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Highlights 

- A conceptual model to assess buildings structural vulnerability to flash floods is provided 

- The model is conceived for application on large stocks of masonry buildings  
- Only geometrical data to be collected via field surveys are required  

- The model was positively compared with a finite elements analysis 
- An example of application to real buildings in the alpine area is provided 
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Abstract 

 

Urban and land use planning is conditioned by flood risk analyses and is a great research 

challenge. While methods are available for quantitative hazard and risk modeling, there is still 

a major gap related to reliable rational approaches for vulnerability assessment. This is 

particularly true for assessing vulnerability of buildings to floods. This vulnerability, which is 

important for economic reasons as well as for the safety of individuals and communities, is 

usually conceptualized on an empirical basis. Such empirical approaches, however, are plagued 

by considerable uncertainties, mostly because the damage-causing mechanisms on the building 

envelope are poorly represented.  

In order to advance this area, this paper focuses on the structural vulnerability of traditiona l 

masonry buildings in alpine areas exposed to flash floods. A simplified physically-based 

conceptual model which requires a limited amount of input data is proposed. The resistance of 

a wall impacted by a flash flood is studied in a limit analysis framework, considering different 

geometric ratios and building configurations. The resulting stability thresholds, expressed in 

dimensionless form as a function of the water depth, were positively compared with the results 

provided by numerical finite element models of the investigated geometries. The application 

of the proposed vulnerability model in risk mitigation strategies provides reliable information, 

suitable for a first-level risk assessment on large building stocks. 
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1. Introduction 

 

The increasing economic and social implications of floods require growing efforts for their 

forecast and control, as well as for the quantification of the associated societal risk [e.g., 

Molinari et al., 2014]. Although the definition of risk formally involves the same components 

(i.e., hazard, vulnerability and exposure), floods in different areas are caused by different 

mechanisms and, accordingly, the importance of each risk parameter and its influence on the 

overall risk height is different.  

Focusing on floods in mountain areas, these events are among the most dangerous hazards 

worldwide [Santi et al., 2011]. In Europe [e.g., Guzzetti et al., 2005; Hilker et al., 2009; 

Röthlisberger et al., 2017; Fuchs et al., 2017], in spite of a long history of hazard mitiga t ion 

[Holub and Fuchs, 2009; Kienholz et al., 2004], the overall risk is still growing due to 

increasing exposure [Fuchs et al., 2015] and to the potential effects of climate change on the 

frequency and magnitude of hazards [Keiler et al., 2010]. These floods are often a consequence 

of destructive torrential processes originating from high-intensity rainfalls or dam breaks [e.g., 

Hungr, 2008; Iverson, 2004; Jakob and Hungr, 2005].  

Advanced numerical methods have been proposed for their modeling [e.g., Ancey et al., 2008; 

Alcrudo and Mulet, 2007; Costabile et al., 2012; Pilotti et al., 2011, 2013 and 2014; Soares-

Frazão and Zech, 2007]. However, we observe that the interaction between the hazard process 

and the exposed elements (i.e., vulnerability) has so far gained much less attention, leading to 

shortcomings in tailored risk mitigation strategies [Mazzorana et al., 2014]. Therefore, 

vulnerability modeling is of paramount importance and its evaluation is a key step in the chain 

of flood risk assessment since it links flood hazard to exposure metrics providing an estimate 

of the expected damage and loss. So far, vulnerability was mainly explored with studies on the 

assessment of direct potential damage to structures [Armanini et al., 2011; Jakob et al., 2012; 

Mazzorana et al., 2014], people [e.g. Milanesi et al., 2015 and 2016; Xia et al., 2014], network 

infrastructures [e.g. Serre et al., 2011] and vehicles [e.g. Arrighi et al., 2015; Martinéz-

Gomariz et al., 2016].  

The hazardous nature of floods in mountain areas often arises from their destructive interaction 

with the built environment and the assessment of structural vulnerability of buildings is still an 

emerging topic. Initially, some scholars studied the overall building stability with respect to 

floating and horizontal forces exerted by flow [e.g. Black, 1975; Dale et al., 2004]. With 

increasing availability of computational resources and mathematical models, empirica l 

vulnerability functions based on the comparative observations between damage in real events 
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and flood propagation models were also suggested [e.g. Sangrey et al., 1975; Clausen and 

Clark, 1990; Karvonen at al., 2000, Pilotti et al., 2016]. Fuchs et al. [2007] proposed an 

empirically-based preliminary vulnerability function for buildings exposed to torrentia l 

hazards in Austria. Using the same approach for a debris flow event in the Italian Alps, Akbas 

et al. [2009] showed a higher degree of loss than reported in the Austrian study. Based on a 

torrent event in the Italian Alps, Papathoma-Köhle et al. [2012] highlighted the uncertainty in 

the computation of empirical vulnerability curves related to the overall lack of data. 

In general, these studies on the vulnerability of buildings exposed to flooding have been based 

on a limited knowledge of the structural characteristics of the impacted buildings so that, as 

suggested by Papathoma-Köhle et al. [2017], there is a need for more physically-based 

approaches. In this direction, it seems essential to understand the physical interactions between 

exposed buildings and the impacting processes [Mazzorana et al., 2014], an issue recently 

addressed also in the so-called socio-hydrology debate [Loucks, 2015; Di Baldassarre et al., 

2015]. 

To this purpose, although field data would be necessary for model set up, calibration and 

validation, the available information is still scarce and in most cases the characteristics of the 

impacting flow are observed at monitoring stations in the catchment rather than in close 

proximity to the affected buildings [Papathoma-Köhle et al., 2017]. Moreover, the interaction 

between structural elements (such as the building envelope) and the hazard depends on the flow 

direction, on the potential sediment concentration and size, as well as on the construction 

material and on the geometrical characteristics and conditions of the affected buildings [Gems 

et al., 2016; Papathoma-Köhle et al., 2017]. In order to overcome these challenges, laboratory 

experiments can be used to determine the process magnitude [e.g., Cuomo et al., 2009], the 

impact on the building envelopes and the reaction of the structures to the specific impact [Gems 

et al., 2016; Sturm et al., 2018]. Experiments and modelling provide information to 

complement the empirical data used to date [Armanini et al., 2011], yielding a unified 

explanation of the differing behavior of various building categories [Totschnig and Fuchs, 

2013].  

This paper contributes to this discussion, providing a physically-based structural vulnerability 

model for masonry buildings to flash floods caused by the sudden response of the basins to 

intense precipitation or dam failure [e.g., Karagiorgos et al., 2016; Alexander et al., 2016].   

A comprehensive analysis of the stability of an individual building under flow impact requires 

detailed knowledge of its structural characteristics, mechanical properties of the construction 

materials and the state of preservation. The retrieval of these information as well as the required 
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computational effort are extremely challenging especially when assessing flood risk on a large 

building stock. On the other hand, a preliminary classification of the most exposed buildings 

is often needed for land planning and civil protection. Accordingly, we propose a simplif ied 

structural vulnerability model based on a set of reasonable assumptions and simple parameters 

to be acquired with on-site data-collection campaigns, regarding basic geometric features (main 

dimensions of the walls, layout of the openings, number of floors, etc.) and construction 

technology. Such information lead to an evaluation of the internal and external boundary 

conditions, of the actions transferred across adjoining elements, and of the gravitational loads. 

