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Abstract

We provide a simple method for deriving second-order stochastic dominance

between multiparametric families which can be decomposed into a functional

composition of two cumulative distributions and a quantile function. The

method is applied to stochastic comparisons of order statistics.
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1. Introduction

The second order stochastic dominance (SSD) is probably the most widely

used stochastic order in areas such as economics, finance, decision science

and management. Yet, investigating dominance relations within multipara-

metric families of distributions is often complicated, owing to the many

parameters or non-closed functional forms (Wilfling, 1996a,b; Kleiber, 1999;

Sarabia et al., 2002; Belzunce et al., 2013; Ortobelli et al., 2016). To solve
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this problem, we observe that a wide class of multiparametric families can be

decomposed into the functional composition of two cumulative distributions

(CDFs) and a quantile function (QF). This approach is the inverse procedure

of the T-X method (Alzaatreh et al., 2013; Aljarrah et al., 2014; Lee et al.,

2013). We show that sufficient SSD conditions for a pair of decomposable

multiparametric distributions can be derived straightforwardly by checking

dominance conditions of the more manageable distributions that compose

the models. We apply our method to the beta-generated (BG) family of

Jones (2004), which may generate the generalized betas of the first and sec-

ond kinds (GB1 and GB2) of McDonald (1984) (see also McDonald and Xu

(1995)) —which are the main distributions for modelling size phenomena

on bounded or unbounded support, respectively (Kleiber and Kotz, 2003)—

and many others. Interestingly, the distribution of an order statistic of an

i.i.d. sample from any underlying random variable (RV) belongs to the BG

family. Hence, we use our results to derive SSD relations between order

statistics of i.i.d. samples from the same or from different RVs.

2. Preliminaries

2.1. Stochastic orders

In this paper, we consider absolutely continuous RVs with finite means. Let

U be an RV with CDF FU and probability density function (PDF) fU . We

recall the basic definitions of first order stochastic dominance (FSD) and

SSD.

Definition 1. We say that U1 dominates U2 w.r.t. FSD and we write

U1 ≥1 U2 iff FU1(u) ≤ FU2(u),∀u ∈ R.
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Definition 2. We say that U1 dominates U2 w.r.t. SSD and we write

U1 ≥2 U2 iff
∫ u
−∞ FU1(t)dt ≤

∫ u
−∞ FU2(t)dt,∀u ∈ R.

When the integral condition of Definition 2 is difficult to verify, we may

derive the SSD by checking whether the CDFs cross (at most) once (Hanoch

and Levy, 1969, Theorem 3) or the PDFs cross (at most) twice (Shaked,

1982, Theorem 2.2) (see also Ramos et al. (2000, Theorem 2.2)). However,

crossing verification is an issue for most multiparametric distributions, whose

CDFs and PDFs are not easily tractable from a mathematical point of view.

2.2. The T-X family

The T-X method, which was introduced by Alzaatreh et al. (2013), is based

on the composition of the CDFs of two RVs, namely, X and T , with a differ-

entiable function, which we denote as w, that fulfils specified requirements

(Lee et al., 2013). Aljarrah et al. (2014) define w more practically as the

QF of a third RV, namely, Y . This method, which is denoted as T-X{Y},

can be outlined as follows: given three RVs, namely, X, Y and T , where the

support of T is included in that of Y , a new RV, namely, Z, is defined via

the CDF

FZ = FT ◦QY ◦ FX , (1)

where QY is the QF of Y . In this formula, FT plays the role of a generator

distribution and FX represents a baseline distribution. The support of Z is

included in that ofX, whereas if T and Y have the same support, thenX and

Z have the same support. The composite function h = FT ◦QY is a distortion

function —which is defined as a non-decreasing function h such that h(0) = 0

and h(1) = 1— of the baseline CDF FX . Also, it is interesting to note that

T is a transformation of the RV Z, namely T = QY ◦ FX(Z). With the
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notation that was introduced by Aljarrah et al. (2014), we can specify and

highlight the roles of the distributions within the composition: for example,

gamma-normal{exponential(1)} represents that T is a gamma distribution,

X is a normal distribution and Y is a unit exponential distribution.

It should be stressed that a baseline CDF, FX , can be simply transformed

into a new CDF, FZ , via the probability transformation FZ = FV ◦ FX ,

where V is any RV defined on [0, 1] (Jones, 2015, Family 4). The T-X

family, obtained for FV = FT ◦QY , can be considered as a rather enigmatic

generalization of such an approach. In particular, different compositions in

(1) may yield the same family, which is arguably a backward step when

simply using the method to generate distributions. However, for technical

reasons that will become clear in the next section, the T-X method is helpful

in our context, as it may be used to decompose in an alternative way existing

models of practical relevance, such as the BG family of Jones (2004), which

includes the GB1, the GB2 and the generalized gamma of McDonald and

Xu (1995).

