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Abstract

Gabriele Maroni

Optimal Asset Allocation, a Data-Driven Feedback Control
Approach

Typical �nancial problems have recently attracted the attention of the system
control community, in fact many of these can be formulated as closed-loop control
problems. In this thesis we deal, in particular, with two research lines: reactive
trading and multi-period portfolio optimization.

Reactive trading is an innovative technical analysis approach related to the trad-
ing of individual �nancial assets via feedback control. The main innovation of re-
active trading is to be a model-free approach in which stock prices are considered
as external stochastic disturbances and the control system must act against them to
provide certain performance guarantees. The theory comes with a trading scheme
called Simultaneous-Long-Short (SLS) controller, which guarantees, under certain
market hypotheses, positive expected value of the gain function regardless of mar-
ket direction. However, SLS presents two problems: �rst of all, the original trading
scheme use a static gain as the controller whose value is calibrated on in-sample
data and validated by backtesting. However, stock prices are known to have dy-
namics that change, even suddenly, due to socio-economic events, to which a time-
invariant controller may not react properly. Secondly, performance guarantees are
proved by making strong assumptions on markets where price dynamics are gov-
erned by simple processes such as Geometric Brownian Motion (GBM), but real
prices have non-ideal characteristics that make them more complex.

Motivated by these problems in this thesis the author proposes two solutions.
As solution to the �rst problem a new control scheme with time-varying controllers
based on the logic of an adaptive control approach called Extremum Seeking (ES).
The ES is particularly suitable for reactive trading because it maximizes the output
of a system without requiring knowledge of the process and adapting the value of
the controller through an online estimate of the output gradient with respect to the
control action.
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As solution to the second problem reactive trading is reformulated under the
sole assumption that the returns of the prices of the considered stock are uncertain
but bounded between a range of values. Thanks to this assumption it is possible to
treat the uncertainty of returns as an uncertain parameter of the system and refor-
mulate the problem of stock trading as a robust control problem and to synthesize
controllers with the�∞ approach which guarantee robust performance in the range
of variation of returns.

Multi-period portfolio optimization is an extension of the classic single-period
portfolio optimization approach dating back to Markowitz. In the �nancial litera-
ture these problems are treated as stochastic control problems and solved by dy-
namic programming. However, if many assets, long investment horizons and con-
straints are considered, these methods fail to �nd a solution due to the ’curse of
dimensioanily’. For this reason, recently methods based on predictive control have
been very successful in solving multi-period problems. In fact, although they pro-
vide an approximate solution, they are able to naturally constrain the composition
and can often be resolved e�ciently even in the case of many assets and long time
horizons, although they themselves are subject to the ’curse of dimensionality’, in
particular in their non-linear form. Of particular interest are the approaches that
introduce closed-loop investment policies capable of fully exploiting the dynamic
nature of the problem by employing observations on past market behavior. In the
literature, until now, only linearly parameterized control policies have been imple-
mented, although the complex dynamics of the markets. For this reason, in this
thesis, statistical learning techniques based on kernel methods are used to extend
multi-period investment policies to classes of non-linear functions that are better
able to exploit the information hidden in the observations of past markets.
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Chapter 1

Introduction

The discipline of �nance and control engineering seems to be unrelated to each
other. However, by analyzing the de�nitions of these two disciplines the connecting
points are obvious [55]. Control engineering, in its essence, is the discipline that
deals with controlling a process in such a way that it behaves as desired, although
the presence of unforeseeable and uncontrollable external disturbances acting on it.
Finance is the study of how people and organizations allocate scarce resources over
time through investments, subject to uncertainty [19]. Therefore, from a controlling
point of view, an investor aims to control the state of his resources through control
actions, investments, aimed at dealing with uncertain economic and political events.

The generic term investment refers to the commitment of resources with the
ultimate aim of obtaining a future bene�t or increasing personal satisfaction. With
regard to �nancial markets, an investment is a commitment of resources, typically
in the form of money, which aims to generate a monetary pro�t for the investor,
be it an individual, a group of people, an organization [18]. In �nancial markets,
money investments are made through the trading of assets.

The term “asset” is a rather generic term that refers to anything that can be
turned into money by the owner [22]. Assets can be divided into three main cate-
gories: real, �nancial or intangible [18]. Investing in a real asset means investing
in physical entities such as substances or properties. Examples of real assets in-
clude precious metals, real estate, land and commodities such as sugar, oil, electric-
ity. Intangible assets, on the other hand, do not have a physical nature, examples
are patents, trademarks, intellectual property. Finally, �nancial assets are claims of
ownership of an entity like a company, or contractual right to payments. Exam-
ples are cash, equity securities (e.g., common stocks), debt securities (e.g., bonds),
derivatives (e.g., futures, options), mutual funds and bank deposits.

In this dissertation, we focus on �nancial assets, since they are among the three
categories, the most liquid one, where liquidity is the ability to convert assets into
cash quickly. Among �nancial assets, we mainly focus on risky �nancial assets
tradable on the market such as stock shares. The risk component is due to the fact
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that the future price of these �nancial instruments is not known with certainty,
unlike a bank deposit which guarantees a safe interest rate.

Investment strategies in �nancial markets can be roughly divided into three
macro-categories: fundamental analysis, technical analysis and quantitative analy-
sis [51]. Fundamental analysis quanti�es the intrinsic value of company’s securities
based on economic factors such as earnings, dividends, and other indicators about
the health of that company [67]. On the other hand, technical analysis looks for
trading opportunities based on statistical analysis of the signals generated during
trading activities such as past price patterns and traded volumes [69]. Quantitative
analysis is the use of mathematical models and large datasets to analyze �nancial
markets and securities. Common examples include the pricing of derivative se-
curities such as options, and risk management, especially as it relates to portfolio
management applications [112]. Technical analysis and quantitative analysis have
some degree of overlap. In this thesis we distinguish the fact that typically technical
analysis focuses on single assets or pairs of assets (eg, pairs trading), while quanti-
tative analysis has as a basic principle the reduction of the investment risk through
the management of a portfolio of diversi�ed assets.

This thesis describes the author’s contributions to two lines of research. The
�rst falls under the umbrella of technical analysis and describes a new paradigm for
stock trading via a model-free feedback controller and is called reactive trading [10].
The second is, instead, a quantitative analysis research line that extends the classical
single-period approach of portfolio optimization dating back to Harry Markowitz
[73] to a multi-period framework, which models the portfolio as a dynamic system
that evolves over time, subject to the uncertainties deriving from changes in market
prices and on which the investor can act through an appropriate allocation strategy
[29].

1.1 Reactive trading

Among the most widely used Technical Analysis methods, we could cite the ex-
ploitation of certain indicators computable from past data, such as the Moving Av-
erage (MA), the Relative Strenght Index (RSI) and the Bollinger bands [69]. Other
methodologies have been proposed by time series analysts, e.g., Auto-Regressive
Moving Average (ARMA) models are sometimes used to compute the expected value
of an asset price, while Generalized Auto-Regressive Conditional Heteroskedastic-
ity (GARCH) models are employed to describe and predict the asset volatility [107].

More recently, machine learning algorithms have been also widely employed,
e.g., to provide more complex nonlinear models of the stock prices [111], to predict
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the sign of the returns of the price [63] and to combine information from past market
data and textual information deriving from �nancial news [40].

In the control systems community, the problem of single stock trading has been
sometimes reformulated as a control problem, where the price dynamics is typically
described as a stochastic di�erential equation like the Ito process, see, e.g., [59], [28],
or as a regime switching model [36].

A common feature of all the above trading approaches is that they are model-
based, in that they rely on a “model” of the stock price dynamics. However, the
accurate estimation of the price model from past data is all but a trivial task, and
modeling errors may lead to detrimental performances.

These observations led Barmish, in [8] and later in [10], to introduce a new rev-
olutionary approach to stock trading, the reactive trading approach, aimed at study-
ing model-free strategies based on feedback control theory, where buy and sell sig-
nals are generated on the basis of gain-loss performance rather than a parametrized
model of the prices. The innovative feature of this approach lies in the fact that the
price of the considered stock is seen as an exogenous disturbance to reject, rather
than a stochastic process to be modelled (this approach is typical of the control liter-
ature in which we try to guarantee robustness properties of the closed-loop system
against external disturbances). Barmish develops a trading scheme called Simulta-
neous Long Short controller (SLS), equipped with two linear feedbacks running in
parallel and capable of implementing a long and a short investment strategy at the
same time. A key feature of such a trading scheme is that, even within such a poor
information environment, under some market assumptions and the assumption that
stock price follows simple dynamics (e.g., Geometric Brownian Motion (GBM)), the
pro�t is guaranteed to have positive expected value regardless of the direction of
the market. This result is formalized by the so called Robust Positive Expectation
(RPE) Theorem [10].

However, the reactive trading approach presents two major open problems that
will be addressed in this thesis. The �rst problem lies in the way of tuning the
controller parameters and is explained as follows. The controllers in the feedback
loops of the original SLS scheme are static gains. Later, in [72], the authors gen-
eralize the static controllers to dynamic controllers with Proportional Integral (PI)
action. However, both in the case of static and dynamic controllers, the controller
parameters must be tuned on the basis of backtesting simulations and then kept
�xed. The problem with this strategy is that stock prices, as documented in the
literature [64, 98, 84], are strongly non-stationary and subject to sudden changes
in their dynamics due to socio-economic events. This could make the current con-
troller parameter values inadequate.
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A �rst solution could be to frequently recalibrate the parameters of the con-
troller. Another solution, which is the one proposed in this thesis represents the
author’s �rst innovative contribution to the research line of reactive trading and
consists of introducing time-varying controllers based on the rationale of an adap-
tive control technique called Extremum Seeking (ES) [4]. Such an approach appears
to be very suitable for the problem at hand, for the following reasons: (i) its aim is
to maximize the output of a system whose dynamics is unknown, like the excess re-
turn; (ii) it is intrinsically model-free; (iii) it provides a time-varying feedback gain,
so it may adapt to market time-varying conditions; (iv) unlike many other adap-
tive methods, it is theoretically guaranteed to converge to a local optimum. This
approach will be described in detail in Chapter 5 of this thesis.

The second problem is the lack of robustness guarantees with real market data
and is explained as follows. The RPE Theorem is based on strong assumptions about
the processes that govern stock prices. In its original version, the RPE Theorem
guarantees positive expected value of the gain-loss function in the case of prices
governed by GBM dynamics. In later works, this theorem is extended to the case of
prices governed by GBM dynamics with tyme varying mean and volatility [94] and
to the case of prices governed by di�usion processes with stochastic jumps [11].
However, real market prices at the same time present complex dynamics such as
non-stationarity, non-gaussianity, stochastic jumps and therefore the hypotheses
of the RPE theorem do not hold.

As a solution to the second problem and second innovative contribution of this
thesis to the reactive trading research line, the author propose a reformulation of
the reactive trading scheme, in which the return (i.e., the normalized price trend) is
not treated as an unknown disturbance, but rather as an uncertain parameter within
a limited range of values. The key observation motivating this analysis is that, in
high frequency trading, the return can be well approximated as an Uncertain But
Bounded (UBB) parameter, as we will also show via an extensive empirical study. It
follows that, by assuming a very mild knowledge of the process dynamics (i.e., the
return bounds), a robust controller can be designed, which not only provides good
average performance, but also more robust behavior to sudden changes in price
dynamics. Speci�cally, to formulate the design problem as a �∞ problem, a trend
following scheme will be employed, where the desired gain is reasonably selected
by considering the current situation. This approach will be described in detail in
Chapter 5.
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1.2 Multi-period portfolio optimization

Optimizing the composition of a portfolio is one of the key problems of modern
quantitative �nance. The main objective of portfolio optimization is to guide the
investor in the optimal allocation based on some utility function of his monetary
resources among di�erent �nancial assets. The �rst to deal with this problem with
a quantitative approach was the Nobel prize Harry Markowitz who in 1952 ([73])
proposed a single-period allocation strategy based on a trade o� between return
(measured by the expected return of the portfolio) and risk (measured by portfolio’s
variance) that could be e�ciently resolved through quadratic programming.

The single-period formulation of the portfolio optimization proposed by Markowitz
was also soon extended to a dynamic formulation as a stochastic control problem
in which the �uctuations in share prices are modeled through stochastic processes
and the investor tries to optimally vary over time the number of shares of each asset
so as to maximize some utility function of his future wealth.

In the seminal works of Samuelson [96] and Merton [77] the problem of port-
folio optimization is formulated as a stochastic optimal control problem and solved
through dynamic programming. However multi-period formulations like the one of
Merton, in particular, considered only the maximization of the �nal wealth without
considering the risk to obtain it and, moreover, they were based on the assump-
tion of trading in an idealized frictionless market. Therefore they did not take into
account the costs of transactions or any restrictions on the composition of the port-
folio. For this reason, over the years, much of the work in the multi-period portfolio
optimization setting has been aimed at relaxing many of the hypotheses of the ide-
alized market [43, 30]. For this reason, recently, control enginnering approaches
such as the predictive control frameworks have received growing interest from the
�nancial community. [93]. Predictive control easily allows to incorporate realistic
features of the �nancial market by modeling them as constraints imposed on the
model of the optimization problem.

Of particular interest for this thesis are the approaches described in [29, 30]
which propose closed-loop control actions which are parametric functions of past
realizations of market returns. This makes it possible to exploit the sequential na-
ture of the multi-stage problem. To maintain reasonable calculation times for prac-
tical applications, the author opts for a�ne control actions.

However, the �nancial series are known for their complex dynamics and for
having a very low signal to noise ratio. It follows that linear control actions may
not be optimal for capturing complex price dynamics.

As a solution to this problem and third innovative contribution of this thesis,
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the author propose to extend the linear parameterization of control actions to non-
linear functions. This is done using a statistical learning non-parametric technique
based on kernel methods ([97]) for �nding the best nonlinear control policy. The
advantage of this approach is that the investment strategy is chosen within a much
wider class of functions than the class of linear functions, moreover the use of ker-
nel methods allows to preserve a convex formulation of the problem and therefore
guarantee the solution e�ciently. This approach will be described in detail in Chap-
ter 6.

1.3 Outline

Chapter 2 provides an overview of reactive trading. The market assumptions are
�rst introduced and then the SLS trading scheme is presented together with
the main theoretical result, the RPE Theorem. Finally, recent extensions to
the theory are described and the open problems are reported.

Chapter 3 provides an overview of the theory of portfolio optimization. Begin
by describing the classic single-period mean-variance approach and its draw-
backs. Recent developments are then described, such as portfolio approaches
with regularization of parameters and portfolio allocation based on robust
optimization. In the second part the multi-period approach is described with
particular emphasis on approaches based on predictive control.

Chapter 4 describes the �rst innovation of the thesis, the integration, in the SLS
trading scheme, of time-variant controllers based on the ES rationale.

Chapter 5 describes the second innovative contribution of this thesis, the reformu-
lation of the stock trading problem as a robust control problem of a system
characterized by parametric uncertainties represented by price returns.

Chapter 6 describes the last innovative contribution of the thesis, the use of kernel
methods to select non-linear investment policies for multi-period portfolio
optimization.



7

Chapter 2

Trading single assets

2.1 Introduction

The objective of this chapter is to describe in greater detail the approach to stock
trading via feedback control, called reactive trading and introduced in Chapter 1.

In Section 2.2 the basic scheme of reactive trading is introduced, furthermore
the motivation behind the “reactive” nature of the approach is given. Section 2.3
describes the market assumptions on which the theory is based, namely that of ide-
alized frictionless market. Then, in Section 2.4, the main reactive trading control
scheme is introduced, the SLS, and the fundamental theoretical result, the RPE the-
orem, is described. Furthermore, in the same section, a practical example of SLS
functioning is presented. Section 2.5 introduces the typical evaluation metrics of a
stock trading strategy. Finally, in sections 2.6 and 2.7 respectively, recent develop-
ments and open problems of the reactive trading approach are discussed.

2.2 Stock trading via feedback control

The objective of this section is to describe Barmish reactive approach to stock trad-
ing, and the motivation behind the term reactive will be clear soon.

As stated in Chapter 1, the stock trading problem can be formulated as a model-
free feedback control problem. The main innovation of this approach lies in the
fact that no parametric price model of the traded stock is assumed to be used to
regulate the investment level. Instead, the stock price ? (C) is treated as an external
uncontrolled disturbance a�ecting the control system.

As the main example of this model-free strategy we consider trading strategies
obtained through a linear feedback rule, which scheme is depicted in Figure 2.1.

The investment level � (C), i.e. the amount of money invested in the stock, repre-
sents the adjustable control variable. The cumultive gain-loss function6(C) over[0, C]
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Gain/Loss
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Figure 2.1: Basic reactive trading scheme.

represents the output to be controlled.  is the static controller gain and �0 is a con-
stant value denoting the initial investment. The linear control trading rule is thus
given by:

� (C) = �0 +  6(C) (2.1)

The functioning of the control scheme is simply to adjust the investment level
to variations in the gain-loss function. Since the system reacts to changes in the
gain-loss function, and therefore to price changes, rather than making predictions
about future price’s trend, this strategy is called reactive trading.

With the trading scheme of Figure 2.1, it is possible to implement two di�erent
investment positions called long-selling and short-selling. A long investment is
made by the investor whenever he/she trades shares he/she owns, on the contrary
a short investment involves the buying and selling of shares that he/she does not
own directly but must be borrowed from a bank or a �nancial intermediary (broker).

