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A Progressive Hedging method for the multi-path Traveling Salesman
Problem with stochastic travel times

In this paper we consider a recently introduced problem specifically designed for Smart Cities and City
Logistics applications: the multi-path Traveling Salesman Problem with stochastic travel costs (mpTSPs).
The mpTSPs is a variant of the TSP problem where a set of paths exists between any two nodes and
each path is characterized by a random travel time. We propose a two stage stochastic programming
formulation where tour design makes up the first stage, while a recourse decisions related to the choice
of the path to follow are made in the second stage. To solve this formulation we propose an heuristic
method inspired by the Progressive Hedging algorithm of Rockafellar & Wets. We then benchmark the
solution method by solving model instances derived from the traffic speed sensor network of the city of
Turin. Furthermore, the impact of the stochastic travel time costs on the problem solution is examined,
showing the benefits of the proposed methodology in both solution quality and computational effort when
compared to solving the deterministic equivalent formulation using a commercial solver.
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1. Introduction

In this paper we consider the multi-path Traveling Salesman Problem with stochastic travel times (mpTSPs),
a recently introduced variant of the standard TSP related to Smart City and City Logistics applications
(Tadei et al., 2014). More precisely, given a graph characterized by a set on nodes connected by arcs,
in the mpTSPs we consider that, for every pair of nodes, we have multiple paths between the two nodes.
Each path is characterized by a random travel time which can be decomposed in the sum of a determin-
istic term and a stochastic term, which represents the travel time oscillation due to the path congestion.
In practice, that travel time oscillations randomly depend on time realizations in different dates and time-
slots and are very difficult to measure. Similarly to the standard TSP, the aim of the problem is to define
the Hamiltonian cycle minimizing the expected total cost.

The problem was defined in a smart city application, the PIE VERDE project. PIE VERDE, funded
by the European Regional Development Fund (ERDF), aims at developing new planning tools for freight
delivery in urban areas by means of environmentally-friendly light duty vehicles. One of the aims of this
project is to plan and manage a two-echelon delivery service. Trucks are not allowed to directly enter
the city and the freight is consolidated in small peripheral depots. The goods are finally delivered using
hybrid vehicles (Perboli et al., 2011). The planning of a hybrid vehicle tour requires the determination
of the sequence of clients to visit and the selection of the powertrain configuration during the tour. In
fact, hybrid vehicles can change the powertrain configuration during a route, impacting their GHG emis-
sions, and their energy and fuel consumption. These vehicles can be fueled by thermal, thermal-electric
or exclusively electric engine thanks to a rechargeable energy storage system able to supplement fossil
fuel energy for vehicle propulsion. Additionally, some hybrid vehicles use a co-generative thermal engine
that exploits braking power to generate electricity while traveling. Hence, the gain in terms of reduction
of GHG emissions obtained by a hybrid vehicle varies according to how the different powertrain con-
figurations have been selected during each route. An intelligent planning of the powertrain selection is
a key factor in the efficient use of a hybrid vehicle. In (Tadei et al., 2014) the mpTSPs was introduced
for the PIE VERDE project in order to create a model able to optimize both the freight vehicle tour and
the powertrain configuration selection for hybrid vehicles in parcel and courier deliveries. The model is
designed to meet several current needs in the context of freight transportation planning. Firstly, there is a
need for new routing models that consider the stochasticity of generalized cost functions, which include
both operational and environmental aspects. Secondly, new freight distribution business models such as
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parcel delivery and e-commerce freight delivery allow highly limited computational time for vehicle fleet
planning: about 30 minutes for planning the full fleet. Hence, the tours must be computed with a very
small effort. Thirdly, in real cases the distribution of the stochastic parameters is unknown and it is not
always possible to derive the distribution of these variables from real data. This is because of the small
number of hybrid vehicles currently used for freight distribution, the difficulty or impossibility of access-
ing sensor data and the difficulty of obtaining data from the vehicles’ control unit. In fact, one of the main
issues when facing real settings is that the solution should also be applicable in cities where a network
of sensors and a traffic flow forecaster are not available. In these cases, the vehicle routing is achieved
using commercial vehicular navigation systems, which use aggregated mean values for the vehicle speed.
Thus, only a very limited knowledge of the dynamic behaviour of the speed on the roads can be assumed
to be known (Deflorio et al., 2012).

Beyond this specific case study, other applications of the mpTSPs arise in the City Logistics context.
Cities, today, provide garbage collection, periodic delivery of goods in urban grocery distribution and
bike sharing services, among others. These services require the definition of fixed tours to be used for
a time span of one to several weeks (see, e.g., CITYLOG Consortium & CITYLOG (2010)). However,
within urban areas, paths are affected by the uncertainty of travel time. Travel time distributions differ
from one path to another and they are time dependent. Even an approximated knowledge of travel time
distribution may be difficult due to the large size of the data involved. The use of the travel time mean
(or other measures of expectation) may imply relevant errors when the variance is high (Cagliano et al.,
2014; Perboli et al., 2014).

The first objective of this paper is to describe the problems cited above from the stochastic point of
view. We will focus on the sources of uncertainty and the effects of the recourse actions, by introducing
two two-stage stochastic models with recursions. Both models share the same two-stage decision struc-
ture. In the first stage, the design decisions are taken, i.e. the order of nodes in the Hamiltonian cycle is
determined, while the choice of the actual path between a pair of nodes is decided in the second stage.
The two models originate from different deterministic routing problems and, from the model point of
view, consider two different conceptual representations of the mpTSPs. The first model is an extension of
the standard sub-tour elimination model (Cook, 2012), while the second one derives from vehicle routing
literature, and in particular from the model of the Two-Echelon VRP problem (Perboli et al., 2011). In
particular, the last model uses flow-based constraints to forbid the presence of subtours.

