key
sB and uses the retrieved DEK for decrypting o1. Furthermore, Bob replaces
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the original asymmetric KEK with a symmetric KEK obtained by encrypting
k1 with his master key mB.

When a new object ol is inserted into a container Ci, user u retrieves
the descriptor of the container and looks for the identifier id(ki) of the cor-
responding DEK ki. The user will then look in her repository Ru for the
KEK associated with id(ki) and will extract the corresponding DEK. The
DEK will be used to encrypt object ol that will be given to Swift and DEK
id(ki) will be inserted into the object descriptor. For instance, suppose that
Alice inserts a new object o5 in C2. Since the DEK associated with C2 is k2,
Alice encrypts o5 with k2, inserts id(k2) in the descriptor of o5, and stores
the encrypted version of o5 in C2.

2.3 Policy Updates

Since the authorization policy regulating access to objects in Swift is en-
forced through a policy-based encryption, every time the authorization policy
changes, also the encryption policy needs to be re-arranged accordingly. Up-
dates to the authorization policy include the insertion and deletion of users,
objects, and authorizations. The insertion of a user requires the generation
of her master key, user encryption key pair, and signing key pair, and the
insertion of her public keys in Keystone. The removal of a user requires only
the removal from Keystone of her public (encryption and signing) keys. The
removal of an object instead requires its deletion from the container includ-
ing it. We then focus on granting and revoking authorizations, and on the
insertion of new objects. For simplicity, but without loss of generality, we
consider policy updates that involve a single user ui and a single container
C (the extension to a set of users and of containers is immediate).

2.3.1 Enforcement of Policy Updates

We now illustrate how granting and revoking authorizations as well as the
insertion of a new object with its authorization policy can be enforced. Recall
that authorization policies operate at the granularity of container. Then,
grant and revoke operations modify the set of users authorized to access a
container C, and hence all the objects that it stores. Also, the insertion of
an object in a container implies that it inherits the container acl.

Grant authorization. If user u grants ui access to container C (and hence
to the content of all its objects), she simply needs to create an (asymmetric)
KEK enabling ui to derive the DEK k of the container and to store it in the
repository Rui

of user ui. For instance, with reference to the authorization
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policy in Figure 2.1(a), to grant Dave access to container C1, Alice needs to
create a KEK enabling Dave to derive k1.

Revoke authorization. If user u revokes from ui access to container C
(and hence to all its objects), it is not sufficient to delete the KEK that
allows ui to derive the DEK k of the container, as the revoked user ui may
have accessed the KEK before being revoked and may have locally stored its
value. A straightforward approach to revoke user ui access to container C
consists in replacing the DEK of the container with a new key knew. However,
this would require the owner u of the container to download from the server
all the objects in C, decrypt them with the original DEK k, encrypt them
with the new DEK knew, and then re-upload the encrypted objects, together
with the KEKs necessary to authorized users to derive knew. This would
cause a significant performance and economic cost to user u. To limit such
an overhead, we adopt over-encryption. Hence, when a user u revokes from
another user ui the authorization to access the objects in a container C, u
updates C’s acl and asks the storing server to over-encrypt the objects in C
with a SEL key ks that only non-revoked users can derive. Each container is
then associated with a DEK k at the BEL enforcing the initial authorization
policy, and possibly also with a DEK ks at the SEL enforcing revocations.
Also, there is a KEK for each user initially authorized for C enabling her to
compute k, and a KEK for each non-revoked user enabling her to compute
ks. For instance, consider the authorization policy in Figure 2.1(a), and
assume that Alice wants to revoke from Bob the access to C2. As illustrated
in Figure 2.3, objects o2 and o4 are over-encrypted with a SEL key ks. Also,
the KEK enabling Bob to compute k2 is dropped from RB, while the KEKs
enabling Alice and Dave to compute ks are created and inserted into RA and
RD, respectively.

Insert object. When a new object oj is inserted into a container C, the
object inherits the acl of the container. To enforce such an authorization
policy, the object owner u can simply decide to encrypt oj in the same way
as the objects already in the container. However, if the authorization pol-
icy regulating access to the container has already been modified, this would
require to encrypt oj with both the DEK at the BEL k and the DEK at
the SEL ks associated with the container. Since the policy of object oj has
never been updated, the adoption of the SEL might be an overdo. We there-
fore propose to adopt a new DEK knew at the BEL to protect objects that
are inserted into a container on which revoke operations had been applied.
As a consequence of the revoke operation (and the new acl associated with
the container), a new DEK BEL key (and the corresponding KEKs) corre-
sponding to the new acl is generated for the container, and used for objects
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Figure 2.3: An example of revoca-
tion triggering over-encryption
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Figure 2.4: An example of insertion
of an object into an over-encrypted
container

that will be inserted into the container after the revoke operation. While for
existing objects over-encryption is needed to guarantee protection from the
revoked user, new objects can be encrypted with the new key known only
to the users actually authorized for them. To enable non-revoked users to
derive the new (current) key of the container, an (asymmetric) KEK enabling
them to derive the new key is added to their repositories. Consider, as an
example, container C2 illustrated in Figure 2.3, which is encrypted with k2

at the BEL and with ks at the SEL because of the revoke of Bob. Assume
now that Alice needs to insert a new object o5 into C2. Object o5 will be
encrypted at the BEL with key k3, generated when Bob has been revoked
access to C2 (together with the KEKs enabling Alice and Dave to compute
k3 from their own private key). Figure 2.4 illustrates the content of container
C2 after the insertion of o5.
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Chapter 3

The EncSwift Tool:
Architecture and Design
Choices

In this chapter, we illustrate the design of EncSwift, a solution (introduced in
the previous chapter) that implements access control restrictions over data
stored in OpenStack Swift without the intervention of the data owner as
well as of the cloud provider. The core building block of EncSwift is the
Encryption Layer module, which is in charge of managing encryption and
decryption operations of Swift objects to enforce access control.

3.1 Key Management

The adoption of policy-based encryption for access control enforcement re-
quires the definition and management of different keys, already introduced
in Section 2.2.1. In that section we defined keys associated to each user, i.e.,
a RSA key pair, a Signature key pair, and a Master Key, and keys associated
to data (depending on their acl), i.e., DEKs and KEKs. The first step of the
realization of an hybrid encryption tool capable both to protect resources
and to enforce access revocation, is to design an efficient key management
solution. Keys associated to users are static and require a minimal storage
effort, whereas keys associated to data can explode in number: we recall that
each DEK is associated to a container (and thus to its acl), and that at every
policy update a new DEK is generated for that container, together with a
KEK for each user in the acl. In this section we focus on the realization
of a key management system that permits to reduce the number of keys in
case of frequent policy updates (Section 3.1.1), and to securely store them
(Section 3.1.2).

31
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3.1.1 Key Derivation Structure

The enforcement of sharing restrictions is driven by the definition of symmet-
ric and asymmetric KEKs. To share access to a container with others, the
data owner only needs to generate an asymmetric KEK for each of the users
in the container acl, and a symmetric KEK for herself. These KEKs will per-
mit all the authorized users (and the container owner) to retrieve the DEK
of the container. Figure 3.1 graphically illustrates a scenario characterized
by four users (A, B, C, D), represented by white nodes, and five containers
(Container 1, . . . ,Container 5), represented by colored nodes. Edges in the
graph represent KEKs: an edge between a user and a container is a KEK
corresponding to the encryption of the DEK of the container with the user
public key. For instance, the two edges between users A and B correspond to
two KEKs that allow users A and B, respectively, to obtain the DEK used
for encrypting the objects in Container 1.

To reduce the number of KEKs in the system (i.e., of edges in Figure 3.1),
we introduce KEKs that encrypt a DEK with another DEK. A DEK can be
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used to protect another DEK only if the latter can be accessed by a superset of
users than the former. For instance, Figure 3.2 represents a set of KEKs that
enforce the same authorization policy as Figure 3.1. Here, user A should first
obtain the DEK of Container 1 to be able to retrieve the DEK of Container 2,
which in turn will enable her to obtain the DEK of Container 4.

3.1.2 Catalog Structure

Since the number of KEKs can be considerably high, they cannot be stored
at the user side. We then define a catalog for each user, storing all and
only the KEKs that the user needs to know for accessing the objects she is
authorized to read. The catalog is stored in a Swift container, specifically
created for this purpose. The containers storing users catalogs are stored in
a specific tenant, used only for this purpose. In the following, we will refer to
containers storing users catalogs as meta-container and to the corresponding
tenant as meta-tenant. Note that, while we have a meta-container for each
user, the meta-tenant is unique for the system.

When creating a new user, the Encryption Layer will initialize a meta-
container for the user catalog. When creating a container, the data owner
will create a symmetric KEK for herself, and an asymmetric KEK for each
of the users in the acl of the container. These KEKs are inserted into the
catalog of the corresponding user.

Note that, to improve efficiency in key derivation, a user can replace
an asymmetric KEK with the corresponding symmetric counterpart in her
catalog after the first access. This practice reduces the size of the KEK and
makes future derivations more efficient.

3.2 Client-Only Encryption

This section describes two alternative architectures to perform policy-based
encryption that do not require any modification to server components. In
both architectures the encryption and decryption are performed at the client
side. The App-aware architecture (Section 3.2.1) requires adjustments to
the application that uses Swift, while the Proxy architecture (Section 3.2.2)
is totally transparent to the application but requires an additional trusted
proxy server, which may cause delays. Section 3.2.3 illustrates an approach,
which can be integrated with both the App-aware and Proxy architectures,
enabling users to store RSA and signature key pairs in the cloud.
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Figure 3.3: App-aware architecture

3.2.1 App-aware Architecture

Many applications that use Swift as storage service, also adopt the python-
swiftclient library1 that provides several high-level APIs for the communica-
tion between applications and Swift server. In the App-aware architecture,
the EncSwift component that is responsible for encrypting and decrypting
the resources is obtained by modifying of the python-swiftclient library (see
Section 3.4).

Figure 3.3 illustrates the App-aware architecture for policy-based encryp-
tion as well as the steps followed by the client to access a remote object. The
process to access an (encrypted) object operates as follows.

• Step 1: EncSwift Encryption Layer receives the user’s request (step
1.a) and her private key (step 1.b).

• Step 2: EncSwift retrieves, from the user’s catalog stored in Swift, the
KEK corresponding to the DEK used to protect the object of interest,
and decrypts it to obtain such a DEK. Also, EncSwift retrieves the
encrypted object and decrypts it using the retrieved DEK.

• Step 3: When the object has been decrypted by EncSwift, it is for-
warded to the application client.

Note that the process necessary to upload an object operates in a similar
way. Since the APIs now need also the user’s keys to encrypt/decrypt the
data, the API parameters have been enriched. Hence, the application needs
to be modified to invoke the enriched APIs.

1https://github.com/openstack/python-swiftclient

https://github.com/openstack/python-swiftclient
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Figure 3.4: Proxy architecture

To prove the applicability of EncSwift in existing applications, we im-
plemented a library that has been directly integrated into SwiftBrowser2 (a
simple web-app based on the Django web framework that permits to access
Swift resources). The python-swiftclient library used by this application has
been replaced with our modified version, to enrich its functionality with the
Encryption Layer protection. In this way the user can interact with EncSwift
using a browser.

During the login phase, the username, the tenant name, and the password
must be provided. Then a session is created and managed by SwiftBrowser
to store relevant data, including the authorization token issued by Keystone
(the OpenStack identity service) that is used in place of the username and
password.

Once the user has logged into the system, the GUI shows the list of
containers that she is authorized to access. Using the web interface, the
user can upload and download objects, access the object list of a specific
container, and manage the container acls (i.e., grant/revoke authorizations).

The integration of EncSwift in SwiftBrowser preserves full compatibility
with SwiftBrowser, which does not use any encryption layer.

3.2.2 Proxy Architecture

The App-aware architecture expects a modification of the application client.
An adaptation to this architecture that provides enhanced transparency is
the Proxy architecture, illustrated in Figure 3.4. To avoid changing the API
parameters, in the Proxy architecture the EncSwift Encryption Layer reads a
configuration file that defines the path of the user’s keys. Then, the user does

2https://github.com/cschwede/django-swiftbrowser
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not need to provide to the Encryption Layer her own private key every time
she wants to retrieve an object from Swift. The steps followed by the client
to access an object are the same as the ones illustrated for the App-aware
architecture (Figure 3.3), with the difference that in the Proxy architecture
the private key is provided by the configuration file rather than by the user
(step 1.b).

With this approach the application can be fully unaware of the presence
of the Encryption Layer. This permits to plug the Encryption Layer in every
application without any modification, since the application can continue to
use the regular APIs.

Note that the Encryption Layer can also be deployed as a trusted proxy
server, which receives all the requests by clients and forwards them (after
encryption of the objects) to the Swift storage service.

This architecture presents several advantages compared to the App-aware
architecture. First, the proxy server providing EncSwift functionality offers
the same APIs provided by Swift. This guarantees that all the existing
libraries (e.g., JOSS Java OpenStack Storage [53]) and applications (e.g.,
Cyberduck [36]) can benefit from EncSwift functionality without any mod-
ification to their source code. Second, the trust boundary can be moved
by placing the proxy server (Encryption Layer) in different locations. We
then have a centralized proxy for an entire organization (i.e., all the users
that belong to the same trust boundary) by running it on a trusted server
(i.e., inside the organization network) or on a trusted cloud provider, while
the data can be outsourced to a lower grade (and generally cheaper) cloud
provider. In this case the entire organization is the EncSwift user. The proxy
server can also be run directly by the client to keep the trust boundary as
close as possible to the user.

The disadvantage of this architecture is that it relies on the presence of an
additional trusted server running the Encryption Layer, which may introduce
overheads and delays into the system.

3.2.3 Key Storage in the Cloud

One of the clearest trends of the past few years has been the adoption by users
of mobile devices, replacing personal computers as the reference platform for
carrying out their daily activities. The management of keys on these kind
of devices seems to be unfeasible. Hence, the user has to outsource her own
private and public keys, to store securely her own data on the cloud.
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Figure 3.5: Key storage in the cloud

OpenStack already offers a component, Barbican3, for the secure storage
of private information. Instead of locally managing her RSA and signature
encryption keys, the user only has to store a symmetric Master Key (MK)
used to retrieve the private RSA and signature keys from Barbican. The
Master Key is then used to encrypt the RSA and signature keys of the user.
Figure 3.5 illustrates the architecture for key management, which can be
integrated with both the App-aware and the Proxy architectures changing
the working of step 1 in the object download process. To download an object,
the user then first provides to EncSwift her own Master Key (step 1.a).
EncSwift uses such a key to decrypt the user’s private RSA key retrieved
from Barbican (step 1.b). Steps 2 and 3 then operate as illustrated for the
App-aware and for the Proxy architectures discussed above.

3.3 Policy Evolution: Implementation of

Over-Encryption

Over-encryption [30] prevents object re-encryption by requiring the server to
add a further layer of encryption. Intuitively, every object has a first layer
of encryption (Base Encryption Layer, BEL) imposed by the data owner to
enforce the initial access control policy and to protect the confidentiality of
the objects content from the server. A second layer of encryption (Surface
Encryption Layer, SEL) is imposed by the server to enforce policy updates.
Only users knowing both the BEL and the SEL encryption keys of an object
can read its plaintext content.

3https://wiki.openstack.org/wiki/Barbican

https://wiki.openstack.org/wiki/Barbican
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Figure 3.6: An example of implementation of a revoke operation using im-
mediate (a), on-the-fly (b), and opportunistic (c) over-encryption

We note that, for efficiency reasons, objects inserted into a container after
a policy change will be encrypted with a BEL key that reflects the new acl
of the container. This limits the adoption of SEL to only the objects directly
involved in a revoke operation. To this purpose, after a revoke operation, the
data owner generates a new BEL DEK for the container, and inserts into the
catalog of non-revoked users the KEKs necessary to retrieve the new DEK.

The implementation of over-encryption for the enforcement of revoke op-
erations in Swift can operate in different ways, depending on the time at
which SEL encryption is applied, which can be: materialized at policy up-
date time (immediate), performed at access time (on-the-fly), or performed
at the first access and then materialized for subsequent accesses (opportunis-
tic). In the following, we elaborate on each of these strategies.

Immediate Over-Encryption. The storing server applies over-encryption
when a user revokes the authorization over container C to a user ui. Im-
mediate over-encryption requires the user to define, at policy update time:
the SEL DEK ks necessary to protect the objects in the revoked container
C, and the KEKs necessary to authorized users (and to the server) to derive
ks. Also, the objects in container C will be over-encrypted. The server will
then immediately read from the storage the objects in C, re-encrypt their
content (possibly removing SEL encryption), and write the over-encrypted
objects back to the storage. Hence, immediately after the policy update, the
objects in C are stored encrypted with two encryption layers. Every time a
user needs to access an object in C, the server will simply return the stored
version of the requested object. Figure 3.6(a) illustrates container C2 in Fig-
ure 2.2 after Bob has been revoked access to C2, when adopting immediate
over-encryption.
Immediate over-encryption causes a considerable cost at policy update time,
which is however significantly lower than the cost that would be paid if over-
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encryption is not used. The advantage of immediate over-encryption lies in
its simplicity in the management of get requests by clients, because objects
will be returned by the server as they are stored. This approach can be an
interesting option in scenarios where policy updates are extremely rare and
the overall size of objects is modest.

On-the-fly Over-Encryption. The storing server applies over-encryption
on-the-fly, that is, every time a user accesses an object. Then, even if the
owner of the container asks the server to over-encrypt the objects in C,
the server only keeps track of this request, but it does not re-encrypt stored
objects. When a user needs to access an object in C, the server possibly over-
encrypts the object before returning it to the user. Figure 3.6(b) illustrates
the adoption of on-the-fly over-encryption when Alice accesses object o2,
after Bob has been revoked access to container C2 in Figure 2.2. As it is
visible from the figure, the server over-encrypts o2 with ks, which can be
computed by Alice and Dave but not by Bob, before sending the object to
the requesting user.
When adopting on-the-fly over-encryption, keys can be managed according
to the following two strategies.

• Static key generation: the owner of the container defines, at revoke
time, the SEL DEK ks necessary to protect the objects in the revoked
container C, and the KEKs necessary to non-revoked users (and to the
server) to derive ks.

• Dynamic key generation: the server generates a fresh SEL DEK ks for
every get request involving an object in the revoked container C. Also,
it creates and makes available to the requesting user a KEK enabling
her to derive ks. At revoke time, the owner of the container only needs
to communicate to the server the container C subject to the revoke
operation and the revoked user.

