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Abstract A facility has to be located in a given area to serve a given number

of customers. The position of the customers is not known. The service to the

customers is carried out by several traveling salesmen. Each of them has a

capacity in terms of the maximum number of customers that can be served in

any tour. The aim is to determine the service zone (in a shape of a circle) that

minimizes the expected cost of the traveled routes. The centre of the circle is

the location of the facility. Once the position of the customers is revealed, the

customers located outside the service zone are served with a recourse action

at a greater unit cost. For this problem, we compare the performance of two

different solution approaches. The first is based on a heuristic proposed for

the Capacitated Traveling Salesman Problem and the second on the optimal

solution of a stochastic second–order cone formulation with an approximate

objective function.
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1 Introduction

Facility location problems play an important role in the strategic design of

logistic networks. We refer to [1–3], for recent surveys on facility location

problems and to [4, 5] for surveys on facility location problems under uncer-

tainty.

A relatively new class of problems, in which the classical facility location

and the vehicle routing problems are integrated, is called Location-Routing

Problem (LRP). We refer to [6] for a recent survey on vehicle routing problems.

Although it is well known that facility location and routing are often inter-

related, LRP received little attention in the past. However, in the last years,

several papers about deterministic location–routing problems have been pub-

lished. Instead, a few papers have been devoted to location–routing problems

with stochastic demand.

The simplest location–routing problem with stochastic demand is the Trav-

eling Salesman Location Problem (TSLP). A set of customers is served by a

single facility. At each time, only a subset of customers has to be served. A

TSP is built to serve this subset of customers. The aim is to determine where

to locate the facility in order to minimize the expected cost of the TSP. This

problem has several applications in many service systems, such as delivery

services, customer pickup services, repair vehicles. It has been introduced by

[7] and studied by [8–11]. It has been extended to the case, referred to as the

Capacitated Traveling Salesmen Location Problem, with several capacitated

salesmen, by [12]. The main difficulty of these problems is that there exist
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2n − 1 different subsets of n customers that can require to be served and

therefore an exponential number of TSP has to be solved. A polynomial time

heuristic algorithm, with known relative worst-case error, has been proposed in

[12]. A different case is given by the Probabilistic Traveling Salesman Location

Problem (PTSLP). In this case, first an a priori TSP visiting all customers is

computed. Then, for each time, the TSP to serve the subset of customers that

have to be visited is obtained by just skipping in the a priori tour the cus-

tomers that have not to be served at that time. The aim is to simultaneously

determine where to locate the facility, and the a priori TSP that minimize the

expected cost. This problem has been introduced by [8] and has been studied

by [13]. Recent papers are [14] and [15]. For a vehicle routing and districting

problem with stochastic customers see [16].

We study a problem in which a single facility (typically a service station)

has to be located in a given area. This facility is used to serve a given number

of customers. The position of the customers is not known. The service to the

customers is carried out by several traveling salesmen. Each of them has a

capacity in terms of the maximum number of customers that can be served

in any tour. The aim is to determine the service zone (in a shape of a circle)

that minimizes the expected cost of the traveled routes. The centre of the

circle is the location of the facility. Once the position of the customers is

revealed, the customers located outside the service zone are served with a

recourse action at a greater unit cost. We refer this problem to as the Stochastic

Capacitated Traveling Salesmen Location Problem with Recourse (SCTSLP–

R). The cost to select the service zone is chosen to be proportional to the cost

of the corresponding Capacitated Vehicle Routing Problem (CVRP) estimated

by using the formula inspired to [17] and to [18].

We propose two different solution approaches. The first is based on the

heuristic proposed by Simchi–Levi (1991) for the Capacitated Traveling Sales-

men Problem (see [12]). We prove that, in the worst case, this algorithm can
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give a solution infinitely worse with respect to the optimal one. The second

approach is obtained by optimally solving a two–stage stochastic optimization

model (see [19–21]) with an approximate objective function. In particular, we

first model the problem as a two-stage stochastic semidefinite programming

problem (see [22–25]), and then as a two-stage stochastic second-order cone

programming problem (see [26, 27]), in which the first stage decisions are the

facility location and the radius of the service zone. The input data of problems

affected by uncertainty are usually described by stochastic processes that can

be represented using discrete random variables. With the term realization, we

denote all possible discrete values that the random variables can assume. In

our problem, each realization is represented by a set of ellipses. Each ellipse

represents the area covered by a traveling salesman to supply its customers,

randomly generated by uniform and normal distributions in a neighborhood of

its starting position inside a given region. The costs in the objective function

are assumed to be proportional to the area of the service zone in the first stage,

and proportional to the difference between the area covered on the basis of the

recourse and the area of the service zone in the second stage. Computational

results show that the solutions obtained by this second approach significantly

dominate the one obtained by the first.

The paper is organized as follows. In Section 2, the problem we study is

formally described and formulated. In Section 3, the approach based on the

heuristic proposed by Simchi–Levi (1991) [12] for the Capacitated Traveling

Salesmen Problem is described and analyzed from the worst–case point of view.

In Section 4, the approach based on the optimal solution of a second–order

cone formulation of the problem with an approximate objective function is

proposed. Finally, in Section 5, the two approaches are evaluated and compared

on the basis of randomly generated problem instances.
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2 Problem Description

A facility has to serve R customers in a given square A with side length

L. The position of the customers is not known. A set N = {1, 2, . . . , N} of

traveling salesmen is available to serve the customers. Each traveling salesman

i ∈ N has a given initial position and a given capacity, in terms of number

of customers that can be served in a tour, q. We define a realization of the

problem, the fulfillment of customers positions. Each realization is modeled

by a given number of ellipses. Each ellipse corresponds to the area covered

by a traveling salesman. In particular, let K = {1, 2, . . . ,K} be the set of

realizations. Each realization k ∈ K is composed of N random ellipses and

has probability pk. The ellipse Ei
k corresponds to the area covered by the

traveling salesman i at realization k and it covers q customers. Therefore,

the total number of customers R is KNq. Note that at each realization the

same number of customers Nq is served. The difference among the realizations

is in the customers’ positions. The described approach corresponds to model

distributed demands with different degree of density since we generate the

same number of customers inside areas of different extension.

