

UNIVERSITY OF BERGAMO
School of Doctoral Studies

Doctoral Degree in Engineering and Applied Sciences

XXXII° Cycle

SSD: ING-INF/05

Protecting Resources and Regulating Access

in Centralized and Decentralized Cloud Systems

Advisor

Prof. Stefano Paraboschi

Doctoral Thesis

Enrico BACIS

Student ID 1006904

Academic year 2018/2019

Abstract

The low costs and high reliability guarantees associated with cloud storage
led many IT organizations to offload their data to cloud service providers. Yet,
this raises new challenges to manage access control and data confidentiality in
these environments.

The first part of this doctoral thesis analyzes centralized cloud storage
providers (CSP). In this setting, the CSP is considered honest-but-curious: it
always complies with users’ requests, but it might access unprotected data. A
possible defense is to encrypt the data; however, standard encryption modes
would introduce relevant overheads when performing access revocation. To
address this problem, we present an approach that relies on a resource trans-
formation that provides strong mutual inter-dependency in its encrypted rep-
resentation. To revoke access on a resource, it is then sufficient to update a
small portion of it.

The second part studies how these guarantees can be extended to the de-
centralized cloud storage environment. In this case, the data is sharded and
offloaded in a peer-to-peer network, in which nodes might be dishonest and
try to disobey users’ deletion and access revocation requests to maximize their
revenue. We propose a solution that addresses both availability and security
guarantees and enables resource owners to tune these settings to their needs.

When dealing with decentralized networks, an important aspect is how to
detect misbehaving nodes, to stop paying for their service and migrate the data
to new peers. This process has to work even when the data owner is offline and
without imposing trust or honesty assumption on any of the involved parties.
To address this problem, in the third part of this thesis, we detail a novel way
of deploying self-releasing time-locked secrets. This technique can be used to
implement delegated challenge-response protocols that, in turn, can guarantee
data confidentiality and retrievability properties in fully distributed systems.
Our solution leverages smart contracts and economic incentives to regulate a
game among the mutually distrusting users that compose a blockchain, thus
removing the need of any trusted party.

The technologies detailed in this thesis push the state of the art as re-
gards resource protection and access regulation in centralized and decentral-
ized cloud storage systems. The implementations have been released under
open-source licenses and can be readily integrated with real systems.

Contents

Abstract 1

1 Introduction 13
1.1 Document structure . 13
1.2 Publications . 16

2 Mix&Slice 19
2.1 Introduction . 19
2.2 Mix&Slice . 22

2.2.1 Blocks, mini-blocks, and macro-blocks 22
2.2.2 Mixing . 24
2.2.3 OAEP mixing . 29
2.2.4 Shortcomings of large macro-blocks 31
2.2.5 Slicing . 32

2.3 Access management . 33
2.4 Effectiveness of the approach 37

2.4.1 Local storage of fragments 38
2.4.2 Keeping portions of all mini-blocks 40
2.4.3 A note on collusion 41
2.4.4 A note on erasure coding 42
2.4.5 Comparison with other AONTs 42

2.5 Implementation . 43
2.5.1 Client . 45
2.5.2 Overlay solution . 48
2.5.3 Ad-hoc solution . 52

3

CONTENTS CONTENTS

2.6 Related work . 55
2.7 Conclusions . 57

3 Decentralized Cloud Storage 59
3.1 Introduction . 60
3.2 Background . 62
3.3 Allocation properties . 64
3.4 Strategies . 68

3.4.1 Minimizing the number of slices 69
3.4.2 Minimizing the number of nodes 70
3.4.3 Discussion . 73

3.5 Guarantees . 75
3.5.1 MinSlices allocation 76
3.5.2 MinNodes allocation 78
3.5.3 Setting k and r . 80

3.6 Experiments . 84
3.6.1 Implementation . 85
3.6.2 Experimental results 86
3.6.3 Further considerations 87
3.6.4 A note on DCS dynamicity 88

3.7 Related work . 89
3.8 Conclusions . 91

4 I Told You Tomorrow 93
4.1 Introduction . 94
4.2 Background . 97
4.3 The ITYT protocol . 99

4.3.1 Definitions . 99
4.3.2 Roles . 101
4.3.3 Smart contract setup 102
4.3.4 Smart contract functions 104

4.4 Economic model . 105
4.4.1 Protection against malicious shareholders 106
4.4.2 Protection against malicious owners 108

4

CONTENTS CONTENTS

4.4.3 Impact of share whistleblowing function 108
4.4.4 Evaluating Costs . 110

4.5 Implementation . 111
4.5.1 The ITYT state machine 112

4.6 Discussion . 116
4.6.1 Protection against adversarial sMPC protocols 116
4.6.2 DOS Attacks and Deadlocks prevention 118

4.7 Experimental Results . 118
4.8 Related Work . 123
4.9 Conclusions . 125

5 Conclusions 127
5.1 Future Work . 128

Acknowledgments 131

Bibliography 133

A Mix&Slice Implementation 147
A.1 APIs . 147

A.1.1 Single-thread APIs 147
A.1.2 Multi-thread APIs . 148
A.1.3 Slicing phase . 149
A.1.4 Installation . 150
A.1.5 Test . 150

A.2 Python Wrapper . 151
A.2.1 Requirements . 151
A.2.2 Installation . 151
A.2.3 Command Line Interface 152

A.3 Key regression mechanism 152

B Decentralized Cloud Storage — Proofs of Theorems 155

5

List of Figures

2.1 An example of mixing of 16 mini-blocks assuming m = 4 24
2.2 An example of un-mixing of 16 mini-blocks assuming m = 4 . . . 26
2.3 Mixing within a macro-block M 27
2.4 Propagation of the content of mini-blocks [0] and [63] in the mix

process . 28
2.5 Classical OAEP does not evenly mix the plaintext 30
2.6 From resource to fragments . 32
2.7 Algorithm for encrypting a resource R 34
2.8 An example of fragments evolution 35
2.9 Revoke on resource R . 38
2.10 Access to resource R . 40
2.11 Comparison of percentage of recovered file between Rivest’s

AONT and Mix&Slice when the revoked user has kept an erasure
code whose size is 3% of the resource size 44

2.12 Performance comparison of mixing implementations 46
2.13 Throughput varying the number of threads 47
2.14 Time for the execution of get requests on Swift 50
2.15 Throughput for a workload combining get and put fragment

requests on Swift . 51
2.16 Throughput for a workload combining get and put fragment

requests with Swift DLOs . 54
2.17 Configurations for physical blocks 55

3.1 Reference scenario . 64

7

List of Figures List of Figures

3.2 An example of a minimal 3-protected and 2-replicated allocation
function . 65

3.3 An example of 2-replicated allocation function that is not 3-
protected . 67

3.4 An examples of (3, 2)-allocation that minimizes the number of
slices . 70

3.5 Probability that the resource is unavailable (a,c) and that it is ex-
posed (b,d) using a (k, r)-allocation that minimizes the number of
slices, with r=5 varying k between 1 and 25 (a,b), and with k=5
varying r between 1 and 25 (c,d) 77

3.6 Probability that the resource is unavailable (a,c) and that it is ex-
posed (b,d) using a (k, r)-allocation that minimizes the number
of nodes, with r = 5 varying k between 1 and 25 (a,b), and with
k = 5 varying r between 1 and 25 (c,d) 79

3.7 MinSlices and MinNodes (k, r)-allocations that guarantee Pu ≤
10−7 and Pc ≤ 10−6 with different values for pu and pc 81

3.8 Completion time (a) and overall throughput (b) in the MinSlices
and MinNodes allocation strategies 87

4.1 Activities comparison for subjects involved in different TL ap-
proaches . 96

4.2 I Told You Tomorrow (ITYT) reference diagram 98

4.3 Sample configurations with k = 5 and n = 8 and V ∈ 1, 10, 100

that respect all the constraints (optimized for minimizing PO) . . . 111

4.4 State machine representing the valid transitions of the ITY T pro-
tocol. Each transition name maps to an action (an Ethereum smart
contract function) that can be invoked by each participant to mod-
ify the state. Square brackets contain additional conditions to be
met to make valid transitions . 112

4.5 Preventing secret exposure before smart contract activation 115

4.6 Single-phase sMPC protocol jointly executed by all the participants116

4.7 ITYT cost for each role, with k = 2.
Conversion units: 1 gas = 20 · 10−9 ETH; 1 ETH = 178 $ 118

8

List of Figures List of Figures

4.8 Two-phases sMPC protocol: step 1 jointly computed between all
the parties, step 2 between the owner and each shareholder 120

4.9 sMPC execution time and maximum memory consumption for
each participant, in detail: (a) comparison between single-phase
and two-phases maximum execution time, (b) two-phases execu-
tion time and (c) maximum memory consumption for higher SSS
polynomial degree . 121

4.10 sMPC total execution time for different round trip times (RTT)
and reconstruction threshold k 122

9

a Giusi e Gian

1

Introduction

1.1 Document structure

This thesis is organized in five chapters.

Chapter 1 illustrates the document structure and the publications that set
the basis for this thesis.

Chapter 2 describes an encryption mode, named Mix&Slice, that enables
efficient access revocation on resources stored at external cloud providers [14].
By leveraging a technique known as All-Or-Nothing Transform, Mix&Slice
allows the data owner to perform access revocation by re-encrypting a small
portion of the file.

The chapter is organized as follows.

� Section 2.1 presents the setting, discusses the trust assumptions, to-
gether with existing solutions and their limitations.

� Section 2.2 details the Mix&Slice encryption mode, an approach to get
an encrypted representation with the desired protection guarantees.

� Section 2.3 presents the enforcement of access revocation.
� Section 2.4 discusses the effectiveness of our solution.

13

CHAPTER 1. INTRODUCTION 1.1. DOCUMENT STRUCTURE

� Section 2.5 illustrates our implementation and the extensive experimen-
tal evaluation confirming its advantages and applicability.

� Section 2.6 discusses the related work.
� Section 2.7 concludes the chapter.

Chapter 3 presents an approach enabling resource owners to effectively
protect and securely delete their resources while relying on decentralized
cloud services for their storage [17, 18]. Our solution combines All-Or-
Nothing Transform (such as the Mix&Slice [14] algorithm detailed in Chap-
ter 2) and carefully designed allocation strategies for slicing resources and
distributing them in the decentralized storage. We address both availability
and security guarantees, jointly considering them in our model and enabling
resource owners to tune these settings independently.

The chapter is organized as follows.
� Section 3.1 describes the decentralized cloud storage scenario, its chal-

lenges and opportunities.
� Section 3.2 introduces the basic concepts.
� Section 3.3 defines the properties of a decentralized allocation function

with respect to replication and protection properties.
� Section 3.4 discusses slicing and allocation strategies.
� Section 3.5 illustrates availability and security guarantees and discusses

the setting of parameters guiding slicing and allocation.
� Section 3.6 illustrates the implementation of our approach on a real de-

centralized cloud storage service and presents the experimental results.
� Section 3.7 discusses related work.
� Section 3.8 concludes the chapter.

� The proofs of theorems are provided in Appendix B.

Chapter 4 presents a novel way of implementing time-locked secrets.
Time-Locks enable the release of secret data at a specific future point in time.
Our vision is that this will be a fundamental piece to be able to fully exploit
the power of decentralized cloud storage. The use of time-locked secrets en-
ables the creation of delegated challenge-response protocols, which can be

14

1.1. DOCUMENT STRUCTURE CHAPTER 1. INTRODUCTION

used to provide properties such as access revocation and resiliency in de-
centralized cloud storage networks. Current research efforts mostly bind the
recovery of the secret with the solution of cryptographic puzzles. These solu-
tions, however, are impractical: not only they require the interested parties to
undergo a significant computational effort to solve the puzzle, but also they
provide no precise timing guarantees. To address these problems, we pro-
pose I Told You Tomorrow (ITYT), a novel way of implementing time-locked
secrets based on smart contracts to remove the need of any trusted party.

The chapter is organized as follows.
� Section 4.1 presents the settings and discusses the alternatives.
� Section 4.2 introduces the basic concepts we build our proposal on.
� Section 4.3 describes the protocol from a high-level perspective.
� Section 4.4 illustrates how to impose constraints on the parameters to

protect the resulting protocol from rational adversaries.
� Section 4.5 describes the details of our reference implementation based

on the Ethereum blockchain and the FRESCO sMPC framework.
� Section 4.6 discusses the possible attacks the implementation can be

subject to and the respective countermeasures.
� Section 4.7 illustrates the experimental evaluation.
� Section 4.8 discusses related work.
� Section 4.9 concludes the chapter.

Chapter 5 draws the conclusions of the thesis and discusses future work.

15

CHAPTER 1. INTRODUCTION 1.2. PUBLICATIONS

1.2 Publications

This section presents the list of publications authored during the Ph.D. course
and that set the basis for this thesis.

Articles in journals

� Enrico Bacis, Sabrina De Capitani di Vimercati, Sara Foresti, Stefano
Paraboschi, Marco Rosa, Pierangela Samarati. “Securing Resources
in Decentralized Cloud Storage”. IEEE Transactions on Information
Forensics and Security, vol. 15, n. 1. 2019.

Papers in proceedings of international conferences

� Enrico Bacis, Sabrina de Capitani di Vimercati, Sara Foresti, Stefano
Paraboschi, Marco Rosa, Pierangela Samarati. “Access Control Man-
agement for Secure Cloud Storage”. 12th EAI International Con-
ference on Security and Privacy in Communication Networks (SE-
CURECOMM). EAI, 2016.

� Enrico Bacis, Sabrina De Capitani di Vimercati, Sara Foresti, Daniele
Guttadoro, Stefano Paraboschi, Marco Rosa, Pierangela Samarati,
Alessandro Saullo. “Managing Data Sharing in OpenStack Swift
with Over-Encryption”. 3rd Workshop on Information Sharing and
Collaborative Security (WISCS). ACM, 2016.

� Enrico Bacis, Sabrina de Capitani di Vimercati, Sara Foresti, Stefano
Paraboschi, Marco Rosa, Pierangela Samarati. “Mix&Slice: Efficient
Access Revocation in the Cloud”. 23rd ACM Conference on Computer
and Communications Security (CCS). ACM, 2016.

� Enrico Bacis, Sabrina De Capitani di Vimercati, Sara Foresti, Stefano
Paraboschi, Marco Rosa, Pierangela Samarati, “Dynamic Allocation
for Resource Protection in Decentralized Cloud Storage”. Proceed-
ings of the 2019 IEEE Global Communications Conference (GLOBE-
COM). IEEE, 2019.

16

1.2. PUBLICATIONS CHAPTER 1. INTRODUCTION

� Enrico Bacis, Dario Facchinetti, Marco Rosa, Marco Guarnieri, Stefano
Paraboschi, “I Told You Tomorrow: Practical Time-Locked Secrets
using Smart Contracts”. (under submission).

Chapters in books

� Enrico Bacis, Sabrina De Capitani di Vimercati, Sara Foresti, Ste-
fano Paraboschi, Marco Rosa, Pierangela Samarati. “Protecting Re-
sources and Regulating Access in Cloud-Based Object Storage”.
From Database to Cyber Security. 2018.

17

2

Mix&Slice:
Efficient Access Revocation

in the Cloud

This chapter presents an approach to enforce access revocation on resources
stored at external cloud providers. The approach relies on a resource transfor-
mation that provides strong mutual inter-dependency in its encrypted repre-
sentation. To revoke access on a resource, it is then sufficient to update a small
portion of it, with the guarantee that the resource as a whole (and any portion
of it) will become unintelligible to those from whom access is revoked. The
extensive experimental evaluation on a variety of configurations confirmed
the effectiveness and efficiency of our solution, which showed excellent per-
formance and compatibility with several implementation strategies.

2.1 Introduction

With the considerable advancements in IT solutions, users and companies
are finding increasingly appealing to rely on external services for storing re-
sources and making them available to others. In such contexts, a promising
approach to enforce access control to externally stored resources is via en-

19

CHAPTER 2. MIX&SLICE 2.1. INTRODUCTION

cryption: resources are encrypted for storage and only authorized users have
the keys that enable their decryption. There are several advantages that justify
the use of encryption for enforcing access control. First, robust encryption has
become computationally inexpensive, enabling its introduction in domains
that are traditionally extremely sensitive to performance (like cloud-based ap-
plications and management of large resources). Second, encryption provides
protection against the service provider itself, which - while trustworthy for
providing access - cannot typically be considered authorized to know the con-
tent of the resources it stores (honest-but-curious scenario) and hence also to
enforce access control. Third, encryption solves the need of having a trusted
party for policy enforcement: resources enforce self-protection, since only
authorized users, holding the keys, will be able to decrypt them.

One of the complex aspects in using encryption to enforce access control
policy concerns access revocation. If granting an authorization is easy (it is
sufficient to give the newly authorized user access to the key), revoking an
authorization is a completely different problem. There are essentially two ap-
proaches to enforce revocation: i) re-encrypt the resource with a new key or
ii) revoke access to the key itself. Re-encryption of the resource entails, for
the data owner, downloading the resource, decrypting it and re-encrypting it
with a new key, re-uploading the resource, and re-distributing the key to the
users who still hold authorizations. If decryption, re-encryption, and even key
management (for this specific context) can be considered a trivial issue, the
remaining challenge is represented by the need to download and re-upload
the resource, with a considerable overhead for the data owner. This overhead
will continue to grow as usage of cloud resources grows, in particular in the
context of emerging big data applications. The alternative approach of en-
forcing revocation on the resource by preventing access to the key with which
the resource is encrypted cannot be considered a solution. As a matter of fact,
it protects the key, not the resource itself, and it is inevitably fragile against a
user who - while having been revoked from an access - has maintained a local
copy of the key.

Our approach. In this chapter, we present a novel approach to enforce access
revocation that provides efficiency, as it does not require expensive upload/re-

20

2.1. INTRODUCTION CHAPTER 2. MIX&SLICE

upload of (large) resources, and robustness, as it is resilient against the threat
of users who might have maintained copies of the keys protecting resources
on which they have been revoked access.

The basic idea of our approach is to provide an encrypted representation of
the resources that guarantees complete interdependence (mixing) among the
bits of the encrypted content. Such a guarantee is ensured by using different
rounds of encryption, while carefully selecting their input to provide complete
mixing, meaning that the value of each bit in the resulting encrypted content
depends on every bit of the original plaintext content. In this way, unavailabil-
ity of even a small portion of the encrypted version of a resource completely
prevents the reconstruction of the resource or even of portions of it. Brute-
force attacks guessing possible values of the missing bits are possible, but
even for small missing portions of the encrypted resource, the required effort
would be prohibitive. The all-or-nothing transform (AONT) [102] considers
similar requirements, but the techniques proposed for it are not suited to our
scenario, because they are based on the assumption that keys are not known
to users, whereas in our scenario revoked users can know the encryption key
and may plan ahead to locally store critical pieces of information.

Our approach trades off between the requirement to connect all bits of a
resource (to provide the desired interdependency of the content), and the re-
quirement to maintain fine grained access of the resource itself. This is a par-
ticular challenge due to the potentially huge size of the resources. To achieve
this, we apply the idea of mixing content within portions of the resource,
enforcing then revocation by overwriting encrypted bits in every such por-
tion. Before mixing, our approach partitions the resource in different, equally
sized, chunks, called macro-blocks. Then, as the name hints, it is based on the
following concepts.

� Mix: the content of each macro-block is processed by an iterative appli-
cation of different encryption rounds together with a carefully designed
bit mixing, that ensures, at the end of the process, that every individ-
ual bit in the input has had impact on each of the bits in the encrypted
output.

21

CHAPTER 2. MIX&SLICE 2.2. MIX&SLICE

� Slice: the mixed macro-blocks are sliced into fragments so that frag-
ments provide complete coverage of the resource content and each frag-
ment represents a minimal (in terms of number of bits of protection,
which we call mini-block) unit of revocation: lack of any single frag-
ment of the resource completely prevents reconstruction of the resource
or of portions of it.

To revoke access from a user, it is sufficient to re-encrypt one (any one) of
the resource fragments with a new key not known to the user. The advantage
is clear: re-encrypting a tiny chunk of the resource guarantees protection of
the whole resource itself. Also, the cloud provider simply needs to provide
storage functionality and is not required to play an active role for enforcing
access control or providing user authentication. Our Mix&Slice proposal is
complemented with a convenient approach for key management that, based
on key regression, avoids any storage overhead for key distribution.

2.2 Mix&Slice

2.2.1 Blocks, mini-blocks, and macro-blocks

The basic building block of our approach is the application of a symmetric
block cipher. A symmetric cryptographic function operating on blocks guar-
antees complete dependency of the encrypted result from every bit of the in-
put and the impossibility, when missing some bits of an encrypted version of
a block, to retrieve the original plaintext block (even if parts of it are known).
The only possibility to retrieve the original block would be to perform a brute-
force attack attempting all the possible combinations of values for the missing
bits. For instance, modern encryption functions like AES guarantee that the
absence of i bits from the input (plaintext) and of o bits from the output (ci-
phertext) does not permit, even with knowledge of the encryption key k, to
properly reconstruct the plaintext and/or ciphertext, apart from performing a
brute-force attack generating and verifying all the 2min(i,o) possible configura-
tions for the missing bits [7].

22

2.2. MIX&SLICE CHAPTER 2. MIX&SLICE

Clearly, the larger the number of bits that are missing in the encrypted
version of a block, the harder the effort required to perform a brute-force
attack, which requires attempting 2x possible combinations of values when
x bits are missing. Such security parameter is at the center of our approach
and we explicitly identify a sequence of bits of its length as the atomic unit
on which our approach operates, which we call mini-block. Applying block
encryption with explicit consideration of such atomic unit of protection, and
extending it to a coarser-grain with iterative rounds, our approach identifies
the following basic concepts.

� Block: a sequence of bits input to a block cipher (it corresponds to the
classical block concept).

� Mini-block: a sequence of bits, of a specified length, contained in a
block. It represents our atomic unit of protection (i.e., when removing
bits, we will operate at the level of mini-block removing all its bits).

� Macro-block: a sequence of blocks. It allows extending the applica-
tion of block cipher on sequences of bits larger than individual blocks.
In particular, our approach operates mixing bits at the macro-block
level, extending protection to work against attacks beyond the individ-
ual block.

Our approach is completely parametric with respect to the size (in terms of
the number of bits) that can be considered for blocks, mini-blocks, and macro-
blocks. The only constraints are for the size of a mini-block to be a divisor
of the size of the block (aspect on which we will elaborate later on) and for
the size of a macro-block to be a product of the size of a mini-block and a
power of the number of mini-blocks in a block (i.e., the ratio between the size
of a block and the size of a mini-block). In the following, for concreteness
and simplicity of the figures, we will illustrate our examples assuming the
application of AES with blocks of 128 bits and mini-blocks of 32 bits, which
corresponds to having 4 mini-blocks in every block and therefore operating
on macro-blocks of size 32 · 4x, with x arbitrarily set. In the following, we
will use msize, bsize, Msize to denote the size (in bits) of mini-blocks, blocks,

23

CHAPTER 2. MIX&SLICE 2.2. MIX&SLICE

E

E

E

E

E

E

E

E

0 0 0 0
[0] [1] [2] [3]

0 0 0 0
[4] [5] [6] [7]

0 0 0 0
[8] [9] [10] [11]

0 0 0 0
[12] [13] [14] [15]

1 1 1 1
[8] [9] [10] [11]

1 1 1 1
[4] [5] [6] [7]

1 1 1 1
[0] [1] [2] [3]

1 1 1 1
[12] [13] [14] [15]

2 2 2 2
[0] [1] [2] [3]

2 2 2 2
[4] [5] [6] [7]

2 2 2 2
[8] [9] [10] [11] [12] [13] [14] [15]

2 2 22

Figure 2.1: An example of mixing of 16 mini-blocks assuming m = 4

and macro-blocks, respectively. We will use bj[i] (Mj[i], resp.) to denote the
i-th mini-block in a block bj (macro-block Mj, resp.). We will simply use
notation [i] to denote the i-th mini-block in a generic bit sequence (be it a
block or macro-block), and [[j]] to denote the j-th block. In the encryption
process, a subscript associated with a mini-block/block denotes the round that
produced it.

2.2.2 Mixing

The basic step of our approach (on which we will iteratively build to provide
complete mixing within a macro-block) is the application of encryption at the
block level. This application is visible at the top of Figure 2.1, where the first
row reports a sequence of 16 mini-blocks ([0], . . . , [15]) composing 4 blocks.
The second row is the result of block encryption on the sequence of mini-
blocks. As visible from the pattern-coding in the figure, encryption provides
mixing within each block so that each mini-block in the result is dependent
on every mini-block in the same input block. In other words, each [i]1 is
dependent on every [j]0 with (i div 4) = (j div 4).

24

2.2. MIX&SLICE CHAPTER 2. MIX&SLICE

One round of block encryption provides mixing only at the level of
block. With reference to our example, mixing is provided among mini-blocks
[0]0 . . . [3]0, [4]0 . . . [7]0, [8]0 . . . [11]0, and [12]0 . . . [15]0, respectively. Ab-
sence of a mini-block from the result will prevent reconstruction only of the
plaintext block including it, while not preventing the reconstruction of all
the other blocks. For instance, with reference to our example, absence of
[2]1 will prevent reconstruction of the first block (mini-blocks [0]0, . . . , [3]0)
but will not prevent reconstruction of the other three blocks (mini-blocks
[4]0, . . . , [15]0). Protection at the block level is not sufficient in our context,
where we expect to manage resources of arbitrarily large size and would like
to provide the guarantee that the lack of any individual mini-block would
imply the impossibility (apart from performing a brute-force attack) of recon-
structing any other mini-block of the resource.

The concept of macro-block, and its extension of block ciphers to op-
erate across blocks, allows us to provide mixing on an arbitrarily long se-
quence of bits. The idea is to extend mixing to the whole macro-block by
the iterative application of block encryption on, at each round, blocks com-
posed of mini-blocks that are representative (i.e., belong to the result) of
different encryptions in the previous round. Before giving the general def-
inition of our approach, let us discuss the simple example of two rounds
illustrated in Figure 2.1, where [0]1, . . . , [15]1 are the mini-blocks resulting
from the first round. The second round would apply again block encryp-
tion, considering different blocks each composed of a representative of a
different computation in the first round. To guarantee such a composition,
we define the blocks input to the four encryption operations as composed of
mini-blocks that are at distance 4 (=m) in the sequence, which corresponds
to say that they resulted from different encryption operations in the previous
round. The blocks considered for encryption would then be 〈[0]1[4]1[8]1[12]1〉,
〈[1]1[5]1[9]1[13]1〉,〈[2]1[6]1[10]1[14]1〉,〈[3]1[7]1[11]1[15]1〉. The result would be
a sequence of 16 mini-blocks, each of which is dependent on each of the 16
original mini-blocks, that is, the result provides mixing among all 16 mini-
blocks, as visible from the pattern-coding in the figure. With 16 mini-blocks,
two rounds of encryption suffice for guaranteeing mixing among all of them.
Providing mixing for larger sequences clearly requires more rounds. This

25

CHAPTER 2. MIX&SLICE 2.2. MIX&SLICE

2 2 2 2
[0] [1] [2] [3]

2 2 2 2
[4] [5] [6] [7]

2 2 2 2
[8] [9] [10] [11] [12] [13] [14] [15]

2 2 22

0 0 0 0
[0] [1] [2] [3]

0 0 0 0
[4] [5] [6] [7]

 0 0 0 0
[8] [9] [10] [11]

 0 0 0 0
[12] [13] [14] [15]

 1 1 1 1
[8] [9] [10] [11]

1 1 1 1
[4] [5] [6] [7]

1 1 1 1
[0] [1] [2] [3]

 1 1 1 1
[12] [13] [14] [15]

D D DD

D D DD

Figure 2.2: An example of un-mixing of 16 mini-blocks assuming m = 4

brings us to the general formulation of our approach operating at the level
of macro-block of arbitrarily large size (the example just illustrated being a
macro-block of 16 mini-blocks).

Absence of a mini-block from the result will prevent reconstruction of the
whole plaintext. With reference to our example in Figure 2.2, absence of [5]2
will prevent reconstruction of the block 〈[1]1[5]1[9]1[13]1〉, which in turn will
prevent reconstruction of the macro-blocks [0]0, . . . , [15]0.

To ensure the possibility of mixing, at each round, blocks composed of
mini-blocks resulting from different encryption operations of the previous
round, we assume a macro-block composed of a number of mini-blocks,
which is the power of the number (m) of mini-blocks in a block. For in-
stance, with reference to our running example where blocks are composed of
4 mini-blocks (i.e., m=4), macro-blocks can be composed of 4x mini-blocks,
with an arbitrary x (x=2 in the example of Figure 2.1). The assumption can
be equivalently stated in terms of blocks, where the number of blocks b will
be 4x−1. Any classical padding solution can be employed to guarantee such a
requirement, if not already satisfied by the original bit sequence in input.

Providing mixing of a macro-block composed of b blocks with b=mx−1

requires x rounds of encryption each composed of b encryptions. Each round

26

2.2. MIX&SLICE CHAPTER 2. MIX&SLICE

Mix(M)

1: for i := 1, . . . , x do /* at each round i */

2: span := mi /* number of mini-blocks in a mixing */

3: distance := mi−1 /* leg of mini-blocks input to an encryption */

4: for j := 0, . . . , b− 1 do /* each j is an encryption */

/* identify the input to the j-th encryption picking, */

/* within each span, mini-blocks at leg distance */

5: let block be the concatenation of all mini-blocks [l]

6: s.t. (l mod distance) = j and

7: (j ·m) div span = l div span

8: [[j]]i := E(k, block) /* write the result as the j-th block in output */

Figure 2.3: Mixing within a macro-block M

allows mixing among a number span of mini-blocks that multiplies by m at
every round. At round i, each encryption j takes as input m mini-blocks that
are within the same span (i.e., the same group of m i mini-blocks to be mixed)
and at a distance (m i−1). Figure 2.3 illustrates the mixing procedure. To
illustrate, consider the example in Figure 2.1, where blocks are composed of
4 mini-blocks (m=4) and we have a macro-block of 16 mini-blocks, that is, 4
blocks (b=4). Mixing requires x = 2 rounds of encryption (16 = 42), each
composed of 4 (b) encryptions operating on 4 (m) mini-blocks. At round 1,
the span is 4 (i.e., mixing operates on chunks of 4 mini-blocks) and mini-
blocks input to an encryption are taken at distance 1 within each span. At
round 2, the span is 16 (all mini-blocks are mixed) and mini-blocks input to
an encryption are taken at distance 4 within each span. Let us consider, as an
another example, a macro-block composed of 64 mini-blocks (i.e., 16 blocks).
Mixing requires 3 rounds. The first two rounds would work as before, with the
second round producing mixing within chunks of 16 mini-blocks. The third
round would then consider a span of all the 64 mini-blocks and mini-blocks
input to an encryption would be the ones at distance 16.

