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ELASTOPLASTIC STRUCTURAL ANALYSIS
OF THE PADERNO D’ADDA BRIDGE (ITALY, 1889)
BASED ON LIMIT ANALYSIS

Ferrari Rosalba', Cocchetti Giuseppe®, Rizzi Egidio’®

ABSTRACT

The Paderno d’Adda bridge is a marvellous historical iron arch bridge that was built in 1889. It allows
connecting the provinces of Lecco and Bergamo across the Adda river, between Paderno d’Adda and
Calusco d’Adda, near Milano, northern Italy. The bridge was designed for railway needs and its use is
two-fold: a railway track is located in the inner deck of the upper continuous beam; automotive traffic
runs on top of it. Today, after 123 years of continuous duty, the viaduct is still in service, with trains
crossing at slow speed and alternated one-way road traffic restricted to no heavy-weight vehicles.
Despite these duties, the bridge seems to have suffered from limited maintenance. With the final
purpose of elaborating a safety assessment of the structure, an inelastic structural analysis of the
viaduct is performed, based on a finite element model that takes into account a perfect elastoplastic
behaviour of the various structural members and is apt to comply with typical principles of Limit
Analysis. Specifically, the critical load multiplier and relevant collapse mode are investigated, for
different static loading conditions on the bridge. Also, the characteristic non-linear load/displacement
response curves of the bridge are traced by incremental analyses up to the true limit load and the
various critical members of the structure are identified. A further intention of this work consists in
promoting interest at the international level on the Paderno d’Adda bridge, as a beautiful, living
industrial monument of the scientific and technological developments of that time, by referring
particularly to its present and future destinations.

Keywords: Historical iron arch bridge, Non-linear FEM model, Elastoplastic structural analysis,
Limit Analysis, Collapse load multiplier, Collapse mode

1. INTRODUCTION

The Paderno d’Adda bridge is a beautiful iron viaduct built in 1889 by the Societa Nazionale delle
Officine di Savigliano (SNOS), in response to needs from rapidly-growing industrial activities in
Lombardia towards the end of 1800 [1,2]. Specifically, within the expansion of the local railway
network, it became necessary to acquire an elevated crossing on the river Adda, North-East from
Milano. The remarkable structural concept elaborated for the bridge by designer Jules Réthlisberger
(1851-1911), head of the SNOS Technical Office since 1885, was that of raising a stiff but slender
symmetric doubly built-in parabolic arch among the two banks of Paderno d’Adda (right bank) and
Calusco d’Adda (left bank), of about 150 m of horizontal span and 37.5 m of vertical rise, supporting
then, together with vertical truncated pyramidal piers, a straight upper box continuous beam on nine
bearings of 266 m of length [1, 2] (Fig. 1).
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Fig. 1 Present up-stream view of the iron arch bridge (1889) from Paderno d’Adda (right bank)

The bridge probably represents one of the very first large structures designed through a practical
application of the so-called “Theory of the Ellipse of Elasticity”, a graphical-analytical method of
structural analysis that was developed in the wake of Graphic Statics, specifically at the Polytechnical
School of Ziirich (where Rothlisberger was formed) by Karl Culmann (1821-1881) and by his pupil
Wilhelm Ritter (1847-1906). A specific account on that has been provided in Laurea Thesis [3] and in
previous SAHCOS paper [4], which has opened-up the way to a modelling study on the bridge at the
University of Bergamo, by a research project that was started in 2005 [3-10]. This has led to the
assembly of a complete linear FEM model of the structure, within a commercial FEM program
(ABAQUYS), as further refined here by an independent non-linear implementation (MATLAB) in an
elastoplastic setting.

The bridge was built with a wrought iron material, with riveted joints. According to the original SNOS
Report [1], about 2600 tons of metals were employed in the construction. Details on the various
characteristic features of the bridge are available in [2] and have been analysed and further reported
in [3-10]. Along its history, the Paderno d’Adda bridge has undergone a few modifications and repairs.
Despite its continuous duties, only two documented systematic static try-out loading tests with added
load seem to have been carried-out, in 1889 and 1892, in order to compare as well the outcomes of
theoretical predictions elaborated by the SNOS at design stage.