In terms of performance, if the same user makes repeated requests for ob-
jects in the same container (i.e., protected with the same DEK), dynamic key
generation may require a greater amount of work. On the other hand, if the
number of requests for the objects in a container is significantly lower than
the number of KEKs produced by the static approach for the same container,
the dynamic approach is more efficient. The profile of key management for
the two alternatives presents significant differences, but key management
operations exhibit negligible computational and I/O costs compared to the
management of the objects themselves. This is the reason why in the exper-
iments (Section 3.5), focusing on the overall object management cost, we do
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not distinguish between static and dynamic key generation.
The advantage of on-the-fly over-encryption is that over-encryption is ap-
plied only when needed. However, if an object is asked multiple times during
a period when the policy is stable, the server will incur a higher cost than
immediate over-encryption, due to the multiple applications of encryption
on the same object. On-the-fly over-encryption can then be an interesting
option in scenarios where the ratio between accesses and revoke operations
is low.

Opportunistic Over-Encryption. This approach aims at combining
the advantages of both immediate over-encryption and on-the-fly over-
encryption. It presents a similarity with the Copy-On-Write approach com-
monly used by operating systems to improve the efficiency of copying opera-
tions. Analogously to the immediate approach, opportunistic over-encryption
requires the owner, when a user is revoked access to a container, to define
both the SEL DEK ks necessary to protect the objects in the revoked con-
tainer C, and the KEKs necessary to authorized users (and to the server) to
derive ks. Similarly to the on-the-fly approach, the server over-encrypts an
object oj in the revoked container C only when it is first accessed. However,
instead of discarding it, the result of over-encryption is written back to stor-
age for future accesses.
The management of opportunistic over-encryption is more complicated than
the approaches illustrated above. In fact, after multiple policy updates and
object insertions, a container may include objects associated with different
BEL and SEL keys. Therefore, the object descriptor must specify also its
state (i.e., not over-encrypted, over-encrypted with the most up-to-date SEL
key, over-encrypted with an old SEL key). When a user needs to access an
object oj, the server first checks its descriptor. If oj is protected only at BEL
and it has been subject to a revoke operation, the server derives the most
recent SEL key and over-encrypts oj on-the-fly, storing then the result. If
oj is protected also at the SEL with the most up-to-date key (or it is en-
crypted only at the BEL and no revoke operation affected the container), it
is returned to the requesting user. Finally, if oj is protected at the SEL with
an outdated key (e.g., because another revoke operation has been performed
after oj has been last accessed), the server decrypts oj with the old SEL
key, re-encrypts it with the new one, and stores the result. Note that KEKs
enabling to derive old SEL keys can be dropped from repositories only when
no object is protected with those keys. Figure 3.6(c) illustrates container C2

in Figure 2.2 after Bob has been revoked access to C2 and Alice has accessed
object o2. As it is visible from the figure, object o2 is protected at both the
BEL and SEL, while o4 is encrypted only at the BEL as it has not been
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bel key id Identifier of the current BEL DEK of the container, used
to encrypt new objects uploaded in the container

sel key id Identifier of the SEL DEK of the container; it is empty
if over-encryption is not necessary for the container

Figure 3.7: Metadata added to the container header

bel key id Identifier of the BEL DEK used to encrypt the object

sel key id Identifier of the SEL DEK used to encrypt the ob-
ject in storage; it is empty if the object does not need
over-encryption or when using on-the-fly over-encryption
mode

Figure 3.8: Metadata added to the object header

accessed yet.
The critical advantage of opportunistic over-encryption is that it shows good
adaptability to a variety of scenarios. In some peculiar combinations of pol-
icy update frequency, size of data collection, and access profile by clients,
the other solutions may be preferable. However, based on our experimen-
tal results, we expect that this solution will be preferred in the majority of
scenarios.

3.4 Implementation

This section describes the major design choices in the implementation of
EncSwift.

3.4.1 Container and Object Headers

To enforce the access control policy, each object and container is associated
with BEL and SEL DEKs. Each container is associated with at most one
SEL DEK. In fact, every time a revoke operation implies over-encryption,
a SEL DEK is generated and is associated with the container. SEL KEKs
are updated according to policy changes and are always available in the
catalog of each authorized user. Differently from SEL, each container may
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include objects encrypted with different BEL DEKs as they may have been
inserted into the container at different times (and hence with different acls.
A BEL DEK therefore must be associated also with each object. However,
each container is associated with only one current BEL DEK, reflecting the
current acl of the container.

Figures 3.7 and 3.8 show the metadata added to the container and object
headers, to allow users to retrieve the DEK necessary to encrypt/decrypt
each object in the system.

3.4.2 Encryption Layer APIs

Our application offers a new set of routines that should be used in substitu-
tion of the official ones provided by python-swiftclient to take advantage of
our policy-based encryption functionality. When the final user invokes one of
these routines, the Encryption Layer in EncSwift, which is in charge of the
dialog with the different modules of the OpenStack environment, manages
it. In the following, we refer our discussion to the Encryption Layer APIs
of the on-the-fly mode, with the note that the immediate and opportunistic
modes operate in a similar way.

Create User Method

To create a new user, the Encryption Layer invokes the Keystone standard
create user method and generates a new RSA key pair and a new signature
key pair, and stores them both on the local storage and on Barbican (en-
crypting the RSA and signature private keys with the user’s Master Key).
Then, the Encryption Layer communicates with Swift to create the meta-
container with the standard put container method. It then sets the acl of the
meta-container to include the user only, using the traditional post container
method. Finally, the catalog is generated and stored in the meta-container.

Put Container Method

To create a new container, the Encryption Layer generates a new BEL DEK
and produces the corresponding set of KEKs according to the acl of the
container. Clearly, when a container is created, no SEL is required since the
container (and its objects) are protected only with BEL encryption. The con-
tainer is then inserted into Swift using the traditional put container method,
properly initializing the metadata in the header of the container (Figure 3.7).
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Put Object Method

To insert a new object into a container, the traditional put object method is
modified to guarantee that the object is uploaded in encrypted (in contrast to
plaintext) form, using a key that enforces the container acl. To this aim, the
Encryption Layer retrieves, from the header of the container, the identifier of
the BEL DEK. If the user who invokes the put object method is authorized
for the container (i.e., she appears in the acl), the Encryption Layer asks
Swift for the user’s catalog, to retrieve the KEKs necessary to obtain the
BEL DEK associated with the container. The Encryption Layer then uses
such a BEL DEK to encrypt the object and puts it in the container, invoking
the traditional put object method.

Get Object Method

To retrieve an object from a container, it is first necessary to retrieve the
identifier of the BEL DEK and SEL DEK used for the object. The Encryption
Layer then asks Swift to retrieve the stored object, using the traditional
get object method. The Swift server then verifies whether the object has
to be protected with SEL encryption. If the sel key id of the container is
empty or if the bel key id of the container is the same as the bel key id of
the object, over-encryption is not necessary. In this case, either the policy of
the container has never been updated, or the container has not been subject
to revoke operations after the insertion of the object. The object is then
returned to the client. At this point, two (or four) decryptions occur at the
client side: one to obtain the DEK (at BEL and, if necessary, also at SEL)
from the KEKs, and one to decrypt the object (at BEL and, if necessary,
also at SEL).

Post Container Method

To grant or revoke users access to a container, we use the post container
method, which is used to change the meta-information associated with a
container and then also its header.

When a user invokes the post container method, the Encryption Layer
first checks if the post operation requests to change the acl (and whether
it is a grant or a revoke operation). If this is the case, the Encryption
Layer retrieves the container header, to obtain the acl and the identifier
of the current BEL DEK and of the SEL DEK. When a user is added to
a container acl, the Encryption Layer computes the BEL KEKs and SEL
KEKs necessary to the granted user to access the BEL DEK and SEL DEK,
respectively. These KEKs are then stored in the catalog of this user. When
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a user is removed from a container acl, over-encryption is required. Hence,
the Encryption Layer creates a new SEL DEK (possibly substituting the old
one) and updates the catalogs of the users in the current acl with the new
KEKs (possibly removing the KEKs used to obtain the old SEL DEK). In
the immediate mode, the server also re-encrypts the objects with the new
SEL DEK.

3.4.3 Catalog Management Service

To guarantee the security and the consistency of users catalogs, they can
be updated only by users with administrative privileges. Since also users
who do not have these privileges may need to update catalogs (i.e., when
granting other users access to their containers), we introduce an always-
listening Catalog Management Service. This service provides an API that
users can invoke to update catalogs when a container acl is changed. The
Catalog Management Service checks if the request is valid and guarantees a
correct update of all the catalogs of the users involved in the grant/revoke
operation. In this way, there is only one authorized entity that can change
the users’ catalogs. When a user creates a container, she also invokes the
Catalog Management Service API, providing the KEKs that must be inserted
into the catalogs of the users in the container acl.

Since the version of Keystone that we used for our implementation re-
quires administrative privileges to obtain the user ID that corresponds to
a username and vice versa, and Swift acls include user IDs, our Catalog
Management Service also converts user IDs into usernames and vice versa.

3.4.4 Swift Middleware Pipeline

To apply over-encryption it is also necessary to modify the server-side Swift
service, which is based on WSGI, Web Server Gateway Interface (a modu-
lar interface between the web server and the web application) and on Paste
Python Framework. WSGI permits to define a pipeline where several compo-
nents (the middleware) process and modify the request before it reaches the
main web server component (e.g., the Proxy node), and the response they
get from it. To add over-encryption functionality to Swift, we introduced
two new components, the key master and the encrypt components, in the
Proxy node pipeline. The key master component is in charge of retrieving
the correct DEKs, while the encrypt component applies SEL encryption be-
fore returning the object to the client. Including these components in the
Proxy node pipeline has the advantage of leveraging the work done by the
components preceding it in the pipeline (e.g., authentication and request
validation).
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3.5 Experimental Results

We discuss the experimental results performed for evaluating the practical
applicability of our proposal. We performed different series of experiments
aimed at evaluating the following aspects:

• the benefits of the use of over-encryption compared to a system where
policy changes are enforced by the client downloading, re-encrypting,
and re-uploading the objects involved (Section 3.5.1);

• the performance of the immediate, on-the-fly, and opportunistic options
(Section 3.5.2);

• the performance of a batch and a streaming option for the execution
of encryption by the server (Section 3.5.3);

• the performance at the client-side for the removal of the two encryption
layers for over-encrypted objects (Section 3.5.4).

The experiments were executed on two PCs with Linux Ubuntu 16.04, 16
GB RAM DDR3, 4-core i7-4770K CPU, 256 GB SSD disk. The client and
the server were connected with a 100 Mbps network channel.

3.5.1 Comparison between Client Re-Encryption and
Over-Encryption

We compare different options of over-encryption with a scenario where a
policy update on a container is enforced by the data owner through the
download, re-encryption and upload of the whole container. For this set of
experiments, we consider a container with 1000 files of size 1 MB. Client
side re-encryption does not require server work (except for the download and
upload request, which are the same in every scenario) and is necessary only
for revocations.

Figure 3.9 compares the overall time required for the management of a
policy update followed by a number of get requests. The line on top corre-
sponds to the configuration without over-encryption. In the lower part, we
have the lines that describe the time required when using over-encryption,
considering the on-the-fly approach and the opportunistic approach with uni-
form distribution of access requests (corresponding to α = 1). We also report
the time exhibited by the management of a sequence of direct get requests,
where no encryption is applied to the objects. The graph shows that the
lower lines are all one near to the other, proving that over-encryption has a
small overhead.
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3.5.2 Analysis of Over-Encryption Approaches

We compare the performance of immediate, on-the-fly, and opportunistic
approaches. For this set of experiments, we consider a container with 100
files of size 1 MB. We focus on the time required for the processing on the
server module, without considering the time required for the transfer of data
across the network. This permits to focus on the component that is most
influenced by these options (the network is typically a bottleneck and it hides
the difference between the approaches, as shown in Figure 3.9). Figure 3.10
reports the cumulated execution time associated with a sequence of requests,
for the three over-encryption approaches.

The immediate option requires, at policy update time, to read all the
objects in the container, possibly decrypt them, and encrypt and write them
back. This creates an immediate overhead at policy update, before the first
request. Subsequent requests do not require a specific processing by this mod-
ule, which manages the get requests with a direct mapping to the retrieval
of the over-encrypted representation of the object. Figure 3.10 represents the
immediate approach with a horizontal line.

The on-the-fly option requires to apply SEL encryption on every returned
object. The cost is then identical for all the requests. Figure 3.10 shows that
the on-the-fly option is associated with a constant growth.

For the opportunistic approach, the cost depends on the number of files in
the container that are accessed more than once. When an object is accessed
for the first time after the policy update, the server will have to encrypt it
at the SEL level and then save its new representation. This adds to the
encryption cost the cost for the storage of the new version. Subsequent
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requests for the same object will be managed as a simple get of the over-
encrypted representation of the object. The frequency of repeated accesses
has then an impact on the efficiency of this approach. In our experiments, we
therefore consider request profiles associated with power law distributions [39]
with varying values for the α parameter, from 1 to 4. A value of α equal to 1
corresponds to a uniform distribution, where all the requests have an equal
probability of asking any of the objects in the container; increasing values of
α lead to an increasingly skewed distribution of requests. The analysis shows
that for the first requests the cost associated with the opportunistic approach
is greater than that of the on-the-fly approach. As requests continue to
be executed, the opportunistic approach becomes increasingly more efficient
compared to the on-the-fly approach. The advantage increases as the profile
becomes more unbalanced. The worst case is represented by the uniform
distribution, which still becomes more efficient after 180 requests.

From this experimental analysis we conclude that the choice of the over-
encryption approach has to consider a few aspects. In terms of pure per-
formance, the opportunistic approach always dominates the immediate ap-
proach. The choice between the on-the-fly and the opportunistic approach
has to evaluate the frequency of policy updates, the number of access requests
generated between each policy update, and the profile of access requests. For
scenarios where policy updates are relatively frequent compared to the fre-
quency of access requests, and the profile is uniform, the on-the-fly approach
can be the most efficient solution. In these scenarios, a choice should be made
between the static and dynamic key generation. This choice will have to take
into account design and configuration aspects, with the static generation re-
quiring a greater upfront processing, but then more efficient computation,
and the dynamic generation minimizing setup costs, but requiring a DEK
and a KEK creation for every access request. In domains with a profile op-
posite to that leading to the on-the-fly approach, the opportunistic approach
can prove to be the best option.

In addition to performance, there are design and security requirements
that may have an impact on the choice. In terms of design, the opportunistic
approach requires a more complex procedure, whereas the immediate and on-
the-fly approaches both map to a simpler implementation. With respect to
security, the immediate approach (for all the objects) and the opportunistic
approach (for objects that have already been accessed since the last update)
offer greater protection, because a revoked user who may have access to the
Swift storage infrastructure would not be able to access the plaintext of the
objects, whereas in the on-the-fly approach such an attack would succeed for
a revoked user. System administrators will then have to make a choice based
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on the consideration of a number of parameters. Our expectation is that in
most scenarios administrators will select the opportunistic approach.

3.5.3 Streaming and Batch Encryption

We performed a set of experiments aimed at comparing the execution time
of a number of get requests when two different kinds of encryptions are
used by the server: Streaming and Batch. They both use the AES-CTR
encryption mode. Streaming encryption makes use of the WSGI structure of
the Swift servers, and it consists in encrypting every chunk of the file as it is
obtained from the proxy server. On the contrary, Batch encryption consists
in encrypting the whole file after it is returned from the proxy server and
before it is sent to the client. In these experiments, files of the same size
are inserted into a container, which has the total size of 1 GB. We studied
the benchmark of Streaming and Batch encryption applied to the on-the-fly
approach against the direct get call that does not apply any encryption.

As it is visible from Figure 3.11, compared to the direct get call, Stream-
ing encryption adds an overhead between 1% and 3%, whereas Batch encryp-
tion adds an overhead between 7% and 15%. It is then clear that Streaming
encryption is more efficient, both because of shorter response times and be-
cause it has a lower memory usage, since it does not have to load the entire
object in RAM before encrypting it. Note that the encryption of the chunks
could also be parallelized, further reducing the overhead compared to the
direct get call.

3.5.4 Application of Two Encryption Layers

When over-encryption is used, the client has to decrypt the downloaded ob-
jects twice, using the same encryption algorithm with two distinct keys. The
simplest approach for the implementation of these two decryptions consists
in first removing the SEL layer on the full object and then removing the BEL
layer. Such an approach is not the most efficient option, because the portion
of the object that has been SEL-decrypted (and still BEL-encrypted) will
have to either be temporarily stored in RAM or on mass memory. This is
similar to the analysis for Streaming and Batch encryption for the server,
where Streaming encryption proves to be more efficient.

We started from these considerations and investigated the joint applica-
tion of SEL and BEL decryptions. We were also interested in evaluating the
performance profile of decryption on the client and in evaluating the impact
of the hardware support offered for the execution of cryptographic functions.
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In particular, we verified the impact of the AES-NI (Intel AES New Instruc-
tion set) instructions available on Intel processors. A first set of experiments,
reported in Figure 3.13, showed that the encryption performance of AES-NI
compared to an AES software implementation (we used the one available in
OpenSSL) is around 7 times faster.

We then focused on the application of two decryptions. Our expectation
was that the consecutive application of a SEL decryption and BEL decryp-
tion on the same block would have produced a benefit, as it would have
avoided to pay the penalty of a transfer outside the CPU cache of the data.
As shown in Figure 3.12, where AES-NI instructions were used, we instead
observed that the performance of the interleaved decryption depends on the
number of consecutive blocks processed with each key. The worst perfor-
mance is observed when after each block there is a switch of encryption key.
Further investigation allowed us to verify that the source of this behavior
was an optimization by the C compiler that avoided to execute a write to
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Figure 3.14: Re-encryption using
AES
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Figure 3.15: Re-encryption using
AES-NI

the registers storing the key value when no changes had occurred to the key
since the previous execution. When the switch from the application of the
SEL decryption to the BEL decryption occurs after a number of blocks, the
cost of the key setup is amortized over a number of blocks, but the blocks
remain in the CPU cache after the first decryption and the second decryption
becomes more efficient.

We then compared the execution times for the (a) serial application of
SEL and BEL decryption (a full SEL decryption, followed by a full BEL de-
cryption) and (b) interleaved SEL and BEL decryption, with the application
of the two decryptions 8 blocks at a time. Figures 3.14 and 3.15 report the
results of these experiments when not using AES-NI and when using AES-NI,
respectively. The greater performance of hardware-accelerated AES empha-
sizes the impact that the CPU/RAM interface has on performance. Fig-
ure 3.14 indeed shows that the difference between the two approaches when
hardware acceleration is not used is limited. Figure 3.15 shows that the 20%
benefit observed is persistent across objects with a variety of sizes.