27

CHAPTER 2. MIX&SLICE 2.2. MIX&SLICE

[63]

[0]

[4][0]

[0][1][2][3]

[8] [12]

[15][16] [63]

[63][62][61][60]

[59][55][51]

[31][32] [47][48]

E

E E

E

E E

round 1

span: 4

distance: 1

round 2

span: 16

distance: 4

round 3

span: 64

distance: 16

Figure 2.4: Propagation of the content of mini-blocks [0] and [63] in the mix process

At each round i, mini-blocks are mixed among chunks of m i mini-blocks,
hence ensuring at round x, mixing of the whole macro-block composed of mx

mini-blocks.

Figure 2.4 captures this concept by showing the mixing of the content of
the first ([0]) and last ([63]) mini-blocks of the macro-block at the different
rounds, given by the encryption to which they (and those mini-blocks mixed
with them in previous rounds) are input, showing also how the two meet at the
step that completes the mixing. While for simplicity the figure pictures only
propagation of the content of two mini-blocks, note that at any step they (just
like other mini-blocks) actually carry along the content of all the mini-blocks
with which they mixed in previous rounds. Given a macro-block M with mx

mini-blocks (corresponding to b blocks), the following two properties hold:
1) a generic pair of mini-blocks [i] and [j] mix at round r with i div mr = j

div mr; and 2) x rounds bring complete mixing. In other words, the number
of encryption rounds needed to mix a macro-block with m · b mini-blocks is
logm(m · b).

An important feature of the mixing is that the number of bits that are
passed from each block in a round to each block in the next round is equal
to the size of the mini-block. This guarantees that the uncertainty introduced
by the absence of a mini-block at the first round (2msize) maps to the same
level of uncertainty for each of the blocks involved in the second round, and
iteratively to the next rounds, thanks to the use of AES at each iteration. This

28

2.2. MIX&SLICE CHAPTER 2. MIX&SLICE

implies that a complete mixing of the macro-block requires at least logm(m ·b)
rounds, that is, the rounds requested by our technique.

Another crucial aspect is that the representation after each round has to
be of the same size as the original macro-block. In fact, if the transformation
produced a more compact representation, there would be a possibility for a
user to store this compact representation and maintain access to the resource
even after revocation (this is a weakness of other solutions discussed in Sec-
tion 2.6). Since, in our approach, each round produces a representation that
has the same macro-block size, the user has no benefit in aiming to attack one
round compared to another (see Section 2.4).

We note that an interpretation of the proposed mixing is that it extends the
ability of protecting the correspondence between input and output of a block
cipher to blocks of arbitrary size. An alternative approach that we considered
to obtain this result was based on the use of a Feistel architecture [79], which
is known to be an effective technique for the construction of block ciphers.
The approach uses, as the round function of the Feistel architecture, a block
cipher. The approach can be applied iteratively, doubling the block size at
every iteration. The analysis we performed showed that this approach would
lead to less efficiency compared to the solution proposed in this chapter, with
a number of invocations of the basic block cipher equal to 2 · logm(m ·b). The
Feistel-based approach can be adopted when the mini-block size desired for
security goes beyond the block size of the available block cipher. Similarly,
symmetric cryptosystems operating on large blocks can support larger mini-
blocks and also reduce the number of rounds of our approach. For instance,
AESQ [25,26] shuffles 4 AES blocks and could be used as a 512-block cipher
in our structure.

2.2.3 OAEP mixing

Another approach that provides strong inter-dependency in the representation
of a resource is Optimal Asymmetric Encryption Padding (OAEP) [21, 22]
proposed by Bellare and Rogaway. OAEP is a Feistel network [50] that uses a
pair of cryptographically one-way trapdoor functions, G and H , to process the
plaintext before encryption. The OAEP process is represented in Figure 2.5.

29

CHAPTER 2. MIX&SLICE 2.2. MIX&SLICE

G

H

Figure 2.5: Classical OAEP does not evenly mix the plaintext

Boyko proved that OAEP can be used to build an All-or-Nothing Transform
that is resistant to chosen-plaintext attacks [30]. However, the classical OAEP
schema does not imply an Avalanche Effect [114]: the change of one bit in
the left half of the plaintext, impacts the whole right half, but only affects the
corresponding bit in the left half, as shown in Figure 2.5. Luby and Rackoff
showed in [79] that an adaptation of OAEP composed of three rounds instead
of two, guarantees that the change of any bit in the plaintext has the chance of
affecting any bit in the ciphertext.

Another limitation of the use of OAEP as an AONT is that by construction
the output size is |Gout| + |Hout|. A trivial technique that can be adopted to
extend the output of the functions to fit plaintext of any size is to use Gout and
Hout to seed stream ciphers (e.g., RC4) that then produce the required number
of bits needed for the exclusive-or operation. Even if efficient, this schema
would not be as strong as the original Mix&Slice. In fact, the two seeds Gout

and Hout, which are compact in size, can be stored by the adversary to trivially
invert the schema even when part of the ciphertext is missing, thus breaking
the All-or-Nothing property.

To solve this problem, we can leverage the Mix algorithm detailed in Sec-
tion 2.2.2 and replace the encryption function with a 3-rounds OAEP. We can
use G = H = SHA2 and impose |Gin| = |Gout| and |Hin| = |Hout|, so
that by using SHA2256 we can achieve msize = 256 and bsize = 512 (each
round mixes two mini-blocks). If we need even more protection we can use
SHA2512 and obtain msize = 512 and bsize = 1024. OAEP does not pro-

30

2.2. MIX&SLICE CHAPTER 2. MIX&SLICE

vide message secrecy, so it is required to encrypt the output of the process. In
our implementation, we used AES in CTR mode to encrypt the output of the
OAEP process.

As it will be described in details in Section 2.5.1, the use of AES is com-
putationally efficient due to its hardware implementation available in most of
the modern CPUs, however it caps the mini-block size to 64 bits. On the other
hand, OAEP with SHA2 does not benefit from hardware implementation, thus
it has a lower throughput, yet it enables mini-blocks to be as big as 512 bits,
thus enabling the use of Mix&Slice in scenarios that require higher protection
from brute-force attacks.

2.2.4 Shortcomings of large macro-blocks

When resources are extremely large (or when access to a resource involves
only a portion of it) considering a whole resource as a single macro-block
may be not desirable. Even if only with a logarithmic dependence, the larger
the macro-block the more the encryption (and therefore decryption to retrieve
the plaintext) rounds required. Also, encrypting the whole resource as a single
macro-block implies its complete download at every access, when this might
actually not be needed for service.

Accounting for this, we do not assume a resource to correspond to an in-
dividual macro-block, but assume instead that any resource can be partitioned
into M macro-blocks, which can then be mixed independently. The choice
of the size of macro-blocks should take into consideration the performance
requirements of both the data owner (for encryption) and of clients (for de-
cryption), and the possible need to serve fine-grained retrieval of content. This
requirement can be then efficiently accommodated independently encrypting
(i.e., mixing) different portions of the resource, which can be downloaded and
processed independently (we will discuss this in Section 2.5.2).

Encryption of a resource would then entail a preliminary step cutting the
resource in different, equally sized, macro-blocks on which mixing operates.
To ensure the mixed versions of macro-blocks be all different, even if with
the same original content, the first block of every macro-block is XORed with
an initialization vector (IV) before starting the mixing process. Since mixing

31

CHAPTER 2. MIX&SLICE 2.2. MIX&SLICE

IV
M-1IV

1
IV

0

• • •

cutting

XOR-ing

mixing

• • •

resource

M0

M0 M1 M
M-1

M0

M1

M
M-1

F0

[0]

F
m -1
x

[m -1]x

(a) (b)

M1 M
M-1

• • •

• • •

. • • •

Figure 2.6: From resource to fragments

guarantees that every block in a macro-block influences every other block, the
adoption of a different initialization vector for each macro-block guarantees
indistinguishability among their encrypted content. The different initializa-
tion vectors for the different blocks can be obtained by randomly generating
a vector for the first macro-block and then incrementing it by 1 for each of
the subsequent macro-blocks in the resource, in a way similar to the CTR
mode [49]. Figure 2.6(a) illustrates such process.

2.2.5 Slicing

The starting point for introducing mixing is to ensure that each single bit
in the encrypted version of a macro-block depends on every other bit of its
plaintext representation, and therefore that removing any one of the bits of
the encrypted macro-block would make it impossible (apart from brute-force
attacks) to reconstruct any portion of the plaintext macro-block. Such a prop-
erty operates at the level of macro-block. Hence, if a resource (because of
size or need of efficient fine-grained access) has been partitioned into differ-
ent macro-blocks, removal of a mini-block would only guarantee protection
of the macro-block to which it belongs, while not preventing reconstruction of
the other macro-blocks (and therefore partial reconstructions of the resource).

32

2.3. ACCESS MANAGEMENT CHAPTER 2. MIX&SLICE

Resource protection can be achieved if, for each macro-block of which the
resource is composed, a mini-block is removed. This observation brings to
the second concept giving the name to our approach, which is slicing. Slic-
ing the encrypted resource consists in defining different fragments such that
a fragment contains a mini-block for each macro-block of the resource, no
two fragments contain the same mini-block, and for every mini-block there
is a fragment that contains it. To ensure all this, as well as to simplify man-
agement, we slice the resource simply putting in the same fragment the mini-
blocks that occur at the same position in the different macro-blocks. Slicing
and fragments are defined as follows.

Definition 2.2.1 (Slicing and fragments) Let R be a resource and
M0, . . . ,MM−1 be its (individually mixed) macro-blocks, each com-
posed of (m · b) mini-blocks. Slicing produces (m · b) fragments for R where
Fi = 〈M0[i], . . . ,MM−1[i]〉, with i = 1, . . . , (m · b).

Figure 2.6(b) illustrates the slicing process and Figure 2.7 illustrates the
procedure for encrypting a resource R. R is first cut into M macro-blocks and
an initialization vector is randomly chosen. The first block of each macro-
block is then XOR-ed with the initialization vector, which is incremented by 1
for each macro-block. The macro-block is then encrypted with a mixing pro-
cess (Figure 2.3). Encrypted macro-blocks are finally sliced into fragments.

2.3 Access management

Accessing a resource (or a macro-block in the resource, resp.) requires avail-
ability of all its fragments (its mini-blocks in all the fragments, resp.), and of
the key used for encryption. Policy changes corresponding to granting access
to new users can be simply enforced, as usual, by giving them the encryption
key. In principle, policy changes corresponding to revocation of access would
instead normally entail downloading the resource, re-encrypting it with a new
key, re-uploading the resource, and distributing the new encryption key to all
the users who still hold authorizations. Our approach enables the enforcement
of access revocation to a resource by simply making any of its fragments un-

33

CHAPTER 2. MIX&SLICE 2.3. ACCESS MANAGEMENT

Encrypt

1: cut R in M macro-blocks M0, . . . ,MM−1

2: apply padding to the last macro-block MM−1

3: IV := randomly choose an initialization vector

4: for i = 0, . . . ,M − 1 do /* encrypt macro-blocks */

5: Mi[[1]] := Mi[[1]] ⊕ IV /* XOR the first block with the IV */

6: Mix(Mi) /* encrypt the macro-block */

7: IV := IV + 1 /* initialization vector for the next macro-block */

8: for j = 0, . . . ,mx − 1 do /* slicing */

9: Fj[i] := Mi[j]

Figure 2.7: Algorithm for encrypting a resource R

available to the users from whom the access is revoked. Since lack of a frag-
ment implies lack of a mini-block for each macro-block of a resource, and
lack of a mini-block prevents reconstruction of the whole macro-block, lack
of a fragment equates to complete inability, for the revoked users, to recon-
struct the plaintext resource or any portion of it. In other words, it equates to
revocation.

Access revocations are then enforced by the data owner by randomly
picking a fragment, which is then downloaded, re-encrypted with a new key
(which will be made known only to users still authorized for the access), and
re-uploaded at the server overwriting its previous version. While still request-
ing some download/re-upload, operating on a fragment clearly brings large
advantages (in terms of throughput) with respect to operating on the whole re-
source (see Section 2.5). Revocation can be enforced on any randomly picked
fragment (even if already re-written in a previous revocation) and a fresh new
key is employed at every revoke operation. Figure 2.8 illustrates an exam-
ple of fragments evolution due to the enforcement of a sequence of revoke
operations. Figure 2.8(a) is the starting situation with the original fragments
computed as illustrated in Section 2.2. Figure 2.8(b-d) is the sequence of
rewriting to enforce revocations, which involve, respectively, fragment F10,

34

2.3. ACCESS MANAGEMENT CHAPTER 2. MIX&SLICE

fr
ag
m
en
t

macroblock

F
2

0
F
5

0
F
7

0
F
8

0
F
1

0
F
3

0
F
6

0
F
9

0
F
11

0
F
12

0
F
14

0
F
15

0
F
0

0
F
13

0
F
4

0
F
10

0

(a)

key

fr
ag
m
en
t

macroblock

k 0

k 1

F
10

1

F
2

0
F
5

0
F
7

0
F
8

0
F
1

0
F
3

0
F
6

0
F
9

0
F
11

0
F
12

0
F
14

0
F
15

0
F
0

0
F
13

0
F
4

0

(b)

key

fr
ag
m
en
t

macroblock

k 0

k 1

k 2

F
4

2

F
10

1

F
2

0
F
5

0
F
7

0
F
8

0
F
1

0
F
3

0
F
6

0
F
9

0
F
11

0
F
12

0
F
14

0
F
15

0
F
0

0
F
13

0

(c)

key

fr
ag
m
en
t

macroblock

k 0

k 1

k 2

k 3

F
4

2

F
10

3

F
2

0
F
5

0
F
7

0
F
8

0
F
1

0
F
3

0
F
6

0
F
9

0
F
11

0
F
12

0
F
14

0
F
15

0
F
0

0
F
13

0

(d)

Figure 2.8: An example of fragments evolution

re-encrypted with key k1, fragment F4, re-encrypted with key k2, and frag-
ment F10 again, now re-encrypted with key k3. In the following, we use nota-
tion Fj

i to denote a version of fragment Fi encrypted with key kj , being F0
i the

35

CHAPTER 2. MIX&SLICE 2.3. ACCESS MANAGEMENT

version of the fragment obtained through the mixing process. In the figure, the
resource is represented in a three-dimensional space, with axes corresponding
to fragments, macro-blocks, and keys. The re-writing of a fragment is repre-
sented by placing it in correspondence to the new key used for its encryption.
The shadowing in correspondence to the previous versions of the fragments
denote the fact that they are not available anymore as they are overwritten by
the new versions.

Each revoke operation requires the use of a fresh new key and, due to
policy changes, fragments of a resource might be encrypted with different
keys. Such a situation does not cause any complication for key management,
which can be conveniently and efficiently handled with a key regression tech-
nique [52]. Key regression is an RSA-based cryptographically strong tech-
nique (the generated keys appear as pseudorandom) allowing a data owner to
generate, starting from a seed s0, an unlimited sequence of symmetric keys
k0, . . . , ku, so that simple knowledge of a key ki (or the compact secret seed
si of constant size related to it) permits to efficiently derive all keys kj with
j ≤ i. Only the data owner (who knows the private key used for generation)
can perform forward derivation, that is, from ki, derive keys following it in
the sequence (i.e., kz with z ≥ i). Note instead that, not knowing the private
key, users cannot perform forward derivation. The cost that users must pay
for key derivation is small. On a single core, the computer we used for the
experiments is able to process several hundred thousand key derivations per
second.

With key regression, every user authorized to access a resource just needs
to know the seed corresponding to the most recent key used for it (s0 if the
policy has not changed, s3 in the example of Figure 2.8(d)). To this end, there
is no need for key distribution, rather, such a seed can be stored in the re-
source descriptor and protected (encrypted) with a key corresponding to the
resource’s acl (i.e., known or derivable by all authorized users) [9, 43]. En-
forcing revocation entails then, besides re-encrypting a randomly picked frag-
ment with a fresh new key ki, rewriting its corresponding seed si, encrypted
with a key associated with the new acl of the resource. Figure 2.9 illustrates
the revocation process.

36

2.4. EFFECTIVENESS OF THE APPROACH CHAPTER 2. MIX&SLICE

To access a resource, a user then first downloads the resource descrip-
tor, to retrieve the most recent seed sl, and all the fragments. With the seed,
she computes the keys necessary to decrypt fragments that have been over-
written, to retrieve their version encrypted with k0. Then, she combines the
mini-blocks in fragments to reconstruct the macro-blocks in the resource. She
then applies mixing in decrypt mode to macro-blocks to retrieve the plaintext
resource. Figure 2.10 illustrates the process to access a resource.

Note that the size of macro-blocks influences the performance of both re-
voke and access operations. Larger macro-blocks naturally provide greater
policy update performance as they decrease policy update cost linearly, with
limited impact on the efficiency of decryption, since its cost increases loga-
rithmically (Section 2.5).

2.4 Effectiveness of the approach

In this section, we elaborate on the effectiveness of our approach for enforcing
revocation. For the discussion, we recall that msize is the size of individual
mini-blocks, m is the number of mini-blocks in a block, b is the number of
blocks in a macro-block, and M is the number of macro-blocks. Also, we
denote with f the number of fragments, that is, f = m · b.

We consider the threat coming from a user whose access to the resource
has been revoked, and who downloads the resource from the server. With ac-
cess policy enforced by encryption, not being authorized for an access should
not prevent downloading the resource but rather it should prevent reconstruc-
tion of its plaintext representation. We then evaluate the protection against the
user’s attempts to reconstruct the plaintext resource. In doing so, we consider
the worst case scenario, with respect to key management, where the user has
maintained memory of the last key (or the corresponding seed) used for the
resource up to the point in which she was authorized for the access. In other
words, we assume the user to be able to decrypt the fragments that have been
overwritten before she has been revoked access, and hence to know the origi-
nal version encrypted with k0 of the fragments that have not been overwritten
since she has been revoked access. Since seeds are compact, such a threat

37

CHAPTER 2. MIX&SLICE 2.4. EFFECTIVENESS OF THE APPROACH

Revoke

1: randomly select a fragment Fi of R /* fragment to be rewritten */

2: download Fc
i from the server /* version of the fragment stored */

3: if c > 0 then /* F0
i has been overwritten in a revocation */

4: derive key kc /* derive kc using key regression */

5: F0
i := D(kc,F

c
i) /* retrieve the original version of the fragment */

6: determine the last key kl−1 used /* it is stored in R’s descriptor */

7: generate new key kl
8: Fl

i := E(kl,F0
i)

9: upload Fl
i overwriting Fc

i /* overwrite previous version */

10:encrypt sl with the key of acl(R) /* limits it to authorized users */

11:update R’s descriptor /* including the new sl */

Figure 2.9: Revoke on resource R

is indeed realistic. To reconstruct the resource when missing a fragment, the
user would have to perform a brute force attack attempting all possible combi-
nations of values of the missing bits, that is, 2msize attempts for each of the M
macro-blocks. If more fragments, let’s say fmiss, are missing, the user would
have to perform 2msize·fmiss attempts for each of the M macro-blocks.

The inability of the user to reconstruct a resource if some fragments have
been overwritten is because, without such fragments, the user cannot retrieve
the corresponding original version (the one encrypted with k0) needed to cor-
rectly reconstruct the resource plaintext. A potential threat can then come
if the user maintains a local storage with the original version of part of the
resource. We distinguish two cases, depending on whether the user stores
complete fragments or portions of them across the whole resource.

2.4.1 Local storage of fragments

Suppose a user locally stores (when authorized) some fragments of the re-
source. Even if such fragments are later overwritten for revoking access to
the user, and then their most recent version stored at the server is unintelligi-

38

2.4. EFFECTIVENESS OF THE APPROACH CHAPTER 2. MIX&SLICE

ble to her, she has them available for reconstructing the resource. However,
the fragment to be overwritten in a policy revocation is chosen randomly by
the owner. Therefore, the user can still reconstruct the resource after one
fragment has been overwritten if the fragment that the owner has overwritten
is the same fragment that the user has also stored locally, which has prob-
ability 1/f to occur. Generalizing the reasoning to the consideration of the
user locally storing more than one fragment and the policy naturally changing
even after the specific user revocation, we determine the probability PA of the
user’s ability to access the resource assuming local storage of floc fragments
to be PA = (floc/f)fmiss . The probability clearly increases with the number
of fragments stored locally, but quickly reaches extremely low values after
a few updates of the policy, approximating zero even for high percentage of
fragments locally stored. The low probability (and the high storage effort re-
quested to the user) essentially makes such attack not suitable: if the user has
to pay a storage cost that approaches the maintenance of the whole resource,
then the user would have stored the plaintext resource when authorized in
the first place. We note also that a possible extension of our approach could
consider overwriting, instead of pre-defined fragments, a randomly chosen
set of mini-blocks (ensuring coverage of all macro-blocks), to enforce a re-
vocation. In this case, the probability of the user storing mloc mini-blocks
per macro-block (also randomly chosen) to be able to access the resource
immediately after her revocation would be (mloc/(m · b))M , which would be-
come (mloc/(m · b))M ·mmiss , (i.e., negligible), if she misses mmiss mini-blocks
per macro-block. We note however that overwriting randomly picked mini-
blocks across the resource would considerably increase the complexity in the
management of fragments, and it would make it harder to provide an effi-
cient physical structure for fragments (Section 2.5). Given the observations
above about the high storage cost that would be required to the user and the
low probability of her success as policy changes, we argue that the regular
structure for the fragments is preferable.

39

CHAPTER 2. MIX&SLICE 2.4. EFFECTIVENESS OF THE APPROACH

Access

1: download R’s descriptor and all its fragments

2: retrieve seed sl used for the last encryption

3: compute keys k0, . . . , kl
4: for each downloaded fragment Fx

i do
5: if x > 0 then
6: F0

i := D(kx,F
x
i) /* retrieve the original version of fragments */

7: for j = 0, . . . ,M − 1 do /* reconstruct and decrypt macro-blocks */

8: Mj := concatenation of mini-blocks F0
i [j], i = 0, . . . , (m · b)− 1

9: decrypt Mj

Figure 2.10: Access to resource R

2.4.2 Keeping portions of all mini-blocks

Instead of locally storing some selected fragments, a user can opt for using
storage to maintain portions of all the mini-blocks in each fragment. In this
case, whatever the fragment overwritten in the revocation, the user will have
to perform some effort to realize a brute-force attack to retrieve the missing
bits (she does not have the complete fragment), but such an effort will be
lower, given the availability of the locally stored bits. For instance, assuming
the user to keep 50% (i.e., half of the bits) of each mini-block, the effort for
reconstructing the resource given a missing fragment would now be 2(msize/2)

attempts for each of the M macro-blocks (in contrast to the 2msize required
if all the bits in the fragment were unknown). However, again, if more frag-
ments are missing, the required effort would quickly escalate, being equal to
2(msize/2)·fmiss when fmiss fragments are missing. For each attempt, the verifi-
cation that a guess is correct would require to apply all the decryption rounds
until the plaintext is reconstructed, with a great cost. We note that the user can
cut down on such cost if she locally maintains, in addition to the portions of
the original mini-blocks, also some bits of the partial results of the computa-
tion (which would allow her to test correctness of a guess without performing
all the encryption rounds). Availability of such partial results can help testing

40

2.4. EFFECTIVENESS OF THE APPROACH CHAPTER 2. MIX&SLICE

the guesses for a mini-block if the other mini-blocks in the same block are
available (i.e., when the user misses only one fragment per block). However,
from the birthday paradox, we note that the probability of two revocations
hitting the same block (but a different fragment) quickly increases with the
number of revocations. Then, after a few updates the advantage of the user
keeping partial results of the computation will become ineffective. In addition
to this, we note that, in this case as well, the storage and computational efforts
required to the user do not seem to make this attack much preferable for her
with respect to the choice of locally storing the whole plaintext resource itself
in the first place.

2.4.3 A note on collusion

Collusion can happen when two users join effort to gain access to a re-
source that neither of them can access (we do not consider collusions with
the server, which is assumed trustworthy to enforce the re-writing requested
by the owner). In fact, if one of the users is authorized for the resource, she
has no incentive and therefore there is no collusion. Also, the case of users
working together to grant each other access to resources on which they in-
dividually have authorization cannot be considered collusion, since merging
their knowledge they collectively do not go beyond their privileges. Collu-
sion is then represented by users who join effort in maintaining portions of
the resource (e.g., fragments or parts of mini-blocks as discussed above). For
instance, each of the users could keep half of the fragments and they can
merge their knowledge to patch for missing fragments. Such a situation does
not add any complication with respect to the previous discussion, as it simply
reduces to consider the group of colluding users as an individual attacker. We
then note again that the collective effort, in terms of storage and/or compu-
tation, required to gain access would easily approximate the effort of locally
storing the original plaintext resource itself. In other words, the attack strat-
egy does not offer an advantages to users attempting to access the resources
for which they are not authorized.

41

CHAPTER 2. MIX&SLICE 2.4. EFFECTIVENESS OF THE APPROACH

2.4.4 A note on erasure coding

Cloud storage providers have to offer reliability to their users. To reach this
goal, the easiest approach is to replicate data [34]. Yet, this requires a not
negligible storage overhead. Another less expensive approach is to leverage
erasure coding [60]. With this solution, data are divided into fragments and
stored replicated together with a certain number of parity fragments. Erasure
codes offer the same fault tolerance property with lower replication.

Even if the cloud provider does not use erasure coding, an adversary
could build a client-side erasure coding that permits to mitigate the loss of
a fragment (i.e., the loss of the ability to decrypt a fragment that has been
re-encrypted due to a policy update that revokes the user). This means that,
given a resource divided into k fragments, the adversary can locally store t

(with t < k) parity fragments to be able to recover the plaintext of the re-
source as long as no more than t different fragments have been re-encrypted.
Yet, the resource owner has control over the number r of fragments that she
is willing to re-encrypt, and this nullifies the efforts made by the adversaries
that stored a number of parity fragments smaller than r.

When the policy changes, the owner can promptly re-encrypt a single frag-
ment to revoke access for common adversaries without local erasure codes.
After this, the owner can still re-encrypt other random fragments, later in
time. An adversary that has used erasure coding would need to know that the
re-encryption process is happening and to quickly download the resource that
is being re-encrypted to make use of its erasure code. This is a very error-
prone and lucky-based process for the adversary to complete. Moreover, it is
important to note that the adversary had access to the whole resource previ-
ously, so if it was important and compact, she would have stored the resource
in plaintext.

2.4.5 Comparison with other AONTs

We can now better illustrate the differences between Mix&Slice and other
All-or-Nothing Transforms.

In general, other AONTs make use of two keys, the first is the encryption
key, and the second is the AONT key. For example, the AONT proposed by

42

2.5. IMPLEMENTATION CHAPTER 2. MIX&SLICE

Rivest in [102] applies a transformation on the plaintext before encryption.
This transformation is similar to encrypting in counter mode, except that the
key is randomly chosen rather than fixed, and the last ciphertext block is the
exclusive-or of the key and a hash of all the other ciphertext blocks. This
effectively ensures that if a ciphertext block is missing, the AONT key is lost
and the transformation is not invertible, thus realizing an AONT.

This schema works in the network transmission setting but can be easily
circumvented in the access revocation scenario. An adversary could store the
AONT key and thus be able to invert the transformation even if a fragment has
been updated. The missing fragment implies missing parts in the plaintext,
however, the majority of it would still be accessible. This scenario gets even
worse in case the adversary has kept a local erasure code (as in Section 2.4.4).
Let’s assume that the adversary has kept an erasure code as big as a% of the
resource size, and that the owner is re-encrypting r% due to a policy update.

In case r < a (i.e., the policy update re-encrypts a portion of the resource
whose size is smaller than the adversarial erasure code), then the revoked user
can still access the file in its integrity in both Rivest’s AONT and Mix&Slice.
When r ≥ a, instead, we have the following two scenarios.

Rivest’s AONT The user can apply its erasure code, then use the AONT key
to invert the function and re-gain access to a portion of the size as big
as 1− (r − a).

Mix&Slice Even after applying the erasure code, there is no key that can be
used to invert the function, and the entire contents of the file are lost.

This property is depicted in Figure 2.11.

2.5 Implementation

In this section, we discuss the realization of our approach for its practical de-
ployment. The components that have to be considered are the client, who de-
crypts resources to access them (Section 2.5.1), and the protocol used for the
interaction between client and server. The protocol has a significant impact on

43

CHAPTER 2. MIX&SLICE 2.5. IMPLEMENTATION

0% 10% 20% 30%
% removed data

0%

20%

40%

60%

80%

100%

%
 r

ec
ov

er
ed

 fi
le

Rivest's AONT
Mix&Slice

Figure 2.11: Comparison of percentage of recovered file between Rivest’s AONT and
Mix&Slice when the revoked user has kept an erasure code whose size is 3% of the resource
size

the profile of the server responsible for hosting the resources and for authen-
ticating the data owner who is the only party authorized to modify the data.
In particular, we will consider two options for the realization of the interac-
tion protocol: i) Overlay (Section 2.5.2), which operates on top of a common
cloud object service (the server is unaware of the adoption of our approach
and is a standard object server); and ii) Ad-hoc (Section 2.5.3), which directly
supports the primitives to update a fragment and to get the current state of the
resource (the server is aware of the features of our approach and attention will
have to be paid to its internal structure).