A long type position is modeled by choosing a positive initial investment �0 > 0
and a positive proportional controller value  > 0. With this choice of parameters,
the trading process begins with a positive investment level of � (C) > 0. An increase
in the price incurred in the trading period considered (which can range from the
fraction of a second in the case of high frequency trading to 1 hour, a day, a week,
. . . ) generates an increase in the gain function 6(C) that forces the linear control
feedback to an increase in the level of investment � (C) in the stock. On the contrary,
a decrease in price would generate a loss that will force the scheme to weaken the
investment. If the losses are such to bring the level of investment to zero � (C) = 0
the long position is automatically closed as the trader no longer owns shares.
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A short position works in the opposite way, the model parameters are chosen
negative, �0 < 0,  < 0 and a negative investment level � (C) < 0 stands for short
sales. In this case, if the price increases, the trader experiments a loss that drives the
scheme to decrease the absolute value of the investment position. On the contrary,
if the price decreases the trader bene�ts from a gain that drives the scheme to an
increasing in the investment level.

A strategy of this type where the level of investment adapts to the price trend is
well known in the �nancial literature and takes the name of trend-following strategy
[35].

2.3 Idealized frictionless markets

Another innovation introduced by Barmish with respect to the classic technical
analysis is in the evaluation of the reliability of a trading strategy. In fact, in the �-
nancial literature about technical analysis an investment strategy is evaluated only
on the basis of statistical simulations such as backtesting with historical price [91].
It is however known in �nance that those who rely on backtesting only as a crite-
rion for the validation of a strategy have a high probability of incurring in the "data
snooping" phenomenon, known also as backtesting over�tting in the �nance con-
text [5]. Data snooping occurs when a dataset is used multiple times for the purpose
of inference or model selection. In these cases, any successful claimed results are
due to the chances rather than to the goodness of the strategy. For these reasons
Barmish aims to develop a theoretical framework based on formal theorems of per-
formance certi�cations accompanied by proper backtesting with past market data
to provide reliable indications on the future performance of a strategy.

Stock trading via the feedback control theoretical framework is based on the
assumptions of idealized frictionless markets. The assumptions of this type of mar-
ket are common to relevant results of classical �nance including the Black-Scholes
model [80] and are described below:

• continuous trading assumption: the trader can continuously adjust his cur-
rent investment level � (C). This assumption is actually consistent with high
frequency trading in which many transactions can take place every second.

• Perfect liquidity and trader as price-taker assumption: the trader can buy and
sell all the shares he/she wants at the current market price, which means that
the volumes of the traded shares are not large enough to cause large changes
in the price of the stock itself (di�erence between bid and ask prices). This
assumption is consistent for small and medium investors who typically do not
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move large volumes of shares, while this is not applicable for larger traders
such as hedge or mutual funds.

• Cost-less trading assumption: the trader does not incur transaction costs. This
assumption typically does not discourage large investors who, although they
move large volumes of orders, favor customized commission structures that
make transaction costs often negligible. On the contrary, small and medium-
sized traders must carefully evaluate the volume and frequency of transac-
tions in order to avoid prohibitive transaction costs, although they have ex-
perienced a decrease in these costs over the years.

• Adequate resources: It is assumed that the trading strategy meets the collateral
requirements of the broker so that all trades are admissible and no transac-
tions are stopped by the broker. This requirements can be satis�ed assuming
that the account of the trader has a suitable large cash balance to provide ad-
equate collateral. It should be pointed out that in real settings, trades will be
permitted if |� (C) | < WF (C) with typical value of such that 2 ≤ W ≤ 4, for the
stock market so that the investor must take account of these restrictions and
possibly use techniques to limit the maximum amount of investment, such as
for example the one introduced in chapter (2.4.2).

• Interest and Margin Assumptions: In practice, denoting with F (C) the wealth
function of the trader, when F (C) > � (C) the investor has free cash in his ac-
count which he could invest at the risk-free rate of return A 5 ≥ 0. Conversely,
whenF (C) < � (C), margin interest is owed to the broker with an interest rate
<. Assuming for simplicity that< = A (typically< > A ), previous considera-
tions can be captured by the equation

F (C) = F0 + 6(C) + A
∫ C

0
(F (g) − � (g))3g (2.2)

where F0 is the initial wealth of the trader. For simplicity of presentation, in
the sequel, an interest rate of A = 0 is assumed, so that in this idealized setting
the equation updating the trader account simpli�es to

F (C) = F0 + 6(C) (2.3)

2.4 Simultaneous Long Short (SLS) controller

As mentioned in Section 2.2, the scheme of Figure 2.1 allows one to implement ei-
ther a long position or a short position but not both simultaneously. A long position
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makes pro�ts if, on average, prices tend to have a positive trend (bull markets), on
the contrary a short position leads to gains if, on average, the share price has a
negative trend (bear markets). This implies that the trader must make a choice, a
priori, on the investment strategy to follow and consequently must make a priori
bets regarding the future price trend. Although this seems an obvious and obliga-
tory choice, it is precisely what one want to avoid.

Ideally a trader would like to hedge against the direction of the market. Mo-
tivated by this desire, in [10], a new feedback control scheme called Simultaneous
Long Short (SLS) controller has been developed that can perform well in both bull and
bear markets. This is accomplished by implementing two parallel feedback loops
running in parallel, one that executes a long strategy and another that executes a
short strategy. The SLS block diagram is depicted in Figure 2.2.

Gain/Loss
Accounting

p(t)

Kl

Ks

I0

I0

Il(t)

Is(t)

gl(t)

gs(t)

+
+

−−

Figure 2.2: Simultaneous Long Short (SLS) control scheme.

Supposing �0 > 0 and denoting with  ; the proportional controller of the feed-
back loops that implements the long position and with 6; (C) the gain-loss function
of this position, the amount to invest in the long trade is given by:

�; (C) � �0 +  ;6; (C) (2.4)

Denoting instead with  B > 0 and with 6B (C) respectively the gain controller of
the short feedback loop and the gain loss function of the short position, the short
trade is given by:

�B (C) � −�0 −  B6B (C) (2.5)
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Assuming for simplicity  ; =  B =  , the total investment is given by the sum of
the long investment level �; (C) and the short investment level �B (C), i.e.:

� (C) = �; (C) + �B (C) =  (6; (C) − 6B (C)) (2.6)

and the total gain-loss function is given by:

6(C) = 6; (C) + 6B (C) (2.7)

Finally, it is useful to de�ne the wealth function of the trader. Assuming that the
trader has an initial wealth of F0, the function that keeps track of the investor’s
wealth is given by:

F (C) = F0 + 6(C) (2.8)

The operating logic of the SLS scheme is as follows: if the price of the stock
is maintaining a positive trend, the gain of the long feedback loop 6; (C) increases
accordingly, and the control law progressively forces an increase in the long invest-
ment level �; (C) and a progressive decrease, in module, of the short investment level
�B (C). In the case, instead, of a progressive decrease in the price, the control scheme
would strengthen the short position by increasing, in module, the short investment
level and, at the same time, weakening the long position by reducing the long in-
vestment level. If the price trend remains constant in one direction for enough time
the scheme will automatically turn o� the losing position.

The fundamental theoretical result of this line of research, the RPE theorem, is
described below.

2.4.1 Robust Positive Expectation (RPE) theorem

Theorem’s fundamental assumption is that prices are driven by Geometric Brow-
nian Motion (GBM), one of the most well-known price process in the �nancial lit-
erature [88]. This assumption does not re�ect reality: price dynamics are more
complex, are not stationary and are subject to stochastic jumps. However, each
new theory starts with assumptions that are gradually relaxed. The GBM process
is described by the stochastic equation:

3?

?
= `3C + f3/C (2.9)

where 3?

?
is the percentage change in price value over the time interval [C, C +3C], `

is called the drift of the process and f > 0 is called the volatility of the process and
/C is a standard Wiener process such that 3/C ∼ N(0, 3C).
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Theorem 2.1 (Robust Positive Expectation (RPE) theorem [10]). In an idealized
frictionless market with GBM prices with drift ` and volatility f , for C ≥ 0, the expec-
tation, variance and worst-case loss resulting from the SLS feedback control are given,
respectively, by:

E[6(C)] = �0
 
[4` C + 4−` C − 2] (2.10)

Var[6(C)] =
� 2
0
 2 (4

f2 2C − 1) (42` C + 4−2` C + 4f2 2C ) (2.11)

6∗(C) = 2�0
 
[4− 1

2f
2 2C − 1] (2.12)

Moreover, except for the trivial break-even case when ` = 0:

E[6(C)] > 0 (2.13)

The theorem states that, regardless the sign of the drift ` of the price, the control
strategy guarantess that the gain loss function will be strictly positive in expected
value.

2.4.2 Practical implementation of the SLS controller

The original scheme is derived in continuous time, but in practical implementations
the scheme is reformulated in discrete time. Hence, we now assume trading occurs
at discrete time, the inter-sample time can be either small such as fraction of seconds
for the high-frequency trader or large such days for the mutual fund. Indeed, we let
? (:), � (:), F (:) and 6(:) denote the discrete-time version of ? (C), � (C), F (C) and
6(C) respectively.

Now we introduce the one-period percentage change in stock price, called re-
turn of the price, as:

d (: + 1) � ? (: + 1) − ? (:)
? (:) (2.14)

The dynamic update equations for the SLS are thus given by

6; (: + 1) = 6; (:) + d (: + 1)�; (:) (2.15)

6B (: + 1) = 6B (:) + d (: + 1)�B (:) (2.16)

6(: + 1) = 6; (: + 1) + 6B (: + 1) (2.17)

F (: + 1) = F (0) + 6(: + 1) (2.18)
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�; (: + 1) = �0 +  ;6; (: + 1) (2.19)

�B (: + 1) = −�0 −  B6B (: + 1) (2.20)

� (: + 1) = �; (: + 1) + �B (: + 1) (2.21)

To handle the sign restriction condition on �; (:) and �B (:) we modify their up-
date equation:

�; (: + 1) = max{(�0 +  ;6; (: + 1)), 0} (2.22)

�B (: + 1) = min{(−�0 −  B6B (: + 1)), 0} (2.23)

Furthermore, in practice, it is reasonable to suppose that a trader has constraints
on the maximum amount of money �<0G he/she can invest. To model this fact it is
possible to add two further saturation constraints, one for the long side and the
other for the short side of the trade

�; (: + 1) = min{(�0 +  ;6; (: + 1)), �<0G } (2.24)

�B (: + 1) = max{(−�0 −  B6B (: + 1)), �<0G } (2.25)

To demonstrate how the discrete-time implementation of the SLS works, we
perform two numerical simulation experiments. In particular we simulate price
realizations assuming the Black-Scholes-Merton setup for option pricing [15]. In
this setup, the price of a stock index ? () ) at a future date ) given the price ? (0) as
of today is given according to

? () ) = ? (0) exp ((A − 1
2f

2)) + f
√
() )I) (2.26)

where A is the constant risk-free annual rate of return, f is the volatility of returns
of the underlying asset assumed constant and I is a standard normally distributed
random variable. We consider now the Black-Scholes-Merton model in its dynamic
form, as described by the stochastic di�erential equation 2.9 that represents a GBM
process. Equation 2.9 can be discretized exactly by an Euler scheme, resulting in

? (: + 1) = ? (:) exp ((A − 1
2f

2)ΔC + f
√
ΔCI) (2.27)

Setting ΔC =
1

252 we are able to simulate price realizations made of 252 trading day
samples and governed by GBM dynamics so that the assumptions of Theorem 2.1
are satis�ed. The �rst price realization was generated with A = 0.20 and f = 0.25 to
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simulate a bull market (Figure 2.3), the second price realization was generated with
with A = −0.20 and f = 0.25 to simulate a bear market (Figure 2.5). In both cases the
SLS was initialized with � (0) = �0 = 100, F (0) = 50 and the feedback gain was set
to  ; =  B = 2.We expect the investment strategy to be pro�table in both scenarios,
as stated by Theorem 2.1.

It is necessary to point out that the simulations reported in this section serve
only for illustrative purposes to visually describe the behavior of the SLS scheme in
two ideal situations in which the bull and bear behaviors are well marked.

Example 1 - Bull market
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Figure 2.3: Bull market.

Figure 2.3 shows an increasing simulated price trend, while Figure 2.4 depicts
the behavior of the SLS investment strategy during the investment horizon, and in
particular shows the trends of long and short investment levels (top picture) and the
performances of the gain-loss function of the long position and the short position
(bottom picture). Since the price increases, the control scheme make sure that the
short position tends to close up so that the long investment remains the only active
position. The short position su�ers a loss of money as evidenced by the sign of
its own gain-loss function, while the long position incurs a high pro�t. The total
return of the strategy at the end of the investment horizon is positive.
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Figure 2.4: (Top) Investment levels of Long and short positions.
(Bottom) Long, short and total gain-loss functions.

Example 2 - Bear market

Unlike the previous case, �gure 2.5 shows a decreasing price trend and �gure 2.6
depicts the behaviour of the SLS in this bear market. In this case, since the price
decreases, the control scheme makes sure that the long position tends to close up
so that the short investment remains the only active position. In this case, the gain
loss function of the short position is the pro�table one, while the gain loss function
of the long position is negative. However, as in the previous case, the overall gain
of the strategy at the end of the investment horizon is positive.
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Figure 2.5: Bear market.

2.5 Performance evaluation

In this section we describe additional performance measures, other than pro�t, to
asses the performance of a trading strategy given the outputs of simulations and
backtests, where backtesting is the process of applying a trading strategy to histori-
cal data to see how the strategy would have performed. This is necessary as a trader
is not only interested in the �nal pro�t of a strategy but also in the risk it takes to
obtain it. We assume an investment horizon of ) time periods with : = 0, 1, . . .) .

Final return

Final return measures the return of the wealth of the trader at the end of the invest-
ment horizon, and is given by:

A () ) � F () ) −F (0)
F (0) (2.28)

Average return and variance

De�ning the returns as the natural log di�erence:

A (:) = lnF (:) − lnF (: − 1) (2.29)

the average return of a strategy over the period of time : = 0, 1, . . .) is computed
as
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Figure 2.6: (Top) Investment levels of Long and short positions.
(Bottom) Long, short and total gain-loss functions.

Ā �
1
)

)∑
:=1

A (:) (2.30)

The variance of a trading strategy measures the degree of variation of the series
of returns and is given by:

Var[A (:)] � 1
) − 1

)∑
:=1
(Ā − A (:))2 (2.31)
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Sharpe ratio (SR)

To de�ne the Sharpe Ratio (SR) we have to �rst de�ne the return A 5 of a risk-free
asset. Risk-free assets has certain future return, for example Treasury bills are con-
sidered risk-free because they are backed by the U.S. government and are so sure
that their returns are very close to the current interest rates.

SR quanti�es the excess return (the average return of a strategy in excess of the
risk-free rate, i.e., Ā − A 5 ) normalized by the risk (the original de�nition consider
the standard deviation of the returns

√
Var[A (:)] as the measure of risk), the higher

the Sharpe Ratio of a strategy, the greater the reward of the investment for the risk
taken. SR is then given by:

(' �
Ā − A 5√

Var[A (:)]
(2.32)

In the particular case in which we consider A 5 = 0 we speak of Information Ratio
(IR):

�' �
Ā√

Var[A (:)]
(2.33)

Percentage drawdown

Percentage drawdown at time : is de�ned as the maximum percentual decline from
a historical peak of the wealthF ( 9), such that:

3 (:) � max
9=0,1,...,:

F ( 9) −F (:)
F ( 9) (2.34)

Since Percentage drawdown is a function of time it is usual to report its maxi-
mum value, called maximum percentage drawdown:

3<0G � max
:
3 (:) (2.35)

2.6 Numerical experiment

In this section we describe a numerical experiment on real �nancial data. The ob-
jective of the experiment is to show the functioning of the SLS in the attempt of
"beating the market", that is, earning an investment return that exceeds the perfor-
mance of the Standard & Poor’s 500 index. Commonly called the S&P 500, it’s one
of the most popular benchmarks of the overall U.S. stock market performance. The
performance of the SLS algorithm will be compared with the naive strategy called
Buy and Hold (B& H). B& H is a passive investment strategy in which an investor
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buys stocks (or other types of securities such as ETFs) and holds them for a long
period regardless of �uctuations in the market. In particular, in this experiment
we consider the trading of SPDR S&P 500 trusts, that is an exchange-traded fund
which trades on the NYSE under the symbol SPY and is designed to track the S&P
500 stock market index.

In Figure 2.7 it is possible to observe the historical data of the SPY price in the
period 2011-2014. These data have been divided into two parts, a �rst part of in-
sample data ranging from 2011-2012 and used to tune the value of the static gain
 =  ; =  B . The second part of data, which covers the period 2013-2014 it is used
to evaluate the out-of-sample performance of the investment strategies.
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Figure 2.7: Time evolution of SPY ETF.

2.6.1 Out-of-sample results

To make the evaluation of the performances more reliable, in addition to the actual
in-sample and out-of-sample realizations, we generate a number #8= = 1000 of sce-
narios from the in-sample data and a number #>DC = 1000 from the out-of-sample
data with same length as the original realizations. The scenarios are obtained by
sampling with replacement the original series, technique called bootstrap sampling
[44]. That is, in order not to rely on a single realization of the data (the real one)
to evaluate the performance of the algorithm, starting from the vector of the in-
sample data we generate other #8= vectors of the same length by sampling with re-
placement, creating #8= possible alternative realizations / scenarios with the same
probability distribution as the original data. These scenarios generated from the
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in-sample data are used to determine the optimal value of the parameters of the al-
gorithm, the gain K. This procedure is repeated to generate #>DC scenarios from the
out-of-sample data, which will instead be used to evaluate the performance of the
algorithm. The values used for the experiment are an initial investment �0 = 5000 (in
the case of SLS this value changes during the time horizon while in the case of B&H
it remains unchanged ) and an initial wealth ofF (0) = 2500. Moreover, an optimal
value of = 6 was selected from a grid of 10 values separated linearly in the interval
[1, 10] as the value that maximizes the average in-sample IR of the SLS strategy, see
Figure 2.8. The Figure 2.9 shows the empirical distribution of the IRs obtained by
testing the SLS strategy and the B&H strategy on the 1000 out-of-sample scenarios.
The two distributions have, respectively, mean 0.078 and standard deviation 0.058
for the SLS strategy and mean 0.10 and standard deviation 0.046 for the B& H strat-
egy. This results tells us that, on average, for this particular experiment setting, B&
H allows to obtain higher IR values with a lower variance in the results than those
obtainable with SLS.