The second contribution of this paper is to propose an effective and efficient approach for solving the
mpTSPs. The flow-based model is more suitable than the other model for resolution by means of commer-
cial MIP solvers. However, we will show by extensive computational results how the size of the two-stage
formulations increases rapidly with the number of nodes and that they are only usable for very small in-
stances. Thus, to consider the instances arising in real applications, more advanced methods are needed.
For this reason, starting from the sub-tour elimination formulation, we introduce a meta-heuristics based
on the Progressive Hedging algorithm by Rockafellar & Wets (1991). Our method first decomposes the
problem by scenarios and then reflects the differences between the different scenario solutions in terms
of sequence of nodes in the Hamiltonian cycle. The differences in terms of the Hamiltonian cycle design
are thus reflected as penalties in the objective function. In this way each scenario problem becomes ad-
dressable by means of an exact solver while providing information on how to use the local solution of
a subproblem to push the overall algorithm to convergence. Extensive computational results on realistic
instances show how the developed method is able to reproduce optimal solutions, while also addressing
instances which are unaddressable by commercial solvers due to their size.

The paper is organized as follows. In Section 2 the main literature on the mpTSPs is given. In
Section 3 the two-stage models with recursion are presented, while the Progressive Hedging algorithm is
introduced in Section 4. The computational results of the recourse models and the Progressive Hedging
method are then given in Section 5. Finally, the lessons learned are summarized in Section 6, where future
directions for the research on the mpTSPs are also outlined.



2. Literature review

While different stochastic and/or dynamic variants of TSP (and more in general of vehicle routing prob-
lem) are present in the literature (Gendreau et al., 1996; Golden et al., 2008; Pillac et al., 2013), the
mpTSPs has been recently defined by Tadei et al. (2014). For this reason, we also consider some relevant
literature on similar problems, highlighting the main differences with the problem faced in this paper.

In Tadei et al. (2014) the authors introduce the problem and derive a deterministic approximation.
In particular, under a mild hypothesis on the unknown probability distribution of the travel time for the
different paths, the deterministic approximation becomes a TSP problem where the minimum expected
total travel time is equivalent to the maximum of the logarithm of the total accessibility of the Hamiltonian
tours to the path set. The quality of the deterministic approximation is then evaluated by comparing it
with the Perfect Information results obtained by means of a Monte Carlo method. The comparison shows
a good accuracy of the deterministic approximation, with a reduction of the computational times of two
orders of magnitude.

One of the search directions indicated in Tadei et al. (2014) was the extension of the instance sets
in the literature in order to better represent real City Logistic settings. Maggioni et al. (2014b) make a
first attempt in this direction. In details, the authors introduce a standard methodology to build realistic
multi-path instances starting from the real data collected by a network of flow and speed sensors and
apply their methodology to the mpTSPs. The results show how the basic data extraction methodology is
valid, but more work is needed to fully catch the peculiar setting of urban freight delivery.

In the literature several stochastic variants of the TSP problems can be found. In these problems a
known distribution affecting some problem parameters is given and the theoretical results are strongly
connected with the hypotheses on such distribution. The main sources of uncertainty are related to the arc
costs (Leipala, 1978; Toriello et al., 2012) and the subset of cities to be visited with their location (Jaillet,
1988; Goemans & Bertsimas, 1991). A different type of stochastic behaviour has been considered in
Bertazzi & Maggioni (2014a,b), where a stochastic capacitated traveling salesmen location problem with
uncertainty given by the location of the customers has been solved with different solution approaches.

If we consider general routing problems, different types of uncertainty and dynamics can be consid-
ered. The most studied variants are related to the online arrival of customers, with the requests being both
goods (Hvattum et al., 2006, 2007; Ichoua et al., 2006; Mitrović-Minić & Laporte, 2004) and services
(Beaudry et al., 2010; Bertsimas & Van Ryzin, 1991; Gendreau et al., 1999; Larsen et al., 2004). Only in
recent years the dynamics related to travel times has been considered in the literature (Chen et al., 2006;
Fleischmann et al., 2004; Güner et al., 2012; Kenyon & Morton, 2003; Tagmouti et al., 2011; Taniguchi
& Shimamoto, 2004), while, to the best of our knowledge, service time has not been explicitly studied.
The last variants of vehicle routing problems are related to the dynamically revealed demands of a known
set of customers (Novoa & Storer, 2009; Secomandi & Margot, 2009) and the vehicle availability (Li
et al., 2009a,b; Mu et al., 2011). For a recent review, the reader can refer to Pillac et al. (2013).

All the papers presented in this survey deal with uncertainty and/or dynamic aspects of the routing
problems where the magnitude of the uncertainty is limited and the parameter values are revealed in a
time interval compatible with the operations optimization. Then the multi-path aspects can be ignored,
being possible an a priori choice of the path connecting the two nodes. In our case, the mpTSPs is thought
to be used for planning a service. Thus, the enlarged time horizon as well as strong dynamic changes in
travel times due to traffic congestion and other nuisances typical of the urban transportation induce the
presence of multiple paths connecting every pair of nodes, each one with its stochastic cost. This is, to our
knowledge, an aspect of the transportation literature considered only in transshipment problems, where
the routing aspect is heavily relaxed (Baldi et al., 2012; Maggioni et al., 2009; Tadei et al., 2012).

When we consider other routing problems, a large literature is available for the stochastic Shortest
Path. One of the few papers directly dealing with multiple path is due to Eiger et al. (1985). In their paper
the authors consider an extension of the classical shorted route problem where multiple arcs interconnect
the nodes and the costs are uncertain. In particular, they show how, when the preferences between the



arcs are linear or exponential distributed, a Dijkstra-type algorithm using the mean of the distributions
finds an optimal path. Unfortunately, the results are strictly related to the specific problem, the shortest
path, and to the presence of a Dynamic Programming solution method. Moreover, differently from our
case, the preferences must be exponential distributed, while we assume that only the right tail converges
to an exponential distribution. Psaraftis & Tsitsiklis (1993) introduce a variant of the stochastic Shortest
Path where the arc costs are stochastic and dynamic, in the sense that the arc cost is a known function
of a certain environment variable which depends on the origin node i of the arc the time in which we are
leaving from node i. Differently to our case, not only there is only one path associated to each node, but
the environment variable associated to each arc is an independent stochastic process associated to a finite-
state Markov process with a known transition probability matrix. Thus, this approach is not suitable to
urban transportation, where the estimation of the Markov process could be not usable in practice. Finally,
Jaillet & Melvyn Sim (2013) recently propose criteria to design shortest paths when deadlines are imposed
to the nodes and the goal of the problem is to minimize the deviation of the actual arrival time with respect
to the desired one. They also show that the stochastic shortest path with deadlines under uncertainty can
be solved in polynomial time when there is stochastic independence between the arc travel times. Even
in this case between any pair of node only one arc exists.