We found from this analysis that the client is able to make use of our
approach without restrictions, with a performance in the application of the
technique for a common personal computer that does not represent a bottle-
neck when compared with any network bandwidth. For the protocol, when
the technique is applied in a transparent way on top of existing object storage
solutions (Overlay), we observe several orders of magnitude in performance
improvement for some configurations. The realization of the technique using
an ad-hoc protocol further improves the benefits with its greater flexibility, but
it also requires to consider the mapping of the logical structure to its physical

44

2.5. IMPLEMENTATION CHAPTER 2. MIX&SLICE

representation - for which we have identified an adequate solution. All these
results prove the applicability of the technique in the current technological
landscape and the benefits that it can provide for many application domains.

It is important to observe that the primary parameters influencing the per-
formance are the size msize of mini-block and the number f of fragments.
While the size of mini-blocks represents our security parameter and must be
chosen by the data owner based on her security requirements, the number of
fragments is chosen considering performance only. In the following, we will
then focus on the tuning of the number of fragments, considering resources
of variable sizes. (Note that the choice of the number of fragments implies
also the definition of the number of macro-blocks, as the product of the num-
ber of macro-blocks by the number of fragments is equal to the number of
mini-blocks of the resource.)

The evaluation of the best value for the number of fragments will have to
consider a number of aspects that characterize the application domain. The
major ones are: frequency of policy updates; frequency and average size of
get requests; network bandwidth, for the upload and download direction. All
these aspects have a direct impact on the overall throughput offered by our
solution, which confirms its advantage in the prompt enforcement of revoke
operations, measured by the average transfer rate for get requests.

The experimental results illustrated in this section have been obtained us-
ing, for the client, a machine with Linux Ubuntu 16.04 LTS, Intel i7-4770K,
3.50 GHz, 4 cores. For the server, we used an Amazon EC2 m4.large instance,
with 4 CPUs and 8 GB of RAM. The client was connected to the Internet by
a symmetric 100 Mbps connection.

2.5.1 Client

Our approach requires the client to execute a more complex decryption com-
pared to the use of AES with a traditional encryption mode (e.g., CTR or
CBC). The cost of decryption (which is comparable to the cost of encryp-
tion by the data owner) is nearly logm(m · b) times the cost of applying a
single AES decryption, while the impact of reorganizing the data structure
at each round is limited. Due to the high performance of modern processors

45

CHAPTER 2. MIX&SLICE 2.5. IMPLEMENTATION

number
of threads

Mix&Slice
with AES-NI
(msize = 32)

Mix&Slice
with OAEP

(msize = 256)

Mix&Slice
with OAEP

(msize = 512)

Mix&Slice
with AES

(msize = 32)

1 1.233 s 7.976 s 10.612 s 28.328 s
2 0.675 s 4.221 s 5.574 s 15.687 s
4 0.377 s 2.204 s 2.874 s 8.516 s
8 0.222 s 1.127 s 1.475 s 4.326 s
16 0.167 s 0.916 s 1.155 s 2.895 s

Figure 2.12: Performance comparison of mixing implementations

in the execution of block ciphers, this logarithmic cost factor is not critical.
Also, decryption can be parallelized on multi-core CPUs, making the client
processing even more efficient.

An aspect that has to be considered in the implementation of the client
is the possible need to keep large amounts of data in memory. This may
occur when fragments are downloaded one after the other and decryption can
start only after the last fragment has been downloaded, which, for example,
happens with the Overlay solution. If the resource size exceeds the available
memory at the client, this leads to an extremely significant performance hit.
The configuration of the system can (and should) avoid this possibility by
splitting the resource into sub-resources (Section 2.5.2).

Experiments on the client

All code has been written in Python, because for all the functions the compu-
tational performance is not a constraint. The only component written in C was
the invocation of the mixing for encryption and decryption functions. Since
most current Intel x86 CPUs offer the support for a hardware implementation
of AES, named AES-NI, we considered its adoption in our experiments.

We implemented both the mixing structure based on AES (described in
Section 2.2.2) and the OAEP-based one (described in Section 2.2.3) to com-
pare their performance profile. The results are presented in Figure 2.12. The
OAEP-based implementation is faster than the AES one that does not lever-
age the hardware implementation. Even though the base application of AES

and SHA2512 share a similar performance profile, the OAEP approach ben-

46

2.5. IMPLEMENTATION CHAPTER 2. MIX&SLICE

 1

 10

 100

 1000

 10000

1 2 4 8

th
ro

ug
hp

ut
 (M

B
/s

)

number of threads

AES-NI, msize=32, Msize=4096
AES-NI, msize=64, Msize=4096

AES, msize=32, Msize=4096
AES, msize=64, Msize=4096

Figure 2.13: Throughput varying the number of threads

efits from the reduction of the number of rounds due to larger mini-blocks.
On architectures that provide a native hardware implementation for AES, its
use shows the best performance profile for Mix&Slice and should be preferred
when compatible with the scenario.

Figure 2.13 shows that the cost of decryption is compatible with all rea-
sonable scenarios for the application of our technique. In particular, the fig-
ure illustrates the throughput obtained, varying the number of threads, by
the application of our approach in different configurations characterized by
macro-blocks of size (Msize) 4 KiB, mini-blocks of size (msize) 32 and 64
bits (which imply 5 and 9 encryption rounds, resp.), when using AES-NI
and when not using it (AES). Mixing was applied on data that were already
available in memory. We notice that even the single-threaded 9-round non-
hardware-supported implementation (line ‘AES, msize=64, Msize=4096’) of-
fers a throughput that is greater than 100 Mbps. For the AES-NI multi-
threaded 5-round implementation we reach a 2.5 GB/s throughput (line ‘AES-
NI, msize=32, Msize=4096’). The figure also shows that, increasing the num-
ber of threads, we reach a performance level that is 4 times the one obtained
by the single-threaded implementation. This is consistent with the presence of
4 physical cores in the CPU we used, each with a dedicated AES-NI circuitry.

47

CHAPTER 2. MIX&SLICE 2.5. IMPLEMENTATION

The performance, even for a large number of fragments, shows to be or-
ders of magnitude better than the bandwidth of current network connections.
Even without the hardware support (lines ‘AES, msize=32, Msize=4096’ and
‘AES, msize= 64, Msize=4096’), the application of the cryptographic trans-
formation shows greater throughput than the data transfer rate of most In-
ternet connections. An experiment on 1 GiB size macro-blocks and 32 bit
mini-blocks showed the expected slow down in throughput, managing the de-
cryption in less than 5 seconds (still above the bandwidth of long-distance
connections).

2.5.2 Overlay solution

The Overlay solution is analyzed using as a reference the Swift service. Swift
has been selected due to its popularity, availability as open source, and tech-
nical features that are good representatives of what is offered by a modern
object storage service for the cloud (resources are called objects in this dis-
cussion, to align with the Swift terminology). The Swift server instance has
been installed on the Amazon EC2 platform. We consider two main alter-
natives for the realization of our approach on Swift1 without any changes to
the server.2 The first option assumes to manage each fragment as a separate
object. The second option makes use of the ability to access portions of ob-
jects and specifically considers the use of Dynamic Large Objects (DLOs).
Our experiments show that this latter option provides significant benefits in
performance with respect to managing fragments as separate objects. DLOs
deserve then to be used when available.

Fragments as atomic separate objects. This approach is the most adaptable
one, as it can be used with any object storage service. Also, the support for
a policy update will be immediate, as it will be mapped to a single update to
the object containing the corresponding fragment. However, these advantages
come together with some potential restrictions. The client would be responsi-

1 Swift organizes objects within containers. The current structure of Swift supports ac-
cess control only at the level of containers. The analysis we present can be immediately
adapted to the management of the access policy at the container granularity rather than the
object granularity. We keep the analysis at the level of object for consistency with the chapter.

2 We changed the server to support a large number of fragments in DLO mode.

48

2.5. IMPLEMENTATION CHAPTER 2. MIX&SLICE

ble for managing mixing and slicing. The approach requires the introduction
of some metadata associated with each of the fragments or stored in a dedi-
cated supporting object. The client has to be able to concurrently access all
the fragments of the object to exhibit good performance when accessing large
resources. If there are many fragments, this requires to create and keep open
a large number of connections with the server.

Use of DLOs. The Dynamic Large Objects3 (DLO) service of Swift has been
introduced to support the management of large objects, going beyond the size
limits of storage devices and providing finer granularity in the access. When
using DLOs, an object is separated into a number of sub-objects that can be
downloaded with a single request. The fragments of our approach can then
be stored into separate DLO fragments. The Swift server is responsible for
the management of the mapping from an object to its fragments, splitting a
request for downloading an object into a number of independent requests to
the server nodes that are responsible to store the data (the Swift architecture
has a server node directly offering an interface to the clients and uses a num-
ber of independent storage nodes; this architecture provides redundancy and
availability). In this way, the client only generates a single get request for
the object, independently from the number of fragments. The descriptor of
the object can be extended with the representation of the version of each frag-
ment. A similar approach can be realized when the object service offers the
flexibility to operate with get and put only on a portion of the object.

The major constraint of this approach is the need to wait for the download
of all the fragments before the decryption of the first macro-block can start.
As anticipated in Section 2.5.1, this causes delays and requires the client to
keep available in RAM the complete encrypted representation of the object
before it can be processed. To mitigate this problem, fragments can also be
split into sub-fragments. In this way, the download will be organized with a
serial download of all the sub-fragments representing the same set of macro-
blocks. This is consistent with approaches used in cloud storage, where there
is a common guideline to split resources larger than a few GiB (Swift forces a
split at 5 GiB in its standard configuration). Experiments confirm that beyond

3 https://docs.openstack.org/swift/latest/overview_large_objects.html

49

https://docs.openstack.org/swift/latest/overview_large_objects.html

CHAPTER 2. MIX&SLICE 2.5. IMPLEMENTATION

 0.01

 0.1

 1

 10

 100

 1000

64KB 256KB 1MB 4MB 16MB 64MB 256MB 1GB

tim
e

(s
)

object size

number of fragments
1024
256
64
16
4
1

Figure 2.14: Time for the execution of get requests on Swift

1 GiB, the throughput remains stable even for configurations with a large
number of fragments.

Experiments on the Overlay solution

We built a Swift client application in Python that implements the get and
put fragment methods that characterize our technique. We followed two
implementation strategies, one using fragments as atomic separate objects,
and the other adopting the DLO support offered by Swift.

Figure 2.14 compares, for different numbers of fragments, the time re-
quired for the execution of get requests assuming to map each fragment to
a separate object. The lines correspond to distinct values for the number f of
fragments (i.e., 1, 4, 16, 64, 256, and 1024). The parameters that drive the per-
formance are the network bandwidth and the overhead imposed by the man-
agement of each request. For get requests, the overhead introduced by the
management of one request for each fragment dominates when the resource
is small, whereas the increase in object size makes the network bandwidth
the bottleneck. The profile of put requests uploading the complete resource
proved to be identical to the profile of get requests using a single fragment.

50

2.5. IMPLEMENTATION CHAPTER 2. MIX&SLICE

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

64KB 256KB 1MB 4MB 16MB 64MB 256MB 1GB

th
ro

ug
hp

ut
 (M

B
/s

)

object size

number of fragments
1024
256
64
16
4
1

Figure 2.15: Throughput for a workload combining get and put fragment requests on
Swift

The execution of put fragment requests grows linearly with the size of
the fragment.

The identification of the best number of fragments requires to consider the
profile of the scenario. We evaluated the behavior of a system on a collection
of 1000 objects where, after each put fragment request, a sequence of 50
get requests were executed on objects in the collection, all of the same size.
Figure 2.15 reports the results of these experiments. As objects become larger,
the benefits of fragmentation in the application of policy updates compensate
for the overhead imposed on the retrieval of the objects. It is noted that the
performance of the solution that does not use our technique corresponds to the
line with one fragment. The throughput of the configurations using fragments
is orders of magnitude higher already for medium-size objects. The graph
also shows that the best number of fragments depends on the resource size.
The identification of the value to use requires to consider the configuration of
the system and the expected workload.

A second set of experiments followed the same approach, but considering
the use of DLOs in Swift. The number of fragments still has a significant
impact on the performance of the get request, because the server has to gen-
erate internally the mapping for the single request originating from the client

51

CHAPTER 2. MIX&SLICE 2.5. IMPLEMENTATION

and the multiple requests addressed to the storage nodes. The application of
the same workload considered for the experiments in Figure 2.14, which in-
terleaves get and put fragment requests, produces the results presented
in Figure 2.16. Comparing the cost with and without DLO we notice a signif-
icant benefit deriving from the use of DLOs.

2.5.3 Ad-hoc solution

The use of an ad-hoc protocol is able to provide the full range of benefits of
our approach. The protocol will have to support the basic primitives to up-
load (put) and download (get) a resource. The put primitive, when used
to upload the initial state of the resource, will have to provide a resource de-
scriptor that defines: the identifier of the key k0 used by the owner to encrypt
the resource; the size of mini-blocks and the number of fragments (which
determine the size of the macro-block); an array with an element for every
fragment describing its version. In addition to the put primitive, the server
will recognize the put fragment primitive, which will allow the owner to
update a fragment. Parameters of this primitive, in addition to the resource
identifier and fragment content, will be the identifier of the fragment and its
version number. The put fragment primitive requires the authentication
of the user issuing the request, in the same way as the put primitive.

The get primitive can return to the user the resource, one macro-block
after the other. The client will be able to immediately start the decryption of
macro-blocks, after a preliminary decryption with key ki of the mini-blocks
belonging to the fragments at version i > 0. In this way, the client does
not have to wait for the completion of the download of all the fragments.
The answer to the get request always provides first the resource descriptor,
with the representation of the version of each of the fragments. Among the
parameters of the get primitive we have the option to retrieve only a specific
portion of the resource.

For this solution, we have to dedicate attention to the mapping of the log-
ical structure to the physical representation of data. At the logical level, the
resource is divided into fragments, and the content is represented by a se-
quence of macro-blocks. At the physical level, the resource can be stored as

52

2.5. IMPLEMENTATION CHAPTER 2. MIX&SLICE

a collection of separate fragments or as a sequence of macro-blocks. In ad-
dition to these two options, there is a range of intermediate alternatives, with
the interleaved representation of multiple fragments.

Experiments on the Ad-hoc solution

The advantage of a dedicated server is the ability to use an efficient proto-
col. The use of an ad-hoc server makes the management of fragments more
flexible and avoids the overheads associated with the generation of a number
of independent get requests equal to the number of fragments that are pro-
duced by the Overlay solution. Still, the use of a potentially large number of
fragments can introduce non-negligible costs. In the extreme case where a
large resource is managed with a single macro-block (i.e., the number of frag-
ments corresponds to the number of mini-blocks of the whole resource), the
client will have to wait for the download to complete to start decryption, and
decryption will involve a high number of rounds. Also, when only a portion
of the resource is needed, our approach requires the client to download the
macro-blocks that contain the portion of interest; if macro-blocks are large,
this may lead to a significant overhead. As already discussed, the identifica-
tion of the optimal number of fragments has to consider several features of the
application domain. In the current technological scenario, we notice that the
use of an ad-hoc server can support a number of fragments larger than what
is adequate for the Overlay solution, but extreme values cause inefficiencies.

As mentioned above, an important aspect that the implementation of the
ad-hoc server has to consider is the mapping from the logical structure to
its physical representation. In this analysis, we will consider a traditional sce-
nario where the server uses the functions of the operating system to access the
storage ability of mass memory devices. In the experiments we used the Ama-
zon EC2 instance and its access to the Elastic Block Storage. The operating
system offers an interface that allows to read and write physical blocks, typ-
ically a few KiB in size. The mapping of the bidimensional logical structure
with macro-blocks and fragments to the concrete physical structure realized
by a sequence of physical blocks can follow several strategies. To compare
these alternatives, we assume a scenario where we have 1024 fragments and

53

CHAPTER 2. MIX&SLICE 2.5. IMPLEMENTATION

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

64KB 256KB 1MB 4MB 16MB 64MB 256MB 1GB

th
ro

ug
hp

ut
 (M

B
/s

)

object size

number of fragments
1024
256
64
16
4
1

Figure 2.16: Throughput for a workload combining get and put fragment requests with
Swift DLOs

map the structure to 4KiB physical blocks. A first strategy consists in stor-
ing the resource one macro-block after the other. The dual strategy consists
in storing the resource one fragment after the other. Between these two ex-
tremes, we have strategies that split each macro-block into a number of parts
and store contiguously into a physical disk block all the macro-block por-
tions that correspond to the mini-blocks in the same position. The rationale is
that the organization along macro-blocks will be the most efficient to support
get requests, but it will require to access all the physical disk blocks when a
put fragment request is received. The representation based on fragments
will instead be the most efficient to support put fragment requests, but it
will introduce a significant overhead when managing get requests. For small
resources these aspects do not have a large impact, whereas for large resources
the performance benefit can be significant. Figure 2.17 illustrates the results
obtained on a container with 1000 files, each of 1 GiB in size. The horizon-
tal axis denotes the number of shares of each macro-block (1 represents the
strategy with the macro-blocks stored in sequence, and 1024 represents the
strategy with fragments stored in sequence). For a workload that interleaves
a get request for every put fragment request, the total cost is minimized
when we use a solution with 256 fragments. Interestingly, the two extremes

54

2.6. RELATED WORK CHAPTER 2. MIX&SLICE

 0.1

 1

 10

 100

 1000

1 2 4 8 16 32 64 128 256 512 1024

tim
e

(s
)

number of fragment partitions

cost
get

update

Figure 2.17: Configurations for physical blocks

with this workload do not represent the best option. In these experiments, we
measured the time required to access the data from storage. In most systems
we expect the network to be the bottleneck that limits the performance and
the choice of physical representation will rarely be observed by the clients,
but the performance benefit that is shown by the experiment can lead to a
more efficient implementation of the server.

2.6 Related work

The idea of making the extraction of the information content of an encrypted
resource dependent on the availability of the complete resource has been
first explored by Rivest [102], who proposed the all-or-nothing transform
(AONT). The AONT requires that the extraction of a resource where n bits
of its transformed form are missing should require to attempt all the possible
2n combinations. The AONT can be followed by encryption to produce an
all-or-nothing encryption schema. In [102], the author proposes the package
transform, which realizes an AONT by applying a CTR mode using a random
key k. The ciphertext is then suffixed with the used key k XOR-ed with a hash
of all the previous encrypted message blocks. In this way, a modification on

55

CHAPTER 2. MIX&SLICE 2.6. RELATED WORK

the encrypted message limits the ability to derive the encryption key. This
technique works under the assumption that the user who wants to decrypt the
resource has never accessed the key before, but fails in a scenario where the
user had previously accessed the key and now the access must be prevented
(i.e., revocation of privileges on encrypted files). The user, in fact, could have
stored key k and so she would be able (depending on the encryption mode
used) to partially retrieve the plaintext. Key k can be seen as a digest: it is
compact and its storage allows a receiver to access the majority of the file,
even if one of the blocks was destroyed.

Most approaches for efficient secure deletion [33, 46] rely on the fact that
the key is a digest for a resource and its content can be securely deleted by
deleting the specific disk location that stores a piece of information that per-
mits to derive the key used to encrypt the resource. Such approaches are
already used by commercial storage devices [108] and recent proposals have
considered the integration of such approaches with flexible policies [33]. All
these approaches are not applicable in our scenario, where the encrypted re-
source is stored on a server that does not have access to (and hence does not
store) the key and it is the user who has to decrypt the resource. Making the
encryption key unavailable to the user does not limit her access.

In [66], the authors propose an algorithm for data protection based on in-
formation dispersal and fragmentation. The approach is similar to Mix&Slice
(i.e., a first step for mixing and a second one for slicing), but a keyless algo-
rithm based on a modification of Shamir’s secret sharing [105] is used for the
mixing. This has the disadvantage that each shard has the same size as the
original data, thus incurring in significant storage overhead. The authors do
not consider how to revoke access to previously authorized users.

Other approaches for enforcing access control in the cloud through en-
cryption have been developed along two research lines: attribute-based
encryption (ABE) and selective encryption approaches. ABE approaches
(e.g., [54, 61, 96, 118]) provide access control enforcement by ensuring that
the key used to protect a resource can be derived only by the users that satisfy
a given condition on their attributes (e.g., age, role). The main shortcoming of
these solutions is due to their evaluation costs (they rely on public key encryp-
tion), and to the hardness in the support of revocations [61,118]. Approaches

56

2.7. CONCLUSIONS CHAPTER 2. MIX&SLICE

based on selective encryption (e.g., [43, 44, 57]) assume to encrypt each re-
source with a key that only authorized users know or can derive. In this sce-
nario, policy updates are then either managed by the data owner, with consid-
erable overhead, or delegated to the server through over-encryption [43, 44].
Although over-encryption guarantees a prompt enforcement of policy updates
and demonstrates to offer good performance, it requires stronger trust assump-
tions on the server, which must provide dedicated support. On the contrary,
our technique can be used also if the server is completely unaware of its adop-
tion.

2.7 Conclusions

In this chapter, we presented an approach for efficiently enforcing access re-
vocation on encrypted resources stored at external providers. Our solution en-
ables data owners to effectively revoke access by simply overwriting a small
portion of the (potentially large) resource and is resilient against attacks by
users locally maintaining copies of previously-used keys. Our implementation
and experimental evaluation confirm the efficiency and effectiveness of our
proposal, which enjoys orders of magnitude of improvement in throughput
with respect to resource re-writing, and confirms its compatibility with cur-
rent cloud storage solutions, making it also immediately applicable to many
application domains.

57

3

Securing Resources in
Decentralized Cloud Storage

Decentralized Cloud Storage services represent a promising opportunity for
a different cloud market, meeting the supply and demand for IT resources of
an extensive community of users. The dynamic and independent nature of the
resulting infrastructure introduces security concerns that can represent a slow-
ing factor towards the realization of such an opportunity, otherwise clearly
appealing and promising for the expected economic benefits. In this chapter,
we present an approach enabling resource owners to effectively protect and
securely delete their resources while relying on decentralized cloud services
for their storage. In this chapter, we present a solution that combines an
All-or-Nothing Transform (such as Mix&Slice) with two carefully designed
allocation strategies to extend the guarantees obtained in the previous chap-
ter to the decentralized cloud storage scenario. We address both availability
and security guarantees, jointly considering them in our model and enabling
resource owners to control their setting.

59

CHAPTER 3. DECENTRALIZED CLOUD STORAGE 3.1. INTRODUCTION

3.1 Introduction

A clear recent trend in information technology is the rent by many users and
enterprises of the storage/computation services from other parties. With cloud
technology, what was in the past managed autonomously now sees the in-
volvement of servers, often in an unknown location, immediately reachable
wherever an Internet connection is present. Today the use of these Internet
services typically assumes the presence of a Cloud Service Provider (CSP)
managing the service. There are a number of factors that explain the cur-
rent status. In general, the procurement and management of IT resources
exhibit significant scale economies, and large-scale CSPs can provide ser-
vices at costs that are less than those incurred by smaller players. Still, many
users have an excess of computational, storage, and network capacity in the
systems they own and they would be interested in offering these resources to
other users in exchange of a rent payment. In the classical behavior of mar-
kets, the existence of an infrastructure that supports the meeting of supply and
demand for IT services would lead to a significant opportunity for the creation
of economic value from the use of otherwise under-utilized resources.

This change of landscape is witnessed by the increasing attention of the
research and development community toward the realization of Decentral-
ized Cloud Storage (DCS) services, characterized by the availability of mul-
tiple nodes that can be used to store resources in a decentralized manner. In
such services, individual resources are fragmented in shards allocated (with
replication to provide availability guarantees) to different nodes. Access to
a resource requires retrieving all its shards. The main characteristics of a
DCS is the cooperative and dynamic structure formed by independent nodes
(providing a multi-authority storage network) that can join the service and of-
fer storage space, typically in exchange of some reward. This evolution has
been facilitated by blockchain-based technologies providing an effective low-
friction electronic payment system supporting the remuneration for the use of
the service. On platforms such as Storj [115], SAFE Network Vault [63, 95],
IPFS [23], and Sia [112], users can rent out their unused storage and band-
width to offer a service to other users of the network, who pay for this service
with a network crypto-currency [93].

60

3.1. INTRODUCTION CHAPTER 3. DECENTRALIZED CLOUD STORAGE

However, if security concerns and perception of (or actual) loss of control
have been an issue and slowing factor for centralized clouds, they are even
more so for a decentralized cloud storage, where the dynamic and indepen-
dent nature of the network may hint to a further decrease of control of the
owners on where and how their resources are managed. Indeed, in centralized
cloud systems, the CSP is generally assumed to be honest-but-curious and is
then trusted to perform all the operations requested by authorized users (e.g.,
delete a file when requested by the owner) [56]. The CSP is discouraged to
behave maliciously, since this would clearly impact its reputation. On the
contrary, the nodes of a decentralized system may behave maliciously when
their misbehavior can provide economic benefits without impacting reputa-
tion (e.g., sell the content of deleted files). Client-side encryption typically
assumed in DCSs provides a first crucial layer of protection, but it leaves
resources exposed to threats, especially in the long term. For instance, re-
sources are still vulnerable in case the encryption key is exposed, or in case
of malicious nodes not deleting their shards upon the owner’s request to try
reconstructing the resource in its entirety.

Protection of the encryption key is therefore not sufficient in DCS scenar-
ios, as it remains exposed to the threats above. A general security principle
is to rely on more than one layer of defense. In this chapter, we propose an
additional and orthogonal layer of protection, which is able to mitigate these
risks.

On the positive side, however, we note that the decentralized nature of
DCS systems also increases the reliability of the service, as the involvement
of a collection of independent parties reduces the risk that a single malfunc-
tion can limit the accessibility to the stored resources. In addition to this, the
independent structure characterizing DCS systems - if coupled with effective
resource protection and careful allocation to nodes in the network - makes
them promising for actually strengthening security guarantees for owners re-
lying on the decentralized network for storing their data.

In this chapter, we present a solution to enable resource owners to securely
store their resources in DCS services, to share them with other users, while
still being able to securely delete them. Our contribution is threefold. First,
leveraging the protection guarantees offered by All-Or-Nothing-Transform

61

CHAPTER 3. DECENTRALIZED CLOUD STORAGE 3.2. BACKGROUND

(AONT), we devise an approach to carefully control resource slicing and al-
location to nodes in the network, with the goal of ensuring both availability
(i.e., retrieval of all slices to reconstruct the resource) and security (i.e., pro-
tection against malicious parties jointly collecting all the slices composing
a resource). The proposed solution also enables the resource owners to se-
curely delete their resources when needed, even when some of the nodes in
the DCS misbehave. Second, we investigate different strategies for slicing
and distributing resources across the decentralized network, and analyze their
characteristics in terms of availability and security guarantees. Third, we pro-
vide a modeling of the problem enabling owners to control the granularity of
slicing and the diversification of allocation to ensure the aimed availability
and security guarantees. We demonstrate the effectiveness of the proposed
model by conducting several experiments on an implementation based on an
available DCS system. Our solution provides an effective approach for pro-
tecting data in decentralized cloud storage and ensures both availability and
protection responding to currently open problems of emerging DCS scenar-
ios, including secure deletion. In fact, common secret sharing solutions (e.g.,
Shamir [105]), while considering apparently similar requirements are not ap-
plicable in scenarios where the whole resource content (and not simply the
encryption key) needs protection, because of their storage and network costs
(e.g., each share in Shamir’s method has the same size as the whole data that
has to be protected).

3.2 Basic concepts and scenario

The basic building block enabling the development of our solution is the ap-
plication, at the client-side, of an All-Or-Nothing-Transform (AONT) encryp-
tion mode that transforms resources for their external storage. This mode
requires the use of an encryption key. The encryption driven by the key rep-
resents the primary protection, and the use of AONT encryption mode further
strengthens security. An AONT-encryption mode transforms a plaintext re-
source (original content in whatever form) into a ciphertext, with the property
that the whole result of the transformation is required to obtain back the orig-

62

3.2. BACKGROUND CHAPTER 3. DECENTRALIZED CLOUD STORAGE

inal plaintext. AONT guarantees in fact complete interdependence (mixing)
among the bits of the encrypted resource in such a way that the unavailabil-
ity of a portion of the encrypted resource prevents the reconstruction of any
portion of the original plaintext. A party having access to a portion of the
encrypted resource (but not to the encrypted resource in its entirety): i) if
knowing the encryption key, it will not be able to reconstruct any portion of
the resource (i.e., it will not be able to derive any information from the AONT-
encrypted portions it has; the only option would be to attempt a brute force
attack on the possible configurations of the missing portions, but their possible
large size makes this attack unfeasible); ii) if not knowing the encryption key,
it will not be able to perform brute-force attacks for guessing such a key, as
any key (even the correct one) will be ineffective if not applied to the complete
resource. AONT protection schemes can be built with the use of common
cryptographic functions, like symmetric encryption and hash functions. An
example of AONT scheme that guarantees complete mixing, which has also
been used in the implementation of our prototype, is the Mix&Slicealgorithm
presented in Chapter 2. As already discusseed, Mix&Slice works by apply-
ing different rounds of encryption, each operating on a carefully designed
combination of the bits resulting from the previous round. Mix&Slice guar-
antees that each bit in the encrypted resource depends on the value of each
bit in its plaintext representation. In our context, the use of AONT guarantees
protection to the individual slices (and shards) composing the resource, and
therefore to the resource itself (in its entirety as well as any of its portions).
In fact, Mix&Slice makes each portion of the resource needed, in terms of
information theory, to reconstruct any of the portions of the resource. The
protection is then provided by the absence of information content.

Figure 3.1 illustrates our reference scenario. The focus of this chapter is
the design of proper slicing of resources and the allocation of the produced
slices to different nodes in the DCS system. Note that in the chapter we use
the term slicing to refer to the cutting of a resource and the term slices to refer
to the result of such a process. A slice is therefore a chunk of the resource and
represents a unit of allocation, in contrast to a shard that represents a portion
of the resource allocated to a node (a shard can include several slices). Our
approach focuses on slicing and allocation and is agnostic with respect to the

63

CHAPTER 3. DECENTRALIZED CLOUD STORAGE 3.3. ALLOCATION PROPERTIES

AONT

resource

AONT-
encrypted

resource
SLICING

ALLOCATION
slices

DCS

Figure 3.1: Reference scenario

specific AONT technique to be used, as long as the aimed strong protection
guarantees are ensured, and with respect to the specific DCS adopted.