In Figure 2.10, it is possible to observe the empirical distribution of the values
of maximum percentage drawdowns obtained by testing the two strategies on the
out-of-sample realizations. The two distributions have mean 0.26, standard devia-
tion 0.08 and a positive skew of 0.76 in the case of the SLS and mean 0.1, standard
deviation 0.03 and positive skew of 1.15 in the case of B&H. From the point of view
of this second evaluation metric, B&H allows to obtain on average better perfor-
mances than the SLS.
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Figure 2.8: Average IR for di�erent values of  .
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Figure 2.9: Emprical distribution of the Information Ratios of the SLS
and B& H strategy.

2.7 Extensions and recent developments

This section summarizes brie�y some recent interenting developments in this re-
search area.

Generalization to dynamic controller

In [72] the Robust positive expectation theorem is extended to dynamic controllers,
and in particular a Proportional-Integrative (PI) controller, of the form

� (C) = �0 +  %6(C) +  �
∫ C

0
6(g)3g (2.36)

is considered. Assuming that the prices of the traded stocks are Geometric Brownian
Motion and still adopting a Simultaneous Long Short control scheme with invest-
ment laws given by

�; (C) � �0 +  %6; (C) +  �
∫ C

0
6; (g)3g (2.37)

�B (C) � �0 +  %6B (C) +  �
∫ C

0
6B (g)3g (2.38)

it is shown once again that, regardless of the sign, the expected value of the gain
function is strictly positive

E[6(C)] > 0 (2.39)
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Figure 2.10: Emprical distribution of the maximum percentage draw-
downs of the SLS and B& H strategy.

Generalization to time-varying price dynamics

In [94] is provided a generalization of the Robust positive expectation theorem to
Geometric Brownian Motion price dynamics with time-varying parameters

3?

?
= ` (C)3C + f (C)3/C (2.40)

where the drift ` (C) and the volatility f (C) are assumed to be continuos functions
of time. To the authors’ surprise, the positivity of the expected gain-loss function
is demonstrated.

Generalization to discontinuos stock returns

In [11] the results of the RPE Theorem are extended to price processes governed by
Merton’s jump di�usion model [78]. The relative price change in Merton’s model
is given by:

3?

?
= (U − _^)3C + f3/C + 3#C (2.41)

where #C is a Poisson-driven process with jump intensity _ > 0, U denotes the
jumpless trend and f the volatility. Suppose in the small time interval 3C the asset
price jumps from ? to~? , where~ is the absolute price jump size. So the percentage
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change in the asset price caused by the jump is:

3?

?
=
~? − ?
?

= ~ − 1 (2.42)

where Merton assume~ to be a nonnegative random variable drawn from lognormal
distribution, ln(~) ∼ N (`, X2). Finally we de�ne ^ � E[~ − 1].

It is proved that the expected gain of the SLS trading strategy with a stock price
following 2.41 is:

E[6(C)] = �0
 
[4U C + 4−U C − 2] (2.43)

and therefore is in general positive and indipendent of intensity, kind (that means,
the distribution of ~), and size of the jumps.

Generalization to a pair of stocks

In [39] is developed a new version of the Robust positive expectation theorem for
the case of trading two directionally correlated stocks with bounded non-zero mo-
menta. They consider two stocks with stochastically varying prices in discrete time
?1(:) and ?2(:) with returns given by:

d8 (:) �
?8 (: + 1) − ?8 (:)

?8 (:)
(2.44)

with 8 = 1, 2 and expected value `1 � E[d1(:)], `2 � E[d2(:)]. These returns are
assumed to be directionally correlated that is, there exists a constant V ≠ 0 such that
`2 = V`1, moreover bounded non-zero momentum is assumed, that is there exist two
positive constant `<8= and `<0G known to the trader such that `<8= ≤ |` | ≤ `<0G .

Given V , `<8= and `<0G the new version of the theorem proposed in this work
provide necessary and su�cient conditions on the controller gain  under which
robustly positive expected trading gain E[6(C)] > 0 is guaranteed. If no  satis�es
the conditions the stock pairs are considered not tradable. It is noted that this result
�ts well in the context of pairs trading.

2.8 Open problems

Of the theory of reactive trading described so far we report the two main open
problems and the relative solutions proposed as innovative contributions of this
thesis.
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Problem 1 - tuning of the controller’s parameters

In the original scheme the controller is static, ie it is a pure gain R(:) =  . Motivated
by the idea that a dynamic controller could better adapt to the dynamics of prices,
in [72], the authors generalize robust positive expectation property of the gain-loss
function to the more general case of a Proportional-Integrative (PI) controller, as
discussed in the �rt part of the previous section.

However, both in the case of a static controller and in the case of a dynamic time-
invariant controller, it is necessary to face the problem of tuning the controller’s
parameters. Typically, the tuning of the parameters of a trading strategy is done
through backtesting using in-sample calibration data and out-of-sample data for
their validation.

However, it is well documented in literature [64, 98, 84] that the �nancial series
of market prices are strongly non-stationary and subject to sudden changes in their
dynamics, and sometimes, extraordinary phenomena such as �nancial crisis, gen-
erate price dynamics never seen in historical data. Therefore a calibration validated
over a given out-of-sample period is not necessarily optimal for a di�erent future
scenario.

A possible solution to this problem, proposed by the author in this thesis, is
to use an adaptive time-variant controller capable of varying its value online and
therefore adapting, more readily than a static controller, to changes in the dynamics
of prices. A suitable adaptive control law must be de�ned for this purpose. In Chap-
ter 4 the �rst innovative contribution of this thesis is described for this purpose, the
adaptive control law used is called Extremum Seeking.

Problem 2 - robustness for applications with real data

The original version of the RPE Theorem holds for ideal price dynamics governed by
simple geometric Brownian motion. However, the RPE Theorem does not provide
guarantees of robustness for real market prices that exhibit complex dynamics such
as non-stationarity, non-gaussianity [54], stochastic jumps [6]. As reported in the
previous section, there have been attempts to extend RPE Theorem to brownian
processes with time-varying parameters and to di�usion processes with stochastic
jumps. However, although complex, even the latter are simpli�ed models of reality.
Therefore they represent a strong assumption on the nature of stock prices.

A possible solution to this problem, proposed as the second innovative contribu-
tion of this thesis and described in Chapter 5, is to make only a very mild assumption
on prices, which is that of considering the returns of prices as being lowerly and up-
perly bounded in a given interval of values. De�ning this interval as an uncertainty
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interval set, it is possible to treat the return of prices as parametric uncertainty of
the model and exploits the framework of robust control to synthesize a controller
with, for example, the�8=5 approach, robust to all the possible variations of returns
in the considered range of values.
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Chapter 3

Trading a portfolio of assets

3.1 Introduction

In Chapter 2 we addressed the problem of trading individual �nancial assets. How-
ever, in the �nancial literature it is known that diversifying among various �nan-
cial instruments and industries can reduce the risk associated with the investment
since di�erent sectors react di�erently to the same event [75]. In this chapter we
will therefore deal with the trading of multiple �nancial assets that constitute what
in �nance is called a portfolio.

In this chapter, we distinguish portfolio optimization approaches in two macro-
categories. The �rst category is characterized by a single-period formulation and
will be discussed in detail in Section 3.2. The most famous single-period approach
dates back to Markowitz [73] and is based on the tradeo� between the return of an
investment and its associated risk. This approach, although its conceptual elegance,
su�ers from two serious drawbacks that prevented its practical application. First,
the Markowitz model is based on the assumption of perfect knowledge of a series of
parameters that in reality must be estimated from past data and it has been shown
that the mean-variance framework is very sensitive to parameter estimation errors
[34]. Second, variance is not an appropriate risk measure because it is a symmetrical
risk measure that penalizes equally large losses and large returns, while it is clear
that an investor would like to distinguish between upside and downside risk and
ideally have positive skewed returns [66]. Over the years, various approaches to
solving the aforementioned problems have been proposed in the literature. To mit-
igate the problems caused by errors in estimating the parameters of the model, in
sections 3.2.7 and 3.2.8, we describe the approaches based on parameter regulariza-
tion techniques and robust optimization. Risk measures of an investiment strategy,
alternatives to the variance are instead described in section 3.2.10.

The second category of portfolio optimization approaches is characterized by a
multi-period framework and will be described in Section 3.3. The basic idea is to
formulate from the beginning the allocation problem on a time horizon composed
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of multiple decision steps. The objective is to minimize the total risk over the entire
investment horizon and at the same time to respect real constraints on the portfolio
composition of each stage. In particular, approaches based on predictive control
will be described which allow a convex formulation of the optimization problem
and therefore can be solved e�ciently.

3.2 Single period optimization

The foundation of the Modern Portfolio Theory lies in the model introduced by
Harry Markowitz in 1952 [73]; it was in fact the �rst quantitative approach to build-
ing a portfolio of �nancial assets. He had the intuition to treat the problem of allo-
cating an investor’s monetary resources as a problem of mathematical optimization
with the aim of �nding the best trade-o� between expected return and risk associ-
ated with the portfolio and measured by its variance. Thanks to this fundamental
contribution, Markowitz won the Nobel Prize in Economics in 1990 together with
Merton Miller and William Sharpe.

The classic formulation of Markowitz is single-period in the sense that the in-
vestor is assumed to make allocation decisions once and for all at the beginning of
a given period (e.g. one quarter or one year). Once made, the allocation decisions
are not allowed to change until the end of the period and the impact of decisions
arising in subsequent periods is not considered [33].

3.2.1 The model

In this section we will introduce the model for single-period portfolio optimization
mainly adopting the notation in [27].

Consider a collection of of = risky assets 01, . . . , 0= , and call with A ∈ R= the
random vector with elements the holding period returns of the = assets over an
arbitrary �xed time interval (for example a day, a week or a month). Let’s denote
with G ∈ R= the portfolio vector(or vector of positions or weights) which elements
G8 representing the dollar (or equally any other monetary currency ) value of the
portion of investor’s wealth allocated in asset 8 , where G8 ≥ 0 stands for a long
position in asset 8 and G8 < 0 stand for a short position in asset 8 , with 8 = 1, . . . , =.
Assuming that the investor possesses an initial portfolio denoted by G0 and that he
wants to carry out trading operations to vary the composition of the initial portfolio,
we de�ne with D ∈ R= the vector of the dollar value of the trades at the current
market prices, where D8 > 0 means that the investiment in the asset 8 is increased,
D8 < 0 means that is decreased and D8 = 0 means that the investment in asset 8 is
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held unchanged. The post-trade portfolio is denoted as:

G = G0 + D (3.1)

Denoting withF0 = 1)G0 the initial wealth (or the initial total value of the portfolio
in dollars) and withF = 1)G the post-trade wealth, the change in the total portfolio
value after the trade is given by

F −F0 = 1)G − 1)G0 = 1)D (3.2)

Typically one assume that the portfolio is self-�nancing meaning that no external
cash is put into or withdrawn from the portfolio so that the wealth is preserved
(1)G = 1)G0). The self-�nancing condition can be ensured (assuming also no hold-
ing and transaction costs) imposing:

1)D = 0 (3.3)

Finally we can de�ne the portfolio return as

A? =

=∑
8=1

G8A8 = A
)G (3.4)

Of course, the larger portfolio return the better, on the investor side.

3.2.2 Mean-variance trade-o� optimization

The basic idea behind the Markowitz model is to �nd, through an optimization pro-
cedure, a trade-o� between expected return and variance as a measure of perfor-
mance and risk, respectively, associated with the portfolio. Denoting the expected
value of the return vector as ` = E[A ] and the covariance matrix of the asset returns
as Σ = E[(A − `) (A − `)) ] = (f8, 9 ) ∈ R=×= , where f8, 9 = Cov(A8, A 9 ) is the covariance
between returns of assets 8 and 9 , the expected return of the portfolio is given by

`? = E[A?] =
=∑
8=1

G8`8 = `
)G (3.5)

and his associate variance is instead given by

f2
? = Var[A?] =

=∑
8=1

=∑
9=1

G8f8 9G 9 = G
)ΣG (3.6)



30 Chapter 3. Trading a portfolio of assets

The problem of selecting a portfolio can be formally stated as a tradeo� between
these two quantities. The mean-variance framework is based on the strong assump-
tion of having perfect knowledge of the random quantities involved in the model
(`, Σ and derived quantities). In reality, these parameters are not known and need
to be estimated using past realizations of asset prices and therefore subject to esti-
mation errors.

There are three possible di�erent formulations of this problem, the return maxi-
mization problem, the risk minimization problem, and the risk-adjusted return max-
imization problem.

Return maximization problem

The return maximization formulation aims at maximizing portfolio expected return
while keeping the risk under control imposing a maximum admissible level of risk
f̄2:

max
D

`)G (3.7a)

s.t. G)ΣG ≤ f̄2, (3.7b)

G ∈ X (3.7c)

where X is the set of admissible portfolios and re�ects constraint on portfolio com-
position, for example

X = {G ∈ R= : G = G0 + D, 1)G = 1)G0, G ≥ 0} (3.8)

where the non-negativity condition G ≥ 0 rule out short-selling. Given that the
covariance matrix is positive de�nite (Σ � 0), the above optimization problem has
a linear objective function, linear and quadratic constraints and thus is e�ciently
solvable.

Risk minimization problem

The risk minimization formulation aims at minimizing the portfolio risk imposing
the desired expected portfolio return being above a given target W :

min
D

G)ΣG (3.9a)

s.t. `)G ≥ W, (3.9b)

G ∈ X (3.9c)
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This formulation has quadratic objective function, linear constraints and thus leads
to a Quadratic Programming (QP) problem.

Risk-adjusted return maximization problem

This third formulation is obtained building the objective function through linear
combination of the two objective functions above and aims to maximize a risk-
adjusted return:

max
D

`)G − Z · G)ΣG (3.10a)

s.t. G ∈ X (3.10b)

where Z is called risk-aversion parameter as the higher the Z value, the greater the
risk investor’s aversion. Also this last formulation leads to a QP problem.

3.2.3 Numerical example 1 - E�cient frontier computation

Each of the above three formulations has the di�culty in choosing reasonable value
for the involved parameters f̄2, W or Z . What is done in practice is to solve the
optimization problems mentioned above for increasing values of f̄2, W or Z .

It can be shown that the di�erent formulations result in the same trade-o� curve
(Pareto curve) of optimal values in the risk/returnI plane called the e�cient frontier
in the �nance literature. A portfolio G that lies on this curve is called an e�cient
portfolio. A portfolio is e�cient if, among all the possible portfolio with a given level
of return is the one with minimun risk, or equivalently if is the one with maximum
expected return for a givel level of risk.

As an example we consider the allocation over the following = = 11 Exchange-
Traded Funds (ETFs):

1. SPDR S&P 500 ETF, ticker SPY;

2. iShares 20+ Year Treasury Bond ETF , ticker TLT;

3. SDPR Select Sector Fund - Financial Sector, ticker XLF;

4. SDPR Select Sector Fund - Energy Sector, ticker XLE;

5. SDPR Select Sector Fund - Health Care Sector, ticker XLV;

6. SDPR Select Sector Fund - Consumer Staples Sector, ticker XLP;
ITypically, for illustrative purpose, the standard deviation is used in place of the variance as the

risk measure
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7. SDPR Select Sector Fund - Consumer Discretionary Sector, ticker XLY;

8. SDPR Select Sector Fund - Industrial Sector, ticker XLI;

9. SDPR Select Sector Fund - Technology Sector, ticker XLK;

10. SDPR Select Sector Fund - Materials Sector, ticker XLB;

11. SDPR Select Sector Fund - Utilities Sector, ticker XLU.

We used 2 years of past monthly data corresponding to the 2016 − 2017 period
to estimate the empirical average of the return vector and the empirical covariance
matrix. The estimate of the expected value of the returns has a minimum value of
2.5% corresponding to the asset with ticker TLT, and a maximum value of 1.74%
corresponding to the asset with the XLK ticker. We then considered 40 equi spaced
values for the target return W in the interval [2.5 × 10−3, 1.74 × 10−2] and for each
value of W we solved problem 3.9 with the no short-selling constraint G ≥ 0.

In �gure 3.1 is shown the discrete point approximation of the e�cient frontier.
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Figure 3.1: E�cient Frontier.

The �gure 3.2 also shows with orange dots the performances that would be
obtained with portfolios in which all the wealth is invested in the single asset high-
lighted by the corresponding label. What this �gure tells us is that portfolios ob-
tained as a solution to the optimization and located on the e�cient frontier are
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characterized by a diversi�cation of investments in di�erent assets. In terms of per-
formance, they dominate portfolios where all wealth is invested in a single asset.
The only case that is an exception is the asset with ticker XLK, which is the one
with the maximum expected return. To have a portfolio with maximum expected
return, one must invest all the wealth in that asset.
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Figure 3.2: E�cient Frontier and individual assets performance.

Finally, �gure 3.3 shows the size of the allocations in the assets of two di�erent
portfolios lying the e�cient frontier, that we call G1 and G2, are taken into consider-
ation, G1 with expected return of 1.0% and standard deviation of 1.38% and G2 with
expected return 1.5% and standard deviation of 2.25%.