The problem is to determine the service zone that minimizes the total

expected cost.

The service zone is defined as a circle C, with centre ũ and radius r:

C := {u ∈ R2 : uTu− 2ũTu+ γ ≤ 0}, (1)

where the centre ũ ∈ R2 (with R2 the space of 2-dimensional real vectors)

and γ are decision variables of the problem. The corresponding radius r is√
ũT ũ− γ and is not greater than rmax =

√
2L. The cost to select the circle

C is α times the cost of the corresponding Capacitated Vehicle Routing Problem

(CVRP), estimated by using the formula inspired to [17] and [18]:

D1(r) := 2d̄
R r

rmax

q
+ 0.57

√
AR

r

rmax
= r

(
R r

rmax

q
+ 0.57

√
πR

r

rmax

)
, (2)
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where d̄ = r
2 is the average distance between the customers and the facility,

R r
rmax

is an estimate of the number of customers expected in the service

zone C and A = πr2 is the area of the service zone C. This formula reduces

to D1(r) = r
(

R
q + 0.57

√
πR
)
whenever the service zone is able to cover all

possible customers. An example is when ũ is equal to the centre of the square

A and r =
√
2L
2 .

In any realization k, if all customers are covered by C, no further action is

needed. Otherwise, a recourse action is needed to enlarge the service zone C

to the new circle

Ck := {u ∈ R2 : uTu− 2ũTu+ γ̃k ≤ 0}, (3)

with the same centre ũ of C and radius rk =
√

ũT ũ− γ̃k > r enough to cover

all customers under realization k. The cost of this new circle is β times, with

β > α, the cost of the corresponding CVRP, estimated by

D2(r, rk) := 2

(
r +

rk − r

2

)
R(1− r

rmax
)

q
+ 0.57

√
π(r2k − r2)R

(
1− r

rmax

)
, (4)

where r+ rk−r
2 is the average distance between the customers and the facility,

R
(
1− r

rmax

)
, is an estimate of the number of customers expected outside the

service zone C, and π(r2k − r2) is the difference between the area of Ck and

the area of the service zone C.

The aim of the problem is to determine ũ, γ and γ̃k for all realizations k ∈ K,

such that the expected cost

αD1(r) + β
∑
k∈K

pkD2(r, rk) (5)

is minimized. Due to the non-linear dependence of CVRP costs by the decision

variables ũ, γ and γ̃k, a second-oder cone formulation with linear objective

function over the intersection of an affine set and product of second-order cones

cannot be formulated for this problem with CVRP costs. For this reason we
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propose and compare two different solution approaches for the same problem,

of increasing refinement.

An alternative policy could be to choice at the first stage only the centre

of the circle and at the second stage the radius according to the particular

realization of the random variable (customers’ positions). In such a case eq.

(5) reduces to

β
∑
k∈K

pkrk

(
R

q
+ 0.57

√
πR

)
, (6)

which is less convenient than the proposed approach since it requires to pay a

recourse price β for the whole second stage radius rk instead of the difference

rk−r. However, a second-order cone formulation with linear objective function

over the intersection of an affine set and product of second-order cones can be

formulated for this problem without approximation of the costs in the objective

function, and it will be investigated in a separate paper.

3 The Approach based on Simchi–Levi (1991)

The Capacitated Traveling Salesmen Problem is identical to the SCTSLP–R

problem, but the position of the R customers is known, each customer has a

probability to require a service at each time, the routing cost is paid and no

recourse is possible. In this problem, it is optimal to locate the facility at the

position of one of the customers.

The second approach we consider, referred to as SL approach, is based on

the heuristic proposed by [12] for the Capacitated Traveling Salesmen Problem,

which select the customer at which to locate the facility. Given the location

of the facility, the SL selects, as service zone, the minimum enclosing circle

having centre at the selected location. Let R be the set of the R customers

to serve, ha be the probability that customer a ∈ R requires to be served at

a given time. Since ha is not a data of the SCTSLP–R problem, we assume

ha = 1
R . The SL can be described as follows.
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SL

1. For each customer a ∈ R:

(a) Order the customers b ∈ R in the non–decreasing order of d(a, b). Re-

name them as γ1, γ2, . . . , γR. Note that γ1 = a.

(b) Compute

Φ(a) :=
1

q

∑
b∈R

hbd(a, b) +

(
1− 1

q

)( R∑
δ=2

d(a, γδ)hγδ

δ−1∏
τ=1

(1− hγτ )

)
.

2. Select the customer a∗ = argmina∈R Φ(a) as facility location.

3. Compute the radius r of the minimum enclosing circle having centre in a∗.

We now prove worst–case results about the performance of the SL. Con-

sider first instances with just one realization k. Let rSL(k) and zSL(k) be the

radius and the cost of the solution obtained by applying the SL, and z∗(k)

be the optimal cost of the SCTSLP-R problem. Recall that r̄k is the distance

between the two customers having maximum distance in the realization k. The

following theorem states that the SL has a cost at least 73.205% greater than

the optimal cost of the SCTSLP-R problem, whenever rSL(k) = r̄k. This hap-

pens, for instance, when the the facility is located at one the two customers

corresponding to r̄k in the solution obtained by the SL.

Theorem 3.1 If rSL(k) = r̄k, then
zSL(k)
z∗(k) ≥

√
3 ≈ 1.73205.