Successful direct comparisons to such try-out evidences have been achieved in the research project
above [3-10], by producing static results through a linear FEM model loyal to design-stage conditions,
as documented by the original technical drawings that have been accessed at the Archivio Nazionale di
Torino (see extensive description in [10]). Specifically, linear structural simulations in previous
SAHC10 paper [8] have shown full consistency among FEM predictions and expected/recorded SNOS
data. Further, a first modelling investigation on the dynamic characteristics of the bridge has been
attempted in [9], in terms of the determination of the main mode frequencies and associated mode
shapes, with results that appeared to be consistent to those from preliminary field investigations and
dynamic identification on the bridge, based on ambient vibration tests that have been carried-out
recently by colleagues at Politecnico di Milano [11-12]. This has led to the development of
a permanent monitoring system of the bridge, that is being now put in place by them [13], as
conceived to assess possible degradation of structural performance. Further in light of this, the
completion of a reliable FEM model of the viaduct appears to be truly fundamental for
a comprehensive understanding of the structural performance of the bridge, which in the end should
properly address the present morphology and state of conservation of the structure.

Based on such previous know-how, the present research study has been developed in the direction of
modelling the global non-linear elastoplastic behaviour of the bridge. Reference is still made so far to
the characteristics at design stage; the hypothesis of perfect elastoplastic behaviour with unlimited
ductility of all the structural members has been assumed. In particular, focus is made here on the
determination of the collapse load multiplier and relevant collapse mechanism, for various static try-
out railway loading conditions on the bridge. The characteristic load/displacement curves are traced by
incremental analyses up to the true limit load and the critical members in the various parts of the
structure are identified.

The non-linear structural analyses have been performed with an elastoplastic FEM formulation that
has been implemented in an autonomous computer code, running within a MATLAB environment.
Details on the adopted computational formulation strategy and its code implementation are going to be
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provided elsewhere [14]; a brief account on that is reported in Section 2, with basic description of the
adopted FEM formulation. The morphological and geometrical features of the structure have been
exported from the previous FEM model implemented in a commercial FEM code (4BAQUS). This has
been built by assembling a true 3D truss frame with beam elements, mutually connected at the nodes,
as composed of three main structural parts: bearing doubly-built-in parabolic arch, vertical piers, upper
box continuous beam. Details on the different parts and total assembly of the pre-existing FEM model
of the bridge, imposed boundary conditions and considered loading cases are available in [3-10]. The
final assembly of the complete truss FEM model of the Paderno d’Adda bridge collects 5337 beam
elements, 2216 structural nodes and 13296 degrees of freedom (nodal displacements and rotations).
The material properties adopted in the FEM model are taken as representative of a wrought iron
material [1,2]: specific weight y = 7.7 t/m’; Young’s modulus £ = 17000000 t/m*; Poisson’s ratio
v=0.3; corresponding shear modulus G = 6540000 t/m’ yield stresses o, =6.00 kg/mm’ and
7, = 6,/\3 = 3.46 kg/mm’.

2. NON-LINEAR ELASTOPLASTIC FEM FORMULATION

The salient characteristic features of the non-linear elastoplastic FEM formulation are briefly resumed
below, with reference to the implementation of the perfect elastoplastic behaviour of the structural
members. General characteristics of the algorithm formulation are rooted in [15]; detailed information
on the present computational implementation is going to be provided elsewhere [14]. The FEM
formulation is based on a classical Euler-Bernoulli beam finite element, according to the following
peculiar hypotheses: straight elements, uniform cross section, homogeneous material properties,
transverse displacements modelled by cubic shape functions (i.e. negligible shear strain effects are
considered), axial displacements and rotations varying linearly along the beam element.