3.2.4 Sharpe ratio maximization

Markowitz mean-variance framework provides as solutions a collection of portfo-
lios all lying on the Pareto e�cient-frontier. The �nal choice on the single port-
folio to be implemented is responsibility of the investor himself and depends on a
combination of risk aversion and desired return. Typically an allocation strategy is
evaluated based on a metric like the Sharpe ratio, and only a portfolio on the Pareto-
optimal frontier achieves the maximum Sharpe ratio. As mentioned in section 2.5,
Sharpe ratio quanti�es the excess return (the expected portfolio return in excess
of the risk-free rate, i.e., `)G − A 5 ) normalized by the risk (the original de�nition
consider the standard deviation of the portfolio

√
G)ΣG as the measure of risk), the
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Figure 3.3: Size of allocations for two di�erent portfolios G1 and G2.

higher the Sharpe Ratio of a portfolio, the greater the reward of the investment for
the risk taken. The Sharpe Ratio maximization consists in the following optimiza-
tion problem:

max
D

`)G − A 5√
G)ΣG

(3.11a)

s.t. `)G > A 5 , (3.11b)

G ∈ X (3.11c)

Problem 3.11 is non-convex, however, through a series of adjustments it is possi-
ble to reformulate it as a Second Order Cone Program (SOCP) that can be solved
e�ciently, see [27] for details.

Geometrically the portfolio that maximizes problem 3.11 is the tangent point to
the e�cient frontier of the line passing through (0, A 5 ) and called in the �nancial
literature Capital Allocation Line (CAL) [47]. As a numerical example we solve
problem 3.11 using the data of the numerical example of section 3.2.3 and assuming
a risk-free rate A 5 = 2×10−3. We obtain a Sharpe-optimal portfolio G∗, with expected
return 1.17%, standard deviation 1.57% and Sharpe ratio 0.6138, lying on the e�cient
frontier at the point of tangency with the CAL line, as depicted in �gure 3.4 with
the red dot.

Finally, �gure 3.5 shows the composition of the Sharpe-optimal portfolio G∗.
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Figure 3.4: Sharpe-optimal portfolio for A 5 = 2 × 10−3.

3.2.5 Practical constraints and transaction cost

In practice, in the design of optimal portfolios, one must take into account manda-
tory constraints imposed by market regularizations, capital budgets and the cost
associated with single transactions which can largely in�uence the solution to the
optimization problem. Furthermore, discretionary constraints can be included in
order to avoid certain undesirable portfolio compositions.

Below is a non-exhaustive list of real portfolio constraints, for a larger list, see
for example[20].

Long-only

Imposing the simple constraint:
G ≥ 0

ensures that only long asset positions are held. In addition to having an immediate
economic interpretation in the fact that many investment funds and institutional
investors are not allowed to do short-selling, this constraint also has the e�ect of
creating more stable portfolios [60].
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Figure 3.5: Size of allocations for the Sharpe-optimal portfolio G∗.

Turnover constraint

The turnover constraint is an optional linear constraint that enforces an upper
bound on the average of purchases and sales. The turnover is de�ned by the 1-norm
of the vector of the trades ‖D‖1, limiting it serves to limit the impact of transaction
costs. We can impose the turnover constraint either on some particular asset 8

|D | < D̄8

or on the whole portfolio
‖D‖1 < D̄

Sector bounds

It is possibile to limit the investment exposure in any individual asset or in a group
of assets. The economic motivation of this constraint lies in the fact that the in-
vestor may not want to expose himself too much by investing in a particular sector
made up, for example, by the �rst : assets and instead wants to maintain a certain
degree of diversi�cation in di�erent sectors. This constraint can be imposed mathe-
matically requesting that the total sum invested in the �rst : assets does not exceed
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a fraction U of the total wealth:

:∑
8=8

G8 ≤ U1)G

Transaction costs

It is possible to take into account the presence of transaction cost in the model. We
can consider a simple form of proportional transaction costs such that the investor
incur in fee every time he buys or sells an asset:

q (D) = 2 ‖D‖1

where 2 ≥ 0 is the unit cost of transaction. This model for transaction costs is easily
generalizable, for instance, introducing proportional transaction cost depending on
the sign of the trade or on the liquidity of each single asset. For example one can
include a term 1D to create asymmetry in the transaction cost function:

q (D) = 2 ‖D‖1 + 1D

If 1 = 0 buying or selling generates the same transaction cost, if 1 > 0 it is cheaper
to sell than to buy an asset. If transaction costs are taken into account the bud-
get conservation condition must be modi�ed to consider the money spent in the
transaction:

1)D + q (D) = 0

3.2.6 Drawbacks of mean-variance optimization

The mean-variance framework represents one of the main achievements of quanti-
tative methods in �nancial theory to the point of giving rise to a body of knowledge
known as Modern Portfolio Theory [46]. However the Markowitz model presents
2 major drawbacks that have denied its practical application for many years:

1. it is high sensitive to parameter estimation errors. Estimating the covariance
matrix Σ and especially the expected return ` is not an easy task [79]. This
also has a strong negative e�ect on the out-of-sample performance of the
method that could deviate greatly from the in-sample performance.

2. Variance and standard deviation are simmetric risk measures and therefore
they penalize both under-average returns corresponding to unwanted high
losses and above-average returns corresponding to welcome extra pro�ts.
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As a side note it also neglects multi period dynamics and long term investment
objective. Regarding the �rst problem, the fact that the solution obtained with
Markowitz formulation is highly unreliable, due to estimation errors, is well docu-
mented in literature [52], [53], [14], [34]. Typical solutions to the the �rst problem
are the use of regularization techniques constraining portfolio norms to improve
parameter estimation [65, 37] or the use of robust optimization techniques that nat-
urally take into account the presence of uncertainty in the data [48]. Interestingly,
in [22, 113] it is shown how the two approaches are actually linked. Typical solution
to the second problem is, instead, the use of alternative asymmetric risk measures.
In the next two sections, we will discuss the �rst problem in more detail and present
the approaches based on regularization and subsequently on robust optimization,
respectively. In the following section we will present a numerical example where
the in-sample and out-of-sample performances of the optimal allocation strategies
presented will be compared. Finally, in the section, we will introduce asymmetrical
risk-based risk measures as possible solutions to the second problem discussed in
this section.

3.2.7 Regularized portfolio optimization

Markowitz portfolio optimizatiom assume perfect knowledge of the expected value
and covariance matrix of the assets return vector, that are fundamental inputs of the
model. In reality we do not have access to these quantities, let alone the complete
probability distribution of the random return vector. A possible solution is to use
inferential statistics to estimate these parameters from a dataset of past realized
returns. Given samples of realized returns AC over time periods C = 1, . . . ,) the
sample mean and the sample covariance are given by:

ˆ̀ = 1
)

)∑
:=1

AC , (3.12)

Σ̂ =
1

) − 1

)∑
:=1
(AC − ˆ̀) (AC − ˆ̀)) (3.13)

respectively. However, to have su�ciently accurate estimates using the sample esti-
mators it would be necessary to have large) . If this is not the case, the sample mean
produces noisy estimates [81]. In the case of estimation of the covariance matrix,
having a large number of data is fundamental if the number of assets considered is
high. Indeed,the covariance matrix consists of = × = entries (of which only half is
necessary since the matrix is simmetric). It is clear that, if = is high, to correctly
estimate a large quantity of parameters very long time series would be required,
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something that is not always possible, for example in the case of recent companies.
What is even more limiting is that the lack of stationary in historical price series
(due to changes in market conditions or the companies themselves) precludes the
use of the complete time series [82].

In the literature, several methods have been proposed to deal with estimating
the large number of elements of the covariance matrix in a reliable manner. A �rst
trivial approach is to use higher frequency data such as daily market data [60].
A second approach is to assume some kind of structure on the estimator of the
covariance matrix based on the fact that the market is driven by a limited number
of common risk factors. For instances, the oil price should be a relevant risk factor
for stock shares in the automotive industry, whereas this risk factor might play a
less relevant role for stocks in the telecommunication industry [22]. On the basis
of such considerations, in [32] a series of factor models are proposed which are
able to reduce the number of parameters to be estimated and therefore mitigate the
impact of possible estimation errors. Another approach to improve the quality of
the estimation is based on shrinkage estimators. These types of estimators are based
on the classical �nding of Stein [105] that biased estimators may be superior to
unbiased ones. For example, in [65] is proposed as an estimator a weighted average
of the sample covariance matrix and the identity matrix. This has the e�ect of
shrinking the sample covariance matrix towards the identity matrix. In [53, 60] it
is shown that imposing a no short-selling constraint on the optimization problem
is equivalent to shrinking the extreme elements of the covariance matrix.

More recently, it has been observed that the strategies developed in [65, 53, 60]
were special cases of a more general framework in which portfolio weights are
treated, rather than the moments of asset returns, as the objects of interest to be es-
timated [37]. This approach consists, instead of shrinking the moments of asset re-
turns, in solving the mean-variance optimization problem by imposing constraints
on the norm of the portfolio weights. It is shown that by imposing the constraint
that the ;1 norm of the portfolio weights is less than 1 then the short-sale constrained
portfolio of [53, 60] is obtained. On the other hand, by imposing a constraint on the
;2 norm of the portfolio vector, the portfolio developed in [65] is obtained.

This approach is closely related to the statistical literature of regression prob-
lems with regularization of parameters. In fact it is observed that the weights of the
portfolio can be treated as coe�cients of an Ordinary Least Square regression prob-
lem. By imposing a constraint on the ;1 norm of the portfolio vector to be less than a
certain threshold, a problem is obtained which is equivalent to lasso regression [108],
while imposing a constraint on the ;2 norm of the portfolio vector corresponds to
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ridge regression [58]. In [37] the so-called norm-constrained mean-variance portfo-
lio is then de�ned as follows:

min
D

G)ΣG (3.14a)

s.t. `)G ≥ W, (3.14b)

‖G ‖? ≤ X, (3.14c)

G ∈ X (3.14d)

where X ≥ 0 is a certain threshold and ? = 1, 2 tipically. Problem 3.14 represents
a regularized version of problem 3.9 and is expressed in the so-called Ivanov form.
Problem 3.14 can easily be rearranged in the so-called Tikhonov form:

min
D

G)ΣG + _‖G ‖? (3.15a)

s.t. `)G ≥ W, (3.15b)

G ∈ X (3.15c)

where _ ≥ 0 is a parameter that controls the strength of the regularization term
‖G ‖? .

The �rst advantage of using the regularized version of the mean-variance port-
folio optimization problem with respect to the original non-regularized version of
Markowitz is that it returns a solution less sensitive to estimaion errors of the
model’s inputs. The second important advantsge is that it is possible to deter-
mine the values of the parameters X and _ that optimize the out-o-sample perfor-
mance by means of historical data and cross-validation [44]. In recent years this ap-
proach has been further developed, for example [50] considers even more complex
penalty functions while [7] combine regularization and cross-validation proposing
performance-based-regularization to optimize out-of-sample performance.

3.2.8 Robust portfolio optimization

In this section we will discuss the second possible solution to the �rst problem men-
tioned in section 3.2.6, which is based on the use of the robust optimization frame-
work [13].

The basic idea is to take into account the uncertainty present in the data and
to �nd portfolios compositions that are robust against such uncertainties. Over
the years two techniques have been developed called stochastic programming and
robust optimization. In stochastic programming one assumes that the uncertain pa-
rameters of the model follow a known probability distribution and the constraints of
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the model are converted from inequalities to probabilistic constraints [101]. How-
ever, the main problems related to this framework are that in reality the exact dis-
tribution of the uncertain parameters is not known, furthermore the problems of
stochastic programming are typically di�cult to solve. Robust optimization , on
the other hand, does not characterize the uncertainty of the parameters through a
stochastic characterization of uncertainty but rather through the belonging of these
parameters to a bounded uncertainty setU that contains all scenarios one wants to
safeguard against [13]. The solution to a robust optimization problem is feasible if
all the constraints are satis�ed for all possible variations of the uncertain parameters
of the uncertainty set.

Suppose then that the expected value of the returns ` and the covariance matrix
Σ belong respectively to the sets UA and UΣ, the robust counterpart of the risk
minimization problem has the following formulation:

min
D

supΣ∈UΣ
G)ΣG (3.16a)

s.t. inf`∈UA
`)G > W (3.16b)

G ∈ X (3.16c)

The di�culty in solving a robust optimization problem depends on the kind of un-
certainty set we consider. Problem 3.16 can be solved e�ciently only in the case of
simple uncertainty set, for instance ifUA andUΣ are interval (box) sets of the form:

UA = {` : A<8= ≤ ` ≤ A<0G }, (3.17)

UΣ = {Σ : Σ<8= ≤ Σ ≤ Σ<0G , Σ � 0} (3.18)

then, under the further assumptions that G ≥ 0 and Σ<0G � 0, the double-layered
minimax problem 3.16 reduces into the single-layer convex minimization problem:

min
D

G)Σ<0GG (3.19a)

s.t. A)<8=G > W (3.19b)

1)D = 0, (3.19c)

G = G0 + D, (3.19d)

G ≥ 0. (3.19e)

The price one pay to solve a robust mean-variance portfolio optimization prob-
lem is the fact that generally its solution is excessively conservative as the goal is
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to safeguard from the worst case scenario, and consequently it may not be possi-
ble to �nd a solution capable of guaranteeing the investment objective desired by
the investor. Moreover, often such conservatism can lead to the robust counterpart
being unfeasible, ie there may not be a solution that is able to safeguard against
uncertainty at all.

Scenario approach to robust portfolio optimization

An approach that consists in a trade-o� between an excessively optimistic approach
such as the classic mean-variance optimization and an excessively conservative ap-
proach such as that of robust optimization is represented by the scenario approach
[26] that can be interpreted as an approximation of the robust optimization ap-
proach. More precisely, the scenario optimization approach is a technique for ob-
taining solutions to robust optimization problems using random samples of the con-
straints called scenarios.

Suppose that the uncertainty sets UA and UΣ are governed by some proba-
bility distributions. Suppose we can be able to obtain # iid samples (` (8), Σ(8)),
8 = 1, . . . , # distributed according to the probability distributions of the uncertainty
sets. It should be pointed out that the actual distributions does not necessarily need
to be known exactly. Indeed, one can resort in the exploitation of a parametric
model or, more simply, the scenarios can be obtained by observing past outcomes.
In this last case we talk about data-driven optimization [25]. The scenarios can be
collected in the sets ÛA and ÛΣ, that are:

ÛA = {` (1), ` (2), . . . , ` (# )}, (3.20)

ÛΣ = {Σ(1), Σ(2), . . . , Σ(# )} (3.21)

and can be seen as discrete approximations of the original uncertainty sets. In this
sense scenario approach is an approximation of the robust approach. Then, we solve
the scenario optimization problem:

min
G,C

C (3.22a)

s.t. G)Σ(8)G ≤ C, 8 = 1, . . . , # , (3.22b)

` (8)) ≥ W, 8 = 1, . . . , # , (3.22c)

G ∈ X. (3.22d)

It must be pointed out that the solution obtainable from the scenario formulation
3.53 will be robust only with respect to the considered scenarios. In other words,
there is no absolute guarantee that the solution obtained is robust for all the values
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of the original uncertainty set. However, it is shown in [27] that by choosing N
su�ciently large the approximate solution obtainable by solving problem 3.53 is
probabilistically robust up to a predetermined con�dence level U ∈ (0, 1), ie it is
possible to �x a degree of probabilistic robustness U a priori and then choose N
according to the rule:

# ≥ 2
1 − U (3 + 10) (3.23)

where 3 is the dimensionality of the decision variable.

3.2.9 Numerical example 2 -Di�erent allocation strategies com-
parison

The objective of this section is to present the results of a numerical experiment in
which some of the optimal portfolio allocation strategies presented in this chapter
are compared. To do this we use the same universe of = = 11 assets of section 3.2.3,
but we consider a broader time horizon covering the period from 8/2002 to 7/2019,
for a total of ) = 204 monthly data returns for each asset.

Figure 3.6 shows the normalized monthly prices of the 11 �nancial assets con-
sidered and their evolution over the considered time horizon.
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Figure 3.6: Normalized prices of �nancial instrument over time.

We will compare the following 4 di�erent portfolio allocation strategies:

1. classical mean-variance (MV) portfolio, corresponding to optimization prob-
lem 3.9;
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2. regularized mean-variance (ReMV) portfolio, corresponding to optimization
problem 3.15 with regularization parameter _ = 0.01;

3. robust mean-variance (RoMV) portfolio, corresponding to optimization prob-
lem 3.19;

4. scenario based mean-variance (SMV) portfolio, correponding to optimization
problem 3.22 with # = 200 scenarios.

We now describe a reliable methodology to compute the out-of-sample perfor-
mances of the 4 di�erent allocation strategy, procedure that has been introduced in
[37].

Out-of-sample performance evaluation

The evaluation of the out-of-sample performance of a portfolio construction strat-
egy can be performed through back-testing in a rolling-horizon fashion.

