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Abstract—The understanding of invariant set theory is essen-
tial in the design of controllers for constrained systems. This
paper presents some concepts related with the invariant set
theory and Set-Based Model Predictive Control (set-based MPC).
Precisely, introduces a new class of sets from where the closed-
loop system reaches a target set before a pre-established number
of steps. These novel concepts are based on several results
presented in a former work [1].

The main results are exposed in a theoretical context, however
several simulation examples show its potential and properties.

Index Terms—Model Predictive Control, Finite Time Conver-
gence, Controllable Sets, i-steps closed-loop sets.

I. INTRODUCTION

Model Predictive Control (MPC) is probably the most

employed advanced control technique in process industries.

One of the reason for such success is its ability to incorpo-

rate, from the beginning, constraints on both, control inputs

and states/outputs [2]. From a theoretical point of view, the

invariant set theory has been successful in providing sufficient

conditions for nominal and robust feasibility/stability [3], [4],

permitting the analysis of stabilizable regions and generalizing

the stability of equilibrium points to stability of invariant sets.

Furthermore, this theory turned out to be very useful for the

analysis of dynamical systems subject to constraints, since the

concept of positive invariance is closely related to Lyapunov

theory [4], [5].

Although the results on stability of MPC are mainly devoted

to prove asymptotic (or exponential) stability, there are a few

results on finite-time convergence for a fixed control horizon

[1], [6], [7]. In particular, [1] proposes a set-based MPC -

in which the target/objective is given by an arbitrary small

invariant set and its corresponding input set - that ensures

finite-time convergence and also provides an upper bound for

the time of convergence.

Based on the upper bound provided by [1], the state space

can be partitioned into nested regions, which are called the i-
steps closed-loop set; i.e., a particular regions from where the

closed-loop system reaches the target set in i or less steps.

The similarity with the concept of the (open-loop) i-steps

controllable sets from the classic literature ( [5], [8]) is evident.

The i-steps controllable sets indicates the region from where

the open-loop system could reach the target set in a given

number of steps, by means of feasible control actions and by

a feasible trajectory. The novel concept of i-steps closed-loop

set is introduced with the hope that the formal framework

presented in this note will facilitate a better understanding of

the most basic problem in the design of MPC controllers.

The paper is organized as follows. Section II states the

problem and presents some preliminary definitions. The

proposed MPC scheme, the finite time convergence results

and a proper upper bound for this convergence are presented

in Section III. Section IV introduces the main results of

the work. Section V shows some simulations. Finally, the

conclusions are given in Section VI.

A. Notation

The integers set is defined by I and the integers between

N and M by IN :M := {N,N + 1, . . . ,M}. Given any real

number x ∈ R, the floor of x is defined by ⌊x⌋ := max{n ∈
I : n ≤ x}. Let γ ∈ R be a scalar and a set Ω ⊂ R

n; the

scaled set is defined as γΩ := {γx : x ∈ Ω}. The boundary of

a closed set Ω is denoted by ∂Ω. The distance from x ∈ R
n

to the set Ω is defined as dΩ(x) := inf{d(x, y) : y ∈ Ω}.

II. PROBLEM STATEMENT AND PRELIMINARY DEFINITIONS

Consider a discrete time system described by a linear time-

invariant model

x(k + 1) = Ax(k) +Bu(k), x(0) = x0, (1)

where x(k) ∈ X ⊂ IRn is the system state at the k–th

sample time, x0 is the initial state, and u(k) ∈ U ⊂ IRm is

the current control input. All along this work it is assumed



that matrix A ∈ IRn×n has all its eigenvalues strictly inside

the unit circle1, the pair (A,B) is controllable, the set X is

convex and compact, the set U is convex and compact and

both contain the origin in their interior.

A. Preliminary concepts

ζ
The next definitions and properties will be referred to

system (1), and the corresponding state and input constraints.

Definition 1. (One-step controllable set) Given the set Ω ⊂
X , the one step controllable set to Ω, Q(Ω), is the set of all

x ∈ X for which there exists u ∈ U such that Ax+Bu ∈ Ω,

i.e.,

Q(Ω) := {x ∈ X : ∃ u ∈ U such that Ax+Bu ∈ Ω}.