This approach is then the one that has to be applied whenever two layers
of decryption have to be removed. It is also important to note that the
throughput that can be obtained in the application of two decryptions (a few
GB/s) is orders of magnitude greater than the bandwidth available for the
network connections between a client and the Swift provider. This confirms
the applicability of over-encryption in this scenario.
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EncSwift and Key
Management: An Integrated
Approach in an Industrial
Setting

In a dynamic system with frequent policy updates, the use of encryption
brings not negligible complexity since keys must be shared and revoked in
an efficient and trusted way. Indeed, as widely explained in the previous
chapters, as though granting access to a resource only requires to share its
encryption key, access revocation is a more relevant problem. To this aim, we
have analyzed how over-encryption can provide a clear benefit both in terms
of performance and security. Yet, intuitively, in case of frequent policy up-
dates, our approach would benefit from an efficient key management service
able to manage a potentially large number of encryption keys. The purpose
of this chapter is to introduce a new efficient key management service, i.e.,
BT KMS, and investigate its integration with EncSwift, in a scenario with
frequent policy updates, and thus stressed by the generation and adminis-
tration of a large number of encryption keys.

4.1 BT Key Management Service

The main purpose of the BT Key Management Service (KMS) is to allow
users to securely manage their encryption keys and certificates securely, ei-
ther in a cloud based or in an on-premise environment. Furthermore, in a
cloud based setting, the BT KMS can be provisioned and managed via the
BT Service Store [37], which enables its users to create isolated and com-
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Figure 4.1: Architecture of the BT KMS

partmentalized key management domains. This allows the users to manage
their keys for use in multiple cloud platforms in a secure multi-tenant envi-
ronment. The main components of the BT KMS are shown in Figure 4.1 and
are described in more detail below.

• HTTPS/REST Interface: it offers an intuitive web-based management
console for enterprise-scale administration, as well as Single Sign-On
capabilities that can be seamlessly integrated with LDAP based user
identity management services. It also supports management through
the use of a full-featured REST based API.

• Key Lifecycle Management: it provides complete lifecycle management
of the keys, including key creation, storage, import, export, rotation,
revocation and deletion. Thus users have complete control over every
aspect of a key during its existence. It also supports multiple API stan-
dards like PKCS#11, Microsoft Extensible Key Management (EKM)
and OASIS KMIP, which helps with the automation of various opera-
tional tasks.

• Key Activity Reporting: it implements the ability to audit and report
on all activities relating to keys, so that the users are able to generate
comprehensive and granular audit logs of encryption key and certificate
management activities. This is an essential requirement for a lot of
compliance standards, and BT KMS complies with the FIPS 140-2
Level 1 standard.
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• Key Access Control: lastly, it is tightly integrated with an access control
capability that governs the rules and policies for releasing the relevant
data encryption keys to the authorized users and processes. It also
enforces the storage and retrieval to and from the key vault, which
provides high availability storage and backup of the keys.

One of the core requirements from users of cloud based services is maxi-
mum and transparent control and ownership of their data in the cloud eco-
system. This can be realized by utilizing the BT KMS, as it enforces the
user-based management of the cryptographic keys, so that only the users are
able to authorize policy-based release of keys to trusted applications. Even
the cloud service provider on which the BT KMS is deployed has no view or
control of the users’ keys and other security credentials. This approach also
keeps the keys separate from the data that they are protecting.

Each instance of the BT KMS contains a public/private key pair (RSA
Key Pair), which is used to protect the Key Encrypting Keys (KEKs) and
other sensitive security objects stored within the Key Vault. The RSA Key
Pair can be changed periodically without any impact to the keys and creden-
tials being protected by it. A KEK is a random AES-256 key which is used
to protect a Data Encryption Keys (DEK) while they are at-rest in the Key
Vault or in transit from the BT KMS to the client application. The DEKs
are AES-256 keys that are used for the actual encryption of the objects, and
are always encrypted at-rest and in transit. This minimizes the exposure of
the DEK, as well as the need for its frequent rotation.

4.2 Integration between BT KMS and Enc-

Swift

In the previous chapter (Section 3.2.2), we illustrated an architecture to
perform policy-based encryption on the client-side, relying on an external
component (Barbican) in order to store encryption keys in the cloud. In this
section, we analyze possible challenges and enhancements to the EncSwift
solution in case of adoption of the BT KMS in place of Barbican. Obviously,
a research tool such as EncSwift would benefit from the integration of a full
real industrial key management service. Indeed, BT KMS is designed to
bring good performance and to be scalable in a real industrial scenario, and
thanks to its flexibility and the wide number of communication protocols it
supports, BT KMS would fully fit into the EncSwift architecture. Neverthe-
less, this integration would require a low implementation effort in order to fix
some differences in the key usage. First of all, both BT KMS and EncSwift
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Figure 4.2: Architecture of EncSwift and BT KMS integration

requires to store KEKs. Yet, in EncSwift KEKs are produced as symmetric
DEKs asymmetrically encrypted with users’ RSA keys, on the contrary BT
KMS supports encryption of DEKs with a symmetric KEKs, that are en-
crypted themselves with users’ RSA keys. A possible integration of the two
architectures would require to choose one of the key treatment alternatives.

In our analysis, we adopt the EncSwift key structure, and deprecate the
use of BT KMS encrypting keys, i.e., DEKs are asymmetrically encrypted
with users’ RSA keys. An architectural overview of the integration is shown
in Figure 4.2. EncSwift still relies on an OpenStack Swift object storage,
but all the encryption keys are stored in an instance of BT KMS instead of
Barbican. Moreover, the EncSwift SEL middleware implemented to enforce
over-encryption can communicate with BT KMS in order to store and retrieve
the SEL DEK.



Chapter 5

Related work

The design of encryption techniques for data stored in the cloud is a large re-
search area, with a considerable variety of topics and proposals. A significant
amount of work has been dedicated to the design of techniques that support
the efficient search and retrieval of encrypted data (e.g., [83]). Techniques
have been designed that let the data be available only to users with specific
properties (e.g., ABE [22, 44]). Another important line of research focuses
on protecting access privacy (e.g., [33, 34, 77]). In the first part of this the-
sis, we focus on techniques adopting encryption in order to protect resources
stored in the cloud. We analyze server-side and client-side encryption ap-
proaches already in use in existing cloud storage frameworks, and focus on
recent hybrid encryption techniques recently raising interest in the industrial
and academic communities.

Several proposals have contributed to the design of solutions for the pro-
tection of outsourced data with reference to current cloud frameworks. In [2],
OpenStack security issues are extensively analyzed. The confidentiality of
objects stored in Swift is considered as a significant aspect, but no specific
technical solution is presented. A subsequent work by the same authors [1]
describes an approach for the encryption of objects in Swift. In [55] another
approach for server-side encryption is presented, with the goal of protecting
“data-at-rest” (i.e., an approach for making the object representation on stor-
age devices protected against physical accesses). In these approaches, keys
are never seen by clients and they do not consider the support for container
acls. Then, they do not have to look at the management of the encryption
policy and its evolution.

A number of proposals have considered the application of encryption on
the client-side. In [85], a service is presented that maps a file system to an
encrypted representation on Amazon S3. The proposal does not support the
sharing of files among distinct users and acls are not considered. In [54], an

55



56 CHAPTER 5. RELATED WORK

architecture for sharing encrypted objects outsourced to a cloud provider is
presented. Revocation is considered as important and difficult and the pro-
posed solution enforces it by limiting access to encryption keys for revoked
users. In [86], an extensive architecture for the management of a cloud-based
data sharing system is proposed. Resources are protected with keys that
are consistent with the policy and significant attention is paid to revocation.
The approach used is based on proxy re-encryption and lazy re-encryption.
Proxy re-encryption relies on expensive cryptographic techniques that allow
a server to convert a representation of a resource encrypted with a key to one
associated with a different key, without letting the server executing the trans-
formation be able to access the plaintext of the resource. Proxy re-encryption
supports expressive encryption schemes, which allow attribute-based selec-
tion. Over-encryption uses standard symmetric encryption, which does not
support those features but exhibits better performance. Lazy re-encryption
shares some features with our opportunistic over-encryption approach, as
it saves on re-encryptions by applying them only after an access request is
made to the object, but the motivation is different. The advantage of lazy
re-encryption is due to the ability to avoid re-encryptions for resources that
are not accessed between a number of policy updates. The same benefit is
also valid in our opportunistic approach, but in those scenarios our on-the-fly
approach can be preferable.

Over-encryption has been proposed to effectively and efficiently enforce
policy updates over encrypted outsourced data [29, 30]. This solution consid-
ers the presence of a single data owner, and it has been extended to consider
multiple users owning (and willing to share) data [28]. This approach differs
from the solution we proposed as it relies on Diffie-Hellman, while our ap-
proach is based on the definition of symmetric and asymmetric KEKs. Also,
these proposals consider a generic resource management scenario, with no
specific connection to existing cloud frameworks.



Chapter 6

Discussion and conclusions

The design of efficient techniques for protecting the confidentiality and reg-
ulating access to data stored at external cloud providers has been the sub-
ject of several efforts in the research as well as industrial community. In
this chapter, we have presented an overview of recent approaches that pro-
tect the confidentiality of the data through encryption as well as enforce
access control restrictions. These techniques mainly differ in how encryption
is enforced, which depends on the trust assumption on the cloud provider.
Interesting evolution of these encryption-based data protection techniques
are related to the use of All-or-Nothing Transforms (AONT) for enforcing
changes in the access control policy without requiring the support of the
cloud provider [12], and the consideration of novel distributed cloud stor-
age systems (e.g., Storj [84], Sia [82] and FileCoin [59]) characterized by the
availability of multiple (untrusted) nodes that can be used to store resources
in a distributed manner.
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Chapter 1

Mix&Slice: Efficient Access
Revocation in the Cloud

1.1 Introduction

In the last years we assisted to an increasing interest in encryption tech-
niques. When dealing with data protection, more and more solutions rely on
encryption, both on data in transit (e.g., SSL) and on data-at-rest. Robust
encryption has become computationally inexpensive, enabling its introduc-
tion in domains that are traditionally extremely sensitive to performance (like
cloud-based applications and management of large resources). Moreover, en-
cryption provides protection against the service provider itself, which may
not be considered authorized to know the content of the resources it stores.
In addition to this, encryption solves the need of having a trusted party for
policy enforcement: resources enforce self-protection, since only authorized
users, holding the keys, will be able to decrypt them.

All-or-nothing transform (AONT) is a family of encryption techniques,
first proposed by Rivest in [71], which provide better security guarantees
with respect to simple encryption. AONT ensures that if even a single block
of the AONT-encoded resource is missing, no portion of the resource can be
reconstructed, even if the encryption key is known.

The goal of this part of thesis is to present AONT approaches used for
protecting data-at-rest, introducing a novel solution that can also be em-
ployed to enforce efficient access revocation, i.e., Mix&Slice [12]. We then
focus on an interesting application of AONT to a new scenario, i.e., decen-
tralized cloud storage, as a way to balance availability and security.
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1.2 Basic Idea

In this chapter, we present a novel approach to enforce access revocation
that provides efficiency, as it does not require expensive upload/re-upload of
(large) resources, and robustness, as it is resilient against the threat of users
who might have maintained copies of the keys protecting resources on which
they have been revoked access.

The basic idea of our approach is to provide an encrypted representation
of the resources that guarantees complete interdependence (mixing) among
the bits of the encrypted content. Such a guarantee is ensured by using
different rounds of encryption, while carefully selecting their input to pro-
vide complete mixing, meaning that the value of each bit in the resulting
encrypted content depends on every bit of the original plaintext content. In
this way, unavailability of even a small portion of the encrypted version of
a resource completely prevents the reconstruction of the resource or even
of portions of it. Brute-force attacks guessing possible values of the miss-
ing bits are possible, but even for small missing portions of the encrypted
resource, the required effort would be prohibitive. Rivest’s all-or-nothing
transform [71] considers similar requirements, but the techniques proposed
for it are not suited to our scenario, because they are based on the assump-
tion that keys are not known to users, whereas in our scenario revoked users
can know the encryption key and may plan ahead to locally store critical
pieces of information.

Trading off between the potentially clashing need of connecting all bits of
a resource to provide the wished interdependency of the content on one side,
and the potential huge size of the resources and need to maintain a possible
fine-granularity of access within the resource itself on the other side, we ap-
ply the idea of mixing content within portions of the resource, enforcing then
revocation by overwriting encrypted bits in every such portion. Before mix-
ing, our approach partitions the resource in different, equally sized, chunks,
called macro-blocks . Then, as the name hints, it is based on the following
concepts.

• Mix: the content of each macro-block is processed by an iterative appli-
cation of different encryption rounds together with a carefully designed
bit mixing, that ensures, at the end of the process, that every individ-
ual bit in the input has had impact on each of the bits in the encrypted
output.

• Slice: the mixed macro-blocks are sliced into fragments so that frag-
ments provide complete coverage of the resource content and each frag-
ment represents a minimal (in terms of number of bits of protection,
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which we call mini-block) unit of revocation: lack of any single frag-
ment of the resource completely prevents reconstruction of the resource
or of portions of it.

To revoke access from a user, it is sufficient to re-encrypt one (any one) of
the resource fragments with a new key not known to the user. The advantage
is clear: re-encrypting a tiny chunk of the resource guarantees protection of
the whole resource itself. Also, the cloud provider simply needs to provide
storage functionality and is not required to play an active role for enforcing
access control or providing user authentication. Our Mix&Slice proposal is
complemented with a convenient approach for key management that, based
on key regression, avoids any storage overhead for key distribution.

In [12], the evaluation of Mix&Slice is also supplied with its security analy-
sis, together with an implementation written in C and applied to OpenStack
Swift. In this thesis, we decided to only present the basic principles and
building blocks of Mix&Slice, in order to leave more space to the application
of AONT solutions (such as Mix&Slice) to decentralized cloud storage.

1.3 Mix & Slice

1.3.1 Blocks, mini-blocks, and macro-blocks

The basic building block of our approach is the application of a symmetric
block cipher. A symmetric cryptographic function operating on blocks guar-
antees complete dependency of the encrypted result from every bit of the
input and the impossibility, when missing some bits of an encrypted version
of a block, to retrieve the original plaintext block (even if parts of it are
known). The only possibility to retrieve the original block would be to per-
form a brute-force attack attempting all the possible combinations of values
for the missing bits. For instance, modern encryption functions like AES
guarantee that the absence of i bits from the input (plaintext) and of o bits
from the output (ciphertext) does not permit, even with knowledge of the
encryption key k, to properly reconstruct the plaintext and/or ciphertext,
apart from performing a brute-force attack generating and verifying all the
2min(i,o) possible configurations for the missing bits [3].

Clearly, the larger the number of bits that are missing in the encrypted
version of a block, the harder the effort required to perform a brute-force
attack, which requires attempting 2x possible combinations of values when
x bits are missing. Such security parameter is at the center of our approach
and we explicitly identify a sequence of bits of its length as the atomic unit
on which our approach operates, which we call mini-block . Applying block
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encryption with explicit consideration of such atomic unit of protection, and
extending it to a coarser-grain with iterative rounds, our approach identifies
the following basic concepts.

• Block : a sequence of bits input to a block cipher (it corresponds to the
classical block concept).

• Mini-block : a sequence of bits, of a specified length, contained in a
block. It represents our atomic unit of protection (i.e., when removing
bits, we will operate at the level of mini-block removing all its bits).

• Macro-block : a sequence of blocks. It allows extending the application
of block cipher on sequences of bits larger than individual blocks. In
particular, our approach operates mixing bits at the macro-block level,
extending protection to work against attacks beyond the individual
block.

Our approach is completely parametric with respect to the size (in terms
of the number of bits) that can be considered for blocks, mini-blocks, and
macro-blocks. The only constraints are for the size of a mini-block to be a
divisor of the size of the block (aspect on which we will elaborate later on) and
for the size of a macro-block to be a product of the size of a mini-block and a
power of the number of mini-blocks in a block (i.e., the ratio between the size
of a block and the size of a mini-block). In the following, for concreteness
and simplicity of the figures, we will illustrate our examples assuming the
application of AES with blocks of 128 bits and mini-blocks of 32 bits, which
corresponds to having 4 mini-blocks in every block and therefore operating
on macro-blocks of size 32 · 4x, with x arbitrarily set. In the following, we
will use msize, bsize, Msize to denote the size (in bits) of mini-blocks, blocks,
and macro-blocks, respectively. We will use bj[i] (Mj[i], resp.) to denote the
i-th mini-block in a block bj (macro-block Mj, resp.). We will simply use
notation [i] to denote the i-th mini-block in a generic bit sequence (be it a
block or macro-block), and [[j]] to denote the j-th block. In the encryption
process, a subscript associated with a mini-block/block denotes the round
that produced it.

1.3.2 Mixing

The basic step of our approach (on which we will iteratively build to provide
complete mixing within a macro-block) is the application of encryption at
the block level. This application is visible at the top of Figure 1.1, where
the first row reports a sequence of 16 mini-blocks ([0], . . . , [15]) composing
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Figure 1.1: An example of mixing of 16 mini-blocks assuming m = 4

4 blocks. The second row is the result of block encryption on the sequence
of mini-blocks. As visible from the pattern-coding in the figure, encryption
provides mixing within each block so that each mini-block in the result is
dependent on every mini-block in the same input block. In other words, each
[i]1 is dependent on every [j]0 with (i div 4) = (j div 4).

One round of block encryption provides mixing only at the level of
block. With reference to our example, mixing is provided among mini-blocks
[0]0 . . . [3]0, [4]0 . . . [7]0, [8]0 . . . [11]0, and [12]0 . . . [15]0, respectively. Absence
of a mini-block from the result will prevent reconstruction only of the plain-
text block including it, while not preventing the reconstruction of all the other
blocks. For instance, with reference to our example, absence of [0]1 will pre-
vent reconstruction of the first block (mini-blocks [0]0, . . . , [3]0) but will not
prevent reconstruction of the other three blocks (mini-blocks [4]0, . . . , [15]0).
Protection at the block level is clearly not sufficient in our context, where we
expect to manage resources of arbitrarily large size and would like to provide
the guarantee that the lack of any individual mini-block would imply the im-
possibly (apart from performing a brute-force attack) of reconstructing any
other mini-block of the resource. The concept of macro-block, and accurate
extension of block ciphering to operate across blocks, allows us to provide
mixing on an arbitrarily long sequence of bits (going much above the size of
the block).

