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UNIVERSITY OF BERGAMO

Abstract

Doctor of Philosophy

Models and methods for portfolio selection

by Marco BONOMELLI

After a brief overview of the literature’s framework and a methodolog-

ical introduction, this thesis presents two different portfolio selection

models. The first adopts a Markov bi-variate process in order to char-

acterize the evolution of wealth and volatility generated by the portfo-

lios. The second presents a new deviation measure based on quantile

regression and it is used to develop a tracking error portfolio subjected

to enhancement and second order stochastic constraints. After a theo-

retical overview, problems are addressed formally and with empirical

applications.
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Chapter 1

Introduction

1.1 Introduction

It has been almost seventy years since Harry Markowitz postulated

the fundamentals of portfolio theory and mean-variance analysis (see

Markowitz (1952)). He had an intuition: each security must be seen

with respect to its contribution at the entire portfolio in terms of wealth

and risk. According to Markowitz’s perspective, a portfolio is said to

be efficient if, given a desired return level, it has the lowest variance.

The idea is based on the evidence that efficient portfolios lie on the

frontier of the set of every feasible portfolios. This frontier represents

the trade off between risk and reward. Investors choose portfolios at

the tangency point between their iso-utility curves and the frontier.

Since then, several authors have tried to develop new theories and

improve Markowitz’s ideas and portfolio theory. Various mathemati-

cal methods are used to develop optimal portfolio allocation models.

Concepts like Markov process and Stochastic dominance are here piv-

otal and they will be described in the following paragraphs.

1.1.1 Markov Process

In 1906 Andrei Andreevich Markov identified a particular sequence

(later Markovian chain) of quantities in which future depends on the

1



Chapter 1. Introduction

sequence of past events but it is independent of their order. Therefore

the subsequent evolution of a random variable depends only on the

present state. He stated this in opposition to the idea of Nekrasow

according to which the random addends’ independence is a necessary

condition for the weak law of large numbers (see Seneta, 1996). In eco-

nomics and finance, several authors have used Markov Chains to ap-

proximate processes of random variables. For instance, Tauchen (1986)

has applied this stochastic model to approximate a continuous-valued

auto-regression. The aim of the author was to provide a methodology

able to find numerical solution to integral equations for those prob-

lems with discrete state spaces. D’Amico and Di Biase (2009) used a

Markovian approach in order to identify changes in the composition

of population without the presence of economic shocks. Their model

was built as a semi-Markov chain.

In discrete time and continuous space (see Ibe, 2014), a Markov

Process is defined as a stochastic process {X (t) , t ∈ T} where, the

conditional CDF of X (tn) for

X (t0) , X (t1) , . . . , X (tn−1)

with t0 < t1 < · · · < tn depends only on X (tn−1). Formally:

P [X (tn) ≤ xn|X (tn−1) ≤ xn−1, X (tn−2) ≤ xn−2, . . . , X (t0) ≤ x0] =

= P [X (tn) ≤ xn|X (tn−1) ≤ xn−1]

Markov processes can be easily represented as trees. Bean, Kon-

toleon, and Taylor (2008) define such a structure “Markov Tree” and

they represent it as a continuous-time Markovian Multitype Branch-

ing Process. Such kind of process admits the possibility that the states

of the Markov chain may evolve and even extinguish. In their work

two algorithms are presented to compute the extinction probability of

2



1.1. Introduction

the tree.

In this work Markov processes are used in the bivariate framework

for jointly modeling the process of portfolio’s wealth and variance.

Such kind of processes are indicated with Wt = (Wx,t, Wσ,t), and they

can be seen as follows: Wx,t is the process generated by the portfolio

return β and Wσ,t = exp σXβ,t is the one generated by the volatility.

N states for the returns of portfolio and M states for its volatility are

considered. Then, the support of Markov process, based on a set past

values, L ∈N+, is discretized. The range of the portfolio process is

(
min

s=−L,...,0
Wx,s, max

s=−L,...,0
Wx,s

)
×
(

min
s=−L,...,0

Wσ,s, max
s=−L,...,0

Wσ,s

)

and it is divided into N ·M bi-dimensional intervals (ai, ai−1)× (bj, bj−1),

where {ai} and {bj} are given by the two following decreasing se-

quences

ai :=ui
x max

s
Wx,s, i = 0, . . . , N (1.1)

bj :=uj
σ max

s
Wσ,s, j = 0, . . . , M

and ux :=
(

mins Wx,s
maxs Wx,s

)1/N
, uσ :=

(
mins Wσ,s
maxs Wσ,s

)1/M
are two step factors,

each representing the common ratio of a geometric progression.

The values of Markov process belonging to the bi-dimensional in-

terval (aix , aix−1)× (biσ , biσ−1) are approximated by the geometric mean

indicated as the state z(i) = (z(ix)
x , z(iσ)σ ) of the Markov chain

w(ix)
x =

√
aix aix−1 = u

1−2ix
2

x max
s

Wx,s, ix = 1, . . . , N (1.2)

w(iσ)
σ =

√
biσ biσ−1 = u

1−2iσ
2

σ max
s

Wσ,s, iσ = 1, . . . , M.

Thus, according to (1.1) and (1.2), w(ix)
x = w(1)

x u1−ix
x and w(iσ)

σ =

3



Chapter 1. Introduction

w(1)
σ u1−iσ

σ . Clearly, the M states for the volatility implicitly determine

the relative M states of the portfolio volatility given by σ(iσ) = ln(w(iσ)
σ ),

iσ = 1, . . . , M.

The joint probability

πi = Pr (Wx,t ∈ (aix , aix−1), Wσ,t ∈ (biσ , biσ−1))

of the portfolio return and its volatility to be respectively in states w(ix)
x

and w(iσ)
σ is approximated by the number of times the process Wt is in

the state z(i) = (w(ix)
x , w(iσ)

σ ) divided by the total number of joint ob-

servations. As consequence of the homogeneous property of Markov

chain, the transition matrix is constant over the time and is given by

Π =
[
πij
]

i,j∈I , where:

πij = Pr
(

Wτ+1 = w(j)|Wτ = w(i)
)

, i, j ∈ I

is the probability to move from the generic state w(i) to w(j) in one

period of time. These transition probabilities can be seen in a transition

matrix form as follows:

ΠWx,Wσ
=



π11,11 π11,21 . . . π11,m1 π11,12 . . . π11,mn

π21,11 π21,21 . . . π21,m1 π21,12 . . . π21,mn
...

... . . . ...
... . . . ...

πm1,11 πm1,21 . . . πm1,m1 πm1,12 . . . πm1,mn

π12,11 π12,21 . . . π12,m1 π12,12 . . . π11,mn
...

... . . . ...
... . . . ...

πmn,11 πmn,21 . . . πmn,m1 πmn,12 . . . πmn,mn



In particular, the matrix ΠWx,Wσ
is a stochastic matrix where the

4



1.1. Introduction

sum of every row is equal to one. The entry π2i,j1 represents the prob-

ability for the portfolio’s return process Wx to reach the state j from the

actual state 2 and for the volatility process Wσ to reach the state 1 given

it is now in i.

Duan and Simonato (2001) proposed a methodology for evaluat-

ing American options in a GARCH framework. They presented a bi-

variate Markov process for the evolution of volatility and price. In

their work the authors show that the price computed via the approx-

imation of the Markov chain converges to the theoretical price and

to the target GARCH process. Using such method it is possible to

discretize the evolution and therefore to simplify the pricing process

since the expected value is computed as a simple product. Duan and

Simonato (2001) proved that assuming an infinite number of states, a

Markov chain reproduces exactly the probabilistic behavior of the tar-

get GARCH. The transition matrix in this model appears to be highly

sparse thanks to the feature of the GARCH process. Sparse matrices

are extremely useful for optimization, because they allow to avoid sev-

eral operations thanks to the possibility to represent them through the

indices of the non-zero elements only. This feature allows to treat also

large problems in a quite easy way. The computational complexity is

one of the main problems encountered in evaluating American options

due to the possibility of exercise before the maturity.

Ortobelli Lozza and Iaquinta (2008) propose a markovian model

for pricing european and american options. In particulare they pro-

pose a non-parametric approach for pricing contingent claims. They

compare their results with the traditional Black and Scholes model.

1.1.2 Stochastic Dominance

Despite its eslegance the Mean-Variance Efficient Frontier has some

limitations. Firstly, the model has a limited validity and cannot be

5



Chapter 1. Introduction

generalized; it is proved that assumptions are correct under an el-

liptical probability distribution or a quadratic utility function (see

Bawa, 1975). Secondly, many authors have pointed out that the risk-

averse assumption is not sufficient for describing all the investors’

preferences (see for example Stiglitz (1970), Pratt (1978)). In order to

overcome such limitations, new models based on Von Neumann, Mor-

genstern, and Kuhn (2007) have been developed. According to this

theory, investors take decisions with respect to an utility comparison.

Given a random vector of returns R = [r1, r2, . . . , rN], α ∈ RN and

β ∈ RN. A portfolio αR is preferred over a βR if the expected utility is

higher: E[U(αR)] ≥ E[U(βR)]. Theories in this field admit a general-

ization, are more flexible but they collide with the lack of knowledge of

the true investors’ utility function. To overcome this point, researchers

look for methods to order investors’ choice with respect to homoge-

neous class of risk attitude; stochastic dominance based models are

part of this family. Stochastic dominance is a partial order among ran-

dom variables. It is said to be partial because there could exist some

elements of the set for which it is non possible to formulate an order-

ing. There are different orderings based on stochastic dominance. In

portfolio theory, stochastic dominance rules have been used to justify

the reward-risk approaches. Despite stochastic dominance have been

introduced by Karamata (1932), it made its appearance in financial re-

search between 1969 and 1970 by Hadar and Russell (1969), Hanoch

and Levy (1969), Rothschild and Stiglitz (1970) and Whitmore (1970).

A complete characterization of stochastic dominance orders can be

found in Whang (2019). Let X and Y be two random variable with FX

and FY the respective Cumulative Density Function (CDF).

Qk (τ) = inf {x : Fk (x) ≥ τ} denote the quantile function of the dis-

tribution. The stochastic dominance for different orders can be defined

as follows:

6



1.1. Introduction

1. First order (FSD): Let U1 be the set of monotone non-decreasing

utility functions. The random variable X is said to stochastically

dominate the random variable Y at the first order, X
FSD
� Y, if one

of the following equivalent conditions holds:

(a) E[u(X)]−E[u(Y)] ≥ 0 ∀ u ∈ U1

(b) FY(z)−FX(z) ≥ 0 ∀ z ∈ R

(c) QX (τ)−QY (τ) ≥ 0 ∀ τ ∈ [0, 1]

A choice made according to FSD is accepted by insatiable in-

vestors. Jarrow (1986) proves that, under some conditions, FSD

is a sufficient condition for the presence of arbitrage opportuni-

ties.

2. Second oder (SSD): Let define U2 the set of monotone non de-

creasing and concave utility functions. The random variable X is

said to stochastically dominate the random variable Y at the sec-

ond order, X
SSD
� Y, if one of the following equivalent conditions

holds:

(a) E[u(X)]−E[u(Y)] ≥ 0 ∀ u ∈ U2

(b)
∫ z
−∞ [FY(t)−FX(t)] dt ≥ 0 ∀ z ∈ R

(c)
∫ τ

0 [QX (p)−QY (p)] dp ≥ 0 ∀ τ ∈ [0, 1]

A choice made according to SSD is accepted by insatiable and

risk averse investors.

3. nth order: Let define Un =
{

u (·) : u′ ≥ 0, u′′ ≤ 0, . . . , (−1)s+1 u(s) ≥ 0
}

.