Proof Given that rSL(k) = r̄k, the cost of the solution obtained by applying

the SL is zSL(k) = αr̄k

(
R
q + 0.57

√
πR
)
.

The cost z∗(k) generated by the SCTSLP-R problem is not greater than

the one corresponding to the smallest first stage enclosing circle, i.e. the circle

at minimum radius covering all customers. Remember that Jung’s Theorem

states that this circle has a radius not greater than r̄k√
3
.

Therefore, z∗(k) ≤ α r̄k√
3

(
R
q + 0.57

√
πR
)
and
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zSL(k)

z∗(k)
≥

αr̄k

(
R
q + 0.57

√
πR
)

α r̄√
3

(
R
q + 0.57

√
πR
) =

√
3.

⊓⊔

We now show the worst–case performance bound of any realization k such

that rSL(k) =
√
2L, i.e. the realization in which the SL has maximum cost.

Theorem 3.2 If rSL(k) =
√
2L, then zSL(k)

z∗(k) ≤ 6
√
3

5 ≈ 2.07846 and the bound

is tight.

Proof Given that rSL(k) =
√
2L, the cost of the solution obtained by applying

the SL is zSL(k) = α
√
2L
(

R
q + 0.57

√
πR
)
.

Let us now compute a lower bound on the optimal cost z∗(k). Consider

first the two extreme cases with r = 0 and r =
√
2L
2 . In both cases, the cost

of the realization k is not smaller than α
√
2L
2 (Rq + 0.57

√
πR). Consider now

the case 0 < r < rk. In the recourse action, the smallest enclosing circle Ck

has radius rk =
√
2L
2 , as rSL(k) =

√
2L implies r̄k =

√
2L. Since β > α and

rmax =
√
2L
2 , the total cost of the realization k is

αD1(r) + βD2(r,

√
2L

2
) ≥ α(D1(r) +D2(r,

√
2L

2
)) =

= α

√
2L

2

R

q
+ 0.57

√
πR

r

√
r

√
2L
2

+

√√√√((

√
2L

2
)2 − r2)(1− r

√
2L
2

)

 .

This lower bound reaches its minimum value for r =
√
2L
6 ≈ 0.23570L.

Therefore, given f(r) = r
√

r√
2L
2

+

√
((

√
2L
2 )2 − r2)(1− r√

2L
2

),

since f(
√
2L
6 ) = 5

√
6L

18 <
√
2L
2 , in any solution

z∗(k) ≥ α

(√
2L

2

R

q
+

5
√
6L

18
0.57

√
πR

)
.

Since
α
√
2LR

q

α
√

2L
2

R
q

= 2 and α
√
2L0.57

√
πR

α 5
√

6L
18 0.57

√
πR

= 6
√
3

5 ≈ 2.07846, then

zSL(k) ≤ 6
√
3

5
α

(√
2L

2

R

q
+

5
√
6L

18
0.57

√
πR

)
.
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Therefore,

zSL(k)

z∗(k)
≤

α
√
2L
(

R
q + 0.57

√
πR
)

α
√
2L
2

(
R
q + 5

√
6L

18 0.57
√
πR
) ≤ 6

√
3

5
.

We now prove that the bound is tight. Consider the following realization:

L = 1, centre of the area A in (0, 0), N = 1, R ≥ 2, q = R, α = 1, β = 1+ 1
R ,

customer 1 located at (−0.5−0.5), customer 2 at (0.5, 0.5), the remaining cus-

tomers located at (0.5− 1
Rρτ , 0.5− 1

Rρτ ), where τ is the index of the customers

and ρτ is a random number between 0 and 1.

In the SL, the facility is located at one of the customers. The location that

minimizes the cost is the one of the customer closest to (0, 0). Since ρτ ≤ 1,

the coordinates of this customer are (0.5 − 1
R , 0.5 − 1

R ), at best. Therefore,

rSL(k) ≥
√
2(−1 + 1

R )2 and zSL(k) ≥
√
2(−1 + 1

R )2
(
1 + 0.57

√
πR
)
.

The optimal cost z∗(k) is not greater than the one of the solution in which

the circle C has centre in (0, 0) and r =
√
2
6 , while rk =

√
2
2 , that is,

z∗(k) ≤ αD1(

√
2

6
) + βD2(

√
2

6
,

√
2

2
) =

=

√
2

6
(
1

3
+

1√
3
0.57

√
πR) + (1 +

1

R
)(
4
√
2

9
+

2
√
6

9
0.57

√
πR) .

Therefore, in this realization

zSL(k)

z∗(k)
≥

√
2(−1 + 1

R )2
(
1 + 0.57

√
πR
)

√
2
6

(
1
3 + 1√

3
0.57

√
πR
)
+ (1 + 1

R )
(

4
√
2

9 + 2
√
6

9 0.57
√
πR
) → 6

√
3

5

for R → ∞. ⊓⊔

We now consider the general case, i.e., instances with several realizations.

We show that the SL can have a performance infinitely worse than the one

of the optimal solution of the SCTSLP-R problem. Let rSL and zSL be the

radius and the total cost obtained by the SL, respectively.

Theorem 3.3 There exists an instance such that zSL

z∗ → ∞.
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Proof Consider the following instance: L = 1, centre of the area A in (0, 0),

R ≥ 2, N = 1, q = 2, α = 1, β = 1 + 1
R , customer 1 located at (−0.5 − 0.5),

customer 2 at (0.5, 0.5), the remaining customers located at (0.5− 1
Rρτ , 0.5−

1
Rρτ ), where τ is the index of the customers and ρτ is a random number

between 0 and 1. R
2 realizations are available. Each realization has the same

probability 2
R and is composed of q = 2 customers served by the same traveling

salesman. In particular, realization 1 is just composed of customers 1 and 2,

while the remaining R
2 − 1 realizations are composed of two of the remaining

customers at each realization.