Masonry buildings are typical of traditional mountain settlements in small basins (Fig. 1) and 

are often characterized by stone or brick masonry structures with one or two floors. Whereas 

most studies consider the buildings’ overall loss of stability, masonry structures have load 

bearing walls. Accordingly, in the collapse of a single wall might potentially destabilize the 

entire building so that the stability analysis must consider the behavior of each individua l 

structural element [as done with reference to cavity walls by Kelman and Spence, 2003]. 

Accordingly, in this paper the stability of a masonry wall impacted by flow under different 

building configurations is addressed. The computed vulnerability thresholds, positive ly 

compared with the results of a finite elements model (FEM), are presented in dimensionless 

form as a function of different wall aspect ratios, in order to provide a straightforward way to 

identify the maximum admissible thrust on the impacted wall. 

The proposed vulnerability thresholds allow for the identification of potential structural 

damages based on specific constructive parameters, and may therefore be of considerable value 

in operational risk management both from a scientific and practitioners’ side. If required, 

buildings experiencing high potential damages may be further investigated using more detailed 

approaches. We believe that the resulting risk classification may be adopted by local planning 

authorities as a useful decision-making tool to supply, prioritize and design possible flood risk 

mitigation measures, including financial incentives and subsidies [Holub and Fuchs, 2009]. 

 

2. Methods 

This study considers the effects of the impact of a flash flood on traditional masonry buildings . 

These structures are characterized by load bearing masonry walls whose collapse may 

compromise the building stability. Hence, the following vulnerability analyses will be focused 

on the stability of the external walls at the ground level (Figs. 1c, 1d) since their failure might 

lead to the collapse of the supported walls and floors. The behavior of each reference wall will 

depend on the characteristics of the wall itself, on its relation with the surrounding walls, on 
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the intensity of the flood action, and on the possible masonry failure mechanisms. Each 

reference wall (Fig. 2a) is characterized by width l (m), thickness t (m), and interstorey height 

Z (m). The wall is assumed to be impacted by a flood with density ρf (kg m-3) rising up to a 

maximum level hmax (m). The wall is subject to a uniformly distributed vertical load per unit 

length, which is a function of the number of the upper floors and the geometrical characterist ics 

of the walls. The self-weight of the masonry blocks is represented by the dead load resultant, 

which is applied at the centroid of the block. 

The response of the wall to the force exerted by the flow depends on the efficiency of the 

constraint provided by the cross-walls, the floor, and the foundation (dashed red lines in Figs. 

2b to 2e). Four conditions can be identified, namely P1 (Fig. 2b), P2 (Fig. 2c), P3 (Fig. 2d), 

and P4 (Fig. 2e). Wall P1 is simply supported at the foundation level (1-edge support), wall P2 

is simply supported at the top and at the foundation level (2-edges support), wall P3 is simply 

supported on the cross-walls and at the foundation level but it is devoid of constraint at the top 

along the floor line (3-edges support), and wall P4 is simply supported along its perimeter by 

the cross-walls, at the top and at the foundation level. 

Walls P1 and P2 are particular conditions of walls P3 and P4, respectively. Indeed, anytime the 

cross-walls feature wide openings close to the intersections with the wall impacted by the flow, 

the effectiveness of the restraint provided by the cross-walls is jeopardized. In addition, if the 

cross-walls spacing increases, the cross-wall constraining effect progressively reduces at the 

midspan. Therefore, P1 can be considered as an asymptotic representation of P3 when the wall 

aspect ratio increases, analogously P2 with P4.  

 

2.1 Flood load model 

Several contributions in the literature [e.g., Zanuttigh and Lamberti, 2006; Armanini, 2009] 

have experimentally computed the impact force on an obstacle with respect to the features of 

the upstream undisturbed flow of depth h (m) and mean velocity U (m s-1). Other experimenta l 

models [e.g. Cross, 1967] provide empirical formulas for the impact force per unit width f (N 

m-1) based on the total force of a 1D current where the dynamic term is amplified by a 

coefficient CF (-), as:  

 

𝑓 =
1

2
𝑔𝜌𝑓ℎ2 + 𝐶𝐹𝜌𝑓ℎ𝑈2 (1) 

  

where ρf (kg m-3) is the fluid density and g (m s-2) is the gravity acceleration.  

Experimental tests performed by Armanini et al. [2011] showed that the impact of the flow 
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against an obstacle generates a run-up hmax (m) in correspondence of the obstacle that can be 

related and computed from the features (e.g. Froude number, Fr) of the undisturbed flow 

upstream. The run-up shows up as a positive backward wave in case of subcritical flows or as 

a vertical jet in case of supercritical flows. Accordingly, the force per unit width exerted by the 

flow on an infinitely stiff vertical wall could be computed as the integral of the pressure profile 

p (Pa) on the impacted wall: 

 

𝑓 = ∫ 𝑝 𝑑𝑧
min (𝑍,ℎ𝑚𝑎𝑥 )

𝑜

 (2) 

 

Armanini et al. [2011] considered the case of an obstacle that intersects the whole cross section 

of a flume. In this extreme situation where the obstacle can’t be surrounded by the flow, they 

showed that, in case of subcritical flow, good results can be obtained under the assumption of 

hydrostatic pressure distribution. When the incoming flow is supercritical, the pressure 

distribution differs from the hydrostatic one, with lower values on the upper part of the 

distribution and greater values at the bottom. Accordingly, they computed the impact force by 

introducing a corrective factor depending on the Froude number of the undisturbed flow. 

Aureli et al. [2015] experimentally studied the 2D flow field around an isolated building, placed 

in a wide rectangular domain with horizontal bottom, caused by a sudden dam break generated 

by the opening of gate placed in the middle of a wall that separates a reservoir (located upstream 

and initially filled with still-water) from the downstream floodplain. The flow in front of the 

obstacle is characterized by Fr ≈ 3. The measured impact force was compared to the estimates 

of three different numerical models (i.e. the 2D depth-averaged Shallow Water Equations 

(SWE), a 3D Eulerian two-phase model, and a 3D Smoothed Particle Hydrodynamics (SPH) 

model). Using the results from a 2D SWE solver, Aureli et al. [2015] computed the maximum 

force on the obstacle, with a close fit to the measurements. 

In this research a 2D SWE solver based on the numerical scheme proposed by Braschi and 

Gallati [1992] was implemented (in the following identified as 2D BG) and applied to the test 

case of Aureli et al. [2015] (Figs. 3a to 3f). On the obstacle wall a free slip condition was 

considered. The force on the building was computed by integrating at each time step the 

pressure distribution on all the mesh elements adjacent to the wall. The temporal trend of the 

computed force was positively compared  with the numerical and experimental results of Aureli 

et al. [2015] (Fig. 3g). 