The random variable X is said to stochastically dominate the ran-

dom variable Y at the n-th order, X
NSD
� Y, if one of the following

equivalent conditions holds:

7



Chapter 1. Introduction

(a) E[u(X)]−E[u(Y)] ≥ 0 ∀ u ∈ Un

(b)
[
F (s)

Y (z)−F (s)
X (z)

]
≥ 0 ∀z ∈ R and[

F (r)
Y (∞)−F (r)

X (∞)
]
≥ 0 ∀ r ∈ [1, . . . , s− 1]

(c)
[
Qs

X (p)−Qs
Y (p)

]
dp ≥ 0 ∀ τ ∈ [0, 1] and[

Qr
X (1)−Qr

Y (1)
]

dp ≥ 0 ∀ r ∈ [1, . . . , s− 1]

The definitions above are related to the concept of weak stochastic

dominance. If the inequalities become strict in some case, the stochas-

tic dominance is said strong.

1.1.3 Stochastic dominance constraints’ formulation

The introduction of Stochastic Dominance constraints in finance has

been widely analyzed in literature. The most studied Stochastic Dom-

inance order is the second (SSD) for its relevance in investors’ pref-

erences. Several authors have proposed different methods to include

dominance constraints in optimization problems. In the following the

most widespread models are presented.

Roman, Mitra, and Zverovich (2013) present a model for an index

tracking error with enhancement based on SSD, their work is based

on the model presented in Fábián, Mitra, and Roman (2011), where

the authors developed a cutting-plane method in order to make the

problem tractable from a computational point of view. In their results,

the proposed model is able to return outperforming portfolios with re-

spect to the benchmark.

Recently, authors have presented models with the aim to linearize

the stochastic dominance constraints. Here two different approaches

for the SSD models are briefly presented. The stochastic dominance

relation and relative constraints could be expressed in linear repre-

sentation, as in Dentcheva and Ruszczyński (2006), introducing slack

variables si,t representing shortfall of Rtβ below yi in realization t for

8



1.1. Introduction

t = 1, . . . , T:

N

∑
n=1

Rt,nβn + si,t ≥ yi ∀i = 1, . . . , T; ∀t = 1, . . . , T

T

∑
t=1

si,t ≤ E[(yi −Y)+] ∀i = 1, . . . , T

si,t ≥ 0 ∀i = 1, . . . , T; ∀t = 1, . . . , T

(1.3)

Differently, Kuosmanen (2004) and Kopa (2010) propose another

linear formulation of the second order stochastic dominance based on

the presence of a double stochastic permutation matrix ZT×T = {zr,c}

(each element is positive and the sums of each row and each column

are equal to one). If any additional assumptions about entries are

made, the model has SSD constraint and it is linear, but requiring

zr,c ∈ {0, 1}, the constraint become FSD, and the resulting problem

is Mixed Integer.

Let us assume that the returns have a discrete joint distribution, a sec-

ond order stochastic dominance X
SSD
� Y constraint is satisfied if and

only if there exists a double stochastic matrix Z, with zr,c ∈ [0, 1] where

X = Rβ is the vector of portfolio returns to be tested and Y is the

benchmark portfolio, as such:

X ≥ ZY
T

∑
r=1

zr,c = 1 ∀c = 1, . . . , T

T

∑
c=1

zr,c = 1 ∀r = 1, . . . , T

0 ≤ zr,c ≤ 1 ∀r = 1, . . . , T; ∀c = 1, . . . , T

(1.4)

The stochastic dominance constraint can be very restrictive and it can

reduce the feasible set to an empty one. For this reason several authors

9



Chapter 1. Introduction

tested some relaxations of the constraint. Leshno and Levy (2002) in-

troduced, for the first and second order, the concept of Almost Stochas-

tic Dominance (ASD) with the following definition: Let X and Y be

two random variables, and F and G denote their CDFs. For EF(X) ≥

EG(X) and for ε < 0.5 as suggested by the authors. The Almost First

Stochastic Dominance Order (AFSD) is defined as follows:

F dominates G by ε−Almost FSD F
Almost(ε)
�1 G if and only if, ε

∫
S1
[F(t)−

G(t)]dt ≤ ‖F− G‖ ; The Almost Second Stochastic Dominance Order

(ASSD) is defined as follows:

F dominates G by ε−Almost ASD F
Almost(ε)
�2 G if and only if, ε

∫
S2
[F(t)−

G(t)]dt ≤ ‖F− G‖; Where ‖F− G‖ =
∫ 1

0 |F(t)− G(t)| dt and the left

side of the inequalities represents the amount of "correction" for mak-

ing the stochastic dominance assumptions valid.

1.1.4 Testing stochastic dominance

The literature with respect stochastic dominance’s test is wide. It is

generally accepted a first classification about the assumptions under-

lying the test as the one presented in Whang (2019):

(A.) H0 F(S)
1 (x) ≤ F2(x)(S) ∀ x versus H1 F1(x)(S) > F2(x)(S) for

some x;

(B.) H0 F1(x)(S) ≥ F2(x)(S) ∀ x versus H1 F1(x)(S) < F2(x)(S) for

some x;

(C.) H0 F1(x)(S) = F2(x)(S) ∀ x versus H1 F1(x)(S) < F2(x)(S) for

some x;

where S represents the stochastic dominance’s order. The most com-

mon type of test is the first, where the null hypothesis consists in as-

suming the presence of stochastic dominance and the alternative hy-

pothesis indicates the presence of some violations. Tests in this class

are divided with respect to the methodology used for computing:

10
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1. Comparing the CDFs at a finite number of grid points: these tests

are based on easy computing method and they give adequate in-

formation about the point of violation. Despite these positive

aspects, these tests ar not consistent with respect to the alterna-

tive hypothesis (see Rao et al. (1973)). Examples of such kind

of tests are, among others, Anderson (1996) and Davidson and

Duclos (2000).

2. Comparing the CDFs at all points inside an interval. Tests of this

type are consistent with respect to all the hypothesis. Examples

are the ones based on Kolmogorov-Smirnoff statistic (for exam-

ple Barrett and Donald (2003) or the ones based on quantiles (see

among the others Koenker and Xiao (2002))).

3. Tests non-classifiable with the definitions above. For example

Robertson and Wright (1981) built a test based on the likelihood

for discrete distributions and Schmid and Trede (1996) used a

Mann–Whitney–Wilcoxon type test.

One of the most used test is the one in Barrett and Donald (2003) for its

computational simplicity. This is constructed under the assumption of

equal support for F1 and F2 where they are continuous functions. Let

X1,i and X2,i be two independent random samples from F1 and F2. The

test-statistic is computed as follows:

BD =

√
NM

N + M
sup
x∈X

(
D(S)

1,2 (x)
)

where N and M are the two sample length and D(S)
1,2 (x) is the difference

between the integrated empirical CDFs.
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Chapter 1. Introduction

1.1.5 Deviation measures

A metric defines the distance between the elements of a given set, it

must satisfy a set of axioms. As in Rachev (1991), a probability metric

can be any functional suitable to measure the distance between two

random quantities. Deviation measures are sub-class of the dispersion

measures. In Stoyanov et al. (2008), the authors present the new class

of relative deviation metrics able to satisfy the following properties:

P1. ν(X, Y) ≥ 0 and ν(X, X) = 0;

P2. ν(X, Y) = ν(Y, X) ∀X, Y

P3. ν(X, Y) ≤ ν(X, Z) + ν(Z, Y)∀X, Y, Z;

P4. ν(aX, aY) = asν(X, Y)∀X, Y, a, s ≥ 0;

P5. ν(X + Z, Y + Z) = ν(X, Y)∀X, Y, Z

P6. ν(X + c1, Y + c2) = ν(X, Y)∀X, Y and constants c1, c2;

If P1, P3, P4, P5 and P6 hold simultaneously, the metric is called of

relative deviation. Stoyanov, Rachev, and Fabozzi (2008) proved that

such kind of functional ν can lead to a deviation measure in the sense

of Rockafellar, Uryasev, and Zabarankin (2002). The general deviation

measures, whose properties are:

1. D(Z + C) = D(Z) for all Z and constants C

2. D(0) = 0 and D(λZ) = λD(Z) for all Z and all λ > 0

3. D(Z, Z′) ≤ D(Z) + D(Z′) for all Z and Z′

4. D(Z) ≥ 0 for all Z, with D(Z) > 0 for non-constant Z

This kind of measures can be applied to tracking problems if Z =

X−Y, then Y represents a benchmark and X in an investing portfolio.

So, the minimization of this deviation measure could be seen as the

12



1.1. Introduction

solution of a tracking error problem. On the wave of this work, Rock-

afellar and Uryasev (2013) presented the relationship between devia-

tion measures and risk measures. They proved the relation between

a deviation measure constructed from the quantile regression and the

Conditional Value at Risk (CVar).

The search for a proper measure of risk is one of the main tasks in

modern finance’s literature. The cornerstones of this field are the Co-

herent Measures of Risk presented in Artzner et al. (1999). The authors

state the properties a measure should satisfy to be coherent. Authors

have shown how the use of a measure ρ(·) belonging to this family

allows a correct risk evaluation. The properties proposed are:

1. Subadditivity: ρ(X + Y) ≤ ρ(X) + ρ(Y)

2. Positive Homogeneity: ρ(λX) = λρ(X) f or λ ≥ 0 and λ ∈ R

3. Monotonicity: ρ(X) ≥ ρ(Y) i f X ≤ Y

4. Translation Invariance: ρ(X + m) = ρ(X)−m ∀ m ∈ R

1.1.6 Tracking error

The tracking error (TE) is a measure of the distance between the re-

turns of a portfolio and a benchmark (for example an index). The mag-

nitude of these errors can be evaluated with several deviation mea-

sures σ(·). The lower is the measure, the better is the adherence of the

investment portfolio to the trajectory of the replicating index.

Let be Y a random variable representing the benchmark and R =

[r1, r2, . . . , rN] a random vector representing the log returns of N assets.

The investor choice is determined by the possibility to combine differ-

ent assets in a portfolio. Consider β ∈ RN be the vector of the weights

and X = Rβ is the relative portfolio. Now consider T equiprobable

scenarios, where Rt = [rt
1, rt

2, . . . , rt
N] with t ∈ [1, . . . , T] is a particular

13



Chapter 1. Introduction

scenario of the random vector R and yt with t ∈ [1, . . . , T] is a partic-

ular one of the random variable Y. So, the tracking error (TE) is the

random vector ε = Rβ−Y, with ε ∈ RT.

There are several ways to build an index tracking portfolio since port-

folio managers have different constraints and restrictions. A general

benchmark tracking problem, without short-selling, can be defined as

follows:
min

β
σ (X−Y)

s.t.
N

∑
n=1

βn = 1

E [X]−E[Y] ≥ K∗

lb ≤ βn ≤ ub ∀n = 1, . . . , N

βn ≥ 0 ∀n = 1, . . . , N

(1.5)

where σ is the selected dispersion measure (see e. g. Stoyanov, Rachev,

and Fabozzi, 2008). The first constraints represent the obligation to

invest all the avilable wealth. The second constraint defines the min-

imum enhancement K∗ of the portfolio’s returns with respect to the

benchmark’s. The third constraint sets an upper and a lower bound of

each weight. Then the fourth is the prohibition of short selling. In the

financial literature three measures are broadly used in the this prob-

lem: the tracking error mean absolute deviation (TEMAD), the track-

ing error downside mean semideviation (TEDMS) and the tracking er-

ror volatility (TEV).

1.1.7 Quantile regression

Quantile regression (later called QR) has been introduced by Koenker

and Bassett Jr (1978) with the aim to identify a new class of estimators.

