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Abstract
The present Doctoral Thesis, belonging to the Scientific-Disciplinary Sector
of Mechanics of Solids and Structures (ICAR/08 – Scienza delle Costruzioni),
falls within the research field of Structural Health Monitoring (SHM), with
specific reference to the civil engineering context. Nowadays, SHM-based
approaches and the attached development of a consistent numerical mod-
eling, with related model updating, may constitute fundamental tools to
pursue the goal of structural safety, preventing possible causes of damage
that may even lead to structural failure. In particular, this research work
proposes complementary post-processing approaches to address the issue
of noise cleaning on dynamic structural response signals typically encoun-
tered in structural engineering applications (specifically, acceleration and
displacement signals). Two approaches are mainly presented, especially
aiming at enhancing displacement response signals, since they are com-
monly affected by higher levels of noise, also due to a low-cost monitoring
instrumentation that may possibly be employed. Heterogeneous Data Fu-
sion (HDF) procedures, which involve a Kalman Filter (KF)-based imple-
mentation, are primarily investigated, by integrating data acquired from
different types of sensors, so that the resulting information turns out to be
characterized by a lower degree of uncertainty. A denoising approach is
also inspected, as the process through which a source signal may be re-
constructed, starting from a recorded, noise-affected one, by removing its
noisy part, without losing the useful information incorporated within it.
A HDF procedure and a denoising approach are then combined within an
integrated strategy, in an effort to enhance the reliability of the monitoring
process, for assessing the health conditions of (historic) bridges. Aspiring
at providing a comprehensive research framework on these topics, both
synthetic and real response signals are considered, as well as signals dis-
playing a different dynamical nature (non-stationary vs. stationary). These
processed signals are finally employed toward modal identification pur-
poses, for extracting the modal properties of the monitored structure.

Keywords: Structural Health Monitoring (SHM); Heterogeneous Data Fu-
sion (HDF); Kalman Filter (KF); signal denoising; modal dynamic identifi-
cation; acceleration and displacement response signals.
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Chapter 1

Introduction

This Doctoral Thesis condenses the main outcomes of a three-year resear-
ch work (October 2017 – September 2020) performed at the University
of Bergamo, within the Doctoral Programme in Engineering and Applied
Sciences (Department of Engineering and Applied Sciences). Belonging
to the Scientific-Disciplinary Sector of Mechanics of Solids and Structures
(ICAR/08 – Scienza delle Costruzioni), it falls within the Structural Health
Monitoring (SHM) research field, spanning along two interrelated main di-
rections, namely Heterogeneous Data Fusion (HDF) and Structural Identi-
fication (SI), with a main target also on the post-processing of signals, with
specific reference to the Denoising of dynamic response signals.

The motivations behind this work may be found in the deep bond ex-
isting among these disciplines: HDF, SI and signal denoising represent
strictly related topics, which constitute a continuously evolving research
field, increasingly attracting the interest of researchers, engineers, prop-
erty stakeholders and infrastructure managers around the world. Among
other reasons, this may be attributed to the high technological level that
the developed methodologies have nowadays reached, together with the
increasing requirements for smart monitoring and assessment of existing
infrastructures, a significant portion of which is now reaching its design
life-cycle capacity, especially within the Italian country. Consequently, the
need for an effective simulation and monitoring of the dynamic behavior
of structural systems under different loading conditions, may constitute a
crucial target, toward ensuring the safety of existing structures and infras-
tructures, especially if dated but still subjected to enduring loading condi-
tions, and possibly endowed with historical and heritage value.

The present Doctoral Thesis develops its presentation along eight chap-
ters. After a brief introduction, provided in the present section, a main
state of the art on the covered topics is further reported in Chapter 2. It
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introduces SHM, as the process of assessing the state of health of an exam-
ined structure, and the main goals that SHM aims at achieving, namely the
improvement of safety and reliability of structural systems, by detecting
potential damage, before it may reach a critical state, allowing for a rapid
post-event assessment. SHM may be considered as a multidisciplinary
approach, which involves the integration of sensors, data transmission,
computational processing capabilities, allowing to reconsider the design
and the full management of a structure, as a single system or as a part of
a group of systems. A critical literature review on existing Data Fusion
methodologies, as well as on the principles underlying the functioning of
the so-called Kalman Filter (KF) toward SHM applications, are also pre-
sented. Furthermore, this chapter introduces the typologies of signals to
which this work is addressed to, i.e. acceleration and displacement dy-
namic response signals, explaining the motivations of this choice and the
importance that such signals shall assume within monitoring procedures,
aiming at providing a reliable evaluation of the health conditions of a spe-
cific structure. In particular, in this thesis, both synthetic response signals
(Chapters 3–5), artificially generated through a numerical computational
procedure, and real response signals (Chapters 6–7), directly detected on a
real structure by setting up an appropriate sensor network, are successfully
considered and effectively processed.

Chapter 3 outlines a computational procedure for the effective merging
of diverse sensor measurements, in order to conveniently monitor and sim-
ulate the current health condition of civil structures under dynamic load-
ings. In particular, it investigates a Kalman Filter implementation toward
the Heterogeneous Data Fusion of displacement and acceleration synthetic
response signals of a numerical structural system, for dynamic identifica-
tion purposes. A white-noise input force is assumed to be applied at the
top floor of a 3-DOF shear-type frame, and its structural dynamic response
is inspected, in terms of displacements and accelerations. The presented
procedure is perspectively aimed at enhancing extensive remote displace-
ment measurements (commonly affected by high levels of noise), by possi-
bly integrating them with a few standard acceleration measurements (con-
sidered instead as noise-free or corrupted only by a slight amount noise).
Within the Data Fusion analysis, a Kalman Filter algorithm is implemented
and its effectiveness in improving noise-corrupted displacement measure-
ments is investigated. The performance of the filter is assessed, based on
the RMS error between the original (noise-free, numerically determined)
displacement signal and the Kalman Filter displacement estimate, and on
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the structural modal parameters (natural frequencies) that can be extracted
from displacement signals, refined through the combined use of displace-
ment and acceleration recordings, through inverse analysis algorithms for
output-only modal dynamic identification.

Chapter 4 aims at generalizing the KF-based implementation presented
in the previous chapter, by extending it to the successful monitoring of the
current health condition of seismic-excited structural systems. In order to
do this, a data-set of ten seismic input signals, which differ for magnitude,
location, duration and Peak Ground Acceleration (PGA), are considered,
during the computational analyses. The earthquake input is assumed to
be applied at the base of the same 3-DOF dynamic system considered in
Chapter 3, taken as a benchmark structure for the numerical validation
of the proposed HDF implementation. A multi-rate Kalman Filter is em-
ployed for fusing together the noise-added non-stationary displacement
data with the acceleration data, synthetically generated from the bench-
mark numerical system. The analysis is conducted for several Noise-to-
Signal (N/S) ratios, aiming at simulating errors that may arise during ex-
perimental campaigns (e.g. due to the intrinsic limits of the employed in-
strumentation), within the phase of signal acquisition. The filtered dis-
placement response signals, complemented by a few acceleration record-
ings, are then employed for extracting the modal natural frequencies of
the examined structural system, and a good agreement between the re-
sulting estimates obtained through the modal identification performed on
displacements and those deriving from accelerations, is achieved.

In Chapter 5, a denoising-based approach, aiming at clarifying dynamic
response signals, is introduced. In fact, within the civil engineering con-
text, vibration-based monitoring is receiving an increasing attention, due
to the high technological level that the developed methodologies are nowa-
days reaching, together with the increasing quest for the implementation
of an effective, but ideally low-cost, monitoring instrumentation. The lat-
ter is relatively easy to be deployed, and allows for the recording of the
structural vibration response at multiple locations, which, for large strate-
gical infrastructures, such as high-rise buildings, bridges, wind farms, etc.
may be of a critical importance. On the other hand, a low-cost instrumen-
tation may typically be accompanied by high N/S ratios, contaminating
the structural response, increasing the induced uncertainties and render-
ing more difficult the implementation of SHM methods. Thus, the avail-
ability of appropriate and effective denoising techniques may play a key
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role in these circumstances. In tackling such an associated denoising prob-
lem, several methods have been proposed and are currently under further
development. Among specific variants, the utilization of multi-rate filter
banks, especially the one based on Discrete Wavelet Transform (DWT), as
well as the application of Singular Value Decomposition (SVD), have re-
vealed to be rather effective. Yet, they have mostly been applied to prob-
lems where structural vibration response signals originate from specific be-
havioral classes, as, e.g., in monitoring applications of rotating machinery.
In this chapter, the aforementioned methods are reconsidered and reim-
plemented; then, assessed on noise-corrupted vibration response signals
related to civil engineering applications. Different noise levels and excita-
tion types are considered, acting on a 10-DOF structural dynamic system,
i.e. earthquake and ambient vibration excitations, since they may be as-
sumed as representative of more general non-stationary and stationary sig-
nal typologies, respectively. Advantages and limitations of both denoising
approaches are presented and discussed, and a detailed critical analysis in
both the Time and Frequency Domains, comparing results obtained from
non-stationary and stationary response signals, is presented.

It is worth noting that all signals considered within the chapters pre-
sented so far will be synthetic signals, since their preliminary employment
is considered to be necessary in the phase of validation of the developed
SHM procedures. The further target, to which Chapters 6 and 7 are dedi-
cated, is represented by the employment of real signals, directly acquired
“in situ", by means of appropriate accelerometers and displacement sen-
sors.

In particular, in Chapter 6, a real case study is analyzed, where both
the two previously considered denoising approaches are adapted and em-
ployed for clarifying real non-stationary acceleration response signals, de-
tected on a modern short-span railway RC bridge, by predisposing appro-
priate accelerometer sensors at a certain number of locations. Through an
analysis conducted within both the Time Domain and the Frequency Do-
main, it has been proven that the application of the DWT- and SVD-based
denoising techniques may result quite effective in the clarification of the
considered real response signals, suggesting a possible adoption of these
techniques for the treatment of similar noise-corrupted vibration signals
that may be encountered within civil engineering applications.

Chapter 7 presents an effective integrated SHM strategy, specifically
addressed to the preservation of the integrity and safety of strategic and
historic infrastructures, like bridges. In fact, given the critical conditions
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that characterize many of these structures (e.g. due to their age, or the
considerable dynamic loads that they may have endured), the availability
of efficient monitoring strategies is becoming increasingly urgent. Thus,
within SHM, several vibration-based methodologies have already been de-
veloped, including the previously mentioned HDF-based approaches, as
well as the denoising techniques for the treatment of noise-corrupted vi-
bration response signals. In this chapter, these two approaches are recon-
sidered and rejoined, toward developing an innovative signal processing
methodology for current condition assessment, specifically referring to his-
toric bridges. In particular, a HDF-based procedure, i.e. the process of com-
bining information from multiple sources (acceleration and displacement
response signals), in an effort to enhance the reliability of the monitoring
process, and a denoising approach, devoted to the cleaning of spurious
noise from the acquired signals, are combined all together, in an integrated
strategy. The effectiveness of the proposed platform is tested on data ac-
quired from a real infrastructure, i.e. the historic Reinforced Concrete (RC)
Brivio bridge (1917), subjected to operational loading conditions. Both dy-
namic acceleration and displacement response signals, directly detected
on the bridge, are processed within the proposed methodology, and subse-
quently employed toward modal dynamic identification purposes (for the
identification of the modal natural frequencies and vibration modes of the
bridge), and possible model updating of the structure at hand.

Finally, conclusions and final remarks are outlined in last Chapter 8,
where the main achievements of the present work are summarized, and a
few possible future perspectives are also disclosed.

This Doctoral Thesis aims at providing an original, methodological re-
search contribution to the thriving research field of Structural Health Mon-
itoring. In particular, it aspires at proposing new perspectives for the treat-
ment of spurious noise that may appear on recorded structural response
signals, due to multiple and different reasons, explored within the thesis.
Thus, the present research work specifically focuses on the post-processing
phase of the acquired signals, by presenting post-processing approaches
such as Heterogeneous Data Fusion procedures and denoising-based tech-
niques, as well as hybrid approaches, which integrately involve both the
aforementioned processes. Through several implementations based on ar-
tificially generated response signals, firstly, and on real response signals,
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directly detected on real structures, subsequently, the analysis aims at mak-
ing the monitoring process more consistent, and its outcomes much reli-
able, resulting in a further precise and comprehensive description of the
current health condition of a determined monitored structure. The results
prove the effectiveness of the proposed implementations, also highlighting
the possible limitations which may characterize each studied technique,
for instance depending on the typology of the data to be processed, by also
motivating further specific research in this latter scenario.
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Chapter 2

Main state of the art

This chapter provides a main critical literature review on the research top-
ics explored within the present Doctoral Thesis. In particular, starting from
the “on field” purposes of Structural Health Monitoring (SHM), below
discussed in Section 2.1, Data Fusion (DF) methodologies are then exam-
ined and reported in Section 2.2, and a comprehensive overview of the
main available theories is provided. Focus is finally placed on Kalman
Filter (KF), to which Section 2.3 is dedicated, as a powerful tool to be em-
ployed within a DF-based analysis, for fusing together heterogeneous data
acquired from different typologies of sensors.

Although these research topics cover a wide range of applications, whi-
ch belong to different disciplinary areas, given the specific purposes of this
research work, these themes will here always be treated in the main per-
spective of the civil engineering field.

2.1 Structural Health Monitoring

In recent years, Structural Health Monitoring has become more and more
important to ensure reliability and efficient management of strategical or
historical civil infrastructures such as, for instance, long-span bridges, con-
crete dams and high-rise buildings. The main reason lies in the fact that
structural damage resulting from extensive service loading conditions, or
even structural failure, may induce significant risks for human life. SHM
represents a constantly evolving research field, addressed to the evaluation
of the health condition of a monitored structure, based on its current struc-
tural performance. It is generally articulated into multiple phases, each of
which characterized by different levels of detail, i.e. detection of damage,
localization of damage, its identification, and prognosis. By using infor-
mation deriving from a certain number of sensors, suitably arranged along
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the structure, SHM procedures aim at estimating the dynamic behaviour
of the monitored structure at all its locations. For this purpose, the ac-
quisition stage of signals, which describe the current structural condition,
constitutes a fundamental phase for the success of the whole monitoring
analysis.

2.1.1 The role of displacement and acceleration data in SHM

Generally, SHM is relying on measurements of accelerations and/or dis-
placements detected on a structural system; in fact, these typologies of
data represent two significant physical quantities which may effectively be
related to fatigue and damage estimation. The most common techniques
lately adopted for acquiring acceleration and displacement structural re-
sponse signals, within the field of civil engineering, are below presented
and discussed, and a brief overview on the typologies of sensors that may
be employed to collect such kind of data is also provided.

2.1.1.1 Displacement data

The knowledge of the displacement response constitutes one of the most
important features for determining the current health condition of a struc-
ture. Indeed, if a structure response lies within the elastic range, the oc-
curred deformations are proportional to the internal stresses and, conse-
quently, they can directly be exploited to determine the presence and the
level of possible damage.

Measuring static or dynamic displacements of in-service structures rep-
resents an important issue for the purposes of design validation, perfor-
mance monitoring, or safety assessment. Currently, available techniques
for such a purpose can roughly be classified into two categories: direct
measurement and indirect measurement techniques.

Among the instrumentation that rely on direct measurement techni-
ques, noteworthy are the Global Positioning System (GPS) and the Laser
Doppler Vibrometer (LDV). Indeed, whereas GPS can provide real-time
displacement measurements with an accuracy level of about 5-10 mm (Ro-
berts and Dodson [170]), at a frequency up to 20 Hz, LDV can provide ac-
curate displacement measurements at multiple locations within a consider-
able range of distance (the laser intensity may become dangerously strong
for distances greater than 75-100 m, Nassif et al. [142]). These instrumen-
tations, however, are quite expensive, in particular when displacements at
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a large number of locations are desired. So, alternative measurement tech-
niques have been developed in recent years.

For example, one of the most recent developed techniques for displace-
ment acquisition relies on photogrammetry. This technique exploits the
geometrical relationship between a three-dimensional object and its two-
dimensional photographic images. When sequences of images are used
to capture a spatial-coordinate time history of an object, the technique can
also be referred to as videogrammetric technique.

As compared to the above mentioned measurement techniques, the
videogrammetric technique is a non-contact one, able to provide direct
displacement measurements in both time and space. Methods that incor-
porate photogrammetric techniques with computer-vision strategies have
also been developed, to investigate the dynamic characteristics of struc-
tures (Olaszek [145]). For instance, in Chang and Xiao [23], results from
various tests conducted on a pedestrian bridge turned out to show that this
method is characterized by an accuracy of 0.1-1 mm for a camera-target
distance ranging between 10 m and 100 m, respectively, with a vibration
frequency under 5 Hz. In Patsias and Staszewski [149], a videogrammet-
ric technique is employed, to obtain the mode shapes of a cantilever beam
and a high-speed professional camera system is used to capture the beam
vibration. The system, however, is limited to 2D planar vibration measure-
ments, since only one camera is employed. Indeed, in order to capture the
3D dynamic behavior, avoiding that some geometrical information might
be lost, more cameras become necessary. In fact, the transformation be-
tween an object in a 3D space and its 2D images is a degenerating pro-
cess during which some geometrical information of the object may be lost.
Hence, unless the object moves on a 2D plane, the reconstruction of its
3D motion normally requires at least two image sequences acquired from
different cameras. Only few examples of such multi-camera approach are
found in the literature: whereas Yoshida et al. [215] used a three-camera
system, to capture the 3D dynamic behavior of a membrane, Chang and
Ji [22] developed a dual-camera videogrammetric system to measure the
3D structural vibration response.

The use of multiple image sequences, however, demands for a pre-
cise synchronization among the cameras, which might be difficult to be
achieved, especially for experimental “on field” tests. Point correspon-
dence among multiple image sequences also requires significant computa-
tional efforts and may lead to larger reconstruction errors.
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Alternatively, displacements can be measured by using traditional stru-
ctural displacement sensors, such as Linear Variable Differential Trans-
formers (LVDTs) and dial gauges, which are able to record infinitesimal
displacements, as well as other similar direct displacement measuring de-
vices. All these kinds of devices, however, require a fixed reference, to
work properly (usually a stationary platform near the measurement point).
This is one of the main issues related to the employment of such systems,
which often limits their application for structures like bridges (Lee and Shi-
nozuka [124]). Finally, the use of optical transducers, to measure displace-
ments, might represent an interesting alternative but, because of their high
price, their employment is not so common yet in the current practice.