According to these results and to the mentioned literature studies, in spite of the absence of 
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vertical acceleration, 2D SWE models provide an error in the peak force in the order of 10% 

with respect to the experimental data. Thus, in the following the force exerted by the flow on 

the wall can be computed hydrostatically as a function of the maximum run-up height during 

the impact that can operatively be obtained by solving the 2D SWE in the flooded domain of 

interest.  

 

2.2 Finite Element analyses 

To address the typical collapse mechanisms of exposed walls, detailed numerical FEM analyses 

were carried out. The model of a reference wall was developed in Abaqus (ver. 6.11, 2011) 

adopting 8-node brick elements (C3D8) and studied by changing boundary conditions at the 

side edges and at the top edge on the 4 wall types (Figs. 2b to 2e). A reference wall 3 m high 

(Z), 6 m long (l), and 0.3 m thick (t) was considered. The mechanical characteristics of a historic 

brick masonry of average quality were assumed [e.g., Hilsdorf, 1969; Cominelli et al., 2016; 

Page 1981 and 1983]: masonry density ρm=1800 kg m-3, elastic modulus E=3000 MPa, Poisson 

ratio 0.2, compressive strength fc=3 MPa, tension strength ft=0.03 MPa, fracture energy 

Ef=0.055 kJ m-2, dilation angle Φd=20°. The masonry was treated as a homogeneous material 

as conventionally done in macro-modeling [e.g., Lourenco, 1996; Milani et al., 2006a and 

2006b] and the built-in model for concrete available in Abaqus was used. A smeared crack 

model (as opposed to a discrete crack model) is adopted to describe the masonry fracture 

process. Such model, referred to as “concrete damage plasticity”, provides a general capability 

for modeling quasi-brittle materials in various types of structures, including concrete and 

masonry, when subjected to monotonic, cyclic, or dynamic loading. The failure stress 

corresponds to the onset of micro-cracking, beyond which further micro-cracks development 

is represented macroscopically with a softening stress-strain response inducing strain 

localization. In the particular case of masonry wall panels, the adopted model strategy provides 

an approximation of the actual structural behavior because it cannot capture the preferentia l 

crack path that could develop at the masonry joints. The boundary conditions were applied as 

surface restraints; in particular, translational restraints along the x, y, and z directions (Fig. 2a) 

at the bottom surface (i.e. at the foundation level) and translational restraints along the 

transversal direction (i.e. y in Fig. 2a) at the lateral and top surfaces. The mesh size was selected 

in order to subdivide the thickness of the wall panel into 4 slices and to get roughly cubic brick 

elements.  

These analyses considered only the self-weight of the impacted walls; the effects of the vertical 

loads from the upper floors will be considered in the following sections. The analyses were 
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conducted in two subsequent steps: in the first step the gravity load is applied; in the second 

step the hydrostatic pressure is added, considering a water density equal to 1000 kg m-3. Several 

analyses were carried out on each reference wall by increasing the impact flow depth. The 

minimum height hmax inducing the failure of the wall (i.e the maximum admissible water depth 

bearable by the wall) was recorded. The “Static-Riks” [Dassault Systèmes Simulia, 2011] type 

of analysis was selected for the loading increment procedure. This type of analysis uses an arc-

length method to determine the response of the loaded structure and it is particularly suitable 

when a significant change of the structural stiffness is expected. 

Figures 4a to 4d show the deflected shape of the models at failure along with the location of 

the tensile plastic strains, representing the zones where major cracks are triggered. It is worth 

noting that the chosen model strategy allows identifying the crack pattern associated with the 

initiation of the failure mechanism, herein referred to as “failure” in general terms. It is assumed 

that the development of the complete mechanism follows the same pattern. The failure of 

reference wall P1 (Fig. 4a) can be schematized as the rotation of the entire wall along the hinge 

at the foundation level after the development of a fracture line. The addition of the constraint 

at the floor level in case P2 (Fig. 4b) generates an out-of-plane deflection of the wall that rotates 

around the horizontal cylindrical hinges at the base, at the top, and at an intermediate distance 

from the ground. Similarly to case P1, in case P3 (Fig. 4c) the wall can displace at the top but 

the constraints guaranteed at the foundation level and by the cross-walls generate three hinges 

on the boundary of the wall and two internal hinges connecting the bottom corners to the upper 

edge of the wall. These fracture lines split the wall in three blocks that can rotate around them. 

Finally, in case P4 (Fig. 4d) all the sides of the wall have constraints and the out-of-plane 

deflection triggers 5 internal fracture lines that limit the blocks of the wall and allow their 

rotation. Figure 4e shows the results in terms of flood load versus maximum out-of-plane 

deflection (d). For the considered reference walls, the flood heights hmax causing the collapse 

of the walls (herein taken as the initiation of the failure mechanism corresponding to the 

maximum lateral load) are 1.14 m, 1.40 m, 1.30 m, and 1.57 m for the P1, P2, P3, and P4 

reference walls, respectively. As expected, the flood load associated with the wall collapse 

increases as the degree of restraint of the wall sides increases (i.e. the values for P2 and P4 are 

greater than the corresponding values for P1 and P3, respectively).  

 

2.3 Limit Analysis – main assumptions 

As outlined above, FEM analyses provide detailed results that however depend on a large set 

of reliable parameters and require large computational efforts. The combination of these 
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necessary requirements suggests that, especially for application on large building stocks, 

detailed numerical analyses are in most cases unfeasible because of the unavailability of the 

requested data and of the required computational resources. To this purpose, after the detection 

of the main collapse mechanisms affecting a wall impacted by a flow, a simpler evaluation of 

the flood height causing wall failure is specifically proposed. Differently from existing 

strategies to evaluate building vulnerability based on numerical analyses [e.g., De Risi et al., 

2013], this task is accomplished herein by means of limit analysis considering the reference 

walls in Fig. 2 and the failure mechanisms highlighted in Figs. 4a to 4d.  

Limit analysis is commonly addressed for the assessment of the structural behavior of masonry 

walls of good quality [e.g., Milani et al., 2006b; Como, 2016]. Reference to local failure 

mechanisms is common practice in the case of historical masonry buildings, particularly for 

the assessment of the response of walls subject to transversal actions, such as those associated 

with an earthquake [D’Ayala and Speranza, 2003; Italian Building Code, 2008; Giuriani and 

Marini, 2008] and, for analogy, with the impact load of floods. 

When the flood pressure exceeds the limit value (i.e. the hydrostatic pressure associated with 

hmax), the masonry wall impacted by the flood experiences the onset of a failure mechanism. 

Given the assumption of average/good quality masonry, the wall is assumed to split into 

monolithic blocks identified by a series of possible fracture lines. Each block rotates about the 

cylindrical hinges developing along the fracture lines (dashed blue lines in Figs. 2b to 2e), 

whereas no relative slip among adjacent blocks is considered.  

A summary of the main assumptions underlying the analysis is: 

 unlimited compressive strength and stiffness of the masonry; 

 no tensile resistance of the masonry; 

 no slip occurring between masonry elements; 

 quality of the masonry sufficient as to allow homogenization; 

 no scour effects at the foundation level. 