This methodology is more suitable to model phenomena characterized

by heavy tails and allows a better adherence to the real world without
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1.1. Introduction

FIGURE 1.1: Interpretation of the relevance given to er-
rors in quantile regression with τ = 0.95.

FIGURE 1.2: Interpretation of the quantile regression
line with τ = 0.95, τ = 0.5, τ = 0.05.
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Chapter 1. Introduction

any assumptions on distribution’s parameters. Quantile regression is

computationally simple, and provides a possible linking to a tracking

error problem and it is easy to interpret with respect to risk manage-

ment. As illustrated in Figure 1.1, QR allows to give different impor-

tance to errors depending on some features: for example, in order to

contain risk of losses, it is necessary to set τ > 0.5 to give heavier

weights on negative errors. In figure 1.2 three regression line for dif-

ferent τ = [0.05, 0.5, 0.95] are shown. In the original formulation of

1978, quantile regression applied to index tracking takes the following

formulation:

min
β∈RK

 ∑
t∈{t:yt≥xtβ}

τ |yt − xtβ|+ ∑
t∈{t:yt<xtβ}

(1− τ) |yt − xtβ|


When the chosen quantile is the median, i.e. τ = 0.5, the problem is

reduced to least absolute error estimator.

In Rockafellar and Uryasev (2013) the authors present the risk quad-

rangle and, thanks to that, they state the connection between risk mea-

sures and deviation measures. In particular, they pay attention to

quantile regression. They show how, in the optimization of the quan-

tile regression, if the intercept ξ is considered in the model, it can be

seen as the VaR at the τ quantile, with ξ in R.

min
β,ξ∈RK

 ∑
t∈{t:εt≥ξ}

θ |εt − ξ|+ ∑
t∈{t:εt<ξ}

(1− θ) |εt − ξ|


With respect to the previous formulation of the quantile regression, the

error component εt = yt − xtβ is introduced and the new value ξ cold

provide useful information for about the risk level of portfolios.

The thesis is organized as follows. In the second chapter it is exam-

ined the impact of the joint tails of the portfolio return and its empiri-

cal volatility on the optimal portfolio choices. The portfolio return and
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1.1. Introduction

its volatility dynamic are approximated by a bi-variate Markov chain

constructed on its historical distribution. This allows the introduction

of a non parametric stochastic volatility portfolio model without the

explicit use of a GARCH type or other parametric stochastic volatil-

ity models. It is described the bi-dimensional tree structure of the

Markov chain and it is discussed alternative portfolio strategies based

on the maximization of the Sharpe ratio and of a modified Sharpe ra-

tio that takes into account the behavior of a market benchmark. Then

the impact of the portfolio and its stochastic volatility joint tails is em-

pirically evaluated on optimal portfolio choices. In particular, it is

presented the comparison of the out of sample wealth obtained op-

timizing the portfolio performances conditioned on the joint tails of

the proposed stochastic volatility model. In the third chapter The con-

struction of an enhanced index tracking portfolio with stochastic dom-

inance constraint is investigated. It is discussed and compared to a

general framework of the literature, then it is proposed an optimiza-

tion model. The tracking error problem is dealt with by introducing a

new deviation measure based on the use of quantile regression. The

portfolio optimization problem is brought back to a linear formulation

and it is improved with a linearization of the second order stochastic

constraint present in literature. In order to define the optimal window

for calibrating the model it has been conducted a sensitivity analy-

sis. It is shown that in the out of sample framework, the built portfo-

lios preserve a second order stochastic dominance with respect to the

benchmark.
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Chapter 2

Joint tails impact in stochastic

volatility portfolio selection

2.1 Introduction

There is a general consensus (Engle (1982), Bollerslev (1986)) that the

variance of the financial asset returns is time variant and a great amount

of efforts are directing to realize mathematical models which, by choos-

ing the variance dynamics as the model corner-stone, should be ef-

fectively able to model financial prices. Surely the GARCH model is

a reference instrument to study the volatility dynamics, and among

its advantages there is its high flexibility to be suitable to capture the

most important features of the financial variables. As Glosten, Jagan-

nathan, and Runkle (1993), and Nelson (1991) explain many GARCH

type models and in particular the GARCH(1,1) model can be repre-

sented as a bivariate Markovian system (i.e., the state of the process is

uniquely represented by price and variance states). This feature allows

to approximate GARCH type models by a discrete Markov chain. The

Markovian and semi-Markovian models have been used in different

fields of the financial literature typically in option pricing and credit

risk (see, among others, Duan and Simonato (2001) ; D’Amico and Di

Biase (2009) , D’Amico et al. (2009) , D’Amico et al. (2010)), and in port-

folio theory (see Angelelli and Ortobelli Lozza (2009), Ortobelli Lozza
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Chapter 2. Joint tails impact in stochastic volatility portfolio selection

and Iaquinta (2008)). Elliott and Siu (2010) and Çanakoğlu and Öze-

kici (2009) model the economic phases as a discrete Markov chain.

Duan and Simonato (2001) proposed a methodology based on a

Markov chain process to approximate the asset price distribution and

its conditional volatility under the risk-neutralized pricing measure

when asset returns and its conditional volatility are modeled with a

GARCH(1,1) model with Gaussian innovations.

In this line of research, this chapter investigate the construction of a

non parametric Markov chain process that allows us to model the evo-

lution of the cumulative wealth and its empirical volatility over time

thorough a non parametric Markov bivariate process. As in Ortobelli

Lozza, Angelelli, and Bianchi (2011) and Bean, Kontoleon, and Tay-

lor (2008), a tree structure is used to represent the investment evolu-

tion under the Markovian hypothesis, but differently by their analysis

here it is used a non parametric Markov chain process to approximate

the portfolio return distribution and its volatility under a real world

probability. Moreover, the recombining effect significantly reduce the

problem complexity. This tree structure allows an appropriate anal-

ysis of the portfolio return and its empirical volatility joints tails. In

this framework, the impact of the tails on the optimal portfolio choices

is analyzed. Indeed, it is well known in the financial literature (see,

among others, Rachev and Mittnik (2000) and the references therein)

that the observed heavy tails of the return distributions could have a

strong impact on the future wealth, since the return tails determine

the probabilities of future losses and gains. Thus, the main contribu-

tion of this work is twofold. Firstly, a non parametric Markov stochas-

tic volatility process is introduced and it is applied to portfolio selec-

tion problems. Secondly, the impact of the joint tails of the stochastic

volatility model on optimal portfolio choices is examined through an
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2.1. Introduction

empirical analysis.

In such analysis two alternative portfolio performance measures

are considered: a Dynamic Sharpe Ratio, and a stochastic dynamic

benchmark that takes into account the behaviour of a stochastic mar-

ket benchmark.

In financial literature there exist several performance measures which

are used either to measure the ex-post performance of portfolio strate-

gies or to choose optimal portfolios in line with Sharpe thinking (see,

among others, Sharpe (1994), Cogneau and Hübner (2009a) Cogneau

and Hübner (2009b). Indeed, if the assumption of normality in re-

turn distributions is omitted, the classical risk—reward Sharpe Ratio

becomes a questionable tool for ranking risky projects. A general risk-

–reward ratio suitable to compare skewed returns with respect to a

stochastic benchmark should account asymmetric preferences to bet

on potential high stakes and the aversion against possible huge volatil-

ity. The former goal is achieved by the proposed modified Sharpe ra-

tio, where, as risk measure the expected portfolio volatility is adopted

and, as reward measure the expected excess return (respect to the risk-

less as for the classic Sharpe ratio) is used and it is conditioned to the

forecasted portfolio wealth. It must be greater than the one obtained

with the stochastic benchmark. Doing so, the optimization is still re-

ferred at the reward for unity of risk. The over performance with re-

spect to the stochastic market benchmark is emphasized. Then, four

joint tails of the bivariate stochastic volatility process are character-

ized. The process is conditioned to belong to a given tail of its bivari-

ate distribution. The performance measures are then evaluated. Fi-

nally, the ex-post wealth obtained optimizing the conditional process

is compared with respect to the unconditional portfolio performance
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Chapter 2. Joint tails impact in stochastic volatility portfolio selection

ratios. Moreover, the presence of proportional transaction costs is as-

sumed, this in order to construct a realistic investment strategy , as in

Fu et al. (2015) and in Valladão, Silva, and Poggi (2018).

The remaining part of this chapter is organized as follows: in Sec-

tion 2 describes the adopted methodology and it explain how it is built

and computed the new stochastic volatility portfolio model. In Section

3 some portfolio strategies are examined and it is described the con-

tribution of joint tail distribution of the proposed stochastic volatility

model.

Section 4 empirically evaluates the impact on optimal choices of the

bivariate Markov stochastic volatility tails.

2.2 Approximating a stochastic volatility model

with a bivariate Markov chain

In this section the methodology adopted to construct the homoge-

neous Markov stochastic volatility portfolio process is described. It is

used to derive the joint evolution of the cumulated wealth obtained in-

vesting in a portfolio up to time T and its cumulated stochastic volatil-

ity.

Let Zx,t = ∑n
i=1 xi

Pi,t
Pi,t−1

be the portfolio of gross returns at time t,

whereas the vector x = [x1, . . . , xn]′ indicates the percentages of the

initial wealth invested in each of the n assets and Pt = [P1,t, . . . , Pn,t]
′

is the vector of prices at time t. No short sales are allowed. Thus,

the vector x of portfolio weights belongs to the (n − 1)-dimensional

simplex S = {x ∈ Rn | ∑n
i=1xi = 1; xi ≥ 0}.

For a portfolio Zx,t , the empirical volatility is

σZx,t =

(
t

∑
i=t−m+1

(Zx,t − Z̄x,t)
2

m

)0.5
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Markov chain

where Z̄x,t is the empirical mean computed on a time window of length

m. For computational convenience the process of the empirical expo-

nential volatility is modeled as: Zσ,t = exp(σZx,t). For any portfolio

of weights x the stochastic volatility portfolio process Zt = (Zx,t, Zσ,t)

is an adapted bivariate Markov process defined on a filtered probabil-

ity space
(
Ω,=, (=t)0≤t≤∞ , Pr

)
, that it can be approximated with an

homogeneous Markov chain. Clearly, the use of a bivariate process al-

lows to better distinguish the proper contribution of portfolio returns

and its stochastic volatility (and also of their joint distributional tails)

in the optimal portfolio selection analysis . To build the Markov chain

N states are considered for the gross returns portfolio and M states

for its exponential volatility. Then, it is introduced the multi-index

i = (ix, iσ) to denote the states of the Markov chain z(i) = (z(ix)
x , z(iσ)σ )′,

i ∈ I := {(ix, iσ) : 1 ≤ ix ≤ N, 1 ≤ iσ ≤ M}. In particular, the states

are defined discretizing the support of the Markov process {Zt}t≥0.

Thus, given a set of past observations {Z−L, . . . , Z0}, the range of the

portfolio process is considered

(
min

s=−L,...,0
Zx,s, max

s=−L,...,0
Zx,s

)
×
(

min
s=−L,...,0

Zσ,s, max
s=−L,...,0

Zσ,s

)

and it is divided into N ·M bi-dimensional intervals (ai, ai−1)× (bj, bj−1),

where {ai} and {bj} are given by the two following decreasing se-

quences

ai :=ui
x max

s
Zx,s, i = 0, . . . , N (2.1)

bj :=uj
σ max

s
Zσ,s, j = 0, . . . , M

and ux :=
(

mins Zx,s
maxs Zx,s

)1/N
, uσ :=

(
mins Zσ,s
maxs Zσ,s

)1/M
are two step factors

useful to determine the process states.