Plastic deformation has been concentrated at the element edges, 4, B (a schematic 2D representation is
depicted in Fig. 2), where two plastic joints (as a generalization of the classical plastic hinge concept
in the Limit Analysis of frames, see e.g. [15] and references quoted therein) have been inserted. In
each plastic joint, the assumed generalized kinematic variables are two relative plastic rotations (each
around a principal axis of the cross section — labels 1,2), an axial elongation and a relative rotation
around the beam axis. Specifically, axial elongation and axial rotation are (possibly) activated in only
one of the two joints (4 or B), in order to avoid unrealistic free rigid body movements; then, only 6
internal kinematic variables are required for each beam element. Shear effects have not been
considered so far.

A -9 o B M -.:)Iw N <= Y= — N
IJ \\ :*: ]]

o )
Fig. 2 Schematic representation of a beam finite element with plastic joints (at edges A and B)

For each 3D beam finite element, a linear rate relation can be obtained between the increments of: the
12 static actions at the extremes of the beam element (h), the corresponding 12 nodal displacements
and rotations (u ), the above-mentioned 6 generalized kinematic plastic variables (1 ). Namely

(see [15]):
h=ku+dn (1)

where K is the classical 12 x 12 elastic stiffness matrix of the finite element and d is an additional
12x6 plastic stiffness matrix.

The irreversible behaviour of the plastic joints is described by an associative, perfectly-plastic,
generalized variable model, in terms of 7 of the 12 static variables, namely normal action, principal
bending moments at extremes A, B, and constant twisting moment, as defined below. As a simplifying
assumption, a piece-wise linear, uncoupled elastoplastic behaviour is adopted in terms of such internal
static variables, namely a Rankine-type boxed-form yield domain is assumed in the space of static
variables.

The analytical description of the interaction domain for the beam element is then stated in terms of the
following inequalities:
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N < min(NA,NB) < max(NA,NB) <N*

M <M, <M/
)
M;<M! <M, M, <M]<M;

M;<MP <M, M, <M;<M;

where N is the axial force, M, is the torque (uniform along the beam), M; and M, are the bending
moments with respect to the two principal axes of inertia of the cross section (indexes 4 and B refer

again to the beam edges, Fig. 2). Yield limits N ,N",M,, M, M,, M;, are taken constant and

obtained from material yield limits (o;, 7,) and cross section geometrical characteristics as:
N'=-N =4o,, M,=-M_,=aM,=a(2J,,/h,)o,, M =-M =pM;=p(,/br, (3)

where o and [ are bending and torsion section shape factors (taken here as ¢ =1.1 and f=1.5 for all
the elements) and J,,, J,, h,, b are flexural principal inertias, torsional inertia, principal heights and

characteristic profile thickness of the cross section.
When some of the yield modes are active in the current time interval of the integration process (say,

for instance, max(N*,N®) = N" and M,' =M, ), the increment of each associated internal action is set

to zero and the corresponding incremental relations in Eq. (1) can be solved for the increments of the
corresponding activated kinematic internal variables (#') as (linear) functions of the displacement

increments (a):
h=K'u+df=0 = 7 =(d"'k)u 4)

Finally, by substituting into Eq. (1) the second expression in Eq. (4), a direct force/displacement
incremental relationship, governed by a symmetric elastoplastic stiffness matrix (k.,) can be obtained
for the generic beam finite element:

h=k,_u (5)

e

The global structural (linear) solving rate system is obtained by the assembly of the elastoplastic
matrices of each finite element and of the equivalent nodal force vector increment:

K, U=F (6)

ep

where U is the vector collecting the (un-constrained) degrees of freedom of the whole structure, F is
the nodal force vector coming from the given applied forces and K., is the global tangent stiffness
matrix of the structure.