First of all, we choose as the metric to assess the validity of the allocation strate-
gies the out-of-sample portfolio Sharpe Ratio. Assuming to have a dataset available
made of) observations of past returns, the procedure consists in initially determin-
ing a window of g observations that will be used as in-sample data to make estimates
of the expected value and covariance matrix of returns using the sample estimators,
thanks to these etimates we build the optimal portfolio and then, if of interest, we
compute the in-sample evaluation metrics. The optimal portfolio allocations are
kept unchanged for the following period (can be a day, a week, a month, . . . ) and
out-of-sample performances are recorded using the real returns occurred in this
period. Subsequently, the estimation window is moved forward so that latter out-
of-sample returns are included in the in-sample data and eventually the least recent
data are discarded. The updated in-sample data window is then used to re-compute
the sample estimates of expected returns and covariance and form a new optimal
portfolio. This procedure is repeated as long as the end of the dataset is reached. At
the end of the process we have generated ) − g portfolio weight vectors, that is G:
for : = g, . . . ,) − 1. Holding the portfolio G: for one period gives the out-of-sample
return at time : + 1 : A?,:+1 = A)

:+1G: where A:+1 denotes the asset returns. With the
time series of returns and weights it is possible to compute out-of-sample Sharpe
ratio :

f̂2 =
1

) − g − 1

)−1∑
:=g

(A)
:+1G: − ˆ̀?)2 (3.24)

where

ˆ̀? =
1

) − g

)−1∑
:=g

A)
:+1G: (3.25)
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and
ŜR =

ˆ̀?
f̂

(3.26)

Out-of-sample performance results

In our experiment, we set as the initial investment date 1/2010. With this choice,
we have a moving window of lenght g = 89 of past in-sample data. Every month
we use the in-sample data to estimate the sample mean and sample covariance of
returns for the MV and ReMV strategies. For the SMV strategy we bootstrap the
in-sample data to generate # = 100 scenarios (` (8), Σ(8)), 8 = 1, . . . , 100 of the mean
and covariance of returns. For the RoMV, we use the # generated scenarios and
the same technique of [109] to estimate the lower and upper bound A<8= ,Σ<0G of
the asset returns and covariance matrix respectively. We solve all the 4 allocation
strategies considered for 20 increasing values of target return W to compute the
in-sample e�cient frontiers and the optimal weights. We then move the window
1 month forward and we repeat the same procedure for a total of ) − g = 115
times. This allows us to compute 115 in-sample-e�cient frontiers for every tested
allocation strategies, that we aggregate together to form Figure 3.7. From the graph
of Figure 3.7 it can be seen that the strategy that allows to obtain the best in-sample
performances is the MV strategy followed by the ReMV strategy. The portfolios
obtained with the RoMV and SMV strategies show, instead, much more pessimistic
results. The maximum in-sample SRs obtained with the 4 strategies are 0.2479 for
the MV portfolio, 0.2430 for the ReMV portfolio, 0.1096 for the SMV portfolio and
0.0538 for the RoMV portfolio.

As explained in the previous section using the time series of optimal weights of
the 4 strategies and the real returns we are able to calculate the 115 out-of-sample
e�cient frontiers, which are aggregated and shown in Figure 3.8. From the graph
of Figure 3.8 graph we see an almost opposite situation compared to the in-sample
results, in fact, the MV portfolio is the one that provides worse out-of-sample perfor-
mances. The maximum out-of-sample SRs obtained with the 4 strategies are 0.2254
for the MV portfolio, 0.2459 for the ReMV portfolio, 0.2594 for the SMV portfolio
and 0.2435 for the RoMV portfolio.

3.2.10 Alternative risk measure for portfolio design

In this section we will discuss the typical solution to the second problem of the
classical Markowitz framework highlighted in section 3.2.6.
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Figure 3.7: In-sample e�cient frontiers for the 4 tested strategies.

In �nance, the expected return of a portfolio is a fundamental quantity to be
taken into consideration as it quanti�es the average bene�t of the investment. How-
ever, in reality, returns are not the only entity of interest as they are typically not
su�ciently constant to allow the investor not to worry about the likelihood of going
bankrupt. For this reason we use measures that quantify how risky an investment
strategy is. The most classic risk measure of an investment, cosidered by Markowitz
himself, is variance, it quanti�es the variability in the performance of an investment
strategy, a large variance can mean high earnings but at the same time large losses.

However, Markowitz himself, a few years after his most famous work, pointed
out the inadequacy of variance as a risk measure of a portfolio strategy [74]. In
fact, as mentioned in the section, the variance being a symmetrical risk measure
penalizes both undesirable losses and desirable gains. Clearly, this fact is a strong
limitation of the mean-variance optimization framework as each investor would
just like to penalize losses.

To overcome this negative practical aspect of variance over the years, a series
of alternative and asymmetrical risk measures have been proposed in the �nancial
literature. Among the most famous

• Value-at-risk (VaR)

• Conditional Value at Risk (CVaR)

• Downside Risk (DR)
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Figure 3.8: Out-of-sample e�cient frontiers for the 4 tested strate-
gies.

Value-at-Risk (VaR)

Value-at-Risk (VaR) is a quantile-based risk measure that was developed at J.P. Mor-
gan made public in 1997. The idea behind it is to focus only on the negative tail of
the distribution that is where the losses occur.

Let b be a random variable that represents the loss of a portfolio G over some
period of time, where by loss we mean the negative return b = −A)G . The VaR of
portfolio G with con�dence level U ∈ (0, 1), is de�ned as

VaRU = inf
b0

: Prob(b ≤ b0) ≥ U (3.27)

That is, the probability that the investment results in a greater loss than VaRU is not
greater than U , say, U = 0.95. Although this risk measure has been widely used in
practice it does not take into account the losses that exceed the VaR value and is
also not convex.

Conditional Value-at-Risk (CVaR)

To overcome the limitations of VaR, but at the same time preserving some of its
desirable characteristics, it is to consider conditional expectation on the tail. This
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led Rockafellar and Uryasev [95] to the de�nition of an alternative risk measure
called Conditional Value-at-Risk (CVaR), or Expected Shortfall (ES).

CVaR is de�ned as the conditional expectation of losses exceeding the VaRU

CVaRU = E[b |b ≥ VaRU ] (3.28)

The added bene�t of CVaR is that it is a convex risk measure.

Downside Risk (DR)

Recalling that we indicate with A? the random variable that models the return of a
portfolio, it is possible to easily de�ne an asymmetric risk measure directly based
on variance, and called semi-variance or in �nancial terms downside risk, and given
by

SV = E[(max{0,E[A?] − A?})2] (3.29)

It should be noted that semi-variance is actually a special case of Lower Partial
Moments (LPM)

LPMa = E[(max{0,E[A?] − A?})a ] (3.30)

In practice, we consider only negative deviations with respect to the expected value.
The idea can be generalized and made more �exible introducing negative deviations
with respect to a minimun target that we wish to achieve, such negative deviations
are called shortfall amounts. For instance, denoting withW the desired target wealth,
the expected shortfall is given by

ES = E[(max{0, W −F})a ] (3.31)

Shortfall is zero if we achieve or exceed the target, is insted a positive value if the
target is not achieved. In this sense, this risk measure is asymmetric.

This risk measure is particularly convenient if we have a �nite set of N scenarios
available. In fact it is possible to approximate the expectation discretizing it in the
following way

ÊS =
1
#

#∑
8=1
(max{0, W −F (8)})a (3.32)

Common choices for =D are a = 1 and a = 2, with the intuition that the higher the
degree the higher the risk aversion of the investor.
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3.3 Multi-period portfolio optimization

In this section we will discuss an important extension to the optimization models
discussed so far.

Indeed, the approaches described in section 3.2 are conducted in a single-period
framework, ie they are based on the optimization of some portfolio performance to
be obtained at the end of one single period. In realistic situations the investor is
forced to re-address the allocation problem at the end of the period, furthermore it
is reasonable to suppose that the investor has long-term objectives. The simplest
solution would be to execute a sequence of single-period optimization problems, but
this, as explained in [83] would be bene�cial only in the absence of transaction costs
and if the price returns were temporally independent. This strategy would also be
short-sighted towards long-term objectives, for which it is useful to reformulate the
problem of allocating resources over a time horizon composed of multiple periods
with the aim, for example, of minimizing the total risk during the investment hori-
zon at the same time time satisfying a series of constraints on the composition of
the portfolio and on the expected return during the intermediate stages.

At �rst, multi-period formulations of the portfolio optimization problem were
conceived as a stochastic control problem where the trader is allowed to vary over
time the number of shares of the �nancial assets that make up his own portfolio.
Particularly noteworthy are the contributions given by Merton which proposed a
continuos-time stochastic dynamic programming approach to the multi-period al-
location problem [77]. With no constraints or transaction cost, and under some
additional assumptions, Merton derived a closed-form expression for the optimal
policy. In the same period, Samuelson derived the discrete time version of Merton’s
approach [96]. However, the dynamic programming approach su�ers from the curse
of dimensionality and therefore their practical application is reported only in the
case of few securities and very short time horizons. Furthermore, such approaches
do not take into consideration realistic market features such as constraints on port-
folio composition and transaction costs. The addition of these ingredients excludes
the possibility of having solutions in closed form and makes the problem even more
di�cult from a computational point of view.

It is precisely in this context that the methods based on predictive control, al-
though they provide suboptimal policy for the multi-period investment problem,
are successful. What makes these methods attractive in the context of multi-period
portolio optimization is the fact that they can naturally handle constraints on the
composition of the portfolio and that they are suitable for practical implementations
since they can be solved in useful times. Some formulations can even be solved as
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convex quadratic programs.
Examples of application of predictive control techniques for multi-stage �nan-

cial problems such as multi-period portfolio allocation, wealth tracking, pairs trad-
ing, can be found in [41, 42, 57, 56], [104] and [114] respectively.

Most predictive control formulations applied to �nance problems use an open-
loop on-line optimization, however some formulations use some form of feedback
control, such as the approaches of Cala�ore in [29, 30, 31] that will be discussed in
detail in the following sections because of particular interest for this dissertation.

3.3.1 Model and portfolio dynamics

In this paragraph, we will describe the model that will be used for multi-period
portfolio optimization. We will follow the formulation in [29, 30, 31].

We consider a universe of= assets 01, . . . , 0= and we de�ne with ?8 (:) the market
value of the asset 08 at time : . We then de�ne with G8 (:) the monetary amount
allocated in the asset 08 at time : . A value of G8 (:) ≥ 0 represents a long position
while a value G8 (:) < 0 represents a short position. The vector G (:) ∈ R= with
elements G8 (:), 8 = 1, ..., = de�nes the portfolio of the investor.

From a control point of view, the amount of money G8 (:) allocated in the individ-
ual assets represents the state variables of the model while the portfolio represents
the state vector. The investor total wealth at time : is given by:

F (:) =
=∑
8=1

G8 (:) = 1)G (:) (3.33)

The control variables of the model D8 (:) collected in the vector D (:) are the mon-
etary amount of the asset 8 that is sold (if D8 (:) > 0) or bought (if D8 (:) < 0) at
the beginning of the period : . The disturbance that a�ects the system are the price
returns A8 (:), random variable that captures the performances of asset 08 between
time : − 1 and : and are de�ned as follows:

A8 (:) =
?8 (:) − ?8 (: − 1)

?8 (: − 1) , 8 = 1, . . . , =; : = 1, . . . ,) (3.34)

For the writing of the model it is also necessary to de�ne the gross returns or gains
as:

68 (:) =
?8 (:)

?8 (: − 1) = 1 + A8 (:), 8 = 1, . . . , =; : = 1, . . . ,) (3.35)
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The gains at time period : are collected in the diagonal matrix � (:) ∈ R=×=:

� (:) =



61(:) 0 0 . . . 0
0 62(:) 0 . . . 0
0 0 63(:) . . . 0
...

...
...

. . .
...

0 0 0 . . . 6= (:)


(3.36)

and which role will be clear soon.
The model can be enriched by a set of constraints on states and control variables.

For example, it is typically assumed that the portfolio is self-�nancing, this behavior
can be modeled in a simple way by adding the constraint:

=∑
8=1

D8 (:) = 1)D (:) = 0 : = 0, . . . ,) − 1 (3.37)

In certain circumstances, short-selling could be prohibited, to model this it is su�-
cient to require the components of the portfolio to be positive or null:

G (:) ≥ 0 : = 0, . . . ,) − 1 (3.38)

For other types of constraints on the composition of the portfolio, please refer to
section 3.2.5.

De�ned all the above quantities, it is possible to derive the dynamic model of the
portfolio. The dynamic is due to the fact that the monetary value invested in one
asset changes over time due to changes in price between one period and another.
The transition equation of the state is given by:

G (: + 1) = � (: + 1) [G (:) + D (:)], : = 0, . . . ,) − 1 (3.39)

3.3.2 Multi-period mean-variance optimization

In [29] the author derives a multi-period version of the classical Markowit’s mean-
variance optimization model.

The total investment risk is quanti�ed as a weighted sum of all stage wealth
volatilities, measured as wealth variances:

� () ) =
)∑
:=1

X (:)Var[F (:)] (3.40)
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where X (:) ≥ 0 are given weights. Choosing X (:) = 1/), : = 1, . . . ,) we equally
penalize the volatility of wealth along all the stages of the investment horizon, while
choosing X () ) = 1 and X (:) = 0, : = 1, . . . ,) − 1 we penalize only large values of
�nal wealth variance.

Similarly to the optimization problems discussed in section 3.2.2 we choose op-
timal allocation strategies that minimizes risk � () ) while satisfying a lower-bound
constraint for the total return at the �nal stage:

E[F () )] ≥ W (3.41)

and that at the same time satisfy any constraints on the composition of the portfolio
such those discussed in section 3.2.5.

Open-loop formulation

A �rst, ’naive’ version of the multi-period mean-variance optimization problem de-
scribed in [29] is an open loop strategy in which the whole sequence of control
actions (decision variables) D = (D (0), . . . , D () − 1)) is computed at time : = 0 and
held unchanged over the investment horizon.

Finally, in [29] it is shown that being the wealth variance at each stage a quadratic
function of the decision variables D (:) and the portfolio expectations a�ne func-
tions of the decision variables D (:), the open-loop multi-period optimization prob-
lem can be casted as the following convex quadratic programming problem:

min
D (0),...,D ()−1)

)∑
:=1

X (:)Var[F (:)] (3.42a)

s.t. E[F () )] ≥ W, (3.42b)

1)D (:) = 0, : = 0, . . . ,) − 1 (3.42c)

G ∈ X(:) : = 0, . . . ,) − 1 (3.42d)

whereX(:) is the set of admissible portfolios (considering only satisfying portfolio
dynamics and no constraints):

X(:) = {G (:) : G (:) ∈ R=, G (: + 1) = � (: + 1) [G (:) + D (:)]} (3.43)

Closed-loop formulation

The open-loop strategy described in the previous paragraph is not able to exploit
the sequential nature of the problem, indeed only the �rst control action D (0) must
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be implemented immediately, while the subsequent ones, D (1), . . . , D () − 1) , can
be progressively recomputed taking into consideration new market observations.
At : ≥ 1 we have observed : − 1 return realizations for each single asset, a nat-
ural strategy to exploit this new information is to look for control actions within
a parametric classU of causal functions of the observed returns, called policies, to
conceive the closed-loop version of the multi-period portfolio optimization prob-
lem. The class of functions U must be wide enough to contain e�ective policies
but at the same time su�ciently simple to allow its exploration in useful times for
practical implementations.

The choice adopted in [29] is that of restricting the class of functions from which
to look for policies to that of the a�ne functions of the most recent observed returns
so that they can be easily computed through convex optimization techniques. That
is, control actions of the following form are considered:

D (0) = D̄ (0) (3.44)

D (:) = D̄ (:) + Θ(:) (6(:) − 6̄(:)) (3.45)

where D̄ (0) is the initial control action made before observing the �rt realization of
market gains, 6(:) is the vector of gains at time : and 6̄(:) is a given estimate of
the expected value of 6(:), D̄ (:) ∈ R= and Θ(:) ∈ R=×= are the policy parameters.
The policy has the following interpretation, if the market behaves as expected the
control action is reduced to the nominal action D̄ (:), if the market behavior deviates
from that expected the nominal control action is corrected by a term proportional to
the innovation of the returns,6(:)−6̄(:) , and that depends on the policy parameters
contained in the matrix Θ(:).

Given the policy structure 3.44, the state transition equations may be rewritten
as:

G (1) = � (1) [G (0) + D̄ (0)], (3.46)

G (: + 1) = � (: + 1) [G (:) + D̄ (:) + Θ(:) (6(:) − 6̄(:))], : = 1, . . . ,) − 1 (3.47)

It can be shown that the total wealth variance Var[F (:)] is a convex quandratic
function of the decision variables D̄ (:) and Θ(:) [29].

The closed-loop multi-period optimization problem can be casted as the convex
quadratic programming problem:

min
D (0),...,D ()−1);Θ(1),...,Θ()−1)

)∑
:=1

X (:)Var[F (:)] (3.48a)
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s.t. E[F () )] ≥ W, (3.48b)

1) D̄ (:) = 0, : = 0, . . . ,) − 1 (3.48c)

1)Θ(:) = 0, : = 1, . . . ,) − 1 (3.48d)

G ∈ X(:) : = 0, . . . ,) − 1 (3.48e)

where X(:) is the set of admissible portfolios:

X(:) = {G (:) : G (:) ∈ R=, G (: + 1) = � (: + 1) [G (:) + D̄ (:) + Θ(:) (6(:) − 6̄(:))]}
(3.49)

3.3.3 Scenario-based multi-period portfolio optimization

The multi-stage mean-variance optimization model described in the last section suf-
fers from the same drawbacks of his single-stage counterparts, it relies on noisy
estimates of the covariances Σ(:) and expected gains 6̄(:) by means of past time
series analysis and/or elicted by expert advice, and uses the variance of the �nal
stage wealth as a measure of risk, that is a simmetric risk measure.

In this section we describe the Cala�ore approach in [31] that seeks to overcome
the aforementioned limitations using the scenario approach of Section 3.2.8 and
using the discretized version of the Expected Shortfall described in Section 3.2.10 as
a risk measure.

It is now assumed that a scenario generation mechanism is available to generate
# independent and identically distributed sample paths that produce # scenarios
of gains:

6(:) (8),� (:) (8), : = 1, . . . ,) , 8 = 1, . . . , # (3.50)

At this point it is possible to formulate the counterparts of problems 3.42 and
3.48 based on the scenario approach and with the expected shortfall as risk measure.