Indirect measurement techniques, instead, require a double time inte-
gration of the recorded acceleration time histories. The accuracy of indirect
measurement techniques, however, has always been a concern. In fact, the
double integration of acceleration is not readily automated and it requires
selection of filters and baseline corrections, as well as the use of personal
judgment when anomalies come to arise in the records.

2.1.1.2 Acceleration data

Regarding the direct acquisition of acceleration recordings, the most com-
mon solution is represented by the employment of accelerometers. Ac-
celerometers are inertial sensors, to be located directly on the structure, and
able to acquire accelerations in a vast range of sensing. Furthermore, they
may detect accelerations along one, two, or three orthogonal axes. These
sensors are widely employed for monitoring tests and they are becoming
increasingly affordable. Differently from displacement measurement tech-
niques, accelerometers can provide real-time acceleration measurements,
with a high accuracy level also at frequency rates with the order of size
of kHz. There are several different principles based on which an accelerom-
eter may be built: the two more common types are based on the capacity
sensing and on the piezoelectric effect, to take the acceleration of a proof
mass located within the sensors. It is worth noting that the accelerome-
ter output value is always a scalar, corresponding to the magnitude of the
acceleration vector.

Accelerometers display multiple applications within the engineering
field, turning out to be fundamental for SHM purposes, as for instance in
the reconstruction of the modal dynamic properties of the examined struc-
ture.
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In fact, as previously mentioned, recording abnormal dynamic behav-
ior, evaluating serviceability, detecting diffused and localized damage, as
well as estimating the residual performance capacity of structures, con-
stitute crucial aspects of SHM. These ambitious goals may be pursued
through the application of modal dynamic identification techniques, which
aim at determining the modal dynamic parameters of a structure, i.e. nat-
ural frequencies, mode shapes and damping ratios. Indeed, variations of
these quantities during the life-cycle of a structure may reveal a change
in its performance characteristics. According to the literature, mainly ac-
celeration but also displacement measurements may be employed within
inverse analysis algorithms, for structural identification purposes. Further-
more, also Finite Element Method (FEM) models, with related model up-
dating, represent consistent tools for the condition assessment of existing
civil constructions.

From the above, it clearly emerges how displacements and accelera-
tions constitute strictly connected quantities. Indeed, after measuring an
acceleration signal, which may relatively be convenient to be captured,
it is possible to obtain the corresponding displacements through a dou-
ble time integration of the acceleration data. This approach is quite com-
mon because accelerations are obtained without requiring the knowledge
of initial velocity and displacement information. So, in this case, the trans-
formed response is only affected by the initial conditions in terms of ac-
celeration. As above mentioned, however, the main weakness of this pro-
cedure lies in the fact that the double integration of acceleration data may
cause a low-frequency noise amplification of the acquired signal and this
may lead to wrong estimates. Moreover, the so-called displacement drift
issue can be observed as a consequence of the integration process. Thus,
within the civil and mechanical structural modeling, for which accelerom-
eters are most often used, also displacement sensors, such as non-contact
optical techniques, as well as GPS-based methods for civil structures, are
becoming increasingly widespread.

2.1.1.3 Frequency resolution of sensors

A common feature of displacement-based sensing is that the high-frequen-
cy resolution is limited, and often relatively low sampling rates are used.
In contrast, accelerometers are often more accurate for higher frequencies
and higher sampling rates are often available. For civil infrastructures, the
most damaging resonant modes of structures such as buildings or bridges
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are typically excited at less than 10 Hz. Within such a range, it is possible
to assert that accelerations should always be preferred to be measured.

In light of what it has been stated, fusion processes between displace-
ment and acceleration signals may offer the possibility to obtain a merge
of the benefits deriving from each of the two types of measurements. This
aspect, with some related issues, is inspected in the next section.

2.2 Data Fusion

This section deals with Data Fusion (DF) processes, and the modalities con-
cerning the relative data treatment, since they depend on the typology of
imperfection that may affect the data involved in the process. In fact, data
may be affected by a great variety of factors that, in many cases, could
lead to wrong estimates of the observed phenomenon. DF may be con-
sidered as a multi-disciplinary research field, with a wide range of poten-
tial applications, within diversified areas, such as defense (in the military
field), robotics, automation and intelligent system design, pattern recogni-
tion, etc. This has been and will continue to act as the driving force behind
the ever-increasing interest of the research community in developing more
advanced Data Fusion methodologies and architectures. In the civil engi-
neering field, however, the DF process is still far from being extensively
investigated, despite the fact that researchers have increased their focus
on this kind of topic, in recent years. In particular, within the civil engi-
neering field, multi-sensor DF procedures may be employed for structural
purposes to evaluate the health conditions of strategical constructions like
bridges, dams or skyscrapers, configuring itself as an important tool for
achieving an effective SHM.

Here, a summarizing review of the DF literature, which aims at ex-
ploring its conceptualizations, benefits, and challenging aspects, is pro-
vided. An overview of existing methodologies is also presented, and sev-
eral future research perspectives on DF-based approaches are eventually
outlined.

2.2.1 Heterogeneous Data Fusion

Data Fusion is a technique conceived to allow combining information from
several objective sources, in order to form a unified framework. About



2.2. Data Fusion 13

data modality, sensor networks may collect qualitatively similar (homo-
geneous) or different (heterogeneous) data, such as for instance displace-
ment and acceleration measurements. The present thesis focuses especially
on this latter kind of subject, exploring Heterogeneous Data Fusion (HDF)
procedures between different dynamic response signals. HDF is defined
as a technique which allows the merging of information from multiple
sensor typologies, in order to increase the accuracy of the measurements
themselves, aiming at achieving a more reliable description of dynamic
behaviour of an examined structural system. The motivation behind the
study of such procedures lies in the possibility to link these techniques
to the monitoring of the health condition of a structure, through the ac-
quisition of displacement and acceleration response signals, which may
be related to damage and structural fatigue estimation. In this sense, the
DF concept means bringing together information deriving from measure-
ments acquired from displacement and acceleration sensors, for providing
a more accurate estimation of the current structural condition, as well as
the improved identification of the associated modal parameters.

2.2.2 Definitions and key concepts

This section provides main definitions about DF procedures, drawn from
the literature, as well as the most common existing and popular conceptu-
alizations of fusion systems.

Multiple definitions of DF may be found in the literature. Joint Direc-
tors of Laboratories (JDL) [221] defines DF as a “multilevel, multifaceted
process handling the automatic detection, association, correlation, estima-
tion, and combination of data and information from several sources”.

Klein [115] generalizes this definition, stating that data can be provided
either by a single source or by multiple sources. Both definitions appear to
be quite general, and they can be applied within different research fields,
including remote sensing. Even in Bostrom et al. [15], a review and discus-
sion about many DF definitions may be found. In particular, in such a pa-
per, an interesting definition of information fusion is proposed, as follows:
“The study of efficient methods for automatically or semi-automatically
transforming information from different sources and different points in
time into a representation that provides effective support for human or
automated decision making”.
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It is worth noting that DF constitutes a multidisciplinary research area,
borrowing ideas from many different fields, such as signal processing, in-
formation theory, statistical estimation and inference, and artificial intelli-
gence. Generally, performing DF displays several advantages that mainly
involve enhancements in data authenticity or availability. Examples of the
former are improved detection, confidence and reliability, as well as reduc-
tion in data ambiguity. Instead, extending spatial and temporal coverage
belongs to the latter category of benefits.

Various conceptualizations of the fusion process exist in the literature.
The most common and popular conceptualization of fusion systems is the
JDL model [221]. The JDL classification is based on the input data and
on the produced output. The JDL formalization, which originates from
the military domain, focuses on (input/output) data rather than on data
processing. The original JDL model considers the fusion process at four
increasing levels of “abstraction”, namely: object, situation, impact, and
process refinement. Despite its popularity, the JDL model has many short-
comings, such as being too restrictive and especially tuned for military
applications. For this reason, it has been the subject of several extension
proposals, attempting to alleviate its drawbacks (Steinberg et al. [196], Lli-
nas et al. [132]).

An alternative conceptualization of DF is provided by the so-called
Dasarathy’s framework [40]. It considers the fusion system from a software
engineering perspective, as a data flow characterized by input/output, as
well as functionalities.

Another general conceptualization of fusion is given by the work of
Goodman et al. [80], which is based on the notion of random sets. The dis-
tinctive aspect of this framework lies in its ability to combine decision un-
certainties with decisions themselves, as well as presenting a fully generic
scheme of uncertainty representation.

Finally, it is worth mentioning also the fusion frameworks proposed by
Kokar et al. [116]. This formalization is based on category theory and it is
claimed to be sufficiently general to capture all kinds of fusion, including
data fusion, feature fusion, decision fusion, and fusion of relational infor-
mation. It may be considered as the first step towards the development of
a formal theory of fusion. The major novelty of that work lies in express-
ing all the aspects of the multi-source information processing, namely both
data and processing. Furthermore, it allows for a consistent combination of
the processing elements, with measurable and provable performance. Such
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formalization of fusion is important for the application of formal methods,
for a standardization and virtuous development of fusion systems.

2.2.3 Classification of DF-related issues

Most of the issues that make the Data Fusion process a challenging task
arise from the data to be merged, the imperfection and diversity of the
sensor technologies, as well as the “nature” of the application environment.

This section provides an overview of data-related crucial aspects that
may characterize the DF procedures. All this kind of issues may be rep-
resented according to a very convenient classification, provided by Kha-
leghi et al. [111], and reproposed in following Fig. 2.1. Despite many of
these problems have been identified and heavily investigated, no single
DF algorithm is capable of addressing all the involved challenges. The va-
riety of methods available in the literature focus on a subset of these issues
to be solved, which would be determined based on the application at hand.

The input data to the fusion system may be imperfect, correlated, in-
consistent and appearing in disparate forms or modalities. Two out of four
main categories of challenging problems can further be sub-categorized
into more specific problems, as shown in Fig. 2.1. The following sections
introduce such main categories.

2.2.3.1 Data imperfection

Data provided by sensors are always affected by some level of imprecise-
ness, as well as uncertainty in the measurements. DF-based algorithms
should be able to effectively express such imperfections, and to exploit the
data redundancy, in order to reduce their effects.

Three aspects of data imperfection are considered in the classification:
granularity, imprecision, and uncertainty. Data granularity refers to the
ability to distinguish among objects, which are described by data, being
dependent on the provided set of attributes. Data is uncertain when the
associated confidence degree is low, whereas imprecise data is that data
which refers to several objects, rather than only one.

Moreover, imprecision possesses a sub-categorization. Indeed, it can
manifest itself as: ambiguity, incompleteness or vagueness of data.

Ambiguous data refers to those data where the attributes are exact and
well-defined, yet imprecise. Instead, imprecise data characterized by some
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Figure 2.1: Taxonomy of the main challenging issues of input data (adapted from
Khaleghi et al. [111]).
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missing information is called incomplete data. Finally, vague data is char-
acterized by having ill-defined attributes: this means that the attribute is
more than one and not a well-defined set or interval. For example, it may
be subjectively interpreted and it may display a different meaning from
one observer to the other.

2.2.3.2 Data disparateness

The input data to a fusion system may be generated by a wide variety of
sensors, human, or even archived sensory data. Fusion of such disparate
data, in order to build a coherent and accurate global view or the observed
phenomena, constitutes a very difficult task.

2.2.3.3 Data inconsistency

Inconsistency in input data due to conflicting, spurious (outlier), or disor-
dered data, is now considered. In fact, uncertainties in sensors arise not
only from the impreciseness and noisiness in the measurements. They are
also caused by ambiguities and inconsistencies present in the environment,
and from the inability to distinguish between them. So, when it is not pos-
sible to exclude outliers and spurious data, DF-based algorithms should be
able to exploit redundant data, to alleviate such effects.

About conflicting data, fusion of such data may be problematic, espe-
cially when the fusion system is based on evident belief reasoning. To
avoid producing counter-intuitive results, any DF-based algorithm should
treat highly conflicting data with special care.

2.2.3.4 Data correlation

Correlated (dependent) data is also a challenge for data fusion systems
and it should be properly treated. This issue is particularly important and
common in distributed fusion settings, for example in wireless sensor net-
works. In fact, some sensor nodes are likely to be exposed to the same
external noise, biasing their measurements. If such data dependencies are
not accounted for, the fusion algorithm may suffer from over- or under-
confidence in the results.
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2.2.3.5 Data alignment

Another important feature in DF systems that is not taken into account in
the proposed classification (see Fig. 2.1), because it is not strictly connected
to the data collection stage, is the necessity of alignment or registration of
such measurements after their acquisition.

Sensor data, in fact, must be transformed from each sensor’s local frame
into a common frame, before fusion occurs. Such an alignment issue is of-
ten referred to as sensor registration and deals with the calibration error
induced by individual sensor nodes. Data registration is of a critical im-
portance for the successful deployment of fusion systems in practice.

2.2.4 Data Fusion treatment

Here, an overview of the main mathematical theories available in the lit-
erature to merge data with the characteristics above, is presented. In par-
ticular, the focus is on the treatment of the previously discussed four main
categories of issues, which may affect the nature of the input data. A great
importance is also placed on Probability Theory, since it represents the the-
ory at the base of the Kalman Filter algorithm.

2.2.4.1 Fusion of imperfect data

The inherent imperfection of data is the most fundamental challenging
problem of DF systems, and thus a main bulk of the work in the research
community devoted to the DF treatment has been focused on tackling this
issue. There appear a large number of mathematical theories available to
deal with data imperfection (Sheridan [188]). These theories refer in partic-
ular to Probability Theory (Durrant-Whyte and Henderson [55]), Fuzzy Set
Theory (Zadeh [226]), Possibility Theory (Zadeh [227]), Rough Set Theory
(Pawlak [150]), Dempster-Shafer Evidence Theory (DSET) (Shafer [186])
and its “hybridization” with Fuzzy Set Theory, namely Fuzzy DSET The-
ory (Yen [213]), and Random Finite Set Theory (Kendall [110]). Each of
these theories is targeted to a specific kind of imperfection, as represented
in Fig. 2.2.

On the x axis, various aspects of data imperfection, already introduced
in Fig. 2.1, are depicted. The box around each mathematical theory desig-
nates the range of imperfection aspects mainly targeted by that theory.

Most of these approaches are capable of representing a specific aspect
(or aspects) of imperfect data. For example, a probabilistic distribution
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Figure 2.2: Main mathematical theories available to deal with data imperfection
(adapted from Khaleghi et al. [111]).

(Probability Theory) may efficiently express data uncertainty; Fuzzy Set
Theory may represent vagueness of data; Evidential Belief Theory may
represent uncertain, as well as ambiguous data.

Historically, Probability Theory was used for a long time to deal with
almost all kinds of imperfect information, because it originally was the
only existing theory. Then, alternative techniques such as Fuzzy Set Theory
and Dempster-Shafer Theory have been proposed to deal with perceived
limitations in probabilistic methods, such as complexity, inconsistency, im-
precision of models, and uncertainty about uncertainty.
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2.2.4.1.1 Probability Theory Probabilistic methods rely on a Probability
Density Function (PDF), to express data uncertainty. At the core of these
methods lies the so-called Bayes estimator, which enables fusion of pieces
of data, hence the name Bayesian fusion.

It is generally possible to apply the Bayes estimator for updating the
probability density (or distribution) of a system state, by recursively fus-
ing a new piece of data, in order to obtain a better solution estimation.
However, the Bayes estimator usually contains integrals that cannot be an-
alytically evaluated, and an analytic solution of the Bayes estimator is thus
only occasionally available.

This is the case of KF. In fact, it may be interpreted as a particular
case of a Bayes filter with an exact analytical solution of the integrals that
characterize the latter, allowed by enforcing simplifying constraints on the
system dynamic to be linear-Gaussian. This means that observed mea-
surements and considered models are assumed to display a linear form
and to be contaminated with a zero-mean Gaussian noise (Mahler [136]).
Nonetheless, KF is one of the most popular DF methods, mainly due to
its immediacy, ease of implementation, and optimality in a mean-squared
error sense. It constitutes a well-established method, whose properties are
deeply studied and examined both theoretically and practically. Similar to
other least-square estimators, KF however displays some drawbacks. In-
deed, it is very sensitive to data corrupted with outliers. Furthermore, KF
turns out to be inappropriate for applications whose characteristic errors
are not readily parametrized.

When dealing with non-linear system dynamic, it may often be nec-
essary to resort to approximation techniques, and the application of the
Extended Kalman Filter (EKF) (Hoshiya and Sato [94]) or the Unscented
Kalman Filter (UKF) (Julier and Uhlmann [102]) may reveal to be useful.
In fact, these are extensions of KF that are applicable to non-linear systems,
which are based on a first-order and on a second-order Taylor series ap-
proximation, respectively. However, both these methods can handle non-
linearities only to a limited extent.

Among probability theories, grid-based methods (Stone et al. [197])
provide an alternative approach for approximating non-linear PDFs, al-
though they may require higher computational costs.

2.2.4.1.2 Dempster-Shafer Theory The theory of belief functions was
initiated by Dempster [42] in 1968 and then mathematically formalized by
Shafer [186] in 1976, toward achieving a general theory of reasoning, based
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on evidence. Belief functions theory constitutes a popular method to deal
with uncertainty and imprecision, within a theoretically attractive frame-
work.

Dempster-Shafer (D-S) theory introduces the concept of assigning be-
liefs and plausibilities to possible measurement hypotheses, along with a
required combination rule to merge them. It may be considered as a gener-
alization of Bayesian Theory, that deals with the so-called probability func-
tion (Khaleghi et al. [111]).