Being this last relationship of a linear kind, the whole time integration process can be split into
a sequence of time intervals in which all static and kinematic quantities vary linearly along each step
(see e.g. [15]). A scalar multiplier factor 1 is considered as a load amplifier common to a set of basic
(live) loads. The internal kinematic variables, active along the time interval, are selected according to
the active yield planes at its beginning, Eq. (4); however, if the computed incremental solution that can
be extracted from Eq. (6) would imply negative dissipation for any of the active modes (for instance, if
a tensile yielding axial force acts in a beam and, instead, a length shortening would be obtained in the
incremental solution), then that active mode is actually deactivated, the stiffness matrix is newly
updated and the incremental solution is re-computed. On the other hand, when an active mode has
been deactivated at the beginning of the time increment and the incremental solution would render an
increment of the static action corresponding to that mode, producing thus a violation of the perfectly-
plastic yield condition (for instance, an axial force becoming higher than the yield limit at the end of
the time increment), this would mean that such a mode shall be included among the active ones, from
the beginning of the time interval; then, the stiffness matrix has to be updated before the new
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computation of the incremental solution. Once all conditions of non-negative dissipation and
perfectly-plastic yielding described above are fulfilled, the algorithm calculates, among all non-
activated modes, the load multipliers leading to all new possible activations. The minimum among
such estimated multipliers is set as the true value of 1 at the end of the increment. Then, the
corresponding increments of static h and kinematic W quantities (internal actions and displacements)
are updated proportionally, from the original incremental solution. In this sense, the piece-wise linear
elastoplastic response of the structure to proportionally-increasing external actions can be computed
“exactly”, in the spirit of Limit Analysis. In the structural solution, boundary conditions are imposed
with “ad-hoc” procedures [14].

Finally, the collapse of the structure is reached when the minimum eigenvalue of the global (updated)
tangent stiffness matrix K¢, vanishes (with numerical tolerances in the order of 10"°) and the
corresponding eigenvector leads to a positive incremental dissipation for each active mode.

3. ELASTOPLASTIC RESULTS AND ENGINEERING IMPLICATIONS

Though the present FEM model has been conceived so far at design stage, the current perfect
elastoplastic structural analysis provides crucial information about the ideal load-carrying capacity of
the bridge under limit service conditions. As previously presented for the elastic analyses in [8-10],
accidental loading conditions associated to four static try-out tests performed by the SNOS [1,2] are
considered. These tests (Fig. 3) took place on 12-19 May 1889, and were carried-out using six
locomotives with tender, each of 83 t of weight, corresponding to a uniformly-distributed load on the
beam of ¢ = 5.1 t/m. Loads have been applied here to the nodes of the FEM model at the railway
level. In Fig. 3 the total load applied to the structure is reported for each test, which is obtained as
Q =n q [, where [ is the length of each span of the upper continuous beam (/ = 33.25 m) and # is the
number of loaded spans, according to the load distributions in Fig. 3 (n = 2 or 3). Self-weight is pre-
loaded on the bridge (through specific weight y), leading to elastic deformations, before starting the
incremental elastoplastic analyses, which develop at increasing accidental load. Salient results are
presented as follows (Figs. 4-9, Table 1). All following representations have been generated after
running the analyses, by appropriate post-processing of the stored data.

Right Left
bank bank
Paderno Calusco
d’Adda d’Adda
(LC) ! (BG)
Test I ; | | | | | | | ; g = 218 t
TestIl T T T T T T T 1
Test IIT ——— e I
TestIV . 0=340t

Fig. 3 Scheme of considered four static try-out configurations (view from down-stream), with value of total
load applied to the structure for each test and indication of four control points (red circles)