3. Two-Stage stochastic models with recourse for the mpTSPs

To include the random nature of the travel time process in a urban context, we consider a two-stage
stochastic linear program with recourse (see e.g. (Birge & Louveaux, 2011)). The travel time oscillation
∆ k

i j by using path k between nodes i and j, is then described by a stochastic process represented using a
discrete random variable. All possible discrete values that the random variable can assume, is represented
by a finite set of vectors, named scenarios. We represent each realization (scenario) of random travel
time oscillation process by ∆ ks

i j . We denote with S the set of time scenarios, and the probability of each
scenario s ∈ S by ps. In two-stage stochastic programming, we explicitly classify the decision variables
according to whether they are implemented before or after an outcome of the random travel time variable
of each path is observed. In the multi-path traveling salesman problem, in the first stage the decision
maker does not have any information about the travel time oscillation. However, the routing among the
nodes should be determined before the complete information is available. Thus, the first-stage decision
variable yi j is represented by the selection of nodes i and j to be visited in a tour. In the second stage,
travel time oscillations are available and the paths k between each couple of nodes i and j under scenario
s, xks

i j can be calculated. The objective of the two-stage stochastic model with recourse for the mpTSPs is
the minimization of the total cost due to paths congestion.

A two-stage modeling, implies a strong simplification in the learning process, i.e. the path is chosen
when the tour starts, with full knowledge of travel times. Hence, no learning takes place as the vehicle
moves along. This type of approximation is meaningful from a practical point of view for two reasons.
First, the distribution of stochastic travel times in a multi-stage setting is unknown: it is not easy and not
always possible to derive them from real data because of the small number of hybrid vehicles used for
freight distribution, the difficulty or impossibility to access data from the vehicles’ control unit and sensor
data. Second, the model should be applicable also in cities where a network of sensors and a traffic flow
forecaster are partially implemented or, more often, completely unavailable. In these cases, the vehicle
routing is achieved using commercial vehicular navigation systems, which use aggregated mean values
for the vehicle speed. Thus, only a very limited knowledge of the dynamic behaviour of the speed in
the roads can be assumed to be known. Then, by considering only a two-stage model we can explicitly
introduce the uncertainty of the travel times without limiting to much the possibility to apply our model
to real last mile applications (Cagliano et al., 2014; Perboli et al., 2014; Deflorio et al., 2012).

In the next subsections we consider two different models for this problem:

1. A sub-tour elimination based two-stage stochastic model with recourse, which is an is an extension



of the classical deterministic sub-tour elimination model (Cook, 2012);

2. A flow-based two-stage stochastic model with recourse derived from the MIP model of the Two-
Echelon VRP problem by Perboli et al. (2011).

We introduce two models to express the same problem because each has its own characteristic in
terms of structure and size. In fact, the flow-based model is more suitable to be solved by commercial
MIP solvers like CPLEX, whilst the sub-tour elimination model has characteristics which make it ideally
solved by the Progressing Hedging approach we propose.

3.1 A sub-tour elimination based two-stage stochastic model with recourse for the mpTSPs

First we consider a sub-tour elimination based two-stage stochastic model with recourse.
Let N and U respectively be the finite set of nodes of the graph and a subset of nodes in N, while Ki j

defines the set of paths between the pair of nodes i, j ∈N. Let S be the set of time scenarios, each scenario
being associated with a probability ps. Each path k ∈ Ki j between nodes i, j ∈ N is characterized by a
non-negative estimation of the mean unit travel time cost c̄i j and a non-negative unit random travel time
cost cks

i j under the time scenario s ∈ S. Let ∆ ks
i j = cks

i j − c̄i j be the error on the travel time cost estimated
for the path k ∈ Ki j under time scenario s ∈ S.

Let the first-stage variables be yi j = 1 if node j ∈ N is visited just after node i ∈ N and 0 otherwise.
Whilst, xks

i j is equal to 1 if path k ∈ Ki j between nodes i, j ∈ N is selected at the second-stage and 0
otherwise.

The deterministic equivalent formulation of the sub-tour elimination based two-stage stochastic model
with recourse is as follows:

min
{y,x}

[
∑
i∈N

∑
j∈N

c̄i jyi j +∑
s∈S

ps ∑
i∈N

∑
j∈N

∑
k∈Ki j

∆
ks
i j xks

i j

]
(3.1)

subject to

∑
j∈N: j 6=i

yi j = 1 i ∈ N (3.2)

∑
i∈N:i6= j

yi j = 1 j ∈ N (3.3)

∑
i∈U

∑
j/∈U

yi j > 1 ∀U ⊂ N (3.4)

∑
k∈Ki j

xks
i j = yi j i ∈ N, j ∈ N, s ∈ S (3.5)

xks
i j ∈ {0,1} k ∈ Ki j, i ∈ N, j ∈ N, s ∈ S (3.6)

yi j ∈ {0,1} i ∈ N, j ∈ N (3.7)

Problem (3.1)-(3.7) is a large-scale binary problem. The first sum in the objective function (3.1)
represents the first-stage travel cost, while the second sum represents the recourse action, consisting in
choosing the best path k ∈ Ki j under time scenario realization s ∈ S. Notice that, due to the two-stage
nature of the model, and the consequent revelation of the uncertainty, the recourse action in (3.1) reduces
to:

∑
s∈S

ps ∑
i∈N

∑
j∈N

∑
k∈Ki j

∆
ks
i j xks

i j = ∑
s∈S

ps ∑
i∈N

∑
j∈N

min
k∈Ki j

∆
ks
i j xks

i j . (3.8)

Constraints (3.2) and (3.3) are the standard first-stage assignment constraints and (3.4) represents the
first-stage sub-tour elimination constraint. Constraint (3.5) guarantees that path k between nodes i and



j can be chosen at stage 2 only if nodes i and j were part of the tour fixed at stage 1. Finally, the
integrality constraints (3.6)-(3.7) define the second- and first-stage decision variables of the problem.
By solving problem (3.1)-(3.7), one finds a single tour yi j, ∀i, j ∈ N, with minimum travel time cost
overall scenarios included in S. The main problem when dealing with this formulation is represented
by constraints (3.4), which are exponential in their number and are suitable to dynamic cut generation
methods only (Applegate et al., 2007). This makes difficult to incorporate such a model in a MIP solver.
On the other hand, as we will show in Section 4, this model makes quite easy to define an efficient
Progressive Hedging-based algorithm.