Open-loop formulation

min
D (0),...,D ()−1)

1
#

#∑
8=1

max(0, W −F (8) () ))2 (3.51a)

s.t. G (8) ∈ X>; (:) : = 0, . . . ,) − 1, 8 = 1, . . . , # (3.51b)

1)D (:) = 0, : = 0, . . . ,) − 1 (3.51c)
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with

X>; (:) = {G (:) : G (:) ∈ R=, G (: + 1) = � (: + 1) [G (:) + D (:)]} (3.52)

Closed-loop formulation

min
D̄ (0),...,D̄ ()−1);Θ(1),...,Θ()−1)

1
#

#∑
8=1

max(0, W −F (8) () ))2 (3.53a)

s.t. G (8) ∈ X2; (:) : = 0, . . . ,) − 1, 8 = 1, . . . , # (3.53b)

1)D (:) = 0, : = 0, . . . ,) − 1 (3.53c)

1)Θ(:) = 0, : = 1, . . . ,) − 1 (3.53d)

(3.53e)

with

X2; (:) = {G (:) : G (:) ∈ R=, G (: + 1) = � (: + 1) [G (:) + D̄ (:) +Θ(:) (6(:) − 6̄(:))]}
(3.54)
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Chapter 4

Stock trading via feedback control:
an extremum seeking approach

4.1 Introduction

In this chapter, we describe the �rst contribution of this dissertation to the literature
on individual asset trading and in particular to stock trading via feedback control
addressed in Chapter 2.

In 2, we reported an overview of the innovative approach to stock trading pre-
sented by B. Ross Barmish in [8] and follow-up works (e.g., [70, 71]). It has been
shown that gaining money against unpredictable price variations can be reformu-
lated as a control design problem with a disturbance rejection goal. Within such a
framework, the disturbance, namely the price variations, does not need to be mod-
eled, thus the approach can be referred to as model-free [10, 12].

Notwithstanding the basic idea is as clever as simple, the tuning of the controller
de�ning the best investment level for a single stock is all but a straightforward
task. In 2.4 we reported a description of a two degrees of freedom controller named
Simultaneous Long-Short (SLS) controller designed to combine both a long and a
short strategy. One control block is tuned to implement a long position, that is
to perform well in all scenarios with a rising price (also known as bull moments),
where the trader will pro�t from �rst buying and then selling the stock. The other
control block is aimed to maximize the return when the price decreases (during the
so-called bear moments), thus implementing a short investment position, where the
trader pro�ts by �rst selling and then buying the stock (uncovered sell). In [10],
proportional controllers are used. The proportional gain value selection is really a
critical task and it is performed by means of simulations using past stock prices.
The resulting control law is simple, but does not adapt to market changes and may
provide bad worst-case performance as evidenced in [9]. In [72], as reported in
section 2.7, the same authors extend their work considering a Proportional-Integral
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(PI) controller to regulate the investment function, nevertheless the time-invariant
nature of the controller might not adapt well to inversions of price trend.

In this chapter, a di�erent approach for control design in feedback stock trad-
ing is proposed, based on the Extremum Seeking rationale [4]. Such an approach
appears to be very suitable for the problem at hand, for the following reasons: (i)
its aim is to maximize the output of a system whose dynamics is unknown, like
the excess return; (ii) it is intrinsically model-free; (iii) it provides a time-varying
feedback gain, so it may adapt to market time-varying conditions; (iv) unlike many
other adaptive methods, it is theoretically guaranteed to converge to a local opti-
mum [62]. At the end of the chapter, a real case study and extensive experiments
on a signi�cant number of stocks show that the proposed approach may largely
outperform the standard Buy & Hold strategy as well as the feedback scheme in
[10] with a time-invariant SLS controller. Backtest over�tting [5] is avoided tuning
the parameters of the methods on in-sample price data and testing them on out-of
sample price data from the same stocks but coming from a di�erent period of time,
preventing ambiguity with respect to generalization properties.

The organization of the chapter is as follows. In Section 4.2, the Extremum Seek-
ing functioning is described. Section 4.3 illustrates how the Extremum Seeking ra-
tionale can be applied to the problem at hand, while Section 4.4 shows experimental
achievements.

4.2 Extremum Seeking control

Although there are many e�ective techniques for model-based control design, not
all real physical systems can be adequately controlled by such techniques [23]. First,
for many systems it may not be possible to derive a model, or if available, the model
may not be suitable for control. Second, there may be progressive changes to the
system that modify the underlying dynamics, and it may be di�cult to measure or
model these e�ects. This is the case of �nancial systems where stock price dynamics
vary due to socio-economic e�ects, where the most extreme cases are represented
by stochastic jumps.

The �eld of adaptive control seeks to overcome these challenges by employ-
ing time-varying control laws that can adapt to changes in the dynamics of such
systems. Extremum Seeking control is a particularly attractive adaptive feedback
control methodology for complex systems, that does not rely on a model of the
process under control, to achieve the maximum (or the minimum) of an arbitrary
cost function of the measured output [23]. Furthermore, Extremum Seeking can
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Figure 4.1: Schematic illustrian of an Extremum Seeking controller.

track maximum of an objective function despite external disturbances and varying
system parameters.

The key idea behind the approach is that of estimating the gradient of the ob-
jective function of the output with respect to the input variables by perturbating
run-time such variables, and thanks to the gradient direction information steer the
actuation towards the value optimizing the objective.

The Extremum Seeking control architecture is depicted in �gure4.1, the follow-
ing is a description of his main components:

• the dithering signal 0B8=(lC), a small amplitude sinusoidal signal aimed at
perturbing the control input. This is useful to �nd out the direction of im-
provement of the performance;

• the unknown physical system, the unknown system that generates the output
signal ~;

• the cost function block, which generates, as a function of the ouput, the objec-
tive signal � to optimize;

• the washout �lter, described by the transfer function B/(B + ℎ), where ℎ is the
�lter frequency, to reject the continuous component of the objective signal
[16]. It outputs the zero-mean signal d ;

• the multiplicative node, aimed to demodulate d multiplying it with the dither-
ing signal and outputting the signal b ;
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• the integrator block W/B , which integrate the demodulated signal producing
the best guess D̂ for the optimizing input D. For W > 0 the objective is mini-
mized, whereas it is maximized for W < 0.

The algorithm works as follows. A sinusoidal perturbation is added to the esti-
mate of the input D̂ that maximizes the objective function:

D = D̂ + 0sin(lC) (4.1)

The perturbed input passes through the dynamics of the system and through the
block of the cost function that produces at the output the signal � that varies sinu-
soidally about some mean value. The objective function � is high-pass �ltered to
remove his mean (the continuos component) resulting in the oscillatory signal d .
The high-pass �ltered output is then multiplied by the dithering signal resulting in
the demodulated signal b :

b = sin(lC)d (4.2)

The signal b is mostly positive if the inputD is on the left of the optimal value, while
is mostly negative if D is on the right of the optimal value. Finally the demodulated
signal b is integrated into the best estimate of the optimizing value D̂:

3

3C
D̂ = −Wb (4.3)

so that it is steered towards the optimal input. From the mathematical passages
above it is not clear where the information on the gradient of the objective function
appears. This is actually appreciable considering constant plant dynamics such that
� is simply a function of the input:

� (D) = � (D̂ + 0sin(lC)) (4.4)

Expanding � (D) in the dithering signal, which is assumed to be small, yelds:

� (D) = � (D̂) + m�
mD

����
D=D̂

· 0sin(lC) + O(02) (4.5)

The leading term in the high pass �ltered signal is d ≈ + m�

mD

���
D=D̂
·0sin(lC). Averaging

b0E6 = sin(lC)d over one period yelds:

b0E6 =
l

2c

∫ l
2c

0
sin(lC)d3C (4.6)

=
l

2c

∫ l
2c

0

m�

mD

����
D=D̂

0sin2(lC)3C (4.7)



4.3. Stock trading via Extremum Seeking control 61

Gain/Loss

AccountingI0 I(t)

p(t)
g(t)

s
s+h−γ

s

sin(ωt)a sin(ωt)
K(t)

Figure 4.2: The Extremum Seeking control scheme for feedback
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∫ l
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0sin2(lC)3C (4.8)

Thus, with trivial plant dynamics the signal b0E6 is proportional to the gradient of
the objective function � with respect to the input D.

The stability proof in [62] shows that the solution will be within a neighborhood
of the maximum (or minimum) of the output function but it will never reach it,
due to the persistent perturbation signal 0B8=(lC). To get an estimation as close
as possible to the optimum value, it will be needed to leverage on the parameters
involved in the algorithm.

4.3 Stock trading via Extremum Seeking control

The methodology is naturally suited for all systems, like the one considered here,
in which the dynamics (of the price) is unknown or highly uncertain and vary over
time. Moreover, it allows the design parameters, i.e., the controller gain  in this
case, to be time-varying and self-adapted on-line.

Figure 4.2 depicts the new scheme for stock trading via feedback control that ex-
ploits the Extremum Seeking rationale. In the present setting, the unknown physical
system is represented by the gain/loss accounting block, where the inputs are the
investments � (C) and the price ? (C), while the output to maximize is 6(C) itself. No-
tice that the resulting time-varying feedback gain (C) generated by composing the
blocks in the blue box of Figure 4.2 must also here be composed by two elements:
 ( (C) for the short investment strategy and  ! (C) for the long investment strategy.
Therefore, the Extremum Seeking scheme is here applied to both the investment
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strategies and composed similarly to the SLS case of section 2.4 (the overall control
gain will again be obtained as the sum of the two actions as  (C) =  ! (C) +  ( (C)).
This new scheme proposed in this paper will be called Extremum Seeking Con-
troller (ESC). Notice that 0, l , W and ℎ are tuning knobs and need to be determined.
In particular, W must have positive values when applied for the long controller and
negative values for the short one.

To suitably select such parameters, [4] suggests some qualitative guidelines:

l : perturbation frequency, it must be within the interval [0, c] and it can be
chosen depending on the closed loop system bandwidth;

0: perturbation amplitude, it must be small enough to obtain small changes in
the output function but large enough to assure reliable measure of the gradi-
ent of 6;

ℎ: High pass �lter, it must be designed such that 0 < ℎ < 1 and should be
smaller than l so that the �lter removes the continuous component of the
output without corrupting the estimation of the gradient.

W : the gain of the Extremum Seeking scheme; large values will speed up the
convergence rate as well as the possibility of saturation conditions. For this
reason, we should selectW large enough to obtain satisfying results under both
ideal conditions and on real data, but also small enough to avoid steady state
situations, namely values of gain  constant over the time [4].

Simply put, the tuning of the above knobs could be summarized into a managing
problem of the trade-o� between convergence rate and accuracy of the optimizer.
In other words, a rapid convergence will imply that the investment will spend a
shorter amount of time very close to the optimal investment strategy; on the other
hand, a better tracking of the optimal trading policy can be achieved at the cost of
a slower rate of adaptation when the price dynamics change. In this work it was
decided to set the aforementioned parameters only once, at the beginning of the
experiment, however it would be interesting, and will be subject to further study,
the study of the sensitivity of the performances by varying the tuning frequency of
these parameters that can be set also run-time in an adaptive way.

It should be here also remarked that other dithers could be used instead of the
sine wave as the perturbation signal. For instance, the square wave excitation is
proved in [85] to provide the best convergence rate among all dithers of the same
amplitude and frequency. Therefore, this signal will be used in the experimental
examples of the next section.
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Figure 4.3: Daily closing prices for the Exxon (XOM, NYSE) stock
from January 2015 until September 2015.

Finally, notice that the higher level of �exibility of such a time-varying control
strategy is paid in terms of theoretical guarantees like Theorem 2.1, which no longer
apply. Nonetheless, convergence analysis of extremum seeking schemes is indeed
feasible (see again [85]) and will be object of future works. Moreover, as illustrated
in the following example, there are already some cases in which the assumptions
of the theory with time-invariant controllers are not satis�ed, and in such cases the
extremum seeking control appears as the most suited solution.

4.4 Experimental results

In this section, a numerical case study considering experimental data taken from
a real stock is presented. Such an example has been selected within a round-trip
period, where the traditional strategy is known to encounter some di�culties. After
the case study, a more comprehensive simulation campaign, taking into account all
DJIA’s (Dow Jones Industrial Average) stocks between 2013 and 2015, is discussed,
with the aim of providing a statistical assessment of the method.

4.4.1 The Exxon Mobil case study

Consider the Exxon Mobil Corporation (XOM, NYSE) stock from January 2015 un-
til September 2015 in Figure 4.3. During this period, the equity presents di�erent
trends (both positive and negative), and, at the end of the period, the price is very
close to the initial value.
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Figure 4.4: Wealth values for the Exxon (XOM, NYSE) example: SLS
control and ESC control.

Two reactive control strategies are here applied: the SLS control of Section 2.4
and the approach proposed in this chapter. For a fair comparison, the same val-
ues for the initial wealth F0 = 10000$, the initial investment �0 = 5000$ and the
maximum investment level �<0G = 20000$ are considered for both the techniques.
Obviously, for the short-selling scheme, the initial and the limit investments must
be considered with the negative sign. For the SLS control,  (!( = 4 is selected
via backtesting using as in-sample data the previous year of prices of the same
stock. For the Extremum Seeking controller, the following parameters are instead
chosen with grid-search, by means of the same backtesting strategy: U = 0.04,
l = 0.4c A03/B0<?;4 , W = 4 and ℎ = 0.8. When the SLS controller is applied, the
wealth value in Figure 4.4 is obtained. As expected, the controller increases the
wealth in presence of the initial negative trend. However, at a time when the share
price suddenly reverses its trend around the day 175Cℎ, the SLS su�ers a strong
monetary loss in the days to follow. This is due to the fact that the SLS controller
cannot rapidly change the short strategy into a long one. Ideally, the sign of the in-
vestment should change (from negative to positive) around the 175Cℎ day. The ESC,
on the contrary, despite the sudden change in price trends, is able to limit monetary
losses.

In Figure 4.5, the investment levels corresponding to the accounts of Figure 4.4
are illustrated (a split in long and short investment is instead shown in Figure ??).

Such a plot con�rms that the ESC approach addresses more promptly the change
of the trend, basically stabilizing the wealth notwithstanding the unexpected behav-
ior.
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Figure 4.5: Investment levels for the Exxon (XOM, NYSE) example:
SLS control and ESC control.
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Figure 4.6: Split of long/short investment levels for the Exxon (XOM,
NYSE) example.
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4.4.2 The DJIA’s stocks between 2013 and 2015

The case study in the previous section is de�nitely of interest to show that the pro-
posed approach might work well in some situations, but indeed is not general. Since
when  is time-varying, the theoretical properties proven in [10] do not hold even
within idealized markets, in this subsection a statistical evaluation of the approach
will be proposed over all the DJIA’s stocks in the period 2013-2015.

To do that, ESC and SLS schemes have been designed for each stock following
the same approach adopted for the Exxon (XOM, NYSE) example. The �nal results of
the ESC scheme are reported in Table 4.1, in terms of average values of the �nal gain
as compared to the SLS approach and a traditional Buy & Hold, but also considering
the maximum and the minimum relative gain with respect to the other strategies.

Interestingly, the simulations show that not only the ESC strategy provides bet-
ter results in terms of mean gain, but it is never (signi�cantly) lower than the non-
adaptive strategy [10]. At the same time, it may outperform it - in the lucky case
- of about +50%. The performance improvement is even more signi�cant as far as
the traditional Buy & Hold approach is employed.

B&H SLS
Mean +9.26% +3.76%

Upper limit +63.17% +49.78%
Lower limit -4.05% -2.66%

Table 4.1: Account values obtained by the Extremum Seeking ap-
proach (ESC) in comparison to traditional SLS and Buy and Hold.
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Chapter 5

A robust design strategy for stock
trading via feedback control

5.1 Introduction

In this �fth chapter we describe the second innovative contribution of this disserta-
tion to the line of research of stock trading via feedback control described in Chapter
2.

In the previous chapter we dealt with one of the main limitations we encoun-
tered in the original scheme of section 2.4, the SLS controller. In particular, we
pointed out that a time-invariant controller could not be adequate to control a sys-
tem whose dynamics are governed by market prices, which, by their nature are non-
stationary stochastic processes and therefore subject to changes in their dynamics
for socio-economic reasons. For this reason a time-invariant controller does not
seem to be the ideal choice. Furthermore, in the theory of stock trading via feed-
back control there are no guidelines for tuning the controller values. We therefore
decided to overcome this challenges by using an approach derived from adaptive
control and based on the Extreme Seeking rationale. We have designed a new con-
trol scheme that we have called the Extremum Seeking Controller, characterized by
a pair of time-varying controllers in which the control law varies reactively with
respect to changes in price dynamics. Furthermore, we have provided guidelines
for the calibration of the characteristic parameters of the controller. This adap-
tive approach proved to be e�ective in numerical experiments having exceeded in
performance the two benchmarks, the original SLS scheme and the Buy & Hold
strategy.

In this chapter we do not question the practical e�ectiveness of the ESC, how-
ever we note the fact that it does not provide guarantees of robustness and risk
control features that typically are important qualities in the eyes of an investor.
Furthermore we note a drawback that unites the two schemes mentioned above,
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neither the ESC nor the SLS in any way exploit information regarding prices and in-
stead treat them as external disturbances completely unknown, while, on the other
hand, exploiting it in a mild manner could be bene�cial without undermining the
model-free nature of the approaches.

In light of these fact, in this chapter, we will design a new investment strat-
egy based on another control methodology, called robust control, able to provide
guarantees of robustness and able to take advantage of the information available
on price, and in particular on their returns. Indeed, we propose a reformulation of
the reactive trading scheme described in Chapter 2, in which the return (i.e., the
normalized price trend) is not treated as an unknown disturbance, but rather as an
uncertain parameter within a limited range of values. The key observation motivat-
ing this analysis is that, especially in high frequency trading, the return can be well
approximated as an Uncertain But Bounded (UBB) parameter, as we will also show
via an extensive empirical study. It follows that, by assuming a very mild knowl-
edge of the process dynamics (i.e., the return bounds), a robust controller can be
designed, which not only provides good average performance, but also robustness
guarantees. Speci�cally, to formulate the design problem as a �∞ problem, a trend
following scheme will be employed, where the desired gain is reasonably selected
by considering the current situation.

The organization of this chapter is as follows. In Section 5.2, a reasonable as-
sumption on price returns is described. . The proposed robust control design scheme
is introduced and analyzed in Section 5.2.1. The e�ectiveness of the proposed strat-
egy is illustrated in Section 5.3.