The employment of Dempster-Shafer theory for the DF problem was
first presented by Garvey et al. [75] in 1981. Unlike Bayesian inference, D-S
theory allows each source to contribute information at different levels of
detail. For example, one sensor may provide information to distinguish
individual entities, while other sensors may provide information to distin-
guish classes of entities. D-S theory has established itself as a promising
and popular approach to DF, especially in the latest years. Nonetheless,
there appear issues such as the exponential complexity of the computations
(in general the worst case scenario), as well as the possibility of producing
counterintuitive results, when fusing conflicting data by using Dempster’s
rule of combination. Both these issues have been heavily studied within
the literature and numerous strategies have been proposed to solve or al-
leviate them (Barnett [12], Gordon and Shortliffe [81]).

2.2.4.1.3 Fuzzy Set Theory Fuzzy Set Theory is an alternative theoret-
ical scheme for dealing with imperfect data. In particular, fuzzy DF rep-
resents an efficient solution when vague or partial sensory data is “fuzzi-
fied” using a gradual membership function. Fuzzy data may then be com-
bined using fuzzy rules to produce fuzzy fusion output. According to
Zadeh [226], fuzzy fusion rules can be divided into conjunctive and dis-
junctive categories. Conjunctive fuzzy fusion rules are considered to be
appropriate when fusing data provided by equally reliable and homoge-
neous sources. On the other hand, disjunctive rules are deployed when (at
least) one of the sources is deemed as reliable, or when highly conflictual
data have to be merged (Zadeh [226]). Accordingly, some adaptive fuzzy
fusion rules have been developed, as a compromise between the two cate-
gories, which may be applied in both cases (Dubois and Prade [53]).

In contrast to Probability and Evidence theories, which are well suited
to modeling the uncertainty of the membership of a target in a well-defined
class of objects, Fuzzy Set Theory is well suited to modeling the fuzzy
membership of a target in an ill-defined class. Yet, similar to Probability
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Theory, which requires a prior knowledge of the probability distributions,
Fuzzy Set Theory requires prior membership functions for different fuzzy
sets. Being a powerful theory to represent vague data, Fuzzy Set Theory is
particularly useful to represent and fuse vague data produced by human
experts in a linguistic fashion (Zadeh [226]). Furthermore, it may often be
integrated with probabilistic (Sasiadek and Hartana [182]) and D-S eviden-
tial (Zhu and Basir [234]) fusion algorithms, in a complementary manner.

2.2.4.1.4 Possibility Theory Possibility Theory was founded in 1978 by
Zadeh [227] and later extended in 1988 by Dubois and Prade [51]. It is
based on Fuzzy Set Theory, despite it was mainly designed to represent in-
complete rather than vague data. In fact, the data combination rules used
for a “possibilistic” fusion, are similar to those deployed for a fuzzy fu-
sion. The main difference is that possibilistic rules are always normalized.
Moreover, while the previously mentioned basic symmetric conjunctive
and disjunctive fusion rules of Fuzzy Set Theory are sufficient only for re-
stricted cases, possibilistic fusion methods offer a number of enhancements
that allow for handling a quite vast range of fusion scenarios (Dubois and
Prade [51]). Also, possibilistic fusion is argued to be most appropriate in
poorly informed environments (no available statistical data) as well as in
the fusion of heterogeneous data sources.

2.2.4.1.5 Rough Set Theory Rough Set is a theory developed by Paw-
lak [150] in 1992, for dealing with imperfect data and especially to repre-
sent imprecise data, ignoring uncertainty at different granularity levels. In-
deed, Rough Set Theory would allow the approximation of possible states
of the system based on the granularity of the input data.

Granularity indicates the level of detail used to describe a specific fea-
ture, with reference to the size of the elements of which it is composed.
Within the computational field, granularity means the level of detail of the
data stored in the data warehouse, and the elements from which it is com-
posed are called data “granules”. The higher is the level of detail, the lower
the granularity, and viceversa. Granularity represents a very important de-
sign aspect to be taken into account, because it is directly linked to the vol-
ume of saved data and, consequently, to the performance of the system and
the need for hardware resources. To choose the right level of granularity,
in order to avoid storing details that will never be considered, constitutes
not an easy task.
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In order to successfully perform fusion, in fact, data granules must nei-
ther be too fine nor too rough. In the case of data granules being too fine,
Rough Set Theory reduces to Classical Set Theory. On the other hand, for
very rough data granules, the lower approximation of data is likely to be
empty, resulting in a total ignorance. Once approximated as rough sets,
data granules can be fused together using a Classical Set Theory, with con-
junctive or disjunctive fusion operators (i.e. intersection or union).

The major advantage of Rough Set Theory, if compared to its alterna-
tives, is that it does not require any preliminary or additional information,
such as data distribution or membership function. Rough Set Theory al-
lows for fusion of imprecise data approximated merely based on its inter-
nal structure (granularity).

Due the fact that such theory has not been well understood within the
fusion community, Rough Set Theory has been rarely applied to data fu-
sion problems.

2.2.4.1.6 Hybrid fusion approaches The main idea behind the develop-
ment of hybrid fusion algorithms is that different fusion methods such as
Fuzzy Set Theory, D-S Evidence Theory, and Probability Theory should not
be competing, as they approach DF from different (but possibly comple-
mentary) perspectives. Examples of hybrid frameworks are Fuzzy Rough
Set Theory (FRST) (Dubois and Prade [52]) (omitted from the representa-
tion of Fig. 2.2, in order to avoid confusion) and Fuzzy Dempster-Shafer
Theory (Fuzzy DSET) (Yen [213]). At the theoretical level, hybridization of
Fuzzy Set Theory with D-S Evidence Theory has been deeply studied (Ya-
ger [212], Yen [213]), aiming at providing a framework for a more compre-
hensive treatment of data imperfection.

Among many proposals, the work by Yen [213] is perhaps the most
popular approach that extends the D-S Evidence Theory into the fuzzy
realm, while maintaining its major theoretical principles. Yen’s theory
of Fuzzy D-S Evidence Theory frequently appears in the reference litera-
ture (Basir et al. [13], Zhu and Basir [234]).

Combination of Fuzzy Set Theory with Rough Set Theory (FRST), pro-
posed by Dubois and Prade [52] constitutes another important theoretical
hybridization existing in the literature. In spite of constituting a powerful
representation tool for vague as well as ambiguous data, the original FRST
displays some limitations, such as relying on special fuzzy relations. This
issue has been subsequently addressed by Yeung et al. [214], in an attempt
to generalize FRST to arbitrary fuzzy relations. However, the application of
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FRST to DF remains poorly investigated within the DF literature, as Rough
Set Theory itself is still not an established DF approach.

2.2.4.1.7 Random Finite Set Theory The principles of Random Set The-
ory were first proposed in the 1970s by Kendall [110], to study integral
geometry. The unifying capability of Random Set Theory has been shown
by some researchers (Goodman et al. [80], Kreinovich [121], Mori [140]).
Among them, the work of Goodman et al. [80] has been most successful in
gaining a visible attention.

This theory is based on random subsets of measurement, to represent
many aspects of imperfect data, and it may potentially provide a unifying
framework for fusion of such a data. The main limit of Random Set Theory
is that it is relatively new and not yet very well appreciated within the
fusion community.

2.2.4.2 Fusion of correlated data

Many DF-based approaches, including the KF algorithm, require either
the independence or the prior knowledge of the cross covariance of data,
for producing consistent results. Unfortunately, in many applications, DF
is correlated with potentially unknown cross covariance. This may oc-
cur due to the presence of noise in the observed phenomena (Julier and
Uhlmann [102]) in centralized fusion settings, or due to the rumor propa-
gation issue (also known as data incest or double counting problem, Maka-
renko et al. [137]), where measurements are inadvertently used several
times in distributed fusion settings.

Most of the proposed solutions for correlated DF attempt to solve it by
either eliminating the cause of correlation or tackling the impact of corre-
lation in the fusion process. Data correlation is especially problematic in
distributed fusion systems, and it is commonly caused by data incest. The
data incest situation itself happens when a same information takes several
different paths from the source sensor to the fusion node. This issue may
be eliminated (before fusion) either explicitly, by removal of data incest, or
implicitly, through reconstruction of measurements.

Instead of removing data correlation, it is alternatively possible to de-
sign a fusion algorithm that accounts for the correlated data. Covariance
Intersection (CI) (Julier and Uhlmann [102]) is the most common fusion
method to deal with correlated data. CI was originally developed to avoid
the problem of the covariance matrix underestimation due to data incest.
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It solves this problem in a general form, for two data sources, by formu-
lating an estimate of the covariance matrix as a combination of the means
and covariances of the input data. As a drawback, CI requires a non-linear
optimization process and therefore is computationally demanding.

2.2.4.3 Fusion of inconsistent data

The notion of data inconsistency may relate, in a generic sense, to spurious,
as well as disordered or conflicting data, as already shown in Fig. 2.1. There
exist various techniques available within the DF literature that have been
developed to tackle each of these three aspects of data inconsistency.

Data provided by sensors to the fusion system may be spurious due
to unexpected situations such as permanent failures, short duration spike
faults, or slowly developing failure. If fused with correct data, such spu-
rious data may lead to dangerously inaccurate estimates. For instance,
as previously mentioned, KF would easily break down if exposed to out-
liers (Djurovic and Kovacevic [45]).

The majority of the research work in the field of DF on treating spurious
data has been focused so far on the identification or prediction and subse-
quent elimination of the outliers from the fusion process. A common issue
that may occur in using these techniques concerns the requirement of the
prior information, often in the form of specific failure models. As a result,
they would poorly perform in a general case, where a prior information is
not available, or unmodeled failures occur.

2.2.4.4 Fusion of disparate data

Since the input data may be generated by a wide variety of sensors, hu-
mans, or even archived sensory data, fusion of such disparate data consti-
tutes a very difficult task. In fact, the DF process should be able to build a
coherent and accurate global view of the observed phenomena, despite this
disparateness. Nonetheless, in some fusion applications such as “Human
Computer Interaction” (HCI) (Hall et al. [88]), such diversity of sensors is
necessary to enable for a natural interaction with humans.

Within this context, the focus is placed on fusion of human generated
data (so-called soft data) as well as fusion of soft and hard data (namely
electronic data). In comparison to conventional fusion systems, in which
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input data is generated by calibrated electronic sensor systems with well-
defined characteristics, research on soft DF considers combining human-
based data, preferably expressed in an unconstrained natural language.
Research in this direction has attracted a considerable attention in recent
years (Hall et al. [88]). This is motivated by the inherent limitations of elec-
tronic (hard) sensors and the recent availability of communication infras-
tructures that allow humans to act as soft sensors (Hall et al. [88]). Further-
more, while a great amount of research has been developed on DF using
conventional sensors, very limited work has devoted to study fusion of
data produced by human and non-human sensors.

An example of preliminary research in this area includes the work on
generating a dataset for hard/soft DF, intended to serve as a foundation
resource for future research (Pravia et al. [160, 161]). In Hall et al. [88],
the authors provide a brief review on ongoing work on dynamic fusion
of soft/hard data, identifying motivations and advantages, challenges and
requirements of such an objective.

Frontier research focuses on the so-called “human-centered” data fu-
sion paradigm, which emphasises the human role within the fusion pro-
cess (Hall et al. [89]). This new paradigm allows humans to participate
in the DF process, not merely as soft sensors, but also as hybrid comput-
ers and ad hoc teams. It relies on emerging technologies such as virtual
world and social network software, to support humans in their new fu-
sion role. Recent developments in the literature, having as their object
the “human-centered” DF paradigm (Hall et al. [89]), as well as prelimi-
nary work on soft/hard fusion (Ferrin et al. [70], Pravia et al. [161], Pre-
maratne et al. [162]) are an indicator of this new trend towards a more
general DF framework, where both human and non-human sensory data
may be efficiently processed. In spite of all these developments, research
on hard/soft data fusion, as well as “human-centered” fusion still lies in
its infancy, and it is believed that it will soon provide rich opportunities for
further theoretical advancements and practical demonstrations.

2.2.5 Emerging Data Fusion trends

In this section, the discussion attempts to shed light on some of the emerg-
ing trends and frameworks within the sensor DF field. In addition, it ex-
plores many of the fusion aspects that are the subject of active ongoing
research, from which it emerges how, despite research on DF is fairly well
established, it is still rather poorly understood or employed. Finally, the
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theoretical effectiveness of a DF process is inspected, especially with regard
to the quality evaluation of the input data, as well as to the performance
evaluation of the fusion system.

2.2.5.1 Alternative Data Fusion models

Two further alternative modalities of DF, which differ from the (traditional)
procedures discussed so far, are here disclosed. Such DF-based approaches
are known as “opportunistic DF” and “adaptive DF”.

2.2.5.1.1 Opportunistic DF Concerning the limitations of traditional DF
systems, which are mostly designed to use dedicated sensors and informa-
tion resources, as well as the availability of new communication technolo-
gies, the “opportunistic” DF paradigm considers the possibility of treat-
ing sensors as shared resources and performing fusion in an opportunistic
manner (Challa et al. [21]).

Nonetheless, some preliminary research works concerning this kind of
DF are reported in the literature. For instance, in Wu and Aghajan [224]
an opportunistic fusion of data across time, space, and feature level is per-
formed within a visual sensor network for achieving human gesture anal-
ysis. In Al-Hmouz and Challa [5], the authors study the issue of optimal
camera placement in a visual sensor network designed to serve multiple
applications (each to be operated in an opportunistic manner). The prob-
lem is formulated as a multi-objective optimization problem and efficiently
solved using a multi-objective genetic algorithm.

A variant of the opportunistic DF methodology is known as Oppor-
tunistic Information Fusion Model (OIFM). Among the peculiar features
of such a procedure, compared to the conventional approach, there are
the need of ad hoc computational load and of dynamic (not pre-defined)
fusion rules. The key enabling component required to make an OIFM is
a new approach towards a middleware development, called Opportunis-
tic Middleware Model (OMM) (Challa et al. [21]). Unfortunately, current
specifications for the OMM do not address many issues related to its im-
plementation and thus future research is still needed to make OIFM viable.

2.2.5.1.2 Adaptive DF Adaptation enables DF in situations where re-
quired environment parameters are not a-priori known or they dynami-
cally change, and thus they must be re-estimated every time. Early work
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on adaptive DF dates back to the early 1990s (Hong [93]). Nonetheless, this
problem has been rarely explored within the DF literature so far.

Some of the existing works are focused on the incorporation of “adap-
tivity” into Kalman Filtering. In Loy et al. [133], an adaptive fusion system
capable of intelligent allocation of limited resources, which enables effi-
cient tracking of moving targets in 3D, is presented. An “adaptive” variant
of KF, called Fuzzy Logic Adaptive Kalman Filter (FLAKF), is proposed in
Escamilla-Ambrosio and Mort [60]. It relies on fuzzy inference based on
covariance matching, to adaptively estimate the covariance matrix of the
measurement noise. Through a similar approach, Tafti and Sadati [201]
present a Novel Adaptive Kalman Filter (NAKF) that achieves adaptation
using a mathematical function called degree of matching, which is based
on covariance matching. Finally, recently a further adaptive filter algo-
rithm has been proposed and applied to the “pico satellite attitude” esti-
mation problem, as presented in Soken and Hajiyev [193].

2.2.5.2 Theoretical effectiveness of DF processes

Most of the DF literature is based on an optimistic assumption about the
reliability of models, producing the beliefs associated with data. For in-
stance, sensory data are commonly considered as equally reliable and play
a symmetrical role within the fusion process (Rogova and Nimier [171]).
Nonetheless, different models usually display different reliabilities and
they are valid just for a specific range. A recent trend in DF has addressed
this issue, mostly by attempting to account for the reliability of beliefs.
This has been accomplished through the introduction of the notion of a
second level of uncertainty, that is “uncertainty about uncertainty”, rep-
resented as reliability coefficients. The main challenges are first to esti-
mate these coefficients, and then to incorporate them into the fusion pro-
cess. Within the literature, a number of approaches for estimating such
reliability coefficients is proposed. They rely on domain knowledge and
contextual information (Nimier [143]), learning through training (Yu and
Sycara [216]), Possibility Theory (Delmotte et al. [41]), and expert judg-
ment (Sandri et al. [179]). Furthermore, the issue of reliability incorpora-
tion has been studied within several fusion frameworks such as Dempster-
Shafer Theory (Haenni and Hartmann [87]), Fuzzy and Possibility The-
ory (Dubois and Prade [54]), Transferable Belief Model (Elouedi et al. [58]),
and Probability Theory (Wright and Laskey [223]).
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The issue of reliability in DF is still not well established, and several
open questions such as interrelationship between reliabilities, reliability of
heterogeneous data, and comprehensive architecture to manage DF algo-
rithm and reliability of data sources remains parts of future research (Ro-
gova and Nimier [171], Haenni and Hartmann [87]).

In light of this, the evaluation of the fusion procedure effectiveness
seems to represent a very ambitious task. Performance evaluation aims at
studying the behavior of a DF system operated by various algorithms and
comparing their advantages and disadvantages based on a set of measures
or metrics. The outcome is typically a mapping of different algorithms into
different real values or partial orders for ranking (Chen et al. [31]).

Generally speaking, the obtained performance of a DF system seems
to be particularly dependent on two components: the quality of the input
data and the efficiency of the fusion algorithm. As a result, the literature
work on fusion evaluation may be categorized into two macro-groups, dis-
cussed in the two following sections.

2.2.5.2.1 Evaluating the quality of input data The former category con-
cerns the quality of input data evaluation. The aim here is to develop ap-
proaches that enable for the quality assessment of the data, which are fed
to the fusion system, and the calculation of the degree of confidence in the
data, in terms of attributes such as reliability and credibility (Cholvy [36]).
The most notable works in this group are by far the NATO standardization
agreements STANAG 2022 [195].

STANAG adopts an alphanumeric system of rating, which combines a
measurement of the reliability of the source information with a measure-
ment of the credibility of such an information, both evaluated using the
existing knowledge. STANAG recommendations are expressed using nat-
ural language statements, which in many cases makes them quite impre-
cise and ambiguous.