Then, the values of the Markov process are approximated by the

belonging to the bi-dimensional interval (aix , aix−1)× (biσ , biσ−1) by the
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Chapter 2. Joint tails impact in stochastic volatility portfolio selection

state z(i) = (z(ix)
x , z(iσ)σ ) of the Markov chain defined by

z(ix)
x =

√
aix aix−1 = u

1−2ix
2

x max
k

Zx,k, ix = 1, . . . , N (2.2)

z(iσ)σ =
√

biσ biσ−1 = u
1−2iσ

2
σ max

k
Zσ,k, iσ = 1, . . . , M.

Thus, according to (2.1) and (2.2), z(ix)
x = z(1)x u1−ix

x and z(iσ)σ = z(1)σ u1−iσ
σ .

Clearly, for M states of the exponential volatility there are exactly M

states of the portfolio volatility given by σ(iσ) = ln(z(iσ)σ ), iσ = 1, . . . , M.

The joint probability

πi = Pr
(

Zx,t = z(ix)
x , Zσ,t = z(iσ)σ

)
of the portfolio return and its exponential volatility respectively in

states z(ix)
x and z(iσ)σ is approximated as the number of times the pro-

cess Zt is in the state z(i) = (z(ix)
x , z(iσ)σ ) divided by the total number of

joint observations. As a consequence of the homogeneous property of

the Markov chain the transition matrix is constant over the time and is

given by Π =
[
πij
]

i,j∈I , where:

πij = Pr
(

Zτ+1 = z(j)|Zτ = z(i)
)

, i, j ∈ I

is the probability to move from the generic state z(i) to z(j) in one pe-

riod of time. The estimates π̂ij of these probabilities are obtained as the

ratio of the number of observations that transit from state z(i) to state

z(j) and the number of observations which are in the state z(i).

The proposed model is suitable to describe the joint evolution of the

cumulated wealth obtained investing in a portfolio and its stochastic

volatility. The bivariate cumulative process generated by the portfolio

return is considered and its volatility. At time zero (no investment),
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Markov chain

the initial wealth is equal to 1 (i.e., W0,x = ∑n
i=1xi = 1) and also its

volatility is equal to 0 (i.e., W0,σ = 1 = exp(0)). The cumulative pro-

cess Wt = (Wt,x, Wt,σ)′ at time t is a bivariate random variable that can

assume N ·M possible values for any realized value of the cumulative

process Wt−1 at time t− 1, i.e.,

Wt = z(i) ⊗Wt−1 =
(

z(ix)
x W(t−1),x, z(iσ)σ W(t−1),σ

)′
, i = (ix, iσ) ∈ I.

In particular, Wt,x and Wt,σ point out the cumulative wealth and ex-

ponential volatility obtained investing in the portfolio x during the

period [0, t]. Denoting i(s) = (ix(s), iσ(s)) the realized state of the

Markov chain at time s, then a sample path of the cumulative value of

the portfolio is described and its exponential volatility at time t can

be seen as a function of the realized states z(i(τ)) in different times

τ = 1, ..., t, i.e.:

Wt =

W0,xz(ix(1))
x z(ix(2))

x ...z(ix(t))
x

W0,σz(iσ(1))σ z(iσ(2))σ ...z(iσ(t))σ


where the cumulative process at time 0 is W0 = (W0,x, W0,σ) = (1, 1).

Observe that, the largest and the smallest nodes of the wealth (and

respectively of the volatility) grows and decreases exponentially and

thus a much larger domain is covered for the future wealth and volatil-

ity taking also into account rare events. The sequence 〈i(1), . . . , i(t)〉

identifies uniquely the path followed by the bivariate cumulative pro-

cess up to time t. Moreover, the cumulative volatility during the pe-

riod [0, t] along the sample path, is given by the logarithm of the expo-

nential volatility, i.e.

ln(Wt,σ) =
t

∑
τ=1

ln
(

z(iσ(τ))σ

)
=

t

∑
τ=1

σ(iσ(τ)).
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Thus, considering all the possible sample paths, the average volatility

process can be defined as:

σ̄0,x = 0, for t = 0 and σ̄t,x =
ln(Wt,σ)

t
for t > 1. (2.3)

Observe that the random variable σ̄t,x (for any time t > 1) represents

the forecasted average volatility over the period [0, t]. In the following

portfolio selection problems the process {(Wt,x, σ̄t,x)}t≥0 is used and it

is composed by the cumulative portfolio wealth Wt,x and its average

volatility process σ̄t,x.

A general bivariate Markov chain with N ·M possible states should

imply that the number of possible values for the cumulative process

Wt grows exponentially with the time. However, as a consequence

of the proposed construction, the process Wt can take only [1 + t(N −

1)] · [1+ t(M− 1)] values and the global number of the possible values

of Wt up to time T is ∑T
t=1[1 + (N − 1)t][1 + (M − 1)t] = O(NMT3).

This property is called recombining effect of the Markov chain on the

cumulative process W and it contributes to reduce the complexity of

the problem.

FIGURE 2.1: Graphical interpretation of the Markov tree
.

This allows to describe the possible values of the cumulated wealth

along the time dimension, using a tree structure according to 2.1 since,
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Markov chain

by (2.1) and (2.2), the possible values of Wt at time t can be denoted by:

Wt(lx ,lσ)
=

 Wt,x,lx

Wt,σ,lσ

 =

 (z(1)x )tu1−lx
x

(z(1)σ )tu1−lσ
σ

 (2.4)

where

(lx, lσ) ∈ At := {(lx, lσ) : 1 ≤ lx ≤ 1+ t(N− 1), 1 ≤ lσ ≤ 1+ t(M− 1)},

that is the values Wt,x,lx and Wt,σ,lσ are decreasing functions respec-

tively of lx and lσ. A bivariate tree can intuitively be used to describe

the evolution of the cumulative process Wt, starting with a single node

W0(1,1)
= (1, 1)′ at time 0 and presenting at each time instant t the

[1 + t(N − 1)]× [1 + t(M− 1)] nodes given by Wtl , l = (lx, lσ) ∈ At.

In 2.1 it is shown how the recombining effect acts on the process when

a bivariate tree with N = M = 2 is reproduced.

Each colored polygon in the tree represents the regions of the pos-

sible realizations of our discretised process, where at each time (t =

0, ..., 3) we have [1 + t]2 nodes of the cumulative process Wt.

The joint probability of obtaining the cumulative values Wtl (for

any l ∈ At) in state z(i) (for any i ∈ I) at time t is computed as:

π(Wt,Zt)(l, i) = Pr(Wt = Wtl ∩ Zt = z(i)).

These probabilities can be computed recursively by the formula

π(Wt,Zt)(l, i) =



πi t = 0, l = 1 = (1, 1)

∑h∈I π(Wt−1,Zt−1)
(l − (i− 1), h)πhi t > 0, lx − (ix − 1) > 0,

and ly − (iy − 1) > 0

0 otherwise.
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Then, the probability πWt(l) is simply given by

πWt(l) =


1 t = 0, l = (1, 1)

∑h∈I π(Wt,Zt)(l, h) t > 0

0 otherwise

(2.5)

These probabilities characterize both the distributions of the cumula-

tive process Wt and of the process {(Wt,x, σ̄t,x)}t≥0. Moreover, the pro-

posed procedure can also be used to approximate the joint markovian

behaviour of one portfolio and a given benchmark Z(x,b),t = (Zx,t, Zb,t).

This leads to a cumulative wealth process W(x,b) = {(Wt,x, Wt,b)}t≥0 as

described by Ortobelli Lozza, Angelelli, and Bianchi (2011).

2.3 Joint tails in portfolio selection stochastic

volatility models

This section propose different strategies for portfolio selection when

the portfolio of gross returns and its volatility is approximated by a

bivariate Markov chain as in Section 2. In particular, firstly some port-

folio performance measures are examined, then it is discussed how

these performance measures can be implemented in order to take into

account the joint tails of the cumulative wealth process and its average

volatility process.

In portfolio theory, typically it is maximized a functional g (per-

formance measure or utility functional), that depends on the portfolio

weights x belonging to the (n − 1)-dimensional simplex S (when no

short sales are allowed). Clearly, the proper choice of the functional

g is related to the investor’s preferences and, for this reason, it is re-

quired that g is isotonic with the preferences of a particular class of in-

vestors (i.e., g(X) > g(Y) any time X is preferred to Y by a given class

of investors) see for details Angelelli and Ortobelli Lozza (2009). A
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static portfolio problem is any optimization problem that do not con-

sider the time evolution of the wealth and for which the utility func-

tional g is applied to portfolio of gross returns Zx,t. In these cases the

solution of the problem is:

max
x∈S

g(Zx,t).

Probably the most known and used performance functional g is the

Sharpe Ratio (SR) Sharpe (1994) which evaluates the expected excess

return for unit of risk, measured as the standard deviation, i.e.

SR(Zx,t) =
E(Zx,t − rr f )

σZx,t

,

where rr f is the risk free return and σZx,t is the standard deviation of

the portfolio of gross return. SR can be seen as a risk-to variability

measure.

The Sharpe ratio is isotonic with non-satiable risk averse prefer-

ences (i.e., any time X is preferred to Y by all non-satiable risk averse

investors, then SR(X) > SR(Y)).

A dynamic portfolio problem generally optimize a functional over

S taking into account the time evolution of portfolio wealth. In par-

ticular, under the assumption of Section 2, the trade-off between the

forecasted portfolio wealth and its average volatility at a given tem-

poral horizon T can be optimized. In this application several portfolio

selection strategies are considered. Investors maximize a functional

g(·) every T periods applied to the cumulative process WT (or to the

sample path of the cumulative process) evaluated at time T. Thus in-

vestors periodically compute the optimal portfolio weights xM ∈ S

such that

xM = arg max
x∈S

g(WT).
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Initially it is considered a dynamic version of the Sharpe ratio given

by:

DSR(WT) = E
(WT,x −WT,r f

σ̄T,x

)
, (2.6)

where WT,r f is the final wealth obtained investing in the risk free asset

and σ̄T,x is the average volatility over the period [0, T] defined in (2.3).

In general, for a bivariate cumulative process {Wt}t≥0 the joint dy-

namic of the portfolio cumulative wealth is considered with its aver-

age volatility, where Wt = (Wt,x, Wt,σ) and so

E( f (Wt)) = ∑
l∈At

f (Wtl)πWt(l)

where Wtl , l ∈ At are the [1 + t(N − 1)]× [1 + t(M− 1)] nodes.

Similarly, the conditional expected value is

E( f (Wt) |Wt ∈ C ) =
∑l∈C f (Wtl)πWt(l)

∑l∈C πWt(l)
. (2.7)

Thus, according to (2.4) and (2.5), considering the portfolio cumula-

tive wealth and its average volatility , the above dynamic Sharpe ratio

can be evaluated as

DSR(WT) =
1+T(N−1)

∑
lx=1

1+T(M−1)

∑
lσ=1

WT,x,lx −WT,r f

σ̄T,x,lσ
πWT(lx, lσ),

where σ̄T,x,lσ =
ln(WT,σ,lσ)

T is the average volatility over the period [0, T]

obtained by the node WT,σ,lσ of the cumulative exponential volatility.
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In portfolio theory, since the Sharpe’s statements, several alterna-

tive performance measures have been proposed (see Cogneau and Hüb-

ner (2009a)Cogneau and Hübner (2009b)) in order to account for in-

vestors’ preferences. In particular, when investors consider a stochas-

tic benchmark characterised by a final wealth WT,b, they optimize the

ratio of expected gains with respect to the benchmark, over the risk. In

this context the Sharpe ratio can be modified taking into account only

the forecasted wealth greater than the stochastic benchmark.