This is the set of states in X for which a control does

exist in U , such that the system can be steered to Ω in one

time step. Furthermore, the concept can be generalized to the

i-steps controllable set Qi(Ω), for any i ∈ N, by applying

the above definition iteratively, i.e., Qi(Ω) := Q(Qi−1(Ω)),
for i = 1, · · · , N , and Q0(Ω) := Ω.

Definition 2. (γ-control invariant set, γ-CIS) Given

γ ∈ (0, 1], Ω ⊆ X is a γ-control invariant set

if x ∈ Ω implies that Ax + Bu ∈ γΩ for some

u ∈ U . Associated to Ω, is the corresponding input

set Π(Ω) := {u ∈ U : ∃ x ∈ Ω such that Ax+Bu ∈ γΩ}.

Once the system enters to a γ-CIS, there is an admissible

control input (belonging to Π(Ω)) that is able to keep the

system inside the set. When γ = 1, Ω is simply a control

invariant set.

It is known from [9] that every γ-CIS Ω is such that

Ω ⊆ Q(Ω). In [1], the following stronger geometric property

is presented:

Property 1. Let Ω ⊂ X be a compact and convex γ-CIS,

with γ < 1 and the origin as an interior point, with the

corresponding input set Π(Ω) ⊆ U . Then, Ω ⊆ intQ(Ω)2.

III. MPC SCHEME FOR FINITE-TIME CONVERGENCE

In this Section, a general MPC formulation is presented.

Given a fixed horizon N ∈ N, and a compact and convex set

Ω, containing the origin in its interior, consider the following

cost function:

VN (x,Ω;u) :=

N−1
∑

j=0

L(x(j), u(j); Ω),

1If an original unstable matrix A is given, then the system can be pre-
stabilized by means of a stabilizing feedback law.

2Denote intQ(Ω) the interior of the set Q(Ω)

where L(·) ≥ 0 is a general stage cost that depends in some

sense on Ω (it could assume different forms according to each

particular MPC formulation) and u := {u(0), · · · , u(N −1)}.

Ω can be thought as the objective or target set where the finite-

time convergence has to be ensured to.

Let UN (x) denote the set of admissible control sequences

u = {u(0), · · · , u(N − 1)} satisfying the state and control

constraints, together with a terminal constraints when the

initial state is x; i.e., given an initial state x = x(0), a

sequence u = {u(0), · · · , u(N − 1)} with u(j) ∈ U such

that x(i) ∈ X , where x(i + 1) = Ax(i) + Bu(i) for

i = 0, · · · , N − 1, and x(N) ∈ Ω. Specifically,

UN (x) =

{u ∈ U
N : x(j) ∈ X , u(j) ∈ U , j ∈ I0:N−1, x(N) ∈ Ω}.

By Definition 1, for all i ≥ 0, Qi(Ω) denotes the set of

states x such that Ui(x) 6= ∅, that can be steered to the

target set Ω in i steps by an admissible control sequence u.

At each time instant k, the MPC control law is derived from

the solution of the following optimization problem:

PN (x,Ω) : min{VN (x,Ω;u) : u ∈ UN (x)}, (2)

where Ω and the initial sate x ∈ X are the optimization

parameters and the sequence u is the optimization variable.

The optimal state trajectory x0(x), corresponding to the

optimal control sequence u0(x), is given by

x0(x) = {x0(0;x), x0(1;x), . . . , x0(N ;x)}.

By definition of PN (x,Ω), x0(N ;x) ∈ Ω. The control law,

derived from the application of a receding horizon policy, is

given by κMPC(x) = u0(0;x), where u0(0;x) is the first

element of the solution sequence u
0(x). This way, the closed-

loop system under the MPC control law is described as:

x(k + 1) = Ax(k) +BκMPC(x(k)). (3)

The Optimal Cost Function is given by the function F (·)
which depends on the initial state, as follows:

F (x) := VN (x,Ω;u0(x)). (4)

A. Ingredients for finite-time convergence and upper bound

Consider the following set-based stage cost:

L(x, u; Ω) = dΩ(x) + dΠ(Ω)(u) (5)

where the function dΩ : Rn → R is the distance from the

state to the set Ω, with a metric on R
n and dΠ(Ω) : R

m → R

is the distance from the control input to the set Π(Ω), with a

metric on R
m. The set Ω is assumed to fulfill the hypothesis

of Property 1.

Remark 1. Note that according to this formulation, the

control objective is considered to be reached once the system

enters Ω, and no further implicit objectives are considered.