First, for each of the four try-out loading configurations in Fig. 3, the deformed configuration of the
bridge at incipient collapse with amplification factor set to 100 (Figs. 4-7a), the characteristic non-
linear load/displacement response curve (Figs. 4-7b) and the localisation of the plasticised members
have been reported (Figs. 4-7c). The response plots in Figs. 4-7b show the computed step-by-step
evolutive solutions, with reference to values read at the beginning of each time interval. In particular,
the horizontal axis depicts the vertical displacement (A) of the node that, in the end, has shown the
maximum displacement at incipient collapse; the vertical axis reports the amplified accidental load
P=40Q, where 4 is the load multiplier related to the incremental solution of the non-linear
elastoplastic analysis (Section 2). Notice that in the plots in Figs. 4-7b, the non-zero initial
displacement (at P =0) is due to self-weight only, namely to a pre-imposed permanent load not
affected by the load multiplier (i.e. load multiplier 4 affects just the accidental load linked to the
locomotive distributions). Moreover, for each loading case, the end point of the P-A curve refers to the
so-estimated collapse of the structure in terms of vanishing minimum eigenvalue of the tangent
stiffness matrix of the structure (Section 2). Figs. 4-7c show a plasticity map of plastic activations in
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the various structural members at increasing load multiplier A. It scores the plastic modes that are
activated at the beginning of each time increment. Each marker represents one activated mode in the
structure, as described below. On the two lines, the activation of axial (N) and bending modes (M) are
shown, respectively. Notice that no torsional modes have been activated during the analyses, which
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Fig. 4 Elastoplastic analysis of try-out Test I
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Fig. 5 Elastoplastic analysis of try-out Test II
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Fig. 6 Elastoplastic analysis of try-out Test III
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Fig. 7 Elastoplastic analysis of try-out Test [V

should look reasonable for these vertical loading configurations that are symmetric to the longitudinal
plane of the bridge. The colour of the markers refers to the various parts of the structure to which the
activated plastic joint has appeared: to an element of the arch (blue), piers (red), upper continuous
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beam (green). In particular, the largest hollow circle marks a plastic mode activated in an element of
the piers resting on the arch. So, in inspecting the maps reported in Figs. 4-7c, it is possible to
appreciate the sequence of activation of plastic joints and the overall plastic response of the bridge, at
increasing applied accidental load P = 1 Q.

The load multipliers 4. at incipient structural collapse of the bridge for the four loading configurations
are reported in Table 1, with type and number of activated modes. Table 1 lists as well the maximum
vertical node displacement of the bridge at incipient collapse (all maximum values refer to nodes of
the upper continuous beam, at the railway level).

Table 1 Collapse load multiplier, active modes and maximum vertical displacement of the bridge

Load (Q=ngql| Load [P.=1. 0 Nr. of active Nr. of active Total nr. of | Max vertical
config. [t] | mult. 4, [t] axial modes flexural modes active modes| displ. [mm]
Arch | Piers | Beam | Total | Arch | Piers | Beam | Total
Testl | 510 4.74 2417 8 16 | 112 | 136 | 14 | 12 | 91 | 117 253 343
TestIl | 510 4.73 2412 8 0 59 | 67 0 0 | 455 455 522 250
Test IIT | 340 4.75 1615 6 0 96 102 | 3 2 | 5251530 632 1231
Test IV | 340 4.37 1486 6 21 | 113 | 140 | 21 | 24 | 364 | 409 549 172

The obtained results show that, among the four tests (Fig. 3), the collapse load multipliers are almost
the same, except for case IV (with two loaded spans), where the lower value A. = 4.37 is attained. This
may be due to the fact that Test [V is the more eccentric with respect to the crown of the arch.
In particular, the load is concentrated on the pier on the arch on the side of the Paderno d’Adda bank.
As it can be appreciated in Table 1 and in Fig. 7c, this test presents the higher number of active modes
in the piers (21 axial modes and 24 flexural modes). These modes are activated when the load
multiplier reaches a value close to 4 = 2.4 and seem then to rule collapse. Moreover, the maximum
vertical displacement obtained at incipient collapse is, by far, the lowest. It may be said that, in
Test IV, plastic collapse is reached without showing significant plastic resources in terms of global
ductility. If the same total load is considered (in terms of resultant Q, Tests I-II and III-I'V), but almost
symmetrically distributed with respect to the crown of the arch, the collapse load multiplier obtained
by the analysis increases (in particular, it becomes the highest in Test III).
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Fig. 8 Characteristic P-A curves at Control Points 1-4 (Fig. 3)

Fig. 6¢ for Test III shows that almost all yield modes activated at increasing load refer to the elements
of the upper continuous beam; only few plastic modes are activated in the elements of arch and piers.
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The results obtained by the analysis referred to Test III show conspicuous plastic resources in terms of
global structural ductility. In fact, as it can be appreciated in Fig. 6b, at incipient collapse, this loading
configuration leads to a prolonged plateau and to the higher maximum vertical displacement (Table 1),
up to about four times the maximum displacement in the other tests, which is referred to a node of the
lower frame connecting the two main vertical longitudinal truss girders of the upper continuous beam,
right underneath the rails, where the distributed load has been applied.