In the SL, the facility is located at one of the customers. The location

that minimizes the cost is the customer closest to (0, 0). Since ρτ ≤ 1, the

coordinates of this customer are (0.5− 1
R , 0.5− 1

R ), at best.

Therefore, rSL ≥
√

2(−1 + 1
R )2 and zSL ≥

√
2(−1 + 1

R )2
(
1 + 0.57

√
πR
)
.

The optimal cost is not greater than the cost of the solution in which the

circle C has centre in (0, 0) and r = 0, that is,

z∗ ≤ (1+
1

R
)

(
2

R

(√
2

2
(
R

2
+ 0.57

√
πR)

)
+ (1− 2

R
)

(√
2

R√
3

(
R

2
+ 0.57

√
πR

)))
.

Therefore, in this instance

zSL

z∗
≥

√
2(−1 + 1

R )2
(
1 + 0.57

√
πR
)

(1 + 1
R )

(
2
R

(√
2
2 (R2 + 0.57

√
πR)

)
+ (1− 2

R)

(√
2

R√
3

(
R
2 + 0.57

√
πR
)))→∞

for R → ∞. ⊓⊔

We can note that the feasible solutions of the SCTSLP–R problem used in

the proofs of the previous theorems were not trivial. Therefore, the optimal

solution can be not easy to be found.
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4 The Approach based on the Stochastic Second–Order Cone

Formulation

In this section, we propose a solution approach based on the idea to opti-

mally solve a Stochastic Second–Order Cone Formulation of the problem with

an approximate objective function. This approach is referred to as SSOCP

approach.

4.1 Approximation of the Costs

The first step is to approximate D1(r) by a function proportional to the area

of the circle C, that is θπr2, where θ is a parameter to be estimated. The

optimal value of θ, that is θ∗, is obtained by solving the following minimum

least square problem:

min
θ

⌊ rmax
∆ ⌋∑

ω=0

(
θπ (ω∆)

2 −D1 (ω∆)
)2

,

where ∆ is a given stepsize. Therefore, the first stage cost αD1(r) is approxi-

mated by αθ∗πr2.

We then approximate the second stage cost by a function proportional to

the difference between the area of Ck and the area of C, that is ϕπ(r2k − r2),

where ϕ is a parameter to be estimated. The optimal value of ϕ, that is ϕ∗, is

obtained by solving the following minimum least square problem:

min
ϕ

⌊ rmax
∆ ⌋∑

ω=0

⌊ rmax
∆ ⌋∑

k=ω+1

(
ϕπ((k∆)

2 − (ω∆)
2
)−D2(ω∆, k∆)

)2
.

The second stage cost β
∑

k∈K pkD2(r, rk) is approximated by

β
∑
k∈K

pkϕ
∗π(r2k − r2) .
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4.2 The Stochastic Semidefinite Model

We first model the problem SCTSLP–R as a stochastic semidefinite model.

A similar approach has been adopted by [22] and [25] for another type of

application: the Stochastic location-aided routing (SLAR) in wireless ad-hoc

networks.

Due to the different type of application, several are the differences in the

proposed formulation, with respect to the one presented in [22] and [25]:

1. The source node defined in SLAR does not exist in the context of SCTSLP-

R problem since signals have not to be sent.

2. Multiple customers are considered in the context of SCTSLP-R problem

instead of a single destination node as in SLAR.

3. An initial circle defined in SLAR, centred at the early location of a cus-

tomer, with radius corresponding to the minimal velocity the client is sup-

posed to move, does not make any sense in the context of SCTSLP-R

problem and it is not considered.

4. Each realization is modelled by a given number of ellipses corresponding

to the area covering by each traveling salesman, instead of a single ellipse

describing the random movement of a single destination node as in SLAR.

5. Information on the number of customers served by each traveling salesman

is included in the context of SCTSLP-R problem.

6. The first and second stage costs are proportional to the routing cost of

the corresponding Capacitated Vehicle Routing Problem (CVRP) in the

context of SCTSLP-R problem.

In the following, Rn denotes the space of all n−dimensional reals vectors,

Rn×n denotes the vector space of real n× n matrices, lower case boldface let-

ters x, c etc. for column vectors, and uppercase letters A, X etc. for matrices.

Sub-scripted vectors, such as xi, represent the ith block of x. The jth compo-

nent of the vectors x and xi are indicated by xj and xij , respectively. We use
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0 and 1 for the zero vector and vectors of all ones, respectively, and 0 and I

for the zero and identity matrices.

Let Rn×n
s denotes the vector space of real n× n symmetric matrices, for

A,B ∈ Rn×n
s we write A ≽ 0 (A ≻ 0) to mean that A is positive semidefinite

(positive definite) and A ≽ B (A ≻ B) to mean that A−B ≽ 0 (A−B ≻ 0).

For A,B ∈ Rn×n we denote by A •B the Frobenius inner product between A

and B: A •B = trace(ATB).

With the above notation, a stochastic semidefinite programming problem with

recourse (SSDP) in standard primal form (see [22]), is given by

min
X∈Rn1×n1

s

C •X + E [Q(X,ω)]

s.t. Ai •X = bi, i = 1, 2, . . . ,m1, X ≽ 0,

where X ∈ Rn1×n1
s is the first-stage decision variable, C ∈ Rn1×n1

s is a given

matrix, b ∈ Rm1 another given vector, A ∈ Rn1×n1
s , c, b and A are determin-

istic data. Q(X,ω) is the minimum of the second stage problem

min
Y (ω)∈Rn2×n2

s

Q(ω) • Y

subject to Ti(ω) •X +Wi(ω) • Y = hi(ω) i = 1, 2, . . . ,m2, Y ≽ 0,

and

E [Q(X,ω)] =
∫
Ω
Q(X,ω)P (dω), (7)

where Y (ω) ∈ Rn2×n2
s is the second-stage decision vector, Q ∈ Rn2×n2

s ,

Ti(ω) ∈ Rn1×n1
s , Wi(ω) ∈ Rn2×n2

s , h ∈ Rm2 and ω ∈ Ω is a random out-

come with known probability distribution P , whose realizations will affect the

coefficient matrices of the problem.