However, the interesting point is that the system will not be



in open loop, since the controller will not allow the state to

jump outside Ω.

The following Lemma established in [1] presents the finite-

time convergence and the corresponding upper bound for the

time of convergence.

Lemma 1. (Upper bound) Consider the MPC formulation

PN (x,Ω), (2), with the stage cost (5). Then, Ω is locally

reached in finite-time by the system (3), with x = x(0) ∈
QN (Ω). Even more, the closed-loop system reaches Ω in at

most ⌊Kx⌋ steps, with3

Kx =
F (x)

δ
+ 1, (6)

where δ = min
y∈∂Q(Ω)

dΩ(y).

The importance of the upper bound Kx lies on extending the

idea of controllable set established in Definition 1 to closed-

loop systems, which is developed in the following section.

IV. i-STEPS CLOSED-LOOP SETS

There are many systems that must reach a safe region in

a certain finite time. For instance, if it is desired for some

variables to reach a basal value in less than, say, five steps,

a classical MPC (or any other optimizing controller) cannot

guarantee this requirement even if the system starts from

Q5(Ω).

In this context, it is desirable to characterize another kind

of sets that account for such closed-loop requirements. Let

us define the following set, related to the proposed MPC

closed-loop system:

Definition 3. (i-steps closed-loop set) The i-steps closed-loop

set to Ω, C i(Ω), is the set of all states x ∈ X such that

⌊Kx⌋ ≤ i.

This definition is subject to the computation of the constant

Kx in equation (6) and its dependence on the initial state x.

In order to get tighter sets the computation of Kx must be

less conservative.

A. Characterization and properties of the i-steps closed-loop

sets

The following proposition gives a way to characterize the

i-steps closed-loop sets.

Proposition 1. Let i ∈ N. Consider x ∈ X , fulfilling the

constraint: F (x) < δ(i− 1). Then, x ∈ C i(Ω).

3Note that Kx is well defined since Ω ⊆ intQ(Ω) by Property 1, which
means that δ > 0.

Proof. Suppose x ∈ X is such that F (x) < δ(i−1). Proving

that ⌊Kx⌋ ≤ i is equivalent to show that x ∈ C i(Ω). Indeed,

⌊Kx⌋ ≤ Kx =
F (x)

δ
+ 1

≤ (i− 1) + 1

= i.

Which concludes the proof.

Property 2. Let Ω be a CIS and i ∈ N, then

(i) Ω ⊆ C 1(Ω)
(ii) C i(Ω) ⊆ C i+1(Ω) and

(iii) C i(Ω) ⊆ Qi(Ω).

Proof. (i) If x ∈ Ω, then F (x) = 0, which means that Kx = 1.

(ii) If x ∈ C i(Ω), ⌊Kx⌋ ≤ i ≤ i+ 1, then x ∈ C i+1(Ω). (iii)

Let x ∈ C i(Ω). The optimal sequence of control drives the

state x to Ω in about i steps (or less). So, the fact that x can

be steered to set Ω in i steps means that x ∈ Qi(Ω).

Remark 2. In general, the i-steps controllable sets depend

only on the system and the constraints, and they are

independent of the controller properties. On the other hand,

it is interesting to note that the i-steps closed-loop sets are

based on the Optimal Cost Function, F (x). Furthermore

there is an intrinsic relation between controllable sets and

i-steps closed-loop sets according to Property 2.

V. SIMULATIONS

In this section, the differences between the i-controllable

sets Qi(Ω), which were extensively studied in the MPC

literature, and the i-steps closed-loop sets C i(Ω) presented in

this work, are demonstrated by a detailed simulating example.

A. Simulation parameters

The simulated system is similar to the one presented in [10],

it is a second order stable linear system, given by:

x(k + 1) = Ax(k) +Bu(k),

with

A =

[

0.7476 −0.4984
0.0356 1.0680

]

,

B =

[

0.3
−0.4

]

.

The constraints of the system are given by X =
{

x ∈ R
2 : ‖x‖

∞
≤ 10

}

and U = {u ∈ R : ‖u‖
∞

≤ 4}. The

horizon of the MPC controller P(x,Ω), is given by N = 7,

being Ω a γ-CIS with γ = 0.65, and its corresponding input

set Π(Ω) = {u ∈ R : ‖u‖
∞

≤ 3}.