3. Main result

The objective of this paper is to establish dominance relations between pairs

of multiparametric distributions, namely, FZ1 and FZ2 , which can be decom-

posed according to (1). For the sake of simplicity, we assume QY1 = QY2 =

QY (in most applications in the literature, QY is not parametrised).

FSD can be derived straightforwardly: Let FZi = FTi ◦QY ◦FXi for i = 1, 2.

If X1 ≥1 X2 and T1 ≥1 T2, then Z1 ≥1 Z2.

Regarding SSD, the following result holds:

Theorem 1. Let FZi = FTi ◦ QY ◦ FXi, for i = 1, 2, where QY ◦ FX2 is
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convex. Let i) X1 ≥1 X2 or ii) X1 ≥2 X2 and X1, X2 belong to a location-

scale family with support R. Then T1 ≥2 T2 implies Z1 ≥2 Z2.

Proof. The proof is based on the following argument. Let ε1, . . . , εn and

c1, . . . , cn, where c1 ≥ · · · ≥ cn ≥ 0, be two sequences of real numbers. If

sk =
∑k

j=1 εj ≥ 0, ∀k = 1, . . . , n, then

n∑
j=1

cjεj = sncn+

n−1∑
j=1

sj (cj − cj+1) ≥ 0. (2)

i) X1≥1X2 implies
∫ z
−∞ FT1

◦QY
◦FX1 (t) dt≤

∫ z
−∞ FT1

◦QY
◦FX2 (t) dt,∀z ∈ R

since FT1
◦QY is increasing. It is sufficient to prove that W≥2Z2, where W

is the RV with CDF FT1
◦QY

◦FX2 . Via a change of variables, we must show∫ z

−∞
FT1 (t) g (t) dt ≤

∫ z

−∞
FT2 (t) g (t) dt,∀z ∈ R, (3)

where g = (QX2 ◦ FY )
′

is a decreasing function, by the assumed convexity of

QY
◦FX2 . Let g be a decreasing step function, that is, g (t) = cj for aj−1 <

t < aj , with a decreasing sequence of cj and an increasing sequence of aj ,

j = 1, . . . , n, a0 = −∞, an = z. By setting εj =
∫ aj
aj−1

(FT2 (t)− FT1 (t)) dt

in (2), we obtain
∑n

j=1 cjεj =
∫ z
−∞ (FT2 (t)− FT1 (t))h (t) dt ≥ 0,∀z ∈ R.

Then, (3) holds for every decreasing g, because all decreasing functions can

be approximated by decreasing step functions.

ii) Xi, i = 1, 2, have location and scale parameters µi and σi such that

FXi (z) = F
(
z−µi
σi

)
, z ∈ R, where F is a given CDF. For location-scale

families, X1≥1X2 iff E(X1) ≥ E(X2) and σ1 = σ2, whereas X1≥2X2 iff

E(X1) ≥ E(X2) and σ1 ≤ σ2. Then, SSD follows from condition i) by

setting σ1 = σ2. Nevertheless, µi and σi are location and scale parameters

also for Zi (namely, FZi (z; ai, bi, µi, σi) = FZi (zσi + µi; ai, bi, 0, 1)). Thus,

the condition σ1 = σ2 can be replaced by σ1 ≤ σ2, which yields X1≥2X2
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(E(X1) ≥ E(X2) and σ1 ≤ σ2 imply X1≥2X2 for Hanoch and Levy (1969,

Theorem 3)).

Theorem 1 states that i) FSD (in the general case) or ii) SSD (for real-

valued location-scale families) among baseline RVs and SSD among genera-

tors imply SSD for the generated model. As for ii), SSD conditions within

a location-scale family (defined on R) are especially simple. Let Xi, for

i = 1, 2, have location and scale parameters µi = E(Xi) and σi, respec-

tively. Then µ1 ≥ µ2 and σ2 ≥ σ1 imply X1≥2X2 for Hanoch and Levy

(1969, Theorem 3).