3.3 Allocation properties

In our approach, the slicing of the resources into several slices to be dis-
tributed at the different nodes is guided by the availability and protection
properties that need to be guaranteed. Availability (despite nodes failure or
temporary unreachability) is provided through replication, security is pro-
vided through protection against malicious coalitions. Malicious nodes (and
coalitions thereof) are interested in making the resource unavailable, by not
returning the slices of the resource they store, or in providing access to a
resource even after its deletion, by not removing the slices of the resource
they store and returning such slices to (not authorized) users who pay for it.
Before addressing slicing, we then characterize the replication and coalition
resistance properties of the distribution of a resource.

We assume a (transformed) resource that has undergone AONT encryption
(as described in the previous section) at the client side. For simplicity, we
will omit such an explicit remark on transformation and we will simply use
the term resource to denote an AONT-encrypted resource. Also, we assume
a resource to be composed of different slices, for distribution in a DCS. We
will address the problem of producing such slices in Section 3.4.

64

3.3. ALLOCATION PROPERTIES CHAPTER 3. DECENTRALIZED CLOUD STORAGE

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

n1

n2

n3

n4

n5

Figure 3.2: An example of a minimal 3-protected and 2-replicated allocation function

We model a resource as a set S = {s1, . . . , ss} of slices to be allocated to
the nodes, denoted N , of the DCS. The following definition formalizes slice
allocation.

Definition 1 (Allocation function) Let S be a set of slices composing a re-
source and N be a set of nodes. An allocation function ϕ : S → 2N \ ∅
assigns each slice si ∈ S to a set of nodes ϕ(si) = Ni ⊆ N , Ni 6= ∅.

The allocation function dictates how slices are allocated to nodes in the
DCS. The consideration of sets of nodes (in contrast to individual nodes) in
the co-domain accommodates replication. The exclusion of the empty set of
nodes ensures lossless distribution (i.e., each slice is allocated to at least one
node). Figure 3.2 illustrates an example of an allocation function, consider-
ing a resource split into ten slices (S = {s1, . . . , s10}) allocated to five nodes
(n1, . . . , n5) in the DCS (nodes not used in the allocation are not reported in
the figure). The figure has a row for each node and a column for each slice.
The allocation of a slice to a node is represented by a gray box at the intersec-
tion between the row representing the node and the column representing the
slice. Empty boxes with a dotted frame represent the fact that the slice is not
allocated to the node. For example, ϕ(s1) = {n1, n2}.

We identify two main properties of an allocation, characterizing the avail-
ability, provided by replication, and the protection against possible malicious
coalitions of nodes, provided by the diversification of the allocation.

We characterize availability provided by replication in terms of the num-
ber of replicas maintained in the system. While in principle the number of

65

CHAPTER 3. DECENTRALIZED CLOUD STORAGE 3.3. ALLOCATION PROPERTIES

replicas maintained for each slice can differ, we assume the same number of
replicas is used for all the slices. This derives from the fact that we assume
that nodes are not associated with individual reliability profiles (Section 3.5).
Since all slices are needed to reconstruct the resource, using fewer replicas for
any of the slices would decrease the availability of the resource, which will
be dictated by such a lower bound. The following definition formalizes the
replication degree of an allocation function.

Definition 2 (r-Replicated allocation function) Let S be a set of slices
composing a resource, N be a set of nodes, and ϕ be an allocation function.
Function ϕ is r-replicated iff ∀si ∈ S, |ϕ(si)| ≥ r.

For instance, the allocation function in Figure 3.2 is 2-replicated, as two
copies are maintained for each slice.

We characterize the protection offered by an allocation in terms of the
minimum number of nodes required to reconstruct a resource, as formalized
by the following definition.

Definition 3 (k-Protected allocation function) Let S be a set of slices com-
posing a resource, N be a set of nodes, and ϕ be an allocation function.
Function ϕ is k-protected iff for each Ni ⊂ N , with |Ni| ≤ k, ∃sj ∈ S s.t.
ϕ(sj) ∩ Ni = ∅.

A k-protected allocation function guarantees distribution of slices to nodes
in such a way to dictate the cooperation of no less than k + 1 nodes to col-
lect all the slices composing the resource (and hence enabling retrieving its
plaintext). In other words, a k-protected allocation function guarantees pro-
tection of the resource against malicious (i.e., colluding) behavior of up to k

nodes. In fact, with a k-protected allocation function, for each coalition of k
nodes in N , there is at least a slice that is not stored at any of the nodes in
the coalition. Hence, such a coalition can neither decrypt the resource with
a brute-force attack, nor prevent its deletion. The allocation function in Fig-
ure 3.2 is 3-protected: any subset of 3 out of the 5 nodes misses at least a slice.
For instance, coalition {n1,n2,n3} misses slice s10, while coalition {n1,n2,n4}

66

3.3. ALLOCATION PROPERTIES CHAPTER 3. DECENTRALIZED CLOUD STORAGE

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

n1

n2

n3

n4

n5

Figure 3.3: An example of 2-replicated allocation function that is not 3-protected

misses slice s9. On the contrary, the allocation function in Figure 3.3, on
the same slices and nodes, is not 3-protected (but only 2-protected): coalition
{n1,n3,n4} jointly possesses all the slices.

We refer to an allocation function that is r-replicated, according to Defi-
nition 2, and k-protected, according to Definition 3, as a (k, r)-allocation.

Definition 4 ((k, r)-allocation) Let S be a set of slices composing a re-
source, N be a set of nodes, and ϕ be an allocation function. Function ϕ

is a (k, r)-allocation iff it is k-protected and r-replicated.

According to Definitions 2 and 3, a (k, r)-allocation is also a (k′, r′)-
allocation, for any r′ ≤ r and any k′ ≤ k. In fact, trivially, an allocation
function providing r replicas also provides r′ < r replicas. Analogously,
an allocation function protecting a resource from coalitions of k nodes also
protects the resource from coalitions of k′ < k nodes. Among all (k, r)-
allocations, we are interested in identifying those for which k and r represent
the highest values satisfying the availability and protection properties (i.e.,
satisfying the properties in a minimal way). We call such allocation functions
minimal, as formalized by the following definition.

Definition 5 (Minimal (k, r)-allocation) Let S be a set of slices composing
a resource, N be a set of nodes, and ϕ be a (k, r)-allocation. Function ϕ is
minimal iff:

1. it is not (k + 1)-protected ;

1. ∀si ∈ S , |ϕ(si)| = r .

67

CHAPTER 3. DECENTRALIZED CLOUD STORAGE 3.4. STRATEGIES

According to Definition 5, a minimal (k, r)-allocation is an allocation that
guarantees protection against coalitions of up to k (but no more) nodes and
that uses exactly r replicas. The allocation function in Figure 3.2 is an exam-
ple of minimal (3, 2)-allocation. In the following, we will restrict our attention
to minimal allocation functions and, when talking about a (k, r)-allocation,
we will implicitly assume such minimality.

3.4 Slicing and allocation strategies

In the absence of replication, producing an allocation that guarantees k-
protection, that is, a (k, 1)-allocation, is straightforward: it is sufficient to
split the resource into k + 1 slices and allocate each slice to a different node.
When considering replication, different approaches can be taken for alloca-
tion, differing in the granularity of slicing and in how allocation diversifies
the storage at different nodes. In the following, we discuss these options. In
the discussion, in addition to parameters k and r introduced before, we will
use parameters s, denoting the number of slices in which a resource is split,
and n, denoting the number of nodes to be involved in the allocation of a re-
source. Different approaches vary in the number s of slices to be considered
and in the number n of nodes to be involved for providing a (k, r)-allocation.
We note that, with respect to nodes, the only parameter to be considered in
the allocation strategies is the number n of nodes to be involved (the specific
nodes to be involved can be selected randomly). We identify and study the be-
havior of two approaches for producing a (k, r)-allocation. The first approach
aims to minimize the number of slices (MinSlices), while the second aims to
minimize the number of nodes (MinNodes). We analyze these two approaches
as they represent the two extremes with respect to granularity of slicing and
diversification of allocation. Their analysis permits to highlight the character-
istics of fine-grained (MinNodes) and coarse-grained (MinSlices) slicing, and
can also represent a reference for intermediate configurations.

68

3.4. STRATEGIES CHAPTER 3. DECENTRALIZED CLOUD STORAGE

3.4.1 Minimizing the number of slices

We start noting that the number s of slices involved for guaranteeing a (k, r)-
allocation must be such that s ≥ k + 1. In fact, there should be at least
k + 1 slices to guarantee k-protection, as formally captured by the following
theorem.

Theorem 1 (Minimum number of slices) Let k be a protection parameter
and r be a replication factor. The number s of slices necessary to define a
(k, r)-allocation is s ≥ k + 1.

A simple approach for determining a (k, r)-allocation extends the natural
approach of producing k + 1 slices, by simply considering their replication
at different nodes. Such an approach is characterized by a coarse-slicing,
since minimizing the number of slices clearly entails a larger size for them,
and by consistent replication (i.e., nodes have no intersection or complete
intersection of stored slices).

We observe that a (k, r)-allocation function using the minimum number
(s = k + 1) of slices implies that:

1. a node maintains at most one slice, that is, |ϕ−1(ni)| = 1, ∀ni ∈ N
involved in the allocation;

2. the number of nodes involved in the allocation is exactly r times the
number of slices, that is, n = r · (k + 1).

The first observation derives from the fact that, since there are only k +

1 slices, placing more than one slice on a node would imply the existence
of a set of k nodes able to reconstruct the resource and therefore would not
guarantee k-protection anymore. The second observation naturally derives
from the first, considering that every slice needs to be replicated r times. The
following theorem proves the observations above.

Theorem 2 Let k be a protection parameter and r be a replication factor. A
(k, r)-allocation ϕ : S → 2N \ ∅ that adopts the minimum number of slices

69

CHAPTER 3. DECENTRALIZED CLOUD STORAGE 3.4. STRATEGIES

s1 s2 s3 s4

n1

n2

n3

n4

n5

n6

n7

n8

Figure 3.4: An examples of (3, 2)-allocation that minimizes the number of slices

s = k + 1 is such that:

1. |ϕ−1(ni)| = 1 , ∀ni ∈ N involved in the allocation ;

2. the number of nodes involved in the allocation is n = r · (k + 1) .

As an example, a (3, 2)-allocation using the minimum number of slices
would imply splitting the resources into 4 (= 3+1) slices, generating 2 copies
of each slice, to be distributed at 8 different nodes. Figure 3.4 illustrates an
example of allocation function enforcing this.

A (k, r)-allocation that uses the minimum number of slices s = k + 1

well resists to failures. Indeed, k + 1 nodes out of r · (k + 1) are sufficient
to reconstruct the resource content, as long as one replica of each slice is
available. However, the number of nodes used by such an allocation function
quickly grows with k and r. For instance, a (10, 5)-allocation would need 55
(= 5 · (10 + 1)) nodes.

3.4.2 Minimizing the number of nodes

At the other end of the spectrum of possible strategies for defining and dis-
tributing slices to guarantee a (k, r)-allocation, there are functions minimiz-
ing the number of nodes to be involved in the distribution (and deriving the
number of slices in which the resource needs to be split based on this).

70

3.4. STRATEGIES CHAPTER 3. DECENTRALIZED CLOUD STORAGE

A trivial lower bound on the number of nodes that need to be involved
in a (k, r)-allocation is n ≥ max(k + 1, r), since there should be at least r
nodes to hold r replicas and at least k + 1 nodes to guarantee k-protection.
The minimum number of nodes to be involved to guarantee (k, r)-allocation
is actually higher than that as it needs to be at least the sum of the protection
and replication parameters (k and r), as stated by the following theorem.

Theorem 3 (Minimum number of nodes) Let k be a protection parameter
and r be a replication factor. The number n of nodes necessary to define a
(k, r)-allocation is n ≥ k + r.

The minimum number of nodes stated by Theorem 3 derives from two
simple observations. First, to guarantee k-protection, for each coalition of
k nodes, there must exist at least one slice that is not stored at any of the
nodes in the coalition. Second, to provide r-replication, such a slice should
be stored at (at least) r nodes that are not in the coalition. Hence, at least k+r

nodes need to be involved. As we will illustrate in the following, k+ r nodes,
besides been necessary, are also sufficient to define a (k, r)-allocation.

While using the minimum number of slices applies a coarse slicing with
consistent replication, using the minimum number of nodes applies a fine-
grained slicing with diversified replication across nodes. Intuitively, instead
of splitting the resource into slices and allocating to each node a single slice,
minimizing the number of nodes requires slicing the resource into more fine-
grained slices and allocating the slices to nodes in a diversified manner, to
guarantee that no set of k nodes jointly possesses all the slices. The definition
of the allocation requires then to identify the number of slices in which a
resource needs to be split, which must be sufficient to distribute the r replicas
to nodes while ensuring k-protection. The minimum number of slices needed
for ensuring that no set of k nodes is able to reconstruct the resource when
using k + r nodes, clearly happens when any set of k nodes misses exactly
one slice (which, given r-replication, would instead be stored at the r nodes
not belonging to the set) and no two coalitions miss the same slice. In fact, if
two sets of k nodes miss the same slice, such a slice could not have r replicas
when using only k + r nodes. The number of required slices can then be

71

CHAPTER 3. DECENTRALIZED CLOUD STORAGE 3.4. STRATEGIES

identified as the number of coalitions of k nodes out of k+ r, that is
(
k+r
k

)
, as

formally proved by the following theorem.

Theorem 4 Let k be a protection parameter and r be a replication factor.
Each (k, r)-allocation that adopts the minimum number of nodes n = k + r

uses s =
(
n
k

)
=
(
k+r
k

)
slices.

A (k, r)-allocation that uses k + r nodes and
(
k+r
k

)
slices has two inter-

esting properties. The first one, already noted, is that any coalition of k nodes
misses exactly one slice. The second one, deriving from the fact that the miss-
ing slice is different for different coalitions, is that any set of k + 1 nodes is
sufficient to reconstruct the resource (differently from the MinSlices approach
where at least k + 1 nodes are needed to reconstruct the resource but not any
set of k + 1 nodes guarantees that). The following theorem proves these two
properties.

Theorem 5 Let k be a protection parameter and r be a replication factor.
Each (k, r)-allocation that adopts the minimum number of nodes n = k + r

and s =
(
k+r
k

)
slices guarantees that:

1. ∀Ni ⊂ N with |Ni| = k, @ sj s.t. ϕ(sj) ∩ Ni = ∅ ;

2. ∀Ni ⊆ N with |Ni| = k + 1,
⋃
nj∈Ni

ϕ−1(nj) = S .

A (k, r)-allocation that minimizes the number of nodes can be obtained
by assuming N to comprise k + r nodes and proceeding as follows. Let
2Nk = {Ni ∈ 2N : |Ni| = k} be all subsets of k nodes in N . For each slice
si ∈ S, i = 1, . . . ,

(
k+r
k

)
, ϕ(si) = {N \ {Ni} : with Ni∈2Nk }. Intuitively, for

each slice si, ϕ(si) selects a coalition of k nodes that misses si and allocates
slice si to all the other nodes. This guarantees that each coalition (Ni) of k
nodes misses at least one slice (si), providing k-protection. Slice si, which
represents the missing slice for coalition Ni, is stored at all the other n−k = r

nodes in N , providing r-replication. Intuitively, in a (k, r)-allocation using
the minimum number of nodes, no two slices are allocated exactly to the same

72

3.4. STRATEGIES CHAPTER 3. DECENTRALIZED CLOUD STORAGE

set of nodes (i.e., ∀si, sj ∈ S , ϕ(si)6=ϕ(sj)). In fact, the possible subsets of
r nodes in N is

(
k+r
r

)
and

(
k+r
k

)
=
(
k+r
r

)
.

For example, a (3, 2)-allocation using the minimum number of nodes re-
quires n = k + r = 3 + 2 = 5 nodes and the use of s =

(
k+r
k

)
=
(
5
3

)
= 10

slices. Figure 3.2 illustrates an example of (3, 2)-allocation distributing 10
slices over 5 nodes. The allocation is a (3, 2)-allocation since it replicates
each slice twice while guaranteeing that no coalition of 3 nodes possesses
all the slices. More precisely, any coalition of 3 nodes misses exactly one
slice and the missing slice is different for any of such coalitions. For instance,
coalition {n1, n2, n3}misses slice s10, while coalition {n1, n2, n4}misses slice
s9.

3.4.3 Discussion

We have discussed two alternative strategies for producing a (k, r)-allocation,
aimed to minimize the number of slices (MinSlices, with coarse-grained slic-
ing and consistent replication) and to minimize the number of involved nodes
(MinNodes, with fine-grained slicing and diversified replication). When no
replication is used (i.e., r = 1) these two strategies are equivalent, as each
would imply the use of the same number of slices s = k + 1 and nodes
n = k + 1. On the contrary, when replication is adopted (i.e., r > 1) the
two strategies differ in the number of nodes n and slices s used and in the
distribution of slices to nodes. Besides these two extreme configurations, the
resource owner can decide to adopt other allocation strategies. The analysis
presented in this section can then represent a reference for the definition and
analysis of intermediate configurations.

We note that the structure of the MinNodes strategy has a correspondence
with secret sharing [105]. In (m,d) secret sharing, the goal is to build d shares
of a secret such that at least m of them are necessary to reconstruct a secret.
Given a MinNodes (k, r)-allocation, with k + r shares, the use of a (k + 1,
k + r) secret sharing scheme would then satisfy the requirement that at least
k + 1 nodes have to cooperate to access the resource, tolerating the loss of
up to r − 1 nodes. Compared to the well-known Shamir’s technique for se-
cret sharing [105], the approach we propose shows a significant advantage

73

CHAPTER 3. DECENTRALIZED CLOUD STORAGE 3.4. STRATEGIES

with respect to storage and network capacity. In terms of computational cost,
Shamir’s technique requires to identify the roots of a polynomial, while our
approach requires the application of symmetric encryption algorithms. The
performance of symmetric encryption algorithms is so high, particularly for
algorithms implemented in hardware by the CPU, that the potentially simpler
computational structure of Shamir’s technique does not provide an advantage
and turns out to be slower when considering large resources. However, the
computational cost is in any case a marginal element in this domain. In terms
of storage, Shamir’s approach offers security if each of the shares has the
same size as the secret. With a (k + 1, k + r) secret sharing scheme, there
is therefore the need to store in the network k + r times the amount of plain-
text data, whereas our solution is characterized by the replication factor r. In
terms of the minimum amount of data that has to be accessed by the owner,
Shamir’s solution asks the owner to read k + 1 times the size of the plaintext,
whereas our technique, if the storage nodes support access to portions of the
resource, does not require to access more than the size of the plaintext. We can
then conclude that Shamir’s technique, which is quite interesting for domains
where the secret has a small size (e.g., encryption keys), is not convenient in
the domain considered in this work. When Shamir’s method is used to protect
only the encryption key and then encryption is used to protect the resource,
Shamir’s method can be assumed to be only a key management strategy, mak-
ing encryption of the resource the only protection measure, without offering
the level of protection provided by AONT.

Note also that, for simplicity, we have assumed that the owner can arbi-
trarily split her resource as needed for the definition of a (k, r)-allocation.
However, thanks to its flexibility, our approach can be adopted also when
the encrypted resource is already organized in chunks that cannot be split for
allocation (e.g., blocks resulting from the AONT algorithm adopted), or in
general when slicing is constrained. Indeed, even if in the discussion, for
simplicity, we consider slices of equal size, our approach can be adopted also
if the size varies. Also, slices can contain non-contiguous chunks of the re-
source. Clearly, the number of chunks should be sufficient for the definition
of a (k, r)-allocation (e.g., k + 1 and

(
n
k

)
in our two alternative configura-

tions). If the resource includes fewer chunks, it needs to be padded. If the

74

3.5. GUARANTEES CHAPTER 3. DECENTRALIZED CLOUD STORAGE

resource includes more chunks than necessary, the resource owner can com-
bine the chunks in s slices and apply the chosen allocation function over these
slices. As an example, to define a (3,2)-allocation for a resource organized in
20 chunks using 5 nodes, chunks can be arbitrarily combined to identify 10
slices for allocation. Alternatively, k-protection and r-replication can be ob-
tained by considering each chunk as a different slice and interpreting the allo-
cation function as periodic in s, or simply by randomly allocating the chunks
after the first s (which are the ones necessary to guarantee k-protection). For
instance, a (3,2)-allocation for a resource with 20 chunks using 5 nodes can
be obtained by applying the allocation function in Figure 3.2 twice (on slices
s1, . . . , s10 and s11, . . . , s20), or by using it for slices s1, . . . , s10 while arbi-
trarily allocating slices s11, . . . , s20 at two nodes each.

3.5 Availability and protection guarantees

Parameters r and k introduced in the previous section characterize the degree
of replication and of protection against malicious coalitions of nodes. Such
parameters provide a clean and precise modeling and allow reasoning about
properly setting the number of slices and the number of nodes to be involved
in the allocation. The setting of k and r to provide given security and availabil-
ity guarantees clearly depends on the specific characteristics of the network.
For instance, in a stable network a low number of replicas may suffice to pro-
vide high availability, while in a highly dynamic and non-resilient network a
higher number of replicas should be used to enjoy the same guarantee. In the
same vein, actual protection against possible exposure of a resource to ma-
licious coalitions depends on the nature of nodes involved in the allocation.
Consistently with these observations, we note that a natural way for the re-
source owner to express and reason about availability and protection guaran-
tees is the probability of the resource to become unavailable and the probabil-
ity of a coalition of malicious nodes to jointly possess all the resource slices.
In this section, we illustrate how to derive proper r and k settings to be then
used for splitting resources into slices and for slices allocation, starting from
the aimed guarantee of availability and security expressed in terms of such

75

CHAPTER 3. DECENTRALIZED CLOUD STORAGE 3.5. GUARANTEES

probabilities. Clearly, the probability of a resource to become unavailable,
or exposed to malicious coalitions, depends on the probability of individual
nodes to become unavailable or behaving maliciously. We then introduce the
probability of a single node to fail, and hence to become unavailable, denoted
pu, and the probability of a node to behave maliciously, and hence to par-
ticipate in a malicious coalition compromising protection, denoted pc. We
assume, as common in decentralized systems, the probability pu of failure to
be the same for all nodes and the failure of any node to be not influenced
by the failure of the other nodes. This assumption enables a clean modeling,
which can be taken as a reference for reasoning on different probability dis-
tributions. Since the selection of storage nodes is driven by a pseudorandom
function, we also consider a uniform probability pc of compromise and as-
sume independence of compromise events on different nodes. We introduce
the probability of a resource to become unavailable, denoted Pu, and of being
exposed to a malicious coalition, denoted Pc, when using a (k, r)-allocation.
The analysis will then guide the identification of the values for k and r to be
used to guarantee that Pu and Pc do not exceed a given threshold. We dis-
cuss separately the MinSlices and MinNodes allocation strategies introduced
in the previous section, which, as we will see, exhibit a different behavior
with respect to availability and security guarantees.

3.5.1 MinSlices allocation

Using a (k, r)-allocation with the minimum number of slices, unavailability of
a resource happens when, for any of the k+1 slices composing the resources,
all the r nodes storing the replica of the slice fail. The probability of such an
event to happen is Pu = 1−(1−(pu)r)k+1, where (1−(pu)r) is the probability
that one of the r replicas of a slice is available and, for the assumption on the
independence of the failure events, (1 − (pu)

r)k+1 is the probability that one
replica of each of the k + 1 slices is available. In the same vein, the resource
becomes exposed (and hence a compromise happens and deletion cannot be
guaranteed) when a coalition of malicious nodes collectively possesses all the
k + 1 slices, that is, when the coalition contains k + 1 nodes each possessing
a different slice. The probability of such an event to happen is Pc = (1 −

76

3.5. GUARANTEES CHAPTER 3. DECENTRALIZED CLOUD STORAGE

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

Pu

k

pu = 0.8

pu = 0.6

pu = 0.4

pu = 0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

Pc

k

pc = 0.8

pc = 0.6

pc = 0.4

pc = 0.2

(a) k = 1, . . . , 25, r = 5 (b) k = 1, . . . , 25, r = 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

Pu

r

pu = 0.8

pu = 0.6

pu = 0.4

pu = 0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

Pc

r

pc = 0.8

pc = 0.6

pc = 0.4

pc = 0.2

(c) k = 5, r = 1, . . . , 25 (d) k = 5, r = 1, . . . , 25

Figure 3.5: Probability that the resource is unavailable (a,c) and that it is exposed (b,d) using
a (k, r)-allocation that minimizes the number of slices, with r=5 varying k between 1 and 25
(a,b), and with k=5 varying r between 1 and 25 (c,d)

(1 − pc)
r)k+1, where (1 − pc)

r is the probability that one replica is stored on
a node that is not part of a coalition and, consequently, 1 − (1 − pc)

r is the
probability that one replica is exposed. Since such an exposure must involve
all the k + 1 slices, the probability that a coalition possesses all the slices is
(1− (1− pc)

r)k+1. The following theorem proves such observations.

Theorem 6 Given a set S of slices composing a resource, a set N of nodes
with probability of failure pu and probability of being compromised pc, and a
(k, r)-allocation using the minimum number of slices:

Pu = 1− (1− (pu
r))k+1

Pc = (1− (1− pc)
r)k+1

77

CHAPTER 3. DECENTRALIZED CLOUD STORAGE 3.5. GUARANTEES

Figure 3.5 illustrates how k and r affect the values of Pu (Figure 3.5(a,c))
and Pc (Figure 3.5(b,d)), considering different values of pu and pc, respec-
tively. The values considered for pu and pc are 0.2, 0.4, 0.6, and 0.8. These
values, extremely pessimistic with respect to what can be expected in real
systems, have been chosen to study the behavior of the probabilistic formu-
las. Figure 3.5(a) reports the values of Pu assuming a fixed number r = 5 of
replicas and varying k between 1 and 25. Figure 3.5(c) reports the values of
Pu assuming a fixed k = 5 and varying the number r of replicas between 1

and 25. Figures 3.5(b,d) report the values of Pc in the same settings of Fig-
ures 3.5(a,c). As it can be seen from Figure 3.5(a), Pu increases as the value
of k increases, because the number of nodes used in the allocation increases
and therefore the probability of availability of a larger number of slices de-
creases. Indeed, the number of nodes necessary to reconstruct a resource
grows with k (it is k + 1), and the probability of availability of all the nodes
necessary to reconstruct the resource decreases. However, Pu remains low
if the failure probability of a single node pu is low. Probability Pu instead
decreases as the value of r increases (Figure 3.5(c)), because each slice will
be stored on a larger number of nodes, reducing the risk of unavailability.
Figure 3.5(b) shows that Pc decreases as k increases because the number of
nodes that should be part of a coalition increases, meaning that the probabil-
ity of forming a coalition decreases. Probability Pc increases as r increases
(Figure 3.5(d)), because the number of replicas of each slice increases and
therefore also the probability that one replica is stored on a compromised
node increases.

3.5.2 MinNodes allocation

Using a (k, r)-allocation with the minimum number of nodes, the unavail-
ability of the resource occurs when any combination of r (or more) nodes
becomes unavailable. In fact, regardless of the slices that those nodes store,
such an event causes at least one slice to be unavailable. The probability Pu

that a resource becomes unavailable is then Pu =
k+r∑
i=r

(
k+r
i

)
(pu)

i(1−pu)k+r−i,

where the binomial coefficient
(
k+r
i

)
is the number of all possible combina-

78

3.5. GUARANTEES CHAPTER 3. DECENTRALIZED CLOUD STORAGE

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

Pu

k

pu = 0.8

pu = 0.6

pu = 0.4

pu = 0.2
 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

Pc

k

pc = 0.8

pc = 0.6

pc = 0.4

pc = 0.2

(a) k = 1,. . . , 25, r = 5 (b) k = 1,. . . , 25, r = 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

Pu

r

pu = 0.8

pu = 0.6

pu = 0.4

pu = 0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

Pc

r

pc = 0.8

pc = 0.6

pc = 0.4

pc = 0.2

(c) k = 5, r = 1, . . . , 25 (d) k = 5, r = 1, . . . , 25

Figure 3.6: Probability that the resource is unavailable (a,c) and that it is exposed (b,d) using
a (k, r)-allocation that minimizes the number of nodes, with r = 5 varying k between 1 and
25 (a,b), and with k = 5 varying r between 1 and 25 (c,d)

tions of i nodes over k + r, with i varying in the range r, . . . , k + r, that
can be unavailable; (pu)i is the probability that i nodes are unavailable; and
(1 − pu)

k+r−i is the probability that the remaining nodes (i.e., k + r − i)
are available. In the same vein, any coalition of k + 1 nodes causes an ex-
posure of the resource, regardless of the slices they store. Relying on the
minimum number of nodes, in fact, implies that any coalition of k + 1 nodes
possesses all the slices (Theorem 5). The probability Pc of a compromise is

then Pc =
k+r∑

i=k+1

(
k+r
i

)
(pc)

i(1−pc)
k+r−i, where the binomial coefficient

(
k+r
i

)
is the number of all possible coalitions of i nodes over k + r nodes, with i

varying in the range k + 1, . . . , k + r; (pc)
i is the probability that i nodes

form a coalition; and (1− pc)
k+r−i is the probability that the remaining nodes

79

CHAPTER 3. DECENTRALIZED CLOUD STORAGE 3.5. GUARANTEES

(i.e., k + r − i) are not compromised. The following theorem proves such
observations.

Theorem 7 Given a set S of slices composing a resource, a set N of nodes
with probability of failure pu and probability of being compromised pc, and a
(k, r)-allocation using the minimum number of nodes:

Pu =
k+r∑
i=r

(
k + r

i

)
(pu)

i(1− pu)
k+r−i

Pc =
k+r∑

i=k+1

(
k + r

i

)
(pc)

i(1− pc)
k+r−i

Figure 3.6 illustrates how k and r affect the values of Pu (Figures 3.6(a,c))
and Pc (Figures 3.6(b,d)), considering different values of pu and pc, respec-
tively. The values considered for pu and pc are 0.2, 0.4, 0.6, and 0.8. Fig-
ure 3.6(a) reports the values of Pu assuming a fixed number r = 5 of replicas
and varying k between 1 and 25. Figure 3.6(c) reports the values of Pu assum-
ing a fixed k = 5 and varying the number r of replicas between 1 and 25. Fig-
ures 3.6(b,d) report the values of Pc in the same settings as Figures 3.6(a,c).
From the figures, it is immediate to see that Pu and Pc present a similar be-
havior when adopting a configuration minimizing the number of slices and
of nodes (i.e., Pu increases as k grows and decreases as r grows, while Pc

decreases as k grows and increases as r grows).