The idea is to extend mixing to the whole macro-block by the itera-
tive application of block encryption on, at each round, blocks composed of
mini-blocks that are representative (i.e., belong to the result) of different
encryptions in the previous round. Before giving the general definition of
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Mix(M)
1: for i := 1, . . . , x do /* at each round i */

2: span := mi /* number of mini-blocks in a mixing */

3: distance := mi−1 /* leg of mini-blocks input to an encryption */

4: for j := 0, . . . , b− 1 do /* each j is an encryption */

/* identify the input to the j-th encryption picking, */

/* within each span, mini-blocks at leg distance */

5: let block be the concatenation of all mini-blocks [l]
6: s.t. (l mod distance) = j and
7: (j ·m) div span = l div span
8: [[j]]i := E(k, block) /* write the result as the j-th block in output */

Figure 1.2: Mixing within a macro-block M

our approach, let us discuss the simple example of two rounds illustrated in
Figure 1.1, where [0]1, . . . , [15]1 are the mini-blocks resulting from the first
round. The second round would apply again block encryption, consider-
ing different blocks each composed of a representative of a different com-
putation in the first round. To guarantee such a composition, we define
the blocks input to the four encryption operations as composed of mini-
blocks that are at distance 4 (=m) in the sequence, which corresponds to
say that they resulted from different encryption operations in the previous
round. The blocks considered for encryption would then be 〈[0]1[4]1[8]1[12]1〉,
〈[1]1[5]1[9]1[13]1〉,〈[2]1[6]1[10]1[14]1〉,〈[3]1[7]1[11]1[15]1〉. The result would be a
sequence of 16 mini-blocks, each of which is dependent on each of the 16
original mini-blocks, that is, the result provides mixing among all 16 mini-
blocks, as visible from the pattern-coding in the figure. With 16 mini-blocks,
two rounds of encryption suffice for guaranteeing mixing among all of them.
Providing mixing for larger sequences clearly requires more rounds. This
brings us to the general formulation of our approach operating at the level
of macro-block of arbitrarily large size (the example just illustrated being a
macro-block of 16 mini-blocks).

To ensure the possibility of mixing, at each round, blocks composed of
mini-blocks resulting from different encryption operations of the previous
round, we assume a macro-block composed of a number of mini-blocks, which
is the power of the number (m) of mini-blocks in a block. For instance,
with reference to our running example where blocks are composed of 4 mini-
blocks (i.e., m=4), macro-blocks can be composed of 4x mini-blocks, with
an arbitrary x (x=2 in the example of Figure 1.1). The assumption can be
equivalently stated in terms of blocks, where the number of blocks b will be
4x−1. Any classical padding solution can be employed to guarantee such a
requirement, if not already satisfied by the original bit sequence in input.

Providing mixing of a macro-block composed of b blocks with b=mx−1

requires x rounds of encryption each composed of b encryptions. Each round
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Figure 1.3: Propagation of the content of mini-blocks [0] and [63] in the mix
process

allows mixing among a number span of mini-blocks that multiplies by m at
every round. At round i, each encryption j takes as input m mini-blocks
that are within the same span (i.e., the same group of m i mini-blocks to be
mixed) and at a distance (m i−1). Figure 1.2 illustrates the mixing procedure.
To illustrate, consider the example in Figure 1.1, where blocks are composed
of 4 mini-blocks (m=4) and we have a macro-block of 16 mini-blocks, that is,
4 blocks (b=4). Mixing requires x = 2 rounds of encryption (16 = 42), each
composed of 4 (b) encryptions operating on 4 (m) mini-blocks. At round 1,
the span is 4 (i.e., mixing operates on chunks of 4 mini-blocks) and mini-
blocks input to an encryption are taken at distance 1 within each span. At
round 2, the span is 16 (all mini-blocks are mixed) and mini-blocks input
to an encryption are taken at distance 4 within each span. Let us consider,
as an another example, a macro-block composed of 64 mini-blocks (i.e., 16
blocks). Mixing requires 3 rounds. The first two rounds would work as
before, with the second round producing mixing within chunks of 16 mini-
blocks. The third round would then consider a span of all the 64 mini-blocks
and mini-blocks input to an encryption would be the ones at distance 16.

At each round i, mini-blocks are mixed among chunks of m i mini-blocks,
hence ensuring at round x, mixing of the whole macro-block composed of mx

mini-blocks.

Figure 1.3 captures this concept by showing the mixing of the content of
the first ([0]) and last ([63]) mini-blocks of the macro-block at the different
rounds, given by the encryption to which they (and those mini-blocks mixed
with them in previous rounds) are input, showing also how the two meet at
the step that completes the mixing. While for simplicity the figure pictures
only propagation of the content of two mini-blocks, note that at any step they



68 CHAPTER 1. MIX&SLICE

(just like other mini-blocks) actually carry along the content of all the mini-
blocks with which they mixed in previous rounds. Given a macro-block M
with mx mini-blocks (corresponding to b blocks), the following two properties
hold: 1) a generic pair of mini-blocks [i] and [j] mix at round r with i div
mr = j div mr; and 2) x rounds bring complete mixing. In other words,
the number of encryption rounds needed to mix a macro-block with m · b
mini-blocks is logm(m · b).

An important feature of the mixing is that the number of bits that are
passed from each block in a round to each block in the next round is equal to
the size of the mini-block. This guarantees that the uncertainty introduced
by the absence of a mini-block at the first round (2msize) maps to the same
level of uncertainty for each of the blocks involved in the second round, and
iteratively to the next rounds, thanks to the use of AES at each iteration.
This implies that a complete mixing of the macro-block requires at least
logm(m · b) rounds, that is, the rounds requested by our technique.

Another crucial aspect is that the representation after each round has to
be of the same size as the original macro-block. In fact, if the transforma-
tion produced a more compact representation, there would be a possibility
for a user to store this compact representation and maintain access to the
resource even after revocation (this is a weakness of other solutions discussed
in Chapter 3). Since, in our approach, each round produces a representation
that has the same macro-block size, the user has no benefit in aiming to
attack one round compared to another.

When resources are extremely large (or when access to a resource involves
only a portion of it) considering a whole resource as a single macro-block may
be not desirable. Even if only with a logarithmic dependence, the larger the
macro-block the more the encryption (and therefore decryption to retrieve
the plaintext) rounds required. Also, encrypting the whole resource as a
single macro-block implies its complete download at every access, when this
might actually not be needed for service.

Accounting for this, we do not assume a resource to correspond to an
individual macro-block, but assume instead that any resource can be parti-
tioned into M macro-blocks, which can then be mixed independently. The
choice of the size of macro-blocks should take into consideration the perfor-
mance requirements of both the data owner (for encryption) and of clients
(for decryption), and the possible need to serve fine-grained retrieval of con-
tent. This requirement can be then efficiently accommodated independently
encrypting (i.e., mixing) different portions of the resource, which can be
downloaded and processed independently.

Encryption of a resource would then entail a preliminary step cutting the
resource in different, equally sized, macro-blocks on which mixing operates.
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Figure 1.4: From resource to fragments

To ensure the mixed versions of macro-blocks be all different, even if with
the same original content, the first block of every macro-block is xored
with an initialization vector (IV ) before starting the mixing process. Since
mixing guarantees that every block in a macro-block influences every other
block, the adoption of a different initialization vector for each macro-block
guarantees indistinguishability among their encrypted content. The different
initialization vectors for the different blocks can be obtained by randomly
generating a vector for the first macro-block and then incrementing it by 1
for each of the subsequent macro-blocks in the resource, in a way similar to
the CTR mode [38]. Figure 1.4(a) illustrates such process.

1.3.3 Slicing

The starting point for introducing mixing is to ensure that each single bit
in the encrypted version of a macro-block depends on every other bit of its
plaintext representation, and therefore that removing any one of the bits
of the encrypted macro-block would make it impossible (apart from brute-
force attacks) to reconstruct any portion of the plaintext macro-block. Such
a property operates at the level of macro-block. Hence, if a resource (be-
cause of size or need of efficient fine-grained access) has been partitioned
into different macro-blocks, removal of a mini-block would only guarantee
protection of the macro-block to which it belongs, while not preventing re-
construction of the other macro-blocks (and therefore partial reconstructions
of the resource). Resource protection can be achieved if, for each macro-block
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Encrypt
1: cut R in M macro-blocks M0, . . . ,MM−1

2: apply padding to the last macro-block MM−1

3: IV := randomly choose an initialization vector
4: for i = 0, . . . ,M − 1 do /* encrypt macro-blocks */

5: Mi[[1]] := Mi[[1]] ⊕ IV /* xor the first block with the IV */

6: Mix(Mi) /* encrypt the macro-block */

7: IV := IV + 1 /* initialization vector for the next macro-block */

8: for j = 0, . . . ,mx − 1 do /* slicing */

9: Fj[i ] := Mi[j]

Figure 1.5: Algorithm for encrypting a resource R

of which the resource is composed, a mini-block is removed. This observa-
tion brings to the second concept giving the name to our approach, which
is slicing. Slicing the encrypted resource consists in defining different frag-
ments such that a fragment contains a mini-block for each macro-block of
the resource, no two fragments contain the same mini-block, and for every
mini-block there is a fragment that contains it. To ensure all this, as well
as to simplify management, we slice the resource simply putting in the same
fragment the mini-blocks that occur at the same position in the different
macro-blocks. Slicing and fragments are defined as follows.

Definition 1.3.1 (Slicing and fragments). Let R be a resource and
M0, . . . ,MM−1 be its (individually mixed) macro-blocks, each composed of
(m · b) mini-blocks. Slicing produces (m · b) fragments for R where Fi =
〈M0[i], . . . ,MM−1[i]〉, with i = 1, . . . , (m · b).

Figure 1.4(b) illustrates the slicing process and Figure 1.5 illustrates the
procedure for encrypting a resource R. R is first cut into M macro-blocks and
an initialization vector is randomly chosen. The first block of each macro-
block is then xor-ed with the initialization vector, which is incremented by 1
for each macro-block. The macro-block is then encrypted with a mixing pro-
cess (Figure 1.2). Encrypted macro-blocks are finally sliced into fragments.

1.4 Access management

Accessing a resource (or a macro-block in the resource, resp.) requires avail-
ability of all its fragments (its mini-blocks in all the fragments, resp.), and of
the key used for encryption. Policy changes corresponding to granting access
to new users can be simply enforced, as usual, by giving them the encryption
key. In principle, policy changes corresponding to revocation of access would
instead normally entail downloading the resource, re-encrypting it with a new
key, re-uploading the resource, and distributing the new encryption key to
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Figure 1.6: An example of fragments evolution

all the users who still hold authorizations. Our approach permits to enforce
revocation of access to a resource by simply making any of its fragments
unavailable to the users from whom the access is revoked. Since lack of a
fragment implies lack of a mini-block for each macro-block of a resource, and
lack of a mini-block prevents reconstruction of the whole macro-block, lack
of a fragment equates to complete inability, for the revoked users, to recon-
struct the plaintext resource or any portion of it. In other words, it equates
to revocation.

Access revocations are then enforced by the data owner by randomly
picking a fragment, which is then downloaded, re-encrypted with a new key
(which will be made known only to users still authorized for the access),
and re-uploaded at the server overwriting its previous version. While still
requesting some download/re-upload, operating on a fragment clearly brings
large advantages (in terms of throughput) with respect to operating on the
whole resource. Revocation can be enforced on any randomly picked frag-
ment (even if already re-written in a previous revocation) and a fresh new
key is employed at every revoke operation. Figure 1.6 illustrates an example
of fragments evolution due to the enforcement of a sequence of revoke op-
erations. Figure 1.6(a) is the starting situation with the original fragments
computed as illustrated in Section 1.3. Figure 1.6(b-d) is the sequence of
rewriting to enforce revocations, which involve, respectively, fragment F10,
re-encrypted with key k1, fragment F4, re-encrypted with key k2, and frag-
ment F10 again, now re-encrypted with key k3. In the following, we use
notation Fj

i to denote a version of fragment Fi encrypted with key kj, being
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Revoke
1: randomly select a fragment Fi of R /* fragment to be rewritten */

2: download Fc
i from the server /* version of the fragment stored */

3: if c > 0 then /* F0
i has been overwritten in a revocation */

4: derive key kc /* derive kc using key regression */

5: F0
i := D(kc,Fc

i ) /* retrieve the original version of the fragment */

6: determine the last key kl−1 used /* it is stored in R’s descriptor */

7: generate new key kl
8: Fl

i := E(kl,F
0
i )

9: upload Fl
i overwriting Fc

i /* overwrite previous version */

10: encrypt sl with the key of acl(R) /* limits it to authorized users */

11: update R’s descriptor /* including the new sl */

Figure 1.7: Revoke on resource R

F0
i the version of the fragment obtained through the mixing process. In the

figure, the resource is represented in a three-dimensional space, with axes
corresponding to fragments, macro-blocks, and keys. The re-writing of a
fragment is represented by placing it in correspondence to the new key used
for its encryption. The shadowing in correspondence to the previous versions
of the fragments denote the fact that they are not available anymore as they
are overwritten by the new versions.

Each revoke operation requires the use of a fresh new key and, due to
policy changes, fragments of a resource might be encrypted with different
keys. Such a situation does not cause any complication for key management,
which can be conveniently and efficiently handled with a key regression tech-
nique [42]. Key regression is an RSA-based cryptographically strong tech-
nique (the generated keys appear as pseudorandom) allowing a data owner
to generate, starting from a seed s0, an unlimited sequence of symmetric keys
k0, . . . , ku, so that simple knowledge of a key ki (or the compact secret seed
si of constant size related to it) permits to efficiently derive all keys kj with
j ≤ i. Only the data owner (who knows the private key used for generation)
can perform forward derivation, that is, from ki, derive keys following it in
the sequence (i.e., kz with z ≥ i). Note instead that, not knowing the private
key, users cannot perform forward derivation. The cost that users must pay
for key derivation is small. On a single core, the computer we used for the
experiments (i.e., a PC with Linux Ubuntu 16.04, 16 GB RAM DDR3, i7-
4770K CPU, 256 GB SSD disk) is able to process several hundred thousand
key derivations per second.

With key regression, every user authorized to access a resource just needs
to know the seed corresponding to the most recent key used for it (s0 if the
policy has not changed, s3 in the example of Figure 1.6(d)). To this end,
there is no need for key distribution, rather, such a seed can be stored in
the resource descriptor and protected (encrypted) with a key corresponding
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Access
1: download R’s descriptor and all its fragments
2: retrieve seed sl used for the last encryption
3: compute keys k0, . . . , kl
4: for each downloaded fragment Fx

i do
5: if x > 0 then
6: F0

i := D(kx,Fx
i ) /* retrieve the original version of fragments */

7: for j = 0, . . . ,M − 1 do /* reconstruct and decrypt macro-blocks */

8: Mj := concatenation of mini-blocks F0
i [j ], i = 0, . . . , (m · b)− 1

9: decrypt Mj

Figure 1.8: Access to resource R

to the resource’s acl (i.e., known or derivable by all authorized users) [6,
29]. Enforcing revocation entails then, besides re-encrypting a randomly
picked fragment with a fresh new key ki, rewriting its corresponding seed si,
encrypted with a key associated with the new acl of the resource. Figure 1.7
illustrates the revocation process.

To access a resource, a user then first downloads the resource descriptor,
to retrieve the most recent seed sl, and all the fragments. With the seed,
she computes the keys necessary to decrypt fragments that have been over-
written, to retrieve their version encrypted with k0. Then, she combines the
mini-blocks in fragments to reconstruct the macro-blocks in the resource.
She then applies mixing in decrypt mode to macro-blocks to retrieve the
plaintext resource. Figure 1.8 illustrates the process to access a resource.

Note that the size of macro-blocks influences the performance of both
revoke and access operations. Larger macro-blocks naturally provide greater
policy update performance as they decrease policy update cost linearly, with
limited impact on the efficiency of decryption, since its cost increases loga-
rithmically.
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Chapter 2

Dynamic Allocation for
Resource Protection in
Decentralized Cloud Storage

2.1 Decentralized Cloud Storage

While the cloud paradigm typically is based on a single service provider,
the emergence of blockchains and micro-payment networks has introduced
a new interest towards Decentralized Cloud Storage (DCS) networks. DCS
networks rely on storage capabilities of network peers and provide an interest-
ing emerging alternative to traditional cloud storage. The main characteristic
of a DCS is that storage space is provided by users, which can be anyone
from big providers to individuals, that can join the network and offer storage
space, typically in exchange of some reward (micro-payment). Examples of
DCS systems are Storj [84], SAFE Network Vault [60, 47], IPFS [15, 59], and
Sia [82], which enable users to rent out their unused storage and bandwidth
in exchange of some crypto-currency. The great advantage is that the price
for storage on a DCS is a fraction of the price of a normal provider.

The use of a dynamic network of unknown (and potentially non-trusted)
peers clearly introduces the problem of guaranteeing proper protection to
resources, ensuring their availability and security (for both confidentiality
and integrity). In fact, a DCS is a potentially unstable network, and hence
continuous participation of every single node cannot be assumed. Given this,
and in line with the distributed nature of DCS services, resources are sliced
into many shards, with different shards allocated to different nodes of the net-
work, with replication to guarantee availability. Reconstruction of a resource
requires collecting the different shards composing it. Also, nodes participat-
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ing in the DCS - which can dynamically join and leave and are anonymous
- cannot be considered trusted, hence resource confidentiality needs to be
protected against each of them (as well as against possible coalitions) and
owners should be able to assess integrity of the shards (and hence resources).

Typically, DCS networks provide security by encrypting the resource
at the owner side before slicing it, and provide availability by employing
shard replication. Instead of simple replication in the allocation, several
DCS networks leverage the dynamic application of erasure codes (e.g., Reed-
Solomon). With Reed-Solomon, if a node participating in the service becomes
unavailable, its shard is dynamically re-allocated to another node. The ad-
vantage of Reed-Solomon with respect to simple replication is that it provides
reliability guarantees at a fraction of the storage overhead. However, it has
two main drawbacks. First, it is a fixed-rate encoding technique and therefore
computing the shard to be re-allocated requires reconstructing the complete
resource. Second, if the old node originally storing a (then re-allocated) shard
comes back online, more replicas than actually needed would be available for
the same shard and the economic cost brought by the involvement of more
nodes does not bring a clear advantage for availability. Also, the use of simple
encryption for providing confidentiality has some limitations since, although
it is true that the unavailability of all shards composing a resource prevents
its complete reconstruction, still a subset of the shards may enable recon-
struction of a portion of the resource to users knowing the encryption key.
For instance, a owner losing control on the encryption key may ask nodes
in the DCS to delete the resource, as it would otherwise remain exposed.
However, nodes that do not respect the request of deleting their shards may
then have access to a portion of the resource.