Some researchers attempted to analyze these recommendations and
provide a formal mathematical system of information evaluation, in com-
pliance with NATO recommendations (Cholvy [36], Nimier [144]). The
proposed formalism relies on the observation that three notions under-
line an information evaluation system: the number of independent sources
supporting an information, their reliability, and that the information may
conflict with some prior information. Accordingly, a model of evaluation
is defined and its fusion method, which accounts for the three aforemen-
tioned notions, is formulated.
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Subsequently, the same authors have extended their work to enable
dealing with the notion of degree of conflict, in contrast with merely con-
flicting or non-conflicting information (Cholvy [37]). Nonetheless, the cur-
rent formalism is still uncomplete as there are some foreseen notions of the
STANAG recommendations, such as the total lack of knowledge about the
reliability of the information source, which are not being considered.

Another important aspect related to input information quality, which
is largely ignored, is the rate at which it is provided to the fusion system.
The information rate is a function of many factors, including the revisit
rate of the sensors, the rate at which data sets are communicated, and also
the quality of the communication link (Gelfand et al. [77]). The effect of
information rate is particularly important in decentralized fusion settings,
where imperfect communication is common.

2.2.5.2.2 Evaluating the performance of the fusion system The latter
category concerning the effectiveness assessment of a DF procedure is ba-
sed on the evaluation of the fusion system. The performance of the fusion
system itself is computed and compared using a specific set of measures
referred to as Measures Of Performance (MOP). The literature work on
MOP is rather extensive and includes a wide variety of measures.

The choice of the specific MOP of interest depends on the characteristics
of the fusion system. For instance, there is more to evaluate in a multiple
sensor system than in a single sensor system. Furthermore, in the case of
multi-target problems, the data association part of the system also needs to
be evaluated along with the estimation part.

Commonly used measures for evaluating the system performance may
be categorized into two main categories: metrics computed for each tar-
get and metrics computed over an ensemble of targets. Some of the MOPs
belonging to the former category are: data accuracy, data covariance con-
sistency, data purity, and data continuity. Instead, examples of measures
in the latter category are: average number of missed targets, average num-
ber of extra targets, average data initiation time and data history (Drum-
mond [50], Rothrock and Drummond [172]).

There are also other less popular measures related to the discrimination
and classification capability of the fusion system that may be useful to be
collected in some applications. Aside from the conventional approaches
for performance measurement, the notable works of Zajic et al. [229] and
Schumacher et al. [184] are worth mentioning on the development of MOPs
for multi-target fusion systems within the Finite Set Theory framework.
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Finally, some of the fusion evaluation tools that have recently become
available are mentioned. For instance, the Fusion Performance Analy-
sis (FPA) tool is a software that enables for the computation of technical
performance measures virtually for any fusion system (Jackson and Mu-
siak [97]). Another interesting development is the Multi-Sensory Tracking
Testbed (Akselrod et al. [1]). Recently introduced, it represents the first
step towards the realization of a state of the art testbed for the evaluation
of large-scale distributed fusion systems.

2.2.5.3 Concluding remarks

To the best of the present knowledge, there is no standard and well-establi-
shed evaluation framework to assess the performance of DF algorithms.
Most of the work is being done on simulation and based on some idealized
assumptions, which makes it difficult to predict how the algorithm would
perform in real-life applications. A literature review on DF performance
evaluation is presented in van Laere [205], where challenging aspects of
DF performance evaluation, with reference to the practice, are discussed.
In this work (van Laere [205]), it is shown that only very few articles (less
then 5%) of the analyzed research work, treat the fusion evaluation prob-
lem from a practical perspective. Indeed, it is demonstrated that most of
the existing works are focused on performing evaluation in simulation or
unrealistic test environments, which is substantially different from what
experienced in practical cases.

One of the major challenging problems of the fusion evaluation in prac-
tice, which is usually ignored in the literature, is the fact that performance
displays different, possibly conflicting, dimensions that are difficult to be
captured in one comprehensive and unified measure (van Laere [205]).
Then, in order to constitute a fair indicator of the fusion performance, the
performance measures might need to be adapted over time or according
to the given context or situation. This issue represents the importance of
taking into consideration the specific situation or context under which the
fusion system is being evaluated. This is the most difficult evaluation sce-
nario, because of the difficulty for the fusion system to maintain the desired
performance level. Based on this observation, some researchers have pro-
posed metrics to enable a quantification of the complexity of the evalua-
tion scenario, which is typically referred to as context metrics (Chong [38]).
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A similar alternative approach is the so-called Goal Dependent Perfor-
mance (GDP) metrics, which is capable of adjusting itself to the circum-
stances defined by the context at a certain moment in time (van Laere [205],
Schumacher et al. [185]).

From what it has been presented, it emerges that research on DF sys-
tems is becoming more and more a common but rather non-trivial task.
There appear a number of areas within the Data Fusion community that
most likely will be highly active in the near future. For instance, the ever-
increasing demand for DF on extremely large scales, such as sensor net-
works and the Web, will drive intense research on highly scalable DF al-
gorithms. In addition, the availability and abundance of non-conventional
data, for example in the form of human-generated reports, will lead to the
development of new and powerful fusion frameworks capable of process-
ing a wide variety of data forms. Such fusion frameworks might poten-
tially be realized by exploiting strong mathematical tools for modeling im-
perfect data, such as Random Set Theory (Khaleghi et al. [111]). With DF
algorithms extending their application from the military domain to many
other fields, such as robotics, sensor networks, image processing and struc-
tural monitoring, the need for standard fusion evaluation protocols that are
applicable, independently from the given application domain, will grow
more and more. As a result, the fusion community will be driven towards
the adoption of such protocols in the future. So, there appears to be a seri-
ous need for further research on development and standardizing measures
of performance applicable to the practical evaluation of DF systems.

2.3 Kalman Filter

This section is devoted to an introductory description on the Kalman Fil-
ter (Kalman [105]), as an algorithm that may be exploited for estimating
the health condition of linear dynamic systems perturbed by a zero-mean
Gaussian white-noise, through the fusion of data that may also be affected
by measurement errors. In this sense, KF shall constitute a fundamental
tool that may be involved within HDF procedures, aiming at pursuing an
effective SHM. In addition to applications related to the civil engineering
context, the mathematical model behind the KF constitutes a reasonable
representation for many other problems of a practical interest, including
control problems, as well as estimation problems.
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Here, the KF is introduced, and some of the most important biblio-
graphic references on this topic are discussed. Then, after a general brief
historical perspective on signal filtering, the discussion attempts to shed
light on the probabilistic origin of the filter, and examples of applications
in which KF has been successfully employed within the civil engineering
field are also reported. Finally, some possible future perspectives for KF
employment and development are also presented.

2.3.1 KF generalities

Kalman Filter (Kalman [105]) (and its variants, such as Extended Kalman
Filter (EKF) (Hoshiya and Sato [94]) and Unscented Kalman Filter (UKF)
(Julier and Uhlmann [104])), represents one of the most celebrated and
popular DF algorithms in the field of information processing. It was intro-
duced by Hungarian electrical engineer Rudolf Emil Kalman (1930-2016),
in his famous 1960’s publication (Kalman [105]). For the greatness of the
invention, he was later awarded with the National Medal of Science by
former USA President Barack Obama, on October 7, 2009.

In spite of being over 50 years old, KF is still widely used. The great
success of KF is due to its small computational requirement and elegant
recursive properties, which confer to the filter the status of the optimal es-
timator for one-dimensional linear systems with Gaussian error statistics.
From a theoretical standpoint, in fact, KF is an algorithm that allows for an
exact inference in a linear dynamical system, which may be considered a
Bayesian model where all latent and observed variables display a Gaussian
distribution (often a multivariate Gaussian distribution).

Typical uses of KF include smoothing noisy data and providing esti-
mates of parameters of interest. Applications also include GPS receivers,
phaselocked loops in radio equipment, smoothing the output from laptop
trackpads, and many others. The most famous employment of KF was
probably in the Apollo navigation computer, that took Neil Armstrong’s
crew to the moon in 1969. Today, Kalman Filters are at work in every
satellite navigation device, every smartphone, and many computer games.
However, its adoption in structural engineering is still far from being ex-
haustive.
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2.3.2 Filtering

This section aims at providing some general rudiments about the concept
of filtering. It is developed through a brief historical introduction and,
further, by an excursus on the fundamental characteristics of a basic filter.
A description of a considered standard system, with a presentation of its
initial conditions, and a description of the noise process, are also provided.

2.3.2.1 Brief history of signal filtering

Filtering in one form or another has been around since long time. For many
centuries, man has attempted to remove the more visible of the impurities
in his water by filtering, and the dictionary gives a first meaning for the
noun filter as “a contrivance for freeing liquids from suspended impurities,
especially by passing them through strata of sand, charcoal, etc.” (Ander-
son [6]). Modern usage of word filter often involves more abstract entities
than fluids with suspended impurities. However, there is usually the no-
tion of something passing a barrier: there is talk of news filtering out of
the war zone, or sunlight filtering through the trees, etc. Sometimes the
barrier is interposed by man for the purpose of sorting out something that
is desired from something else with which is contaminated. One example
is provided by water purification; the use of an ultraviolet filter on a cam-
era provides another example. When the entities involved are signals, the
barrier - in the form of an electric network - becomes a filter in the sense
of signal processing. It is easy to think of engineering situations in which
filtering of signals might be desired. Communication systems always dis-
play unwanted signals, or noise, entering into them. The user of the system
naturally tries to minimize the inaccuracies caused by the presence of this
noise, by filtering. Again, in many control systems, the control is derived
by feedback, which involves processing measurements derived from the
system. Frequently, these measurements contain random inaccuracies or
may be contaminated by unwanted signals, and filtering becomes neces-
sary, in order to make the control close to what is desired.

Filters were originally seen as circuits or systems with a frequency se-
lective behavior. The series or parallel tuned circuit represents one of the
most fundamental circuits in electrical engineering. Something more so-
phisticated than collections of tuned circuits is necessary for many appli-
cations and, as a result, an extensive research field has grown up in filter
design theory. Some of the most known linear filters are: constant k and
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m-derived filters (Skilling [190]), Butterworth filters, Chebyshev filters and
elliptical filters (Storer [198]).

In more recent years, there has been an extensive development of nu-
merical algorithms for filter design. Usually, specifications on amplitude
and phase response characteristics are given, and often, with the support
of sophisticated computer-aided design packages, which allow for interac-
tive operation, a filter is designed to meet such specifications. Normally,
there also appear constraints imposed on the filter structure which need
to be met. These constraints may involve, for example, impedance levels,
types and number of components.

Non-linear filters have also been used for many years, and results are
reported in the literature. The simplest is the AM envelope detector (Ter-
man [202]), which is a combination of a diode and a low-pass filter. In a
similar vein, an Automatic Gain Control (AGC) circuit uses a low-pass fil-
ter and a non-linear element (Terman [202]). The phase-locked loop used
for FM reception is another example of a non-linear filter (Viterbi [210]).

A common classification is to distinguish between analog filters and
digital filters. Made possible by innovations in integrated circuit technol-
ogy, the digital approach has brought many advantages to filtering proce-
dures (Gold and Rader [79], Rabiner and Gold [164]). Probably, the most
important one is the fact that the filter parameters may be set and main-
tained to a high order of precision, thereby achieving filter characteristics
in terms of reliability that normally could not be obtained with analog fil-
tering. Another advantage is that parameters may easily be reset or made
adaptive with a little extra cost.

As well as by the digitalization process, the notion of filter has been
influenced by a second significant development, namely the application of
statistical ideas to filtering problems (Wiener [222], Wainstein and Zuba-
kov [219]).

The statistical approaches for the filtering treatment postulate that cer-
tain statistical properties are possessed both by the useful signal and the
unwanted noise. Measurements are available as the sum of these latter
quantities, and the task is still to eliminate by some means as much of the
noise as possible. Concerning the statistical approach, the earliest contribu-
tions by Kolmogorov [117] and Wiener [222] proposed filtering processes
with statistical properties which do not change with time, like stationary
processes. In this way, they proved possible to relate the statistical prop-
erties of the useful signal and the unwanted noise with their frequency
domain properties.
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A significant aspect of statistical approaches is the definition of a mea-
sure of the suitability or the performance of a filter. Roughly, the best filter
might be declared as the one which presents an output closest to the correct
(or useful) signal.

As noted above, the assumption that the underlying signal and noise
processes be stationary is crucial to the Wiener-Kolmogorov Theory. It
was not until the late 1950s and early 1960s that a new theory was de-
veloped that did not require such a stationarity assumption (Kalman and
Bucy [106]). Such theory arises from the inadequacy of Wiener-Kolmogo-
rov Theory for coping with certain applications in which the “non station-
arity” of the signal and of the noise is intrinsic to the problem. The new
theory soon acquired the name of Kalman Filter Theory.

Because the stationary theory, and therefore also the Wiener-Kolmogo-
rov Theory, were normally developed and thought of in Frequency Do-
main terms, while the non stationary theory, such as the KF Theory, was
naturally developed and thought of in time domain terms, the contact be-
tween the two theories initially seemed slight. Nevertheless, there appears
a substantial contact, if for no other reason than that a stationary process
is a particular type of a non stationary process. In this sense, a rapproche-
ment of Wiener Theory and KF Theory is achieved.

It is pertinent to note that the issues in implementing Kalman Filters
and Wiener Filters were both consistent with the technology at the time
of their conceptualization. In particular, while Wiener filters were imple-
mentable with amplifiers and time-invariant network elements, such as
resistors and capacitors, Kalman Filters were implementable with digital
integrated circuit modules.

The point of contact between the two streams of development discus-
sed in this section, i.e. the digital approach and the statistical approach to
filtering problems, arises with the need of implementing a discrete-time KF
using digital hardware (Anderson and Moore [6]).

Looking at the future, it would be clearly desirable to incorporate the
practical constraints associated with digital filter realization into the math-
ematical statement of the statistical filtering problem, in order to achieve a
better design of the filters for estimation purposes. At present time, how-
ever, this has not been done yet and, as a consequence, there is little contact
between the two mainstreams.
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2.3.2.2 Fundamental characteristics of a filter

According to Anderson and Moore [6], four main characteristics describe
a basic filter, namely:

• Operation in discrete time;

• Optimality;

• Linearity;

• Finite dimensionality.

Each of these characteristics is discussed in the following. It is worth
noting that filters derived by KF inherit most, but not all, of these charac-
teristics.

2.3.2.2.1 Operation in discrete time Signal processing is becoming in-
creasingly digital and therefore, basic filters may today be considered as
characterized of this sort. For this reason, it is important to understand
continuous-time signal processing as well as to understand discrete-time
signal processing.

In fact, signals are mathematically described as functions of an inde-
pendent variable, commonly and conventionally represented by time (al-
though in some cases, it may even not correspond to time), that can be
either continuous or discrete. In particular, continuous-time signals are
defined along a continuum of time and they are thus represented by a con-
tinuous independent variable. These signals are often referred to as ana-
log signals. Instead, discrete-time signals are defined at discrete time in-
stances, and thus, the independent variable assumes discrete values, which
means that these signals are represented by sequences of numbers (sam-
ples).

Signals such as speech or images may have either a continuous- or a
discrete-variable representation, and if certain conditions hold, these rep-
resentations may also be totally equivalent.

Besides the independent variables being either continuous or discrete,
the signal amplitude may be either continuous or discrete. Signals for
which both time and amplitude are discrete are known as digital signals.

The assumption of operating in discrete time should be facilitated, due
to the fact that discrete-time statistical filtering theory is much easier to be
learned than continuous-time statistical filtering theory.
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2.3.2.2.2 Optimality Filters may express optimality in different ways.
Certain classes of optimal filters tend to be robust in their maintenance of
performance standards when the quantities assumed for design purposes
are not the same as the quantities encountered in the operation. In other
words, such kind of optimal filters are normally free from stability issues.

In general, optimal filters are characterized by a high degree of com-
plexity. This is the reason because, frequently, it is preferable to use a much
less complex filter, with a little sacrifice of performance. One approach
for such an end consists in approximating the model by one that is sim-
pler than the original one; then, obtaining the optimal filter for this latter
model, and finally using it for the original one. In this way, the filter be-
comes suboptimal and thus it is expected to become less complex. This
approach may fail on several grounds: the resulting filter may still be too
complex, or the amount of sub-optimality may unacceptably be great. In
this case, it may be very difficult to obtain a satisfactory filter of a much
lower complexity than that of the optimal filter, even because theories for
suboptimal design are in some ways much less developed than theories for
optimal design.

2.3.2.2.3 Linearity The term linearity refers to a property of a system (in
this case, a filter) that indicates how its output may get in linear relation-
ship with its input. So, it may be possible to study the behavior of a linear
filter through the Principle of Superposition of Causes and Effects (PSCE).
This makes it possible to calculate the final output as a linear sum of the
individual responses to various input, taken one at a time. This allows to
greatly simplify the study of linear filters than the of non-linear ones, in
which, instead, the output depends on the non-linear combination of the
input, which therefore must all concurrently be studied. In fact, the ex-
istence of correlation terms that depend simultaneously from a multiple
input of the system, prevents to decompose the initial problem into similar
but simpler sub-problems. In such cases, the PSCE cannot be applicable.

Many electronic applications involve linear systems with associated
Gaussian random processes, from which it transpires that the optimal filter,
in a minimum mean-square-error sense, is the linear one. Of course, many
other applications involve non-linear systems with associated non Gaus-
sian random processes and, for these situations, non-linear filters seem to
be necessarily involved. The matter is that optimal non-linear filter design
and implementation are very hard, if not impossible, in many instances.
However, for this reason, suboptimal linear filters may sometimes be used
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as a substitute for optimal non-linear filters, or some form of non-linear
filter may be derived, usually through a modification of a linear filter or,
sometimes, using a collection of linear filters.

2.3.2.2.4 Finite dimensionality It is straightforward that finite-dimen-
sional filters should be used when the processes to be filtered are asso-
ciated with finite-dimensional systems. Now, most physical systems are
not finite dimensional. However, almost all infinite-dimensional systems
may be approximated by finite-dimensional systems, and this is generally
what happens in modeling processes. Thus, the finite-dimensional model-
ing of the physical system leads to an associated finite-dimensional filter.
Of course, this finite-dimensional filter will be suboptimal to the extent that
the model of the physical system is in some measure an approximation of
physical reality.

It may be legitimate to wonder why a suboptimal finite-dimensional fil-
ter should be used. The reason lies in the fact that, through its adoption, it
is possible to treat infinite-dimensional filtering problems in discrete time
fairly easily. In particular, finite-dimensional filters are to be preferred due
to the fact that they are easier to be designed and far easier to be imple-
mented, than infinite-dimensional filters.