Theorem 1 is useful since it is typically far simpler to compare the pairs

(FX1 , FX2) and (FT1 , FT2) than the pair (FZ1 , FZ2). The requirement of the

convexity of QY
◦FX2 depends on the choice of QY . To simplify the nota-

tion, let FX2 = F . If QY (p) = −ln(1−p) is the QF of a unit exponential RV

(namely, the T-X{exponential(1)} family of Alzaatreh et al. (2013), which

generates many models) then we require convexity of −ln (1−F ) , which is

equivalent to having an increasing failure rate (IFR); many well-known dis-

tributions satisfy this condition. Note that IFR distributions are of great in-

terest in reliability theory (Shaked and Shanthikumar, 2007; Kochar, 2012).

In the next section, we choose QY (p)=p/(1− p). With such decomposition

we require convexity of F/(1 − F ). Such a condition holds for all IFR dis-

tributions plus others, since convexity of −ln (1−F ) implies convexity of

F/(1−F ) (for instance, the Pareto and the log-logistic distributions are not

IFR, but they satisfy convexity of F/(1− F ) iff they have finite means).
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4. Comparisons of order statistics: an application

In this section, we derive SSD within the BG family of Jones (2004), which is

obtained via the composition of the beta distribution with any CDF F . Such

a family generates many relevant multiparametric models: for instance, we

can obtain GB1 and GB2 by taking F to be a power function or a log-logistic

CDF, respectively. In particular, the distributions of order statistics of i.i.d.

samples from any underlying distribution F belong to the BG class. SSD

conditions for the BG family can be derived easily from Theorem 1. This en-

ables the comparison of order statistics in terms of SSD in various sampling

scenarios. In reliability theory, stochastic comparisons of order statistics

are particularly relevant (Shaked and Shanthikumar, 2007; Kochar, 2012;

Kundu and Chowdhury, 2016). Order statistics may represent the waiting

time until fewer than k components remain functioning in a system of n

components. Thus, engineering is concerned with maximizing the mean life

while also reducing the variability since predictable life length is desirable.

In the literature, several works deal with this issue using the Lorenz order

(LO) (Arnold and Villaseñor, 1991; Wilfling, 1996b; Kochar, 2006, 2012);

however, we argue that this scenario is even more suitable for SSD, which

considers both the variability and the size (the LO is a size-independent

version of SSD for non-negative RVs).

4.1. Beta-generated family

Let beta(p, q) denote the beta distribution with shape parameters p, q > 0.

Starting from a baseline RV, X, and a generator RV, B ∼ beta(p, q), Z

has a BG distribution if its CDF can be expressed as FZ = FB ◦ FX . Via

our approach, the BG model can be decomposed trivially by using the beta

distribution as the generator T and the uniform distribution on [0, 1] for
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the QF, thereby giving rise to the beta–X {uniform[0,1]} family. However,

since the QF of the uniform distribution is the identity function, to apply

Theorem 1 we would require the convexity ofQY
◦FX = FX , which is a highly

restrictive condition. Thus, in Theorem 2 below we use an alternative T–

X{Y} decomposition with QY (p) = p/(1− p), thereby rendering it possible

to consider the BG as a B2–X{log-logistic(1,1)}, where B2 denotes the beta

distribution of the second kind (Kleiber and Kotz, 2003), defined via the

CDF FT = FB ◦ FY (T = B
1−B ). We show that SSD conditions can be

derived easily if QY
◦FX = FX

1−FX , namely, the odds (in favour) of FX , is

convex.

Theorem 2. For i = 1, 2, let FZi = FBi ◦ FXi, where Bi ∼ beta(pi, qi)

(qi > 1). Let FX2/(1−FX2) be convex. Let i) X1≥1X2 or ii) X1, X2 belong

to a location-scale family with support R and X1≥2X2. Then p1≥p2 and

p1
q1−1≥

p2
q2−1 imply Z1≥2Z2.

Proof. For i = 1, 2, FZi can be decomposed via the T-X method as expressed

in (1), where Ti is a B2 with parameters pi and qi and PDF fTi (t; pi, qi) =

B(pi, qi)
−1tpi−1(1 + t)−pi−qi (t, pi, qi > 0) and Y has QF QY (u) = u/(1−u).

According to Ramos et al. (2000), it is sufficient to study the function r (t) =(
fT1 (t)

fT2 (t)

)′
=a (t) (c+dt), where a (t)> 0 for every t, pi, qi> 0, i= 1, 2, c=p1−p2

and d=q2−q1. If cd≥0, then r is a (strictly) monotone function, whereas if

cd< 0, then r is unimodal. If p1≥p2 and q2≥q1, then T1≥1T2 (implying

T1≥2T2), because r is increasing. If p1>p2 and q1>q2, then the mode is a

maximum and we can apply Theorem 2.2 of Ramos et al. (2000), recalling

that E(Xi) = pi
qi−1 , if qi> 1. Finally we obtain:

p1≥p2 and p1
q1−1≥

p2
q2−1 (with q1, q2 > 1) implies T1≥2T2.