3.5.3 Setting k and r

Our modeling of the probability that a resource is not available (Pu) and that
it is exposed (Pc) can be used to set appropriate values for parameters k and
r. To this purpose, fixing the maximum threshold Pmax

u of resource unavail-
ability and Pmax

c of resource exposure, we compute all the configurations of k
and r that guarantee Pu ≤ Pmax

u and Pc ≤ Pmax
c through the formulas in The-

orems 6 and 7. Clearly, the values of k and r for the configurations satisfying
the thresholds depend on the chosen allocation function.

Comparing the evolution of the probability Pu that a resource becomes
unavailable using the MinSlices and MinNodes allocation strategies, varying

80

3.5. GUARANTEES CHAPTER 3. DECENTRALIZED CLOUD STORAGE

0 20 40 60 80 100

2

4

6

8

10

k

r

0 20 40 60 80 100

2

4

6

8

10

k

r

(a) MinSlices,
pu=0.005, pc=0.2

(b) MinNodes,
pu=0.005, pc=0.2

0 20 40 60 80 100

2

4

6

8

10

k

r

0 20 40 60 80 100

2

4

6

8

10

k

r

(c) MinSlices,
pu=0.001, pc=0.5

(d) MinNodes,
pu=0.001, pc=0.5

0 20 40 60 80 100

2

4

6

8

10

k

r

0 20 40 60 80 100

2

4

6

8

10

k

r

(e) MinSlices,
pu=0.05, pc=0.1

(f) MinNodes,
pu=0.05, pc=0.1

Figure 3.7: MinSlices and MinNodes (k, r)-allocations that guarantee Pu ≤ 10−7 and Pc ≤
10−6 with different values for pu and pc

81

CHAPTER 3. DECENTRALIZED CLOUD STORAGE 3.5. GUARANTEES

k (Figure 3.5(a) and Figure 3.6(a)), we can easily see that MinSlices is more
robust against node failure (i.e., Pu increases slowly) than MinNodes. This
is due to the fact that even if the number of nodes involved in the allocation
increases in both configurations, with an allocation that minimizes the number
of nodes the impact of a node failure on the availability of the resource is
significant. A similar comment applies when comparing how Pu evolves in
the two configurations varying the number r of replicas (Figure 3.5(c) and
Figure 3.6(c)). In this case, the decrease of Pu with MinSlices is faster than
the decrease of Pu with MinNodes. Therefore, we can conclude that, for
configurations with the same values for r and k, MinSlices exhibits higher
availability.

Comparing the evolution of the probability Pc that a resource is exposed
due to a coalition of at least k + 1 nodes using MinSlices and MinNodes al-
location strategies, varying k (Figure 3.5(b) and Figure 3.6(b)), we can easily
see that MinNodes is more robust (i.e., Pc decreases faster) than MinSlices.
This is due to the fact that, with an allocation that minimizes the number of
nodes, the probability of forming a coalition of at least k+1 nodes among the
k + r nodes is smaller than the probability of controlling at least one of the r

nodes for each of the k + 1 slices of the allocation that minimizes the slices.
A similar comment applies when comparing how Pc evolves in the two con-
figurations varying the number of replicas (Figure 3.5(d) and Figure 3.6(d)).
The increase of probability Pc using MinSlices is faster than the increase of
Pc using MinNodes, because it is more difficult to control at least k + 1 of
the k + r nodes than to control at least one node in each of the distinct k + 1

groups of r nodes. Therefore, we can conclude that, for configurations with
the same values for r and k, MinNodes exhibits higher security.

When the resource owner has chosen the preferred allocation function,
given the maximum threshold Pmax

u of resource unavailability and Pmax
c of re-

source exposure, different configurations of k and r guarantee that Pu ≤ Pmax
u

and Pc ≤ Pmax
c . Among all these configurations, the ones with low replica-

tion factor (r) require less storage and have lower economic costs, while the
ones involving a limited number (n) of nodes enjoy simplicity in the man-
agement of the system and better performance of access operations (less con-
nections have to be established). Figure 3.7 considers three different net-

82

3.5. GUARANTEES CHAPTER 3. DECENTRALIZED CLOUD STORAGE

work configurations, characterized by a different probability pu for single
nodes to fail and a different probability pc to behave maliciously, and il-
lustrates the configurations of k and r satisfying the above thresholds us-
ing MinSlices and MinNodes allocation strategies. In the figure, the orange
area on the top-left represents the configurations of k and r that satisfy the
availability requirement (i.e., Pu ≤ 10−7), while the blue area on the bottom-
right represents the configurations that satisfy the security requirement (i.e.,
Pc ≤ 10−6). We chose these thresholds because the overall availability guar-
antee (Pmax

u = 10−7) is the same declared in the specification of the system
used in our experiments (i.e., Storj). We chose a higher value for Pmax

c than
Pmax
u because protection against coalitions represents a security layer adding

to the protection already offered by encryption. The intersection between the
orange and blue areas represents configurations that provide both availabil-
ity and security guarantees within the thresholds set by the owner. Among
these configurations, the one located on the left/bottom corner of the inter-
secting area is the one to be preferred as the number of nodes and replicas is
minimum.

Figures 3.7(a,b) consider nodes with pu = 0.005 and pc = 0.2. The
optimal configuration for MinSlices it is k = 26 and r = 4 (i.e., n = 108),
while for MinNodes allocation is k = 12 and r = 5 (i.e., n = 17). The
second allocation, although more expensive on storage, due to one additional
replica, considerably reduces the number of nodes involved in the storage of
the resource compared to the adoption of the first allocation function. Our
analysis demonstrates that this is a general behavior: MinNodes requires the
same (or a slightly higher) number r of replicas and a significantly lower
number n of nodes than MinSlices. This observation is confirmed by the
extreme scenarios illustrated in Figures 3.7(c,d), considering highly reliable
(pu = 0.001) but lowly trusted (pc = 0.5) nodes, and in Figures 3.7(e,f),
considering unreliable (pu = 0.05) but relatively trusted (pc = 0.1) nodes.
The optimal configurations in Figures 3.7(c,d) are k = 100 and r = 3 for
MinSlices (i.e., n = 303), and k = 27 and r = 4 for MinNodes (i.e., n =

31, meaning that the number of nodes is ten times smaller). The optimal
configurations in Figures 3.7(e,f) are k = 10 and r = 9 (i.e., n = 99) for
MinSlices, and k = 18 and r = 7 (i.e., n = 25) for MinNodes.

83

CHAPTER 3. DECENTRALIZED CLOUD STORAGE 3.6. EXPERIMENTS

Our analysis confirms that, for a wide range of values for Pu and Pc and
assumptions on the node availability pu and compromise risk pc, our approach
is able to identify a configuration of r and k with manageable complexity (i.e.,
a reasonable number of replicas and of nodes). We note that, even when r and
k grow, the minimum number of slices composing a resource remains limited.

3.6 Implementation and experiments

To verify the benefit of our proposal we applied it into an existing DCS
network. Among the existing DCS networks (e.g., Storj [115], Sia [112],
IPFS [23], and Maidsafe Safe-network [71]), we selected Storj since, to the
best of our knowledge, it is currently the most advanced and supported DCS.
The market valuation of the cryptocurrencies [40] associated with these DCSs
(Storj for Storj, Siacoin for Sia, Filecoin for IPFS, and Maidsafecoin for
Maidsafe) supports the importance that these solutions are rising: at the date
of submission, the global market capitalization of these initiatives is more
than 400 million dollars. There are currently more than 100,000 nodes offer-
ing capacity in the Storj network, with more than 100PB of data available and
a planned goal of 10 times growth in 2019.

Storj is a protocol that coordinates a decentralized network to create and
enforce storage contracts between peers. Each peer can negotiate contracts
with other peers, upload and download data from other peers, and periodically
verify the availability and integrity of her data. Storj leverages a Distributed
Hash Table (DHT) to connect parties interested in forming a storage con-
tract. In the discussion, we maintain the terminology of our model and refer
to parties outsourcing their resources to the decentralized network as owners
(renters in Storj), and to parties offering storage space in exchange for a re-
muneration in a digital currency as storage nodes (farmers in Storj). Bridge
nodes support the correct operations in the system and can take responsibility
for the verification of the integrity and availability of resources. In the fol-
lowing, we describe the technical choices characterizing our implementation
(Section 3.6.1), the experimental results (Section 3.6.2), and a few considera-
tions about the impact produced by fine granularity retrieval (Section 3.6.3).

84

3.6. EXPERIMENTS CHAPTER 3. DECENTRALIZED CLOUD STORAGE

3.6.1 Implementation

The enforcement of MinSlices and MinNodes allocation strategies in Storj
required changing the client library of the open source implementation. In
particular, Storj currently offers three main clients, one written in C that must
be built from source, one written in JavaScript and designed to be executed by
a node.js runtime, and one written in Python and compatible with any Python
environment. We integrated our technique within the Python implementation,
also for easy integration with the implementation of Mix&Slice, which in
addition of being an AONT-encryption supports other protection requirements
(e.g., encryption-based access control and policy revocation). The design of
Storj makes the client independent from the bridge and the storage nodes.
Our work on the Python client allowed us to access the services of the whole
network.

We implemented the MinSlices and MinNodes allocation strategies in the
client and assigned slices (in the Storj terminology all the slices allocated to
a node form a shard) to nodes. The performance of shard creation and re-
source reconstruction is orders of magnitude greater than the throughput of
storage nodes in the Storj network (Mix&Slice operates at several hundred
MB/s, whereas the maximum throughput we observed in Storj is around two
orders of magnitude lower). In our experiments, we focused on evaluating the
time required to complete the access request since the time requested by de-
cryption does not have significant impact. We note that the use of the AONT
forces each access request to be able to proceed with a client-side decryption
only when the complete resource is available on the client. Should this be a
problem for the specific application domain (e.g., resources are very large),
mitigation can be provided by splitting the large resource and applying our
approach to the resulting (smaller) chunks. Each chunk can then be down-
loaded and decrypted independently. This would reduce the access times to
resources, but it may also delay the completion of the transfer, because the
overhead for the management of a greater number of access requests reduces
the effective bandwidth. The experiments confirm this observation (see Sec-
tion 3.6.2), as they show that there is a performance benefit in managing large
resources.

85

CHAPTER 3. DECENTRALIZED CLOUD STORAGE 3.6. EXPERIMENTS

3.6.2 Experimental results

To evaluate the performance of the MinSlices and MinNodes allocation strate-
gies, we introduced into the client a module that activates a number of paral-
lel threads (in the considered configuration, we used 10 concurrent threads)
to open access requests to the storage nodes. In Storj, access requests from
the owner involve both storage nodes and bridge nodes. In fact, each time
an owner needs to retrieve a shard, she makes a request to the bridge, which
returns a token together with the IP address of the node storing the required
shard (note that this access request is recorded and a crypto-currency payment
is created by the owner for the node). The token is then used by the client as
a parameter of an HTTP request directed to the node. Our experiments con-
sidered the performance of the system in the management of the dialogue be-
tween owner and node. In particular, we compared the access times observed
for the two allocation strategies, varying the resource size.

An important restriction of the current implementation of Storj is that re-
quests for shards are atomic and it is not possible to access only a specific
portion of a shard managed by a node. This restriction cannot be removed
operating only on the client, as it has a great impact not only on storage nodes
but on the overall structure of the system. We then implemented the access
requests for the MinSlices and MinNodes techniques as follows. For MinN-
odes, we implemented concurrent requests to the nodes. As soon as a node
completes the delivery of its shard, a new request is started for another shard.
The request is considered completed as soon as the client has received k + 1

complete shards. For MinSlices, for each shard a number t of parallel threads
(t ≤ r) are activated to manage a request to distinct nodes managing the same
shard (which coincides with a slice for this allocation strategy), for a number
of shards compatible with the number of concurrent threads (e.g., in the ex-
periments we set t = 2 and we had 5 shards processed at the same time by the
10 threads). As soon as a shard is fully delivered to the client, the group of t
threads is dedicated to another missing shard.

Figure 3.8 reports the results of our experiments, where we used resources
of size varying from 1MB to 1GB. Figure 3.8(a) shows the time required for
the completion of the access requests and Figure 3.8(b) shows the through-

86

3.6. EXPERIMENTS CHAPTER 3. DECENTRALIZED CLOUD STORAGE

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

1MB 4MB 16MB 64MB 256MB 1GB

T
im

e
 (

s
)

Resource Size

Min_slices

Min_nodes

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

1MB 4MB 16MB 64MB 256MB 1GB

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Resource Size

Min_slices

Min_nodes

(a) (b)

Figure 3.8: Completion time (a) and overall throughput (b) in the MinSlices and MinNodes
allocation strategies

put in terms of bandwidth. The graphs include two curves, one for MinSlices
allocation, with k = 26 and r = 4, and one for MinNodes allocation, with
k = 12 and r = 5, which correspond to the configurations considered in Fig-
ure 3.7(a) and Figure 3.7(b), respectively. The graphs present the average and
the standard deviation of the values obtained with 10 executions. We note that
the MinNodes strategy exhibits a moderate benefit compared to the MinSlices
strategy. The benefit derives from the savings in overhead associated with
the interaction with multiple nodes. An element that also contributes to the
throughput is the natural variety of performance in nodes, with some being
faster than others. The MinNodes strategy works well as long as the number
of nodes with limited performance (slow nodes) is less than r − 1 and there
are at least k+1 nodes with good performance (fast nodes) serving the shard.
For MinSlices, it is sufficient to have one of the k + 1 shards assigned to a
group of nodes where the t nodes contacted in parallel happen to be slow to
suffer from a significant delay in the access.

3.6.3 Further considerations

We noted that a limitation of the current implementation of the Storj node is
that the request for a shard is atomic. The realization of a mechanism that
permits to manage partial access requests would offer the opportunity for a
significant improvement in the management of the access requests. For a

87

CHAPTER 3. DECENTRALIZED CLOUD STORAGE 3.6. EXPERIMENTS

generic server in a file sharing protocol this can be expected to be a relatively
simple change in the server code; for a DCS system, this change would re-
quire a revision of the model used for the remuneration of access requests, as
follows. The bridge should not consider each request received by the owner
as an access to the complete resource (which also implies a payment to access
the whole resource), but it should return to the owner the IP address and the
authorization token of the node storing the shard. The owner and the node
should then commence a protocol in which the owner issues signed confirma-
tions in exchange of pieces of the resource. These confirmations can then be
submitted to the bridge to receive the payment. Allowing the owner to pay
a node only for the downloaded portion of the resource results in better per-
formance and stronger competition among the nodes; best performing nodes
would be preferred by the owner and would serve more traffic, receiving a
correspondingly greater remuneration for their storage service.

The flexible structure of the MinNodes assignment would be particularly
suited to this model. Under the assumption that nodes exhibit a high variabil-
ity in access times, each slice could be retrieved by any of the r nodes storing
it, with the possibility to adapt the amount of data transferred from each node
depending on the response time and in case a group of r nodes happens to be
all composed of slow nodes, the impact would be limited to the single or few
slices that cannot be retrieved from fast nodes.

3.6.4 A note on DCS dynamicity

Decentralized cloud storage networks rely on voluntary effort of a consider-
able number of (possibly untrusted) nodes, which may dynamically join and
leave the network at any time. In [17] we have studied how to combine the
method presented in this chapter with Fountain Codes [80, 82, 106] to better
exploit the dynamicity of decentralized cloud storage networks.

Fountain codes are a class of erasure codes preventing that the loss of one
of the transmitted or stored blocks of a resource causes a data loss. Fountain
codes, unlike other erasure codes (e.g., Reed-Solomon [100]), offer proba-
bilistic reconstruction guarantees, meaning that with a probability p < 1, k
of the n slices are sufficient for reconstructing the resource. The reconstruc-

88

3.7. RELATED WORK CHAPTER 3. DECENTRALIZED CLOUD STORAGE

tion probability p exponentially increases by retrieving additional shards. Al-
though probabilistic, fountain codes have two main characteristics that allow
us to profitably use them in the DCS context. First, they are rateless, that is,
using these codes it is possible to create a new (i.e., different from each other)
shard on the fly and therefore the number n of encoded shards is not fixed a
priori. Second, each shard depends on a subset of (and not on all) the k origi-
nal fragments of the resource and then only a subset of the original fragments
are needed for generating a new shard.

The rateless characteristic of fountain codes allows the adaptive adjust-
ment of the number of shards available for reconstructing a resource, thus
impacting the availability and security guarantees. We use this characteristic
in such a way that, when nodes go offline and the availability goes below a
given threshold, we generate a new slice. Analogously, when the risk of con-
fidentiality exposure is above a given threshold due to the presence of a high
number of slices, we re-encrypt the resource and generate a new set of slices.

In DCS systems we can rely on the coordinator node to verify that the
state is compliant with the thresholds. This can be achieved by offloading
Proof-of-Retrievability [29] challenges and responses to the coordinator node.
The challenges will then be issued to the storage nodes, and their responses
compared with the expected ones. In case a response does not match, the
coordinator will select another storage node and move the slice accordingly.
The next chapter illustrates how the role of the coordinator can be removed
by leveraging delegated challenge-response protocols.

3.7 Related work

RAID [94] is one of the main contributions aimed at the construction of reli-
able systems. RAID is normally deployed on local drives. With the advent
of the cloud, RAID has been extended to take adversarial failures into con-
sideration. Along this line of works, HAIL (High-Availability and Integrity
Layer) [28] extended RAID with multiple cloud storage providers and a Proof
of Retrievability (PoR) [29] scheme to verify that a provider still holds a cer-
tain piece of information. HAIL is however not well-suited for DCS sys-

89

CHAPTER 3. DECENTRALIZED CLOUD STORAGE 3.7. RELATED WORK

tems, where the nodes are less reliable than well-established cloud service
providers. Also, HAIL does not take into account the possibility of adversar-
ial users trying to reconstruct the resources for their own personal profit. The
works closest to ours are the solutions aimed to offer reliability and security of
data in DCS. Many DCS networks that have recently been proposed, already
include a certain degree of security guarantees. (i.e., protection against mali-
cious parties jointly collecting all the slices composing a resource). Among
them, Storj [115] and Sia [112] adopt client-side encryption and do not pro-
tect the outsourced data against coalitions of malicious nodes. SAFE Net-
work [63] instead adopts a self-encryption technique: the resource is divided
into shards and a weak AONT among 3 shards is applied before uploading
them. In [95] the design of the SAFE Network and the possible attack vec-
tors are analyzed. The solution proposed in [63, 95] is predetermined and the
interaction between redundancy and security is not analyzed. Our proposal
could be applied to improve the flexibility and security of these networks.

Another line of works is security of outsourced data (e.g., [2, 4, 91, 109]),
which can be improved using AONT. Existing solutions however consider
domains different from DCS. We have discussed before the proposal in [14],
where the goal was to support policy evolution for outsourced resources where
the access control policy is mapped to an encryption policy. Another approach
using AONT and Reed-Solomon codes is AONT-RS [101]. Apart from the
use of AONT, there is a limited similarity with the structure of our proposal.
In fact, the work in [101] does not explicitly consider the structure of cur-
rent DCS systems and does not provide an approach for the identification of
the parameters to use in the configuration of the system. An evolution of the
work on AONT-RS is CAONT-RS [76] that has been used by CDStore [75],
which also uses two-stage deduplication to achieve both bandwidth and stor-
age savings and robustness against side-channel attacks, while DepSky [24]
addresses the privacy requirements using Shamir’s scheme. All these propos-
als consider cloud-of-clouds environments, which see the integration of the
services of cloud providers. Their adaptation to the DCS scenario requires
significant attention and a model for the identification of the parameters to
use in the configuration of the system. Also, the interaction between security
and availability is not analyzed.

90

3.8. CONCLUSIONS CHAPTER 3. DECENTRALIZED CLOUD STORAGE

A precursor of DCS is represented by P2P systems. The P2P system closer
to our proposal, which considers reliability and security, is Tangler [113]. The
goal of Tangler is censorship resistance, which is a potential application of
DCS, but not its main goal. Several of the assumptions at the basis of the de-
sign of Tangler have also been considered in the realization of DCS systems.
A crucial difference between Tangler and our proposal is that Tangler uses
Shamir’s method, so it is quite expensive in terms of storage and bandwidth.
Also, it does not aim at combining availability and confidentiality require-
ments in data allocation.

The novelty of our approach with respect to all above-mentioned tech-
niques is the combination of AONT with different strategies for slicing and
allocating resources in DCS systems and the joint consideration of security
and availability guarantees. Our analysis of the characterization, interplay,
and settings of the parameters guiding slicing and allocation can be used by
all existing solutions to enhance their security and availability properties.

3.8 Conclusions

We presented an approach for providing effective secure protection to re-
sources in decentralized cloud storage services. Our approach enables re-
source owners to protect their resources and to control their decentralized
allocation to different nodes in the network. We investigated different strate-
gies for splitting and distributing resources, analyzing their characteristics in
terms of availability and security guarantees. We also provided a modeling of
the problem enabling owners to control the granularity of slicing and diver-
sification of allocation to ensure aimed availability and security guarantees.
Enabling effective control for resource owners, our solution helps in remov-
ing natural reluctance due to security concerns and moves a step forward in the
realization of novel services effectively benefiting from technological evolu-
tion. Our work leaves room for extensions, such as the consideration of error
correcting codes and information dispersal algorithms to reduce the spatial
overhead.

91

4

I Told You Tomorrow:
Practical Time-Locked Secrets

using Smart Contracts

Decentralized networks can rely on an honest party - the coordinator node - to
verify that the allocation properties are respected. If the coordinator node no-
tices that a node is offline or failing to prove the possession of a resource slice,
it can reassign the slice to another node, so that the security and availability
guarantees are still enforced.

When dealing with fully distributed networks, instead, it is pivotal to be
able to detect misbehaving nodes autonomously. When a misbehaving node
is detected, the network itself can reconstruct the slices that were previously
assigned to it (for example by leveraging erasure coding techniques) and re-
distribute them to other nodes. This process has to work even when the data
owner is offline and without imposing trust or honesty assumption on any of
the involved parties.

To address this problem, this chapter introduces I Told You Tomorrow
(ITYT), a novel way of deploying Time-Locks based on smart contracts. A
Time-Lock enables the release of a secret at a specific future point in time.
Most current research proposals bind the recovery of the secret to the solu-

93

CHAPTER 4. I TOLD YOU TOMORROW 4.1. INTRODUCTION

tion of cryptographic puzzles. These solutions, however, are impractical, as
solving the puzzle requires a significant computational effort and provides
no timing guarantees. Our Time-Lock technique can be used to implement
delegated challenge-response protocols that, in turn, can be used to extend
the data confidentiality and retrievability properties discussed in Chapter 3 to
fully-distributed systems. ITYT relies on blockchain to measure the elapse of
time, and it combines threshold cryptography with economic incentives and
penalties, to effectively replace cryptographic puzzles.

We implemented a prototype of ITYT on top of the Ethereum blockchain.
Our prototype leverages secure Multi-Party Computation to avoid any single
point of trust. We also analyzed resiliency to attacks in the context of ra-
tional adversaries. The experiments demonstrate the low cost and resource
consumption associated with our approach.

4.1 Introduction

Humans have always been trying to monitor the passing of time and to hand
down information for posterity. The 1989 Oxford English Dictionary [45]
defines a time capsule as: “a container used to store for posterity a selection
of objects thought to be representative of life at a particular time”.

After storing documents and memories inside the time capsule, they are
generally buried underground, sometimes even sent out to space [64]. Another
interesting application of time capsules is to unconditionally reveal secrets at
a future date. Starting from the 90’s, researchers have been designing tech-
niques to create a digital counterpart of the physical time capsule [87] and
they named these techniques Time-Locks.

A Time-Lock (TL) is a primitive that implements the following scheme: a
data owner entrusts a notary with a secret to be disclosed at a future time; the
notary keeps the secret private until then; and finally, the notary discloses it
publicly. Once the notary has been entrusted with the secret, the owner is no
longer needed for disclosure to happen. Such primitive can be used in many
real-world scenarios, such as voting, inheritance management, and delegated
challenge-response protocols.

94

4.1. INTRODUCTION CHAPTER 4. I TOLD YOU TOMORROW

Notaries [65] [99] are not suitable for all the scenarios [1], as they require
the owner to completely entrust a single third party. Therefore, cryptographers
have been designing encryption techniques, known as Time-Lock Encryption
(TLE) [87], that enable the deployment of Time-Lock Puzzles [27,83]. In the
TLE setting, the sending party (i.e., the owner) can encrypt a secret so that
the receiving party is required to perform multiple decryptions to recover the
secret. The number of times the decryption algorithm has to be run can be
tuned by the sending party during the encryption process. As long as the time
to run the decryption algorithm can be considered approximately constant, it
is possible to protect a secret for arbitrarily long periods of time. In other
terms, TLE can be used to create Time-Locks. Yet, it is worth noting that the
disclosure time is not fixed, but it depends on when the decryption process
starts.

The first TLE scheme was proposed by Rivest, Shamir, and Wagner [104].
The scheme relies on a trapdoor function so that the receiver has to undergo
a computing effort that is orders of magnitude greater compared to the one of
the sending party. Their approach also imposed the decryption algorithm to
be executed in inherently sequential order. Such kinds of techniques are also
known with the name Proof of Sequential Work (PoSW) [38, 84].

An alternative to the use of trapdoor functions is the use of weak hash-
chains [31], specifically, it requires the receiver to brute-force a chain of weak
hashes to obtain the secret. The reason a chain is used in place of a single
stronger hash is that it permits to reduce the variance associated with the time
of the decryption process. However, in this setting the decryption process can
be parallelized, thus the estimated disclosure time is far less reliable. These
approaches are often associated with Proof of Work (PoW) [48] algorithms.

Yet, two aspects of TLE make them impractical. First, the owner has to
make assumptions on future computing power. This is far from trivial. As
an example, Rivest’s LCS35 time-lock puzzle [103], whose decryption time
was estimated to be 35 years, was cracked in 2019 in just 2 months using
dedicated hardware [39]. Secondly, TLE schemes require the receiving party
to run the decryption procedure continuously for a long time, which poses a
question about incentives.

95

CHAPTER 4. I TOLD YOU TOMORROW 4.1. INTRODUCTION

Enforcing time Disclosure time

Trusted Third Party

Time-Lock Encryption

I Told You Tomorrow

encryption
decryption

owner

decrypting party

release
setupowner

third party

entrusting the third party

reconstruct

owner

shareholders

no trust required

economic incentivesMPC

MPC

Figure 4.1: Activities comparison for subjects involved in different TL approaches

Our approach. In this chapter, we present a practical Time-Lock protocol
named I Told You Tomorrow (ITYT), based neither on trust assumptions nor
on cryptographic puzzles.

The basic idea of our approach is to first split a secret into shares using
threshold cryptography (i.e., Shamir’s Secret Sharing [105]), and assign them
to users so that no one can recover the secret unless k-of-n shares are avail-
able. To ensure the TL behavior, we rely on economic incentives and penalties
enforced by a smart contract. The contract rewards users for revealing their
share only after the disclosure time and penalizes any other misbehavior. Ra-
tional users will always comply with the protocol, as we constraint that only
correctly behaving is economically convenient, thus effectively deploying a
distributed time-lock mechanism.

As rewards and penalties are associated with the correct management of
the shares, it is important to confidentially generate and distribute them, even
in the presence of a dishonest secret’s owner. In our prototype, we address this
by using secure Multi-Party Computation (sMPC). We show a comparison
between ITYT and other Time-Lock techniques in Figure 4.1.

96

4.2. BACKGROUND CHAPTER 4. I TOLD YOU TOMORROW

� Trusted Third Party benefits from a short setup time but relies on a
strong trust assumption.

� Time-Lock Encryption does not depend on trust assumptions, but it re-
quires the receiving party to continuously execute the decryption rou-
tine from enforcing till disclosure time.

� I Told You Tomorrow allows the owner of a secret to practically dis-
close it at a future point in time without requiring her to take part in the
disclosure protocol. It relies only on economic incentives.

The main contributions of this chapter can be summarized as follows.

1. We define a practical and abstract method to deploy Time-Locked se-
crets on the blockchain by leveraging an economic model in which ev-
ery actor (or coalition of them) has an expected negative payoff associ-
ated with any possible misbehavior.

2. We address the problems that arise when combining secure Multi-Party
Computation and protocols based on economic incentives and penalties.

3. We describe how to technically realize an implementation based on the
Ethereum blockchain [116] and the FRESCO secure Multi-Party Com-
putation framework [41], characterized by low overhead and limited gas
cost of execution.

4.2 Background

Threshold Cryptography Threshold cryptography [105] enables the
owner of a secret to share it among a group of participants. In a k-of-n thresh-
old scheme, n shares of the secret are created and, usually, one is given to
each participant. To reconstruct the secret, at least k different shares have to
be combined. Hence, the advantages of threshold cryptography are (i) distri-
bution of trust, and (ii) fault tolerance.

97

CHAPTER 4. I TOLD YOU TOMORROW 4.2. BACKGROUND

MPC

users

secret

owner

seed seed
smart contract

Figure 4.2: I Told You Tomorrow (ITYT) reference diagram

Secure Multi-Party Computation A secure Multi-Party Computation
(sMPC) protocol [111, 117] is a cryptographic protocol that allows multiple
parties to jointly compute a function over their inputs while keeping them
private. Current sMPC frameworks are able to execute binary or modular
arithmetic algorithms computed among several parties (even with dishonest
majority) by leveraging semi-homomorphic encryption [42, 69] and oblivious
transfer [68, 98].