2.3.2.3 System, noise and filtering

This section aims at providing some fundamental definitions useful for the
comprehension of the concepts of system, noise and filtering, distinguish-
ing between smoothing and prediction.

To deal with any sort of filtering problem, in the first place there must
be a system, generally dynamic, of which measurements should be avail-
able. The system behavior may normally be described by equations. It
operates in real time, so that the independent variable in the equations is
time, and it is assumed to be causal, so that an output at some time t = t0
is always independent on an input applied at times subsequent to t0. Fur-
ther, the system may operate in continuous or discrete time, depending on
the nature of the source signal to be processed. Consequently, the output
may change at discrete time instants or on a continuous basis.

In this thesis, the attention is to focus on discrete-time systems. In par-
ticular, the class of discrete-time systems presented in this section takes as
a prototype the linear, finite-dimensional system, represented in following
Fig. 2.3.
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Figure 2.3: Finite-dimensional linear system serving as a signal-model (adapted
from Anderson and Moore [6]).

The system depicted in Fig. 2.3 may be described by the so-called state-
space equations, as follows:

xk+1 = Fkxk + Gkwk (2.1)

zk = yk + vk = HT
k xk + vk (2.2)

Subscript k is a time argument. It is assumed that the initial time of the
system is finite. Then, by a shift of the time origin, it is possible to assume
that Eq. (2.1) and Eq. (2.2) hold for k > 0.

In Eq. (2.1) and Eq. (2.2), xk represents the system state at time k. Under
normal circumstances, HT

k xk (or equivalently yk) would be the correspond-
ing system output but, in this case, noise process vk is added to yk, which
results in measurement process zk. The input process to the system is wk
and, like vk, is a noisy process. Adding details about wk and vk are later
given within the discussion, in general terms, and in Chapters 3–4, where a
filtering problem for a specific linear dynamic structural system is solved.

So far, none initial condition for Eq. (2.1) has been specified. Under
normal circumstances, it may be expected that, at initial step k = 0, state x,
namely x0, is some prescribed vector. From the practical point of view,
since it is impossible to exactly know x0, this leads to the adoption of a
random initial condition for the system.

In particular, it is common to assume that x0 is a Gaussian random vari-
able of known mean x0 and known covariance P0:

E[x0] = x0 (2.3)

E
{
[x0 − x0][x0 − x0]T

}
= P0 (2.4)
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where E represents the expected value.
The Gaussian assumption is adopted for three main reasons. The first

is linked with experiments. In fact, experimental reality establishes that
many naturally-occurring processes are Gaussian. Secondly, by modeling
certain natural processes as resulting from the sum of a number of individ-
ual, possibly non Gaussian processes, the central limit theorem of Proba-
bility Theory (Tucker [204]) suggests a Gaussian distribution for their sum.
Finally, the filtering problem is generally easier to be solved with the Gaus-
sian assumption. That is essentially why the Gaussian assumption is com-
monly adopted for filter processing.

As it has been observed, in discussing filtering and related issues, it
is implicit that the systems under consideration are assumed to be noisy.
Noise may arise in many ways. For example, input to the system may be
unknown and unpredictable, except for its statistical properties, and this
lack of information may be considered as a kind of noise. Moreover, or
output from the system may be acquired through noisy sensors or, again,
output may only be observed via a sensor after transmission over a noisy
channel, etc.

As a general rule, almost nothing may be done for filtering process-
ing until a sort of probabilistic structure is placed in defining input noise
process wk and output noise process vk.

For the aims being pursued, the following assumptions are hereinafter
considered:

1. vk e wk are individual white-noise processes. This means that, for any k
and l, with k 6= l, vk and vl , and wk and wl are independent random
variables;

2. vk and wk are individual zero-mean Gaussian processes with known
covariances;

3. vk and wk are independent processes.

Assumption 2 would mean that the Probability Density Function (PDF)
of vk for arbitrary k, is Gaussian. In view of the whiteness of vk, declared by
Assumption 1, PDF Xv,w corresponds to the product of the two individual
densities yv and yw. Therefore, Xv,w is Gaussian if the PDFs of vk and wk,
for each k, are Gaussian.

Now, the focus is on what is meant for filtering. Suppose that there is
some quantity (possibly a vector quantity) associated with a system, whose
value would be liked to be known at each time instant. For the sake of
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argument, assume the system in question to be a continuous time system,
and the quantity in question to be denoted by x. It may be that this quantity
is not a directly measurable one, or that it can only be measured with an
error. Thus, suppose that noisy measurements z are available, with z 6= x.

Now, the term filtering may be used in two different ways. First, it
may be used as a generic term: filtering is the recovery of x through z, or
an approximation to x, or even some information about x. In other words,
noisy measurements of a system are used to obtain information about some
quantity that is essentially internal to the system. Secondly, the term filter-
ing may be used to distinguish a certain kind of information processing
from two other related kinds of information, i.e. smoothing and predic-
tion.

Smoothing differs from filtering since the information about x(t) needs
not to become available at time t, and measurements derived later than
time t may be used for obtaining information about x(t). This means that
there must be a delay in producing the information about x(t), as com-
pared with the filtering case, but the penalty of having a delay may be
weighed by the ability to use more measurement data than in the filtering
case, in producing the information about x(t). Indeed, it is possible to use
measurements not only up to time t, but also after time t. For this rea-
son, the smoothing process may be expected to be more accurate than the
filtering process.

Prediction is the forecasting side of information processing. The aim
is to obtain at time t information about x(t + λ) for some λ > 0. In other
words, the aim is to achieve information about how x will be in the future.
In obtaining such a kind of information, measurements up to time t have
to be used. Generally, any prediction task becomes more difficult as the
environment becomes noisier.

Finally, filtering means the recovery at time t of some information abo-
ut x(t), using measurements up to time t. In other words, through filter-
ing procedures, it may be possible to obtain information about x at time t
(hence x(t)), so that the information becomes available only at time t, and
not at some later time.

An example of the application of filtering in everyday life is represented
by radio reception, where the signal of interest, constituted by the voice
signal, is used to modulate a high frequency carrier that is transmitted to
a radio receiver. The received signal is inevitably corrupted by noise and,
consequently, when demodulated, for recovering the original signal as bet-
ter as possible it needs to be opportunely filtered.
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2.3.3 On Kalman Filter

After the presented general overview on filtering, here, a specific filter, i.e.
Kalman Filter (KF), is inspected through a dedicated historical introduc-
tion, by providing its definition, exploring its applications in the engineer-
ing field, and analyzing the main issues related to this kind of filter.

2.3.3.1 Origin of KF

A historical survey on the development of Kalman filtering can be found
in Sorenson [194]. The origins of KF may be dated back to the late eigh-
teenth century, at the time of the study of planetary orbits by Gauss. Later
theories in which KF is rooted, are those of maximum likelihood estimation
by Fisher [71], and the previously mentioned stationary filtering theory by
Wiener [222] and Kolmogorov [117], which focus on linear minimum vari-
ance estimation. It is furthermore a commonly known view that, whereas
the use of a recursive approach in estimating constant parameters to cope
with new measurements essentially dates back to Gauss, the idea of recur-
sion in the presence of a dynamic evolution of the quantity being estimated
as more measurements become available, is much more recent.

Despite the fact of using a state-variable rather than an impulse re-
sponse or a transfer function for describing linear systems is closely asso-
ciated with the name of Kalman, many people consider that the concepts
contained in the famous Kalman’s publication of 1960 [105] were already
stated by Swerling a year earlier (Swerling [200]). However, there is no
doubt that subsequent contributions by Kalman regarding matters such as
stationary filters and stability (e.g. Kalman [107]), went far beyond what
stated in Swerling [200].

2.3.3.2 KF definition

Theoretically, KF is defined as a Linear Quadratic Gaussian (LQG) prob-
lem, which corresponds to the problem of estimating the instantaneous
state (i.e. the dynamic behaviour) of a linear dynamic system perturbed by
Gaussian white-noise, by using measurements linearly related to the state,
but corrupted by Gaussian white-noise. It is proven that the resulting esti-
mator is statistically optimal with respect to any quadratic function of the
estimation error.

KF is certainly one of the greatest discoveries in the history of statisti-
cal estimation theory, and likely also one of the greatest discoveries in the
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twentieth century. KF’s most immediate applications have been channeled
to the control of complex dynamic systems, such as continuous manufac-
turing processes, ships and aircrafts, spacecrafts, and satellites.

In order to control a dynamic system, it is necessary to know what the
system is doing. However, it is not always possible to measure all the vari-
ables that rule such a system; namely, only a partial knowledge of it is
achievable. In a similar scenario, KF provides a means for inferring the
missing information from indirect (and noisy) measurements. In particu-
lar, KF is employed for estimating the complete state vector of a system
from partial state measurements. Moreover, KF may also be used for pre-
diction, as in the case of estimations of the flow of rivers during flood con-
ditions, trajectories of celestial bodies, or prices of traded commodities.

From a practical point of view, the following definitions of KF may be
provided (Mohinder and Angus [139]):

• KF is a tool. In fact, it makes easier to solve a problem, but it does not
solve all the problem by itself. In particular, it is not a physical tool,
but a mathematical tool, since it is made by mathematical models.

• KF is a recursive algorithm. It uses a finite representation of an es-
timation problem by a finite number of variables (Gelb et al. [76]).
However, it does assume that these variables are real numbers with
an infinite precision. Some of the problems encountered on its use
arise from the distinction between finite dimension and finite infor-
mation, and the distinction between finite and manageable problem
sizes. These are all issues on the practical side of KF that have to be
considered along with the theory.

• KF is a complete statistical characterization of an estimation problem.
It is much more than an estimator, because it propagates the entire
probability distribution of the variables it is tasked to estimate. This
is a complete characterization of the current state of knowledge of the
dynamic system, including the influence of all past measurements.
These probability distributions are also useful for statistical analysis
and predictive design of sensor systems.

• KF is a learning process. It uses a model of the estimation problem
that distinguishes between phenomena (what is possible to be ob-
served), noumena (what is really going on), and the state of knowl-
edge about noumena that is possible to be deduced from phenomena.
That state of knowledge is represented by probability distributions.
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2.3.3.3 How it came to be called a filter

It might seem strange that the term filter has been applied to an estimator.
More commonly, a filter is a “physical device for removing unwanted frac-
tions of mixtures” (Mohinder and Angus [139]). The word “filt” comes
from the same medieval Latin term, for the material that was used as a
filter for liquids.

Originally, a filter solved the problem of separating unwanted com-
ponents of gas-liquid-solid mixtures; later, in the era of crystal radio re-
ceivers, the term was applied to analog circuits that “filter” electronic sig-
nals. These signals are a mixture of different frequency components, and
these physical devices preferentially attenuate unwanted frequencies. This
concept was extended in the 1930s and 1940s to the separation of signal
from noise, both of which characterized by their power spectral densities.
Wiener [222] and Kolmogorov [117] used this statistical characterization of
their probability distribution in forming an optimal estimate of the signal,
given the sum of signal and noise.

With Kalman filtering, the term assumed a meaning that goes well be-
yond the original idea of separation of the components of a mixture. It
has also come to include the solution of an inverse problem, in which it
is known how to represent the measurable variables as a function of the
variables of principal interest. In essence, it inverts this functional rela-
tionship and estimates the independent variables as inverted functions of
the dependent (measurable) variables. These variables of interest are also
allowed to be dynamic, with dynamic processes that are only partially pre-
dictable.

MATHEMATICAL FOUNDATIONS

KALMAN FILTERING

LEAST MEAN SQUARES STOCHASTIC SYSTEMS

PROBABILITY THEORYLEAST SQUARES DYNAMIC SYSTEMS

1

Figure 2.4: Founding concepts in Kalman filtering theory (adapted from Mohinder
and Angus [139]).
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Fig. 2.4 depicts the essential subjects forming the mathematical foun-
dations of Kalman Filtering theory. Although this shows KF as the apex
of a pyramid, it is itself part of the foundations of another discipline, i.e.
Modern Control Theory, and a proper subset of Statistical Decision The-
ory (Mohinder and Angus [139]).

2.3.3.4 KF applications

Here, some applications which exploit KF are provided. The formulation
of KF involves a blend of a model with measurements. The improvements
in the predictions of the response, in comparison to the “open loop” (i.e.
a system that does not contain any feedback terms from the output), re-
sult from incorporating the measured data into the estimation process. An
“open loop” system is opposed to a “closed loop” one, i.e. a system in
which part of the excitation instead depends on the feedback from the re-
sponse.

KF theory has received serious attention in many fields such as electri-
cal engineering, robotics, navigation and economics since the 1960’s. The
problems and applications that originated the development of KF theory,
as it stands today, are not issues related to structural engineering. How-
ever, the employment of KF theory may become more prominent because
the types of problems that exploit it are more common than before, and
there appears to be a significant potential in incorporating KF theory into a
variety of issues concerning existing structural systems. As new challenges
arise, regarding critical infrastructures, blending FEM models with mea-
sured data, may represent an increasingly important approach to modern
structural engineering problems.

As already stated, applications which involve KF encompass many fie-
lds, but its employment as a tool is essentially adopted for two main pur-
poses, namely the state estimation of dynamic systems and the analysis of
estimator performance. These two perspectives are individually discussed
in the following paragraphs.

2.3.3.4.1 State estimation of dynamic systems First, it is important to
establish what is meant for a dynamic system. Except for a few funda-
mental physical constants, in fact, there is hardly anything in the universe
that may be considered to be truly constant. The orbital parameters of the
asteroids, for instance, are not constant, and even the “fixed” stars and
continents are moving. Nearly all physical systems are dynamic, to a some
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degree. So, if the aim is to obtain a very precise estimate of their character-
istics over time (i.e. their state), then it is necessary to take their dynamic
into consideration.

The problem is that it is not always possible to know very precisely
their dynamic. So, given this state of partial ignorance, the best that is pos-
sible to do is to express this ignorance more precisely, using probabilities.
KF allows to estimate the state of dynamic systems with certain types of
random behavior, by using such statistical information. A few examples of
these systems are listed in the second column of Table 2.1.

Application Dynamic System Sensor Types
Process control Chemical plant Pressure

Temperature
Flow rate
Gas analyzer
Weather radar

Tracking Spacecraft Radar
Imaging system
Rain gauge

Navigation Ship Gyroscope
Log
GPS receiver
Accelerometer

Table 2.1: Examples of estimation problems (adapted from Mohinder and An-
gus [139]).

2.3.3.4.2 Analysis of estimation systems The third column of Table 2.1
lists some possible sensor types that might be used in estimating the state
of the corresponding dynamic systems. The aim of design analysis is to
determine how best to use these sensor types for a given set of design cri-
teria. These criteria are typically related to estimation accuracy and system
cost.

KF exploits a complete description of the probability distribution of its
estimation errors in determining the optimal filtering gains, and this prob-
ability distribution may be used in assessing its performance as a function
of the design parameters of an estimation system, such as:

• types of sensors to be used;
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• locations and orientations of the various sensor types with respect to
the system to be estimated;

• permissible noise characteristics of the sensors;

• pre-filtering methods for smoothing sensor noise;

• data sampling rates for the various sensor types;

• level of model simplification to reduce implementation requirements.

The analytical capability of KF formalism also allows a system designer
to assign an "error budget" to subsystems of an estimation system and to
trade off the budget allocations, for optimizing costs or other measures of
performance, while achieving a required level of estimation accuracy. Fur-
thermore, it acts as an observer through which all the states not measured
by sensors, may be reconstructed and used in control system applications.

2.3.3.5 KF in structural engineering

Over the past twenty years there has been a significant progress in the de-
velopment of new methods for the analysis of structural deformation mea-
surements, in order to guarantee construction’s safety. According to Gu-
lal [85], stability and operational safety of a structure consist of three main
components, namely emergency concept, surveillance and constructional
safety.

The emergency concept includes normative aspects such as material
integrity and structural damage assessment, intensified surveillance and
diagnostic technologies, lifetime and utilization evaluation, maintenance
and repair, out-of-service and replacement decisions.

Aim and purpose of any surveillance is the earliest possible detection
of damage, failure or injury to the safe operation of a construction, in order
to be able to appropriately and timely react.

Referring to structural safety, it may be seen as a part of the surveillance
concept. Determination of stability and operational safety of a structure re-
quires an interdisciplinary approach among Engineering Geodesy, System
Theory and Structural Mechanics. This is depicted in the Venn diagram of
Fig. 2.5.

Brunner [16] defines Engineering Geodesy as “the production of geode-
tic information necessary for the planning of technical projects, setting out
of the project design, control of the correct construction, and monitoring of
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Engineering

Geodesy

System Theory

Structural

Mechanics

KF

1

Figure 2.5: Venn diagram detailing the role of KF in the interdisciplinary approach
of stability and operational safety of structures (adapted from Gulal [85]).

deformations”. This definition is comprehensive and consistent with the
stability and safety of a structure. However, a more pertinent definition
of Engineering Geodesy for the context of this work is that provided by
Kuhlmann at al. [122], according to which “Engineering geodesy is the dis-
cipline of reality capture, setting-out and monitoring of local and regional
geometry-related phenomena paying particular attention to quality assess-
ment, sensor systems and reference frames”.

Instead, Structural Mechanics is referred to as the determination of de-
formations, deflections and internal forces or stresses within structures,
either for design purposes of new structures or for performance evalua-
tion of existing structures. A powerful technique originally developed for
the numerical solution of complex problems in structural mechanics, is the
well-known Finite Element Method (FEM). Today, it surely represents the
preferred analysis method to deal with complex structural systems.

Finally, System Theory is a method for constituting and analyzing com-
plex structural systems. In System Theory, the setup of an appropriate
mathematical-physical representation of the Transfer Function (TF) of a
dynamic system is called System Identification (SI). Setting up a model
for the transfer function is fundamental for the choice of a parametric or a
non-parametric identification (Heunecke and Welsch [92]).