3.2 A flow-based two-stage stochastic model with recourse for the mpTSPs

We consider now a flow-based two-stage stochastic model with recourse for the mpTSPs. The notation
adopted is as in the previous subsection. A first stage real variable φi j associated to the flow on the arc (i,
j) is also introduced.

The deterministic equivalent formulation of the flow-based two-stage stochastic model with recourse
is as follows:

min
{y,x}

[
∑
i∈N

∑
j∈N

c̄i jyi j +∑
s∈S

ps ∑
i∈N

∑
j∈N

∑
k∈Ki j

∆
ks
i j xks

i j

]
(3.9)

subject to

∑
j∈N: j 6=i

yi j = 1 i ∈ N (3.10)

∑
i∈N:i6= j

yi j = 1 j ∈ N (3.11)

∑
i∈N:i6= j

φi j− ∑
k∈N:k 6= j

φ jk = 1 ∀ j ∈ N \{1} (3.12)

∑
i∈N:i6=1

φi1− ∑
k∈N:k 6=1

φ1k = 1−|N| (3.13)

∑
k∈N:k 6=1

φ1k = |N| (3.14)

φi j 6 |N|yi j i ∈ N, j ∈ N (3.15)

∑
k∈Ki j

xks
i j = yi j i ∈ N, j ∈ N, s ∈ S (3.16)

xks
i j ∈ {0,1} k ∈ Ki j, i ∈ N, j ∈ N, s ∈ S (3.17)

yi j ∈ {0,1} i ∈ N, j ∈ N (3.18)

While the meaning of the objective function (3.9) and the constraints (3.10) and (3.11) is the same of
(3.1), (3.2), and (3.3) in the previous model, the sub-tour elimination constraints (3.4) are rewritten by
means of the constraints (3.12), (3.13), (3.14), and (3.15). Without loosing in generality, let us consider
the node 1 as the starting point of our tour. Constraints (3.13) and (3.14) force the node 1 to have an
outbound flow equal to to the number of nodes |N| and an inbound with value 1. Thus, the subtours are
forbidden by constraint (3.12), which obliges every node to reduce by 1 the outbound flow if compared to
its inbound one. If a subtour exists, this constraint is violated by at least one of the nodes in the subtour
(see Perboli et al. (2011) for further details). Finally, constraint (3.15) links the binary variables yi j to the
existence of a flow in an arc. This constraint, with the constraints (3.10) and (3.11), force to have exactly
one arc with a non zero flow both as inbound and outbound.

This flow-based model is more suitable to be solved by means of MIP solvers, involving O(N) con-
straints instead of the exponential number of constraints (3.4).



4. A Progressive Hedging algorithm for the mpTSPs

This section briefly introduces a variant of the Progressive Hedging (PH) algorithm by Rockafellar &
Wets (1991) to the sub-tour formulation (3.1) - (3.7).

The setup of the algorithm is the same of that presented by Crainic et al. (2011) for the stochastic
network design. Starting from the sub-tour elimination based model, we first define a copy of first stage
variables ys

i j ∈ {0,1}, ∀i, j ∈ N for each scenario s ∈ S. The objective function (3.1) is now expressed as

min
{y,x}∑s∈S

ps

[
∑
i∈N

∑
j∈N

c̄i jys
i j + ∑

i∈N
∑
j∈N

∑
k∈Ki j

∆
ks
i j xks

i j

]
. (4.1)

To maintain the consistency of the problem, we also introduce non-anticipativity constraints (4.2), which
makes sure the decisions on the tour are not tailored according to the scenarios considered in S. All the
scenario tour variables must be equal to each other to produce a single implementable tour ȳi j ∈ {0,1},
∀i, j ∈ N .

ys
i j = ȳi j i, j ∈ N, s ∈ S (4.2)

We can note that relaxing constraints (4.2) the problem becomes scenario separable. So, we apply a
scenario decomposition technique based on augmented Lagrangian relaxation to separate the stochastic
problem following the scenarios of the scenario tree. The Lagrangian multipliers are used to penalize a
lack of implementability due to differences in the first-stage variables values among scenario subprob-
lems. The results of this decomposition is a series of deterministic scenario subproblems that can be
reduced to a classical TSP and, thus, solved by means of a specialized method.

Then, the PH proceeds in two phases. Phase 1 aims to obtain consensus among the subproblems.
At each iteration, the subproblems are first solved separately. Concorde (Applegate et al., 2007; Cook,
2012) is used to address these problems, which, embedding a cutting-plane algorithm within a branch-
and-bound search, is currently one of the best procedures for the TSP. By using the average function,
their solutions are then aggregated into the overall tour ȳ. It is very important to note that the overall
tour does not necessarily produce an overall feasible tour. However, the search process is gradually
guided toward scenario consensus by adjusting the Lagrangian multipliers based on the deviations of the
scenario solutions from the overall tour. It should be noted that although a feasible reference solution can
be produced with a constructive heuristic, whenever the consensus is low, it may wrongly bias the search
process of penalization of the non-consensus scenario solutions.

The search process continues until the consensus is achieved or one of the termination criteria is met
(i.e. the maximum limit of CPU time of 1 hour or 200 iterations of the algorithm). When consensus is
not achieved in the first phase, phase 2 solves the restricted mpTSPs obtained by fixing the first-stage
variables for which consensus has been reached, e.g., the arcs used in all the scenario subproblems.

Finally, given the straightforward parallelization of the PH algorithm, parallel computation has been
used to address the mpTSPs. In the current version of the algorithm, a simple master-slave synchronous
strategy is implemented, where the master controls the search, computes the global design, and performs
the parameters updates, while the slave processors modify the costs associated to the arcs of the graph
and solve the resulting scenario subproblems. Moreover, the master can assist slaves by solving scenario
subproblems when the workload is unbalanced. Synchronization is performed at the end of each iteration.