Smart contracts A blockchain is an append-only list of blocks linked to-
gether via cryptographic properties. The blocks in the blockchain are non-
mutable and are used to keep a permanent history of transactions. Smart
contracts [107] are programming frameworks built on top of blockchains. A
smart contract permits to program tamper-proof protocols whose outcome is
verifiable by the whole network. We rely on smart contracts to pay incen-
tives, trigger penalties, and in general to enforce the correct execution of our
scheme without the need of a trusted party. Specifically, our approach makes
use of the time and hash primitives, which are used to conditionally execute

98

4.3. THE ITYT PROTOCOL CHAPTER 4. I TOLD YOU TOMORROW

actions based on time and submitted data, respectively. We remark that the
time primitive differs from TL in that it does not keep any data confidential.

Rational adversaries A malicious adversary [59] is someone who is will-
ing to perform any action to attack a protocol. A rational adversary [55],
instead, subverts the protocol only if it is economically convenient. Modeling
the participants as rational enables the use of game theory concepts to ana-
lyze cryptographic protocols [6, 8, 32]. ITYT models all the participants as
rational, and it does not rely on any trust or honesty assumption on them.

4.3 The ITYT protocol

ITYT is an instance of the TL abstraction: a mechanism that keeps a secret
S private until its disclosure time td and publishes it afterward. ITYT imple-
ments TL by distributing the secret, provided by the owner, among several
users (named shareholders, each obtaining a share h), so that a single user
can not see S before the disclosure time td.

ITYT leverages economic incentives and penalties to ensure that (i) each
user keeps its share secret until td, and (ii) users disclose the shares to re-
construct the secret after td. ITYT achieves practical Time-Locks as a con-
sequence of the rational economic behavior of the involved parties (see Sec-
tion 4.4).

4.3.1 Definitions

Principals

We denote by U the set of users that take part in an instance of ITYT. Addi-
tionally, we denote by SC the set of the smart contract identifiers. We then
denote by P the set of principals consisting of U ∪ SC.

Wallets

Each principal p ∈ P is associated with a wallet wlt(p), accessible only by p,
that can be used to receive or issue payments.

99

CHAPTER 4. I TOLD YOU TOMORROW 4.3. THE ITYT PROTOCOL

Protocol parameters

This table defines all the parameters that characterize an ITYT instance.

S secret
V value of the secret
hi share of the secret issued to the i-th shareholder
n number of shareholders
k number of shares needed to reconstruct S
td disclosure time
tterm termination time
PO pawn deposited by the owner
BH bid deposited by the shareholder
RH reward paid to the shareholder in case of success
Wh reward paid when whistleblowing a share
WS reward paid when whistleblowing the secret

Smart Contract Data

The ITYT smart contract is a data structure with functions. Its initialization
and functions will be described in Section 4.3.3 and 4.3.4 respectively. The
data structure is composed by the following entries. Moreover, we will use
the notation sc.x to refer to the smart contract variable x.

PO, BH economic pawn and bids
td, tterm, n, k technical parameters
RH, WS , Wh economic rewards
[shares] array of deposited shares
CS commitment of the secret
[Ch] array of share commitments
state state of the ITYT protocol
[states] array of states for each share
num pending number of pending shareholders
num disclosed number of disclosed shares

100

4.3. THE ITYT PROTOCOL CHAPTER 4. I TOLD YOU TOMORROW

Primitives

We now define the primitives used in the ITYT smart contract algorithms.

� time(): returns the current time as witnessed by the blockchain (gen-
erally defined in terms of block height).

� hash(d): returns the result of the application of a chosen crypto-
graphic hash function over the data d.

� pay(p1, p2, v): transfers v from wlt(p1) to wlt(p2).

� allow withdraw(sc, p, v, predicate): allows principal p to with-
draw the amount v from wlt(sc), if predicate holds. The predicate can also
involve time conditions.

� generate shares(S, [users]): generates the shares h1, . . . , hn us-
ing k-of-n secret sharing [105], and it securely distributes them to the parties.
The primitive guarantees that the (a) i-th shareholder is the only principal who
learns the share hi, and (b) the owner learns only the commitment hash(hi),
for all the shares. We discuss in Section 4.5 how our prototype implements
this primitive by leveraging sMPC.

� initialize sc([params]): instantiates an ITYT smart contract,
with parameters [params], and deploys it to the blockchain. The primitive is
executed by the owner and returns the smart contract identifier sc ∈ SC.

4.3.2 Roles

In ITYT, each user u ∈ U plays one of the following roles: owner, share-
holder and whistleblower.

� Owner: An owner O is someone willing to delegate the disclosure of
a secret S to a Time-Lock, so that the owner is not involved in the disclosure
of S at disclosure time td. The owner O sets up the TL as well as the corre-
sponding parameters. In particular, O sets (i) n the total number of shares h
of S, (ii) k, the number of shares needed to recover S, (iii) the disclosure time
td, and (iv) all the bids and the rewards that define the instance.

� Shareholder: A shareholder H is entrusted by the owner O to keep
a share h of the secret S confidential until td, and to publicly disclose it af-
terward. In exchange for her service, H will receive a reward paid by the

101

CHAPTER 4. I TOLD YOU TOMORROW 4.3. THE ITYT PROTOCOL

Algorithm 1 Protocol initialization (executed by the owner)

input
[params] economic values of the ITYT instance
S secret
O user identifier of the owner
[H1, . . . ,Hn] list of shareholder identifiers

1: procedure INIT([params],S,O, [H1, . . . ,Hn])
2: sc← initialize sc([params]) . Create sc
3: pay(O, sc, sc.PO) . Transfer owner’s pawn to sc
4: Ch ← generate shares(S, [O,H1, . . . ,Hn])
5: sc.CS ← hash(S) . Set secret commitment
6: sc.state← PENDING
7: for i← 1, n do . Set share commitments
8: sc.Ch[i]← Ch[i]
9: sc.states[i]← PENDING

10: end for
11: sc.num pending ← n
12: sc.num disclosed← 0
13: return sc . The smart contract id
14: end procedure

smart contract whenever the following two conditions hold: (i) her share h is
disclosed only after td, and (ii) the secret S is not revealed before td.

� Whistleblower: A whistleblowerW reports misbehavior of other par-
ties in return for economic incentives. Whenever W possesses a share h or
the secret S before td,W can submit it and receive a reward.

4.3.3 Smart contract setup

We assume that the owner already selected the shareholders that will take part
to the TL instance1. To start the setup, the owner instantiates a smart contract,
sc using initialize sc([params]), where [params] are the desired eco-
nomic parameters. Then, by collaborating with the shareholders, she executes
the generate shares primitive and updates sc with the commitments of

1 How to randomly choose competing players in adversarial settings such as blockchains
has already been addressed by other publications [47, 90].

102

4.3. THE ITYT PROTOCOL CHAPTER 4. I TOLD YOU TOMORROW

Algorithm 2 Shareholder commitment to participate in ITYT

input
sc smart contract identifier
i index of the current shareholder
Hi user identifier of the i-th shareholder

. precondition: Hi checks that hash(hi) = sc.Ch[i]

1: procedure PARTICIPATE(sc, i,Hi)
2: if sc.state = PENDING then
3: if sc.states[i] = PENDING then
4: pay(Hi, sc, sc.BH)
5: sc.states[i]← PAID
6: sc.num pending − = 1
7: if sc.num pending = 0 then
8: sc.state← LOCKED
9: end if

10: end if
11: end if
12: end procedure

the secret and of the shares. She also transfers the amount PO to sc, used to
pay the rewards. The steps are illustrated in Algorithm 1.

A shareholderH is incentivized in taking part in the TL by the possibility
of earning a reward RH. Once each shareholder gets the share, she verifies
that the corresponding commitment written into sc matches. If so, she agrees
to deposit her bid, BH (< RH). This process is shown in Algorithm 2. As
soon as all the shareholders have executed this algorithm, the state of the in-
stance is set to LOCKED, and the TL is active. If any party does not commit
before a defined deadline, the deposited funds are returned to their propri-
etaries and the instance setup aborts. This will be discussed with more details
in Section 4.5.

The algorithms do not check for the economic parameters to be well-
formed (see Section 4.4). As all the parameters are public and immutable,
a malformed game will not be played by any participant, in the same way as a
lottery whose top prize is worth less than the ticket price will not sell tickets.

103

CHAPTER 4. I TOLD YOU TOMORROW 4.3. THE ITYT PROTOCOL

Algorithm 3 SC function to whistleblow a share before td

input
sc smart contract identifier
i index of the whistleblown share
hi the i-th share to be whistleblown

1: procedure WHISTLEBLOWSHARE(sc, i, hi)
2: if sc.state = LOCKED and time() < sc.td then
3: if sc.states[i] = PAID then
4: if hash(hi) = sc.Ch[i] then
5: sc.shares [i]← hi

6: sc.states[i]← WHISTLEBLOWED
7: sc.num disclosed + = 1
8: if sc.num disclosed = sc.k then
9: sc.state← FAILED

10: end if
11: pay(sc, caller, sc.Wh)
12: end if
13: end if
14: end if
15: end procedure

4.3.4 Smart contract functions

Before presenting the functions (actions), it is important to note that the in-
trinsic transaction ordering of the blockchain guarantees that each function
invocation is executed atomically, thus locking mechanisms are not required.

WhistleblowShare: This function enables the whistleblower to re-
port the misbehavior of a single shareholder. W sends the share hi to the con-
tract. If the commitment matches, the share whistleblow bonus Wh (<BH),
is paid to the whistleblower. In that event, the shareholderHi, would lose the
chance of earning her reward, RH. Another consequence, is that if the number
of whistleblown shares would equal k, then the TL would be marked as failed
(i.e., no further actions allowed). The function is presented is Algorithm 3.

WhistleblowSecret: It enables the whistleblower W , to prove the
possession of the secret ahead of the disclosure time td. In detail,W sends a
secret, S ′ to the contract. If the commitment matches, then the TL is marked

104

4.4. ECONOMIC MODEL CHAPTER 4. I TOLD YOU TOMORROW

Algorithm 4 SC function to whistleblow the secret before td

input
sc smart contract identifier
S the secret to be whistleblown

1: procedure WHISTLEBLOWSECRET(sc,S)
2: if sc.state = LOCKED and time() < sc.td then
3: if hash(S) = sc.CS then
4: sc.state← FAILED
5: pay(sc, caller, sc.WS)
6: end if
7: end if
8: end procedure

as failed and the secret whistleblow bonus WS (> RH) is paid to the whistle-
blower. In that event, all the shareholders would be subject to an economic
penalty that results in the loss of the bid already paid, and the remaining smart
contract funds are destroyed. The function is illustrated is Algorithm 4. The
need for both WhistleblowShare and WhistleblowSecret will be
discussed in the following sections.

Disclose: After the disclosure time td has passed, each shareholder
Hi submits her share hi to the contract. The submission is successful if (a)
the TL is not marked as FAILED, (b) the share is marked as PAID, and (c)
hash(hi) matches the value stored into the sc, otherwise it fails. Condi-
tionally to the outcome of the TL instance, and immediately after the ter-
mination time tterm, the rewards are paid for each shareholder that correctly
completed the disclosure procedure. The disclosure procedure is detailed in
Algorithm 5.

4.4 Economic model

This section illustrates how to constraint the protocol parameters to achieve
the desired TL scheme behavior.

105

CHAPTER 4. I TOLD YOU TOMORROW 4.4. ECONOMIC MODEL

Preamble As previously mentioned, ITYT assumes all the participants to
be rational agents. This means they are driven by economic interests and they
will always try to maximize their profit. So, there is no interest in S itself,
but only in its economic value. Also, as ITYT is built upon secret sharing,
it is pivotal to analyze the scenario by referencing to the behavior of groups
of adversaries, and not of single users. Thus, we reference by M a generic
malicious coalition of users that team up to break the TL ahead of disclosure
time.

Method To limit the attack surface, we model ITYT as a negative-sum game
to all the possible adversarial coalitions. In other words, we impose that
anyone who tries to break the TL schema has to face costs greater than the
maximum achievable revenues. To ensure this condition, we develop a set
of constraints among the economic parameters. However, to define each of
them we need to identify the maximum revenue an attacker can achieve. For
this purpose, we focus on the best possible attack scenario, or rather the one
in which an adversarial coalition ideally completes its entire strategy without
interference by other parties.

Before going into details, we fix the first trivial constraint. It simply cap-
tures, in a single expression, the relation among the amounts discussed in the
previous section:

Wh < BH < RH < WS (4.1)

In the following, we address how coalitions could try to attack the protocol
based on the role of its members and the time at which the attack could be
performed. For the sake of clarity, Subsections 4.4.1 and 4.4.2 do not take
into account the WhistleblowShare function, which will be discussed in
as special case in Subsection 4.4.3. Finally, Section 4.4.4 addresses how to
constraint PO.

4.4.1 Protection against malicious shareholders

Being the shareholder rational agents, they will consider if is worth to try
breaking the TL before td or not. To perform a successful attack, a shareholder

106

4.4. ECONOMIC MODEL CHAPTER 4. I TOLD YOU TOMORROW

Algorithm 5 SC function to disclose the share after td

input
sc smart contract identifier
i index of the submitted share
hi the i-th share

1: procedure DISCLOSE(sc, i, hi)
2: if sc.state = LOCKED and sc.states[i] = PAID then
3: if time() ≥ sc.td and time() < sc.tterm then
4: if hash(hi) = sc.Ch[i] then
5: sc.shares [i]← hi

6: sc.num disclosed + = 1
7: sc.states[i]← DISCLOSED
8: p1 ← sc.num disclosed ≥ sc.k
9: p2 ← time() > tterm

10: p← p1 ∧ p2
11: allow withdraw(sc, caller, RH, p)
12: end if
13: end if
14: end if
15: end procedure

has to team up with other k−1 ones in order to reconstruct S, sell it to a buyer,
and finally whistleblow it. In that event, M would earn at most by selling
and by whistleblowing,2 leading the protocol to failure. The alternative, i.e.
do not break the TL and submit the k shares after td, would lead to a gain
equal to the sum of the rewards. To avoid the first scenario we can impose:
k ·RH > V +WS .

Yet, in order to earn k ·RH, the coalitionM should wait until td, whereas
V +WS could be collected earlier. For this reason, in ITYT we use a stricter
formulation of the constraint, obtained by comparing the revenue earned by
whistleblowing and the total amount of bids already paidM to get the shares:

k ·BH > V +WS (4.2)

2The coalitionM could setup an additional external contract betweenM and the buyer
to be sure to gain both V and WS .

107

CHAPTER 4. I TOLD YOU TOMORROW 4.4. ECONOMIC MODEL

Constraint (4.2) addresses secrecy (time t < td), however, when the dis-
closure time passes, the objective of the TL turns into facilitating the disclo-
sure. In this setting, threshold cryptography may obstacle the release of S,
offering additional opportunities to malicious shareholders and coalitions of
them. In fact, n − k + 1 shareholders could wait for k − 1 others to submit
their share and then lead the TL instance to a stall by refusing to submit their
ones and wait for a buyer willing to pay V to gain access to the secret. To
avoid this issue, we introduce the constraint:

(n− k + 1) ·RH > V (4.3)

Here the contribution of the term WS disappears as the role of the whistle-
blower is no longer admissible after td. The inequality holds because the
shareholders are authorized to collect their rewards RH only in case the TL
results in a successful outcome3 (i.e., at least k shares are submitted before
the termination time tterm).

4.4.2 Protection against malicious owners

All the considerations made about the rationality of the shareholders must
also be applied to the owner. As O knows the secret in advance,
she could setup fake TL instances for the sole purpose of invoking the
WhistleblowSecret function and obtain WS , if this would end up having
a positive economic return. To enforce a negative outcome for this scenario,
we need to add the following constraint:

PO > WS (4.4)

4.4.3 Impact of share whistleblowing function

The ability to whistleblow shares, which is needed to prevent them to be sold,
opens up to more complex strategies that can be performed by coalitions. A

3An alternative approach to reduce stalls without the need of a termination time and
deferred rewards would be to grant an extra reward β to the first k shareholders that submit
the share after td.

108

4.4. ECONOMIC MODEL CHAPTER 4. I TOLD YOU TOMORROW

coalitionM could submit some of the controlled shares to the contract before
whistleblowing the secret, to maximize its revenue.

As the coalition is composed of rational agents, it is possible to determine
the optimal number j∗ of shares that M could submit before incurring into
penalties or advantaging other participants. Whistleblowing a share is a pub-
lic event, observable by anyone, so it could itself trigger other participants’
strategies.

The values n and k, the number of total shareholders and the threshold,
identify two cases to compute j∗.

General case. In general, a k-shareholders coalition M is not the only one
able to break the TL. Each time a share is whistleblown the threshold k is
weakened, and all other n − k shareholders and their possible coalitions are
triggered as a side effect. Overall, when i shares have been whistleblown, a
quiescent coalitionMi formed by k − i shareholders would gain the ability
to reconstruct the secret S having paid only (k − i) · BH to get its shares.
For this reason, the initial coalition M formed by k shareholders needs to
determine the optimal number of shares j∗ to be whistleblown so that there is
no other coalition that can profit from the weakening of k. In particular,M
can determine j∗ by solving the following:

j∗ = max
i
{i|(k − i) ·BH > V +WS , i ∈ 1, . . . , k − 1}

If such a j∗ exists, by keeping the assumption of rational agents, the coalition
M can submit j∗ shares while still being sure that no other smaller coalition
will whistleblow the secret.

Special case k > bn/2c. In this case, the k-shareholders coalitionM is the
only one able to break the TL. Specifically, 2k−n−1 shares can be submitted
while still preventing the other n − k shareholders to reconstruct S. Please
note that such number of submissions could be smaller compared to the one
identified by the general case, which is only cost dependent. To compute the
optimal number of submissions, it is then required to select:

j∗ = max {(2k − n− 1) ; j∗general case}

109

CHAPTER 4. I TOLD YOU TOMORROW 4.4. ECONOMIC MODEL

Whistleblowing shares permits to gain the extra-revenue Wer = j∗ ·Wh.
To address it, we formulate a stricter version of Equation (4.2) by constrain-
ing:

k ·BH > V +WS +Wer (4.5)

4.4.4 Evaluating Costs

Now that we’ve discussed how to constrain the parameters to prevent misbe-
havior, we discuss the additional requirements to be satisfied by PO. In fact,
it is from this amount the owner pays the shareholder profits or the whistle-
blower bonuses. Overall, the sum of PO and the shareholder bids n ·BH must
be able to cover the costs for every possible evolution of the TL instance. The
easiest evolution is represented by all the shareholders correctly executing the
protocol. To accommodate for this case, we need to impose that the amount
stored in the smart contract is enough to pay the shareholder rewards:

PO + n ·BH ≥ n ·RH (4.6)

On the contrary, the TL could fail with k − 1 shares whistleblown before
the secret itself is whistleblown. To ensure the smart contract has enough
value to be able to pay all the whistleblower bonuses, we impose the following
constraint:

PO + n ·BH ≥ (k − 1) ·Wh +WS (4.7)

As BH > Wh, we do not need to discuss mixed evolutions of the TL. In
fact, the right side of Inequality (4.7) reports the worst-case amount. In any
other circumstance (i.e., less than k − 1 shares whistleblown), the Inequal-
ity (4.7) still holds.

The constraints (4.1-4.7) must all hold for any well-formed instance of
ITYT. They identify the acceptance area for the variables. The owner may
desire to minimize PO, while the shareholders would like to maximize the
profit (RH−BH). A more thorough analysis of the ratio among these variables
and the different strategies to set them is out of scope in this chapter. In

110

4.5. IMPLEMENTATION CHAPTER 4. I TOLD YOU TOMORROW

V Wh BH RH WS PO

1 0.025 0.275 0.3 0.325 0.35
10 0.25 2.75 3 3.25 3.5

100 0.5 25.5 26 26.5 27

Figure 4.3: Sample configurations with k = 5 and n = 8 and V ∈ 1, 10, 100 that respect all
the constraints (optimized for minimizing PO)

Table 4.3 we show three possible configurations for k = 5, n = 8, and V ∈
1, 10, 100, which minimize PO, obtained by constraint programming. It is
worth to remark that in all of the cases we have PO < V , which is a desirable
property.

4.5 Implementation

This section illustrates how to practically implement ITYT.
As we anticipated in Sections 4.1 and 4.2, the following two technologies are
the pillars of our construction:

� the blockchain, the technological layer which allows us to publicly store
the evolution of each instance of ITYT and persistently disclose the
secret associated to it;

� smart contracts, the framework that permits to trigger economic incen-
tives and penalties in a fully decentralized way, thus avoiding the need
of trusted parties.

The combination of the two with the model described in Section 4.3, con-
stitutes ITYT: a generic protocol to deploy instances of the TL abstrac-
tion. Several realizations of the ITYT protocol can be obtained by chang-
ing the implementation of the generate shares primitive and the cryp-
tographic techniques (e.g., oblivious transfer, probabilistic encryption, and
sMPC) used to provide the shares only to the legitimate shareholder while
sending the commitments to the owner. In this chapter we implement the
generate shares primitive leveraging secure Multi-Party Computation.
In particular, we employ a modular arithmetic sMPC to be able to compute the

111

CHAPTER 4. I TOLD YOU TOMORROW 4.5. IMPLEMENTATION

INPI
pre

initialized

I
init

initialize_sc *
initialized

E

participate

startMPC *
[bidders==n] PCfinalizeMPC *

pre
committed

enforce *
[commits==n]

expired

expire
[now > T1]

expire
[now > T2] expire

[now > T3]

LOCKED

enforcing phasesetup phase

FAILED

disclose

WhistleblowSecret

commit loadSecret *

withdraw

* → [msg.sender==owner]

WhistleblowShare

activation phase

(Alg3)
(Alg4)

(Alg5)

[] →condition

() →reference to algorithm

[now < Td]
[now < Td]

[now > Td and
now < Tterm]

Legend

(Alg1 + Alg2)

Figure 4.4: State machine representing the valid transitions of the ITY T protocol. Each
transition name maps to an action (an Ethereum smart contract function) that can be invoked
by each participant to modify the state. Square brackets contain additional conditions to be
met to make valid transitions

shares using Shamir’s Secret Sharing. In addition, we use the MiMC-hash [3]
algorithm to implement the hash primitive used to compute the commit-
ments. MiMC-hash is a minimal multiplicative complexity hashing primitive
that has the advantage of being composed of only modular arithmetic opera-
tions, and is thus suitable to be used in our arithmetic sMPC (further details
on this in Section 4.7).

4.5.1 The ITYT state machine

We designed ITY T as a finite state machine implemented in an Ethereum
smart contract. The state of each of its instances can be evolved by performing
actions that map to specific smart contract functions. Before performing any
update, each function checks for the state of the machine to be the expected
one and terminates otherwise. A simplified version of the state machine that
only shows valid transitions is presented in Figure 4.4. The state machine is
characterized by three main phases: the setup phase, in which the owner
has to deploy the contract and the shareholders have to commit to take part
to it; the activation phase, in which the shareholders declare that they
received their shares and give their go-ahead; and the enforcing phase,
in which the participants comply with the constraints of the contract thus ef-
fectively realizing the TL primitive as a consequence. In between the setup

112

4.5. IMPLEMENTATION CHAPTER 4. I TOLD YOU TOMORROW

and the activation phases, the owner and the shareholders collaboratively
execute the off-chain sMPC protocol that generates and distributes the shares
and the commitments. These phases are discussed in details in the following.

Setup phase Initially, the owner deploys a smart contract instance of ITY T

on the Ethereum blockchain. As detailed in Algorithm 1, the owner invokes
the initialize sc primitive, she transfers PO to the contract and she
specifies all the instance parameters detailed in Section 4.3. This advances
the protocol to the PRE INITIALIZED state. To demonstrate the will to
correctly participate, each shareholder invokes the smart contract function
participate, as part of Algorithm 2, and transfers to the contract the
proper amount of Ether corresponding to the bid, BH. The owner observes
the actions taken by all the participants by reading the state of the contract
and, after she ensured that all the shareholders have deposited their bids,
she invokes the function startMPC which permits to advance the state to
INITIALIZED. This opens the off-chain sMPC window, in which all the
participants cooperate to realize the generate shares protocol.

Off-chain sMPC The sMPC permits to generate the shares of the secret,
confidentially distribute them to the shareholders, while forwarding the com-
mitments to the owner. However, it is executed when the TL instance is still
inactive, or rather when the economic penalties have not been activated yet.
To avoid the exposition of S, the owner introduces a fictitious random key, K.
The key is submitted to the sMPC instead of the secret, and a set of n shares
{h1, . . . , hn}, is produced. Specifically, the shares are derived from the key
using the Shamir’s Secret Sharing algorithm [105], so that it is possible to
reconstruct K out of k-of-n shares. Accordingly, the owner can wait to the
activation of the TL and then upload into the smart contract the encrypted
version (i.e., the ciphertext) of the secret, CT = EncK (S). Figure 4.5 illus-
trates the scenario.

To execute the sMPC protocol the owner has to input the random key,
K, together with the total number of shareholders, n, and the reconstruction
threshold, k. Each shareholder, instead, submits only a random seed. The

113

CHAPTER 4. I TOLD YOU TOMORROW 4.5. IMPLEMENTATION

sMPC generates internally random values which are interpreted as the x co-
ordinates by the Shamir’s Secret Sharing algorithm. Each i-th share is then
generated by the concatenation of xi and yi coordinates. As output of the
sMPC protocol, O receives a commitment Ci of any share generated,4 while
each shareholder receives her share hi, a commitment of the key CK, n and k.
A graphical view of the discussed sMPC protocol is shown in Figure 4.6.

Activation phase When the sMPC terminates the owner invokes the
function finalizeMPC and updates the smart contract state with the
commitment of the key, CK, along with the commitments of all the
shares, {C1, ..., Cn}. As a consequence, the state of ITYT turns to
PRE COMMITTED. Each shareholder is now asked to verify the correctness
of the data deposited in the contract by O. In particular, if the commitment
written by the owner matches to the one given by the shareholder (i.e., the
owner did not tamper Ci), then each shareholder would invoke the commit
function. After each of them committed, the owner invokes enforce, which
activates the TL (i.e., activation of all economic incentives and penalties). The
state turns to LOCKED, and the activation phase ends.

The setup, off-chain sMPC, and activation phase together re-
alize the Algorithms 1 and 2, needed to conclude the setup of the ITYT in-
stance.

Enforcing phase Before disclosure time, the smart contract permits to: (i)
whistleblow a single share, and (ii) whistleblow the secret. To whistleblow a
single share (Algorithm 3) a participant invokes WhistleblowShare and
submits h′. If the commitment matches the value stored in the contract, then
Wh is immediately paid to the whistleblower. A share whistleblow is permit-
ted only k − 1 times, as a greater number of submission leads the TL to the
FAILED state. When that happens the remaining amount locked by the con-
tract is destroyed. To whistleblow the secret (Algorithm 4) it is required to
invoke the WhistleblowSecret function and submit K′. If the commit-

4By share commitment we denote the MiMC hash of the share.

114

4.5. IMPLEMENTATION CHAPTER 4. I TOLD YOU TOMORROW

collusion would leak .

sMPC execution window smart contract configuration smart contract activated

(a) A colluding coalition could reveal S before contract activation

(b) A colluding coalition could only reveal K before contract activation

Figure 4.5: Preventing secret exposure before smart contract activation

ment of K′ matches the one of K, then WS is paid to the whistleblower, the
TL instance is marked as FAILED, and the remaining amount destroyed.

If no adversarial coalition reconstructs K before the disclosure time td,
then all the shareholders will be able to disclose their shares by invoking the
function disclose (Algorithm 5). Each share is considered valid only if it
matches the corresponding commitment. In that case, a reward will be paid to
the shareholder conditionally to the outcome of the instance (i.e., the TL ends
successfully only if at least k valid shares are submitted before tterm). There
is no need to materialize K or S in the smart contract, as all the valid shares
will be permanently and publicly accessible. Anyone can recover K from the
shares and then extract the plaintext performing the decryption operation, S
= DecK (CT).

Up until now, the protocol has only been based on the key K, but the S
has not been offloaded to the TL yet. The explanation is straightforward: the
outcome of ITY T is only bounded to the disclosure of the key, to which
all the incentive and penalties are related to. As soon as the state of the TL
advances to LOCKED and before going offline, the owner encrypts the secret

115

CHAPTER 4. I TOLD YOU TOMORROW 4.6. DISCUSSION

shareholder,

seed

owner,

POLYNOMIAL GENERATION

. .

. . .

. .

n-to-n sMPC

COMPUTE HASH COMMITMENT

+

seed

Figure 4.6: Single-phase sMPC protocol jointly executed by all the participants

S as shown in Section 4.5.1 to obtain the CT . Then she invokes the smart
contract function loadSecret to store the CT in the smart contract.

4.6 Discussion

In this section, we highlight the vulnerabilities to which the implementation
of ITYT can be subject to, and then we discuss the proper countermeasures.

4.6.1 Protection against adversarial sMPC protocols

The discussion so far has focused on the single user perspective regarding the
sMPC cryptographic technique. In fact, its usage guarantees to each share-
holder H, that no one but her (i.e., neither the owner) will have visibility on
her share, h. Thus, it ensures to each shareholder that no one, except her-
self, will be able to submit her share at disclosure time. This capability limits
the knowledge of every single user about an instance ITYT, hence it makes
possible to model ITYT as an economic game.

Nevertheless, ITYT is a game played by rational adversaries, so the partic-
ipants could look at sMPC techniques from another perspective. Actually, the

116

4.6. DISCUSSION CHAPTER 4. I TOLD YOU TOMORROW

malicious coalition of shareholders,M, could devise a strategy that permits
to recover and sell S without incurring in economic penalties. Such a strategy
would have been successful if it did not allow anyone to satisfy the smart con-
tract commitments. In our setting, it means to recover S without exposing K,
and therefore preventing anyone to invoke the WhistleblowSecret func-
tion. The malicious coalition can instantiate an offensive sMPC that receives
as input at least k-of-n shares plus the ciphertext, CT . Then, it performs
internally both the reconstruction of K and the extraction of the secret by
DecK (CT). Finally, it outputs to all the attackers only S.

To prevent the execution of this attack it is sufficient to select a cryptosys-
tem C (Enc,Dec) such that there is no sMPC protocol that permits to execute
Dec by producing S as the only output. We identified two possible alterna-
tives to satisfy the previous requirement.