The issue of structural system identification lies at the heart of condi-
tion assessment of existing structures and in developing SHM strategies.
This class of problems concerns inverse problems, in which properties of
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the structure need to be estimated based on noisy data for the applied
forces and a limited set of response measurements, detected by predispos-
ing an appropriate sensors network. These problems are closely related
with problems of FEM updating and structural damage detection using re-
sponse data, and such issues have received wide attention in the broader
context of engineering dynamical systems (Ljung [131], Ewins [61], Pin-
telon and Schoukens [151]). Within this scenario, KF may represent an
important mathematical tool constituting the basis of the development of
structural system identification methods. In fact, KF and its variants (EKF
and UKF) have been widely used within the development of structural
system identification strategies, for both linear and non-linear dynamical
systems (Yun and Shinozuka [217], Hoshiya and Sato [94], Imai et al. [96],
Shinozuka and Ghanem [189]).

It is worth reiterating that KF is able to provide the exact solution to the
problem of System Identification when process and measurement equa-
tions are linear and the noise is additive and Gaussian. When these condi-
tions are not met, suboptimal strategies should be developed, based on lin-
earization or transformation methods, or, alternatively, Monte Carlo simu-
lation strategies should be employed to solve the problem (Chen et al. [32],
Ching et al. [34]).

Within the literature, cases where KF was successfully exploited in the
civil engineering field, in combination with FEM models, are widespread.
For instance, Heunecke and Welsch [92] have determined the diurnal vari-
ation due to solarization of a suspension bridge, Hesse [91] analyzed a shell
structure under varying loads, Eichhorn [56] calculated the thermal defor-
mations of bar-shaped machine elements, whereas Teskey [203] and Gu-
lal [84] used this technique for the monitoring of a dam.

Another important issue for which KF has been successfully employed
is the reconstruction of the dynamic response of a structure subjected to
partially unknown external loads. Specifically, a more appropriate tool for
this specific purpose is considered to be the Unscented KF (Julier and Uhl-
mann [104]), a particular variant of KF.

In fact, in many modern structural engineering applications, such as
SHM, control, model validation and damage detection, reconstructing the
response of an existing structure subjected to partially (or totally) unknown
excitations is often required. If the structure is not instrumented, the best
that it may be done is to estimate the unknown loads and applying these
together with the known loading to a model of the structure, and obtaining
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its response. In this approach, the accuracy of the estimations entirely de-
pends on how accurately the physical system is represented by the model
and the predicted loading. Nevertheless, if the structure is instrumented
and measurements of the response at some locations are available, the ac-
curacy of the estimation may be improved by combining measurements
and model in some consistent way. The idea of response reconstruction for
partially instrumented systems has been studied in the area of control and
state estimation since the 1950s, and new contributions continue to appear.

2.3.3.6 KF issues

Three main problems may arise in employing KF within the structural
field.

The first issue consists in estimating the steady state KF gain from the
measurements. In the classical formulation of KF, it is possible to calcu-
late the filter gain, given the information of a model and the covariance
of unknown disturbances and measurement noise. If the noise covariance
matrices are not available, it has been shown that the KF gain may be ex-
tracted from the data. Several methods have been proposed; however, ul-
timately, all exploit the fact that the discrepancy between measured and
predicted output signal, which is called innovation, is white when the fil-
ter gain is optimal. Examination of the literature shows that the problem is
an ill-conditioned one.

The second problem concerns the state estimation using a nominal mo-
del that displays uncertainty. In classical KF theory, one of the key assump-
tions is that an a-priori knowledge of the system model, which represents
the actual system, is known without error. In this work, the goal is to exam-
ine the feasibility of an approach that takes into account the effects of the
uncertain parameters of the nominal model, in the state estimation using
KF, without estimating the uncertain parameters themselves. In this ap-
proach, the model errors are approximated by fictitious noise and the co-
variance of the fictitious noise is calculated on the premise that the norm of
discrepancy between the covariance functions of measurements and their
estimates from the nominal model is minimum.

The third problem is related to the use of KF as a fault detector. It is
known that the innovation process of the KF is a white one. When the
system changes due to damage, the innovations are no longer white and
correlations of the innovations may be used to detect damage. A difficulty
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arises, however, when the statistics of unknown excitations and/or mea-
surement noise fluctuate, because the filter also detects these changes, and
it becomes necessary to differentiate what comes from damage and what
does not.

2.4 Final remarks

In this chapter, a brief state of the art on data-related issues, existing DF
methodologies, as well as on KF generalities and their applications within
the civil engineering research field, has been presented. Such a general
overview appeared to be crucial, since it shall represent the foundations
for a subsequent phase of implementation and analysis, to which the next
chapters are going to be dedicated. Indeed, acceleration and displacement
structural response signals will be processed, within HDF-based proce-
dures involving a KF, and many issues here discussed in theoretical terms,
as for instance the presence of spurious noise on measurements, will then
be reconsidered and also addressed from a practical point of view, also
toward denoising. Another important assumption that holds true for the
whole thesis is the Gaussian assumption, to which Section 2.3.2.3 has been
dedicated. In fact, here, the aforementioned spurious noise affecting the
response signals will always be modeled as a Gaussian process displaying
a mean equal to zero, since such an assumption allows to well character-
ize real cases, besides the fact that it is easy-to-handle within a numerical
environment.

Furthermore, numerous other concepts and definitions that have been
given in this chapter, will be useful and often resumed in the analyses that
follow. For instance, the concept of a discrete signal, here presented, con-
stitutes a fundamental notion for all the work. Indeed, all signals involved
within the subsequent analyses will be discrete signals, i.e. signals whose
independent variable takes discrete values and, consequently, this implies
that they may simply be represented as sequences of numbers. Specifically,
within the thesis, the mathematical variable used to describe the signals
will conventionally be a time variable, configuring such signals as discrete-
time signals.

Both numerically generated synthetic response signals, firstly, and real
structural response signals, subsequently, will be included and processed
within the present dissertation. Dealing with real signals, i.e. recordings
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directly acquired on real structures by predisposing an appropriate sensor
network, the concept of sampling takes on a particular importance, which
is worth recalling. In fact, sampling means the reduction of a continuous-
time signal to a discrete-time signal, namely to a sequence of samples,
where by sample one means a value or set of values at a point in time
and/or space. Here, different sampling rates will be considered, accord-
ing to the typology of the signal to be analyzed (for instance, acceleration
or displacement response signals), also bearing in mind the possible lim-
itations of the sensor instrumentation that may be employed during the
acquisition stage.

Finally, it is worth reiterating that, although the literature review pro-
posed in this chapter was deliberately general in nature, since the present
work specifically focuses on the civil engineering context, all the notions
here presented will be declined in the next chapters towards the specific
research field of civil engineering.
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Chapter 3

Effective HDF-based procedure via
KF for clarifying synthetic ambient
vibration response signals

In this chapter, a KF-based implementation is proposed, for clarifying noi-
se-affected displacement response signals of a linear dynamic system sub-
ject to an ambient vibration excitation. In particular, the instance in which
KF is employed within a HDF procedure between acceleration and dis-
placement response signals of a structural system is investigated. The
procedure is specifically aimed at enhancing the displacement measure-
ments, supposedly affected by higher noise, using acceleration measure-
ments (considered instead as noise-free or corrupted only by a slight noise).
In the the Data Fusion procedure, the crucial influence of the initial pa-
rameters characterizing KF is inspected, in its effectiveness for improving
displacement signals affected by an increasing zero-mean Gaussian noise
level. It is worth mentioning that all signals considered within the present
analysis are synthetic response signals, namely artificially generated re-
sponse signals obtained by numerical computation on a given structural
model.

The chapter is organized as follows. Section 3.1 aims at introducing
and contextualizing the present investigation, placing it within the perti-
nent scientific literature, and setting out its main goals and achievements.
Section 3.2 provides a brief description of the benchmark dynamical sys-
tem taken into consideration for the entire analysis, i.e. a 3-DOF shear-
type frame. The main points followed during the analysis are outlined,
and a multi-rate KF scheme involved within the HDF procedure, as origi-
nally derived by Smyth and Wu [192], is here further elaborated, through
a dedicated home-made numerical implementation. Section 3.3 presents
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various scenarios of numerical analysis, involving the KF algorithm, aim-
ing at improving the displacement response of a linear dynamic system by
complementary acceleration data. Different artificial Gaussian white-noise
signals are added to the observed (numerically determined) synthetic re-
sponse displacements of a 3-DOF frame under ambient vibration force top-
floor loading, simulating the error that may occur in the displacement sen-
sors during an “on field” measurement acquisition stage. Also, the cases
of noise-free accelerations and (slight) noise-affected accelerations are in-
vestigated, through several numerical analyses, at increasing displacement
noise levels, and for different inherent modal damping ratios of the un-
derlying structural system. Limits of applicability of such a technique are
explored and KF effectiveness is evaluated in terms of RMS error between
originally (uncorrupted) displacements and filtered displacements, and on
the basis of the modal parameters (natural frequencies) that may be ex-
tracted from the KF response estimation through appropriate inverse anal-
ysis algorithms. The results related to the analyzed cases are presented
and commented. Conclusions and global remarks are finally outlined in
Section 3.4, and a few future perspectives are disclosed.

3.1 Introduction and contextualization

In the wide field of civil engineering, SHM and the associated develop-
ment of consistent simulation tools, such as model updating (see for in-
stance Lee et al. [123], Wu and Wang [225], Ferrari et al. [66, 67], and refer-
ences quoted therein), represent usual but non-trivial tasks. In the recent
years, supported by the broad development of novel measurement tech-
nologies for structural identification purposes, HDF-based approaches are
increasingly adopted for supporting such activities (e.g. Xiao et al. [211],
Jiang et al. [99, 100], Su et al. [199], Zhao et al. [231], Cho et al. [35], Fer-
rari et al. [65, 67], and cited references). Several pertinent contexts also
concern the possible limitation and control of structural vibration, within
different excitation regimes, by the insertion of appropriate damping de-
vices (Salvi and Rizzi [175,177,178], Salvi et al. [176], and references quoted
therein), which may need a fine tuning, as coupled to the same identifica-
tion process (Wang and Lin [220]).
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DF procedures consist in integrating measurements acquired from dif-
ferent types of sensors, so that the resulting information may be character-
ized by a lower degree of uncertainty (Chapter 2). In addition, if the mea-
sured data display a heterogeneous nature (for example, displacements
and accelerations), an appropriate fusion is required for rendering a com-
prehensive description of the structure of interest (and this may also alle-
viate errors of displacements computed on the basis of double numerical
time integration from accelerometer records). In fact, while acceleration-
based monitoring may detect variations on the structural condition, dis-
placement records may alert for the presence of excessive service loads,
as well as to enable for fatigue estimation. Also, they may be remotely
acquired, in a convenient way. As discussed in previous Chapter 2, al-
though DF represents a usual procedure in many research areas where sig-
nal analysis is commonly involved, its application to the civil engineering
domain has not been deeply explored yet (first contributions in this field
may be found in Smyth and Wu [192], Chatzi and Smyth [25], Chatzi and
Fuggini [26, 27], Park et al. [147], Ferrari et al. [67]). A crucial aspect is
that, within this scenario, known difficulties commonly related to struc-
tural identification are augmented by issues connected to the necessary
calibration of the filters employed within the Data Fusion procedure itself.

Here, a KF-based implementation is developed for merging simulated
noise-added displacements and accelerations of a numerical structural sys-
tem, for several types and levels of added noise. This aims at simulating
measurements that may extensively be acquired “on field”, through dis-
placement sensors, and at exploring the perspective of their use for SHM
and modal identification purposes, possibly complemented by the infor-
mation coming from a few acceleration measurements.

DF approaches between displacement and acceleration data involving
KF are available within the recent literature (see e.g. Kim et al. [112],
Lei et al. [128], Lin and Luo [129], Liu et al. [130]), through which KF should
assist in estimating the condition of structures that undergo ambient vibra-
tions, allowing for predicting potential damage and evaluating the residual
performance capacity of a structure (Lei et al. [127], Yuqing [218]). Appro-
priate damage detection may also require an optimal design of the adopted
sensor network, in terms of number, type and spatial deployment of sen-
sors (Capellari et al. [19]).

In this study, these goals may be pursued through modal dynamic iden-
tification techniques, which aim at determining the modal dynamic char-
acteristics of a structure, primarily the natural frequencies. In fact, it is well
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known that the variation of these quantities during the life-cycle of a struc-
ture may reveal potential changes in its performance characteristics. In
the present identification perspective, main remote displacement signals
are taken for the modal frequency extraction, possibly corroborated by a
few acceleration response signals, in order to clear the frequency targeting,
through effective DF based on KF.

Papadimitriou et al. [148] first suggested the possibility to adopt the
structural dynamic response for fatigue damage identification purposes.
In the last years, many other scientists have dealt with the topic of the dy-
namic response estimation of a structural system within a stochastic frame-
work, and several algorithms have been developed to treat both linear
models, e.g. KF [105], and non-linear models, e.g. Particle Filter (Gor-
don et al. [82]) and Unscented Kalman Filter (Julier and Uhlmann [103]).
The state of the system is represented in terms of displacements and ve-
locities of the response at specific locations along the structure. In practice,
however, not always it is possible to measure displacements and velocities
of the considered structural system (Lee et al. [123]); thus, when the knowl-
edge of such quantities may be required, KF represents an important tool
for accurately reconstructing the whole dynamic response, starting from
incomplete measurements (Lee and Yun [125], Azam et al. [10], Ding and
Guo [44], Eichstadt [57], Kim and Sohn [113]).

In the following, a KF is implemented into a HDF process in order
to combine numerically determined data from heterogeneous sensors, i.e.
displacement and accelerometer sensors, aiming at deriving accurate dis-
placement estimates of a studied dynamical system, adopted then for mo-
dal dynamic identification purposes, based on displacement data. Both
displacement and, to a lesser extent, acceleration measurements are con-
sidered to be affected by errors, represented by noise added to the signals,
here computed in terms of Noise-to-Signal (N/S) ratios, in order to sim-
ulate the errors that may occur in the “on field” detection of such a kind
of data. Then, thanks to the use of the enhanced KF estimated displace-
ments, through the adoption of appropriate inverse analysis algorithms
for output-only modal dynamic identification (e.g. Zghal et al. [228], Pi-
oldi et al. [152–154], Chatzis et al. [29], and wide reference frameworks dis-
cussed therein) it becomes possible to extract the natural frequencies of the
benchmark structure. Finally, from a comparison between these frequen-
cies and the numerically determined natural frequencies, it is possible to
cross-evaluate the accuracy of the achieved KF estimates.
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3.1.1 Goals of the research study

The main goal of the research investigation of this chapter is twofold:

• firstly, it aims at demonstrating the effectiveness of a KF-based im-
plementation within civil contexts for SHM and identification pur-
poses. Differently from what it has been previously shown in Fer-
rari et al. [67], in which the efficacy of the fusion procedure has been
preliminary demonstrated for a specific case study, concerning the
historic Reinforced Concrete Brivio bridge (1917), here, a wider and
more general treatment on the use of KF within HDF procedures
is provided. Strengths and weaknesses of such a technique are ex-
plored, aiming at achieving a clarifying and comprehensive frame-
work on the topic, within a controlled environment based on syn-
thetic response signals;

• secondly, it extensively attempts to investigate the possibility of em-
ploying displacement data for modal identification purposes. Al-
though modal properties may conveniently be extracted from ac-
celeration measurements only, the perspective of alternatively using
displacement recordings toward the same end may open up new sce-
narios in the signal acquisition stage, since it would make possible to
monitor a specific structure (and to deduce its current modal prop-
erties) without directly acting on it (or only partially involving the
structure through the placement of a few accelerometers), for exam-
ple by using a total station.

3.1.2 Achievements of the investigation

The main achievements of the research work may be resumed as follows:

• the adoption of remote displacement signals, possibly enriched by
reliable acceleration recordings, through an original KF-based imple-
mentation included within the DF procedure, is shown to become
effectively useful for structural monitoring purposes, as leading to a
truthful reconstruction of the original structural response, despite for
possible disturbances of various kinds;

• the maximum level of noise that may be tolerated on displacement
and acceleration measurements is determined, to allow for a success-
ful HDF and to achieve reliable estimates of the current structural
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dynamic response; within this process, filtered displacements (tak-
ing benefit from DF processing) reveal to be more sensitive to noise-
affected accelerations than to noise-affected displacements (as raw
displacement data);

• since displacements and accelerations are supposed to be detected
at different rates, the KF is implemented in its multi-rate configura-
tion, as in Smyth and Wu [192]. This multi-rate KF feature allow-
ing for a relatively low sampling rate for the displacement measure-
ments, fundamental to overcoming low-frequency integration errors,
and for higher sampling rates for the accelerations (i.e. within the
frequency range where accelerometers result more accurate), is re-
vealed, enabling each sensor type to play on its inherent strengths.

3.2 Theory

3.2.1 Description of the benchmark structural system

The dynamical structural system taken into consideration for the present
numerical simulation analyses is a 3-DOF shear-type building, as repre-
sented in Fig. 3.1.

Figure 3.1: Schematic view of the analyzed 3-DOF shear-type building under top-
floor input force.
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This choice is motivated by the simplicity of the geometrical and struc-
tural properties that characterize such a kind of mechanical system, thus
allowing for easy analytical and numerical treatments. Furthermore, this
structural modelization may be good enough to represent real benchmark
structures, within the realm of dynamic response here inspected.

In order to make the analyses the more reliable as possible, plausible
values of mass, stiffness, damping and geometrical structural characteris-
tics are assumed. Mass m of each floor is taken equal to 144 tons, and the
stiffness of the columns is set as follows: EJ1 = 3.75 · 107 kN/m for the left
columns and EJ2 = 1.56 · 108 kN/m for the right ones. Columns display a
height h of 3 m. Additionally, modal damping ratios ζi are assumed to be
equal to 1%, 3% or 5% for all the modes, according to each analyzed case,
spanning the whole dynamic response at increasing sub-critical realistic
inherent structural damping.

Concerning input load F(t) to be applied to the dynamical system, a
common trend for KF estimation purposes (Kitanidis [114], Hsieh [95],
Gillijns and DeMoor [78]) is to avoid using any a-priori knowledge of
such an input force. In fact, structural systems are inherently characterized
by uncertainty, relating to measurement errors, sensor noise, inefficacy of
the numerical models, and lack of a-priori knowledge on both the system
and the loading conditions. Here, a zero-mean random ambient vibration
load F(t) at around 1 · 105 kN is considered, as applied to the top floor of
the building (Fig. 3.1), to compute the floor responses.