This is a reward–to–variability ratio, and it represents the potential

for positive returns compared to the volatility. Our performance mea-

sure is in principle very similar to the Sharpe ratio except that for the

market stochastic benchmark conditioning on the excess return. It is

proposed the use the following alternative stochastic benchmark ratio

(in short SBR).

SBR(WT) =
E
(
WT,x −WT,r f |WT,x ≥WT,b

)
E (σ̄T,x)

, (2.8)

The stochastic benchmark ratio evaluates the expected excess positive

wealth using the cumulative wealth process Wt = {(Wt,x, Wt,b)}t≥0

to account for the joint behaviour of the portfolio and the benchmark

over the portfolio stochastic volatility. Thus, the conditional expected

value of the stochastic benchmark ratio ( 2.8) can be computed as

E
(
WT,x −WT,r f |WT,x ≥WT,b

)
=

∑(lx,lb)∈C
(
WT,x,lx −WT,r f

)
πWT(lx, lb)

∑(lx,lb)∈C πWT(lx, lb)

where the conditioning region is given by C =
{
(lx, lb)

∣∣WT,x,lx ≥WT,b,lb

}
and according to (2.4) and (2.5), the above stochastic performance ratio
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is given by

SBR(WT) =
∑(lx,lb)∈C

(
WT,x,lx −WT,r f

)
πWT(lx, lb)

∑(lx,lb)∈C πWT(lx, lb)∑
1+T(M−1)
lσ=1 σ̄T,x,lσ ∑

1+T(N−1)
lx=1 πWT(lx, lσ)

,

(2.9)

where:

1. σ̄T,x,lσ =
ln(WT,σ,lσ)

T is the average volatility over the period [0, T]

2. C =
{
(lx, lb)

∣∣WT,x,lx ≥WT,b,lb

}
.

2.3.1 Tail portfolio performance measures

Generally financial models take into account the distributional tails,

conditioning the stochastic variables to belong to the tails. Thus, the

impact of the portfolio and volatility joint tails on the optimal portfolio

choices can be evaluated. In practice, starting by the previous perfor-

mance measures (2.6) and (2.8), two alternative performance ratios can

be obtained: the conditional dynamic Sharpe ratio (namely, C_DSR)

and the conditional stochastic benchmark ratio (namely, C_SBR) given

by:

C_DSR(WT,B) = E
(WT,x −WT,r f

σ̄T,x

∣∣∣∣ (WT,x, σ̄T,x) ∈ B
)

(2.10)

C_SBR(WT,(x,b),B) =
E
(
WT,x −WT,r f |WT,x ≥WT,b

)
E (σ̄T,x−| (WT,x, σ̄T,x) ∈ B)

(2.11)

where the set B points out a tail area of the joint stochastic volatility

process (Wt,x, σ̄t,x) . In particular, are defined four admissible tail areas
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whose joint probability is fixed equal to β, (i.e. Pr ((WT,x, σ̄T,x) ∈ B) =

β) which are:

1. High wealth and low volatility (namely, H-L zone), where

B = (WT,x > c; σ̄T,x ≤ d) and the values c, and d are identified

such that Pr(WT,x > c) = Pr(σ̄T,x ≤ d);

2. High wealth and high volatility (namely, H-H zone), where

B = (WT,x > c; σ̄T,x > d) and the values c, and d are identified

such that Pr(WT,x > c) = Pr(σ̄T,x > d);

3. Low wealth and high volatility (namely, L-H zone), where

B = (WT,x ≤ c; σ̄T,x > d) and the values c, and d are identified

such that Pr(WT,x ≤ c) = Pr(σ̄T,x > d);

4. Low wealth and low volatility (namely, L-L zone), where

B = (WT,x ≤ c; σ̄T,x ≤ d) and the values c, and d are identified

such that Pr(WT,x ≤ c) = Pr(σ̄T,x ≤ d).

Therefore, if for example the dynamic Sharpe ratio is computed

conditioned on the H-L zone the result is

C_DSR(WT,B) =
∑(lx,lσ)∈CH−L

WT,x,lx−WT,r f
σ̄T,x,lσ

πWT(lx, lσ)

∑(lx,lσ)∈CH−L
πWT(lx, lσ)

where the region CH−L is the set of nodes (lx, lσ) such that

1+T(N−1)

∑
lx=kc

kd

∑
lσ=1

πWT(lx, lσ) = β;

and kc, kd are determined such that

kd

∑
lσ=1

1+T(N−1)

∑
lx=1

πWT(lx, lσ) =
1+T(N−1)

∑
lx=kc

1+T(M−1)

∑
lσ=1

πWT(lx, lσ).
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Clearly, the equalities in probability introduced above, to determine

the tail areas, can be satisfied if the probability distributions are contin-

uous. This is not this case since the discretization of the distributions

has been done with the procedure described in Section 2.

Thus, the values c and d are nodes properly chosen to approximate

the above equalities. For example, to consider the H-L zone c = WT,x,lx

and d = σ̄T,x,lσ must be chosen such that one of the following condi-

tions hold:

a)

Pr(WT,x > WT,x,lx ; σ̄T,x ≤ σ̄T,x,lσ) ≥ β,

and

Pr(WT,x > WT,x,lx−1; σ̄T,x ≤ σ̄T,x,lσ+1) < β;

b)

Pr(WT,x > WT,x,lx) ≥ Pr(σ̄T,x ≤ σ̄T,x,lσ)

and

Pr(WT,x > WT,x,lx−1) < Pr(σ̄T,x ≤ σ̄T,x,lσ),

or

Pr(σ̄T,x ≤ σ̄T,x,lσ) ≥ Pr(WT,x > WT,x,lx)

and

Pr(σ̄T,x ≤ σ̄T,x,lσ+1) < Pr(WT,x > WT,x,lx).

Proceeding in a similar way it is possible to determine the values c

and d for all the other tail zones.
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2.4. An empirical analysis of the stochastic volatility portfolio model

2.4 An empirical analysis of the stochastic volatil-

ity portfolio model

In this section it is investigated the impact of the tails in portfolio selec-

tion via the bivariate Markov stochastic volatility model. In particular,

it is presented the comparison among some portfolio strategies based

on the maximization either of the static Sharpe ratio or of the proposed

portfolio performance measures (DSR and SBR) that account for the

portfolio behavior on the distribution tails. First, it is proposed the out

of sample valuation of the wealth produced optimizing the Dynamic

Sharpe ratio and the Stochastic benchmark ratio. Second, it is exam-

ined the distributional behavior of optimal portfolios conditioned on

the different distributional tails. In order to perform this analysis it is

used the set of adjusted closing prices of the Standard and Poor 500

Index (our benchmark) and the components of DJIA index from 12th

October 1998 to 22nd May 2019. Moreover, the 3M Treasury Bill is as-

sumed as risk–less asset. It is set N = M = 4 states for each asset and

β = 1%. The Markov model is calibrated on a one-year time window of

historical daily observations (252 trading days). For each window, the

first 6-months is used to compute the initial empirical standard devia-

tion and the last 6-months (126 trading days) to calibrate the Markov

model. The optimal portfolio is selected on a time horizon of 21 days

(i.e. T = 21, one month). Finally window is translated by 21 days and

the portfolio is monthly re-calibrate for a total of 234 calibrations.

Just in order to have a graphical interpretation, in figure 2.2 it is re-

ported the value of the Dynamic Sharpe Ratio (DSR) and of the Stochas-

tic Benchmark ratio (SBR) computed on a toy-portfolio composed by

only three assets (Microsoft, Coca Cola, Boeing) changing the weights

belonging to S =
{

x ∈ R3 | ∑3
i=1xi = 1; xi ≥ 0

}
. The performance
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Chapter 2. Joint tails impact in stochastic volatility portfolio selection

FIGURE 2.2: Dynamic Sharpe Ratio (DSR) and Stochas-
tic Benchmark ratio (SBR) computed on a portfolio of

three assets

measures based on the Markov hypothesis provide several local op-

tima. Therefore, the search for an optimal solution is often faced with

problems related to the computational complexity of the maximization

of these performance measures.

For this reason, in these experiments it is first applied an optimizer

based on the idea presented in Angelelli and Ortobelli Lozza (2009)

to find a proper starting point. Then, the different portfolio problems

are optimized using the algorithm "pattern search" presented in Mat-

lab libraries. A comparison analysis of the combined use of these two

optimizers allows to save time and get better results than other global

optimizers essentially based or on Genetic algorithms or on the Simu-

lated Annealing type algorithms.

2.4.1 Portfolio selection comparison

In the first empirical analysis it is considered an out of sample com-

parison among the different strategies which correspond to the dif-

ferent performance measures. In particular, for each strategy, it is set
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an initial wealth W0 = 1 and it is assumed that no short sales are al-

lowed. Thus, starting from October 12th 1999 the optimal portfolio

x(K), k = 0, 1, 2, ..., 234 it is determined by recalibrating every month

(21 trading days). At each calibration k, two main steps are repeated

for all the performance measures, in order to compute the out of sam-

ple final wealth obtained by the different strategies:

• Step 1 Determine the optimal portfolio x(k) that maximizes the

performance ratio ρ(W(x)) (SR, DSR, SBR, C_DSR, C_SBR) asso-

ciated to the relative strategy, i.e. the solution of the following

optimization problem:

max
x(k)

ρ(WT(x(k)))

s.t.

∑n
i=1 x(k)i = 1,

x(k)i ≥ 0; i = 1, . . . , n.

In more details, the initial portfolio weights vector is determined

using the heuristic by Angelelli and Ortobelli Lozza (2009). Then,

the optimal solution is obtained by a pattern search algorithm: at

each iteration, the 2n directions given by the canonical basis and

its opposite are explored. Finally the closest point to the cur-

rent solution which satisfies working set constraints and provide

the best improvement of the objective function is selected as new

current solution. The value of the objecting function ρ(cdot) is

computed on the forecasted wealth WT(x) obtained by the port-

folio with composition (x).

• Step 2 During the period [tk, tk+1] (where tk+1 = tk + T) the port-

folio is re-calibrated considering 20 basis point of proportional
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transaction costs. Thus, the ex-post final wealth is given by:

Wtk+1 = Wtk

((
x(k)
)′

z(ex post)
(tk+1)

− t.c.
(

x(k)
))

, (2.12)

where:

1. z(ex post)
(tk+1)

is the vector of observed gross returns during the

period from tk to tk+1

2. t.c.
(

x(k)
)
=

0.002
30

∑
i=1

∣∣∣∣∣∣x(k)i −
x(k−1)

i z(tk),i

∑30
j=1 x(k−1)

j z(tk),i

∣∣∣∣∣∣
are the proportional transaction costs.

The optimal portfolio x(k) is the new starting point for the (k+ 1)-

th optimization problem and Wtk+1 is the cumulative wealth to

reinvest.

The results of the comparison of the different strategies are reported

in figures 2.3, 2.4, 2.5 and table 2.1. Figure 2.3 reports the sample path

of the out of sample wealth obtained with the static Sharpe ratio (2.3),

the dynamic Sharpe ratio (2.6) and the Standard & Poor 500 index. In

particular, figure 2.3 shows that the dynamic Sharpe ratio presents a

better performance with respect to the index and to the static Sharpe

ratio, since it is more capable to forecast the crisis period (i.e., the losses

during the subprime crisis are smaller). However, remarkable differ-

ences between Sharpe type strategies can be found.

Figures 2.4 and 2.5 report respectively the sample path of ex post

wealth obtained with the conditional dynamic Sharpe ratio and the

conditional stochastic benchmark ratio. The dynamic Sharpe ratio and

all the conditional DSR strategies outperform the benchmark Standard
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FIGURE 2.3: Comparison among cumulated wealth with
Sharpe type performance strategies

& Poor 500 and obtain an increment of wealth that is always greater

than 3 times the initial one.