The contribution of this chapter is twofold. First, we combine AONT, in
contrast to simple encryption for protecting resources, and fountain codes, in
contrast to traditional erasure codes like Reed-Solomon for computing shards
to be distributed to nodes in a DCS. The combined adoption of AONT and
fountain codes provides better security and availability guarantees, and lower
performance overhead than current solutions. Second, we provide a model
for dynamically managing the computation and allocation of shards, avoid-
ing an immediate reaction to a node leaving, if availability guaranteed by the
remaining nodes is considered still acceptable. Our approach avoids poten-
tially excessive generation of shards which may turn out to be unnecessary
when - as it is often the case - nodes unavailability is only temporary. Avoid-
ance of excessive generation provides advantages not only for performance
(as it avoids generating new shards and involvement of new nodes) but also
for security (excessively increasing the number of shards in the system may
cause a higher vulnerability to malicious coalitions).
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2.2 Basic concepts

The two basic building blocks enabling the development of our solution are
the adoption, at the client side, of all-or-nothing transform (AONT) and of
fountain codes.

AONT. AONT [71] is an encryption mode that transforms a plaintext re-
source into a ciphertext where every bit of the output has strong interdepen-
dence on all the bits of the input (e.g., [12, 56, 57]). In other words, AONT
ensures that even knowing the encryption key, a resource or a portion of
it cannot be reconstructed even when even only a single block is missing.
AONT then provides better security guarantees than encryption. An Exam-
ple of AONT is Mix&Slice, i.e., the technique illustrated in Chapter 1

Fountain codes. Fountain codes are a class of erasure codes preventing
that the loss of one of the transmitted or stored blocks of a resource causes
a data loss. Given a resource r, partitioned into f different fragments, an
erasure code generates a set of s>f encoded shards that depend on the re-
source content and support the reconstruction of r through the combination
of a subset of the encoded shards. Fountain codes, unlike other erasure
codes (e.g., Reed-Solomon [67]), offer probabilistic reconstruction guaran-
tees, meaning that with a probability p < 1, f of the s shards are sufficient
for reconstructing r. The reconstruction probability p exponentially increases
by retrieving additional shards. Although probabilistic, fountain codes have
two main characteristics that, as we will discuss in the next section, allow
us to profitably use them in the DCS context. First, they are rateless, that
is, using these codes it is possible to create a new (i.e., different from each
other) shard on the fly and therefore the number s of encoded shards is not
fixed a priori. Independently from the number s of shards, any subset of (at
least) f shards can be used to reconstruct r. Second, each shard depends
on a subset of (and not on all) the f original fragments of the resource and
then only a subset of the original fragments are needed for generating a new
shard.

2.3 Encoding and allocation strategy

We consider a data owner interested in storing her resources in a DCS net-
work. For simplicity, we refer the discussion to a single resource r, since the
same approach can be applied to all the resources moved to the DCS.

Given a resources r we assume the data owner to first encrypt r using
AONT, to protect confidentiality, and then encode the resulting ciphertext
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Figure 2.1: Reference scenario

using fountain codes, to provide availability. As illustrated in Figure 2.1,
the ciphertext is organized in f original fragments and encoded into a set
S = {s1, . . . , ss} of s shards allocated to s randomly chosen nodes N =
{n1, . . . , ns} (i.e., each shard is allocated to a different node). Whenever a
user is interested in retrieving the resource content, she contacts an arbitrary
subset of f nodes and downloads their shards, which are then combined to
reconstruct the resource.

The reason for using AONT, in contrast to encryption, is its ability to
prevent even partial reconstruction of the plaintext resource. This property
is crucial in the considered scenario, since fountain codes enable the recon-
struction of a fragment (i.e., a chunk of the ciphertext) starting from a small
subset of shards (i.e., less than f shards). The adoption of AONT then pre-
vents any (small) coalition of malicious nodes to partially reconstruct the
plaintext resource content, even if they can reconstruct a fragment from the
shards they store.

The choice of using fountain codes, in contrast to simple replication or
traditional erasure codes (e.g., Reed-Solomon), is due to their high flexibility
in dealing with the intrinsically dynamic behavior of DCS . Since fountain
codes are rateless, if a node ni leaves the DCS, the data owner does not need
(as it would happen using Reed-Solomon) to reconstruct its shard si and
re-allocate it to a different node to guarantee the same resource availability.
Indeed, it is sufficient to generate a new shard ss+1 (different from s1, . . . , ss)
and allocate it to a new node ns+1. After the generation and allocation of
ss+1, any user can still reconstruct the resource content by downloading any
subset of f shards from the resulting set (S\{si})∪{ss+1} of s shards. The
generation of a new shard, in contrast to the replication of the unavailable
one, provides higher resource availability. Indeed, every shard is unique and
equally contributes to the reconstruction of the resource. Hence, when the
previously unavailable node ni comes back online, the increased economic
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Figure 2.2: An example of shard generation/replication using Reed-Solomon
(a) and fountain codes (b) in a dynamic scenario

cost due to the involvement of a larger number (s + 1) of nodes comes with
an actual advantage in terms of higher availability. In fact, there will be s+1
(instead of s) different shards stored at s+ 1 different nodes that can all be
used for resource reconstruction. Note that the generation of a new shard
causes a limited overhead since it implies the download of a subset of the
shards in S, without the need to reconstruct r (as required by other erasure
codes).

As discussed, the rateless characteristic of fountain codes allows the adap-
tive adjustment of the number of shards available for reconstructing a re-
source, thus impacting the availability and security guarantees. We use this
characteristic (see Section 2.4) in such a way that, when the availability guar-
antees go below a given threshold, the owner can generate a new shard. Anal-
ogously, when the risk of confidentiality exposure is above a given threshold
due to the presence of a high number of shards, the data owner can re-encrypt
the resource and generate a new set of s shards.

Figure 2.2 illustrates an example that compares the set of shards in a
DCS when using Reed-Solomon and fountain codes. Here, we assume that
the data owner partitions the resource in f=7 fragments and encodes it in
s=10 shards and that nodes where the shards are stored leave and then
possibly re-join the network. Since Reed-Solomon reacts to a node failure
replicating the shard of the failed node, the set S of shards representing r
never changes but the number of copies grows (e.g., s7 has three copies).
Fountain codes do not cause any replication, but a new shard is generated at
each failure. Note that the two techniques imply the same economic cost for
the owner, since each failure causes the allocation of a (new or duplicated)
shard to a node. In the considered example, the owner pays for 15 shards in
both scenarios.
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2.4 Availability and security guarantees

Node failure has an impact on both resource availability and confidentiality.
Indeed, when one of the nodes ni fails, the encoded shard si it stores cannot
be used to reconstruct the resource content. Hence, the user needs to retrieve
f out of s−1, in contrast to s, shards. When ni re-joins the DCS, it still stores
si and this could provide a positive effect on resource availability, since the
shard at the node could be used to reconstruct the resource. However, node
ni re-joining the DCS could have a negative impact on security, since ni could
exploit its knowledge of si and collude with other f − 1 nodes to reconstruct
r (or prevent its deletion). Similarly, the generation and allocation of a new
shard ss+1 improves resource availability, but also naturally reduces security
since there is a higher number of nodes that could possibly collude.

In this section, we analyze the advantages provided by fountain codes
on availability guarantees, by studying the probability Pu that a resource
becomes unavailable as a consequence of nodes leaving and re-joining the
network. We also evaluate the risks that the adoption of our solution causes in
terms of security, by studying the probability Pc that a coalition of malicious
nodes has enough shards to compromise resource security. These probabilities
depend on the probability pu that a node fails, and on the probability pc that
a node is malicious and interested in colluding with other nodes to breach
the confidentiality of the resource. For simplicity, we assume pu and pc to be
the same for all the nodes.

2.4.1 Availability guarantees

When using s shards to encode a resource r split into f original fragments,
r becomes unavailable when more than s− f nodes fail (i.e., when less than
f shards can be accessed). The probability of such an event to happen is
Pu=

∑s
i=s−f+1

(
s
i

)
pu

i(1 − pu)s−i. Probability Pu increases when one of the
nodes fails (or leaves the DCS) since the shard stored in it is no longer
available, while it decreases any time a new shard is generated or a failed
node re-joins the network.

Even if, in principle, the owner should react every time a node ni fails
by generating a new shard, this practice is expensive and may not even be
necessary (e.g., if ni re-joins the network in a few hours). The increase in Pu

caused by the failure of a node may not be critical in a scenario where nodes
dynamically leave and re-join the system frequently. Indeed, the reduction
in Pu may be temporary and may not considerably affect the ability of the
user to reconstruct r. To properly take into consideration these aspects, we
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Figure 2.3: Probability that a resource becomes unavailable using Reed-
Solomon and fountain codes, assuming pu=0.015, Pmin
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propose a solution where the data owner takes corrective actions (i.e., create
a new shard) only when resource availability is considered at risk.

Our solution is based on the definition of two thresholds for Pu, Pmin
u and

Pmax
u , identifying the range of values considered acceptable by the owner

for guaranteeing the availability of r. Intuitively, these thresholds influence
the maximum and minimum number of available shards in the system and
represent:

• Pmax
u : the maximum probability of failure that the owner can tolerate,

which corresponds to the minimum number of shards (≥ f) the owner
considers desirable to keep resource unavailability under control;

• Pmin
u : the minimum probability of failure fixed by the data owner based

on her economic availability, which corresponds to the maximum num-
ber of shards the owner can afford.

The data owner does not react every time a node leaves or re-joins the
DCS, but only if this event causes Pu to become higher than Pmax

u or smaller
than Pmin

u . If Pu exceeds Pmax
u , the data owner generates a new shard and

allocates it to a new node. If Pu goes below Pmin
u , the data owner can

terminate the contract with one of the nodes in the system (e.g., with the
one that has been off-line the most) and stop paying for its services.

Consider, as an example, a resource partitioned in f=7 original fragments
and encoded in s=10 shards allocated at nodes with probability pu=0.015 of
failure. Figure 2.3 compares the probability Pu of unavailability of a resource
r when using Reed-Solomon and fountain codes, assuming Pmin

u =10−12 and
Pmax
u =10−5, and varying the number of nodes that the data owner identifies
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as unavailable between 0 and 9. The error bars in the figure represent the
standard deviation. Note that Pu is initially the same for Reed-Solomon and
fountain codes, and evolves in the same manner when nodes leave the DCS.
The evolution of Pu when a node re-joins the DCS is instead considerably
different: with Reed-Solomon it causes duplication of a shard, with fountain
codes it implies the availability of an additional (different) shard. As visible
from the figure, the probability that r becomes unavailable is higher using
Reed-Solomon than using fountain codes. In fact, the nodes storing shards
available in a single copy (e.g., s2 in Figure 2.2(a)) play a critical role in
resource reconstruction. Indeed, when failing, they cannot be immediately
substituted. With fountain codes, all nodes are equally critical since they
all store different shards that can be interchangeably used to reconstruct
resource r.

The top chart in Figure 2.4 illustrates an example of evolution of Pu,
assuming the adoption of fountain codes, considering the corrective actions
taken by the owner. The value of Pu grows every time a node leaves and
decreases every time a node re-joins the network. As long as Pu is between
Pmin
u and Pmax

u (the two red dashed lines in the figure), the data owner does
not react to node leave and re-join events. In the example, we set Pmin

u and
Pmax
u in such a way to tolerate the leave and re-join of one node at a time.

When Pu reaches Pmax
u as a consequence of the failure of a node (red triangles

1, 2, and 4 in the figure, indicating unavailability of two nodes), the owner
generates and allocates a new shard. The generation of a new shard reduces
Pu to a value below Pmax

u (green circle 1, 2, and 4 in the figure). When Pu

reaches Pmin
u as a consequence of node re-join (red triangle 3 in the figure,

indicating re-join of all the three nodes that failed), the owner closes the
contract with one of the nodes and Pu returns above the threshold (green
circle 3 in the figure).

In the next section, we will illustrate that Pu decreases not only when the
data owner creates a new shard, but also when the resource is re-encrypted.

2.4.2 Security guarantees against malicious coalitions

Since f shards are sufficient to reconstruct r, any coalition of at least f
malicious nodes can reconstruct the encrypted content of the resource (and its
plaintext representation if the key is exposed) and/or prevent its deletion by
retaining their local copy of the shard. The probability that f (or more) nodes
collude is Pc=

∑s
i=f

(
s
i

)
pc

i(1−pc)s−i. The probability Pc that f nodes collude
increases whenever the data owner generates a new shard and allocates it to
a new node. On the contrary, Pc never decreases. Indeed, we cannot assume
that nodes leaving the system will not re-join in the future and that they
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Figure 2.4: An example of evolution of Pu (top chart) and Pc (bottom chart)
as a consequence of nodes leaving and re-joining the DCS and of actions
taken by the data owner

do not have a copy of the shard initially allocated to them, even in case the
data owner closed the contract. A malicious node can keep a copy of the
data on purpose, to prevent resource deletion and possibly sell the shard to
non-authorized users.

The owner can reduce Pc only by re-encrypting r with a new key. This
process is however quite expensive as it requires to locally reconstruct r
(downloading f shards), decrypt it, re-encrypt its plaintext content with a
new encryption key, encode the resulting ciphertext, and distribute the new
set of s shards to s nodes. To limit such overhead, our solution is based on the
definition of a threshold Pmax

c for Pc, representing the maximum probability
that the owner can tolerate that r is exposed. When, as a consequence of
the generation of a shard, Pc exceeds Pmax

c , the owner re-encrypts r. Clearly,
shards generated before resource re-encryption cannot be used together with
shards generated after re-encryption for resource reconstruction, hence nulli-
fying possible misbehaviors by nodes whose contract has been closed before
re-encryption.

The bottom chart in Figure 2.4 illustrates the evolution of Pc due to
corrective actions taken by the owner for keeping Pu below Pmax

u (i.e., the
generation of new shards). As long as Pc remains below threshold Pmax

c , no
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Shard size Reed-Solomon RaptorQ
100 kB 0.680s (σ = 0.220) 0.487s (σ = 0.167)
1 MB 1.071s (σ = 0.306) 0.758s (σ = 0.234)

10 MB 5.082s (σ = 3.232) 2.552s (σ = 0.962)

Figure 2.5: Average time required to download enough shards from the net-
work to reconstruct a resource

corrective action is taken (green circles 1 and 2 in the figure). In the example
we set Pmax

c to tolerate the generation of two shards. When the generation
of a new shard causes Pc to reach Pmax

c (red triangle 5 and green circle 4
in the figure), the owner re-encrypts r. Resource re-encryption resets both
Pu and Pc to their initial value (green circle 5 in the figure). The lower is
Pmax
u , the more frequently shards will be generated and the more frequently

the data owner will need to re-encrypt r.

2.5 Implementation and experiments

To assess the benefit of using fountain codes in contrast to Reed-Solomon
used by real world DCS networks, we implemented our proposal on top of
Storj [84]. Among the existing DCS, we selected Storj because it is one of
the leaders in the DCS scenario, and its open-source implementation easily
permits the integration of our solution. Storj relies on Reed-Solomon to
guarantee resource availability, and applies encoding and decoding at the
owner and user side, respectively. We then modified the Storj client to adopt
fountain codes instead of Reed-Solomon. Specifically, we used RaptorQ code
(specified in IETF RFC 6330 [63]), which is the latest evolution of Rapid
Tornado (Raptor) codes [75]. RaptorQ is among the most effective fountain
codes available to date, since the probability of not being able to reconstruct
a resource when accessing f+ε shards is negligible, 0.01ε+1 (i.e., 1% accessing
f shards, 0.01% accessing f + 1 shards).

To analyze the performance of our solution, we set parameters f=7 and
s=10 and considered shards of size 100kB, 1MB, and 10MB (i.e., resources of
size 700kB, 7MB, and 70MB, respectively). In our experiments, we consid-
ered pu=0.015, Pmin

u =10−12, Pmax
u =10−5, pc=0.025, and Pmax

c =10−6. These
parameter values support the generation of 22 shards before requiring re-
source re-encryption. The client used for our experimental evaluation is an
Intel i7 4770K with 16 GB DDR3 RAM, running Ubuntu 18.04, connected
to a Fast Ethernet network, thus with enough bandwidth to download all the
required (f=7) shards in parallel. In our tests, we contacted 70 nodes. The
histogram bars in Figure 2.6 illustrate the time necessary to download a shard
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Figure 2.6: Download time of a 10MB shard from each node that has been
contacted in the test (in increasing order of time)

of 10MB from each of these nodes. The nodes are reported on the x-axis in
increasing download time. In the experiments, we focused on download time
as the use of AONT causes a negligible overhead, since the bottleneck is rep-
resented by the network (e.g., the solution in [12] has 2.5 GB/s throughput,
which is orders of magnitude higher than fast network connections).

If the user interested in downloading the resource knows exactly the re-
sponse time of each node in the DCS, she can choose the optimal pool of
nodes, and minimize the time for retrieving the shards necessary to recon-
struct r. When using RaptorQ, the best strategy consists in contacting the
f fastest nodes, since any subset of f shards enables resource reconstruction.
Hence, the download time is given by the access time of the f -th node in the
ranking of the s nodes storing a shard of the resource. When using Reed-
Solomon the best strategy consists in contacting the f fastest nodes that
store f different shards, which might not be the first f nodes in the ranking
in case of duplicated shards. The download time then is given by the access
time of the slowest contacted node.

Since usually clients do not know the response times of the nodes in the
DCS, the best strategy consists in contacting all the s nodes in parallel, and
stop ongoing downloads when the downloaded shards enable resource recon-
struction (i.e., after the first f shards have been downloaded for RaptorQ, af-
ter f different shards have been downloaded with Reed-Solomon). Figure 2.5
reports the average over 100 runs of the time (and standard deviation σ) for
downloading the shards necessary to reconstruct a resource obtained when
using Reed-Solomon and RaptorQ. As expected, RaptorQ provides better
response times, with a reduction between 28.32% (with shards of 100kB)
and 49.78% (with shards of 10MB), than Reed-Solomon. This difference is
due to the fact that the download time is a function of both the download
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throughput and the latency of nodes. For smaller shards, latency is more
relevant than for larger shards, where node bandwidth represents the factor
contributing most to download times.

Figure 2.6 reports the average time necessary to reconstruct the resource
in case of shards of 10MB when using RaptorQ (blue line) and Reed-Solomon
(yellow line). As illustrated in the figure, RaptorQ requires to acquire shards
from ∼45-th percentile of the nodes (30 out of 70 nodes), while for Reed-
Solomon requires to acquire shards from ∼65-th percentile (45 out of 70
nodes), causing a delay in resource reconstruction. We conclude that the
adoption of fountain codes provides a general advantage, thanks to the pos-
sibility for the final user to rely on faster nodes for resource reconstruction,
while providing security guarantees.