Numerically determined undamped modal natural frequencies fn,i of
the benchmark structure are obtained as: fn,1 = 2.658 Hz, fn,2 = 7.448 Hz

and fn,3 = 10.763 Hz. Damped modal frequencies fd,i = fn,i

√
1− ζi

2 have
also been calculated for the damped cases with ζi=1%, 3% and 5%, for all
the modes. Results are reported in Table 3.1.

fd,1 [Hz] fd,2 [Hz] fd,3 [Hz]

1% 2.658 7.448 10.762

ζi 3% 2.657 7.445 10.758

5% 2.655 7.439 10.749

Table 3.1: Frequencies fd,i of the damped system (ζi=1%, 3% and 5%).

Damped natural frequencies fd,i will later be used as comparison terms
for evaluating the accuracy of the KF estimations.
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3.2.2 Analysis procedure

The procedure of analysis is summarized as follows:

(i) The dynamic response of the system is first determined in terms of
displacements and accelerations, through the implementation of the
Newmark’s method, consisting of a step-by-step direct time integra-
tion of the equations of motion. It is worth mentioning that only the
third floor’s kinematic response is going to be monitored, as this may
resume the whole structural response and be suitable enough for first
SHM purposes based on a single-channel recording.

(ii) To simulate the measurement error that may occur in sensors dur-
ing the data acquisition stage, a simulated noise signal is selectively
added to the original measurements. It is well-known that, for es-
timation purposes, KF provides the exact PDF of the state of linear
dynamical systems with a linear measurement model, with addi-
tive zero-mean Gaussian noise processes (Chapter 2, Section 2.3.2.3).
Thus, a zero-mean Gaussian white-noise is employed to contaminate
the response data. During the analyses, both displacements (mainly)
and accelerations are contaminated with increasing N/S ratios.

(iii) Moreover, within the numerical analyses, displacement and acceler-
ation measurements are considered to be sampled at different rates,
in accordance with the common capability of the employable instru-
mentation. In particular, displacements are sampled at lower fre-
quencies than accelerations. From the literature, a usual frequency
range of acquisition has been observed as varying between 12.5 Hz
and 100 Hz for displacements, from 100 Hz up to 300 Hz for accel-
erations. Consequently, for the purposes of the fusion procedure, a
multi-rate KF scheme is adopted, as originally developed by Smyth
and Wu [192].

(iv) KF effectiveness is measured in two different ways. The first one is
based on the calculation of the Root Mean Square (RMS) error be-
tween the estimated displacements after KF application and the orig-
inal (noise-free, numerically determined) displacements; the second
one is based on the comparison between the modal frequencies that
can be extracted via appropriate inverse analysis algorithms from the
original (noise-free, numerically determined) displacement record-
ings, and those that can be extracted from the filtered displacement
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estimations, possibly enriched by means of an appropriate HDF pro-
cedure with a few reliable acceleration data.

3.2.3 Numerical KF implementation

KF is an algorithm that may be used to estimate the health conditions of
linear dynamical systems perturbed by a zero-mean Gaussian white-noise,
through the merge of data that may also be affected by measurement er-
rors. As presented in previous Chapter 2, the mathematical model ex-
ploited in the derivation of such a filter constitutes a reasonable represen-
tation for many issues of a practical interest, including control problems as
well as estimation problems.

This section provides a schematic description of the linear multi-rate
KF employed within the present analyses for improving the estimation of
measured displacements xm(t) (related here to SDOF top-floor displace-
ment signal u3(t), see Fig. 3.1) by using measured accelerations ẍm(t), sup-
posed to be acquired from acceleration sensors (here on the same SDOF,
namely related to a3(t) = ü3(t)).

According to Smyth and Wu [192], in the case in which the acceleration
and displacement are available to be measured, the measurement process
may be modeled in state-space form as follows:[

ẋ(t)
ẍ(t)

]
=

[
0 1
0 0

] [
x(t)
ẋ(t)

]
+

[
0
1

]
ẍm(t) +

[
0
1

]
w(t) (3.1)

xm(t) =
[
1 0

] [x(t)
ẋ(t)

]
+ v(t) (3.2)

where ẍm(t) denotes the exogenous input to the state transition function,
which effectively coincides with the measured accelerations; xm(t) denotes
the measured displacements; w(t) and v(t) are the process noise sources
associated to accelerations and displacements, respectively (assumed to be
Gaussian). By setting vector x(t) = [x(t); ẋ(t)], representing the system
state vector (i.e. the unknown output from the filter), formulated via ag-
gregation of filtered displacement x(t) and velocity ẋ(t) signals, Eqs. (3.1)
and (3.2) may compactly be rewritten in matrix form as:

ẋ(t) = Ax(t) + Bu(t) + w(t) (3.3)

y(t) = Cx(t) + v(t) (3.4)
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where u(t) = ẍm(t), y(t) = xm(t), w(t) = [0; w(t)], and state matrix A,
input matrix B and output matrix C are defined as follows:

A =

[
0 1
0 0

]
, B =

[
0
1

]
, C =

[
1 0

]
(3.5)

Since these matrices are assumed to be known within the filtering analysis,
this shall lead to a linear model-based (vs. model-free; Hamilton et al. [90])
KF, relying on minimizing the error between measured and filtered data,
based on the availability of the above-mentioned matrices, governing cor-
responding state-space Eqs. (3.3) and (3.4), which represent the linear re-
lationships between the states, the measurements and the associated mea-
surement noises (Crawley and O’Donnell [39]).

To implement the DF procedure, Eqs. (3.3) and (3.4) are then trans-
formed into discrete form (zero-order hold assumption), as further indi-
cated in the resuming flowchart of Fig. 3.2 (adapted from Ferrari et al. [67]).

Variables updating

x̂k+1|k = Ax̂k|k + Buk

P̂k+1|k = AP̂k|kA
T + S

t = nTa?

Filter Estimate

K̂k = P̂k|k−1C
T (CP̂k|k−1C

T +R)−1

x̂k|k = x̂k|k−1 + K̂k(yk − Cx̂k|k−1)

P̂k|k = (I − K̂kC)P̂k|k−1

Filter Estimate

x̂k|k = x̂k|k−1

P̂k|k = P̂k|k−1

noyes

Figure 3.2: Multi-rate KF flowchart (adapted from Ferrari et al. [67]).

In Fig. 3.2, x̂j|i = E(xj|i) represents the estimated expected value (mean)
of state vector xj|i at time instant j, using measurements up to (and includ-
ing) time instant i (conditional expectation); similarly, P̂j|i = Var(xj|i) is
the estimated variance of state vector xj|i; S and R represent the covari-
ance of associated process noise sources w(t) and v(t); K̂ is the so-called
Kalman gain. Given matrices A, B, C, S, R, and supposing to know state
mean x̂ and variance P̂ at time k, the recursive procedure summarized in
the flowchart of Fig. 3.2 is based on the calculation of Kalman gain K̂ at
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same time step k, through which the knowledge about the state is up-
dated, predicting quantities x̂ and P̂ at time k + 1, using measurements
up to time k + 1.

The selection of assumed process noise (p-noise) covariance matrix S,
usually mainly based on intuition, and of observation noise (o-noise) co-
variance matrix R displays a significant effect on the estimation perfor-
mance of the KF. A basic way to think of matrices S and R is that they
constitute weighting factors between the prediction (state) equations and
the measurement (output) equations, and this ratio is expressed within the
Kalman gain equation. Considering a larger S corresponds to account-
ing for a larger uncertainty in the state equations, which is equivalent to
less trusting the result of these equations, effectively meaning that the fil-
ter should more correct, by the measurement update. Similarly, consid-
ering a larger R corresponds to accounting for a larger uncertainty in the
measurements, which is equivalent to less trusting the measurements, ef-
fectively meaning that the filter should less correct, by the measurement
update. On the basis of this, p-noise has been intuitively set equal to 10−12

for the whole analysis, since the model is considered to be very robust (the
lower this is, the more accurate the model is considered to be). Instead,
o-noise, which reveals the confidence given to the acquired measurements,
has been set at around 10−3, so that the increasing level of noise on the dis-
placements provides the filter with much of a freedom to adjust itself with
the smaller mean square error for the estimated acceleration signals (the
lower the observation noise, the more severely the KF estimator is forced
to fit the recorded accelerations). Such values of process noise and observa-
tion noise are then kept constant during the performed analyses, regardless
of the noise level affecting the displacement data. From the assumed val-
ues of o-noise and p-noise, matrices S and R are build up as follows (Smyth
and Wu [192]): matrix S is a 2× 2 matrix with zero entries, excepted for the
o-noise level set in position S22; matrix R reduces to a scalar, which is in-
deed set to the selected p-noise value.

As previously mentioned, since accelerations and displacements are
sampled at different time intervals, respectively named Ta and Td, whe-
re Td/Ta = n ∈ ℵ (Chatzi and Fuggini [26]), the filter has been imple-
mented in a multi-rate configuration (Smyth and Wu [192]). This means
that, at times t = nTa, both the time and measurement update steps of
the KF are performed, whereas when nTa < t < (n + 1)Ta only the time
update step (ignoring the observation innovation) is carried out. Despite
that the outcomes of the filter represent the “updated” estimates of both
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the displacements and the velocities (derived from the acceleration input)
of the benchmark structure, the present work plan focuses only on the dis-
placement output.

3.3 Analysis results

In this section, a selection of the results from the numerical analyses per-
formed by involving the multi-rate KF algorithm are reported. Two main
scenarios are presented. Initially, only the displacement response signal is
considered to be affected by noise, while the acceleration response signal is
taken as noise-free. This might represent a quite realistic scenario, since ac-
celerometers are able to capture signals with a higher level of accuracy than
for displacement sensors (Smyth and Wu [192]). Secondly, also the accel-
eration signal is “noisified” with a slight zero-mean Gaussian white-noise.
Indeed, also data acquired via accelerometers may be subjected to mea-
surement errors, albeit smaller than errors affecting displacements. Ad-
ditional simulation results, concerning the present research scenario, are
available in Ravizza [165]. All the analyses have been developed within an
autonomous MATLAB implementation environment.

A general resuming conceptual scheme of the treated HDF cases, with
and without noise affecting the accelerations, also including the possible
subsequent modal identification analysis performed on the filtered dis-
placements, is synoptically depicted in Fig. 3.3.

Figure 3.3: Schematic conception of the treated HDF cases: noise-free acceleration
case (excluding the part in blue colour) and noise-affected acceleration case (con-
sidering the whole scheme). Determination of filtered displacements and possible
subsequent phase of modal identification, based on displacements.
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3.3.1 Noise-free acceleration case

Acceleration data are here assumed as noise-free. In practice, it means
to consider accelerometer measurements without errors, as illustrated in
the synoptic scheme in Fig. 3.3 (i.e. without considering the part in blue
colour).

In particular, 5%, 10%, 25%, 50%, 150% and 300% N/S ratios are consid-
ered, as applied to the displacements, for the different considered underly-
ing modal damping ratios, namely ζi=1%, 3% and 5%. From the analyses it
emerges that, by involving KF within the HDF procedure, it is possible to
obtain refined displacement estimations, namely displacements endowed
of an improved accuracy.
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Figure 3.4: KF displacement response estimation (25% N/S ratio, ζi = 1%).

In particular, from Fig. 3.4, which shows displacements before and af-
ter the HDF-based procedure, it is possible to appreciated how the curves,
representing the original displacements (blue curve) and the KF estimated
displacements (red curve), show a similar trend for a N/S ratio on dis-
placement equal to 25%. Further, in Table 3.2, the RMS errors between the
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original displacement signal and the KF estimated displacement signal are
reported, for each examined scenario.

RMS error [%]
N/S ratio

5% 10% 25% 50% 150% 300%
1% 0.15 0.16 0.19 0.24 3.28 9.71

ζi 3% 0.16 0.18 0.20 0.25 3.21 9.22
5% 0.13 0.17 0.18 0.37 3.75 9.91

Table 3.2: RMS error of KF displacement response estimation for increasing imposed
N/S ratios and damping ratios ζi (noise-free acceleration case).

From Table 3.2, it is possible to observe that the proposed HDF-based
approach appears to be very robust if accelerations are set as noise-free,
despite for the very high noise levels on displacements. In fact, the RMS
error turns out to be much less than 1%, for N/S ratios on displacements
up to 50%, regardless of the considered value of damping ratio ζi. Notice
that N/S ratios greater then 25% are considered to be quite unrealistic for
civil engineering applications (Smyth and Wu [192]). RMS errors of about
3% and 9% refer, instead, to the cases characterized by N/S ratios on the
analyzed displacement signal equal to 150% and 300%, respectively.

Fig. 3.5 shows the qualitative behavior of the RMS error for increasing
noise levels and damping ratios. From the graph, it clearly emerges how,
up to a 50% of noise level, the RMS error lies well below 1%. It is interest-
ing to note that the three depicted curves seem to present the same trend,
with a very light influence of the inherent damping ratios, especially for
noise levels below 50%. Consequently, it is possible to affirm that the KF
algorithm provides very consistent estimates for all the cases so far consid-
ered. This also demonstrates the effectiveness of the filter in case of smaller
values of displacements, as derived from the adoption of greater damping
ratios.

Effectiveness of the KF is also tested based on an inverse analysis con-
ducted for modal identification purposes by means of a standard Welch’s
approach, based on displacement signals. In particular, the modal identifica-
tion procedure has been applied to the displacement signal before (thus
unprocessed by DF) and after (thus taking benefit from DF with accelera-
tions) KF application, and results have been reported for each of the ana-
lyzed cases.
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Figure 3.5: RMS error trend of KF estimation at increasing displacement noise levels
(noise-free acceleration case). A visible kink is recorded at 50% noise level.

From the comparison represented in Fig. 3.6 (target natural frequencies
in the first line of Table 3.1), it is immediate to note how the peaks iden-
tified by automatic peak-picking procedure on the Welch’s periodogram,
after the filtering procedure, look much clearer than the same peaks identi-
fied from the unfiltered displacement data, especially when the noise level
becomes considerable. This is primarily due to the beneficial effect induced
by reliable acceleration data involved within the HDF procedure, which
indeed display relatively better information in the high-frequency regions,
to enrich displacements. The matching, in terms of frequency estimations
(Table 3.1), looks anyway reasonable, for an identification based on dis-
placements.

From the analyzed noise-free acceleration case, it may be asserted that
the KF algorithm is only slightly influenced by the amount of sub-critical
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Figure 3.6: Welch-based modal frequency identification on displacements for a 25%
N/S ratio (ζi = 1%).

structural damping, with a modal damping ratio in the order of a few per-
cents, since in each case the RMS error remains at around 1%, for N/S ra-
tios on displacements up to 50% (see Fig. 3.5). It is worth noting that this
may be considered as rather reliable for damping ratios typical of civil en-
gineering structures; for higher damping ratios, further analyses may be-
come necessary.

3.3.2 Noise-affected acceleration case

The noise-affected acceleration case (slight noise) is now considered. This
represents a further common scenario in practical cases, because in reality
not only displacement sensors but also acceleration sensors may present
measurement errors, of a slight amount for the latter sensors. To take
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this into account, a slight Gaussian noise level has been added to the ac-
celeration data too. Damping ratios ζi, instead, have been maintained as
constant and all equal here to 1%, as representative of a slight sub-critical
damping, in the whole analysis. The analysis follows again the scheme of
Fig. 3.3, now also including the part highlighted in blue colour. As previ-
ously stated, here, the focus is placed on the HDF scenario involving noise-
affected acceleration measurements, even though here very low N/S ratios
are applied. In particular, 0%, 5%, 10%, 25% and 50% N/S ratios are con-
sidered as applied to the displacement response signal, for simultaneous
slight N/S ratios of 1%, 2% and 3% affecting the acceleration response sig-
nal. From the results of the noise-affected acceleration case, it emerges that
KF seems to be significantly affected by the level of slight noise added to
the accelerations.
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Figure 3.7: KF displacement response estimation for 25% N/S ratio on displace-
ments and 1% N/S ratio on accelerations.
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In fact, from Fig. 3.7, which shows the displacement histories before
and after the HDF procedure with acceleration data, it is possible to ap-
preciate how the two curves, representing the original displacement signal
(blue curve) and the KF estimated displacement signal (red curve), take
different trends, already for low noise levels on accelerations.

In Table 3.3, the RMS errors are reported for each examined scenario. It
is worth noting that only the 1% noise acceleration scenario may be consid-
ered to be acceptable for SHM purposes. In fact, the estimate errors related
to the other two cases become too high, and this could lead to an unreliable
prediction of the dynamic response of the structural system.

RMS error [%]

displacement noise

0% 5% 10% 25% 50%

ac
c.

no
is

e 1% 1.17 1.97 2.72 4.01 6.67

2% 8.72 11.03 12.41 13.08 16.98

3% 19.67 25.93 27.51 32.77 35.24

Table 3.3: RMS error of KF response estimation (ζi = 1%) at increasing displace-
ment noise level (noise-affected acceleration case).

From Table 3.3, it is possible to observe how the RMS error rapidly in-
creases with the increase of noise level on the acceleration signal, up to val-
ues over 30%, for a N/S ratio of 3%. However, in practice, considering the
sensitivity of sensors, the most common scenario is to inherit a 1% N/S ra-
tio on accelerations and a N/S ratio between 5% and 10% on displace-
ments. Within such a range, RMS errors below 3% have been recorded.
This may also be graphically observed in Fig. 3.8, in which the three trends
are depicted.

About the identification method, from the Welch analyses based on dis-
placements, it emerges that the modal frequency identification process has
been anyway successful after KF employment, as it may be appreciated
from Fig. 3.9 (target natural frequencies in the first line of Table 3.1), in
which a comparison between the frequencies identified from displacement
signals before (DF unprocessed) and after (DF processed) KF application,
through merging with acceleration signals, is provided. This is likely due
to the frequency content, which still remains good, despite for the high



3.3. Analysis results 73

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

Disp. noise level [%]

R
M

S
 e

rr
o
r 

[%
]

 

 

1% acc. noise

2% acc. noise

3% acc. noise

Figure 3.8: RMS error of KF displacement response estimation at increasing N/S ra-
tios on displacements (for 1%, 2% and 3% N/S ratios on accelerations).

levels of added noise. The frequency estimation based on displacements
keeps anyway quite reliable (compare boxed values to targets in Table 3.1).