1. Use a cryptosystem that ensures that the exposure of S implies expos-
ing also the K (by the key it is possible to perform the whistleblow
protocol).

2. Use a cryptosystem whose execution is not compatible with sMPC pro-
tocols.

We can satisfy the first condition by selecting C = OneT imePad (⊕,⊕).
It is easy to prove that given two among {CT,S,K} the third is im-
plied. Thus, each member of the malicious coalition could invoke the
WhistleblowSecret function after obtaining S. The drawback of using
OneT imePad (⊕,⊕), is that |S| = |K| by construction. This limitation can
be overcome by selecting a cryptosystem that satisfies the second condition;
however, devising a strategy to construct such a cryptosystem goes beyond
the scope of this chapter.

The consideration that stems from the use of adversarial sMPC is interest-
ing, as this kind of attacks (i.e., programming the logic of a protocol inside
an sMPC to bypass hashlocks) are applicable to all protocols that involve re-
wards, penalties and are played by rational adversaries.

117

CHAPTER 4. I TOLD YOU TOMORROW 4.7. EXPERIMENTAL RESULTS

n gas cost O ($) gas costH ($)

3 162872 [5.80$] 23971 [0.85$]
4 171793 [6.11$] 25545 [0.91$]
5 180707 [6.43$] 25856 [0.92$]
6 189647 [6.75$] 26167 [0.93$]
7 198587 [7.07$] 26478 [0.94$]
8 207501 [7.38$] 26789 [0.95$]
9 216442 [7.70$] 27100 [0.96$]

10 225337 [8.02$] 27411 [0.98$]

Figure 4.7: ITYT cost for each role, with k = 2.
Conversion units: 1 gas = 20 · 10−9 ETH; 1 ETH = 178 $

4.6.2 DOS Attacks and Deadlocks prevention

A denial of service attack could be performed by some users who take part
in many ITYT protocol instances refusing to deposit the bids, to commit or
to correctly execute the sMPC. To mitigate these kinds of disruptions it is
possible to introduce a reputation system, so that the owner can select par-
ties that are willing to co-operate. This would be an ideal choice that could
benefit also other parts of our model. However, as the introduction of a rep-
utation model is not always possible, we decided to model the smart con-
tract PRE CONSIDERED state. Specifically, all the participants (including
the owner) are required to pay an additional small service pawn that will be
returned only if the smart contract will reach the LOCKED state. It has been
proved that introducing a small fee to access a service can prevent many DOS
attacks [78, 85]. Furthermore, some malfunctions or network errors may im-
ply the time thresholds set by the owner not being met. The deadlock to
which the protocol would lead to can be solved by the presence of the final
state EXPIRED. In that event, all the participants are allowed to withdraw
their funds locked in the contract.

4.7 Experimental Results

Test setup We performed two types of experiment on ITY T : (i) simulation
of ITY T smart contract instances, and (ii) execution of sMPC network pro-

118

4.7. EXPERIMENTAL RESULTS CHAPTER 4. I TOLD YOU TOMORROW

tocols. For both cases, the size of the shares was set to 256 bits (the maximum
supported by the FRESCO sMPC framework). The tests have been executed
on a dual Intel Xeon E5 server with 256 GB memory and 512 GB SSD drive
running Ubuntu 18.04 LTS.

Simulation of ITYT instances A preliminary version of the ITY T smart
contract was derived by the use of FSolidM [86], a tool which automatically
generates Ethereum smart contracts code from high-level Finite State Ma-
chine (FSM) representations. To deploy, test, and debug the contract created,
we relied on Brownie [58], a Python framework that permits to create wallets,
inspect transactions and automate the execution of simulations. To provide
such functionalities, Brownie interacts with Ganache [110]: a local Ethereum
blockchain instance used for development purposes.

The experiments mainly focused on estimating the total cost of execution
of each ITY T instance. Figure 4.7 shows the total execution cost in gas
(a proxy for the number of operations) and dollars, for each role, depend-
ing on the number of participants. Since many ITYT actions imply writing
a state change to the blockchain, the first shareholder to perform the opera-
tions will incur in greater costs compared to the other ones. We name this
role active shareholder. The shareholder cost in Figure 4.7 takes into account
only the calls needed to collect the reward. A shareholder that only performs
these operations is named passive shareholder. In our experiments, the ac-
tive shareholder was paying approximately 0.40 USD more compared to the
passive one. It is easy to setup a higher reward for the active shareholder to
offset the additional execution fees. From the owner’s perspective, the total
cost of execution is linear in the number of shareholders, while the contract
deployment itself costs 7.39 USD. All the costs were calculated by applying
the conversion rate 20 · 10−9 ETH and the exchange rate 1 ETH = 178 USD
(as of September 12, 2019).

sMPC protocols The sMPC protocols were implemented using the
FRESCO [5, 41] framework. First, we implemented a single-phase sMPC
protocol compliant with the description in Section 4.5.1. The sMPC algo-

119

CHAPTER 4. I TOLD YOU TOMORROW 4.7. EXPERIMENTAL RESULTS

Step 1: n-to-n sMPC

+

Step 2: 1-to-1 sMPC
sM

PC

●

●

CHECK

COMPUTE HASH COMMITMENT

POLYNOMIAL GENERATION

seed

seed

Figure 4.8: Two-phases sMPC protocol: step 1 jointly computed between all the parties, step
2 between the owner and each shareholder

rithm receives as input the key K from the ownerO and the seeds from all the
participants. Then, it creates the polynomial and generates random shares.
After that, the algorithm proceeds in computing the commitments with the
MiMC function. As illustrated in Figure 4.9a, strictly adhering to this pro-
tocol leads to quick performance degradation, as the number of shareholders
increases. This is because computing MiMC hashes among several partic-
ipants is computationally expensive and highly affected by network latency
(the participants have to exchange several messages to carry out even simple
operations in the sMPC setting).

To improve performance, we implemented a two-phases sMPC protocol.
This, in turn, is made up of two subsequent sMPC protocols:

� Step 1 n-to-n sMPC jointly computed by all participants. The owner in-
puts K and receives the polynomial function f (x) randomly generated
inside the sMPC, while each shareholder inputs a seed and receives her
share (see Figure 4.8).

� Step 2 1-to-1 sMPC computed between the owner and each shareholder
i. The owner inputs f (x), and receives the commitment of the i-th
share, Ci, while the i-th shareholder inputs her share hi, and receives
the commitment of the key (see Figure 4.8). It is easy to verify inside

120

4.7. EXPERIMENTAL RESULTS CHAPTER 4. I TOLD YOU TOMORROW

2 3 4 5 6 7 8

n

10 1

10 2

T
im

e
[s

]

k=2 single-phase
k=3 single-phase
k=4 single-phase
k=2 two-phases
k=3 two-phases
k=4 two-phases

(a) Single-phase vs Two-phases

2 3 4 5 6 7 8

n

30

35

40

45

50

55

60

65

70

75

80

T
im

e
[s

]

k=2
k=3
k=4
k=5
k=6
k=7
k=8

(b) Two-phases time detail

2 3 4 5 6 7 8

n

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

R
A

M
 [G

B
]

k=2
k=3
k=4
k=5
k=6
k=7
k=8

(c) Two-phases maximum memory usage

Figure 4.9: sMPC execution time and maximum memory consumption for each participant,
in detail: (a) comparison between single-phase and two-phases maximum execution time, (b)
two-phases execution time and (c) maximum memory consumption for higher SSS polyno-
mial degree

the sMPC that neither the owner nor the shareholder changed the value
received as a result of the first step.

The difference between the single-phase and the two-phase sMPC lies in
the calculation of the hash primitive. Unlike the single-phase version, the
two-phases solution permits to separate the generation of the shares from the
production of commitments. It follows that the first step can be carried out
even in scenarios with several participants, as it is not computing-intensive,
whereas the second step, which instead is computing-intensive, is always per-
formed among two users. The improvement of total sMPC execution time
between the two variants (i.e., single-phase vs two-phases) is shown in Fig-

121

CHAPTER 4. I TOLD YOU TOMORROW 4.7. EXPERIMENTAL RESULTS

2 3 4 5 6 7 8

k

30

45

60

75

90

105

120

135

150

T
im

e
[s

]

RTT=10

(a)

2 3 4 5 6 7 8

k

30

45

60

75

90

105

120

135

150

T
im

e
[s

]

RTT=50

(b)

2 3 4 5 6 7 8

k

30

45

60

75

90

105

120

135

150

T
im

e
[s

]

RTT=100

(c)

Figure 4.10: sMPC total execution time for different round trip times (RTT) and reconstruc-
tion threshold k

ure 4.9a. More details about the two-phases maximum execution time and
maximum memory consumption in case of higher polynomial degree, for each
participant, are illustrated in Figures 4.9b-c, respectively.

For each participant, a different server was established, and the network
communication round trip time (RTT) was set to 10 ms (Figure 4.9). To mea-
sure the effect of RTT, we repeated the execution of all network protocols
with different latency values. Figure 4.10 shows a subset of the data collected
for the two-phases solution (see the repository for full detail). However, for
an exhaustive analysis on the impact of environmental parameters over sMPC
implementing secret sharing cryptography, we refer the reader to [111].

122

4.8. RELATED WORK CHAPTER 4. I TOLD YOU TOMORROW

4.8 Related Work

The use of cryptography to solve the problem of unveiling private data at a
specific time in the future was first envisioned in 1993 by Timothy May [87].
Since then many researchers have proposed solutions to this problem. Based
on the assumptions and technologies used, we can classify the proposals into
four main categories.

Trust and Honesty — Chan et al. [35] and Cheon et al. [37] proposed sin-
gle point of trust schemes, in which users can encrypt secrets using public
keys, while the decryption keys are released at predefined times by a trusted
time server. Rabin et al. described Time-lapse cryptography [92,99] that over-
comes the single point of trust (and failure) assumption by splitting the single
authority into a group of users that have to cooperate to release the keys. Li
et al. [73] proposed a solution that relies on Distributed Hash Tables to route
the secret among peers. Both these proposals entail the peers to be honest
as they do not consider the possible economic benefits that the participants
would obtain by colluding.

Time-Lock Puzzles — The second category requires the recipient to solve
an inherently sequential mathematical puzzle to prove the elapse of time.
Starting from Rivest et al. seminal work [104], many other puzzles have been
proposed [27, 38, 83]. All these techniques are not practical as the required
time might differ on different machines, and the computation costs for the
recipient are significant.

Smart Contracts — Similarly to our proposal, the third category lever-
ages smart contracts [107] to replace the trusted party. Kimono [51, 88] and
Keep Network [81] rely on threshold cryptography to split the secret among
participants that can earn a remuneration by keeping their shares private until
disclosure time. However, they do not introduce security deposits, thus failing
at preventing misbehaviors. Li et al. proposal [74] overcomes some of these
limitations by modeling the protocol as an extensive-form game with imper-
fect information [72]. Yet, as each peer is a single point of failure, and as the
owner has perfect information about the shares, they require every participant
to pay a security deposit that exceeds the value of the secret, limiting the ap-
plicability of the protocol. Compared to our protocol, all the proposals in this

123

CHAPTER 4. I TOLD YOU TOMORROW 4.8. RELATED WORK

category do not consider the fact that malicious coalitions could reconstruct
the secret ahead of time inside an sMPC protocol without exposing the shares,
thus effectively avoiding penalties and safeguarding remunerations.

Witness Encryption — The last category of solutions leverages witness
encryption [53], in which the sender can encrypt a message so that it can
only be opened by a recipient who knows a witness to an NP relation. Liu et
al. [77] showed how to construct a computational reference clock from large
public computations, such as those made by the Bitcoin network, and couple
it with witness encryption to realize a time-lock encryption mechanism. Yet,
due to the lack of practical witness encryption schemes, their proposal is still
far from being concrete.

Other Contributions — Several recent proposals try to address the prob-
lem of dealing with secret data on public blockchains. Enigma [119] and
Hawk [70] leverage sMPC to allow multiple actors to execute an algorithm
on private inputs and store the proof of correct execution on the blockchain.
However, these proposals require the data holder to actively participate in the
computation, thus they can not be used to solve the problem of data disclosure
at a future point in time. Proof of Elapsed Time (PoET) is a network con-
sensus algorithm often used in permissioned blockchains, like Hyperledger
Sawtooth [36, 62] that avoid wasting computational resources by using a fair
lottery system run inside a Trusted Execution Environment (TEE), such as
Intel SGX. Each participant runs an algorithm in the TEE that waits for a
random amount of time, thus proving the elapse of time without the need
of PoW. Even if this approach resembles ITYT, as it prevents cheating on
the chosen time, it is not able to store secret data. Another recent contribu-
tion that showed how economic constraints enforced by time-lock primitives
can be successfully integrated with blockchains is the Bitcoin Lightning Net-
work [97]. Lightning Network can be used to instantly exchange bitcoins
among peers by using off-chain transactions while effectively preventing any
possible misbehavior.

124

4.9. CONCLUSIONS CHAPTER 4. I TOLD YOU TOMORROW

4.9 Conclusions

In this chapter, we presented I Told You Tomorrow (ITYT), a practical schema
to deploy Time-Locked secrets on the blockchain by leveraging an economic
model in which every rational actor (or coalition of them) is economically
incentivized to correctly participate. As opposed to other Time-Lock mecha-
nisms, ITYT requires neither trust assumptions, nor a receiving party willing
to run the decryption algorithm until the disclosure time, nor guesses about
future computing power. Our implementation and experimental evaluation
showed that our approach is practical, as the cost and the required computing
power associated are limited.

As future work, we are considering the use of homomorphic encryption
for the share generation process. This will not require any changes to the
protocol itself, but only to the share generation algorithm. By doing so, we
expect that the time and resources needed to setup the protocol will be further
reduced. We are also interested in conducting a more thorough analysis of the
inequalities in Section 4.4 from an economic standpoint, to better characterize
the correlations among the parameters.

125

5

Conclusions and Future Work

In this thesis, we presented novel techniques for providing data confidential-
ity, access control, and availability guarantees to resources stored in central-
ized, decentralized, and distributed cloud storage systems.

As regards centralized cloud storage providers, we presented an approach
for efficiently enforcing access revocation on encrypted resources stored at
external providers. Our solution enables data owners to effectively revoke
access by re-encrypting a small portion of the resource. As opposed to tech-
niques based on other All-or-Nothing Transforms in which an actor that has
access to the file could try to maintain a local copy of the keys to counter
access revocation, Mix&Slice enforces that the amount of data that the ma-
licious actor would have to store can not be determined a priori, as the data
owner could re-encrypt a varying portion of the resource. Our implementa-
tion and experimental evaluation confirm the efficiency and effectiveness of
our proposal.

We then analyzed how to extend the guarantees that we obtained with
Mix&Slice to provide effective secure protection to decentralized cloud stor-
age providers. Our approach enables resource owners to protect their re-
sources and to control their decentralized allocation to different nodes in the
network. We investigated different strategies for splitting and distributing re-
sources and analyzed them in terms of availability and security guarantees.

127

CHAPTER 5. CONCLUSIONS 5.1. FUTURE WORK

Our proposal allows the data owner to control the granularity of slicing and
diversification of allocation to ensure aimed availability and security guar-
antees even in presence of malicious coalition of nodes that are willing to
disobey the owner’s requests to maximize their revenue.

Finally, we presented I Told You Tomorrow (ITYT), a practical schema
to deploy Time-Locked secrets on the blockchain. Our proposal leverages
an economic model in which every rational actor (or coalition of them) is
economically incentivized to comply with the protocol. This is a fundamen-
tal piece to create delegated challenge-response protocols in which the chal-
lenges and responses are offloaded in an encrypted form by the data owner
and then decrypted at different time. The use of delegate challenge-response
protocols permits to remove the coordinator nodes and bring the security and
availability guarantees to the fully distributed settings without the need of the
data owner or a trusted third party to be online.

5.1 Future Work

We conclude the thesis with a discussion of the future work that can be done in
the three considered areas: centralized, decentralized, and distributed storage
systems.

Centralized storage systems – Chapter 2 illustrated how to use Mix&Slice
to enable the use. The two implementations discussed in the evalua-
tion section were based on AES and OAEP. We showed how the use
of OAEP enables to obtain micro-blocks with size up to 256 bits. We
used the SHA2 class of functions to compute the hashes; however, these
functions are not optimized in common CPUs.

As future work, it is possible to compare the results with other functions
that also comply with the requirements in Section 2.2.3. A preliminary
evaluation with the linear transformations proposed by Karame et al.
for Bastion [67] and by Naor et al. [89] showed promising results.

Decentralized storage systems – Chapter 3 described how to bring security
and availability guarantees to the decentralized cloud storage scenario.

128

5.1. FUTURE WORK CHAPTER 5. CONCLUSIONS

We also briefly mentioned how these properties could be integrated with
fountain codes to leverage the dynamicity of DCS networks. In [17] we
showed how the integration seems to be a good fit to address the dynam-
icity problem. This idea has yet to be explored in details; Future work
in this area consists of implementing and evaluating different codes and
protocols to fully exploit the dynamicity of the system.

Distributed storage systems – Chapter 4 showed how to deploy time-locked
secrets on the blockchain, and briefly discussed how this primitive can
be used for delegated challenge-response protocols. Future work in this
area can formalize delegated challenge-response protocols and show
how they can be used in several scenarios such as inheritance man-
agement, voting processes, autonomous organizations, and Proof-of-
Retrievability for cloud storage.

Moreover, as already discussed in the chapter, the use of secure Multi-
Party Computation is not the only way to realize a secure share gen-
eration and distribution protocol. We are already considering the use
of homomorphic encryption, which would further reduce the time and
resources required to setup the ITYT protocol.

129

Acknowledgments

The research documented in this thesis was supervised by Prof. Stefano Para-
boschi (Università degli Studi di Bergamo) and has received funding from the
European Union’s Horizon 2020 research and innovation programme under
grant agreement No. 644579 (EscudoCloud) and No. 825333 (Mosaicrown).

I would like to thank Prof. Stefano Paraboschi for the guidance during
this journey, together with all the people that had a positive impact on my life,
both social and academic.

131

Bibliography

[1] H. Abelson, R. Anderson, S. M. Bellovin, J. Benalob, M. Blaze,
W. Diffie, J. Gilmore, P. G. Neumann, R. L. Rivest, J. I. Schiller, and
B. Schneier, “The risks of key recovery, key escrow, and trusted third-
party encryption,” World Wide Web J., vol. 2, pp. 241–257, 1997.

[2] M. Albanese, S. Jajodia, R. Jhawar, and V. Piuri, “Dependable and
resilient cloud computing,” in Proc. of IEEE SOSE, March 2016.

[3] M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen,
“MiMC: Efficient encryption and cryptographic hashing with minimal
multiplicative complexity,” in International Conference on the The-
ory and Application of Cryptology and Information Security, 2016, pp.
191–219.

[4] A. Aldribi, I. Traore, and G. Letourneau, “Cloud slicing a new archi-
tecture for cloud security monitoring,” in Proc. of IEEE PACRIM, Vic-
toria, Canada, August 2015.

[5] Alexandra Institute, “FRESCO - a framework for efficient secure com-
putation,” https://github.com/aicis/fresco.

[6] J. Alwen, C. Cachin, O. Pereira, A.-R. Sadeghi, B. Schoenmakers,
A. Shelat, and I. Visconti, “Summary report on rational cryptographic
protocols,” 2007.

[7] E. Andreeva, A. Bogdanov, and B. Mennink, “Towards understanding
the known-key security of block ciphers,” in Proc. of FSE, Hong Kong,
November 2014.

133

https://github.com/aicis/fresco

BIBLIOGRAPHY BIBLIOGRAPHY

[8] G. Asharov, R. Canetti, and C. Hazay, “Toward a game theoretic view
of secure computation,” J. Cryptol., vol. 29, pp. 879–926, 2016.

[9] M. Atallah, K. Frikken, and M. Blanton, “Dynamic and efficient key
management for access hierarchies,” in Proc. of CCS, Alexandria, VA,
USA, November 2005.

[10] E. Bacis, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi,
M. Rosa, and P. Samarati, “Access control management for secure
cloud storage,” in Proc. of the 12th EAI International Conference
on Security and Privacy in Communication Networks (SecureComm
2016), 2016.

[11] E. Bacis, A. Barnett, A. Byrne, S. De Capitani di Vimercati, S. Foresti,
S. Paraboschi, M. Rosa, and P. Samarati, “Distributed shuffle index:
Analysis and implementation in an industrial testbed,” in Proc. of the
5th IEEE Conference on Communications and Network Security (CNS
2017). IEEE, 2017, poster.

[12] E. Bacis, S. De Capitani di Vimercati, D. Facchinetti, S. Foresti,
G. Livraga, S. Paraboschi, M. Rosa, and P. Samarati, “Multi-provider
secure processing of sensors data,” in Proc. of the 17th IEEE Interna-
tional Conference on Pervasive Computing and Communications (Per-
Com 2019). IEEE, 2019.

[13] E. Bacis, S. De Capitani di Vimercati, S. Foresti, D. Guttadoro, S. Para-
boschi, M. Rosa, P. Samarati, and A. Saullo, “Managing data shar-
ing in openstack swift with over-encryption,” in Proc. of the 3rd ACM
Workshop on Information Sharing and Collaborative Security (WISCS
2016). ACM, 2016.

[14] E. Bacis, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi,
M. Rosa, and P. Samarati, “Mix&Slice: Efficient access revocation in
the cloud,” in Proc. of the 23rd ACM Conference on Computer and
Communication Security (CCS 2016). ACM, 2016.

134

BIBLIOGRAPHY BIBLIOGRAPHY

[15] E. Bacis, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi,
M. Rosa, and P. Samarati, “Distributed shuffle index in the cloud: Im-
plementation and evaluation,” in Proc. of the 4th IEEE International
Conference on Cyber Security and Cloud Computing (IEEE CSCloud
2017). IEEE, 2017.

[16] E. Bacis, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi,
M. Rosa, and P. Samarati, “Protecting Resources and Regulating Ac-
cess in Cloud-based Object Storage,” in From Database to Cyber Se-
curity: Essays Dedicated to Sushil Jajodia on the Occasion of his 70th
Birthday. Springer, 2018.

[17] E. Bacis, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi,
M. Rosa, and P. Samarati, “Dynamic allocation for resource protec-
tion in decentralized cloud storage,” in Proc. of the 2019 IEEE Global
Communications Conference (GLOBECOM 2019). IEEE, 2019.

[18] E. Bacis, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi,
M. Rosa, and P. Samarati, “Securing resources in decentralized cloud
storage,” IEEE Transactions on Information Forensics and Security
(TIFS), vol. 15, no. 1, pp. 286–298, 2019.

[19] E. Bacis, D. Facchinetti, M. Rosa, M. Guarnieri, and S. Paraboschi,
“I Told You Tomorrow: Practical time-locked secrets using smart con-
tracts,” (under submission).

[20] E. Bacis, M. Rosa, and A. Sajjad, “EncSwift and key management:
an integrated approach in an industrial setting,” in 3rd Workshop on
Security and Privacy in the Cloud (SPC 2017). IEEE, 2017, pp. 483–
486.

[21] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, “Relations
among notions of security for public-key encryption schemes,” in Ad-
vances in Cryptology—CRYPTO’98. Springer, 1998, pp. 26–45.

[22] M. Bellare and P. Rogaway, “Optimal asymmetric encryption,” in Ad-
vances in Cryptology—EUROCRYPT’94. Springer, 1995, pp. 92–111.

135

BIBLIOGRAPHY BIBLIOGRAPHY

[23] J. Benet, “IPFS-content addressed, versioned, P2P file system,” Proto-
col Labs, Tech. Rep., 2014.

[24] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “Dep-
Sky: Dependable and secure storage in a cloud-of-clouds,” ACM TOS,
vol. 9, no. 4, pp. 12:1–12:33, 2013.

[25] A. Biryukov and D. Khovratovich, “PAEQ — reference v1,” University
of Luxembourg, Tech. Rep. CryptoLUX, 2014.

[26] A. Biryukov and D. Khovratovich, “PAEQ: Parallelizable permutation-
based authenticated encryption,” in Proc. of ISC, Hong Kong, China,
Oct. 2014.

[27] N. Bitansky, S. Goldwasser, A. Jain, O. Paneth, V. Vaikuntanathan, and
B. Waters, “Time-lock puzzles from randomized encodings,” in Pro-
ceedings of the 2016 ACM Conference on Innovations in Theoretical
Computer Science, ser. ITCS ’16, 2016, pp. 345–356.

[28] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: A high-availability and
integrity layer for cloud storage,” in Proc. of ACM CCS, Chicago, IL,
USA, November 2009.

[29] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of Retrievability: The-
ory and implementation,” in Proc. of ACM CCSW, Chicago, IL, USA,
November 2009.

[30] V. Boyko, “On the security properties of oaep as an all-or-nothing
transform,” in Proceedings of the 19th International Cryptology Con-
ference (CRYPTO), 1999.

[31] G. Branwen, “Time-lock encryption,” https://www.gwern.net/Self-
decrypting-files, 2018.

[32] P. Caballero-Gil, C. Hernández-Goya, and C. Bruno-Castañeda,
“A rational approach to cryptographic protocols,” CoRR, vol.
abs/1005.0082, 2010.

136

https://www.gwern.net/Self-decrypting-files
https://www.gwern.net/Self-decrypting-files

BIBLIOGRAPHY BIBLIOGRAPHY

[33] C. Cachin, K. Haralambiev, H. Hsiao, and A. Sorniotti, “Policy-based
secure deletion,” in Proc. of CCS, Berlin, Germany, November 2013.

[34] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McK-
elvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas, C. Uddaraju,
H. Khatri, A. Edwards, V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal,
M. F. u. Haq, M. I. u. Haq, D. Bhardwaj, S. Dayanand, A. Adusumilli,
M. McNett, S. Sankaran, K. Manivannan, and L. Rigas, “Windows
Azure Storage: A highly available cloud storage service with strong
consistency,” in Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles (SOSP’ 11), Cascais, Portugal, 2011.

[35] A. C.-F. Chan and I. F. Blake, “Scalable, server-passive, user-
anonymous timed release cryptography,” in 25th IEEE International
Conference on Distributed Computing Systems (ICDCS’05), 2005, pp.
504–513.

[36] L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu, and W. Shi, “On security anal-
ysis of Proof-of-Elapsed-Time (PoET),” in Stabilization, Safety, and
Security of Distributed Systems, P. Spirakis and P. Tsigas, Eds., 2017,
pp. 282–297.

[37] J. H. Cheon, N. Hopper, Y. Kim, and I. Osipkov, “Timed-release and
key-insulated public key encryption,” in Financial Cryptography and
Data Security, 2006, pp. 191–205.

[38] B. Cohen and K. Pietrzak, “Simple proofs of sequential work,” in Ad-
vances in Cryptology – EUROCRYPT 2018, 2018, pp. 451–467.

[39] A. Conner-Simons, “Programmers solve MIT’s 20-year-old crypto-
graphic puzzle,” https://www.csail.mit.edu/news/programmers-solve-
mits-20-year-old-cryptographic-puzzle, 2019.

[40] M. Conti, E. S. Kumar, C. Lal, and S. Ruj, “A survey on security and
privacy issues of Bitcoin,” IEEE Communications Surveys Tutorials,
vol. 20, no. 4, pp. 3416–3452, 2018.

137

https://www.csail.mit.edu/news/programmers-solve-mits-20-year-old-cryptographic-puzzle
https://www.csail.mit.edu/news/programmers-solve-mits-20-year-old-cryptographic-puzzle

BIBLIOGRAPHY BIBLIOGRAPHY

[41] I. Damgård, K. Damgård, K. Nielsen, P. S. Nordholt, and T. Toft, “Con-
fidential benchmarking based on multiparty computation,” in Financial
Cryptography and Data Security, 2017, pp. 169–187.

[42] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart,
“Practical covertly secure MPC for dishonest majority – or: Breaking
the SPDZ limits,” in ESORICS 2013, 2013, pp. 1–18.

[43] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati, “Over-encryption: Management of access control evo-
lution on outsourced data,” in Proc. of VLDB, Vienna, Austria, Sept.
2007.

[44] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati, “Encryption policies for regulating access to outsourced
data,” ACM TODS, vol. 35, no. 2, pp. 12:1–12:46, April 2010.

[45] O. E. Dictionary, “Oxford English Dictionary,” Simpson, JA & Weiner,
ESC, 1989.

[46] S. Diesburg and A. Wang, “A survey of confidential data storage and
deletion methods,” ACM Computer Surveys, vol. 43, no. 1, December
2010.

[47] C. Dong, Y. Wang, A. Aldweesh, P. McCorry, and A. van Moorsel,
“Betrayal, distrust, and rationality: Smart counter-collusion con-
tracts for verifiable cloud computing,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 211–227.

[48] C. Dwork and M. Naor, “Pricing via processing or combatting junk
mail,” in Advances in Cryptology – CRYPTO’ 92, 1993, pp. 139–147.

[49] M. Dworkin, “Recommendation for block cipher modes of operation,
methods and techniques,” National Institute of Standards and
Technology, Tech. Rep. NIST Special Publication 800-38A, 2001.
[Online]. Available: http://www.csrc.nist.gov/publications/nistpubs/
800-38a/sp800-38a.pdf

138

http://www.csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://www.csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[50] H. Feistel, “Cryptography and computer privacy,” Scientific american,
vol. 228, no. 5, pp. 15–23, 1973.

[51] P. Fletcher-Hill, “Kimono — trustless secret sharing using time-
locks on Ethereum,” https://medium.com/@pfh/kimono-trustless-
secret-sharing-using-time-locks-on-ethereum-8e7e696494d, 2018.

[52] K. Fu, S. Kamara, and Y. Kohno, “Key Regression: Enabling efficient
key distribution for secure distributed storage,” in Proc. of NDSS, San
Diego, CA, USA, February 2006.

[53] S. Garg, C. Gentry, A. Sahai, and B. Waters, “Witness encryption and
its applications,” in Proceedings of the Forty-fifth Annual ACM Sympo-
sium on Theory of Computing, ser. STOC ’13, 2013, pp. 467–476.