FIGURE 2.4: Comparison among conditional dynamic
Sharpe type strategies

Similarly, figure 2.5 shows that the benchmark type strategies al-

ways outperform the benchmark. In particular, two strategies (namely

in the H-L, H-H tails) obtain an increment of wealth of about 10 times

the initial one while in the L-H and L-L tail, an increment of wealth

is quantified in around 6 times the initial one but it is however lower
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FIGURE 2.5: Comparison of conditional stochastic
benchmark strategies

than SBR performance (obtained without conditioning to a tail). More-

over, among the C_SBR portfolio strategies the best strategies until the

crisis are the ones implemented in the areas with low volatility while,

after this event, the C_SBR strategies on the high volatility tails per-

formed better. C_SBR strategies perform better than the C_DSR ones

even if it is observed a significative impact on the optimal choices for

all conditional Sharpe type strategies.

The ordering among the results of this analysis, although evident

from a graphical inspection of figures, have been tested to investigate

the presence of some kind of stochastic dominance among the strate-

gies. In particular, results are checked for the presence of stochastic

dominance of the first two stochastic dominance orders (consistent

with preferences of non-satiable investors, i.e. FSD, and non–satiable

risk averse investors, i.e. SSD) and the Increasing-Convex-Order (con-

sistent with preferences of non-satiable risk seeker investors, namely

ICX). In Table 2.1 with the capital letters are described the strategies

without the benchmark, with the lower case letters are described the

strategies conditioned to the value of the Benchmark. It can be seen
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that there is not any first order stochastic dominance (FSD) and only

in two cases it can be observed the second order stochastic dominance.

On the one side, it appears evident that Conditional type strategies

generally dominate the benchmark at least by the point of view of all

non satiable risk seeker investors. On the other side, it is found that

benchmark based strategies perform better than those based on the

dynamic Sharpe ratio.

TABLE 2.1: Stochastic dominance among strategies and
Benchmark.

H–L L–H H–H L–L h–l l–h h–h l–l S&P500
H–L - - - - - - - - -
L–H - - - - - - - - -
H–H ICX ICX - - - - - - ICX
L–L - - SSD - - - - - ICX
h–l ICX ICX - - - SSD - - ICX
l–h ICX ICX - ICX - - - - ICX
h–h ICX ICX - - - - - - ICX
l–l ICX ICX - - - - - - ICX

S&P500 - - - - - - - - -

2.4.2 On the impact of the portfolios optimized on the

tails

As observed in Section 2.4.1, conditioning the analysis on the tails an

out of sample wealth higher than the corresponding unconditional can

generally be observed. In this section it is clarified and justified the

impact of the tails on the optimal choices. For illustrative purpose,the

joint distribution of the final wealth and the average volatility of the

optimal portfolios obtained optimizing the DSR in one year are graph-

ically examined. Then, the behaviour of all optimal portfolios obtained

is summarized in Section 2.4.1.

Figures 2.6 and 2.7 report the joint distributions of four optimal

portfolios. They are get optimizing the DSR during the last year of

observations, namely from May 23rd 2018 to May 22nd 2019. First
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of all, it is observed that the optimal choices are very different with

respect to the others. Looking figures 2.6 and 2.7 it can be noted that

the variability of the wealth appears very high, while the variability

of the volatility seems very low (most of the forecasted volatility is

concentrated on a unique zone).

TABLE 2.2: Average ex-ante statistics of the forecasted
final wealth and volatility for the optimal portfolio of

the conditional Sharpe type strategies

C_DSR C_DSR C_DSR C_DSR C_SBR C_SBR C_SBR C_SBR
H–L L–H H–H L–L H–L L–H H–H L–L

W Stat
µ 0.0103 0.0116 0.0094 0.0107 0.0103 0.0110 0.0100 0.0106
σ 0.0722 0.0716 0.0866 0.0685 0.0841 0.0904 0.0873 0.0854

Skew 0.1705 0.1550 0.2595 0.1474 0.1804 0.2368 0.1780 0.1864
Kurt 3.6295 3.7008 3.7910 3.6986 3.7507 3.7426 3.6692 3.7050

VaR5% 0.0947 0.0915 0.1040 0.0917 0.1112 0.1137 0.1151 0.1136
Volatility Stat

µ 0.0129 0.0125 0.0141 0.0126 0.0143 0.0145 0.0144 0.0145
σ 0.0039 0.0038 0.0043 0.0037 0.0042 0.0044 0.0045 0.0043

Skew 0.4340 0.4127 0.3797 0.4071 0.4997 0.5448 0.5116 0.5076
Kurt 2.3655 2.2939 2.3355 2.4465 2.3972 2.4835 2.4913 2.4478

ρ(W,var) 0.0777 0.0905 0.1006 0.0368 0.0513 0.0776 0.0439 0.0656

For a more accurate analysis, in table 2.2 it is reported the ex-ante

average descriptive statistics (mean, standard deviation, kurtosis and

skewness) of the marginal distributions of the forecasted final wealth

and average volatility obtained optimizing the conditional performance

measures over all the examined 234 rebalancing periods. In addition

come other statistics are considered:

• the value at risk (VaRp(X) = −F−1
X (p) = − inf {s|Pr (X ≤ s) ≥ p},

• the conditional Value at risk (CVaRp(X) = 1
p

p∫
0

VaRu(X)du) of

the final wealth WT,x both with a 95% confidence level (i.e., p =

1− 0.95)

• the correlation between the wealth WT,x and average volatility

σ̄T,x (on average among all the optimal portfolios).
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From these statistics can be argued that the C_DSR strategies gen-

erally present lower risk in terms of VaR5% and CVaR5% than C_SBR

strategies. Moreover, the correlation between the forecasted wealth

WT,x and its average volatility σ̄T,x is generally very low, but it is higher

for CSBR strategies.

For all strategies, and also according to figures 2.6 and 2.7, the stan-

dard deviation of the final wealth WT,x is almost 6 times greater than its

average (i.e., high final wealth variability) and it is much more larger

than the standard deviation of the volatility σ̄T,x.

Moreover, both the volatility σ̄T,x and wealth WT,x present a pos-

itive skewness (that is larger for the volatility) and a leptokurtic final

wealth is oserved on average (kurtosis of WT,x is on average greater

than 3) and a platykurtic volatility (kurtosis of σ̄T,x is on average smaller

than 3). The C_DSR strategy valued on the L-H tail presents the low-

est risk (among all strategies) in terms of standard deviation of final

wealth, VaR5%, CVaR5% and average of the forecasted variability.

This result is reasonable since with this strategy it is implicitly min-

imized the risk in a tail where the wealth is small and the volatility is

high (i.e., in the worst case). According to this analysis the C_DSR

strategy valued on the L-H tail presents the most risk conservative sit-

uation probabily because optimize the risk on the worst wealth-risk

situation, in a sort of MINMAX solution.

2.5 Conclusions

This chapter proposes a simple way to value stochastic volatility port-

folio models using a bivariate Markov chain. In practice, with a dis-

crete time model it is suggest how to examine the joint behavior of the

future wealth and its average volatility. Moreover, alternative portfo-

lio selection models are examined according to this modelization with
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FIGURE 2.6: Joint distributions (wealth and variance at
time T) of HL and HH optimal DSR portfolios

FIGURE 2.7: Joint distributions (wealth and variance at
time T) of LL and LH optimal DSR portfolios

and without taking into account the joint behavior of the wealth and

its variability on one of their tails. An empirical comparison analysis

show that taking into account the stochastic volatility is useful even

under the optimization of the Sharpe ratio. Moreover conditioning the

portfolio performance or the risk on one of the joint tails has generally

a positive impact on the out of sample wealth. Finally, some ex-ante

statistics on the optimal portfolios are discussed to examine and jus-

tify some of the ex post obtained results. This is just an initial point

of the analysis of the problem but this proposed stochastic volatility
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model is promising and it can be also useful to deal other financial

problems where it is required the joint modelization of the wealth and

the volatility.
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Chapter 3

Enhancing tracking error with

SSD constraints

3.1 Introduction

In 1970 was formulated the hypothesis of efficient markets (EMH) (see

Malkiel and Fama, 1970) with the idea that, over long periods, fi-

nancial indices are unbeatable, promoting the passive investments. In

2004 Lo (2004), in order to state the connection between EMH and be-

havioural finance, postulates that markets usually react rationally and

instantaneously to new information, but in some situations they can be

driven by "fear and greed". This allows the existence of asymmetries

in markets and the possibility to outperform indices. According to

these different views, portfolios can be constructed to passively repli-

cate an index, while others are “actively managed” in order to generate

active-returns without considering a precise benchmark. In between,

there are semi passive strategies which mimic the benchmark looking

for extra-performances, capturing the benefits of passive and active

management. These strategies are indicated as enhanced indexing.

Recently, a branch of the financial literature addresses enhanced in-

dex strategies, proposing interesting models designed to obtain extra-

performances in the index tracking framework. These strategies aim to
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outperform the index by generating "excess return" according to some

other conditions, usually referred to the risk of portfolio.

According to Valle, Roman, and Mitra (2017), the return distribu-

tion of a replicating portfolio is considered enhanced if the left tail is

improved, the downside risk is reduced and the standard deviation

remains within a specified range.

In recent years, the process to build portfolios that mimic a given

index looking for an extra performance is getting crucial. Investments

into semi-passive, enhancing and systematic strategies are increasing.

However, very few (see Mitra et al., 2018) enhanced indexation meth-

ods have been proposed (for an exhaustive survey of literature (see

Canakgoz and Beasley, 2009)).

Canakgoz and Beasley (2009) propose a regression based model

for enhanced indexing, developing a two-stage mixed-integer linear

programming approach in which they respectively focus on slope-

intercept and transaction cost. In the first stage, they solve a problem

achieving a regression slope as close as possible to one. This optimiza-

tion is subjected to a constraint on the regression intercept. The second

stage is focused on the minimization of transaction costs.

In 2013, Roman, Mitra, and Zverovich (2013) apply a second or-

der stochastic dominance strategy to construct a portfolio whose re-

turn distribution dominates the benchmark one. They adopt a multi-

objective linear problem solved with a cutting-plane solution method

presented in Fábián et al. (2011).

In 2011, Meade and Beasley (2011) investigate a momentum strat-

egy via maximization of a modified Sortino ratio (see Sortino and

Price, 1994) objective function. In 2014, Guastaroba et al. (2016) intro-

duce a mixed-integer linear programming to enhance the index track-

ing problem maximizing the Omega ratio Keating and Shadwick (2002)

in a linear formulation with buy-in threshold limits and cardinality
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constraints. Bruni et al. (2014) propose a linear bi-objective optimiza-

tion approach to maximize the average excess return minimizing the

risk. Afterwards they investigate the theoretical condition to guaran-

tee the existence of an enhanced index portfolio.

Recently, with the aim to include behavioural finance in tracking

models with stochastic constraints, Mitra et al. (2018) propose an en-

hancement model introducing metadata on market sentiment.

In the last few years, a new point of view for the application of

stochastic dominance together with enhancement indexation has been

introduced. Since the requirement of stochastic dominance in the se-

lected portfolio may be quite restrictive and leading to unfeasible so-

lutions, recent papers (such as Sharma, Agrawal, and Mehra (2017),

Bruni et al. (2014)) try to use some relaxed forms of this constraint.

Another feature recently investigated by researchers is the attempt

of including risk in such a kind of strategies (see Goel, Sharma, and

Mehra (2018), Sehgal and Mehra (2019)).

The contribution of this work is the formulation of a linear stochas-

tic dominance enhanced index strategy. Among all the possible domi-

nating portfolios, the aim of this work is to select the one able to mimic

the behavior of the benchmark for a given quantile and at the same

time with an outperforming minimum level.