In Tests I and II three spans of the upper continuous beam are interested by the accidental load
distribution. Despite this, in these tests the collapse load multiplier is not much different from those in
Tests III and IV, so that the total collapse load P, is higher. In Test I the total number of active modes
is actually minimal and, near collapse, as in Test IV, many internal static variables in the elements of
the piers do reach yield planes referred to both bending moments and axial force (Figs. 4c and 7¢). In
Test I many yield modes still refer to the elements of the upper continuous beam; no yield modes
appear in the piers. The maximum vertical displacement obtained for Test II is quite limited (Fig. 5b,
Table 1). Also in this case, collapse is reached without significant plastic deformations.

Fig. 8 below shows, for each of the loading tests (Fig.3), the characteristic non-linear
load/displacement response (P-A) curves at the four control points (CP 1-4) represented in Fig. 3.
These are localised at the pier/beam and arch/beam interfaces, on the railway frame level and refer to
the four bearings on the arch.

In Figs. 8a-d it is possible to note that, at selected CP;, the collapse of the bridge is generally reached
without significant plastic deformation at this level. Only in Tests I and IV (where the loads are much
un-symmetrically located to the crown of the arch), Figs. 8a, 8d, plastic displacements are visible at
CP 4 and CP 1, respectively. In Tests II and III the characteristic P-A curves stop quite early (global
structural collapse of the bridge is achieved without appreciable vertical displacement at the CP;). The
P-A curves abandon the linear elastic trend at total load P, =4, Q (marked in Figs. 8a-8d by
a horizontal line), scoring the threshold beyond which further loading generates permanent
deformation in each of the tests (4, is in the order of 3.1 and 4.2 for Tests I and II, and in the order of
3.7 and 3.2 for Tests Il and IV). The P-A trends are almost bi-linear, with visible kink right on the 4,
threshold (Test II) or a bit after that (Tests I, IIl and IV). The further post-kink load gain is quite
limited, with respect also to threshold load (just a bit more visible for Test I). This seems to show that,
for the considered loading configurations, the arch looks quite far from collapse, while structural
collapse is reached for the bridge with reference to failure in the upper continuous beam and, in some
cases, in some elements of the piers.

Instead, in all considered tests, the elements of the upper continuous beam appear to be the most
critical within the structure. For each span of the beam, Fig. 9 below shows the location of the
elements with activated plastic modes. Specifically, with counting of the number of activated modes,
three couples of bars are displayed, on three levels, for each span of the beam: the top couple in the
elements of the upper frame of the beam (thus at road level); the middle couple in the elements of the
vertical frame of the longitudinal truss beams; the bottom couple in the lower frame (at railway level).
Blue bars refer to axial modes and red bars to flexural modes. The width of the bars is related to the
total number of active modes in the pertinent elements.
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Fig. 9 Distribution of activated plastic modes in the upper continuous beam

Obviously, most active modes in the beam arise in the zones where the loads are applied, namely in
the elements of the lower frame of the loaded spans. In Fig. 9 it is possible to appreciate that, for each
loading configuration, these active modes are approximately one third of all the potential modes
related to the lower frame; this ratio increases even more if (non activated) torsional modes are not
taken into account and considering that very few elements do reach yield planes for the axial force.
The number of active modes in the vertical and upper frames, of the same spans, does not appear
negligible, with respect to that of the modes in the lower frame; some active modes arise also in
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non-directly loaded contiguous spans. It may be said that loads applied at the railway level are able to
involve the neighbouring elements in the plastic response of the continuous beam.