Chapter 3

Related Work

The idea of making the extraction of the information content of an encrypted
resource dependent on the availability of the complete resource has been first
explored by Rivest [71], who proposed the all-or-nothing transform (AONT).
The AONT requires that the extraction of a resource where n bits of its
transformed form are missing should require to attempt all the possible 2n

combinations. The AONT can be followed by encryption to produce an
all-or-nothing encryption schema. In [71], the author proposes the package
transform, which realizes an AONT by applying a CTR mode using a random
key k. The ciphertext is then suffixed with the used key k xor-ed with a hash
of all the previous encrypted message blocks. In this way, a modification on
the encrypted message limits the ability to derive the encryption key. This
technique works under the assumption that the user who wants to decrypt the
resource has never accessed the key before, but fails in a scenario where the
user had previously accessed the key and now the access must be prevented
(i.e., revocation of privileges on encrypted files). The user, in fact, could
have stored key k and so she would be able (depending on the encryption
mode used) to partially retrieve the plaintext. Key k can be seen as a digest:
it is compact and its storage allows a receiver to access the majority of the
file, even if one of the blocks was destroyed.

The problem of providing availability guarantees to data stored in
DCS networks has been considered by real-world systems. Storj [84],
Sia [82], SAFE Network [47] adopt techniques based on Reed-Solomon, and
Enigma [4] relies on fountain codes. Although these DCS networks also pay
attention to security, they do not aim at protecting data against coalitions
of malicious nodes. Moreover, the network immediately reacts to any con-
figuration change. Our proposal is orthogonal to these solutions, and can
be easily integrated in real world DCS networks to balance availability and
security guarantees while limiting the data owner’s intervention.
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The problem of balancing availability and security in DCS networks has
been recently addressed in [13]. This proposal is based on the combined adop-
tion of AONT and data replication, and introduces two allocation strategies
of shards to nodes. The analysis of the proposed allocation strategies illus-
trates how they can be tuned to balance availability and security. Unlike our
approach, this proposal considers a static scenario and adopts replication.

The combined adoption of AONT and error-correcting code techniques
has been recently explored to the aim of protecting outsourced data
against possibly curious storage providers and offering high performance
(e.g., [14, 68]). AONT-RS [68] combines Rivest’s AONT [71] with Reed-
Solomon, while AONT-LT [14] uses Luby Transform code (which is a class of
fountain codes [21, 75]) instead of Reed-Solomon. Although these proposals
present similarity with our approach, they are specifically focused on static
scenarios, where the set of nodes is fixed and nodes are not expected to fre-
quently leave/join the network. Indeed, error-correcting codes are used to
enhance performance, in contrast to provide availability guarantees. These
solutions are then suited to cloud-of-clouds but not to DCS scenarios.



Chapter 4

Conclusions

In this part of thesis we presented the all-or-nothing transforms (AONT),
in particular we introduced Mix&Slice, an approach for efficiently enforc-
ing access revocation on encrypted resources stored at external providers.
Mix&Slice enables data owners to effectively revoke access by simply over-
writing a small portion of the (potentially large) resource and is resilient
against attacks by users locally maintaining copies of previously-used keys.
We then presented an approach aimed at balancing availability and secu-
rity of resources stored in a DCS, where nodes naturally leave and re-join
the system. The proposed solution combines AONT encryption and foun-
tain codes. Our approach is based on the definition of thresholds for both
availability and security guarantees, and on the idea that the data owner
intervenes only when the thresholds are violated. Our experimental evalua-
tion demonstrates that our proposal considerably reduces the time required
to reconstruct resources in a DCS, while limiting the exposure to coalitions
of malicious nodes.
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Part III

Access Control for Data
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Chapter 1

Declarative Access Control for
Aggregations of Multiple
Ownership Data

1.1 Introduction

In the media and business discussions, data are often regarded as “the new
oil” [78]: companies can take advantage of the availability of information
to obtain insights to improve their business. From predictive maintenance
to marketing, business applications make use of analytics, machine learning
(ML) and artificial intelligence (AI) to deliver their functionalities, often us-
ing public data available on the Internet. Data may be produced by the
same subject/entity designing the application or by external sources, from
publicly available or commercial datasets. In the current practice, it is as-
sumed to have full control on the input datasets. However, fragmentation
in data ownership and/or in usage terms is not an uncommon situation.
It is the case, for example, of personal information processing as regulated
by GDPR [40]: individuals give their data to a company under an agree-
ment that explicitly lists and describes all data computation purposes and
procedures. Data ownership remains with each individual that has right to
control her data. Nevertheless, the enforcement of these principles is gener-
ally achieved through legal processes and means, thus individuals must trust
the receiving company for the compliant processing of their data. Individu-
als do not have control on how their information are actually used, also with
respect to the other pieces of information processed together. Aggregating
data of multiple individuals may reveal illegitimate processing (like in the
case of Cambridge Analytica [20]) that might be hindered if controls on data
aggregations can be available.
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Dataset + Policy Dataset + Policy

Dataset + PolicyQuery

Storage +
Access Control

Figure 1.1: Multiple individuals share their information with an entity,
trusted for making them available to others and for enforcing their own usage
policy

We may observe a pattern, where multiple data owners share data with
a number of recipients, trusted to comply with directives and agreements
in consuming their data. We believe that trust assumptions on data pro-
cessing are due to the lack of fine-grained access control mechanisms, able
to make decisions on one’s information taking into account attributes of the
other pieces of information used in the same operation. Our proposal aims
at enabling data owners to express machine-enforceable security policies to
regulate the usage of their datasets when aggregated and/or analyzed to-
gether with other datasets. Data owners’ policies are expected to capture
Attribute-Based Access Control (ABAC) model constraints, one of the most
flexible and powerful access control models. We consider a scenario where
multiple data owners share their data with access policies by means of an
entity, trusted for the enforcement of their policies when receiving requests
for controlled datasets, as depicted in Figure 1.1. To exemplify our idea,
we will consider the case where a data scientist uses a ML framework to
analyze datasets of multiple owners with different policies. To materialize
such ABAC policies, we designed our solution by extending a well-known
attribute based access control standard, XACML [70] to benefit from its
conceptual framework, popularity, validation and existing implementations.
To this scope, we extend the XACML policy language in order to express
conditions that regulate simultaneous access to multiple resources. We adopt
some performance-effective techniques for XACML evaluation and we supple-
ment the XACML evaluation context with the ability to analyze aggregations
of datasets by means of its integration with a ML library.
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Figure 1.2: The proposed system architecture (including “ML Library” and
“Storage” components integrated with those of OASIS XACMLv3 standard)

1.2 Basic concepts

In our work, we consider XACML [70] as our reference policy language.
XACML is a standard based on XML, published by OASIS that defines
a language for access control policies. XACML is a flexible, well-known,
widespread, and easy-to-use language. An XACML policy declares if an
action, performed by a subject, is permitted or denied on a particular resource
(under specific constraints). XACML can be used to materialize constraints
coming from multiple (if not any) access control models, such as ABAC [51].

Each XACML policy is composed by a Target and one or more Rules.
The Target defines a combination of attributes related to subjects, actions
and resources that determines the applicability of the policy. Also a Rule
contains a Target, besides a Condition, that indicates whether the RuleEffect,
i.e., an attribute of the Rule element that consists in either a Permit or a
Deny, can be applied to the request or not. A policy can possibly declare
also Obligations and Advices, that introduce further actions, respectively
mandatory or optional, to be accomplished at the response time. Policies
may also be aggregated in a PolicySet, a collection of Policy elements.

In order to be enforced in a system, XACML requires the presence of
the following components. PDP (Policy Decision Point): the compo-
nent that evaluates requests against the applicable policies and makes the
access control decisions. PEP (Policy Enforcement Point): the compo-
nent that receives the request from the user and returns a response, even if
it delegates the access control decision to the PDP. Moreover, the PEP is
the component in charge of executing Obligations and Advices. PAP (Pol-
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icy Administration Point): the component that manages the policies and
makes them available when needed for evaluation. PIP (Policy Informa-
tion Point): the component that retrieves further attributes related to the
subject, action, resource and environment of the request from their respec-
tive repositories. Context Handler: the component that is responsible for
maintaining a set of attributes, coming from PEP request and PIP, necessary
for PDP evaluation.

An example of our reference architecture is shown in Figure 1.2, using
the FMC notation [58]. We enforce the use of the PEP, PAP, PDP, Context
Handler and PIP as described above, and also rely on a Storage module, i.e.,
a component in charge of storing our datasets, and a ML Library module,
i.e., a library for performing any operation of aggregation that consists in a
ML operation.

As stated above, the PEP is the component that intercepts the user’s
intent and produces an authorization request to be evaluated; it also materi-
alizes the decision made by the PDP to the user. Given a set of subjects S,
a set of actions A, a set of resources R, and an environment e, we define an
authorization request as a tuple Req = {s, a, r, e} where s ∈ S, a ∈ A, r ∈ R.
In this work, we do not focus on the environment, since it does not affect our
proposal and its presence is irrelevant for pursuing our goals. Indeed, the
environment provides further attributes not related to subjects, actions, and
resources, but related to the environment itself (e.g., request/evaluation time,
web domain, etc.). Therefore, for simplicity, in the remainder of this paper
we will not consider the environment, and we will define a request as a tuple
Req = {s, a, r}. Whenever a PDP is asked to make a decision, it relies on
the information made available by the Context Handler, i.e., the Context : it
consists of a container for all the attributes extracted from the PEP-prepared
request and complemented with additional necessary attributes by the PIP.
Then, the PDP matches the context with the attributes derived from the
policy provided by the PAP.

To do so, the PDP first compares {s, a, r} with the policy Target. If they
match, then it checks if the Condition is true. If the Condition is true (or
there is no Condition), then the effect of that rule (i.e., Permit or Deny) is
returned to the PEP, and thereupon returned to the user. Nevertheless, a
policy may contain more than one rule, and more than one rule may match
the request target and provide a true condition. Therefore, in case more than
one rule (and more than one policy, if these rules are derived from different
policies) is applicable, a rule (resp. policy) combining algorithm regulates
the behavior of the PDP.
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1.2.1 Combining Algorithms

According to the current XACML specification [69], seven rule-combining
algorithms are defined, as follows.

• First applicable: consider only the first rule (in order of appearance
in the policy) that is applicable to the current request and return its
effect.

• Permit overrides (resp. Deny overrides): in case more than one
rule is applicable, return Permit (resp. Deny) if available as at least
one of the applicable rule effects.

• Ordered Permit overrides (resp. ordered Deny overrides): same
as Permit overrides (resp. Deny overrides), but applicable rules are
evaluated in order.

• Permit unless Deny (resp. Deny unless Permit): return Permit
unless one of the applicable rules returns a Deny (return Deny unless
one of the applicable rules returns a Permit, respectively).

These algorithms are applicable also to policies, in the same way they
work for rules (in this case they are called policy-combining algorithms). In
addition to the seven cases listed above, there is an eight combining algorithm
valid only for policies, i.e., only one applicable, which states that only one
policy must be applicable to the request, otherwise an Indeterminate result
is returned.

1.2.2 XACML Profile Multi

Another aspect of XACML is relevant for our work. The current XACML
specification provides a profile in case a request requires more than one access
control decision, e.g., when the request contains repeated attribute categories
or hierarchical resources. This profile is the so-called XACML Multiple De-
cision Profile (informally known as “Multi”) [69], and an example of request
related to this profile is an access request to more than a single resource. We
define a request of this kind a request-Multi, in accordance to the XACML
profile it refers to. Conforming to the current specification, the evaluation
of a request-Multi is done by dividing this request for multiple repeated at-
tributes into many requests for multiple but not repeated attributes, i.e., a
request-Multi is disassembled into many single requests, and each of these
requests is evaluated individually. According to this approach, each Context
(derived from such individual requests) acts as a sandbox such that the PDP
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owns least information for every access control decision. In case of request-
Multi, either a combined decision or an individual decision is returned to the
user, as determined by the requester through an attribute of the request.

• Individual Decision profile: the request-Multi is divided into mul-
tiple individual requests, and each request is evaluated individually.
Then, as many results as requests are returned to the PEP.

• Combined Decision profile: the evaluation of individual requests
is same as the Individual profile. Yet, if all the individual decisions
are the same (i.e., all Permit or all Deny), then only one decision is
returned. If even a single exception occurs, then the combined result
is Indeterminate. Moreover, if any of the results, before being com-
bined, contains an Obligation or an Advice, then the combined result
is Indeterminate by default.

If we consider the case where the repeated attributes are resources, it is
clear that each request for a resource is evaluated by itself, without consider-
ing any of the attributes of the other resources. As a consequence, there is no
possibility of making fine-grained decisions considering the cross-evaluation
of attributes, like in case of multiple resource aggregation. Therefore, we be-
lieve that such evaluation of requests-Multi can be seen as a limitation in the
use of XACML where multiple resources must be accessed at the same time,
and where operations of data aggregation and their impact on the evaluation
of the request must be taken into consideration. Moreover, both the Indi-
vidual and Combined Decision profiles can be seen as a limitation in such a
scenario, because, according to these profiles, either the access is granted for
all the resources (Combined Decision) or for an individual resource by itself
(Individual Decision). We trust that, when evaluating datasets with het-
erogeneous usage terms (and therefore, policies), a more effective approach
would consist in identifying clusters (i.e., subsets) of resources whose access
can be granted.

1.3 Our approach

Our approach considers the expression and enforcement of security policies
in order to regulate the usage of a dataset when aggregated and/or analyzed
together with other datasets. We identified a gap in the existing XACML
Profile Multi, where a request for multiple resources is always evaluated as
the result of the evaluation of individual resource requests. The actual model
imposes multiple individual resource request evaluations, and excludes the
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Figure 1.3: left : Standard Context structure, right : Extended Context struc-
ture

possibility to take into account information (i.e., attributes) from the original
multiple-resource request. To fill this gap, we extend the XACML Profile
Multi, by means of a number of original contributions.

(a) Extension of the XACML policy language with a new condition, i.e., the
OtherData condition, in order to evaluate attributes of other resources
part of the same request-Multi (a request for multiple resources according
to XACML Profile Multi). It is detailed in Section 1.3.1.

(b) Definition of a new concept, i.e., the Extended (Request) Context, that
caters for all attributes of a request-Multi, in order to allow the evalua-
tion of the new condition previously mentioned. It is again described in
Section 1.3.1.

(c) Extension of an efficient XACML policy evaluation and management
system in order to support in-memory management of the newly defined
policy type and efficient target matching. It is illustrated in Section 1.3.2.

(d) Extension of the set of possible evaluation results of a request-Multi, in
order to deal with situations where it can be authorized only for a part
of the requested resources. It is reported in Section 1.4.

Our approach designs an access control mechanism that requires the en-
forcement of the architecture illustrated in Figure 1.2 and that controls a set
of resources (datasets) stored in the Storage module, and it is structured in
the following steps.

1. Creation of an in-memory graph representation for all available policies
associated with a set of resources under control by our mechanism,
before processing any request evaluation. This step is necessary to
create a representation of all policies that permits an efficient evaluation
of access requests (be them XACML Profile Multi requests or not).
This step is illustrated in Section 1.3.2, and requires an extension of
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PAP and PDP. Indeed, the PDP builds a policy graph, and the PAP
has to manage this policy graph instead of plain policies.

2. Once a request-Multi for multiple resources is received, the PDP pro-
ceeds with a target matching phase (Section 1.4.1), that identifies the
applicable policies for the requested resources and their evaluation or-
der, as ordered set of graph visit paths.

3. Subsequently, the PDP has also to evaluate conditions (Section 1.4.2)
associated with the identified graph visit paths. The logic of the PDP
must be extended in order to consider both traditional XACML con-
ditions as well as our new condition option, and evaluate them against
the Extended Context. As a result, the PDP creates a graph repre-
sentation of the authorized resources and of the applicable constraints
among resources, e.g., situations like “resource a has conditions that
prevent its authorization if combined with resource b”.

4. Last, the PDP provides a cluster of resources to the PEP, which has to
compute the request-Multi (authorization) enforcement (Section 1.4.3).
According to the evaluation type specified in the request, the PEP can
authorize the access to either all or a part of the requested resources.

As mentioned, in this paper we consider a subset of requests-Multi, in
particular, a request-Multi for multiple resources (i.e., multiple resource
categories, in XACML language) and as a use case action, an operation
involving data aggregation (e.g., an operation of machine learning). Let
G ⊆ A be a set of aggregation operations, we define our request-Multi as
Req = {s, a, [r1, . . . , rN ]}, with s ∈ S, a ∈ G, and ∀i∈1,...,Nri ∈ R.

The limitation of the actual model is due to both the decomposition
of requests-Multi into individual requests, which are evaluated with isolated
Contexts, and to the impossibility of expressing constraints on other resources
belonging to the same request-Multi.

In order to overcome these limitations, we propose an approach in which
requests-Multi are not evaluated as part of isolated individual requests. Our
approach relies on the creation of an Extended Context, which encompasses
all the attributes of all the entities appearing in the request-Multi. It is de-
picted in Figure 1.3, in contrast with the standard XACML Context normally
used to evaluate Target and Condition. Moreover, we also introduce further
constraints in the policies, in order to express relationships that occur among
resources.
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1.3.1 XACML Extension

Current XACML policies have a fixed structure: every policy declares a tar-
get, a set of rules, obligation expressions and advice expressions. As well
as policies, also rules have a fixed structure: one target, one condition, and
obligation and advice expressions. As introduced in the previous sections,
we propose to introduce modifications to XACML constructs to reflect con-
straints and/or relationship among the resources of a request-Multi. As we
want to allow a data owner to express conditions on other resources part of
the same request (i.e., inter-entities constraints), it seems natural to propose
a new type of XACML Condition. To this purpose, we introduce a mecha-
nism for regulating the relationship between two resources, that we explain
in details in Section 1.4. Due to the current limitation, we propose to extend
the standard XACML language in order to be able to declare more than
one condition per rule, to allow the coexistence of our new and traditional
conditions. In order to be compliant with the XACML schema, we need
to introduce an identifier for the new condition. Thus, we extend the stan-
dard specification also in order to allow users to declare two new optional
attributes for a Condition node: ConditionID and OtherData. ConditionID
is a string value declaring the identifier of the Condition node. OtherData,
instead, is a boolean value that indicates whether the Condition must con-
sider the resource of the individual request currently under evaluation (i.e.
the default conditions behavior, if its value is false) or the other resources in
the Extended Context (otherwise). The OtherData condition evaluation is
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detailed in Section 1.4.2. We assume that the default value for OtherData is
false, so that our extension can be fully compatible with the current profile.
An example of an extended XACML policy is available in the Appendix.
In the remainder of this paper, we refer to the normal condition as Tradi-
tional condition (or simply, Condition), and to the new introduced one as
OtherData (consistently with its attribute set to true).