5.2 An additional (but reasonable) assumption

In this section, supported by the study of the �nancial literature, we discuss what
reasonable assumptions can be made about price returns.

The behaviour of price returns of �nancial assest has been studied for years [76].
First studies date back to the early 1900s, in which the returns of the assets were as-
sumed to be independent and identically distributed and modeled using normal dis-
tributions. From the early 1960s, the normality hypothesis began to be questioned,
since empirical returns distributions showed fatter tails then the Gaussian model
[54]. For these reasons, in the following years, some authors tried to �nd some new
distributions that could better explain price returns, e.g., the stable Paretian distri-
bution [86], the Student distribution or t distribution in [17], the exponential power
distribution in [54], the Laplace distribution in [61, 68] and the logistic distribution
in [54]. Nowadays, there is no formal agreement on the probabilistic distribution
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that best describes the return of �nancial assets [76]. This is also con�rmed by the
empirical study illustrated in Fig. 5.1 on 8 single stocks from the American market
on a time frame that goes from 2010 to 2017. In this study, we used daily closing
prices to compute price returns for a total of 14044 data points and it actually seems
that the empirical probability distribution are not Gaussian showing fatter tails as
stated in [54]. Therefore the assumption of gaussianity is to be excluded.

Figure 5.1: Empirical return distributions from 1-1-2010 to 31-12-
2017 of 8 American famous assets.

The non-stationarity of prices, and in particular the heteroskedasticity of re-
turns, is widely documented in the �nancial literature [64, 98, 84]. Heteroskedastic-
ity (or heteroscedasticity) happens when the standard errors / variance of a variable,
monitored over a period of time, are non-constant. A visual example of this prop-
erty can be seen in �gure 5.2, which shows the realzation of returns of the Facebook
market price over the 2010-2017 period. It follows taht it is necessary exclude as-
sumptions on stationary of price returns.

However, by looking at the boxplots in Fig. 5.3, we can show an important
property: all the returns of the considered stocks are bounded to a narrow range of
values within the interval of ±20%. Although conservative, the above number could
be used as a limit for the return that, in turn, could represent a model uncertainty
within a feedback scheme, as illustrated next.

In light of this analysis we consider as reasonable the assumption that
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Figure 5.2: Facebook return realization from 1-1-2010 to 31-12-2017.

return d (C) can be treated as an uncertain parameter belonging to the interval
setU (uncertain but bounded):

U = {d (C) : d<8= ≤ d (C) ≤ d<0G } (5.1)

For deriving the control policy of this paper, we assume that a mild knowledge of
the range of possible returns is available. This is not a strong assumption, especially
in high frequency trading.

5.2.1 Robust controller design for optimal gain tracking

In this work, based on the uncertain but bounded assumption, the reactive trading
problem is reformulated as a reference tracking problem, according to the scheme
depicted in Fig. 5.4, where 60 denotes the desired gain, whose selection will be dis-
cussed later.

The system % is the gain/loss function and can be described by the state space
model: 

¤6(C) = d (C)� (C)
~ (C) = 6(C)
4 (C) = 60(C) − 6(C)

(5.2)
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Figure 5.3: Empirical return distributions from 1-1-2010 to 31-12-
2017 of 8 American famous assets.

K(z) P (z)
g(k)I(k)e(k)g0(k)

+−

Figure 5.4: Reference tracking scheme.

More speci�cally, assuming to work with sampled data, we will work from now on
with the more appropriate discrete time form:


6(: + 1) = 6(:) + d (:)� (:)
~ (:) = 6(:)
4 (:) = 60(:) − 6(:)

(5.3)

In (5.3), d (:) is treated as a parametric uncertainty that a�ects the system. To syn-
thesize the controller it was decided to use the �∞ approach. De�ning )460 (I, \ )
as the closed-loop transfer function between the reference gain 60(:) and the dif-
ference between the reference gain and the actual gain 4 (:) = 60(:) − 6(:), the
parametric robust structured �∞ control problem consists in computing a struc-
tured controller  (I, \★) with the following properties:
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• robust stability:  (I, \★) stabilizes the system for every possible variation of
d (:);

• robust performance:  (I, \★) is the controller among all the others robust sta-
bilizing controllers  (I, \ ) with the same structure that satis�es:

max ‖)460 (I, \★)‖∞ ≤ max ‖)460 (I, \ )‖∞

It should be noted that the�∞ approach provides stability and robustness guar-
antees when the parameters are UBB and constant. If the parameters are time-
varying, the �∞ theoretical guarantees may not hold anymore (some additional
assumption may be required, like for example su�ciently slow variation). This
consideration also holds for robust performance. The e�orts of future studies will
be aimed at proving stability and robustness guarantees in a probabilistic way up
to a predetermined con�dence level assuming that price returns are governed by
simple distributions such as the Gaussian distribution.

The choosen controller structure is that of a Proportional/Derivative (PD) con-
troller. The integral action for zero steady-state error is not needed as the system
already contains an integrator. More speci�cally, two branches for long and short
trading with two PDs are implemented, according to the SLS rationale, the result-
ing sheme is is called Robust SLS (RSLS) and is depicted in Fig. 5.5. To realize this
scheme, it is assumed that the uncertain d (:) parameter can only take positive val-
ues for the long branch, while it can only vary among negative values for the short
branch. The optimization problem was solved using the Matlab Robust Control
Toolbox. The systune function, which implements the nonsmooth optimization al-
gorithms described in [3] was used to �nd the otpimal parameters of the controller.
The real uncertain parameter d (:) was modeled using the function ureal from the
same library.

The reference generation block is a tuning knob of the approach. In this work,
as a criterion for the design of the reference signal 60, a trend following strategy is
implemented. The resulting scheme is depicted in Fig. 5.6 and it works as follow,
if the price is increasing, the long gain will increase forcing the scheme to increase
the long position, on the contrary the short gain will decrease, forcing the scheme
to decrease the short position. If prices decrease, the situation is reversed. To this
purpose, our choice is the inclusion of a second feedback of the same signal, the
gain/loss function, obtained via multiplication with a new parameter U aimed to
decoupling the inner and outer feedback and to pilot the scheme towards the right
direction, without following too strictly the price dynamics. In this way 60,; (:) =
U6; (:) for the long position and 60,B (:) = U6B (:) for the short one. The absolute
value of such a parameter dictates the agressiveness of the investment.
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Figure 5.7: Facebook stock price from 1-1-2013 to 31-12-2017.

5.3 Experimental results

To show the e�ectiveness of RSLS control against standard SLS, real-world daily
trading of Facebook and Google stocks are considered. Speci�cally, past data are
used covering a period of 5 years, from the beginning of 2013 to the end of 2017.
The data were then separated into two parts: from January 2013 to June 2015, data
are used for training (blue lines in Fig. 5.7 for Facebook and Fig. 5.8 for Google),
i.e. to select the optimal values of the hyper-parameters of the two algorithms, the
feedback gain  of the SLS scheme and the U parameter of the Robust SLS scheme.
The remaining two and a half years (green lines in Fig. 5.7 for Facebook and Fig.
5.8 for Google) are instead employed as a test set for evaluating the performances
of the algorithms.

The idea behind these experimental tests is to calibrate the parameters of the
two schemes, the SLS and the RSLS, using the train data and then using this pa-
rameterization to compare the performances of the two schemes both on the train
data and on the test data. The objective is to verify whether the new scheme actu-
ally proves to be more robust to any changes in price dynamics than the original
scheme.

The hyper-parameters of the two models, in particular the feedback gain of the
SLS scheme and the U parameter of the Robust SLS scheme were selected through
a sensitivity analysis from a grid of possible values, minimizing the cost function
suggested in [87], namely the trading MSE using the train data to perform the op-
timization. For Facebook  = 11 and U = 1.25 were selected. For Google  = 8 and
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Figure 5.8: Google stock price from 1-1-2013 to 31-12-2017.

U = 1.1 were selected.
The limits of the range of variation of the uncertain d parameter were chosen

conservatively in such a way as to emphasize the characteristics of robustness and
the new control scheme. For this reason a range of d (:) ∈ [−0.2, 0.2] has been se-
lected that is most likely able to encompass the great majority of possible variations
of the return of the to stocks.

The resulting robust controller obtained thanks to the �∞ synthesis procedure
is given by the transfer function:

 (I) =  % +  �
1

) 5 +)B/(I − 1) (5.4)

with  % = 284,  � = −4.134 + 04, )5 = 150, )B = 1 for the long controller and
 % = −284,  � = 4.134 + 04, )5 = 150 and )B = 1 for the short controller.

In Fig. 5.9, it can be seen that the SLS scheme outperforms RSLS on the training
data. However, if the same controller is used on the test data, see Fig. 5.10, the
situation is reversed, as the stochastic characteristics of the price have changed and
the gains of the SLS are no longer optimal.

The same procedure is carried out with Google data. By testing the algorithms
on train data, it is observed from Fig. 5.11 that the performance of the two schemes
is comparable in the �rst 500 days while in the �nal trading days the performance
of the RSLS is less a�ected by the lack of price trends than those of the SLS. And
again, observing the results of the test in the Fig. 5.12, it is clear that from 350-th day
onwards the robust scheme is able to exploit in a more e�ective way the rising trend
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Figure 5.9: Comparison between gain-loss functions for the SLS, Ro-
bust SLS and Buy & Hold on the training part of Facebook data.

and consequently at the end of the training period the RSLS largely outperform the
SLS.
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Figure 5.10: Comparison between gain-loss functions for the SLS
Robust SLS and Buy & Hold on the test part of Facebook data.
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Figure 5.11: Comparison between gain-loss functions for the SLS
Robust SLS and Buy & Hold on the training part of Google data.
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Figure 5.12: Comparison between gain-loss functions for the SLS
Robust SLS and Buy & Hold on the test part of Google data.
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Chapter 6

Multi-period asset allocation with
kernel-based control policy

6.1 Introduction

This chapter presents an innovative contribution of this dissertation to the research
�eld of multi-period portfolio optimization introduced in section 3.3.

In chapter 3 we addressed the problem of optimal allocation of an investor’s
monetary resources in a portfolio of �nancial assets. In section 3.2, we discussed the
classic single-period portfolio optimization framework dating back to Markowitz
and subsequent approaches based on robust optimization and asymmetric risk mea-
sures aimed at improving the original model.

In section 3.3 we introduced an important extension of the single-period frame-
work based on a multi-period decision-making approach aimed at satisfying long-
term investment objectives of an investor. In multi-period asset allocation, opti-
mization is used to plan a sequence of trades to carry out over a set of future peri-
ods.

We �rst mentioned the classical literature on multi-period portfolio optimiza-
tion based on dynamic programming and dating back to the work of Merton [77]
and Samuelson [96]. However, using dynamic programming for asset allocation has
proved impractical, except for short investment horizons and limited numbers of as-
sets, due to the “curse of dimensionality” [21]. We have therefore introduced recent
and promising convex formulations based on Model Predictive Control techniques
which, although they provide sub-optimal control policies, have the advantage of
being able to naturally incorporate constraints on portfolio composition and can
also be resolved in useful times for practical implementations. Of particular inter-
est for this dissertation are the approaches presented in sections 3.3.2 and 3.3.3, able
to exploit the dynamic nature of the multi-stage problem by introducing closed-loop
policies which are parametric functions of past market return realizations. To pre-
serve the convexity of the optimization problem, a�ne parametrized policies are
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adopted.
In this chapter we generalize the latter approach by employing techniques of

statistical learning theory that allow extending the policies’s class to nonlinear func-
tions while preserving the convexity of the optimization problem and therefore en-
suring reasonable computation times for computing the optimal allocations.

6.2 Problem statement

In this section, �rst of all, we recall the main variables involved in the multi-period
allocation problem discussed in section 3.3. Assuming = tradable assets, we denote
by G (:) ∈ R= the portfolio vector whose elements represent the portion of total
wealth, measured in Euros/Dollars, allocated in the individual assets that make up
the investor’s portfolio. With F (:) = ∑=

8=1 G8 (:) we indicate the investor’s total
wealth at time : .

We denote by 6(:) ∈ R= the vector of assets gains over the :-th period and with
� (:) ∈ R=×= the diagonal matrix having the elements of 6(:) in the diagonal. We
assume that the future investment horizon is made up of ) ≥ 1 decision-making
stages during which the investor has the opportunity to vary the allocation of his
resources between the traded assets. Finally, we indicate with D (:) ∈ R= the vector
of portfolio adjustements whose elements quantify the monetary amount invested
or disinvested in the respective assets.

The recursive equation modeling the portfolio dynamics is given by:

G (: + 1) = � (: + 1) [G (:) + D (:)], : = 0, . . . ,) − 1 (6.1)

Following the scenario approach described in section 3.3.3, we assume that we
have a mechanism for generating # iid scenarios of the future gains {� ( 9) (:), : =

1, . . . ,) }, 9 = 1, . . . , # . We will use these sampled scenarios to minimize some port-
folio’s empirical performance measure � (D (:)) associated with the investment strat-
egy. For example, in section 3.3.3 we measured the portfolio’s performance by the
empirical shortfall at the �nal stage:

� (D (:)) = 1
#

#∑
9=1

max(0, W −F ( 9) () ))a (6.2)

where W is the desired target wealth at the end of the investment horizon and a is
typically set to a = 1 or a = 2 based on the risk aversion attitude of the investor.
With this setting the multi-period portfolio optimization problem can be cast as the
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following dynamic optimization problem:

min
D (:)∈U

1
#

#∑
9=1

max(0, W −F ( 9) () ))a (6.3a)

s.t. 1)D (:) = 0, : = 0, . . . ,) − 1 (6.3b)

G ( 9) (:) ∈ X(:) : = 0, . . . ,) − 1, 9 = 1, . . . , # (6.3c)

Constraint 6.3b models the self-�nancing condition, while constraint 6.3c ensures
that, for each scenario 9 and for each decision stage : , the portfolio vector G ( 9) (:)
respects all the constraints on its composition contained in the set X(:), including
in the �rst place the dynamic equation 6.1. Finally, the portfolio adjustments D (:)
are elements of the set U. In the simplest case D (:) is a vector of unconditional
adjustments and U corresponds to the R= space, in a more complex case D (:) are
control functions, called policies, and the setU is a generic set of functions.

Note that the cost function 6.3a is not di�erentiable due to the presence of the
max(·, ·) function. To address this issue it is possible to add slack variables and
reformulate problem 6.3 in the following way:

min
D (:)∈U

1
#

#∑
9=1

Ia9 (6.4a)

s.t. 1)D (:) = 0, : = 0, . . . ,) − 1 (6.4b)

G ( 9) (:) ∈ X(:), : = 0, . . . ,) − 1, 9 = 1, . . . , # (6.4c)

I 9 ≥ 0, 9 = 1, . . . , # (6.4d)

I 9 ≥ W −F ( 9) () ) 9 = 1, . . . , # (6.4e)

As discussed in section 3.3.2, we want to generate investment policies that ex-
ploit the dynamic nature of the problem by progressively using the new information
that becomes available and represented by the observation of returns, or equiva-
lently the market gains. Assuming that, at time : ≥ 1, we have at our disposal the
sequence of market realizations6(1), . . . , 6(:) we look for policies that are functions
of the observed gains, and therefore having the following structure:

D (:) = 5: (6(1), . . . , 6(:)) (6.5)

With this setting, optimization problem 6.4 consists in looking for the optimal func-
tion in the potentially in�nite dimensional functional spaceU and therefore �nding
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a solution is generally unfeasible. For this reason in [29, 30] the author adopts a sub-
optimal strategy based on a �nite-dimensional a�ne parameterization of the poli-
cies, allowing for a tradeo� between policy complexity and numerical tractability
of the optimization procedure. In particular, in [29], the autors shows that appro-
priately choosing cost function and portfolio composition constraints and adopting
an a�ne policy with a single-stage memory depth of the form:

D (:) = D̄ (:) + Θ(:) (6(:) − 6̄(:)) (6.6)

where 6̄(:) are the expected gains, D̄ (:) ∈ R= and Θ(:) ∈ R=×= are the decision
variables, optimization problem 6.4 is convex and therefore solvable in an e�cient
way.

In [30] the same author generalize this result allowing for control policies with
full memory of the past return history:

D (:) = D̄ (:) +
:∑
g=1

Θg (:) (6(g) − 6̄(g)) (6.7)

showing that the full memory extension does not compromise the convexity of the
optimization problem.

6.3 Generalization to non-linear control policy

It is reasonable to ask whether a linear parameterization of the control law is su�-
cient to capture any complex market dynamics, therefore the objective of this sec-
tion is to extend the space of functions among which to look for the optimal policy
to the space of more generic non-linear functions.

We will study two di�erent approaches, the �rst aims at obtaining non-linear
policies through the pre-processing of policy inputs [1], the second is based on
kernel methods [97].

6.3.1 Nonlinearity by preprocessing

We start assuming, for each asset 8 , the following linear control policy with memory
depth of g :

D8 (:) = D̄8 (:) + V)8 (:)g(:) (6.8)

where g(:) ∈ R(=·g) is called regressors vector and has the following structure:

g(:) = [61(:) · · · 61(: − g + 1) · · · 6= (:) · · · 6= (: − g + 1)]) (6.9)
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while V8 (:) = [V8,1(:) V8,2(:) · · · V8,(=·g) (:)]) is a vector of weights associated with
the regressors.