Focusing on flash flood processes, we assume that the flood action cannot be counteracted by 

a pressure distribution at the inner side of the wall since the time needed for the filling of the 

internal volume is much greater than the characteristic time of the impact. For the same reasons, 

the physical loss of material volume and change in the material mechanical properties, which 

could be triggered only by an extended period of contact with water, are not considered.  
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2.4 Limit analysis - Description of the model 

The collapse mechanisms and their stability thresholds are studied by using the principle of 

virtual works and within the limit analysis framework, that is, with the hypothesis of infinite 

compressive resistance and stiffness of the masonry and hence neglecting the internal work 

along the fracture lines. Accordingly, only the work done by the external forces is considered 

at this stage. The stability threshold, i.e. the onset of the failure mechanism, is achieved when 

the absolute value of the work done by the stabilizing actions (L+) equals the absolute value of 

the work done by the overturning actions (L-): 

 

𝐿+

𝐿−
= 1 (3) 

 

As discussed in Section 2, the reference walls P1 and P2 can be considered sub-cases of the 

walls P3 and P4, respectively. Accordingly, only the limit analysis of the reference wall P3 (i.e. 

3-edges support) and P4 (i.e. 4-edges support) is presented in the following. 

In the reference wall P3 (Fig. 5), the failure mechanism considers the onset of 2 internal fracture 

lines splitting the wall in 3 blocks. The central block rotates around the cylindrical hinge at the 

ground level and the two side blocks, delimited by inclined fracture lines, rotate around the 

vertical hinges at the sides of the wall. It is worth noting that the model does not guarantee the 

compatibility along the vertical fracture lines; the minor impact of such a simplified assumption 

is assessed by nonlinear finite element analyses in the Section 4.  

The stabilizing contribution is provided by the self-weight of the three blocks in which the wall 

is divided and by the load per unit length n (N m-1) applied along the center line of the top face 

of the wall, replicating the dead load of the upper floors. The central block of the wall is subject 

to a vertical (in direction z) displacement ξ1 = t/2·ϑ1 smaller than the displacement ξ3 = t·ϑ1 

experienced by the side blocks assuming that the hinge lines develop along the outer edges of 

the wall. The external loads N1=n·lc (N) and N3=n·ls (N), applied along the central and lateral 

blocks upper edges respectively, depends on the tributary portion of the wall that is defined on 

the top by lc and ls (Eq. 5).  In these scheme the external loads are applied at the centroid of the 

cross section, thereby experiencing vertical displacements ξN1 = t/2·ϑ1 and ξN3 = t·ϑ1. The work 

done by the stabilizing actions is obtained from summing the products between the gravity 

loads and the corresponding vertical displacements: 
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𝐿+ = 𝑊1 𝜉1 + 2𝑊3 𝜉3 + 𝑁1𝜉𝑁1 + 2𝑁3𝜉𝑁3

= (𝑊1 + 𝑁1)
𝑡

2
𝜗1 + 2(𝑊3 + 𝑁3)𝑡𝜗1 

(4) 

ls (side block width at the top) and lc (central block width at the top) are respectively: 

𝑙𝑠 = 𝑍 tan 𝛼 ;  𝑙𝑐 = 𝑙 − 2𝑙𝑠 (5) 

It is worth noting that the virtual vertical displacements ξi are obtained directly from the 

hypothesis of small deflections (i.e. small 𝜗𝑖 ). In such conditions sen 𝜗𝑖  and tan 𝜗𝑖  can be 

approximated with the first order of the Taylor series (i.e. 𝜗𝑖, expressed in radians).  

The work done by the external overturning action due to the flow pressure p(z)=ρf·g(hmax-z) is 

evaluated by considering the load share acting on the central block, undergoing a rotation ϑ1 

with respect to the wall lower edge, and on the lateral blocks, subjected to a rotation ϑ3 with 

respect to the lateral edges (Fig. 5b). The fracture lines develop with an angle α (°) with respect 

to the vertical cross-walls. Equating the lateral displacements of two adjacent blocks at their 

intersection at a height z we obtain:  

𝜗1 𝑧 = 𝜗3 𝑧 tan 𝛼  → 𝜗3 =
1

tan 𝛼
𝜗1  (6) 

The work done by the external overturning action is: 

𝐿− = ∫ 𝑝𝑙1δ1𝑑𝑧 +
min (ℎ𝑚𝑎𝑥 ,𝑍)

0

2 ∫ 𝑝𝑙3𝛿3𝑑𝑧
min (ℎ𝑚𝑎𝑥 ,𝑍)

0

= ∫ 𝑝𝑙1𝑧𝜗1𝑑𝑧 +
min (ℎ𝑚𝑎𝑥,𝑍)

0

2 ∫ 𝑝
𝑙3

2

2
𝜗3 𝑑𝑧

min (ℎ𝑚𝑎𝑥,𝑍)

0

 

(7) 

 

Subscripts 1 and 3 represent the central and side blocks, respectively, and are associated with 

the displacements δ in direction y of the application points of the infinitesimal hydrostatic 

forces at distance z from the ground. Considering each side block, the application point is 

located horizontally at a distance l3/2 from the lateral hinge. The terms l1 and l3 are the lengths 

of the central and lateral blocks respectively computed at level z as a function of α: 

 

𝑙3 = 𝑧 tan 𝛼 ;  𝑙1 = 𝑙 − 2𝑙3 (8) 

 

At the top edge, l1 and l3 correspond to lc and ls, respectively. The numerical solution of Eq.3 

yields the minimum depth of the flood that triggers the failure mechanism of the wall hmax (i.e. 

the maximum admissible water depth before the wall collapse).  

The reference wall P1 can be considered a particular case of the configuration P3 in case the 
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cross-walls do not provide any support. In this case, the whole panel experiences the 

overturning along the foundation line and no onset of any inclined fracture line can be observed. 

Accordingly, this situation can be modeled considering that the behavior of the central block 

coincides with the overall wall. As a result, the second integral of the work of the destabilizing 

forces is nil. In other terms the vulnerability analysis of reference wall P1 can be obtained from 

replacing α=0° and ϑ3=0° in the previous expressions. In the case α causes the intersection of 

the skewed fracture lines inside the wall, a slightly different failure mechanism producing a 

vertical fracture line can be observed as discussed in detail in the Appendix.  

Considering the reference wall P4 (Fig. 6), the failure mechanism considers the onset of 5 

internal fracture lines splitting the wall in 4 blocks. Two overlying central blocks, divided by a 

horizontal hinge at distance hc (m) from the ground, rotate around three cylindrical hinges at 

the top, at hc, and at the ground. Two side blocks delimited by inclined fracture lines rotate 

around the vertical hinges at the sides of the wall. As in the previous case, compatibility along 

the vertical fracture lines is not guaranteed. The effect of this assumption is discussed in Section 

4.  

The stabilizing contribution is provided by the self-weight of the blocks in which the wall is 

divided and by the dead load N of the upper floors. Regarding the position of the vertical load 

N, it is worth observing that a horizontal fracture line develops at the floor level and the vertical 

load migrates to the side. In such a case, under the hypothesis of infinite compressive resistance 

and stiffness of the masonry, we applied the vertical load at the wall corner in the limit analysis.  