1.3.2 Policy Representation

The introduction of OtherData condition and Extended Context requires
adaptations in the traditional XACML processing. Before being able to eval-
uate them, we have to face the problem of dealing with significant amounts
of policies. Previous works [80, 45, 79, 65] showed clear limitations and scal-
ability issues in the actual XACML policy evaluation and management. To
overcome this limitation, as a first step, our approach considers a graph-
based policy in-memory representation, in order to anticipate bottlenecks
that would limit its effectiveness and thus adoption. Adopting the approach
presented in [79, 9], we build a directed graph data structure using the at-
tributes appearing in the target sections of a policy and its rules elements,
giving to the graph nodes a precise order, and organize our data structure
in four distinct levels. We group the attributes according to their XACML
category, and consider attributes related to the subjects as the first level,
attributes related to the actions as the second level, and attributes related
to the resources as the third level. Finally, and differently from the previ-
ous works, the fourth level contains the later-described Decision Paths. In
our approach, we build one global policy graph (that we define as the policy
graph) using all the available policies in the PAP, and update it whenever a
new policy is loaded into the access control system. However, transforming
the policies into a policy graph, one could loose the order of evaluation of
policies and rules, that is relevant for certain combining algorithms, thus in-
troducing possible inconsistencies. Therefore, in order to support the correct
evaluation of the combining algorithms, we introduce a link prioritization
procedure. Its result is the link label.

Definition 1.3.1. Each link label pi denotes a graph visiting priority. Lower
link values indicate higher routing priority in graph visiting.

∃i, j ∈ N : i < j ⇒ pi > pj

Link labels indicate all valid graph visiting paths and their priority.
Therefore, it is possible to represent the policy/rule combining algorithm,
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evaluating policies/rules in the same order as they would have been evalu-
ated by a traditional XACML engine. In the literature, [62] and [66] already
demonstrated the feasibility of similar approaches. Link labels are assigned
while building the graph, and can be easily recalculated when inserting a new
policy, according to the combining algorithm of the latter. It is important
to notice that link labels are relevant when dealing with policies affecting
the same {s, a, r}. Consistency among multiple policies regulating the same
resources is a necessary assumption, as for any other XACML solution. If we
consider that in our setting r is a dataset with an owner defining an access
policy, there cannot be a situation where another entity can express another
policy for the same r. Therefore such assumption is sufficient to avoid ambi-
guities in the policy graph. Figure 1.4 shows an example of our policy graph,
composed of a top-down-ordered subject-action-resource layer set with three
different navigation paths and priorities as graph routes, expressed as link
labels. Looking at the structure of the graph, each node at the bottom level
represents a Decision Path. A Decision Path is a branch composed by the
nodes Condition, OtherData, and RuleEffect of a rule, in addition to meta-
data such as the IDs of the rule and policy that branch is extracted from,
and possible obligations that should be enforced before returning the deci-
sion to the user. Figure 1.5 shows the structure of a Decision Path node.
Thanks to this organization, our policy graph can decouple the policy eval-
uation process in two steps: a former target matching phase followed by a
latter conditions evaluation. These two phases are then followed by a final
fine-grained decision phase, whose goal is to find all allowed clusters of input
data.

1.4 Request-Multi evaluation

1.4.1 Target Matching

Definition 1.4.1. We define as target matching phase, the process of finding
the set of all viable {si, aj, rk} visit routes in a policy graph.

In the target matching phase, the XACML policy target matching process
(needed to identify the applicable policies to evaluate a request) becomes a
simple graph visit. Graph visit is only allowed if the link between two nodes
exists, and if the ith − 1 link previously traversed has the same link label
of the ith link (i.e., the current link). The priority among all the applicable
visits (as merge of multiple policies of multiple data owners) is determined
by a specified policy combining algorithm, that can be a configuration of the
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1: generate single requests {si, aj , rk} from RM
2: MR := ∅ # matching resources
3: for each single request {si, aj , rk} do
4: for each viable route in PG for {si, aj , rk} do
5: save the decision paths DPs of this route
6: end for
7: if there is at least a viable route for {si, aj , rk} then
8: add rk to MR # rk is a matching resource
9: else
10: the result of the individual evaluation of {si, aj , rk} is Not Applicable
11: end if
12: end for

Figure 1.6: Target matching of a request-Multi RM in a policy graph PG

Link Route Decision Path
p1 {si, aj, rk} DP1 ∨DP2

p2 {ANY, aj, ANY } DP4

p3 {ANY,ANY,ANY } DP5

Figure 1.7: Target matching for an individual request

system or defined in a PolicySet element that contains all policies, accord-
ing to the considered use case. In any case, according to the assumption
expressed in Section 1.3, data owners determine unequivocally and consis-
tently the policies for their resources. In addition to this, ordering among
policies of different data owners is irrelevant with respect to policy evaluation
correctness, as no one is allowed to express policies for resources they don’t
own, so they cannot alter the correct graph visit order.

Given a request-Multi {si, aj, [r1, . . . , rn]}, we split it into n individual
requests {si, aj, r1}, . . . , {si, aj, rn}, where n = |R|. Then, for each individual
request, we follow all the possible routes in the graph. Decision Paths are
not considered at this stage (their evaluation is delegated to the next phase).
If the individual request does not have any applicable route for the resource
(i.e., no policy exists to regulate the request), that resource is filtered out, i.e.,
the result of this individual request evaluation is Not Applicable. Figure 1.6
shows our target matching procedure.

The aim of the target matching phase is to find all the applicable Decision
Paths, filtering out resources that are not matched by any policy.

Definition 1.4.2. Given an individual request {si, aj, rk}, rk is a matching
resource if at least one viable route for {si, aj, rk} exists in the graph.

Theorem 1.4.1. For each matching resource, at least one Decision Path
exists.
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Proof. Assume that rk is a matching resource but it has no Decision Paths
associated to. Being rk a matching resource, it follows that at least one pol-
icy exists, having at least one rule, that matches rk. Hence, the following
elements exist: a RuleEffect (that is a mandatory attribute for every Rule),
a Traditional condition (possibly null), and an OtherData condition (possi-
bly null) related to rk. Yet, Condition, OtherData and RuleEffect are the
elements composing a DecisionPath.

Given a set of matching resources, the order in which we evaluate the
correspondent Decision Paths is given by the link label. In Figure 1.7 we see
the result of the target matching phase of an individual request {si, aj, rk}
over the policy graph illustrated in Figure 1.4. The possible routes are or-
dered according to their link label, that is also the order they are evaluated
during the second phase (conditions evaluation).

1.4.2 Conditions Evaluation

In this phase, we evaluate the expressed conditions for all the match-
ing resources. Traditional XACML conditions express whether a resource
can be authorized or not according to the traditional XACML evaluation.
Our new condition type expresses whether constraints exist among the re-
quested resources. The condition evaluation phase takes place for all match-
ing resources, one by one. We define the matching resource currently under
evaluation, as the current-resource, and all the other matching resources as
other-resources.

Definition 1.4.3. Given a request-Multi {si, aj, [r1, . . . , rn]}, its set of
matching resources MR ⊆ R, and given an individual request {si, aj, rk}
with rk ∈ MR, we define rk as the current-resource, and ∀x∈1,...,|MR| ∧ x 6=
k : rx ∈MR, as the other-resources.

At this stage, all matching resources have a Decision Path, as previously
discussed. Each Decision Path DP can have a Condition and an OtherData
condition. The former is evaluated on the current-resource request attributes,
while the latter is evaluated for each of the other-resources, considering at-
tributes of each of the other-resources by means of the Extended Context.
In accordance with the actual XACML definition, if a condition (either Tra-
ditional or OtherData) is null, then it is evaluated (i.e., it is true) by default.
In order to avoid ambiguities, the Decision Paths are evaluated in order,
since their order was assigned at the graph construction time, considering
combining algorithms for rules and policies. The conditions evaluation phase
produces an evaluation matrix per matching resource. An evaluation matrix
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1: for each matching resource ri in MR do
2: OR← R− ri # other resources
3: get the Decision Paths DP s applicable to ri # identified in the target

matching phase

4: initialize the condition evaluation matrix CEM of ri
5: for each Decision Path DP do
6: Condition ← get Condition from DP
7: OtherData ← get OtherData from DP
8: if Condition is true for ri then
9: for each other-resource orj in OR do
10: if OtherData is true for orj then
11: CEM [OtherData][orj ]←true
12: remove orj from OR # no need to evaluate an-

other OtherData condi-
tion for orj

13: else
14: CEM [OtherData][orj ]←false
15: end if
16: end for
17: end if
18: end for
19: end for

Figure 1.8: Evaluate conditions of the matching resources MR

r1 r2 r3 r4 r5 r6

OtherDataid1 f t f f t
OtherDataid2 t f f
OtherDataid3 f t

Figure 1.9: Conditions evaluation matrix for the current-resource r1 and five
other-resources

indicates if an OtherData condition is true or false for a certain resource.
Figure 1.8 shows the process of building the evaluation matrices of a set of
matching resources MR, and Figure 1.9 presents an example of an evaluation
matrix with six matching resources, being r1 the current-resource, and three
Decision Paths applicable to the individual request involving r1 (thus, three
OtherData for its other-resources). The use of boolean values permits to be
independent from the RuleEffect of a specific Decision Path. This approach
brings a benefit, as shown Section 1.7.

Finally, once all the matching resources have been taken into considera-
tion and evaluated, all the evaluation matrices produced are merged into one
global decision matrix that, for each couple of matching resources, declares
the RuleEffect to be applied on their relationship. The algorithm for building
the global decision matrix is shown in Figure 1.10. An example of a final
decision matrix with six matching resources is shown in Figure 1.11. In this
figure, each row represents a current-resource (i.e., the resource that evaluates
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1: initialize the Decision Matrix DM
2: for each matching resource ri in MR do
3: CEM ← get the condition evaluation matrix of ri
4: OR← R− ri # the set of other-resources
5: for each other-resource orj in OR do
6: if there is an OtherData true in CEM for orj then
7: DM [ri][orj ]← get the RuleEffect associated to that OtherData
8: else
9: DM [ri][orj ]← NotApplicable
10: end if
11: end for
12: end for

Figure 1.10: Merge all conditions evaluation matrices in a global decision
matrix

Matching
resources

r1 r2 r3 r4 r5 r6

r1 - D P NA PO P
r2 D - P D D P
r3 PO P - P P PO
r4 NA DO DO - D NA
r5 P P P P - P
r6 D P PO P P -

Figure 1.11: Decision matrix with six matching resources

the Condition) and columns represent the other-resources (i.e., the resources
that evaluate the OtherData). Pairs (ri; ri) are not evaluated (because a
current-resource cannot be an other-resource for itself), then the admitted
decisions are: P (Permit), PO (Permit with an Obligation), D (Deny), DO
(Deny with an Obligation), NA (Not Applicable) or I (Indeterminate). If,
considering Figure 1.9, we envisage OtherDataid1 belonging to a Decision
Path which declares a Permit effect, OtherDataid2 associated to a Deny ef-
fect, and OtherDataid3 associated to a Permit effect with an Obligation,
these effects are reported accordingly in the first row of the decision matrix
shown in Figure 1.11, as effects of the relationship of these resources with r1.
It is worth noticing that there is a Not Applicable effect associated to the
relationship (r1; r4) since r4 does not verify any OtherData associated to the
current-resource r1 (as a matter of fact, in Figure 1.9 all values of column r4

are false).
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1.4.3 Fine-grained Decision

After the target matching and conditions evaluation phases, the fine-grained
decision phase gives a response on the aggregation of the inputs. We distin-
guish among four types of fine-grained decisions, listed below.

• Individual Evaluation. Each resource request is evaluated individu-
ally, and the same number of different responses are returned to the user (as
for XACML Multi Profile).

• Combined Decision. All resource requests are evaluated to produce
a single response, to allow access to either all or none of the resources (as for
XACML Multi Profile).

• Max-Subset (new contribution). This decision type analyzes the
decision matrix, and returns the subset(s) with highest cardinality of acces-
sible resources (i.e., those with P and PO entries).

• All-Subsets (new contribution). Similarly to the previous profile,
here the decision matrix is analyzed to return all subsets of accessible re-
sources.

The computation of XACML Multi decisions is straightforward, and de-
rives from the standard XACML evaluation. For Max-Subset or All-Subsets
decisions, our approach consists of building a graph derived from the deci-
sion matrix, where nodes represent resources and directed edges represent
decisions. For instance, a request-Multi for 7 resources (but only 6 matching
resources) that produces the decision matrix depicted in Figure 1.11, is trans-
lated into the graph in Figure 1.12(a). Figure 1.12 illustrates the fine-grained
decision process: (a) non-matching resources and resources that do not have
an explicit Permit (i.e., they don’t have incoming/outgoing edges) are dis-
carded from the graph as they cannot be accessed, (b) non-bidirectional Per-
mit (or Permit-Obligation) edges are erased, since this means that one of the
two resources is incompatible with the other one (i.e., it cannot be accessed
with the other one), (c) a clustering algorithm is applied (in our implemen-
tation, we adopted cliques [64, 19]). In case of an All-subsets decision, the
PDP communicates to the PEP all the possible clusters of resources, whereas
in case of a Max-subset decision it communicates only the largest cluster(s).

1.5 Use Case

In this section we present a use case scenario derived from the actual practice
in cyber security, to be used in Section 1.7. A national Computer Emergency
Response Team (CERT) acts as primary information point for monitoring,
awareness and reaction to cyber attacks. It cooperates with public bodies
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r5 r6

r3 r4 r7

r1 r2

(a) Node filtering

r5 r6

r3 r4

r1 r2

(b) Edge filtering

r5 r6

r3 r4

r1 r2

(c) Clustering

Figure 1.12: Fine-grained decision phase

timestamp host src IP latitude longitude ISP . . .

timestamp1 host-tokio s1 111.111.111.111 y1 x1 Alice . . .
timestamp2 host-moscow s2 222.222.222.222 y2 x2 Bob . . .
timestamp3 host-boston s3 132.123.123.123 y3 x3 Carol . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Figure 1.13: Sample entries in our database corresponding to attacks to ISPs’
honeypots

and companies that must trust each other, but especially the CERT, as it
receives very sensitive information about attacked entities. Indeed, if not
properly protected, those information may cause reputation damages, e.g.,
allowing benchmarking of companies, or even attracting additional attacks
using the same patterns. On the other hand, the CERT needs to produce
timely alerts about ongoing threats and coordinate the attack response with
multiple actors: the attacked company, cloud and Internet service providers,
law enforcement agencies, etc. In this the example, we will use a public
dataset of attacks to honeypots provided by a number of ISPs, and we will
consider the role of a CERT that analyzes data from the different honeypots
owners, showing an example of regulated analysis. The requirement is that
any benchmarking among ISPs must be prevented. We assume that the
CERT runs an architecture as for Figure 1.2 to control access to the different
pieces of information, using policies provided by the ISPs. The mechanism
is integrated with a ML library to be used for the analysis. Our example
considers conflicting resource policies, that we will discuss in Section 1.7.

Input dataset. The data we used for our example is derived from a
publicly available dataset [48] of about 450,000 samples of attacks to mul-
tiple honeypots. Figure 1.13 depicts the structure of our dataset: it repre-
sents malicious connections to the honeypots, with the recorded attack IP
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address and its approximate geographic location. We supplemented the orig-
inal dataset by adding the column “ISP”, obtained by querying the Internet
service WHOIS and assigning a random identifier for each discovered ISP.
We did not work with actual ISP names as deemed unnecessary to exemplify
our approach.

1.6 Implementation

We implemented our proposal on top of an existing open source XACML
framework, developed in Java and provided by AT&T 1. We extended both
the architecture, in order to reflect the components illustrated in Figure 1.2,
and the components themselves, to support the extension of the XACML
language introduced in Section 1.3. Finally, we implemented the evaluation
process introduced in Section 1.4.

With regard to the XACML extension, in our implementation we have
to support up to two Condition elements, i.e., the standard (“Traditional”)
and OtherData conditions, together with the introduction of two new at-
tributes, i.e., ConditionID (string) and OtherData (boolean). To this extent,
we worked on the PEP and PDP.

The PEP was hooked to a Python library, Scikit2 so that it could intercept
calls to machine learning operations (e.g., k-means) and produce an XACML
request. A simple logic allows the PEP to identify the input parameters and
to produce an XACML authorization request. If multiple parameters are
involved, the PEP produces a request-Multi as previously described, that is
sent to the Context Handler and thus to the PDP.

The PDP communicates with the PAP in order to load the policies asso-
ciated with the requested resources. In our implementation, the PDP builds
a policy graph as described in Section 1.3, and stores it in the PAP. Indeed,
this policy graph can also be cached in a file in the PAP, and loaded at re-
quest time instead of triggering repeated builds, provided that the cached
graph is updated at each policy insertion or modification. For simplicity, we
considered stable policies and built our policy graph as an adjacency ma-
trix (i.e., a matrix whose elements express if pairs of vertices in a graph are
adjacent or not).

In addition to this, the original PDP was extended to also support our
new evaluation logic, that is, to run the three-step process illustrated in Sec-
tion 1.4. The standard behavior of the AT&T standard engine (and of many
other XACML engines) is to instantiate an Evaluation Context object (in

1https://github.com/att/XACML/
2https://scikit-learn.org/stable/index.html

https://scikit-learn.org/stable/index.html
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case the request is a request-Multi, a context for each individual request part
of the request-Multi). Each Evaluation Context contains the attributes pro-
vided in the (individual) request, complemented by other attributes from the
PIP in case of need. Henceforward, traditional engines compare the Evalua-
tion Context with the Target section of the available policies, to determine
the applicable policy and rule(s) for the request. Subsequently, and according
to the combining algorithm, the first applicable rule is evaluated, together
with its condition (if present), and, if the result is positive, the rule effect
(Deny or Permit) is then returned.

In our implementation, at this stage we build an Extended Context filled
with all the attributes of the request-Multi, as shown in Section 1.3. Subse-
quently, the Extended Context is used to visit the corresponding applicable
rows of the graph adjacency matrix (i.e., the policy graph), so that non-
reachable resources are filtered out, as explained in Section 1.4.1. The re-
maining resources (i.e., the matching resources) go through the Decision Path
evaluation, that is, the evaluation of Traditional and OtherData conditions.
In order not to leak any information, we slice the Extended Context such
that, for the evaluation of a Condition, least information (on the involved re-
quest) is exposed. This is equivalent to generating individual requests, using
the attributes contained in an individual request to instantiate an Evaluation
Context, and using then this Evaluation Context for evaluating a Traditional
or OtherData condition. We observed that, at this stage, conditions might be
evaluated multiple times, for example in cases where the same policy applies
to multiple resources, or when similar conditions are expressed in multiple
policies. For this reason, we introduced a caching mechanism to improve
overall performance. The result of the conditions evaluation is a decision
matrix that is then used as an adjacency matrix to build the initial graph
of the clustering phase. In our implementation, we used graphstream, a Java
library for dynamic graphs3. The operations of this phase are executed as
described in Section 1.4. The result of the request-Multi is then returned to
the PEP, indicating one or more authorized clusters of resources, if any (i.e.,
the Max-subset or All-subsets decision profile).