5. Computational results

In this section, we present and analyze the results of the computational experiments. The goal is to
evaluate the effectiveness of the methodology proposed for the mpTSPs.

We compare the PH-based method solutions with the solutions obtained by the recourse problem
(RP), solved by means of CPLEX 12.5 MIP solver (IBM ILOG, 2012). Moreover, we analyze the loss



in terms of quality of the solution due to the use of the expected value approaches (EV ) for mpTSPs by
measuring the Value of Stochastic Solution (V SS) and the importance of the stochasticity by the Expected
Value of Perfect Information (EV PI) (Birge, 1982), (Maggioni & Wallace, 2012) and (Maggioni et al.,
2014a). In particular, we use the aforementioned measures both to qualify our method and to discuss
some economically relevant issues from the last mile point of view.

Subsection 5.1 introduces the instance sets and test environment. A discussion on the size of the sce-
nario tree is discussed in Subsection 5.2, while a validation of the PH algorithm is presented in Subsection
5.3. Finally, considerations on the importance of using a stochastic model for the mpTSPs are given in
Subsection 5.4.

5.1 Instance sets and test environment

No real-life instances are present in the literature for this stochastic version of the TSP problem. For this
reason, we generate an instance set based on the real traffic sensor network of Turin, a medium sized city
in Italy. The instance set considered allows to better understand also other real cases of City Logistics
applications.

According to the guidelines presented in (Tadei et al., 2014), instances are characteristics by the
following inputs:

• Instance size. We considered instances with a number of nodes up to 200. This number is of the
same order of magnitude of a day trip of the main parcel and courier delivery services as TNT and
DHL. In particular, we split those instances into three sets: instances with up to 50 nodes (N50),
up to 100 nodes (N100) and up to 200 nodes (N200).

• Nodes. Given a square of 14 km edge, which is equivalent to a medium sized city like Turin, nodes
are mapped in such portion of plane and then partitioned into two subsets:

– Central nodes: the nodes belonging to city center, which are the nodes in the circle with the
center coincident with the geometric center of the 14 km square and a radius equals to 7 km;

– Suburban nodes: the nodes which are not central.

• Nodes distribution strategies. In order to define the spatial distribution of nodes,we divided the
portion of plane in 12 neighborhoods (Q1 to Q12), 8 in the city center and 4 in the suburban area.
For each neighborhood, nodes are randomly generated according with the following distribution
strategies:

– D1: the nodes are distributed only in the city center;

– D2: the nodes are distributed only in the suburban area of the city;

– D3: the nodes are distributed in all neighborhoods both central and suburban in ratio 3:1
respectively;

– D4: the nodes are distributed in all neighborhoods both central and suburban in ratio 1:1
respectively.

Figure 1 shows the subdivision of the 14 km square in neighborhoods and, for each distribution
strategy, the neighborhoods involved.

• Multiple paths. The number of paths between any pair of nodes is set to 3. The choice of this
number is related to hybrid vehicles applications, where the typical number of power train modes
is 3 (Tadei et al., 2014).



(a) Nodes partition strategy D1 (b) Nodes partition strategy D2

(c) Nodes partition strategy D3 (d) Nodes partition strategy D4

FIG. 1: Subdivision in neighborhoods and admissible areas (grey) for each distribution strategy

• Pair of nodes types: the pairs of nodes can be homogeneous or heterogeneous.

– Homogeneous: they are pairs of nodes where the starting node i and the destination node j
are both central or suburban. In this case all the multiple paths between the nodes present the
empirical speed profile of a central or suburban speed sensor, respectively.

– Heterogeneous: they are pairs of nodes where the starting node i and the destination node j
belongs to a different subset. In this case the multiple paths between the nodes present the
empirical speed profile of a central speed sensor for 1/3 of the paths and a suburban one for
the 2/3 of them.

• Speed data. We build central and suburban speed profiles from real data on the traffic of Turin avail-
able at the website htt p : //www.5t.torino.it/5t/. The data of the mean vehicle speed, expressed
in kilometers per hour (km/h), are accessible with an accuracy of 5 minutes. We aggregated them
into blocks of 30 minutes, for a total of 48 observations per day. The instances refer to 50 central
speed sensors locations and 100 suburban ones in the period since 13 to 17 February 2013 (see the
two circles in Figure 2, giving the distribution of the actual sensors).

• Scenario tree generation. Scenario generation is an important part of the modeling process, since
a bad scenario tree can lead to a not meaningful solution of the optimization problem. In most
practical applications, the distributions of the stochastic parameters have to be approximated by



discrete distributions with a limited number of outcomes. The discretization is usually called a
scenario tree.

We assume that the random variable travel time oscillation has a finite number of possible out-
comes at the end of the period considered. All possible discrete values that the random variable
can assume, are represented by a finite set of scenarios and are assumed to be exogenous to the
problem. Consequently, the probability distribution is not influenced as well by decisions. Making
these assumptions we can represent the stochastic process travel time oscillation using a scenario
tree which contains a root and finite set of leaves. Several methods are adopted adopted in liter-
ature for discretizing the distribution and generating scenarios. Among the most common we list:
conditional sampling, sampling from specified marginals and correlations, moment matching, path-
based methods and optimal discretization. For a short overview of scenario generation methods see
(Kaut & Wallace, 2007).

In the problem under consideration, the random vector is high dimensional, and presents compli-
cated dependencies among arcs and paths. These factors makes the uncertainty very difficult to
represent. Due to the limited availability of dynamically specified real data, we decided to generate
empirical velocity profile distributions vks

i j associated to the path k between i and j under scenario s
as inverse of the Kaplan-Meier estimate of the cumulative distribution function (also known as the
empirical cdf) of the real data on the speed of traffic of Turin.

Due to the two-stage nature of the model and the simplification of the information structure, all
the velocities on an Hamiltonian path refer to the same time block and the correlations between
the velocity on an arc and the next one in the path are not considered. An investigation of a more
suitable scenario generation method which takes into account correlations among arcs and paths
both in multi-period and in multi-stage fashions will be addressed in a future work, when real data
will be available.