The introduction of the quantile asymmetric dispersion measure

for the index tracking problem is an important step in the construction

of replicating portfolios leading to a linear programming formulation

suitable for risk management interpretation (see among the others Wu

and Xiao (2002),Meligkotsidou, Vrontos, and Vrontos (2009)).

The enhanced index problem is achieved via first and second order

stochastic dominance constraints. Because of these features the pro-

posed model can be applied to large portfolio considering transaction

costs and turnover constraints.
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The proposed portfolio model is run by constructing rolling strate-

gies and it is tested for several quantile confidence level. The proposed

model shows the ability to mimic the benchmark returns with signifi-

cant extra-performances.

This chapter is organized as follows: In the next section it is intro-

duced the index tracking portfolio problem. Section 3 discusses the

proposed enhanced index tracking problem. In Section 4, the empir-

ical analysis are discussed in the static and rolling cases. In the last

Section, the obtained results are briefly summarized.

3.2 Index tracking problem: a quantile regres-

sion approach

Quantile regression (QR) has been introduced by Koenker and Bas-

sett in 1978 Koenker and Bassett Jr (1978) with the aim to identify a

new class of estimators in order to overcome the problems highlighted

by using traditional methods (such as least squares estimators). This

methodology shows a better ability to describe phenomena character-

ized by heavy tails without imposing any distributional assumptions.

Let Y ∈ RT be the log-return of equity index, the benchmark with

realization yi (for i = 1, . . . , T) , R = {r1, r2, . . . , rN} be the random

vector of its N components with ri ∈ RT . Thus, X = Rβ is the portfo-

lio’s return and β ∈ RN is the vector of portfolio weights. The tracking

error (TE) is defined as the vector ε = Rβ− Y, with ε ∈ RT. There are

several ways to build an index tracking portfolio since portfolio man-

agers have different constraints and restrictions. A general benchmark
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tracking problem can be formulated as follows:

min
β

σ (X−Y)

s.t.
N

∑
n=1

βn = 1

E [X]−E[Y] ≥ K∗

lb ≤ βn ≤ ub ∀n = 1, . . . , N

(3.1)

where σ is a dispersion measure generated from a given probability

metric Stoyanov, Rachev, and Fabozzi (2008). The first constraints im-

pose to invest all the available wealth. The second is related to insti-

tutional policy and defines the minimum guaranteed return level K∗.

Finally, the last constraint bounds the upper (ub) and lower (lb) value

of the portfolio weights. Three dispersion measures are broadly used:

the mean absolute deviation (TEMAD), the downside mean semidevi-

ation (TEDMS) and the tracking error volatility (TEV).

The problem (3.1), can be re-conducted to a LP problem when it is

considered TEMAD or TEDMS as dispersion measures (see Mansini,

Ogryczak, and Speranza (2003)) while the index tracking portfolio ob-

tained with the TEV is a quadratic programming problem. The three

measures present some drawbacks and theoretical lacks. In particular,

the TEMAD is a symmetric measure with an equal weight for pos-

itive and negative εt while investors have different preferences and

they show a diverse risk profile according to their aversion to negative

events. The TEDMS is clearly an asymmetric measure and it is suit-

able to capture only the downside risk but can lead to portfolios with

an intrinsic higher risk. The TEV is the most used measure, among

the three here presented, it represents the errors’ variance and it is

forward-looking oriented. One interpretation of this measure is re-

lated to VaR Jorion (2003). However, this measure is still symmetric

with respect to the error mean and it takes into account the quadratic
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variation of the difference between portfolio and benchmark returns.

Our aim is to overcome these limitations considering quantile re-

gression to build a dispersion measure of the tracking error called

TEQR (Tracking Error Quantile regression). It relates how the quantile

of the dependent variable varies with the independent variable.

Definition of TEQR

Let εt = yt − ∑N
n=1 rt,nβn be the difference between portfolio and bench-

mark returns at time t and ξ ∈ R , the tracking error quantile regression

(TEQR) at given τ is:

TEQR σ(ε, ξ|τ) = τ
T

∑
t=1
|εt − ξ|+ + (1− τ)

T

∑
t=1
|εt − ξ|− (3.2)

where |εt|+ = max(0, εt) and |εt|− = max(0,−εt).

In (3.2), the first term is the sum of the positive residuals while the

second term is the sum of negative residuals. ξ is a variable that could

be seen, in the minimization of the TEQR and according with Rock-

afellar and Uryasev (2013), as the VaR of residuals. |εt|+ are the cumu-

lative errors related to the observations that lie above the regression

line and they receive a weight of τ, while |εt|− are the cumulative ones

of the observations that lie below the regression line and they receive

a weight of (1− τ).

From these definition it is evident that the asymmetry property of

the tracking error quantile regression (3.2) is linked to the value of the

selected τ. It gives a different weight to positive and negative tracking

errors and it also represents an aversion risk coefficient. As underlined

by Koenker and Bassett Jr (1978), the quantile regression problem does

not present a close form solution and its solution is the result of a min-

imization problem.

TEQR is a relative deviation metric since it satisfies the following

properties presented in Stoyanov et al. (2008).
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• P̃1. ν(X, Y) ≥ 0 and ν(X, Y) = 0 if and only if X a.s.
= Y;

• P3. ν(X, Y) ≤ ν(X, Z) + ν(Z, Y) ∀ X, Y, Z;

• P̃4. ν(X + Z, Y + Z) = ν(X, Y) ∀ X, Y, Z;

• P5. ν(X+ c1, Y+ c2) = ν(X, Y) ∀ X, Y and constants c1, c2;

• P6. ν(aX, aY) = asν(X, Y) ∀ X, Y, a, s ≥ 0

Fixing the value of τ and given these properties, through the Propo-

sition 1 and 2 in Stoyanov et al. (2006) it can be argued that the tracking

error quantile regression can be seen as a translation invariant metric

and it is also a deviation measure in the sense of the definition pre-

sented by Rockafellar, Uryasev, and Zabarankin (2006).

The tracking error problem with the TEQR measure can be formu-

lated as a linear problem using positive auxiliary variables utandνt:

min
β,u,ν

T

∑
t=1

τut + (1− τ)νt

s.t. rtβ− ut + νt − ξ = yt ∀t = 1, . . . , T
N

∑
n=1

βn = 1

E [X]−E [Y] ≥ K∗

ut, νt ≥ 0 ∀t = 1, . . . , T

lb ≤ βn ≤ ub ∀n = 1, . . . , N

(3.3)

3.3 Stochastic dominance constraints

The relation of stochastic dominance is one of the fundamental con-

cepts of the decision theory Levy (1992). The first degree relation car-

ries over to expectations of monotone utility functions, and the second

degree relation to expectations of concave nondecreasing utility func-

tions.
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The first order definition of stochastic dominance (FSD) gives a par-

tial order in the space of real random variables Levy (1992); Bawa (1978).

Let X and Y be RVs of the returns of two financial portfolios. Then,

in the stochastic dominance approach, they are compared through some

performance functions constructed from their distributions. For a real

random variable X, its first performance function is defined as the

right-continuous cumulative distribution function of X:

FX(ξ) = P(X ≤ ξ) f or ξ ∈ R (3.4)

A random return X is said to stochastically dominate another ran-

dom return Y in the first order sense, denoted X ≥
(1)

Y, if

FX(ξ) ≤ FY(ξ) f or ξ ∈ R (3.5)

More important from the portfolio point of view is the notion of

second-order dominance (SSD). It is one of the most debated topic in

financial portfolio selection, due to its connection to the theory of risk-

averse investor behavior and tail risk minimization Bawa (1975).

It is equivalent to this statement: a random variable X dominates

the random variable Y if E[u(X)] ≥ E[u(Y)] for all non-decreasing

concave functions u(·) for which these expected values are finite. Thus,

no risk-averse decision maker will prefer a portfolio with return rate

Y over a portfolio with return rate X Lozza, Shalit, and Fabozzi (2013).

The second performance function F(2) is given by area below the dis-

tribution function F:

F(2)
X =

∫ z

−∞
FX(z)dz ∀ z ∈ R (3.6)

and defines the weak relation of the second-order stochastic domi-

nance. Which is, random return X stochastically dominates Y in the
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3.3. Stochastic dominance constraints

second order, denoted X ≥
(2)

Y, if

F(2)
X (z) ≤ F(2)

Y (z) ∀ z ∈ R (3.7)

Changing the order of integration, the ordering X ≥
(2)

Y is equiva-

lent to the expected shortfall Lozza, Shalit, and Fabozzi (2013); Ogryczak

and Ruszczyński (1999):

F(2)
X (z) = E[(z− X)+] ∀ z ∈ R (3.8)

In this case, the function F(2)
X (ξ) is continuous, convex, nonnegative

and non-decreasing. It is well defined for all random variables X with

finite expected value. The introduction of stochastic dominance in the

index tracking portfolio problem is also presented in Roman, Mitra,

and Zverovich (2013) where they apply a second order stochastic dom-

inance strategy in a multi-objective linear problem minimizing the tail

risk of the strategy. Bruni et al. (2014) propose a linear bi-objective opti-

mization approach to maximize the average excess return minimizing

the risk. Then, they investigate the theoretical condition to guarantee

the existence of an enhanced index portfolio.

Computational tractable and technological solvable portfolio opti-

mization models which apply the concept of FSD or SSD were pro-

posed by Lozza, Shalit, and Fabozzi (2013); Kuosmanen (2004).

In this formulation it is followed the methodology to linearize FSD

and SSD presented in Kopa (2010) and Kuosmanen (2004). They reached

the goal of linearizing the objective function through the introduction

of a permutation matrix. Let P = {pr,c} a permutation matrix with

pr,c = 0, 1 such that ∑T
r=1 pr,c = 1 for c = 1, . . . , T and ∑T

c=1 pr,c = 1 for

r = 1, . . . , T. Then portfolio X = Rβ, with β ∈ RN and R is the T × N

matrix of equiprobable asset’s returns, dominates portfolio Y in a first
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order sense if and only if:

X ≥ PY
T

∑
r=1

pr,c = 1 ∀c = 1, . . . , T

T

∑
c=1

pr,c = 1 ∀r = 1, . . . , T

pr,c ∈ 0, 1 ∀r = 1, . . . , T; ∀c = 1, . . . , T

(3.9)

Kopa (2010) and Kuosmanen (2004) also propose a linear formu-

lation of the second order stochastic dominance. Assuming that the

returns have a discrete joint distribution with realizations xt, t =

1, . . . , T having the same probability, then X ≥
(2)

Y in the second order

stochastic dominance sense if and only if it exists a double stochastic

matrix Z = {zr,c} with zr,c ∈ [0, 1] such that

X ≥ ZY
T

∑
r=1

zr,c = 1 ∀c = 1, . . . , T

T

∑
c=1

zr,c = 1 ∀r = 1, . . . , T

0 ≤ zr,c ≤ 1 ∀r = 1, . . . , T; ∀c = 1, . . . , T

(3.10)

3.4 Enhanced Indexing Problem with Stochas-

tic Dominance Constraints

A realistic formulation to solve the enhanced index benchmark track-

ing problem should consider the introduction of some relevant fea-

tures to real world investment strategies. This new formulation takes

into account a linear penalty objective function to reduce the portfolio

turnover and risk management duties. Moreover, although the intro-

duction of stochastic dominance constraints enhances the benchmark
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Constraints

tracking model, its formulation strongly increases the dimensional-

ity and the computational complexity of the problem. In particular,

considering the methodologies proposed by Kopa (2010) and Kuos-

manen (2004) it is possible to solve the problem efficiently.