On the contrary, in the reference wall P3 (Fig. 5), the vertical load N is centered because no 

horizontal fracture line develops at the floor level.  

The lower central block, of weight W1, and the lateral ones, of weight W3, are associated with 

different vertical displacements in direction z (ξ1 = t/2·ϑ1 and ξ3 = t·ϑ1, respectively) related to 

the rotation angle ϑ1 only, while the vertical displacements of the upper central block of weight 

W2 (ξ2 = t·ϑ1 + t/2·ϑ2) and of the center of application of the external vertical load N (ξN = t·ϑ1 

+ t·ϑ2) are functions of both ϑ1 and ϑ2. The work done by the stabilizing actions can be computed 

as: 

 

𝐿+ = 𝑊1 𝜉1 + 𝑊2 𝜉2 + 2𝑊3 𝜉3 + 𝑁𝜉𝑁  

= 𝑊1

𝑡

2
𝜗1 + 𝑊2 (𝑡𝜗1 +

𝑡

2
𝜗2 ) + 2𝑊3 𝑡𝜗1 + 𝑁(𝑡𝜗1 + 𝑡𝜗2 ) 

(9) 

 

The work done by the external overturning hydrostatic action is evaluated, following the same 
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approach presented in the previous scheme, considering that the load share on the different 

blocks depends on their width l1, l2, and l3 at level z: 

 

𝐿− = ∫ 𝑝𝑙1𝛿1𝑑𝑧 + ∫ 𝑝𝑙2𝛿2𝑑𝑧
min (ℎ𝑚𝑎𝑥 ,𝑍 )

min (ℎ𝑚𝑎𝑥 ,ℎ𝑐)

+
min (ℎ𝑚𝑎𝑥 ,ℎ𝑐)

0

2 ∫ 𝑝𝑙3𝛿3𝑑𝑧
min (ℎ𝑚𝑎𝑥 ,𝑍)

0

= ∫ 𝑝𝑙1𝑧𝜗1𝑑𝑧 + ∫ 𝑝𝑙2(𝑍 − 𝑧)𝜗2 𝑑𝑧
min (ℎ𝑚𝑎𝑥 ,𝑍)

min (ℎ𝑚𝑎𝑥 ,ℎ𝑐 )

min (ℎ𝑚𝑎𝑥 ,ℎ𝑐 )

0

+ 2 ∫ 𝑝
𝑙3

2

2
𝜗3 𝑑𝑧

min (ℎ𝑚𝑎𝑥,𝑍)

0

 

where 

 

(10) 

𝑙3 = {
𝑧 tan 𝛼  𝑖𝑓 𝑧 < ℎ𝑐

(𝑍 − 𝑧) tan 𝛽 𝑖𝑓 𝑧 > ℎ𝑐  
 

 

(11) 

𝑙1 = 𝑙 − 2𝑙3; 𝑙2 = 𝑙 − 2𝑙3 

 
(12) 

𝛽 = tan−1 [(
ℎ𝑐

𝑍 − ℎ𝑐

) tan 𝛼] (13) 

 

As in the previous scheme, the numerical solution of Eq. 3 yields the minimum depth hmax of 

the flood that triggers the failure mechanism of the wall. Such depth also determines the 

location hc of the horizontal fracture line, which is taken as the minimum among its possible 

locations: indeed, the proposed model does not account for the internal work at the fracture 

lines, therefore more patterns of fracture lines could be possible for the same value of hmax. If 

the horizontal fracture line is above the maximum run-up, the second integral of Eq. 10 is nil.  

The reference wall P2 can be considered a sub-case of P4 due to the absence of lateral restraint 

from the cross-walls. In this case, only the horizontal fracture line at hc can be observed and 

the wall decomposes in two blocks that rotates around the three horizontal hinges at the  ground 

level, at hc, and at the floor level. As in the previous case, the stability of the reference wall P2 

can be operatively modeled by replacing α = 0° and ϑ3=0° in the previous expressions.  

In limit analysis α is usually obtained from an energy minimization procedure. Anyway, as 

mentioned before, the present simplified model disregards the contribution of internal works 

developed at the block interfaces since it would require detailed data on the mechanica l 

properties of the materials and their state of conservation. Accordingly, in this case the 
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assessment of αbased on the energy minimization would lead to α=0°, that is contrary to the 

observations in the practice. Indeed, in-field surveys of masonry walls subjected by out-of-

plane inertial loads (e.g. seismic) show α between 0° and 40°. In order to cope with the need 

of suggesting reliable values of α for the application of the model, in Section 3 a set of possible 

values for the angle under different wall configurations is provided from the results of FEM 

analyses performed assuming average masonry properties. 

 

2.5 Dimensional analysis 

In order to cast the analysis in a more general framework and to reduce the complexity arising 

from the presence of several variables, the results must be proposed in dimensionless form. 

Considering the assumptions on the characteristics of the materials at the base of the proposed 

model, the dimensionless ratio of the work done by the stabilizing (L+) and overturning (L-) 

actions, can be written, for each reference scheme (P1 to P4), as a functional relation of n=8 

independent variables: 

 

𝐿+

𝐿−
= 𝑓(𝑔, 𝜌𝑚 , 𝑙, 𝑡, 𝑍, 𝑛, ℎ𝑚𝑎𝑥 , 𝜌𝑓) (14) 

 

Applying the Buckingham theorem to Eq. 14 and assuming as basic quantities with 

independent dimensions [e.g. Yalin, 1977] g, ρm and Z (i.e. k=3) it is possible to obtain n-k=5 

dimensionless groups: 

 

𝑋1 =
𝑙

𝑍
 Wall aspect ratio 

𝑋2 =
𝑡

𝑍
 Slenderness of the wall 

𝑋3 =
𝑛

𝜌𝑚 𝑔𝑍𝑡
 

Ratio between load at the top of the wall and wall 

weight 

𝑋4 =
ℎ𝑚𝑎𝑥

𝑍
 Fraction of wall impacted by the flow  

𝑋5 =
𝜌𝑓

𝜌𝑚

 Ratio between fluid and masonry density 
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All the parameters, except X4 and X5, represent the geometry of the wall and its relationship 

with the other structural elements of the building. The parameter X3, that is the ratio between 

the vertical loads and the weight of the impacted wall, represents the number of floors above 

the ground floor under the hypotheses of non-tapered walls and negligible loads on the floors. 

These assumptions will be maintained in the following. Finally, the dimensionless number X4 

represents the maximum admissible water depth (i.e., hmax) at the wall before the collapse, 

thereby providing a measure of its vulnerability. Although the inclination α of the lateral blocks 

in schemes P3 and P4 is considered an input parameter in our simplified model, it is itself a 

function of X1 and X3 as discussed in the following section. Accordingly, the angle α is not 

accounted among the independent variables in Eq. 14.  

 

3. Results and comparison with FEM simulations 

The equations described in Section 2.4 representing the different collapse mechanisms have 

been solved in correspondence of a wide range of the dimensional variables and the results 

have been rewritten in dimensionless form in order to simplify the application of the model. 