From the empirical speed distribution, several scenarios trees of increasing size are generated both
for the central and the suburban areas. A discussion on the influence of size of the scenario tree
with tests on the quality on the solution of the optimization model is presented in Subsection 5.2.

• Time blocks. In order to represent different traffic flows cases, we use data corresponding to 8.00,
12.00 and 16.00, which represent the hours of maximum oscillation of the travel times due to traffic
congestions. Note that this does not imply that the tours must be shorter than 4 hours.

• Path travel times. The travel time cks
i j is a function of the Euclidean distance between nodes i and

j ∈ N, ECi j, the type of pair of nodes, and the empirical velocity profile distributions vks
i j associated

to the path k between i and j under scenario s. In details, this travel time has been computed as

cks
i j =

ECi j

vks
i j

(5.1)

and
c̄i j = Es∈S

ECi j

Ek∈Ki j

[
vks

i j

] (5.2)

is the average travel time over all scenarios s ∈ S when an average empirical velocity is considered
for all path k ∈ Ki j between nodes i and j, where Es∈S and Ek∈Ki j are the expectation operators.
The random travel time oscillations are then computed as

∆
ks
i j = cks

i j − c̄i j =
ECi j

vks
i j
−Es∈S

ECi j

Ek∈Ki j

[
vks

i j

] (5.3)



FIG. 2: Distribution of central (dark gray circle) and suburban (light gray circle) speed sensors in the city
of Turin in Italy. Figure taken from (Tadei et al., 2014).

For each combination of the parameters mentioned above (i.e., 3 graph’s sizes, 4 nodes distribution
strategies, and 3 time blocks) we define 5 graphs. Moreover, for each graph, 10 different sets of scenarios
S are generated according with the scenario tree generation method. This gives us a final set of 1800
instances.

We compare the PH results with the ones of the two-stage stochastic models. Being the two models
equivalent and following the computational results presented by Perboli et al. (2011), we consider the
flow-based two-stage stochastic model, using CPLEX 12.5 as MIP solver. We give now a short note
about the usage of commercial solvers with two-stage stochastic models. We made some tests on other
commercial and open-source solvers and the two leading ones were CPLEX and Gurobi. The latter is
usually quicker than CPLEX in finding the optimal solution, but its computational effort is larger than
CPLEX when having to prove the optimality of the solutions. Thus, we can say that if one is interested
in finding a good solution Gurobi is the best choice, but if one needs the proven optimality CPLEX
represents the best choice. A time limit of 2 hours of computational time and 8 CPU was given to
CPLEX.

PH was implemented in C++ and compiled by means of Visual Studio 2012. The Concorde TSP
solver is used in the PH to optimally solve the TSP subproblems instances (Applegate et al., 2007). All
the tests were performed on an Intel I7 2 GHz workstation with 8 GB of RAM. Concerning the parallel
computation, CPLEX and Progressive Hedging are executed with a limit of 8 CPU. PH has an additional
limit of 200 iterations of the algorithm.

5.2 Determine the size of the scenario tree

In order to qualify the results of both the PH and the two-stage models, we first perform a tuning of
the number of scenarios needed in the tree to obtain stable results. The first finding is that the two-
stage models, from a purely computational perspective, cannot reach the optimality with a reasonable
time limit (5 hours) for instances with 100 customers when the number of scenarios S > 50 (e.g. the
average optimality gap after 5 hours is greater than 3%). Moreover, even with such a small number of
scenarios, they become impracticable with more than 100 customers. This is mainly due to the size of the
resulting model instances in terms of number of variables. For these reasons, we performed a sensitivity



FIG. 3: Convergence of the function value for an increasing number of scenarios

TABLE 1 Convergence of the function value for an increasing number of scenarios

S = 10 S = 25 S = 50 S = 75 S = 100 S = 200 S = 300
N50 11550.58 11641.97 11693.72 11785.25 11852.24 11850.14 11855.31

N100 16341.24 16602.04 16649.19 16751.29 16871.24 16898.28 16870.87
N200 23608.15 23900.48 24110.57 24200.97 24390.31 24460.42 24450.86

analysis of the objective function in terms of the number of scenarios S using the PH. In order to perform
this task we used a subset of 180 instances defined by selecting a set of scenarios for each combination
of the parameters mentioned in Section 5.1. In order to tune the right number of scenarios to include
in the tree, we computed both in-sample and out-of-sample stability measures as described in (Kaut &
Wallace, 2007). Table 1 and Figure 3 show in-sample values for increasing sizes of the scenario tree.
This is obtained by comparing the optimal objective function values using scenario trees of increasing
size. However, we have to remember that in-sample values are not directly comparable. To be able to
estimate the effect of using a larger scenario tree, we have to compare the out-of-sample costs. For this
purpose, we declare a scenario tree with S = 500 to be the true representation of the real world and we
use it as a benchmark to evaluate the cost of the optimal solutions obtained using scenario trees with a
smaller size. The results are presented in Figure 4, where in the horizontal axis we report the number of
scenarios considered and in the vertical axis the percentage gap of the objective functions over 10 runs
with respect to the true cost associated to the benchmark scenario tree with S = 500. According to the
numerical results, out-of-sample stability is reached with a sufficient precision (under 1%) already around
100 scenarios. This value is satisfactory, considering that the raw data for the empirical distributions come
from sensors, which are introducing a sensing error larger than 1%.

Another factor influencing the choice of a suitable size of the scenario tree arises from computational
considerations. The computational time required to solve the mpTSPs increases very rapidly with the size
of the scenario tree. By increasing the number of scenarios, the number of subproblems to be solved at
each iteration increases as well as the number of PH iterations needed to find a consensual solution. More
in detail, let T 100, T 200 and T 300 be the computational time of PH with a scenario tree of 100, 200 and
300 scenarios, respectively. Although the computational time increases linearly for scenario trees with
less than 100 scenarios, T 200 is in average 3 times T 100, while T 300 is in average greater than 6 times



FIG. 4: Out-of-sample stability with respect to the size of the scenario tree
TABLE 2 Comparison of the results between CPLEX and the Progressive Hedging algorithm

N D Gap% σGap TCPLEX [s] TPH [s]

N50

D1 0.04 0.031 60.6 170.8
D2 0.03 0.024 55.9 179.3
D3 0.04 0.037 138.8 171.9
D4 0.05 0.038 162.4 181.9

T 100. Then, we considered a scenario tree with S = 100 ensuring in-sample and out-of-sample stability
with a reasonable computational effort.