Using the above notation, the two stage stochastic semidefinite program-

ming problem for SCTSLP-R can be summarized with the following decision
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variables:

x = [d2, ũ, γ]
T , (8)

y = [z, γ̃ , δ]
T
, (9)

where x is the first stage decision variable with components

– d2: is an upper bound on square of the radius of the circle C;

– ũ ∈ R2: is the centre of circle C;

– γ: is the coefficient in the equation of circle C,

and y is the second stage decision vector whose components are

– z ∈ RK : is the vector of the upper bounds, at realization k, on the quantity

to enlarge the circle C to cover all the ellipses Ei
k by means of Ck (see eq.

3);

– γ̃ ∈ RK : is the vector of the coefficients γ̃k of the second stage circles Ck,

k ∈ K;

– δ ∈ RK : is a vector of non-negative parameters (see [24, 28]).

The coefficients of the decision variables in the objective function are given

by:

c = [αθ∗π,0, 0]T , (10)

q = [βϕ∗π,0,0]T , (11)

where α > 0 is the cost per unit of the area of C and β is the vector of identical

costs β per unit increase of the area of C to the area of Ck.

The costs of choosing the service area C is

αθ∗π
(
ũT ũ− γ

)
. (12)

We note that minimizing the nonlinear cost function (12) is equivalent to

minimizing the linear cost function αθ∗πd2 under the constraint d2 ≥ ũT ũ−γ.
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Finally, by noting that the latter constraint can be written as I ũ

ũT d2 + γ

 ≽ 0 , (13)

and the condition of inclusion into a second stage circle Ck of the ellipse Ei
k

Ei
k = {u ∈ R2 : uTHi

ku+ 2gi
k

T
u+ vik ≤ 0}, k ∈ K, i ∈ N , (14)

(with Hi
k ∈ R2×2

s , Hi
k ≻ 0, gi

k ∈ R2 and vik ∈ R) as I −ũ

−ũT γ̃k

 ≼ δk

Hi
k gi

k

gi
k
T
vik

 , k ∈ K, i ∈ N , (15)

we deduce that the problem can be written as a stochastic semidefinite pro-

gramming model with recourse (SSDP) as follows:

min
x∈R4

cTx+ E [Q(x, ω)] (16)

s.t. 0 ≼

 I ũ

ũT d2 + γ

 ,

where Q(x, ω) is the minimum of the problem

min
y∈R3K

qTy

s.t.

 I −ũ

−ũT γ̃i
k

 ≼ δk

Hk gi
k

gi
k
T
vik

 , k ∈ K , i ∈ N , (17)

0 ≤ δk , k ∈ K ,

0 ≤ γ − γ̃i
k ≤ zk , k ∈ K i ∈ N .

4.3 The Stochastic Second-Order Cone Model

A special case of semidefinite programming (SDP) is given by second-order

cone programming (SOCP). SOCP problems consist in convex optimization
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problems in which a linear function is minimized over the intersection of an

affine set and the product of second-order (Lorentz) cones:

Kn := {x = (x0; x̄) ∈ Rn : x0 ≥ ∥x̄∥} , (18)

where ∥·∥ refers to the standard Euclidean norm and n the dimension of Kn

(see [26]).

A second-order cone can be embedded in the cone of positive semidefinite

matrices since a second-order cone constraint is equivalent to a linear matrix

inequality according to the following relation:

Arw(x) :=

 x0 −x̄T

−x̄ x0I

 ≽ 0 ⇔ x0 ≥ ∥x̄∥ . (19)

In fact, Arw(x) ≽ 0 if and only if either x = 0, or x0 > 0 and it holds true

the Shur Complement x0 − x̄T (x0I)
−1x̄ ≥ 0 .

From a computational point of view, the effort per iteration required by

interior-point method to solve stochastic second order cone problems is lower

than the one required to solve stochastic semidefinite problems of similar size

and structure (see [26]).

The aim of this section is to formulate the semidefinite stochastic problem

presented in the previous section as a stochastic second-order cone SSOCP

problem. See [27] for a similar reformulation for a stochastic location-aided

routing (SLAR) model in wireless ad-hoc networks.

We rewrite each semidefinite constraint as a second order cone one. The con-

straint:

0 ≼

 I −ũ

−ũT d2 + γ

⇔ d2 + γ ≥ ũT ũ ⇔

√
d2 + γ

ũ

 ∈ K3 ; (20)

the second stage constraint I −ũ

−ũT γ̃k

 ≼ δk

Hi
k gi

k

gi
k
T
vik

 , k ∈ K, i ∈ N (21)
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is equivalent to

M i
k :=

 δkH
i
k − I δkg

i
k + ũ

δkg
i
k
T
+ ũT δkv

i
k − γ̃k

 ≽ 0 , k ∈ K, i ∈ N . (22)