A �rst possible approach to move to nonlinear control actions is to preprocess
policy’s inputs (in our case the regressors vector g(:)) into an high-dimensional
inner product space F called feature space as described in [1]. Let’s consider for
now, for simplicity, F = R3 . This mapping from the original space to the feature
space is performed by means of a feature map q :

q : R(=·g) → R3 , (6.10)

g(:) ↦→ q (g(:)) (6.11)

The feature map q can be seen as a collection of arbitrary functions that are applied
to the inputs forming the feature vector :

q (g(:)) = [i1(g(:)), . . . , i3 (g(:))]) (6.12)

where:

i 9 : R(=·g) → R, 9 = 1, . . . , 3 (6.13)

g(:) ↦→ i 9 (g(:)), 9 = 1, . . . , 3 (6.14)

The structure of the control policy, with the mapping applied to the inputs, becomes:

D8 (:) = D̄8 (:) + V)8 (:)q (g(:)) = D̄8 (:) +
3∑
9=1

V)8, 9 (:)i 9 (g(:)) (6.15)

where the weight vector V8 (:) is now an element of R3 .
The resolution of the optimization problem 6.4 with policies given by 6.15 will

provide a linear control function in the feature spaceR3 , but since the chosen feature
map q is generally non-linear, a linear control function in the space R3 corresponds
to a nonlinear policy in the original space [100].

The key to the success of this approach depends on a good choice of the feature
map, i.e. the function q in making the image of its inputs to be more informative in
the feature space. Choosing such a mapping generally requires expert knowledge
of the given task. Possible insights for the choice of the feature map can be taken
from the �nancial literature, for example there are studies ([99, 2]) that show em-
pirically that there is a non-negligible autocorrelation between squared value of the
market returns, therefore choosing a feature map that performs a quadratic trans-
formation could potentially increase the exploitable information contained in the
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original data. Often, however, since it is not possible to know in advance which are
the features that improves the investment performance, generic mappings are used,
such as polynomial type mappings.

In general it is possible to select a feature map q that maps the original space to
some Hilbert space, so that:

D8 (:) = D̄8 (:) + 〈V8 (:), q (g(:))〉 (6.16)

where 〈·, ·〉 is the inner product of the Hilbert space.
However, generic feature maps such that the range of q is a high dimensional

space can generate too complex feature vectors and the learning could be prone
to over�tting and thus bad generalization properties. This issue can be tackled
adding a complexity control term, a penalty on the norm of the policy weight vector
‖V8 (:)‖2, which lead to the regularized cost functional:

�A46 (D (:)) = � (D (:)) + _
=∑
8=1
‖V8 (:)‖2 (6.17)

where _ ≥ 0 is a parameter which controls the importance of the regularization
term.

By studying the literature about Model Predictive Control it is possible to �nd
other suggestions of regularization penalties to be imposed directly on the policy.
In particular, in [90], the authors suggest adding the following regularization term:

‖D8 (0) − D8 () − 1)‖2 +
)−1∑
:=1
‖D8 (: − 1) − D8 (:)‖2 (6.18)

where the �rst term of 6.18 penalizes large deviations between the initial control
action and the control action at the last step of the horizon while the second term
penalizes large di�erences between control actions of adjacent steps.

Using the regularized cost functional in equation 6.17, multi-period portfolio
optimization problem 6.4 becomes:
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min
D (:)∈U

1
#

#∑
9=1

Ia9 + _
=∑
8=1
‖V8 (:)‖2 (6.19a)

s.t. 1)D (:) = 0, : = 0, . . . ,) − 1 (6.19b)

G ( 9) (:) ∈ X(:) : = 0, . . . ,) − 1, 9 = 1, . . . , # (6.19c)

I 9 ≥ 0, 9 = 1, . . . , # (6.19d)

I 9 ≥ W −F ( 9) () ), 9 = 1, . . . , # (6.19e)

where:

U = {D (:) : D8 (:) = D̄8 (:) + 〈V8 (:), q (g(:))〉, 8 = 1, . . . , =} (6.20)

However the approach discussed in this section involves another kind of prob-
lem. Using generic nonlinear feature maps like the polynomial one can easily make
the optimization problem computationally unfeasible if the order of polynomial fea-
tures is and the size of the inputs are high, as the number of di�erent monomial fea-
tures of degree d is

(3+(=·g)−1
3

)
[103]. This can therefore compromise the applicability

of the described approach.

6.3.2 Implicit mapping via kernels

A second approach that represents a possible remedy to the computational problem
described in the previous paragraph involves the use kernel methods.

Assume we are at time : and to have at our disposal the following # matrix of
regressors:



[61(g) · · · 61(1) · · · 6= (g) · · · 6= (1)])
...

[61(:) · · · 61(: − g + 1) · · · 6= (:) · · · 6= (: − g + 1)])
...

[6( 9)1 () ) · · · 6
( 9)
1 () − g + 1) · · · 6( 9)= () ) · · · 6( 9)= () − g + 1)])


=



g(g)
...

g(:)
...

g() ) ( 9)


9 = 1, . . . , #

(6.21)
where the �rst : − g + 1 rows of matrix 6.21 contain observed market realizations
while the rest contain scenarios of future market realizations.

Given the feature map q we de�ne the kernel function as follows:

 : R(=·g) × R(=·g) → R, (6.22)

(g(B), g(C)) ↦→  (g(B), g(C)) (6.23)
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where
 (g(B), g(C)) = 〈q (g(B)) , q (g(C))〉 (6.24)

and g ≤ B, C ≤ ) .
One can interpret  as a measure that speci�es a sort of correlation between

regressors vectors at di�erent time instant B, C . The main advantage of this approach
is that it is neither necessary to specify the transformed inputs nor to specify the
feature map [97].

As proved in [106], we can apply the following theorem:

Theorem 6.1 (Representer theorem, [97]). Assuming q is a mapping to an Hilbert
space, then, there exist a vector U8 (:) such that V8 (:) =

∑:
C=g U8,C (:)q8 (g(C)) is an

optimal solution of problem 6.19.

On the basis of the representer theorem we can optimize problem 6.19 with
respect to the coe�cients U8 (:) instead of the coe�cients V8 (:) as follows. Given
V8 (:) =

∑)
C=1 U8,C (:)q8 (6(C)) we have that for all : :

〈V8 (:) , q8 (g(:))〉 =
〈 :∑
C=g

U8,C (:)q8 (g(C)) , q8 (g(:))
〉

(6.25)

=

:∑
C=g

U8,C (:)〈q8 (g(C)) , q8 (g(:))〉 (6.26)

=

:∑
C=g

U8,C (:) (g(C), g(:)) (6.27)

Similarly, the regularization term can be rearranged as:

‖V8 (:)‖2 =
〈 :∑
C=g

U8,C (:)q8 (g(C)) ,
:∑
C=1

U8,C (:)q8 (g(C))
〉

(6.28)

=

:∑
C,:=g

U8,C (:)U8,: (:)〈q8 (g(C)) , q8 (g(:))〉 (6.29)

=

:∑
C,:=g

U8,C (:)U8,: (:) (g(C), g(:)) (6.30)

Instead of solving problem 6.18 we can solve the equivalent problem:

min
D (:)∈U

1
#

#∑
9=1

Ia9 + _
=∑
8=1

:∑
C,:=g

U8,C (:)U8,: (:) (g(C), g(:)) (6.31a)

s.t. 1)D (:) = 0, : = 0, . . . ,) − 1 (6.31b)

G ( 9) (:) ∈ X(:), : = 0, . . . ,) − 1, 9 = 1, . . . , # (6.31c)
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I 9 ≥ 0, 9 = 1, . . . , # (6.31d)

I 9 ≥ W −F ( 9) () ) 9 = 1, . . . , # (6.31e)

where:

U = {D (:) : D8 (:) = D̄8 (:) +
:∑
C=g

U8,C (:) (g(C), g(:)) 8 = 1, . . . , =} (6.32)

To solve the optimization problem 6.31 we do not need direct access to elements
in the feature space, we only need to know how to compute the kernel function.
In fact, to solve optimization problem 6.31, we only need the elements of the Gram
matrix K, which is a positive semide�nite symmetric matrix, such that:

KB,C =  (g(B), g(C)) (6.33)

Given the Gram matrix K we could rewrite the regularization term as:

_

=∑
8=1

:∑
C,B=g

U8,C (:)U8,B (:) (g(B), g(C)) = _
=∑
8=1

U)8 KU8 (6.34)

The advantage of using kernels rather than looking for the optimal value of V8 (:)
in the feature space is that often the feature space is very large while implementing
a kernel function is a simpler task [100]. Some examples of popular kernels are
given in the following.

• Polynomial kernel. The 3-degree Polynomial kernel is de�ned as:

 (g(B), g(C)) = (g(B))g(C) + 2)3 (6.35)

where 2 ≥ 0 is a free parameter trading o� the in�uence of higher-order
versus lower-order terms in the polynomial.

• Gaussian Kernel. The Gaussian kernel is de�ned as:

 (g(B), g(C)) = 4−
‖g(B)−g(C ) ‖2

2f (6.36)

where f > 0 is scale parameter. It can be shown [100] that the Gaussian ker-
nal corresponds to an inner product in an in�nite dimensional feature space.
Therefore solving optimization problem 6.29 corresponds to solving the opti-
mization problem 6.18 with in�nite dimensional feature vectors.
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6.4 Numerical experiments

In this section we present a numerical test based on real �nancial data. We con-
sidered a multi-period allocation problem involving = = 7 assets and a planning
horizon of ) = 12 periods, each period having the duration of one trading month
(about 21 days per month). Historical data of monthly asset returns were down-
loaded from the Yahoo Finance website covering a period from 5/2007 to 5/2019
(May 2019 included).

The assets taken into consideration for the composition of the portfolio are the
same used in [27], and are the following:

1. SPDR Dow Jones Industrial Average ETF, ticker DIA;

2. iShares Transportation Average ETF, ticker IYT;

3. iShares U.S. Utilities ETF, ticker IDU;

4. First Trust Nasdaq-100 Ex-Technology Sector Index Fund, ticker QQXT;

5. SPDR Euro Stoxx 50 ETF, ticker FEZ;

6. iShares 20+ Year Treasury Bond ETF, ticker TLT;

7. iShares iBoxx USD High Yield Corporate Bond ETF , ticker HYG.

Figure 6.1 shows the normalized prices of the 7 �nancial assets considered.
The dataset has been divided into two parts, a �rst part of in-sample data cov-

ering the period from 5/2007 to 12/2015 and a second part of out-of-sample data
covering the period from 1/2016 to 5/2019.

The in-sample data were used to generate 2 di�erent sets of scenarios, both
composed of # = 200 realizations of) = 12 periods each, for a total of # ∗) = 2400
scenario samples per set. The �rst set of scenarios was used as a train set to compute
the optimal allocation of the tested allocation strategies. The second set was used as
a validation set to perform the tuning of the hyperparameters of the tested allocation
strategies.

Finally, using the out-of-sample data, a third set of scenarios was generated,
also consisting of 200 realizations of 12 periods each and was used to test the im-
plemented strategies and compute the out-of-sample performances.

All the scenarios were generated using the Bootstrap method (sampling with re-
placement from the hystorical returns [45]) to preserve the probability distribution
of the real returns.
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Figure 6.1: Normalized prices of �nancial instrument over time.

6.4.1 Implemented strategies

Four di�erent allocation strategies were tested and compared with a benchmark.
The allocation strategies implement the following policies:

1. A�ne policy with single-stage memory depth:

Π1 : D (:) = D̄ (:) + Θ(:) (6(:) − 6̄(:)) (6.37)

2. A�ne policy with double-stage memory depth:

Π2 : D (:) = D̄ (:) + Θ1(:) (6(:) − 6̄(:)) + Θ2(:) (6(: − 1) − 6̄(: − 1)) (6.38)

3. Policy with single-stage memory depth and squared trasformation of the in-
puts:

Π3 : D8 (:) = D̄8 (:) +
=∑
9=1
F)8, 9 (:)i 9 (6(:)) 8 = 1, . . . , = (6.39)

where:

i 9 : R= → R, 9 = 1, . . . , = (6.40)

6 9 (:) ↦→ 6 9 (:)2 9 = 1, . . . , = (6.41)
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4. Policy with Gaussian kernel:

Π4 : D8 (:) = D̄8 (:) +
:∑
C=g

U8,C (:) (g(:), g(C)) 8 = 1, . . . , = (6.42)

where  (g(:), g(C)) is given by 6.36.

The strategy used as a benchmark is the naive portfolio diversi�cation rule, the
strategy in which a fraction 1/= of investor’s wealth is allocated to each of the =
assets at each rebalancing stage. Although its simplicity, the naive strategy has
proved to be extremely di�cult to outperform out-of-sample [38].

The constraints on the portfolio composition have been set to X(:) = {G (:) :
G (:) ≥ 0, : = 1, . . . ,) }, while the initial holdings were set as G8 (0) = 1/= for
8 = 1, . . . , =.

Two instance of optimization problem 6.4 with policy Π1 and Π2 were solved.
To improve the out-of-sample performance a regularization term implementing a
penalty on the squared norm of the decision variable was added to cost function
6.4a with _ = 0.1 and _ = 0.5 for policy Π1 and Π2 respectively. One instance
of optimization problem 6.18 was solved with policy Π3 and _ = 0.125. Finally one
instance of optimization problem 6.26 was solved with policy Π4 and memory depth
g = 12, f = 0.9 and _ = 0.5.

All the optimization problems were solved with portfolio performaces measured
by the expected shortfall given by 6.2 and with a = 2. The values of the hyperpa-
rameter were choosen through cross validation using the set of validation scenarios.
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6.4.2 Out-of-sample results

Figure 6.2 shows the results of a �rst numerical test where we compted the out-of-
sample multi-period e�cient frontiers for the implemented allocation strategies and
the benchmark. It represents the optimal trade-o� curve of the minimal expected
shortfall obtainable for a given value of target �nal wealthW . We considered 20 equi-
spaced values of the target �nal wealthW in the interval [1, 1.2]. From the �gure it is
observed that all the 4 strategies that implement the closed-loop policies outperform
the trivial allocation strategy. Policy Π2 with double-step memory does not give
a substantial improvement in performance compared to policy Π1 with a single-
step memory. Policy Π3 with single-step memory and square returns provides an
improvement in performance compared to policy Π1 and policy Π2. Overall policy
Π4 which implements the kernel-based strategy dominates the others in terms of
performance.

Figure 6.3 shows the results of a second numerical test where we computed the
out-of-sample histograms of the �nal wealth achieved by each strategy setting the
�nal target wealth to W = 1.08 (which corresponds to a return of 8% at the end of a
12-month investment period). For each panel in �gure 6.3 the red vertical dashed
line represents the target wealth of W = 1.08 while the black dashed line represents
the average value of the wealths obtained by the implemented strategies for the
di�erent out-of-sample scenarios. The average values of wealth obtained with the
strategies are respectively for policy Π1 a value of 1.057, for policy Π2 a value of
1.058, for policy Π3 a value of 1.061, for policy Π4 a value of 1.077, and for the naive
policy a value of 1.052.
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Figure 6.2: Comparison of the out-of-sample multi-period e�cient
frontiers of the tested allocation strategies and the benchmark.
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(c) Histogram of the �nal wealth obtained with
policy Π3

0.9 1 1.1 1.2 1.3
0

10

20

30

40

(d) Histogram of the �nal wealth obtained with
policy Π4

0.9 0.95 1 1.05 1.1 1.15 1.2
0

10

20

30

40

50

(e) Histogram of the �nal wealth obtained with naive policy

Figure 6.3: Histograms of the �nal wealths obtained with the imple-
mented allocation strategies
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Chapter 7

Conclusions

This thesis dealt with two of the main typical �nancial problems that are the trad-
ing of individual assets and the trading of a portfolio of multiple assets. In partic-
ular, two recent lines of research have been described that have the particularity
of formulating such �nancial problems as control problems: reactive trading and
multi-period portfolio optimization.

In Chapter 1 these two lines of research were introduced and their open prob-
lems were discussed.

In Chapter 2 we have described the line of research called reactive trading whose
main innovation is to treat stock prices as external disturbances a�ecting the sys-
tem. Thanks to a trading scheme capable of simultaneously implementing a long
and a short investment strategy using two feedback loops running in parallel, called
SLS, it is possible to guarantee certain performance levels under some market as-
sumptions and independently of the direction of the market. Two main open prob-
lems of this approach were then highlighted, which are one of the reasons for the
existence of this thesis.

In Chapter 3 we have described the literature concerning the trading of mul-
tiple �nancial assets that make up a portfolio. We started by describing the clas-
sic �nancial literature based on Markowitz’s single-period optimization approach.
We then highlighted the main problems related to this classical approach and new
methodologies born over the years to deal with these problems. In the second part
of Chapter 3 we have described an important extension of the classical approach
which is multi-period optimization. In particular, we focused on recent approaches
based on predictive control as they are able to be formulated as convex optimization
problems that can be solved e�ciently.

In Chapter 4 we described the �rst innovative contribution of this thesis to re-
active trading. In the SLS the controllers that are on the feedback loops are time-
invariant, we have instead proposed time-varying controllers based on the logic of
the Extremum Seeking and able to adapt more readily to the variations of dynamics
typical of the prices of market and caused by unpredictable economic and political
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events. Convergence analysis of the proposed scheme will be object of future works
together with a sensitivity analysis of the algorithm’s performance to the variation
of the tuning frequency of the parameters of the model that can be set run-time in
an adaptive way.

In Chapter 5 the second innovative contribution to reactive trading was de-
scribed. Starting from the mere assumption that price returns are uncertain but
bounded has allowed us to reformulate reactive trading as a problem of robust con-
trol of a system a�ected by parametric uncertainty and to synthesize robust con-
trollers with ranges of variation in price returns. Future studies will aim to demon-
strate, in a probabilistic, the stability of the proposed approach in the case of price
returns governed by simple distributions such as the Gaussian distribution.

Finally, in Chapter 6, we moved to multi-period portfolio optimization. In par-
ticular we have described how it is possible to use typical techniques of statistical
learning such as kernel-based methods to obtain non-linear investment policies able
to better capture possible complex market dynamics rather than linear policies de-
scribed in the literature. Future developments of this work will consist in using more
speci�c kernel functions for temporal problems such as the methods described in
[92], furthermore, massive experimental tests will be carried out to further validate
the proposed methodologies.
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