5.3 Validation of the Progressive Hedging algorithm

This set of tests aims to qualify the usage of the PH method as a solution method for the mpTSPs. We
compare the PH results with the ones of the two-stage models solved by CPLEX (see Table 2). This
is performed on N50 instance set only, being the only one where CPLEX is able to solve and to prove
optimality for all the instances in the time limit. We also tried to increase the time limit for CPLEX, but,
while the number of nodes increases, the optimality gap is not reached. This is mostly due to the large
number of variables involved in the two-stage formulation. The first two columns reports the instance
set and the node distribution strategy. Column 3 and 4 give the percentage gap Gap% and the standard
deviation σGap between the optimal solution given by CPLEX and the PH one. Finally columns 5 and 6
provide the computational time in seconds of the two solution methods, respectively.

The computational results show how the PH is accurate, with a gap from CPLEX of less than 0.1%
and stable with all the node distribution strategy. Standard deviation is less than 0.038% for all instances
considered. By considering the computational effort, CPLEX is more efficient in distribution strategies
D1 and D2, but the results are similar to PH in D3 and D4. Notice that from the computational efficiency
point of view, the PH pays an implementation of the parallel strategy which is a simple (and often inef-
ficient) master-slave one. More complex parallel paradigms might be implemented in order to speed up
the PH.

When we increase the number of nodes, the computational time of the PH increases almost linearly
with the number of nodes, while CPLEX is unable to solve to optimality the instances in set N100 in the



given time limit. Moreover, in these instances the solution found by CPLEX is of the same quality or
worst than the one found by the PH.

Up to N100 the PH never reaches the time limit and the iteration one, while the iteration limit is
reached in some of the N200 instances. From a pure computer architecture point of view, the PH uses
less resources than CPLEX. In fact, CPLEX requires up to 2GB for N50 and more than 4GB for N100
instances, thus imposing the use of a 64 bit machine. On the contrary, the PH algorithm never uses more
than 300 MB even when it addresses N200 instances. Due to the accuracy and the efficiency at dealing
with larger size instances, we use for the results presented in the next sections the PH as the solver for the
mpTSPs.

In our experimental work, we found that PH scales up nicely, as the computational complexity in-
creases almost linearly with the number of nodes. On the other hand, the speedup achievable via paral-
lelization is almost linear in the number of worker threads. For N50 we achieved a speedup of 5.6 using
8 parallel threads; for larger instances (e.g. N100 and N200) the average speedup is 4.2.

5.4 Analyzing the impact of uncertainty

This section is devoted to qualify the mpTSPs by showing the benefits of using the two-stage with recur-
sion models when compared to the Perfect Information case (the so-called Wait and see approach WS)
and the Expected Value Problem EV . This is done by considering the well known Expected Value of Per-
fect Information (EV PI) and the Value of Stochastic Solution (V SS) measures (Birge & Louveaux, 2011).
The Expected Value of Perfect Information is defined by the difference between the objective values of
the stochastic and wait-and-see solutions where the realizations of all the random parameters are known
at the first stage, given by:

EV PI := RP−WS (5.4)

Besides, the Value of Stochastic Solution indicates the expected gain from solving the stochastic model
rather than its deterministic counterpart, in which the random parameters are replaced with their expected
values and is defined as follows:

V SS := EEV −RP (5.5)

where EEV denotes the solution value of the RP model, having the first-stage decision variables fixed
at the optimal values obtained by using the expected value of coefficients. The results presented in this
section are all computed by means of the PH, and are presented in an aggregated form in Table 3. We
report, for each combination of instance size N (Column 1) and time block Hour (Column 2), node
distribution strategy D (Column 3), the average computational time TPH in seconds of PH (Column 4),
the average and the maximum percentage EV PI computed as EV PI/RP ·100 (Column 5 and 6) and the
average and the maximum percentage V SS computed as V SS/RP ·100 (Column 7 and 8).

First of all we can highlight how the computational effort is stable with respect to the time block
and the node distribution strategy and it increases almost linearly with the instance size. The overall
computational effort is limited, being of the order of magnitude of 10 minutes for the 200 customers
instances. This makes the PH a strategic tool that can be incorporated in larger Decision Support Systems.

The percentage EV PI present values of about 30%, showing the relevance, for a decision maker, to
have the information about the future in advance. Notice that the EV PI is stable regardless the instance
parameters N, Hour, and D.

When considering the V SS, we can see how it is increasing both in mean and in maximum values
while the size of the instance increases. In particular, the gap between the expected value solution and
the stochastic solution becomes relevant when the number of nodes is between 100 and 200, which is the
typical size of the day tour of a single vehicle in the parcel delivery and courier services in a medium
and large city. Even when considering small instances (50 nodes) the V SS is relevant, with values of
the maximum gap up to 6% and it shows the losses obtained by following the tour suggested by the
deterministic solution. When analyzing the results with respect to the node distribution strategy, the



most critical ones are D4 and D3. This finding is relevant, being the latter the most representative of the
distribution of customers in a city (Maggioni et al., 2014b). Notice that, due to the combinatorial nature
of the problem, measures of the quality of deterministic solution (Maggioni & Wallace, 2012) like loss
using the skeleton solution LUSS, obtained fixing at zero all first stage variables which are at zero in the
expected value solution and then solving the stochastic program, correspond to V SS. The same for the
loss of upgrading the deterministic solution LUDS, obtained by considering the expected value solution
variables as a stating point to the stochastic model; the reason can be explained as follows: if an arc has
been opened in the EV solution, then it must be used also in the stochastic setting, on the contrary if an
arc is closed in the EV solution it can be opened in the stochastic one. But since the EV solution is a cycle
and the stochastic solution cannot add or remove any arc because of the subtour elimination constraints
and of the LUDS condition, then LUDS =V SS.