Following [26], let Hi
k = Qi

kΛ
i
kQ

i
k
T
be the spectral decomposition of Hi

k,

Λi
k = Diag

(
λi
k1; . . . ;λ

i
kn

)
and hi

k = Qi
k
T (

δkg
i
k + ũ

)
, for k ∈ K, i ∈ N . Then

M̄ i
k :=

Qi
k
T
0

0 1

M i
k

Qi
k 0

0 1

 =

δkΛ
i
k − I hi

k

hi
k
T

δkv
i
k − γ̃k

 ≽ 0 , (23)

for k ∈ K, i ∈ N and M i
k ≽ 0 if and only if M̄ i

k ≽ 0. It holds if and only if

δk ≥ 1

λmin(Λi
k)
, i.e., δkλ

i
kj − 1 ≥ 0 ∀ k, j, i, hi

kj = 0 if δkλ
i
kj − 1 = 0 and the

Shur complement of the columns and rows of M̄ i
k that are not zero

δkv
i
k − γ̃k −

∑
δkλi

kj>1

hi
kj

2

δkλi
kj − 1

≥ 0 . (24)

If we define sik := (sik1; . . . ; s
i
kn), where sikj =

hi
kj

2

δkλi
kj−1

, for all j such that

δkλ
i
kj > 1 and sikj = 0, otherwise, then (24) is equivalent to

γ̃k ≤ δkv
i
k − 1T sik . (25)

Since we are minimizing the radius of the second stage circles Ck,
√
ũT ũ− γ̃k,

we can relax the definition of sikj replacing it by hi
kj

2 ≤ sikj

(
δkλ

i
kj − 1

)
,

k ∈ K, i ∈ N , j = 1, 2. Combining all of the above constraints (21) is equiva-

lent to the following formulation involving only linear and restricted hyperbolic

second-stage constraints:

hi
k = Qi

k

T (
δkg

i
k + ũ

)
, k ∈ K, i ∈ N , (26)

hi
kj

2 ≤ sikj
(
δkλ

i
kj − 1

)
, k ∈ K, i ∈ N j = 1, 2 (27)

γ̃k ≤ δkv
i
k − 1T sik , k ∈ K, i ∈ N , (28)

δk ≥ 1

λmin

(
Λi
k

) , k ∈ K, i ∈ N . (29)
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Note that the restricted hyperbolic constraint (27) is equivalent to the follow-

ing 2NK 3-dimensional second-order cone inequalities:

∥∥∥∥∥∥
 2hi

kj

sikj − δkλ
i
kj + 1

∥∥∥∥∥∥ ≤ sikj + δkλ
i
kj − 1 (30)

⇕
sikj + δkλ

i
kj − 1

2hi
kj

sikj − δkλ
i
kj + 1

∈K3, k ∈ K, i ∈ N , j = 1, 2, (31)

and each of the linear constraints (28) and (29) are NK 1-dimensional second-

order cone constraints. In conclusion, the model (16)-(17) can be formulated

as a stochastic second-order cone SSOCP problem in the following way:

min
x∈R4, y∈R3K

cTx+

K∑
k=1

pkq
Ty

s.t. d2 + γ ≥ ∥ũ∥2 , (32)

(
sikj + δkλ

i
kj − 1

)2≥
∥∥∥∥∥∥
 2hi

kj

sikj − δkλ
i
kj + 1

∥∥∥∥∥∥
2

, k ∈ K, i ∈ N , j = 1, 2,

hi
k = Qi

k

T (
δkg

i
k + ũ

)
, k ∈ K, i ∈ N ,

γ̃ ≤ δkv
i
k − 1T sik , k ∈ K, i ∈ N ,

δk ≥ 1

λmin

(
Λi
k

) , k ∈ K, i ∈ N ,

δk ≥ 0 , k ∈ K ,

γ − γ̃k ≥ 0 , k ∈ K ,

γ − γ̃k ≤ zk , k ∈ K ,

d2 ≥ 0 .
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5 Numerical Results

In this section, we first describe the methodology we use to generate the real-

izations. Then, we analyze the sensitivity of the exact SSOCP model solution

with respect to input parameters. Finally, we compare the solutions of the

SSOCP approach with the SL approach. The SSOCP model is implemented

in GAMS 22.5, by using the second order cone programming solver from the

software package Mosek (http://www.mosek.com/), while the SL approach is

implemented in C++.

5.1 Uncertainty generation

In our numerical experiments, we generate ellipses of the form

E = {u ∈ R2 : uTHu+ 2gTu+ v ≤ 0}, (33)

where H ∈ R2×2
s is a given positive definite matrix, g ∈ R2 is a given vector,

and v ∈ R is a given real number such that

v < gTH−1g . (34)

Equation (33) can also be written as

E = {u ∈ R2 :
∥∥∥H1/2(u− u0)

∥∥∥ ≤ 1} , (35)

with H = QΛQT the spectral decomposition of H, where Q is the matrix

whose columns are the eigenvectors of H and Λ = Diag (λ1; . . . ;λn) is the

diagonal matrix of the corresponding eigenvalues with

u0 = −H−1g, ρ =
√
gTH−1g − v .

Note that an ellipse is completely defined by its centre u0 = (u0
1, u

0
2), the

angle φ between the first axis of the ellipse and the u1-axis of the coordinate
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system, and the lengths σ1, σ2 of the two semi-axes. For given φ, u0 = (u0
1, u

0
2),

σ1, σ2, we can represent the ellipse in the form (33) by setting

H := Q

σ−2
1 0

0 σ−2
2

QT , g = −Hu0 . v = u0THu0 − 1 . (36)

We randomly generate these quantities to obtain ellipses of the form (33)

by using (36). The quantities

u0,i
1,k, u

0,i
2,k, φ

i
k, σ

i
1,k, σ

i
2,k, k ∈ K , i ∈ N (37)

corresponding to the ellipse

Ei
k = {u ∈ R2 : uTHi

ku+ 2gi
k

T
u+ vik ≤ 0} , k ∈ K, i ∈ N , (38)