Then, the thesis follows from Theorem 1.
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Table 1: SSD sufficient conditions for various BG families satisfying p1≥p2 and

p1
q1−1

≥ p2
q2−1

.

BG family X FX FX/(1 − FX) Conditions

GB1 power

function

(x/b)a, a, b > 0, x ∈

[0, b]

convex, ∀a, b a1 ≥ a2, b1 ≥ b2

GB2 log-

logistic

1
1+(x/b)−a

, a, b, x > 0 convex, ∀a > 1, b a2 ≥ a1 > 1, b1 ≥

b2

BG-Pareto Pareto 1−
(
b
x

)a
, a, b > 0, x > b convex, ∀a > 1, b a2 ≥ a1 > 1, b1 ≥

b2

BG-uniform uniform x−a
b−a , b > a, x ∈ [a, b] convex, ∀a, b a1 ≥ a2, b1 ≥ b2

BG-normal normal 1
2erf

(
(µ− x)/

√
2σ
)
,

σ > 0, x ∈ R

convex, ∀µ, σ µ1 ≥ µ2, σ1 ≤ σ2

BG-logistic logistic 1
1+exp(µ−xσ )

,

σ > 0, x ∈ R

convex, ∀µ, σ µ1 ≥ µ2, σ1 ≤ σ2

In Table 1, we describe several BG families according to the baseline CDF,

namely, FX , and we specify the conditions under which FX/(1 − FX) is

convex. SSD conditions for such families can be obtained by combining items

in the “conditions” column with those for the B2 generator distributions,

namely, p1≥p2 and p1
q1−1≥

p2
q2−1 .

4.2. Relations among order statistics: sampling from different populations

Let X1, . . . , Xn denote a sample of i.i.d. RVs from an RV X and let

Y1, . . . , Ym denote a sample of i.i.d. RVs from another RV Y . Then, the

CDFs of Xi:n and Yj:m are FXi:n = FB1 ◦ FX and FXj:m = FB2 ◦ FY , where

B1 ∼ beta(i, n− i+ 1) and B2 ∼ beta(j,m− j + 1). The following theorem

enables the determination of the sample sizes n and m and the ranks i and j
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such that Xi:n≥2Yj:m.

Theorem 3. Let X and Y be RVs such that FY /(1 − FY ) is convex. Let

i) X≥1Y or ii) X,Y belong to a location-scale family with support R and

X≥2Y . Then i ≥ j and i
n ≥

j
m imply Xi:n≥2Yj:m.

Proof. The thesis follows from Theorem 2 with p1 = i, p2 = j, q1 = n− i+ 1

and q2 = m− j+ 1. The system of inequalities i ≥ j and i
n−i ≥

j
m−j can be

reduced to i ≥ j and i
n ≥

j
m .

Sampling from normal distributions: an example

Let X ∼ N(µ1, σ1) and Y ∼ N(µ2, σ2). Then, Xi:n and Yj:m have BG-

normal distributions. According to Table 1, if µ1 ≥ µ2 and σ1 ≤ σ2, we

can apply Theorem 3. For instance, let n = 35, m = 30 and j = 20. The

minimum rank i such that Xi:35≥2Y20:30 is given by i =
⌈
max{j, njm }

⌉
= 24,

where d•e denotes the ceiling function (Xi:35≥2Y20:30 for i ≥ 24).

4.3. Relations among order statistics: sampling from the same population

Since the condition X≥1X always holds, interesting properties can be de-

rived easily as a corollary of Theorem 3.

Corollary 1. Let X be an RV such that the odds function FX/(1− FX) is

convex. Then:

1. Xi+1:n≥2Xi:n, ∀i, n (i = 1, . . . , n− 1).

2. Xi:n≥2Xi:n+1, ∀i, n.

The results of Corollary 1 extend to the SSD case and to a larger class

of distributions those that were obtained for the LO by Arnold and Vil-

laseñor (1991); Wilfling (1996b) for uniform, power function and Pareto
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distributions. The interpretation of Corollary 1 is as follows: 1) larger order

statistics in a sample dominate smaller ones within the same sample, 2) or-

der statistics from larger samples dominate order statistics (with the same

rank) from smaller samples.
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