[54] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proc. of CCS,
Alexandria, VA, USA, October-November 2006.

[55] A. Groce, J. Katz, A. Thiruvengadam, and V. Zikas, “Byzantine agree-
ment with a rational adversary,” in Proceedings of the 39th Interna-
tional Colloquium Conference on Automata, Languages, and Program-
ming - Volume Part II, ser. ICALP’12, 2012, pp. 561–572.

[56] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra, “Executing SQL over
encrypted data in the database-service-provider model,” in Proc. of
ACM SIGMOD, Madison, Wisconsin, June 2002.

[57] I. Hang, F. Kerschbaum, and E. Damiani, “ENKI: Access control for
encrypted query processing,” in Proc. of SIGMOD, Melbourne, Aus-
tralia, May 2015.

[58] B. Hauser, “Introducing Brownie: A python framework for test-
ing, deploying and interacting with ethereum smart contracts,”
https://medium.com/hyperlink-technology/introducing-brownie-
a763859409ca, 2019.

139

https://medium.com/@pfh/kimono-trustless-secret-sharing-using-time-locks-on-ethereum-8e7e696494d
https://medium.com/@pfh/kimono-trustless-secret-sharing-using-time-locks-on-ethereum-8e7e696494d
https://medium.com/hyperlink-technology/introducing-brownie-a763859409ca
https://medium.com/hyperlink-technology/introducing-brownie-a763859409ca

BIBLIOGRAPHY BIBLIOGRAPHY

[59] C. Hazay and Y. Lindell, “A note on the relation between the definitions
of security for semi-honest and malicious adversaries,” 2010.

[60] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin, “Erasure coding in Windows Azure Storage,” in Proc.
of USENIX Annual Technical Conference (USENIX ATC 12), Boston,
MA, USA, June 2012.

[61] J. Hur and D. Noh, “Attribute-based access control with efficient re-
vocation in data outsourcing systems,” IEEE TPDS, vol. 22, no. 7, pp.
1214–1221, July 2011.

[62] “Hyperledger Sawtooth,” https://sawtooth.hyperledger.org, Hyper-
ledger Foundation, 2018.

[63] D. Irvine, “Distributed file system,” MaidSafe, Tech. Rep., 2010.

[64] W. E. Jarvis, Time capsules: a cultural history. McFarland, 2015.

[65] N. Jefferies, C. Mitchell, and M. Walker, “A proposed architecture for
trusted third party services,” in Cryptography: Policy and Algorithms,
1996, pp. 98–104.

[66] K. Kapusta, G. Memmi, and H. Noura, “An efficient keyless frag-
mentation algorithm for data protection,” CoRR, vol. abs/1705.09872,
2017. [Online]. Available: http://arxiv.org/abs/1705.09872

[67] G. O. Karame, C. Soriente, K. Lichota, and S. Capkun, “Securing cloud
data under key exposure,” IEEE Transactions on Cloud Computing,
vol. 7, no. 3, pp. 838–849, July 2019.

[68] M. Keller, E. Orsini, and P. Scholl, “MASCOT: Faster malicious arith-
metic secure computation with oblivious transfer,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16, 2016, pp. 830–842.

[69] M. Keller, V. Pastro, and D. Rotaru, “Overdrive: making SPDZ great
again,” in Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, 2018, pp. 158–189.

140

https://sawtooth.hyperledger.org
http://arxiv.org/abs/1705.09872

BIBLIOGRAPHY BIBLIOGRAPHY

[70] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in Security and Privacy (SP), 2016 IEEE Symposium on,
2016, pp. 839–858.

[71] N. Lambert and B. Bollen, “The SAFE network - a new, decentralised
internet,” http://docs.maidsafe.net/Whitepapers/pdf/TheSafeNetwork.
pdf, MaidSafe, Tech. Rep., 2014.

[72] K. Leyton-Brown and Y. Shoham, “Essentials of game theory: A con-
cise multidisciplinary introduction,” Synthesis lectures on artificial in-
telligence and machine learning, vol. 2, pp. 1–88, 2008.

[73] C. Li and B. Palanisamy, “Timed-release of self-emerging data using
distributed hash tables,” in 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS), 2017, pp. 2344–2351.

[74] C. Li and B. Palanisamy, “Decentralized release of self-emerging data
using smart contracts,” in 2018 IEEE 37th Symposium on Reliable Dis-
tributed Systems (SRDS), 2018, pp. 213–220.

[75] M. Li, C. Qin, and P. P. C. Lee, “CDStore: Toward reliable, secure,
and cost-efficient cloud storage via convergent dispersal,” in Proc. of
USENIX ATC, Santa Clara, CA, USA, July 2015.

[76] M. Li, C. Qin, P. P. C. Lee, and J. Li, “Convergent Dispersal: Toward
storage-efficient security in a cloud-of-clouds,” in Proc. of HotStorage,
Philadelphia, PA, USA, June 2014.

[77] J. Liu, T. Jager, S. A. Kakvi, and B. Warinschi, “How to build time-lock
encryption,” Designs, Codes and Cryptography, vol. 86, pp. 2549–
2586, 2018.

[78] G. Loukas and G. Öke, “Protection against denial of service attacks: A
survey,” The Computer Journal, vol. 53, pp. 1020–1037, 2010.

[79] M. Luby and C. Rackoff, “How to construct pseudorandom permuta-
tions from pseudorandom functions,” SIAM J. Comp., vol. 17, no. 2,
pp. 373–386, Apr. 1988.

141

http://docs.maidsafe.net/Whitepapers/pdf/TheSafeNetwork.pdf
http://docs.maidsafe.net/Whitepapers/pdf/TheSafeNetwork.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[80] M. Luby, A. Shokrollahi, M. Watson, T. Stockhammer, and L. Minder,
“RaptorQ forward error correction scheme for object delivery – RFC
6330,” IETF Request For Comments, 2011.

[81] M. Luongo and C. Pon, “The Keep network: A privacy layer for public
blockchains,” https://keep.network/whitepaper, 2019.

[82] D. MacKay, “Fountain codes,” IEE Proceedings - Communications,
vol. 152, pp. 1062–1068(6), December 2005.

[83] M. Mahmoody, T. Moran, and S. Vadhan, “Time-lock puzzles in the
random oracle model,” in Advances in Cryptology – CRYPTO 2011,
2011, pp. 39–50.

[84] M. Mahmoody, T. Moran, and S. Vadhan, “Publicly verifiable proofs of
sequential work,” in Proceedings of the 4th conference on Innovations
in Theoretical Computer Science, 2013, pp. 373–388.

[85] D. Mankins, R. Krishnan, C. Boyd, J. Zao, and M. Frentz, “Mitigat-
ing distributed denial of service attacks with dynamic resource pric-
ing,” in Seventeenth Annual Computer Security Applications Confer-
ence, 2001, pp. 411–421.

[86] A. Mavridou and A. Laszka, “Designing secure Ethereum smart
contracts: A finite state machine based approach,” ArXiv, vol.
abs/1711.09327, 2017.

[87] T. May, “Timed-release crypto,” http://www.hks.net/cpunks/cpunks-0/
1560.html, 1993.

[88] F. Mert Celebi, P. Fletcher-Hill, G. Kaemmer, and D. Que, “Kimono
time capsule,” https://kimono.network, 2018.

[89] M. Naor and O. Reingold, “On the construction of pseudorandom
permutations: Luby—rackoff revisited,” Journal of Cryptology,
vol. 12, no. 1, pp. 29–66, Jan 1999. [Online]. Available: https:
//doi.org/10.1007/PL00003817

142

https://keep.network/whitepaper
http://www.hks.net/cpunks/cpunks-0/1560.html
http://www.hks.net/cpunks/cpunks-0/1560.html
https://kimono.network
https://doi.org/10.1007/PL00003817
https://doi.org/10.1007/PL00003817

BIBLIOGRAPHY BIBLIOGRAPHY

[90] M. Nojoumian, A. Golchubian, L. Njilla, K. Kwiat, and C. Kamhoua,
“Incentivizing blockchain miners to avoid dishonest mining strategies
by a reputation-based paradigm,” in Intelligent Computing, 2019, pp.
1118–1134.

[91] D. Nuñez, I. Agudo, and J. Lopez, “Delegated access for Hadoop clus-
ters in the cloud,” in Proc. of IEEE CloudCom, 2014.

[92] D. C. Parkes, M. O. Rabin, S. M. Shieber, and C. Thorpe, “Practical
secrecy-preserving, verifiably correct and trustworthy auctions,” Elec-
tronic Commerce Research and Applications, vol. 7, pp. 294 – 312,
2008.

[93] C. Patterson, “Distributed content delivery and cloud storage,”
www.smithandcrown.com/distributed-content-delivery-cloud-storage,
Smith and Crown, Tech. Rep., 2017.

[94] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant
arrays of inexpensive disks (RAID),” ACM SIGMOD Records, vol. 17,
no. 3, pp. 109–116, Jun. 1988.

[95] G. Paul, F. Hutchison, and J. Irvine, “Security of the MaidSafe Vault
Network,” in Wireless World Research Forum Meeting 32, Marrakesh,
Morocco, May 2014.

[96] Z. Peterson, R. Burns, J. Herring, A. Stubblefield, and A. Rubin, “Se-
cure deletion for a versioning file system,” in Proc. of FAST, San Fran-
cisco, CA, USA, Dec. 2005.

[97] J. Poon and T. Dryja, “The Bitcoin lightning network: Scalable
off-chain instant payments,” https://www.bitcoinlightning.com/wp-
content/uploads/2018/03/lightning-network-paper.pdf, 2016.

[98] M. O. Rabin, “How to exchange secrets with oblivious transfer,” IACR
Cryptology ePrint Archive, vol. 2005, p. 187, 2005.

[99] M. O. Rabin and C. Thorpe, “Time-lapse cryptography,” http://nrs.
harvard.edu/urn-3:HUL.InstRepos:26506434, Harvard Computer Sci-
ence Group, Tech. Rep. TR-22-06, 2006.

143

www.smithandcrown.com/distributed-content-delivery-cloud-storage
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
http://nrs.harvard.edu/urn-3:HUL.InstRepos:26506434
http://nrs.harvard.edu/urn-3:HUL.InstRepos:26506434

BIBLIOGRAPHY BIBLIOGRAPHY

[100] I. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the Society for Industrial and Applied Mathematics, vol. 8,
no. 2, pp. 300–304, June 1960.

[101] J. K. Resch and J. S. Plank, “AONT-RS: Blending security and perfor-
mance in dispersed storage systems,” in Proc of FAST, San Jose, CA,
USA, February 2011.

[102] R. Rivest, “All-or-Nothing encryption and the package transform,” in
Proceedings of the 4th Internation Workshop on Fast Software Encryp-
tion (FSE), Haifa, Israel, January 1997.

[103] R. L. Rivest, “Description of the LCS35 time capsule crypto-puzzle,”
https://people.csail.mit.edu/rivest/lcs35-puzzle-description, 1999.

[104] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles and
timed-release crypto,” MIT, Tech. Rep., 1996.

[105] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[106] A. Shokrollahi, “Raptor codes,” IEEE/ACM TON, vol. 6, no. 3-4, pp.
213–322, May 2011.

[107] N. Szabo, “Formalizing and securing relationships on public net-
works,” First Monday, vol. 2, no. 9, 1997.

[108] “TCG storage security subsystem class: Opal,” www.
trustedcomputinggroup.org/wp-content/uploads/TCG Storage-
Opal SSC v2.01 rev1.00.pdf, Aug. 2015.

[109] M. Theoharidou, N. Papanikolaou, S. Pearson, and D. Gritzalis, “Pri-
vacy risk, security, accountability in the cloud,” in Proc. of IEEE
CloudCom, Bristol, UK, December 2013.

[110] “Ganache – personal blockchain for ethereum development,” https://
github.com/trufflesuite/ganache, Truffle Blockchain Group, 2019.

144

https://people.csail.mit.edu/rivest/lcs35-puzzle-description
www.trustedcomputinggroup.org/wp-content/uploads/TCG_Storage-Opal_SSC_v2.01_rev1.00.pdf
www.trustedcomputinggroup.org/wp-content/uploads/TCG_Storage-Opal_SSC_v2.01_rev1.00.pdf
www.trustedcomputinggroup.org/wp-content/uploads/TCG_Storage-Opal_SSC_v2.01_rev1.00.pdf
https://github.com/trufflesuite/ganache
https://github.com/trufflesuite/ganache

BIBLIOGRAPHY BIBLIOGRAPHY

[111] M. von Maltitz and G. Carle, “A performance and resource consump-
tion assessment of secret sharing based secure multiparty computa-
tion,” in Data Privacy Management, Cryptocurrencies and Blockchain
Technology, 2018, pp. 357–372.

[112] D. Vorick and L. Champine, “Sia: Simple decentralized storage,” https:
//www.sia.tech/whitepaper.pdf, Nebulous Inc., Tech. Rep., 2014.

[113] M. Waldman and D. Mazieres, “Tangler: a censorship-resistant pub-
lishing system based on document entanglements,” in Proc. of ACM
CCS, Philadelphia, PA, USA, November 2001.

[114] A. Webster and S. E. Tavares, “On the design of S-boxes,” in Con-
ference on the Theory and Application of Cryptographic Techniques.
Springer, 1985, pp. 523–534.

[115] S. Wilkinson, T. Boshevski, J. Brandoff, J. Prestwich, G. Hall,
P. Gerbes, P. Hutchins, C. Pollard, and V. Buterin, “Storj: a peer-to-
peer cloud storage network (v2.0),” https://storj.io/storj.pdf, Storj Labs
Inc., Tech. Rep., 2016.

[116] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.

[117] A. C. Yao, “Protocols for secure computations,” in Proceedings of the
23rd Annual Symposium on Foundations of Computer Science, ser.
SFCS ’82, 1982, pp. 160–164.

[118] S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute based data sharing
with attribute revocation,” in Proc. of ASIACCS, April 2010.

[119] G. Zyskind, O. Nathan, and A. Pentland, “Enigma: Decentralized com-
putation platform with guaranteed privacy,” arXiv:1506.03471, 2015.

145

https://www.sia.tech/whitepaper.pdf
https://www.sia.tech/whitepaper.pdf
https://storj.io/storj.pdf

A

Mix&Slice Implementation

This appendix describes the open-source implementation of the Mix&Slice
encryption mode described in Chapter 2.

The implementation is done in C and consists of single-threaded and a
multi-threaded encryption/decryption functions that make use of AES as base
symmetric encryption primitives. The use of OpenSSL EVP APIs leverages
hardware-accelerated AES-NI primitives when available.

A.1 APIs

The file includes/aes mix.h contains the following three definitions:

� BLOCK SIZE: number of bytes in a cipher block (16 bytes for AES).
� MINI SIZE: number of bytes in a mini-block.
� MINI PER MACRO: number of mini-blocks in a macro-block.

These parameters can be modified at compile time to experiment with dif-
ferent sizes.

A.1.1 Single-thread APIs

The file includes/aes mix.h contains the prototype of the only two
methods that are necessary to use Mix&Slice:

147

APPENDIX A. MIX&SLICE IMPLEMENTATION A.1. APIS

void mixencrypt(

const unsigned char* data, unsigned char* out,

const unsigned long size, const unsigned char* key,

const unsigned char* iv);

void mixdecrypt(

const unsigned char* data, unsigned char* out,

const unsigned long size, const unsigned char* key,

const unsigned char* iv);

The parameters are as follows.

� data: pointer to the source buffer (plaintext in case of mixencrypt
and ciphertext in case of mixdecrypt).

� out: pointer to the destination buffer.
� size: number of bytes in source (and destination) buffers.
� key: symmetric key (string) used for the AES functions.
� iv: initialization vector for the AES functions.

A.1.2 Multi-thread APIs

The file includes/aes mix multi.h contains the prototypes of the
only two methods that are necessary to use Mix&Slice in multi-threaded
mode:

void t_mixencrypt(

unsigned int thr, const unsigned char* data,

unsigned char* out, const unsigned long size,

const unsigned char* key, const unsigned char* iv);

void t_mixdecrypt(

unsigned int thr, const unsigned char* data,

unsigned char* out, const unsigned long size,

const unsigned char* key, const unsigned char* iv);

The only additional parameter is thr, the number of threads to use.

148

A.1. APIS APPENDIX A. MIX&SLICE IMPLEMENTATION

A.1.3 Slicing phase

The mixing phase is the real encryption phase. The slicing phase strongly
depends on the file management and should be implemented according to the
ratio of policy updates with respect to decryption processes and can be easily
sped up with ad-hoc file management. Because of this, the performance of
the mixing phase is a good proxy of the performance of the whole Mix&Slice
technique.

The version implemented here keeps the fragments together. This bene-
fits the policy update process, whereas the decryption process has to pay the
overhead for rearranging the bytes before performing the unmixing phase.

The file includes/aes mixslice.h contains the prototypes of the
two methods that perform the whole Mix&Slice encryption:

void mixslice(

unsigned int thr, const unsigned char* data,

unsigned char* fragdata, const unsigned long size,

const unsigned char* key, const unsigned char* iv);

void unsliceunmix(

unsigned int thr, const unsigned char* fragdata,

unsigned char* out, const unsigned long size,

const unsigned char* key, const unsigned char* iv);

The mixslice method first uses t mixencrypt to perform the mix-
ing phase. The slicing phase rearranges the output of the mixing phase in
slices. The user is responsible for creating the buffer that will contain the
fragdata. The slices are concatenated and written to the fragdata

buffer. The user of the function can read the fragments directly from there
as follows:

� each fragment consists of fragsize = size /

MINI PER MACRO bytes;
� the first fragment spans the fragdata bytes in range [0,

fragsize);
� the second fragment spans the fragdata bytes in range
[fragsize, fragsize*2);

149

APPENDIX A. MIX&SLICE IMPLEMENTATION A.1. APIS

� and so on until [size - fragsize, size).

A.1.4 Installation

Before proceeding please install the openssl/crypto library source and
the libtool binary. In ubuntu, you can proceed as follows:

$ sudo apt install libtool-bin libssl-dev

To compile and install the dynamic library in your system you can:

$ make

$ sudo make install

To remove the library simply do:

$ sudo make uninstall

A.1.5 Test

There are three test suites:

� main: main test suite that verifies that Mix&Slice principles are en-
forced.

� blackbox: test suite that verifies the Mix&Slice principles in an abstract
sense (without knowledge about the code).

� multithread: test suite that verifies that the Mix&Slice principles are
enforced in the multi-threaded implementation.

make is used for compilation and testing purposes. A basic compile-and-
test setup is made by the steps:

$ make

$ make test

See the Makefile for all the compile and test targets.

150

A.2. PYTHON WRAPPER APPENDIX A. MIX&SLICE IMPLEMENTATION

A.2 Python Wrapper

The python implementation wraps both the phases and offers a CLI tool that
wraps the libaesmix library.

The C implementation has been built with performance in mind, whereas
the python wrapper and the CLI tool has been implemented to offer
widespread access to the Mix&Slice capabilities. The mixing and slicing
phases use the C implementation, but the python conversion adds a big over-
head since it has to materialize all the buffers in memory.

Since the tool materializes all the buffers in memory and has to perform
both the mixing and the slicing phases, you should only use the CLI tool on
files that are at maximum as large as a third of your available memory.

Please check the file example.py to understand how to use the library.

A.2.1 Requirements

Before proceeding please install the openssl/crypto library source. In
ubuntu, you can proceed as follows:

$ sudo apt install libssl-dev

A.2.2 Installation

The package has been uploaded to PyPI at https://pypi.org/

project/aesmix so, after installing the requirements, you can install the
latest released version using pip:

$ pip install aesmix

To install the version from this repository, you can use the commands:

$ make build

$ sudo make install

To install the package in a virtual environment, use:

python setup.py install

The python wrapper will also compile the libaesmix library.

151

https://pypi.org/project/aesmix
https://pypi.org/project/aesmix

APPENDIX A. MIX&SLICE IMPLEMENTATION A.3. KEY REGRESSION MECHANISM

A.2.3 Command Line Interface

This package also installs the mixslice tool that can be used as follows.
To encrypt a file:

$ mixslice encrypt sample.txt

INFO: [*] Encrypting file sample.txt ...

INFO: Output fragdir: sample.txt.enc

INFO: Public key file: sample.txt.public

INFO: Private key file: sample.txt.private

To perform a policy update:

$ mixslice update sample.txt.enc

INFO: [*] Performing policy update on sample.txt.enc ...

INFO: Encrypting fragment #68

INFO: Done

To decrypt a file:

$ mixslice decrypt sample.txt.enc

INFO: [*] Decrypting fragdir sample.txt.enc

using key sample.txt.public ...

INFO: Decrypting fragment #68

INFO: Decrypted file: sample.txt.enc.dec

$ sha1sum sample.txt sample.txt.enc.dec

d3e92d3c3bf278e533f75818ee94d472347fa32a sample.txt

d3e92d3c3bf278e533f75818ee94d472347fa32a sample.txt.enc.dec

A.3 Key regression mechanism

The key regression implementation is based on “Key Regression: Enabling
Efficient Key Distribution for Secure Distributed Storage” [52].

152

https://eprint.iacr.org/2005/303.pdf
https://eprint.iacr.org/2005/303.pdf

A.3. KEY REGRESSION MECHANISM APPENDIX A. MIX&SLICE IMPLEMENTATION

Example

The key regression mechanism can be used as follows.

from aesmix.keyreg import KeyRegRSA

iters = 5

stp = KeyRegRSA()

print("== WINDING ==")

for i in range(iters):

stp, stm = stp.wind()

print("k%i: %r" % (i, stm.keyder()))

print("\n== UNWINDING ==")

for i in range(iters - 1, -1, -1):

print("k%i: %r" % (i, stm.keyder()))

stm = stm.unwind()

153

B

Securing Resources in
Decentralized Cloud Storage

— Proofs of Theorems

Proof of Theorem 1
Let us assume, by contradiction, the existence of a (k, r)-allocation for a re-
source split into s = k < k + 1 slices. Given s different slices, no more than
s nodes can be used to store one replica of the slices. Since s=k, the alloca-
tion function is storing the whole resource using at most k nodes. Therefore,
it is not k-protected. Note that k + 1 slices are sufficient to define a (k, r)-
allocation. The r-replication requirement is easily satisfied by replicating r

times each of the k + 1 slices. The k-protection requirement is satisfied by
storing each slice to a different node. Hence, for each replica of the resource,
each coalition of k nodes misses one slice (the one stored at the (k + 1)-th
node). �

Proof of Theorem 2
Since there are r · (k + 1) slices to be stored, a (k, r)-allocation cannot use
more than r ·(k+1) nodes. However, a (k, r)-allocation with s = k+1 cannot
use less than r · (k + 1) nodes. Let us consider the case where slices are not

155

APPENDIX B. DECENTRALIZED CLOUD STORAGE — PROOFS OF THEOREMS

replicated (i.e., r = 1), since the same discussion applies to each replica of
the resource. Assume, by contradiction, that a (k, r)-allocation stores more
than one slice at one of the nodes. If the function adopts n = k+1 nodes, there
will be at least one node that does not store any slice (which is equivalent to
say that n ≤ k) as the number of slices is k + 1. Then, k nodes store all the
slices composing the resource, thus violating k-protection. �

Proof of Theorem 3
To guarantee r-replication, each slice should be stored at (at least) r nodes.
If allocation function ϕ is k-protected, for each coalition Ni of k nodes, there
exists at least a slice sj that is not stored at any of the nodes in Ni. To guaran-
tee that sj has r copies, there must exist at least r additional nodes that store
sj, and n should be at least equal to k + r. Note that k + r nodes are suffi-
cient to define a (k, r)-allocation. Consider, as an example, s =

(
k+r
k

)
slices,

the set N1, . . . , Ns of possible coalitions of k nodes, and allocation function ϕ

that assigns the i-th slice to all the nodes in N , but the ones in the i-th coali-
tion: ϕ(si) = N \ {Ni}. Function ϕ is k-protected, since each coalition Ni

cannot access slice si, and r-replicated, since slice si is stored at each node
ni ∈ N \ {Ni}, then at n− k = r nodes. �

Proof of Theorem 4
An allocation function ϕ is k-protected if the set of slices stored at any coali-
tion Ni of k nodes is not complete (i.e., at least one slice is missing). To
guarantee that ϕ is an allocation function each slice should be stored at least
on one node. If each coalition misses a different slice, we are minimizing
the number of slices necessary to define an allocation function ϕ. Indeed,
since n > k, the missing slice for each coalition Ni can be stored at the
nodes in N \ Ni, as they will miss another slice. Since there are

(
k+r
k

)
pos-

sible coalitions of k nodes in N , s should be at least
(
k+r
k

)
to guarantee that

each coalition misses a different slice. Assume, by contradiction, that r = 1,
s =

(
k+r
k

)
− 1, and that ϕ is k-protected. In this case, two coalitions Ni and

Nj will miss the same slice sx. That is, there are at least k+1 nodes (the ones

156

APPENDIX B. DECENTRALIZED CLOUD STORAGE — PROOFS OF THEOREMS

in Ni ∪ Nj) missing sx. However, if n = k + 1 then ϕ cannot be an allocation
function, since no node in N stores sx. (The same reasoning applies with
larger values for r.) �

Proof of Theorem 5
1) Since each coalition of k nodes should not be able to reconstruct the re-
source, it should miss at least one slice. The number of slices used by the
allocation function is s =

(
k+r
k

)
, which is sufficient for each coalition to miss

at least one slice. In fact, the number of possible coalitions of k nodes is(
k+r
k

)
. Let us assume, by contradiction, that two coalitions Ni and Nj miss the

same slice sx. Therefore, there are k + 1 nodes (Ni∪Nj) that do not store sx.
However, in this case sx would be stored at n− (k+1) = r−1 nodes. Hence,
the allocation function would not be r-replicated.

2) By definition of (k, r)-allocation with n = k + r nodes and s =
(
n
k

)
slices,

each coalition of k nodes misses a different slice. Let us consider two coali-
tions Ni and Nj that differ in one node only. Coalition Nj misses one slice, sj,
while Ni misses si. Since Nj misses one slice only, it stores si. Hence, Ni∪Nj
includes k + 1 nodes and stores all the slices composing the resource. �

Proof of Theorem 6
Pu) The probability to obtain back the original plaintext resource corresponds
to the probability that k + 1 nodes, each storing a different slice, do not fail.
Since pu is the probability that a node fails, the probability that at least one of
the r replicas of a slice is available is (1 − (pu)

r), with (pu)
r the probability

that all r replicas of the slice are unavailable. The probability to obtain back
all the k + 1 slices, and then also the original plaintext resource, is then
(1 − (pu)

r)k+1 and (1 − (1 − (pu)
r)k+1) is the probability that the resource

cannot be decrypted.

Pc) The probability that the resource is exposed is the probability that all
the slices are compromised, meaning that k + 1 nodes are malicious. Since
1− pc is the probability that a node is not compromised and each slice has r
replicas, the probability that at least one replica is exposed is (1− (1− pc)

r),

157

APPENDIX B. DECENTRALIZED CLOUD STORAGE — PROOFS OF THEOREMS

with (1−pc)r the probability that all r replicas of a slice are not compromised.
We can then conclude that the probability that all k + 1 slices are exposed is
(1− (1− pc)

r)k+1. �

Proof of Theorem 7
Pu) To obtain back the original plaintext resource, we need the slices stored on
any combination of k+1 nodes, that is, k+1 nodes must not fail. A resource
therefore becomes unavailable when any combination of r or more nodes fail.
The probability that i nodes fail, with i = r, . . . , k + r, and k + r − i nodes
do not fail is equal to (pu)

i(1 − pu)
k+r−i. Since the number of combinations

of i nodes out of k + r is
(
k+r
i

)
, the probability that a resource is unavailable

is Pu =
k+r∑
i=r

(
k+r
i

)
(pu)

i(1− pu)
k+r−i.

Pc) A coalition can compromise the confidentiality of the resource whenever
it involves any combination of k + 1 nodes, that is, at least k + 1 nodes
must be compromised. The probability that i nodes are compromised, with
i = k + 1, . . . , k + r, and k + r − i nodes are not compromised is equal to
(pc)

i(1−pc)
k+r−i. Since the number of combinations of i nodes out of k+r is

the binomial coefficient
(
k+r
i

)
, we can conclude that the probability that any

combination of at least k + 1 nodes are compromised in a collection of r + k

nodes is Pc =
k+r∑

i=k+1

(
k+r
i

)
(pc)

i(1− pc)
k+r−i. �

158

	Abstract
	Introduction
	Document structure
	Publications

	Mix&Slice
	Introduction
	Mix&Slice
	Blocks, mini-blocks, and macro-blocks
	Mixing
	OAEP mixing
	Shortcomings of large macro-blocks
	Slicing

	Access management
	Effectiveness of the approach
	Local storage of fragments
	Keeping portions of all mini-blocks
	A note on collusion
	A note on erasure coding
	Comparison with other AONTs

	Implementation
	Client
	Overlay solution
	Ad-hoc solution

	Related work
	Conclusions

	Decentralized Cloud Storage
	Introduction
	Background
	Allocation properties
	Strategies
	Minimizing the number of slices
	Minimizing the number of nodes
	Discussion

	Guarantees
	MinSlices allocation
	MinNodes allocation
	Setting k and r

	Experiments
	Implementation
	Experimental results
	Further considerations
	A note on DCS dynamicity

	Related work
	Conclusions

	I Told You Tomorrow
	Introduction
	Background
	The ITYT protocol
	Definitions
	Roles
	Smart contract setup
	Smart contract functions

	Economic model
	Protection against malicious shareholders
	Protection against malicious owners
	Impact of share whistleblowing function
	Evaluating Costs

	Implementation
	The ITYT state machine

	Discussion
	Protection against adversarial sMPC protocols
	DOS Attacks and Deadlocks prevention

	Experimental Results
	Related Work
	Conclusions

	Conclusions
	Future Work

	Acknowledgments
	Bibliography
	Mix&Slice Implementation
	APIs
	Single-thread APIs
	Multi-thread APIs
	Slicing phase
	Installation
	Test

	Python Wrapper
	Requirements
	Installation
	Command Line Interface

	Key regression mechanism

	Decentralized Cloud Storage — Proofs of Theorems