(with Hi
k ∈ R2×2

s , Hi
k ≻ 0, gi

k ∈ R2 and vik ∈ R), which represents the area

covered by the traveling salesman i ∈ N at realization k ∈ K, are obtained by

considering:

- the uniform distribution in the interval
(
ûi
1 − 2, ûi

1 + 2
)
for generating u0,i

1,k;

- the normal distribution N
(
ûi
2, 0.5

)
for generating u0,i

2,k;

- the uniform distribution in the interval [0, π] for generating φi
k;

- the normal distribution N (2, 1) for generating siu1,k
and siu2,k

,

with û1 ∈ RN and û2 ∈ RN representing the coordinates of the initial posi-

tion of the N traveling salesmen. The ellipses Ei
k are randomly generated in

MATLAB 7.4.0 inside the square [−10, 10]× [−10, 10]. Each ellipse Ei
k covers

q customers randomly generated by a uniform distribution. Note that at each

realization the same number of customers Nq should be served. The differ-

ence among the realizations is in the customers’ positions. Note that since

we generate the same number of customers inside areas of different extension,

the described approach corresponds to model distributed demands with differ-

ent degree of density. In our computational experiment, we consider the cases

in which each traveling salesman respectively serves 1, 5, and 25 customers
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(q = 1, 5, 25). Furthermore, the K realizations are supposed to be equiproba-

ble, with probability 1/K.

5.2 Sensitivity Analysis

In this section, we carry out a sensitivity analysis of the SSOCP solution with

respect to some of the input parameters (see [29]). In particular, we consider:

1. The number K of realizations in the realization tree;

2. The cost β of making corrections on the radius of the second stage circles.

To carry out the analysis, we assume that the number of traveling salesmen

is N = 5, with initial positions as follows:

û1 = (5,−5, 0, 0, 5)T û2 = (0, 0, 5,−5, 5)T .

Furthermore, in order to make a consistent comparison in terms of number

of realizations, the approximation of the costs according to the corresponding

Capacitated Traveling Salesmen Problem described in Section 4.1 is here not

considered. The exact solutions obtained by optimally solving the deterministic

equivalent SCTSLP-R with increasing number of realizations or second stage

cost β are then compared.

The results of the analysis are the following:

(1) Number K of realizations: Figure 1 shows the stabilization of the objec-

tive function in the SSOCP model as the number of realizations increases

from 3 up to 20335. An in-sample stability is observed, (see [30]) with a

stabilization of the objective function around the value of 267.

(2) Cost β: The sensitivity analysis of the first stage objective function and

total costs versus the second stage cost βϕπ ∈ [0, 4π] is reported in Figure

2. The results show that, for a low value of βϕπ ∈ [0, 2.51] the first stage

cost is zero; this means that it is more convenient to enlarge the radius
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of each recourse zone Ck instead of moving the location of the facility.

Conversely, for βϕπ ≥ 8.4, the service zone C already contains all the

routes of traveling salesmen Ei
k, (k ∈ K, i ∈ N ); the total cost reduces to

the first stage total cost and it stabilizes on the value of 287.78.
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Fig. 1 Sensitivity analysis of the optimal function value versus the number realizations for

the exact SSOCP model.
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Fig. 2 Case of 5 realizations: sensitivity analysis of the objective function and first stage

costs versus the second stage cost βϕπ ∈ [0, 4π] for the for the exact SSOCP model.
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Fig. 3 Case of 25 random customers supplied by 5 traveling salesmen with capacity q = 1

in 5 realizations: service zone C and requested service zone C̃ solutions for the exact SSOCP

model.
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Fig. 4 Second stage zones solutions Ck for the exact SSOCP model in the case of 25

random customers supplied by 5 traveling salesmen with capacity q = 1 in each of the five

realizations (a) k = 1, (b) k = 2, (c) k = 3, (d) k = 4 and (e) k = 5. Note that, at realization

k, the second stage disk Ck contains all the ellipses Ei
k (i = 1, . . . , 5).
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5.3 Comparison with the SL approach

In this section, we show the improvement in the cost obtained by the SSOCP

approach with respect to the SL. We consider the cases of 5 and 25 travel-

ing salesmen (N = 5 and N = 25) with capacity q = 1, 5, 25 (see Tables 2

and 3). The number of realizations is set to K = 5, each of them contains

N traveling salesmen serving q different customers, for a total number of cus-

tomers R = KNq. In order to make a consistent comparison between the two

solutions approaches, the costs θ and ϕ in the SSOCP model are now com-

puted according to the cost of the corresponding Capacitated Vehicle Routing

Problem (CVRP), by solving the minimum least square problem explained in

Section 4.1. The first stage cost α = 1 and second stage cost β = 1.5 paying

more for the recourse action. Tables 2 and 3 show the average value over 10

simulations of the out-of-sample costs of the SL solutions, obtained as follows:

– For given capacity q = 1, 5, 25 of traveling salesmen, we uniformly generate

10 different samples of Nq customers’s position in the interior or at the

border of the ellipses Ei
k, k = 1, . . . , 5, i = 1, . . . , 5, which represent the

realizations for the corresponding SSOCP model. Note that the ellipses

Ei
k, k = 1, . . . , 5, i = 1, . . . , 5, are fixed in all the 10 simulations, only

customers’ position change (see Table 2).

– The solutions obtained by the SL are then evaluated in terms of SSOCP

costs (out-of-sample analysis), by fixing SL solution variables ũ and r ob-

tained in each of the 10 simulations.

– The average costs over 10 simulations are then computed (see sixth and

eighth column of Tables 2 and 3) and compared with the corresponding

SSOCP formulation.