Notwithstanding that the plastic response of the structure in all tests appears to be governed mainly by
the activation of the yield modes in the elements of the upper continuous beam, in Tests I and IV the
modes referred to the elements of the piers directly lying on the arch are involved in the final collapse.
No elements of the other piers yield. The analyses show that, in both Tests I and IV, the active modes
in the piers on the arch refer to elements at the piers/arch connections and elements of the upper
rectangular closing frame on top of the piers, hosting as well the bearing devices of the beam. No
active modes arise in the elements of the four faces of the box profile of the piers.

4. CONCLUSIONS

In this paper, structural elastoplastic analyses of the Paderno d’Adda bridge (1889) have been
performed. To this end, a dedicated computer program has been implemented, in which 3D beam
finite elements, perfectly plastic joints (as an extension of classical plastic hinges), piece-wise linear
yield domains and “exact” time integration (in the sense discussed in [15]) have been considered as
main characteristic ingredients of the elastoplastic FEM formulation. The algorithm has shown very
much able to track the limit structural behaviour of the bridge, through a sophisticated computational
strategy, by reaching convergence with smooth runs up to the true limit load and corresponding
collapse displacements. This holds true despite the considerable complexity of the complete bridge
structure, involving roughly 5300 beam finite elements and 13300 degrees of freedom.

The obtained results, which refer to geometrical characteristics at design stage, show a good global
elastoplastic performance of the bridge. Specifically, for the analysed loading conditions (with
vertical loads acting symmetrically to the longitudinal plane of the bridge), the arch is basically
never involved in the collapse. Actually, in all try-out tests only few elements of the arch yield. In
this sense, it appears that the doubly-built-in parabolic arch, a marvellous characteristic feature of
the bridge, represents a well-set structural element, in terms of the global structural response of the
viaduct.

For all the analysed loading conditions, the elements of the upper continuous beam appear to be the
most critical. It is worth-mentioning that, despite interventions on the roadway deck in the seventies
and the more recent stiffening of the metallic box girder, the railway deck should not have undergone
substantial modifications. Thus, further checks on the structural performance of the beam should be
specifically pursued. The analyses have also shown that only tests with loading configurations much
un-symmetrically located to the crown of the arch have involved plasticity in the elements of the piers,
but right underneath the loaded spans, in particular at the arch/pier and pier/beam stiffened interfaces,
where the FEM model is actually not that detailed so far (and could be refined), to deal appropriately
with the stress concentrations that may produce at these locations. The other elements of the piers
appear far from collapse. The structural members of the arch also appear rather in safe position, since
they are hardly involved in the plastic sequence leading to collapse. The considerable level of load
amplification at collapse (absolute 4. in the order of 4.4-4.7, elastic A, in the order of 3.1-4.2 and
multiplier ratio A./4. in the order of 1.1-1.5) is certainly warranted by the assumed unlimited
perfectly-plastic behaviour of all the structural members of the bridge, as linked to the stiff
“hyperstatic” nature of the structure, as conceived at original design, which appears to allow for
considerable stress transfer and redistribution at increasing load and resulting plastic deformation in
the structure. Additional simulation loading settings, directly acting at the beam/piers or pier/arch
interfaces may provide further information on the specific plastic resources of bearing structural
subparts constituted by piers and arch.

The present preliminary results on the elastoplastic structural performance of the bridge have referred
to design stage conditions. Further analyses could consider the current geometrical characteristics and
state of conservation of the structure, which appears to be affected by diffused and localised corrosion
damage, due also to lack of maintenance. While the present design-stage analyses seem to be rather
encouraging about the bearing capacity of the bridge (under the assumption of unlimited ductility of
the structural members), mainly regarding its vertical supporting structure made by arch and piers,
degradation and aging may imply reduced structural performance. This should be checked in view of
possible restoration actions, which appear worthwhile to be pursued, given the present results and the
considerable importance and value that this historic infrastructure still keeps today in the local
transportation network and in the architectural and industrial heritage of the territory.
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