1.7 Performance Evaluation

In this section we present the results of four different experiments we ran to
assess the correctness of our approach and its practical applicability. From
the dataset described in Section 1.5, we extracted 10 evaluation datasets of
about 50k entries representing attacks to honeypots, as if they were provided

3http://graphstream-project.org
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Figure 1.14: Target
matching (simple pol-
icy)

Figure 1.15: Conditions
evaluation (simple pol-
icy)

Figure 1.16: Clustering
(simple policy)

Figure 1.17: Target
matching (complex pol-
icy)

Figure 1.18: Conditions
evaluation (complex pol-
icy)

Figure 1.19: Clustering
(complex policy)

Figure 1.20: Target
matching (complex pol-
icy with caching)

Figure 1.21: Conditions
evaluation (complex pol-
icy with caching)

Figure 1.22: Cluster-
ing (complex policy with
caching)

by different entities. We also associated to each dataset a set of attributes
like owner (CompanyA, CompanyB, . . . ), an identifier, and a different access
control policy, to allow the evaluation of access requests using our implemen-
tation. We assume that our implementation receives a request to compute
an aggregation on a certain number of evaluation datasets (in particular, a
k-means clustering [5]). All policies use the First-Applicable rule-combining
algorithm and declare two rules: the former results in a Permit decision and
specifies a Target, a Traditional and an OtherData conditions, whereas the
latter is a default Deny rule matching any request.

The experiments took into account policies of different complexity, in or-
der to assess our approach and implementation in different usage scenarios.
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We refer to them as follows: “Simple Condition”, “Complex OtherData” and
a derivation of the latter, “Complex OtherData Modified” where we intro-
duced a rudimentary optimization for one of the most onerous tasks. We
also compared the performance of our approach with those of the existing
request-Multi profiles in order to understand how the difference in their spe-
cific use cases would materialize on their respective performance. All such
cases are later described in this section. We decided not to benchmark the
performance of our engine against other existing engines because the scope
of our experiments is to give an indication of the overhead introduced by our
novel approach.

For the experiment discussion, we need one more definition: two datasets
(resources) are conflicting if they cannot be clustered, i.e., when their deci-
sion matrix value (evaluated against the OtherData condition as previously
mentioned) is not Permit. To assess the scalability of our solution, we identi-
fied as a significant parameter the ratio of conflicting resources in a request.
When this parameter is high, many resources are incompatible with each
other, meaning that either the Traditional condition returns false (and the
resource in evaluation is filtered out in the rest of the evaluation) or the
OtherData condition results in a sparse decision matrix: therefore, a part of
the overall evaluation process terminates at that stage. On the other hand,
parameter values close to 0 trigger a complete process (evaluation of 2 con-
ditions on all resources including clustering), resulting in higher execution
time. For this reason, we defined 5 reference parameter values, from 0.0 to
1.0 at 0.2 step increases, and we created a combination of policies and re-
quests for each experiment so that the input space would represent equally
each of the values.

All the experimental results have been obtained using a machine with
Windows 10, Intel i7-4790 CPU, 3.60 GHz 4 cores, and 16 GB memory.

1.7.1 Simple condition evaluation

In the first experiment, we created 1000 access requests for 10 datasets (also
referenced as resources later on), balancing the ratio of conflicting requests
as explained. The policies we used included two simple attribute match-
ing operations as (Traditional and OtherData) conditions, ending up with
a standard ABAC evaluation. Traditional condition was in the form: re-
sourceX.owner=Company1 and requestor.role=analyst, while for OtherData
it was: otherResource.owner=Company1. We show the XACML policy used
for this experiment in Appendix A.1.

Let us analyze the results for the main phases of our solution. Figure 1.14
confirms how target matching is practically unaffected by any conflicting re-
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Figure 1.23: Total decision time
for a simple policy

Figure 1.24: Total decision time
for a complex policy

Figure 1.25: Decision time for a
complex policy with caching

Figure 1.26: Comparison of deci-
sion profiles

source ratio, while in Figure 1.15 we can see that resource conflicts impact
linearly on conditions evaluation, as in this experiment the OtherData evalua-
tion is made useless by the Traditional condition verification. The conflicting
resource ratio also affects clustering (Figure 1.16), that shows shorter exe-
cution times and therefore easier clustering computation when less resources
are available.

Lastly, Figure 1.23 shows the total time required for the evaluation. From
this figure, it is visible that conditions evaluation absorbs most of the evalu-
ation time for all considered ratios.

1.7.2 Complex OtherData evaluation

In this experiment, we considered a complex OtherData condition, to assess
the performance of our implementation with computationally heavy con-
straints. To do so, we requested in the OtherData condition to compute the
expected value E of a feature in the other dataset, and to compare it with
a reference range. We show this condition in Appendix A.2. We performed
100 access requests, representing fairly the conflict resource ratio. The tar-
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get matching phase in Figure 1.17 exposes a behavior similar to the previous
case. Intuitively, target matching depends on the policy graph and the num-
ber of requested resources, irrespective of any conflict ratio. It is interesting
to note that the conditions evaluation phase (Figure 1.18) exposes the same
trend of the previous experiment, i.e., linearly decreasing at higher ratio of
conflicting resources. There is a deterioration in terms of performance due
to the higher complexity of the conditions to be evaluated, and therefore
fully expected. The clustering phase, shown in Figure 1.19, depends on the
number of inputs, i.e., resources evaluated, and affects the final result with
a negligible overhead, if compared to that of conditions evaluation.

Finally, Figure 1.24 shows the total time required for the evaluation of
this policy. It is again well visible that the bottleneck is the conditions
evaluation phase, and that it totally dominates the target matching and
clustering phases.

1.7.3 Complex OtherData evaluation with caching

In this experiment, we used the exactly same setting of the previous case,
but we introduced a näıve caching system to reduce the overhead introduced
by the conditions evaluation phase, processing it as a dynamic programming
problem. As expected, the target matching (Figure 1.20) and clustering
(Figure 1.22) phases show the same trend (and comparable results) of the
previous experiment. What it is interesting to note is the conditions evalu-
ation phase. As we noticed in the previous experiment, our implementation
processed the same OtherData section for the same dataset many times,
causing a consequent impact in terms of performance. So the näıve caching
strategy allows our implementation to evaluate the same OtherData con-
dition for each dataset only once (if ever required). Results are shown in
Figure 1.21. Thanks to this strategy we were able to lower the load of this
phase of one order of magnitude. Indeed, the OtherData is evaluated only
once per dataset, i.e., for each dataset the expectation value E is computed
only once, and this causes the flatten trend visible in Figure 1.21. As usual,
Figure 1.25 shows the total execution time, where the conditions evaluation
is still the bottleneck, even if the total required time is constant, and one
order of magnitude lower than in the previous experiment.

1.7.4 Comparison with the Individual and Combined
profiles

In this experiment, we wanted to assess the difference in performance of
traditional request-Multi evaluation against our new profiles, i.e., Max-subset
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and All-subsets. Indeed, we expected to observe a certain difference due to
the additional computation demanded by our approach and we wanted to
measure it. To this aim, we used the Simple Condition evaluation setting
and we issued all requests, asking for Individual and Combined decisions
to the unmodified AT&T XACML engine, and All-subsets and Max-subset
decisions to the same engine extended in order to support our approach. The
results of this experiment are shown in Figure 1.26.

The standard Combined and Individual decisions show an overlapping
trend, because in both cases each individual request is evaluated in isolation
(with the traditional context) and, at the end of the process, either combined
with the others or returned as-is. On the contrary, our approach requires a
more extended evaluation. Indeed, after the graph visits to identify the
matching resources, we have to iterate over those resources for evaluating
both the Traditional and OtherData conditions, and cluster the results.



Chapter 2

Related Work

With respect to the graph representation of policies, our paper is not the first
contribution in this direction [62, 66, 43, 79, 65]. Among these, in [66] the
authors propose an approach based on the construction of a graph composed
itself of two trees, evaluated in two distinct phases. The first step consists
in building a Matching Tree. Every node of a Matching Tree corresponds to
a different attribute extracted from the Target node of the policy. Leaves
are themselves roots of another tree, the Combining Tree, that is evaluated
in the second step, and that is composed by the rules applicable to some
path. The leaves of a Combining Tree are Rules. According to the selected
rule-combining algorithm, an integer value corresponding to the “priority”
is associated to each rule. Finally, the rules are executed in descending
order starting from the one with highest priority. The approach proposed
by the authors is similar to ours, but they differ by the way graphs are
built. Omitting the difference between the chosen data structures, that is
trivial, the main difference from our approach is that bottom nodes of our
policy graph are not another tree themselves, but nodes containing only the
Traditional and OtherData conditions of a rule. Moreover, in [66] the authors
do not consider OtherData, as they are introduced in our work.

In [18] the authors propose a novel commercial model for data security
preventing conflicts of interest. This model has been widely studied, and
several solutions have been proposed [61, 8, 74]. From some perspective, our
work could be inserted among these ones. In [41] and [24] the authors state
that XACML does not support separation of duties (SoD). In order to over-
come this limitation, in [41] the authors propose the use of a novel policy
language, called Next Generation Access Control (NGAC). In NGAC, poli-
cies specify relations among attributes, and SoD can be enforced dynamically
creating deny relations based on the access history. A similar solution has
been proposed in [23], and later conformed to XACML in [24], even though
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the authors analyze SoD only from a Role-Based Access Control (RBAC)
perspective. In particular, they enforce dynamic policies: they implement
a blacklist at policy-level, which is updated at every request. The authors
propose a solution in which an Obligation, enforced by the PEP, writes a
new Rule node directly in the policy stored in the PAP. This model is differ-
ent from ours, because our basic assumption is that the owner of a resource
specifies the policy for that resource, and she is also the only actor allowed
to update her policies. In [49] the authors enforce mutually exclusive autho-
rization policies in order to solve the problem of separation of duties. Yet,
even if the authors study the problem from an ABAC perspective, they only
propose a formal approach to the problem, and do not consider a specific
language, such as XACML.

Airvat [72] is a solution for providing security and privacy guarantees over
MapReduce computations on sensitive data. Airvat decouples an untrusted
map operation followed by a secure reduce, that enforces differential privacy.
Nevertheless, this solution relies on SELinux [76] for Mandatory Access Con-
trol over the input resources, and does not take into consideration possible
conflicts in aggregating those data. GuardMR [81] is another solution that
aims at enforcing security guarantees over MapReduce computations. Yet,
the threat model proposed by the authors is different from ours. Indeed, it
aims at targeting attacks to the infrastructure, such as vulnerabilities of the
execution environment. Besides, both Airvat and GuardMR do not take into
consideration the underlying access control system, and how access control
decisions are taken.
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Conclusions

The adoption of AI/ML techniques has increased in the last years and will
grow further as new information sources and new analysis techniques become
available. However, in communities of practice (e.g. collaboration in cyber
security analysis) or from legal requirements (e.g. specific terms for analy-
sis of personal data), a need emerges for controlling the scope, the methods
and the objectives of such analysis. Our proposal goes in this direction, de-
scribing an access control mechanism that extends the state of the art in
controlling requests for multiple resources regulated by different policies. To
this aim, we take into account constraints among resources, not forgetting
the performance requirements necessary for modern applications, especially
if running on the cloud. To implement our method, we extended a stan-
dard XACML open source implementation in order to support new policy
language constructs, and to adopt an high-speed in-memory target matching
algorithm based on policy graphs. Besides, we integrated our access control
mechanism with a ML library for the evaluation of mathematical conditions,
and we evaluated the performance of our solution in different use cases. The
preliminary results are promising as the performance remain at an accept-
able level, especially when compared with those of the complex mathematical
operations to be regulated. As a future work, we intend to further extend
the scope of this proposal, looking at regulating closely ML operations in Big
Data infrastructures.
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Appendix A

Policies

A.1 XAMCL Policy with simple Conditions

In this section, we show an example of simple XACML conditions. Both the
Traditional and the OtherData require to fulfill simple constraints based on
the attributes of the request.

Listing A.1: Simple Conditions
< !−− excerpt o f po l i c y r e g u l a t i n g ac c e s s to a datase t R1: XACML Pol i cy and Target do not

dev ia t e from standard XACML −−>

< !−− t h i s i s an example o f Trad i t i ona l Condit ion . I t r e q u i r e s the user r o l e to be a
CyberSecurityAnalyst , and the owner o f the current−r e sou r c e to be Company1 −−>

<xacml:Condit ion Condit ionId=” cond a ”>

<xacml:Apply FunctionId=” u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : f u n c t i o n : a n d ”>

<xacml:Apply FunctionId=” u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : f u n c t i o n : s t r i n g −equal ”>

<xacml:Apply FunctionId=” u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : f u n c t i o n : s t r i n g −one−and−only
”>

<xacml :Att r ibuteDes ignator Att r ibute Id=” u r n : o a s i s : n a m e s : t c : x a c m l : 2 . 0
: s u b j e c t : r o l e ” Category=” u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : s ub j e c t −
ca t ego ry : a c c e s s −sub j e c t ” DataType=” ht tp : //www. w3 . org /2001/XMLSchema#s t r i n g ”
MustBePresent=” true ”></ xacml :Att r ibuteDes ignator>

</xacml:Apply>

<xacml :Attr ibuteValue DataType=” ht tp : //www. w3 . org /2001/XMLSchema#s t r i n g ”>
CyberSecur ityAnalyst</ xacml :Attr ibuteValue>

</xacml:Apply>

<xacml:Apply FunctionId=” u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : f u n c t i o n : s t r i n g −equal ”>

<xacml:Apply FunctionId=” u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : f u n c t i o n : s t r i n g −one−and−only
”>

<xacml :Att r ibuteDes ignator Att r ibute Id=” examp l e : sub j e c t : sub j e c t −employer ”
Category=” u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : s ub j e c t −ca t ego ry : a c c e s s −sub j e c t ”
DataType=” ht tp : //www. w3 . org /2001/XMLSchema#s t r i n g ” MustBePresent=” true ”></
xacml :Att r ibuteDes ignator>

</xacml:Apply>

<xacml :Attr ibuteValue DataType=” ht tp : //www. w3 . org /2001/XMLSchema#s t r i n g ”>Company1<
/ xacml :Attr ibuteValue>

</xacml:Apply>
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</xacml:Apply>

</ xacml:Condit ion>

< !−− t h i s i s an example o f OtherData Condit ion . I t r e q u i r e s the owner o f the other−
r e sou r c e to be Company1 −−>

<xacml:Condit ion OtherData=” true ” Condit ionId=”cond b”>

<xacml:Apply FunctionId=” u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : f u n c t i o n : s t r i n g −equal ”>

<xacml:Apply FunctionId=” u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : f u n c t i o n : s t r i n g −one−and−only ”>

<xacml :Att r ibuteDes ignator Att r ibute Id=” examp l e : r e s ou r c e : r e s ou r c e −owner” Category=
” u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 : a t t r i b u t e −c a t e g o r y : r e s o u r c e ” DataType=” ht tp : //
www. w3 . org /2001/XMLSchema#s t r i n g ” MustBePresent=” true ”></
xacml :Att r ibuteDes ignator>

</xacml:Apply>

<xacml :Attr ibuteValue DataType=” ht tp : //www. w3 . org /2001/XMLSchema#s t r i n g ”>Company1</
xacml :Attr ibuteValue>

</xacml:Apply>

</ xacml:Condit ion>

A.2 XACML Policy with complex Other-

Data

In this section, we show an example of a complex OtherData Condition
node. Differently from the case presented in the previous section, which
only required to compare attributes, this condition requires to perform a
computation over one of the features of the dataset under evaluation.

Listing A.2: Complex OtherData
< !−− excerpt o f po l i c y r e g u l a t i n g ac c e s s to a datase t R1: XACML Pol icy , Target and

Condit ion do not dev ia t e from standard XACML −−>

< !−− t h i s i s an example o f OtherData Condit ion . I t p r e s c r i b e s to compute the expec ta t i on
o f the f e a t u r e ( s ) under a n a l y s i s and v e r i f y that they are bounded in a c e r t a i n

i n t e r va l , in order to avoid the a n a l y s i s o f the r e sou r c e datase t R1 with non
homogeneous data thus r e v e a l i n g some R1 c h a r a c t e r i s t i c s −−>

<xacml:Condit ion OtherData=” true ” Condit ionId=”cond b”>

<xacml:Apply FunctionId=” u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : f u n c t i o n : a n d ”>

<xacml:Apply FunctionId=” u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : f unc t i on :doub l e −greate r−than”>

<xacml :Attr ibuteValue DataType=” ht tp : //www. w3 . org /2001/XMLSchema#double ”>100</
xacml :Attr ibuteValue>

<xacml:Apply FunctionId=” u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : f unc t i on :doub l e −one−and−only
”>

<xacml:Apply FunctionId=” example :compute expectat ion ”>

<xacml :Att r ibuteDes ignator Att r ibute Id=” example : f ea ture s−under−a n a l y s i s ”
Category=” u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 : a t t r i b u t e −c a t e g o r y : a c t i o n ” DataType
=” ht tp : //www. w3 . org /2001/XMLSchema#s t r i n g ” MustBePresent=” true ”></
xacml :Att r ibuteDes ignator>

</xacml:Apply>

</xacml:Apply>

</xacml:Apply>
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<xacml:Apply FunctionId=” u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : f unc t i on :doub l e −l e s s −than”>

<xacml :Attr ibuteValue DataType=” ht tp : //www. w3 . org /2001/XMLSchema#double ”>50</
xacml :Attr ibuteValue>

<xacml:Apply FunctionId=” u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : f unc t i on :doub l e −one−and−only
”>

<xacml:Apply FunctionId=” example :compute expectat ion ”>

<xacml :Att r ibuteDes ignator Att r ibute Id=” example : f ea ture s−under−a n a l y s i s ”
Category=” u r n : o a s i s : n a m e s : t c : x a c m l : 3 . 0 : a t t r i b u t e −c a t e g o r y : a c t i o n ” DataType
=” ht tp : //www. w3 . org /2001/XMLSchema#s t r i n g ” MustBePresent=” true ”></
xacml :Att r ibuteDes ignator>

</xacml:Apply>

</xacml:Apply>

</xacml:Apply>

</xacml:Apply>

</ xacml:Condit ion>
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