The results show that in all the cases, the solution obtained by the SL performs

worse than the one obtained by the SSOCP approach, forcing the facility to be

fixed in one of the customers location (see Table 1 and Figure 5). Note that,
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in order to reach all the customers, the service zone radius in the SL has to be

larger (10.41 instead of 8.91). The computational times of the two approaches

are not comparable since the SSOCP and SL models are implemented in dif-

ferent workspaces. However in both the cases, the solution is obtained in less

than one CPU second.

d2 ũ1 ũ2 r r̃ 1st stage c. Obj. value

SSOCP 79.42 0.26 -0.09 8.91 9.06 161.60 171.32

SL 108.35 3.17 3.59 10.41 11.80 220.45 335.40

Table 1 Comparison between the SSOCP approach and out-of-sample evaluation of solu-

tion of the SL in the case of a total number of R = 25 customers served by N = 5 traveling

salesmen with capacity q = 1 over K = 5 realizations.
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Fig. 5 Case of 25 random customers supplied by 5 traveling salesmen with capacity q = 1

in 5 realizations: service zone C solution of the (a) SSOCP model and (b) SL.
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q N R θ ϕ 1st s. SL 1st s. SSOCP Obj. SL Obj. SSOCP

1 5 25 0.647 0.774 208.54 161.60 300.49 171.32

5 5 125 0.792 0.934 382.63 197.72 520.97 209.50

25 5 625 1.116 1.253 440.34 268.16 463.82 294.19

Table 2 Case of N = 5 traveling salesmen serving respectively q = 1, 5, 25 customers

over K = 5 realizations: comparison between the SSOCP model costs (seventh and ninth

columns) and average costs of the SL over ten simulations (sixth and eighth columns).

q N R θ ϕ 1st s. SL 1st s. SSOCP Obj. SL Obj. SSOCP

1 25 125 2.914 3.639 657.82 728.01 2049.45 772.88

5 25 625 3.238 3.958 1416.64 1368.43 1615.01 1415.74

25 25 3125 3.963 4.67 1982.71 1674.57 2036.154 1730.45

Table 3 Case of N = 25 traveling salesmen serving respectively q = 1, 5, 25 customers over

K = 5 realizations: comparison between the SSOCP approach (seventh and ninth columns)

and average costs of the SL over ten simulations (sixth and eighth columns).

5.4 Comparison on a TSP benchmark instance

We now show the results we obtained by applying the SL approach and

the SSOCP approach to a TSP benchmark instance with 13,509 nodes (see

TSPLIB, instance name: usa13509.tsp). We refer to [31] for more details.

The realizations are obtained by splitting the 13,509 customers in the

United States into four subareas according to their longitude. Then, subsets

of q = 100 nodes are extracted from the four subareas on the basis of a uni-

form distribution. Minimum covering ellipses, representing each the traveling

salesman i at realization k visiting a subset of q random customers, have been

generated by using MATLAB 7.4.0 environment according to [28]. Fig. 6 shows

an example of one of these realizations with four traveling salesmen (the el-

lipses) supplying 400 customers. Bullet stars represent the customers, while

bullet squares the centers of the 4 ellipses.

We consider K = 34 realizations, such that the total number of customers

is R = KNq = 13, 509. Table 4 shows the out-of-sample costs of the SL ap-
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Fig. 6 Example of one realization in the usa13509.tsp instance: 400 random customers

supplied by four traveling salesmen (the ellipses) with capacity q = 100. Bullet stars repre-

sent the centers of the 4 ellipses. Note that each customer is served by a unique traveling

salesman

Approach d2 ũ1 ũ2 γ τ r 1st s. cost 2st s. cost

SL 20 3.91 8.73 71.41 0 4.47 654.66 786.37

SSOCP 14.62 4.14 9.74 97.32 0 3.82 478.46 530.22

Table 4 Comparison between the out-of-sample evaluation of the SL approach and the

SSOCP approach in the usa13509.tsp instance

proach, computed as follows: different subsets of q = 100 possible customers are

uniformly extracted from the four different longitude subareas in the United

States and the corresponding minimum covering ellipses are generated. The

process is repeated for the 34 realizations such that all the 13,509 customers are

visited. The solution obtained by the SL approach is then evaluated in terms

of SSOCP costs (out-of-sample analysis, obtained by fixing the variables ob-

tained in the SL solution) and compared with the corresponding SSOCP total

costs.

The result shows that the SL approach performs significantly worse than

the SSOCP approach. In fact, the percent increase in the total cost of the SL

approach with respect to the SSOCP approach is about 42.9%. This is mainly

due to the fact that in the SL approach the facility is forced to be fixed in one

of the customer locations in Indiana, instead than in a point (different than a
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customer location) in Nebraska, as obtained in the SSOCP approach (see Fig.

7).

Fig. 7 Comparison of the SSOCP approach (-9.74,4.15) and the SL approach (-8.72,3.9)

facility location solutions in the usa13509.tsp instance. The SSOCP solution refers to the

case of K = 150 realizations, N = 4 traveling salesmen with capacity q = 100.

6 Conclusions

We studied the problem of a single facility serving a given number of customers

in a given area. The position of the customers is not known. The service to

the customers is carried out by several capacitated traveling salesmen. The

aim is to determine the service zone (in a shape of a circle) that minimizes the

expected cost of the traveled routes. The centre of the circle is the location

of the facility. Once the position of the customers is revealed, the customers

located outside the service zone are served with a recourse action at a greater

unit cost. We showed that the solutions obtained by applying a simpler ap-

proach, namely SL, can be infinitely worse than the optimal solution. Then, we

proposed a solution based on the optimal solution of a stochastic second–order

cone formulation with an approximate objective function (SSOCP approach)



30 Luca Bertazzi, Francesca Maggioni

and showed that this solution is significantly better than the previous solution

in a large set of randomly generated problem instances.
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