The resulting dimensionless curves related to the different support schemes are reported below 

(Fig. 7) as functions of the wall slenderness X2 and of the vertical fraction of wall impacted by 

the flow X4. All the thresholds in Figs 7a to 7d were computed considering the case of a water 

flow (ρf= 1000 kg m-3) impacting a wall of average density ρm =1800 kg m-3 leading to X5=0.56.  

The stability curves were derived considering the values of α reported in Tab. 1. Such values 

were obtained from nonlinear FEM analyses, similarly to what presented in Section 2.2 and 

represent the mean value obtained for slenderness of the wall (X2) in the range 0.1-0.2 (relative 

error less than 7%). In the reference wall P3, it is interesting to note that α decreases when the 

vertical load increases if X1=2, while, for X1=1, α is constant and the failure mechanism is the 

one reported in the Appendix. In the P4 case, α is roughly constant given the wall shape factor 

(X1). It is worth to remember that, according to the chosen modeling strategy, the values of α 

are associated with the initiation of failure and do not capture possible preferential crack path 

at the masonry joints. 

The stability curves were computed for buildings of up to 2 floors over the ground floor (i.e., 

X3=[0,1,2]), wall aspect ratio X1 =[1,2] (linear regression could be adopted for intermed iate 

values of X1) and slenderness X2=0.05÷0.35. It is worth noting that for cases P1 and P2, the 

model can be written considering a strip of unit width, disregarding the width l of the wall. 

Accordingly, the resulting thresholds are independent from the dimensionless group X1 and 

Figs. (7a and 7b) show a single curve for each external load configuration (i.e., X3). For clarity 
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of representation, the water depth was considered ranging from 0 to 2Z (X4=0÷2) only in order 

to consider floods causing maximum run-up up to the second floor. In the case of buildings 

without upper floors (X3=0), the limit of validity of the model is X4=1.  

As expected, the resulting dimensionless thresholds show a general increase of stability (i.e. 

dimensionless maximum admissible water depth X4) for increasing dimensionless thickness 

(X2) of the wall and increasing vertical loads (X3). The stability curves of reference walls P3 

and P4 are characterized by higher values compared to P1 and P2, respectively. Moreover, an 

increase of the wall aspect ratio X1 for the reference walls P3 and P4 corresponds to a decrease 

in the resistance since the cross-walls influence area progressively reduces to a small fraction 

of the entire wall and the effectiveness of their restraining action diminishes. Generally, the 

reference wall P4 (4 edges-support) is characterized by higher stability limits compared to P3 

(3-edges support).  

The model can be adapted to represent different masonry materials and processes characterized 

by density higher than water. For instance, as discussed by Milanesi et al. [2014 and 2015], 

disregarding the concentrated impacts of debris but focusing on the case of hyperconcentrated 

flows, one might observe that the increase of fluid density is mostly due to the presence of 

suspended sediment, so that the fluid is still mono-phasic and the mechanistic vulnerability 

model is still valid. Accordingly, although the model is not able to cope with the highly 

complex challenge of debris impacts it provides a simplified and rational approach to describe 

the interaction between a mudflow and a structure. Figs. 7e to 7h, computed for 0<X3<2 and 

X1=2, show that the increase of the ratio X5 (i.e. an increase of the equivalent homogeneous 

flow density) leads to a general decrease of the dimensionless maximum admissible flow depth 

X4. 

The stability thresholds obtained from the limit analysis approach under the mentioned 

simplifying assumptions were compared with the results of nonlinear numerical analyses 

(FEM) carried out on the same models presented in Section 2.2 by varying the wall thickness 

(thickness values ranging from 0.3 m to 0.75 m, leading to X2 between 0.1 and 0.25) and the 

number of floors (only the self-weight of the wall, i.e. X3=0, and 2 floors above the ground 

floor, i.e. X3=2). The other dimensionless variables of the considered case study were: wall 

aspect ratio X1=2 and ratio between fluid and masonry density X5=0.56 (ρm=1800 kg m-3 and 

ρf=1000 kg m-3). The comparison of the result of the FEM analyses with the thresholds from 

the simplified approach provides a benchmark for the proposed approach and especially for the 

reliability of the simplifying assumptions discussed in Section 2.3. The resulting minimum 

heights hmax causing failure of the walls are plotted in dimensionless terms (X4) as solid dots in 
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Figs. 7a to 7d showing good agreement with the thresholds (dashed lines, X1=2) of the 

conceptual simplified model for all the considered support schemes and loading conditions.  

Similarly, a positive comparison of the dimensional values of the hydrostatic force at failure 

(i.e. at the initiation of the mechanism) obtained with the FEM model and the limit analysis is 

proposed in Fig. 4   

 

4. Discussion  

 

The proposed model is based on a set of assumptions, whose reliability was tested with the 

numerical FEM analyses. For instance, in order to provide a better representation of the 

process, the compression strength of the material could have been accounted in the model. In 

this case, the pivot points would be represented by areas of finite dimension defined as the ratio 

between the vertical force and the compressive strength fc (N m-2) of the material. This 

parameter, included in the right-hand side of Eq. (14), would lead to the dimensionless group 

X6 that is the ratio between the compressive strength of the masonry and the pressure at the 

base of a single floor wall: 

 

𝑋6 =
𝑓𝑐

𝜌𝑚 𝑔𝑍
 

 

Dimensionless compressive strength 

The introduction of the compressive strength in the model would cause the in-ward shift in the 

pivoting hinges, increasing the vulnerability of the impacted wall. However, the FEM 

simulations showed that this improvement has a negligible effect in the estimation of the flood 

height hmax at failure.  

A sensitivity analysis on the FEM results was carried out to further highlight the influence of 

the mechanical parameters related to masonry stiffness and strength. This analysis was 

performed on the reference walls tested with the FEM model by halving and doubling the 

elastic modulus, the compressive strength and the tensile strength of the masonry. For 

demonstration purposes, the analysis of the reference wall P2 with and without additional loads 

at the top is shown in Tab. 2. The results are presented as percent variations with respect to the 

dimensionless critical depth X4 computed for the reference case study.  

The sensitivity analysis confirmed that the variation of the compressive strength and stiffness 

marginally affects the results of the proposed model. The tensile strength (ft) of the masonry is 
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the parameter which mostly affects the results, with variations below 10%. In particular, 

increasing or decreasing the tensile strength led to an increase or a decrease of the critical flood 

depth, respectively. The variation of the other parameters led to smaller changes of the results. 

Other simplifications were introduced in the crucial phase of the selection of boundary 

conditions. At the base of the wall, all the translational degrees of freedom of the nodes at the 

wall-foundation interface were fixed; in addition, no scour effects were considered and possible 

erosion in correspondence of the cement mortar layers was neglected. These limitations also 

characterize the other empirical vulnerability functions available in the literature [see 

Papathoma-Köhle et al., 2017 for a discussion] and allowed to consider the wall as monolithic. 

Considering these details would require further information on the foundations and on the 

quality and conservation of the masonry. On the sides of the wall, cylindrical hinges were 

assumed, as reasonable in the case of a modest brick/stone texture and limited mutual 

interlocking.  