An important point when comparing the solutions of the Recourse and the Expected Value problems
is to determine how much the first stage decisions, i.e., the sequence of the nodes to visit, differ in the
two problem solutions. We analyzed this issue, seeing how the two decisions differ of more than 15%.
An example of this is given in Figure 5, where the first stage decisions are highlighted for an instance
with 50 customers. In particular, Figure 5c overlaps the two solutions, presenting the arcs differing in the
two solutions with a long-dotted line for the Expected Value Problem solution and a short-dotted line for
the Recourse Problem one, respectively. From the pictures we can see how the gap in terms of objective
functions (and recourse actions in particular) is determined by a change of a relevant part of the central
area tour, with 11 arcs involved, corresponding to about 20% of the first stage decisions. A specific point
is the suburban arc in the South-West portion which is inserted in the Expected Value Problem solution,
unfortunately misleading due to he high variance in cost oscillations along different scenarios. On the
contrary, the Recourse Problem solution reduces the overall cost of 3.89%.

We now analyze the data in Table 3 from a 3PL (Third Party Logistic Service Provider) economic
point of view. The EV PI, which represents the value of the objective function achievable by having
perfect information regarding the resolution of the uncertainty, gives us a measure of the economical gain
that a 3PL could obtain by having such information. This gain is about 30%, while the profitability of
parcel delivery is typically between 15% and 20%. Hence, building an accurate forecaster of traffic flow
and traveling times in a medium sized city as Turin, might drastically increase the profit of any delivery
company. Moreover, a measure of the value of such type of forecaster gives us an insight of the value of
data provided for free by the users of online services such as Google Maps to the business owners. In
fact, using their users as a network of sensors, they can build an instant traffic database which is able to
partially fulfill the gap between the current state of things (no forecast available) and total information on
the future. In this way they will be relocating their services from nice-to-have to must-to-have for all the
parcel delivery companies.

The V SS gives us another insight about the operational issues of 3PL involved in parcel delivery. The
average number of customers served by a single vehicle in a day is typically between 80 and 90, which
means that the N100 instances considered before are representative of the typical working day of a 3PL
driver. For the N100 instances, the VSS is around 7%, meaning that the profitability of parcel delivery is
cut in half due to the 3PLs’ operational practice of considering average travel times. Due to the aggressive
delivery price policies of Amazon and other on-line shops, in the next years 3PLs will be forced to
increase their margins by refining their planning procedures. The approach of taking into account various
uncertainties including the traveling times, as we propose in this paper, seems certainly very promising,
especially because instant traffic information will be more and more available and computational power
is ever increasing, making it easier to react quickly to changing situations.



(a) Expected Value Problem solution (b) Recourse Problem solution

(c) Solutions comparison

FIG. 5: Comparison of the first-stage Expected Value Problem solution (a) and the Recourse Problem
solution (b). Figure (c) shows the common arcs (solid line), arcs used only in the Expected Value Problem
solution (long-dotted line) and arcs used only in Recourse Problem one (short-dotted line).



6. Conclusions and future directions

In this paper we have addressed the multi-path Traveling Salesman Problem with stochastic travel times,
which consists in finding an expected minimum Hamiltonian tour connecting all nodes, where each pair of
nodes is connected by several paths characterized by a stochastic travel time. In detail, we introduced two
recourse models able to solve to optimality small-sized instances and a Progressive Hedging method able
to cope with larger instances. The latter was shown to be very efficient, both from the computational point
of view and quality of solutions, when compared to a direct solution approach obtained using commercial
solvers. A simple parallel scheme has been also used to solve larger instances.

Future works will include an investigation of more sophisticated asynchronous parallel paradigms
in order to consider instances with more than 200 nodes. From a modeling point of view, additional
technology constraints related to the state of charge level of the battery of hybrid vehicles should be

TABLE 3 Full instance set results: EV PI and V SS values comparison

N Hour D TPH [s] EVPI% max EVPI% VSS% max VSS%

N50

8.00

D1 174.71 32.67 38.81 2.50 4.92
D2 174.06 30.62 35.48 3.09 5.66
D3 174.49 27.41 32.07 2.94 6.43
D4 178.49 28.04 31.70 2.76 8.52

12.00

D1 159.31 31.58 36.92 2.81 4.82
D2 188.16 30.18 34.57 3.73 6.43
D3 168.3 26.58 30.17 2.60 5.11
D4 189.60 26.60 30.98 2.32 3.81

16.00

D1 178.42 32.32 38.45 3.21 6.28
D2 175.68 29.97 33.29 3.70 5.83
D3 172.97 29.40 30.89 2.69 5.60
D4 171.40 26.65 30.77 2.56 4.71

N100

8.00

D1 335.91 29.40 34.44 6.82 11.77
D2 336.09 30.09 34.68 6.80 10.13
D3 338.38 29.27 33.30 6.70 9.77
D4 368.45 29.00 33.71 7.20 14.07

12.00

D1 357.84 29.15 32.96 5.67 8.80
D2 361.18 30.42 33.47 6.16 8.57
D3 393.69 29.57 32.52 6.07 10.20
D4 382.42 29.06 31.84 6.28 12.33

16.00

D1 332.12 28.71 33.23 6.06 8.46
D2 367.57 29.99 34.45 7.53 13.84
D3 336.48 28.62 32.81 6.47 10.41
D4 387.26 28.85 32.92 6.63 14.51

N200

8.00

D1 704,13 31,76 38,19 7,66 10,16
D2 694,85 31,87 36,53 8,12 12,87
D3 727,09 28,85 34,59 7,61 11,51
D4 702,16 28,89 34,17 7,88 11,67

12.00

D1 635,44 30,63 37,39 7,80 11,55
D2 654,46 30,61 35,21 7,69 11,87
D3 640,05 26,70 30,77 7,50 11,16
D4 629,21 26,93 31,69 7,60 10,69

16.00

D1 667.12 31,70 38,76 7,87 12,99
D2 633.10 30,55 35,16 7,76 10,63
D3 646,27 26,46 31,94 7,65 11,36
D4 695,66 27,00 31,75 7,22 10,50



considered. This issue becomes of particular interest, being both the stochastic oscillation of the costs
and the state-of-charge level of the battery originated by the same sources of uncertainty (e.g. travel
times, traffic congestion, number of Stop&Go).

Multi-stage variants of the problem capturing the dynamic nature of velocity over the arcs will be also
addressed in future works.
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