The distances involved in the stage cost (5) are define by

dΩ(x) = inf{(x − y)′R(x − y) : y ∈ Ω} and dΠ(Ω)(u) =
inf{(u − v)′Q(u − v) : v ∈ Π(Ω)}, with Q and R being

positive definite matrices. Different parameters of Q and R are



used to perform the simulations in order to test the variability

on the i-steps closed-loop sets according the changes on the

optimal cost function. Simulations on Figure 1 and 4 are

performed with R and Q as identity matrices and Figure 2

and 5 with R as an identity matrix multiplied by 100, and Q
as an identity matrix.

B. i-Steps controllable sets

Fig. 1: The γ-CIS Ω and its controllable sets Qi(Ω) for

i = 1, . . . , 4. The controlled system with x0 = (−6,−3) ∈
Q4(Ω).

Figure 1 shows the γ-CIS Ω and its corresponding Qi(Ω)
for i = 1, 2, 3, 4. Besides, the initial state x0 = (−6,−3) -

belongs to Q4(Ω)- is controlled by the MPC controller derived

from P(x,Ω), which means (by Lemma 1) that the target set

is reached in a finite number of steps. In this particular case

the closed-loop system reaches Ω in four steps, as it can be

seen in Figure 1.

Usually, it is not true that the system reaches the target

set in i or less steps, for an initial state x0 ∈ Qi(Ω). The

shape and size of the controllable sets depend on the system

and the constraints, while the numbers of steps it takes the

controller to steer the system to the target set usually depends

on the objectives function of the optimization problem. For

instance, if there is a change in the cost function parameters,

the controllable sets remains the same but the system reaches

the target sets in twelve steps, even when it could do it in four

steps, i.e. the initial state x0 = (1,−9/2) belongs to Q4(Ω)
(see Figure 2).

C. i-Steps closed-loop sets

The knowledge of the i-steps closed-loop sets (Definition 3)

is essential in problems in which the time of convergence to

a reference zone is important. In fact, these sets indicate how

many steps (at most) it would take to the MPC controller to

steer the system to the reference zone and Proposition 1 relates

Fig. 2: Controlled system starting in x0 = (1,−9/2) ∈ Q4(Ω)
for which it takes twelve steps to reach the target set Ω.

this maximum number of steps with the optimal cost function,

F (x).

A drawback of the method proposed in Proposition 1 is

that there is not an explicit form to compute the optimal

cost function F (x), given that F (x) implicitly includes an

optimization problem with constraints. Furthermore, the de-

pendence on the computation of the upper bound Kx for

all x ∈ X , could represents another drawback, given that

this upper bound (originally proposed in [1]) could be a bit

conservative.

Due to these facts, the i-steps closed-loop sets are computed

numerically in these simulations. In this regard, note that F (x)
is a Lyapunov function and fulfill the following inequalities

F (x) ≤ αdΩ(x)

F (x) ≥ βdΩ(x)

where α, β are positive scalars. Therefore, F (x) can be

approximated by the function ζdΩ(x) for a proper scalar ζ
such that β ≤ ζ ≤ α.

So, in order to observe the properties of the proposed sets, it

is still possible to use Proposition 1 by the numerical approach

of function F (x), as it is shown in Figure 3.

Figure 4 shows the same control scenario presented in Fig-

ure 1, but showing the numerically computed i-steps closed-

loop sets C i(Ω) instead of the sets Qi(Ω). The contour of

these sets (plotted in Figure 3) are the level sets of F (x).

Finally, Figure 5 shows the same control scenario of

Figure 2; i.e., when the cost function is modified. Note how

the i-steps closed-loop sets change their shapes according to

the new tuning.
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Fig. 3: Numerical approximation of the optimal cost function

F (x)

Fig. 4: Controlled system starting in C 8(Ω) for which it takes

four steps to reach the target set Ω.

VI. CONCLUSION

This work introduced the concept of i-steps closed-loop

sets, which extends the invariant set and set-based model

predictive control theory. These sets are closely related to

the well-known i-steps controllable sets, which are widely

referenced in the classic MPC literature. Additionally, a

characterization of these novel sets was made by means

of the level sets of the optimal cost function. Some proper

simulations show the practical differences - and interesting

properties- between the i-steps closed-loop set and the i-steps

controllable sets.

Fig. 5: Controlled system starting in C 20(Ω) for which it takes

twelve steps to reach the target set Ω.
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