The selection of the most adequate reference model (P1 to P4) depends on the transversal 

constraints at the top of the wall and on the presence, connections and orientation of cross-

walls. The lack of support along the upper edge of the impacted wall may be the result of the 

presence of the stairwell or may be due to orientation of the floor joists or roof rafters (in case 

the joists are parallel to the wall, no constraint is provided to the wall); in this case schemes P1 

or P3 should be selected. Similarly, if cross-walls have significant openings (e.g. doors or 

windows) in correspondence to the edges, their restraining effect on the wall lateral sides is 

negligible, and schemes P1 or P2 should be selected.  

In this simplified vulnerability model, the presence of openings on the impacted wall can be 

accounted for in a conservative way by considering only the portions of the wall adjacent to 

the opening (door or window) and the reference conditions P1 or P2, depending on the out-of-

plane restraint at the top of the wall.  

As mentioned in Section 2.4, in case of increasing wall aspect ratio, the reference walls P1 and 

P2 can be considered an asymptotical representation of walls P3 and P4 respectively. Indeed, 

the greater is the wall aspect ratio X1 (i.e., for a given height of the wall, the greater is the 

distance between the cross-walls) the lower is the area of influence of the cross-walls. The 

difference between the thresholds corresponding to cases P1 and P3 and cases P2 and P4 

becomes smaller than 10% for X1 greater than 4 and 2.75, respectively. 

An example of application of the wall vulnerability model can be given with reference to the 

buildings shown in Figs. 1c and 1d. Both buildings are along the left side of the stream in Fig. 

1a and 1b and their most exposed faces are free of relevant openings and with full support from 
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the cross-walls. The building in Figs. 1c and 8a has two floors so that the ground level supports 

the vertical weight of the upper floor and wall and of the roof. In a conservative way, only the 

weight of the upper wall will be considered. Given the geometry and under the assumption of 

non-tapered walls, the dimensionless vertical load X3 ranges between 1 and 1.4 depending if 

the tympanum below the roof is considered. In order to assess the safety of the overall building, 

the stability of each single wall at the ground level must be considered. Under the assumption 

of the presence of an internal intermediate transversal wall and of horizontal slabs between the 

floors, the overall exposed wall could be considered composed by 4 smaller walls and the 

reference wall could be modeled according to the 4-edges support scheme (P4). The overall 

building is about 8 m wide and accordingly the width l of each reference wall is 4 m. The wall 

aspect ratio X1≈1.6 leads to Z=2.5 m. By estimating a thickness t=0.55 m, the slenderness of 

each single wall is X2=0.22. Given these assumptions on the organization of the structure and 

on the geometrical input data, the stability limit is reached for a maximum water depth in the 

range 1.8<X4<2, depending on the considered vertical load (Fig. 8a). Moreover, an increase of 

the fluid density up to ρf=1500 kg m-3 (X5=0.83) or ρf=2000 kg m-3 (X5=1.11) would reduce the 

maximum admissible water depth in the range 1.40 <X4< 1.60 or 1.15 <X4< 1.30, respectively.  

Figures 1d and 8b shows a single floor building, where the vertical dimensionless load could 

be considered in the range 0<X3<0.2 if the weight of tympanum is included. Assuming the 

absence of a horizontal slab and the presence of an intermediate internal cross-wall, the overall 

exposed wall (8 m wide) can be decomposed in two single walls to be studied using the 3-edges 

support scheme (P3) since no relevant openings on the cross-walls are present. Considering a 

wall aspect ratio X1=1.2, l=4 m, Z=3.3 m, t=0.5 m, and a slenderness X2=0.15, the resulting 

stability limit lies in the range 0.60<X4<0.65 (Fig. 8b). As shown in the previous test-case, an 

increase of the relative density to X5=0.83 and X5=1.11 would lead to an overall increase of 

vulnerability in the range 0.5<X4<0.55 and 0.45<X4<0.50, respectively.  

 

5. Conclusions 

 

In mountain hazards risk management, the assessment of the structural vulnerability of 

buildings exposed to flash floods is an important and challenging task. In recent years, mult ip le 

approaches using empirical vulnerability functions [e.g., Papathoma-Köhle et al., 2012; 

Totschnig and Fuchs, 2013; Totschnig et al., 2011], matrices [e.g., Hu et al., 2012; Zanchetta 

et al., 2004] and indicators [e.g., Ettinger et al., 2016; Thouret et al., 2014] have been published 

and discussed as appropriate methods to increase the overall explanatory power of risk 
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assessment. However, the interactions between elements at risk and the hazard processes have 

been largely ignored. Consequently, the necessary information for operational hazard and risk 

mitigation has not been adequately defined [Mazzorana et al., 2012; Mazzorana et al., 2014; 

Papathoma-Köhle et al., 2017]. 

This paper showed that the necessary results depend on a detailed knowledge of the interaction 

between the flow and the impacted structures. In spite of the social and economic relevance of 

this topic, with respect to mountain hazards few viable and reliable approaches are documented 

in the literature [e.g., Armanini et al., 2011; Gems et al., 2016; Mazzorana et al., 2014].  

The response of a structure to a given flow impact is determined by the building technology, 

the materials and the configuration of the building itself, inhibiting the search for a general 

solution. Moreover, the required detail and accuracy depend greatly on the purpose of the study 

and on its scale (e.g., land planning, building design, etc.). Accordingly, a physically-based 

model should incorporating these aspects and detailed numerical analyses (e.g., through FEM) 

would seem to be the most ideal method to tackle this issue. However, detailed approaches are 

not feasible in case of studies on large buildings stocks due to the quantity and reliability of 

required data and the necessarily large computational resources. Often the goal of these studies 

is to single out the most exposed buildings [Kienholz et al., 2004] to be further investigated 

with more advanced approaches or adaptation [Holub and Fuchs, 2008; Holub et al., 2012].  

In order to obtain an economical and realistically achievable assessment, we proposed a 

simplified model for a physically-based estimate of the vulnerability to flash floods for 

masonry buildings, typical of mountain areas, that couples limit analysis with flood hazard data 

obtained via hydraulic modeling. The model conceptualizes the failure mechanism by 

employing simplified geometric data and general information on the global layout of the 

structure. This makes the approach practical for operational vulnerability assessment. In the 

absence of experimental and field data, the stability results provided by the model were 

positively compared with the numerical results of an advanced FEM analyses and reorganized 

in dimensionless fashion, so that they can be easily applied to general situations. At the current 

stage, only the vulnerability associated with the initial impact of a flash flood is considered. 

Due to the limited amount of data required for this model, and the direct availability of such 

information through field surveys, the model is particularly suitable for analysis on large 

building stocks, as is usual for a first vulnerability estimate in the field of earthquake 

engineering. As such, the approach can be adopted for building retrofitting and land use 

planning in order to arrive at more resilient mountain societies, one of the goals specified in 

the Sendai Framework for Disaster Risk Reduction [Zimmermann and Keiler, 2015]. The 
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methods presented in this paper can be further used to better validate the skew of empirica l 

vulnerability functions [Papathoma-Köhle et al., 2015], and to better understand building-

specific damage-generating mechanisms in the European Alps [e.g. Fuchs et al., 2007; 

Totschnig and Fuchs, 2013] and beyond [e.g. Jakob et al., 2012; Lo et al., 2012].  