The enhanced index benchmark tracking problem is solved con-

sidering the minimization of a dispersion measure of the tracking er-

ror, the TEQR (3.2), which could be formulated as linear program. To

enhance the performance in the risk minimization, first and second

order stochastic dominance constraints are introduced following the

formulations (3.9) and (3.10). Additionally, transaction costs are intro-

duced in the objective function to improve real-life performances of

the portfolio. Let tc = tc+ + tc−be the transaction total cost where:

tc− = α · ω− and tc+ = α · ω+ are the fees for trading assets. With α

is the proportional constant for transaction costs, ω+ and ω− are the

changes in portfolio weights and ω = ∑ (ω+ + ω−). The enhanced in-

dexation benchmark tracking problem with FSD constraints is defined
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as:

min
β,u,ν,p,ω+,ω−

T

∑
t=1

τut + (1− τ)νt + tc∆ω

s.t. rtβ− ut + νt = yt ∀t = 1, . . . , T
N

∑
n=1

βn = 1

E [X]−E [Y] ≥ K∗

ω+
n −ω−n = βn − βold

n ∀n = 1, . . . , N

∑n |βn − βold
n | ≤ θ n = 1, . . . , N

X ≥ PY
T

∑
r=1

pr,c = 1 ∀c = 1, . . . , T

T

∑
c=1

pr,c = 1 ∀r = 1, . . . , T

pr,c ∈ {0, 1} ∀r, c = 1, . . . , T

ut, νt ≥ 0 ∀t = 1, . . . , T

(3.11)

The solution to this problem is the portfolio optimal for all insa-

tiable investors. As discussed in Jarrow (1986), the existence of a port-

folio that stochastically dominates the index in a first order sense is

equivalent to the presence of arbitrage.

The enhanced index benchmark tracking problem (3.11) is a mixed-

integer linear programming since the permutation matrix P is com-

posed by binary variables. It can be noticed how the dimensionality

of this problem quadratically increases together with the number of

observation T.

The other proposed model is based on second order stochastic dom-

inance with the introduction a double stochastic matrix Z. Thus, the

enhanced indexation benchmark tracking problem with SSD constraints

58



3.5. Empirical Application

can be formulated as:

min
β,u,ν,p,ω+,ω−

T

∑
t=1

τut + (1− τ)νt + tc∆ω

s.t. rtβ + ut − νt = yt ∀t = 1, . . . , T
N

∑
n=1

βn = 1

E [X]−E [Y] ≥ K∗

ω+
n −ω−n = βn − βold

n ∀n = 1, . . . , N

∑n |βn − βold
n | ≤ θ n = 1, . . . , N

X ≥ ZY
T

∑
r=1

zr,c = 1 ∀c = 1, . . . , T

T

∑
c=1

zr,c = 1 ∀r = 1, . . . , T

0 ≤ zr,c ≤ 1 ∀r, c = 1, . . . , T

ut, νt ≥ 0 ∀t = 1, . . . , T

(3.12)

Differently from the previous enhanced index problem with first

order stochastic dominance constraints, this formulation is a linear

programming and could be efficiently solved also when the computa-

tional complexity increases together with the number of observations.

3.5 Empirical Application

In this section the empirical results of the work are analyzed. The im-

position of stochastic dominance’s constraint tends to be very restric-

tive for the feasibility area (in first order and with monthly rebalancing

there are very few feasible solutions), moreover computational com-

plexity of the problem is greater for first order models (caused by the

presence of binary variable in the permutation matrix). Considering
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these computational issues, and the fact that the most interesting con-

straint in finance is the Second order Stochastic Dominance (SSD) one,

the FSD model is not investigated here. In particular, the model is

tested in the in-sample and out-of-sample context in order to catch the

real application of our model. The data set collected in order to per-

form the analysis is made by the adjusted closing prices of a selection

of constituents the Standard and Poor 500 Index through which an ar-

tificial benchmark portfolio and an investment strategy are built coher-

ently with our model. It has chosen the constituents that remain in the

index for the entire analysis period from 10th March 2010 to 22nd May

2019. The calibration has been done over the first set of historical daily

observations. The portfolio rebalancing is assumed every 21 days (i.e.

T = 21, one month) and the calibration window moves over the same

period. So, every empirical computation is made with 100 different

optimization cycles. For this analysis, the benchmark is an equally

weighted portfolio of the components of the Standard & Poor 500 and

the investment portfolio is built over an assets’ pre-selection of the first

50 assets with lowest volatility . The strategy is tested at three different

quantiles, τ = [0.05, 0.5, 0.95]. It is imposed an enhancement param-

eter with K∗ = 0.0001, a transaction cost factor α equal to 2% of the

changing wealth invested in each asset. Computations are made us-

ing GAMS and MATLAB with GUROBI as solver.

3.5.1 Portfolio wealth

As it is possible to observe from Figure 3.1 and Figure 3.2, the wealth

generated by the Enhanced Indexing strategy with Stochastic Domi-

nance Constraints is always above the one related to the benchmark

for each τ tested. A nice feature could be found evaluating the rank-

ing among strategies: in the in-sample analysis, the choice of an higher

τ is preferable. In the out-of-sample analysis, the choice is flipped: the
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intermediate τ performs better. It has been found just one infeasible

solution: in this occurrence it has been preserved the previous portfo-

lio composition.

FIGURE 3.1: Evolution of wealth generated by the port-
folios and benchmark over an horizon of 10 years with

in-sample data.

FIGURE 3.2: Evolution of wealth generated by the port-
folios and benchmark over an horizon of 10 years with

out-of-sample data.
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3.5.2 Accumulated cumulative empirical functions

In this section it is presented, with a graphical interpretation, the ful-

fillment of stochastic dominance constraints. Even though in the out-

of-sample analysis the distance between the two functions (Bench-

mark and portfolio τ = 0.95) is smaller than the one in the in-sample

case, it is possible to see that the investment line is always above the

benchmark one and this implies SSD. It is useful to point out that the

FIGURE 3.3: Accumulated returns of the benchmark and
of the portfolio with τ = 0.95 in the in-sample analysis

FIGURE 3.4: Accumulated returns of the benchmark and
of the portfolio with τ = 0.95 in the out-of-sample anal-

ysis
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graphical interpretation is flipped with respect to the most common

one, this is because it is done with empirical distributions and in this

case supports are different.

3.5.3 Portfolio concentration

One of the main problems affecting tracking error models is the car-

dinality of portfolios. It is common that the optimization leads to ex-

tremely fragmented portfolios, composed by a large number of assets

and therefore with a difficult real-life application. In literature several

authors observed the impact of stochastic dominance constraints on

cardinality, they underlined that such kind of strategies naturally tend

to reduce the number of active securities, or in any case in increasing

the degree of concentration of the portfolio. In this case it is decided

not to impose an explicit cardinality constraint, it has just been taken in

account the effect of the SSD constraint. On the other side, a turnover

constraint is imposed in order to keep the investment more stable and

adherent to the real world. As it is possible to see in Figure 3.5 and Fig-

ure 3.6, portfolios are composed by many assets with low weight and

less securities with high weight. An interesting feature is that assets

with higher weights are the same along the entire investment horizon,

but with different proportions. This feature is also observable in the

comparison among different τ.

3.5.4 Statistical analysis

In the following tables it is possible to observe a numerical evidence

of the intuition arose by looking at the trajectories. In the in-sample

analysis, the best choice, both in terms of performance and in terms of

volatility, is the one with higher τ. This choice lead the model to heavy

penalization of the "negative" errors. In the out-of-sample analysis, the
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FIGURE 3.5: Portfolio concentration with respect to each
calibration window.

FIGURE 3.6: Portfolio concentration with respect to each
calibration window.
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best choice is different, in terms of volatility the choice is the same, but

when looking at the performance it is preferable to chose lower τ.

Numerically, the in-sample analysis return a portfolio with a final

wealth between 21,6% and 112,8% higher with respect to the bench-

mark, with a standard deviation around 0.88% compared to the 0.99%

of the equally weighted portfolio. In the out-of-sample analysis it is

reached a portfolio with final wealth between 15,6% and 26,2% higher

with respect to the benchmark, and a standard deviation similar to the

in-sample one.

Mean Std Kurtosis Skewness
τ = 0.05 0.0004882 0.0087945 8.0174375 -0.4493619
τ = 0.5 0.0005362 0.0087645 8.1053605 -0.4592499
τ = 0.95 0.0006086 0.0087359 8.1917696 -0.4797739

TABLE 3.1: Statistics computed over in-sample data

Mean Std Kurtosis Skewness
τ = 0.05 0.0004727 0.0087975 8.0047749 -0.4703994
τ = 0.5 0.0004771 0.0087800 8.0946631 -0.4850888
τ = 0.95 0.0004581 0.0087565 8.1128079 -0.5046264

TABLE 3.2: Statistics computed over out-of-sample data

3.6 Conclusions

This chapter presents a semi-passive investment strategy. A new dis-

persion measure, TEQR, is proposed for asset management. The re-

sulting portfolio maintains the evolution of the tracked benchmark

with the addition of an enhancement parameter K∗. The investment

portfolio is built with the requirement of second order stochastic con-

strain. Both in in-sample and in out-of-sample analysis, the proposed

portfolio performs better than the benchmark. In the outputs of the

model there is the optimal ξ which can be interpreted as the VaR of
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the errors between benchmark and the selected portfolio. This chapter

shows good features of the proposed strategy and this could be a start-

ing point for future researches. Possible developments of this work

could be represented by the research of pre-selection strategy for the

assets available for investing and in the analysis of ξ as determining

factor for the choice of the optimal portfolio.
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Appendix A

4.1 Choosing the calibrating window

In order to choose the length of the calibrating window for this model

it has been performed a sensitivity analysis over a smaller problem. It

is tested, in the out-of-sample the reactivity of the model over the first

50 calibrating windows. It is studied the different evolutions of the

errors’ VaR ξ (as it is possible to see in figure 4.1, where darker lines

are related to wider calibrating windows. At the top it is possible to

find ξ with τ = 0.95, at the bottom with τ = 0.05 and in the middle

with τ = 0.5. The plot presents just four line (6M, 7M, 1Y and 3Y) in

order to make the graph more readable. The blue line represents the

dynamic of the benchmark portfolio) in order to investigate the utility

of this parameter in portfolio selection. It is computed absolute mean

and standard deviation for each quantile and calibrating window [6

months, 7 months, 12 months and 15 months]. The model is not tested

for window smaller than six months because the feasibility set of the

problem became even smaller ad it is very hard to find acceptable so-

lutions. Firstly it can be seen that with larger windows, the model

provides more stable trajectories of the ξ at every level of τ.

Looking at the variance and absolute mean of our portfolios as in

Table 4.1, it is possible to argue that the standard deviation remains

stable, but the wider is the calibrating window (until two years), the
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better are the results with respect to the mean. Since the enhancement

between one year and two years is more and more reduced, but on the

other hand the computational time increase largely. So, the optimal

calibrating window is set at 315 days.

FIGURE 4.1: Dynamics of different ξ

.

Standard Deviation Absolute mean
τ = 0.05 τ = 0.5 τ = 0.95 τ = 0.05 τ = 0.5 τ = 0.95

6M 0.00780 0.00781 0.00792 0.00047 0.00045 0.00058
7M 0.00779 0.00781 0.00791 0.00049 0.00047 0.00057
12M 0.00770 0.00778 0.00779 0.00056 0.00057 0.00061
15M 0.00782 0.00783 0.00795 0.00060 0.00061 0.00062
36M 0.00794 0.00792 0.00803 0.00060 0.00059 0.00059

TABLE 4.1: Statistics over strategies computed to cali-
brate the lenght of the window
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