In the future, the proposed model could be further developed, including the role of doors and 

windows, exploring the behavior of the overall building under time-varying impact loads, and 

defining other types of limit states (currently only wall failure was considered) as well as the 

economic implications of structural flood damages. Finally, a probabilistic approach 

accounting for the variability of materials, building technologies and model uncertainties could 

allow a quantification of collapse probability.  
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Appendix 

This appendix presents the limit analysis of the reference wall P3 (i.e. 3-edges support) in the 

case the fracture lines intersects inside the wall panel (Fig. A1), which happens if the condition 

tan α>l/2Z 

is verified. The stabilizing contribution is provided by the self-weight of the three blocks in 

which the wall is divided and by the load per unit length applied along the center line of the 

top edge of the wall, replicating the dead load of the upper floors.  

The central block of the wall of weight W1 is subject to a vertical displacement ξ1=t/2·ϑ1 smaller 

than the displacement ξ3=t·ϑ1 experienced by the side blocks of weight W3 provided that the 

hinge line develops along the outer edge of the wall. The external vertical loads N=n·l are 

applied at the centroid of the cross section, thereby experiencing a vertical displacement 

ξN=t·ϑ1. The work done by the stabilizing actions is: 

 

𝐿+ = 𝑊1 𝜉1 + 2𝑊2 𝜉3 + 𝑁𝜉𝑁 = 𝑊1

𝑡

2
𝜗1 + (2𝑊3 + 𝑁)𝑡𝜗1  (A1) 

 

The work done by the external overturning action is evaluated by considering the load share 

acting on the central block, undergoing a rotation ϑ1 with respect to the wall bottom edge, and 

on the lateral blocks, subjected to a rotation ϑ3 (Eq. 6) with respect to the lateral edges (as in 
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Fig. 5).  

 

𝐿− = ∫ 𝑝𝑙1δ1𝑑𝑧 +
min (ℎ𝑚𝑎𝑥 ,𝑍)

0

2 ∫ 𝑝𝑙3𝛿3𝑑𝑧
min (ℎ𝑚𝑎𝑥 ,𝑍)

0

= ∫ 𝑝𝑙1𝑧𝜗1𝑑𝑧 +
min (ℎ𝑚𝑎𝑥,𝑍)

0

2 ∫ 𝑝
𝑙3

2

2
𝜗3 𝑑𝑧

min (ℎ𝑚𝑎𝑥,𝑍)

0

 

(A2) 

 

Subscripts 1 and 3, associated with the displacements δ in direction y and with the application 

points of the infinitesimal hydrostatic forces, represent the central block and the side blocks, 

respectively. The terms l1 and l3 are the lengths of the central and lateral blocks computed at 

level z as a function of α: 

 

{
𝑙3 = 𝑧 tan 𝛼 ;  𝑙1 = 𝑙 − 2𝑙3 𝑖𝑓 𝑧 <

𝑙

2 tan 𝛼

𝑙3 =
𝑙

2
;  𝑙1 = 0 𝑖𝑓 𝑧 ≥

𝑙

2 tan 𝛼

 (A3) 
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Tab. 1 – Values of α as a function of shape factor (X1) and vertical load (X3). 

Case geometry and load 
P3 

(3-edges support) 
P4 

(4-edges support) 

X3=0 X1=1  33° 30° 

 X1=2  36° 37° 

X3=1 X1=1  33° 30° 

 X1=2  30° 36° 

X3=2 X1=1  33° 29° 

 X1=2  23° 34° 
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Tab. 2 – Results of the sensitivity analysis expressed as variation of the dimensionless critical 

flood depth (X4) for the reference wall P2.  

 

Case geometry and 

load 

0.5 E 2 E 0.5 fc 2 fc 0.5 ft 2 ft 

X3=0 X2=0.1 +0.39% -0.34% -0.17% +0.67% -4.83% +8.27% 

X3=0 X2=0.2 +0.21% -0.62% -0.36% +0.41% -6.25% +9.13% 

X3=2 X2=0.1 -1.29% +0.85% -0.56% +0.26% -7.29% +5.15% 

X3=2 X2=0.2 -2.06% +0.41% -0.44% -0.19% -6.19% +8.25% 
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Fig. 1 – A traditional alpine village with a large stock of exposed masonry buildings in the 

Province of Brescia (Northern Italy) (a, b) and two examples of masonry buildings with 

indication of the most exposed walls (c, d). 
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Fig. 2 – a) Front view of the reference wall impacted by the flow; b-e) considered constraints 

configurations of the reference walls. 
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Fig. 3 – Water depth contour maps (left) and longitudinal water surface profile (y=0.6 m; right) 

at τ = 0.38 s (a, b), τ = 0.71 s (c, d), and τ = 1.44 s (e, f) computed with the 2D BG solver. (g) 

Force on the obstacle as a function of time. The solid black line is the average force measured 

by Aureli et al. [2015] and the red dots make reference to the results of their 2D numerica l 

model. The blue solid line is computed with the 2D BG solver. 
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Fig. 4 – Snapshot of the wall deflection as computed by FEM analysis at failure (deflection 

amplified for clarity of representation, maximum principal plastic strains increasing from blue 

to red shading). The results qualitatively represent the location of tensile plastic strains for 

walls P1 (a), P2 (b), P3 (c), and P4 (d). e) Results of the FEM analysis in terms of flood load 

F (kN) versus maximum out-of-plane deflection d (mm); the dashed lines represent the 

maximum admissible load predicted by the simplified model presented in Section 2.4. 

  



 

 
© 2018 American Geophysical Union. All rights reserved. 

 
Fig. 5 – Reference wall P3 (3-edges support) collapse mechanism. Front view (a), plan cross 

section (b) and vertical cross sections (c, d). 
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Fig. 6 - Reference wall P4 (4-edges support) collapse mechanism. Front view (a), plan cross 

section (b) and vertical cross sections (c, d). 
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Fig. 7 - Vulnerability thresholds for the reference walls P1 (a), P2 (b), P3 (c), and P4 (d) as a 

function of the slenderness of the wall (X2) in case of impact due to a water flow (i.e. X5=0.56). 

The solid line plots are computed for wall aspect ratio (X1) equal to 1 and the hatched lines for 

X1=2. The solid dots represent the results of the FEM models referred to the case X1=2, 

accordingly they should match the dashed lines. Vulnerability thresholds associated to 

increased fluid density for the cases P1 (e), P2 (f), P3 (g – only for X1=2), and P4 (h – only for 

X1=2). The dashed lines are related to X5=0.56, the dotted lines to X5=0.83 and the stretch-point 

lines to X5=1.11. 
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Fig. 8 - Examples of traditional masonry buildings from the village shown in Fig. 1. The red 

shadings show the elementary wall units modelled with the simplified model. The stability 

bands are computed considering the variability of the geometric parameters of the buildings, 

and some different relative density values (X5). 
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Fig. A1 – Reference wall P3 (3-edges support) collapse mechanism when fracture lines 

intersect inside the wall panel. 

 

 

 