A further important assertion that may be derived from the analysis
presented in this chapter is that KF, differently from the modal identi-
fication procedure, appears to be strongly affected by the level of noise
added to the acceleration data. The reason why filtered displacements
seem to be very sensitive to noise-affected accelerations and, at the same
time, rather insensitive to noise-affected displacements, has to be located
in the adopted preliminary calibration of the implemented KF-based ap-
proach. In fact, within the developed HDF procedure, a crucial step is con-
stituted by the a priori definition of the degree of confidence to be given
to the initial conditions of the model, stated in a probabilistic way. Such a
degree of confidence has to be set within the state-space model in terms of
process noise and observation noise, as previously stated in Section 3.2.3.
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Figure 3.9: Welch-based modal frequency identification on displacements for a 25%
N/S ratio on displacements and a 1% N/S ratio on accelerations.

In practice, from the acquired understanding of the present DF analy-
sis, acceleration measurements bring in a more powerful information than
displacement records; thus, noise affecting acceleration data more visibly
affects the filtered displacements and then the identification outcomes that
can be extracted from them. So, adopting this configuration of the filter, it
is advisable to maintain a N/S ratio on acceleration signals approximately
below 1%, so that reliable response estimations may be reached. Conse-
quently, in practical cases, a great attention must be given to the acquisi-
tion stage of such a data; in this sense, also the preliminary study of the
appropriate collocation of the acceleration sensors shall play a key role for
the success of the whole HDF process.
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3.4 Final remarks

By means of the performed numerical analyses, the proposed investigation
sheds light onto several critical aspects inherent to the adoption of KF in
civil engineering implementations, including for HDF and modal identifi-
cation purposes. In particular, this holds true with reference to the maxi-
mum level of noise, in terms of N/S ratios, that may be tolerated, on dis-
placement and acceleration measurements, respectively, in order to allow
for a successful HDF and thereby to achieve reliable estimates of the cur-
rent structural dynamic response, perspectively based on extensive remote
displacement response signals, corroborated by a few reliable acceleration
response data.

The following salient considerations from the performed analysis ap-
ply:

(i) Noise-free acceleration case. From the performed analysis, it has
been proven that KF turns out able to provide reliable estimates of the
structural dynamic response, for N/S ratios on displacement mea-
surements up to 50%. Indeed, in these cases, RMS errors well be-
low 1% between the estimated displacements after KF application
and the original (noise-free, numerically determined) displacements
are recorded. This was made possible also by tuning the assumed
noises of the filter, which usually constitutes a complex procedure to
be made automatic.

(ii) Noise-affected acceleration case. Numerical results have shown that
only a 1% N/S ratio on accelerations may lead to reliable estimates
of the dynamic response after DF by KF adoption. This could be im-
proved, e.g. by providing an adequate procedure for the fine tuning
of the filter (in terms of process and observation noise levels) and
may constitute the subject of future investigations. Consequently, in
the present scenario, the positioning and setting of the accelerome-
ters shall play a key role for a true success in the KF estimates. In
the current analysis, if the intrinsic error characterizing accelerome-
ter recordings becomes greater than 1%, RMS errors greater than 8%
between the estimated displacements after KF application and the
original (noise-free, numerically determined) displacements, are ob-
served. This constitutes at present a requirement of quality for the
acceleration recordings, to be adopted within the current implemen-
tation settings, in the explored configuration.
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In addition to the comparison between numerically determined dis-
placements and displacements obtained through KF application, integrat-
ing information from acceleration response signals, defined in terms of
RMS error, an output-only procedure of modal frequency identification
within the Frequency Domain, has been used to evaluate the KF effective-
ness in terms of modal dynamic identification. It has been proven that the
KF adoption has been useful also towards the modal identification pur-
poses, considering the cases of noise-free and noise-affected accelerations.

The present chapter brought forth some interesting aspects inherent to
the employment of a model-based KF in a HDF procedure toward SHM
purposes. The filter’s effectiveness has been successfully demonstrated,
leading to the conclusion that KF shall constitute a strong tool for DF wi-
thin the field of structural monitoring. Thanks to its robustness, a proper
KF implementation might also allow users to relax the acquisition rate of
signals, shifting then the effort to the posterior stage of data processing.
In this sense, KF could allow for handling practical situations in which, for
different reasons, an optimal positioning of the sensors may not be feasible.

Another consideration that may be drawn from the present investiga-
tion is the perspective of cross-using extensive remote displacement mea-
surements for the purposes of structural identification, through the sup-
port of selected reliable acceleration data, apt to enrich the available in-
formation. Thanks to the inspected HDF-based implementation, it has
been shown that not only accelerations but also estimated displacements,
embedding partial information from accelerations, may then be success-
fully employed within a modal identification procedure based on displace-
ments. This may point out to the perspective of adopting wide displace-
ment acquisitions for SHM and identification purposes, possibly corrob-
orated by a few reliable acceleration recordings, through appropriate and
effective HDF, as here outlined.
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HDF approach via KF for modal
identification of seismic-excited
structural systems

This chapter aims at extending the HDF-based implementation presented
in the previous chapter to the additional, new treatment of seismic-excited
dynamic structural systems. In particular, a numerical analysis exploring
the effectiveness of a multi-rate KF in the clarification of non-stationary
noisy displacement seismic response signals, is inspected. Some reliable
(noise-free) standard acceleration measurements may also be involved wi-
thin the HDF procedure, and a subsequent output-only modal identifi-
cation analysis is performed, on the so-enhanced displacements, aiming
at assessing the success of the whole procedure and monitoring process,
within a seismic engineering scenario.

The chapter is organized as follows. After a brief introduction provided
in Section 4.1, which states the goals of the present research endeavour,
Section 4.2 recalls the same benchmark dynamic system taken into consid-
eration in previous Chapter 3, i.e. a 3-DOF shear-type frame, and the dif-
ferent seismic input excitation here assumed as acting at the base of such a
structure is also shown. Various scenarios of numerical analysis, which
take advantage of the previously discussed HDF-based implementation
via KF, are then presented in Section 4.3, with the aim of purifying the
non-stationary noisy displacement response signal of the monitored dy-
namic system under seismic excitation. In the same section, the ambitious
goal to perform the modal identification process from such enhanced non-
stationary displacements is also inspected, and related results are deeply
discussed and commented. Final considerations are eventually reported
within last Section 4.4.
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It is worth mentioning that all the assertions provided within this chap-
ter hold true for non-stationary synthetic signals that are numerically gen-
erated from a direct time integration prior to the filter and identification
analysis. This refers to a necessary-condition validation of the procedures
that are here developed, before then moving to a subsequent processing
analysis with real structural response signals.

4.1 Introduction

The research scenario presented in this chapter aims at pursuing the am-
bitious goal of exploiting the displacement data usefulness for structural
identification purposes. Such a kind of approach, already addressed in pre-
vious Chapter 3 for stationary, white-noise signals, as well as prodromally
in Ravizza et al. [166], is here further developed and extended to the case
of structural systems excited by non-stationary signals, specifically under
seismic excitation.

In KF-based approaches, the measured dynamic response at some lo-
cations of the structure and the numerical model of the structure itself are
aligned, to identify real-time variations of the structural parameters. One
of the major strengths of this method concerns its suitability for online im-
plementations, because of its recursive formulation. Indeed, it only needs
the knowledge of the previous condition of the structure to be monitored
at a determined time step ti−1 and measurements at current time ti, to esti-
mate the unknown variables.

In previous chapter, KF has been specifically employed to combine nu-
merically determined data from heterogeneous response signals (i.e. accel-
erations and displacements), in order to derive more accurate displacement
estimates, for a 3-DOF shear-type building under white Gaussian top-floor
input force. Here, instead, a similar approach still involving a multi-rate
KF (Smyth and Wu [192]) scheme, based on a non parametric model with
properties updated at each time step, is developed for fusing together sim-
ulated non-stationary (noise-affected) seismic response displacements and
noise-free accelerations of the same numerical dynamic system, excited at
the base by single instances of a data set of ten earthquake records, which
differ for magnitude, duration, location of the epicenter and PGA.

In particular, the present implementation aims at clarifying the non-
stationary displacement response signals, such that they might then be use-
ful for modal identification purposes. In fact, a subsequent fundamental
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aspect of vibration-based health monitoring of civil structures concerns the
identification of dynamic structural modal properties, i.e. natural frequen-
cies, mode shapes and damping ratios, since it is well known that vari-
ations of these quantities during the life-cycle of a certain structure may
reveal potential changes in its performance characteristics. Thus, struc-
tural identification via inverse analysis techniques is of a primary impor-
tance for damage monitoring and, consequently, it is essential for pursuing
a contemporary and effective SHM. In the present identification perspec-
tive, the enhanced non-stationary displacement response signals are then
considered for the modal frequency extraction procedure, possibly corrob-
orated by a few reliable acceleration response signals, in order to success-
fully clarify even the signal frequency content.

4.1.1 Goals of the research scenario

Ultimately, the aim of the present research scenario is twofold, one relat-
ing to the Time Domain and the other related to the Frequency Domain,
namely:

• primarily, it aims at inspecting the effectiveness of KF in the presence
of non-stationary (seismic) signals, by assuming increasing N/S ra-
tios, solely affecting the displacement measurements, and computing
the percentage peak variation between the real numerical displace-
ment at each floor of the benchmark structure and the KF displace-
ment estimates;

• secondly, it aims at demonstrating the efficiency of output-only mo-
dal identification techniques performed on non-stationary displace-
ment response signals, through a comparison between the numeri-
cally determined natural frequencies and the identified frequencies,
extracted from the benchmark structure’s displacements after KF ap-
plication by means of Welch’s method.

Such research topics are investigated in the next sections, aiming at pro-
viding an innovative approach which might reveal to be useful in SHM
applications within the civil engineering context.
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4.2 Seismic-excited benchmark structure

As above mentioned, the dynamic structural system taken into consider-
ation for the present numerical simulation analyses is the same 3-DOF
shear-type building monitored in Chapter 3 (see previous Fig. 3.1). This
structural system is here re-proposed in following Fig. 4.1, here aiming at
highlighting the presence of the input excitation now acting at the base of
such a structure. The characteristics of the benchmark building, in terms
of mass, stiffness, damping and geometry, may be found in Section 3.2.1.

Figure 4.1: Schematic view of the monitored 3-DOF shear-type building under seis-
mic ground excitation üg(t).

4.2.1 Examined earthquake excitations

Concerning the input load (seismic excitation), a set of ten seismic ground
motions (Table 4.1), different for location of the epicenter, magnitude, dura-
tion and PGA, are assumed as acting at the base of the structure of interest
(see Fig. 4.1). The seismic accelerograms of the considered earthquake mo-
tions are reported in Appendix A. Further information on time-frequency
spectra is available in Pioldi and Rizzi [157, 158] and in Pioldi et al. [152–
154], where the records have been selected and adopted for extensive mo-
dal identification analyses.

In order to perform the direct analysis, and to obtain the numerically
determined displacement and acceleration response signals of the dynamic
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Earthquake Station Comp. M Dur. [s] PGA [g]
Imperial Valley 1940 El Centro S00E 6.9 40 0.359
Tabas 1978 70, Boshrooyeh WE 7.3 43 0.929
Imperial Valley 1979 01260 NS 6.4 58 0.331
Loma Prieta 1989 Corralitos 0 7.0 25 0.801
Northridge 1994 24436 WE 6.7 60 1.778
L’Aquila 2009 Valle Aterno WE 5.8 50 0.676
Chile 2010 Angle WE 8.8 180 0.697
New Zealand 2010 163541 NS 7.1 82 0.752
Tohoku 2011 Sendai NS 9.0 180 1.402
Katmandu 2015 Kanti Path NS 7.8 100 0.164

Table 4.1: Seismic input data-set generalities (see also Appendix A).

system at each floor, seismic input at the base üg(t) has been considered as
the effect of inertial forces Fi = −müg acting at each floor i.

Numerically determined undamped modal natural frequencies fn,i of
the benchmark structure, have already been calculated in the previous
chapter, as well as damped modal frequencies fd,i, considering the cases
of ζi=1%, 3% and 5%, for all the modes (recall Table 3.1, reported in Sec-
tion 3.2.1).

4.3 Analysis results

Various numerical-analysis scenarios, which involve the processing of the
dynamic response of a 3-DOF shear-type building model, subjected to in-
stances of a set of ten seismic input signals (see Table 4.1), have been per-
formed, by exploiting the proposed multi-rate KF-based approach. In this
section, a selection of the obtained results is reported and commented on.

In particular, two related research scenarios are presented: one belong-
ing to the Time Domain, the other to the Frequency Domain. Primarily, the
KF algorithm is implemented to clarify the displacement response signals,
initially affected by different levels of noise, with the contribution of a few
reliable (noise-free) acceleration data, involved in the HDF procedure. Sec-
ondly, the so-clarified displacements, whose quality has been improved by
means of the KF application, are employed for extracting the current modal
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natural frequencies of the 3-DOF benchmark structure, through appropri-
ate inverse analysis approaches.

A general conceptual scheme summarizing the HDF case dealt with
under seismic input, also including the subsequent modal identification
analysis performed on the filtered displacements, is depicted in following
Fig. 4.2.

Figure 4.2: Schematic conception of the illustrated HDF procedure via KF between
noise-affected displacements and noise-free accelerations at seismic excitation. De-
termination of filtered displacements and subsequent phase of modal identification,
based on displacements.

In such a figure, different colors have been used to better appreciate
the three interconnected steps constituting the accomplished procedure,
i.e. direct analysis, HDF implementation via KF, and inverse analysis, as
detailed in the following sections.

The KF effectiveness is assessed in both the Time Domain and the Fre-
quency Domain, through the monitoring of the system dynamic response
at each floor, namely u1, u2, and u3.

All the analyses, which solely involve synthetic signals, have been de-
veloped within an autonomous MATLAB implementation environment.

4.3.1 Results in the Time Domain

In this section, original (numerically determined) seismic response dis-
placements ui are contaminated with increasing levels of zero-mean Gaus-
sian white-noise, to obtain noisy displacements ui,noisy, which have to be
merged with accelerations ai, taken instead as noise-free. This reflects what
might often happen in reality, since accelerometers shall be able to detect
signals with a higher level of accuracy than displacement sensors (Smyth
and Wu [192]). Here, since the analysis solely focuses on synthetic sig-
nals, being available the (noise-free) numerical response signals, the level
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of noise affecting the displacement data may easily be expressed in terms
of N/S ratio, as the ratio between the RMS of the noisy corrupting signal
with respect to the maximum measured displacement, in percentage.

N/S ratios of 0%, 5%, 10%, 15%, 20% and 25% are considered within
the present analyses to contaminate the original displacements. Although,
in practice, a good instrumentation for signals detection may typically be
accompanied by intrinsic errors smaller than a 10% N/S, for academic pur-
poses, also higher N/S ratios are here explored. This also aims at demon-
strating the robustness of the presented HDF implementation. Modal dam-
ping ratios ζi, instead, have been maintained constant and equal to 1% for
all the modes, as representative of a slight sub-critical damping, for the
whole investigation.

Here, just the results obtained from the analyses preformed on the she-
ar-type building of Fig. 4.1 subjected to L’Aquila seismic input, 2009, acting
at the base, are presented, in both graphic and tabular form. Results de-
riving from the other analyzed seismic ground motions are instead subse-
quently reported only in tabular form. In fact, from the emerged outcomes,
the L’Aquila earthquake scenario appears to be well representative also for
general cases and, consequently, considerations deriving from it may be
extended to structures that undergo generic earthquake shakings, as those
summarized in previous Table 4.1.

Fig. 4.3 shows the third-floor displacement response signal pre- and
post-application of the HDF-based procedure via KF, for two specific noise
levels contaminating numerically determined displacements u3, i.e. the
cases of 10% and 25% N/S ratios. Further results, showing the KF estimates
obtained considering all the analyzed N/S ratio cases (i.e. 0%, 5%, 10%,
15%, 20% and 25%), are available in Appendix B (Figs B.1–B.6).

It may be appreciated how the two curves, representing the numerical-
ly determined displacements u3 (dotted blue line) and KF estimated dis-
placements u3,KF (red line), show a similar trend, despite for the increasing
noise level assumed on the measurements.

The effectiveness of such a technique is inspected in terms of percent-
age variation between original displacements ui and KF estimated dis-
placements ui,KF. In Table 4.2, signal peak values and percentage varia-
tions ∆ui between these two quantities are reported, considering each de-
gree of freedom of the analyzed dynamic system, and assuming an increas-
ing level of noise on the measurements. In fact, it is worth noting that, as
previously mentioned, for a more thorough understanding of the dynamic
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Figure 4.3: KF application on top-floor displacement response signal of a 3-DOF
shear-type frame subjected to L’Aquila 2009 earthquake input, for different N/S ratios
on displacements (top-floor displacements are depicted).

behavior of the structure of interest, not only displacement response sig-
nal u3, but also displacement response signals of the lower floors, u1 and
u2 (see Fig. 4.1), are monitored within the analysis.
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N/S ratio u1,noisy u1,KF ∆u1 u2,noisy u2,KF ∆u2 u3,noisy u3,KF ∆u3

[%] [cm] [cm] [%] [cm] [cm] [%] [cm] [cm] [%]
00 4.15 4.15 0 7.48 7.48 0 9.38 9.38 0
05 4.58 4.18 0.72 8.29 7.50 0.27 10.13 9.41 0.32
10 4.48 4.20 1.20 8.87 7.53 0.67 11.25 9.32 0.64
15 5.48 4.22 1.69 10.82 7.68 2.67 10.60 9.50 1.28
20 5.65 4.34 4.57 12.15 7.76 3.74 12.71 9.12 2.77
25 6.59 4.41 6.27 12.46 8.08 8.02 14.60 9.85 5.01

Table 4.2: L’Aquila 2009 earthquake: maximum values of numerically determined
displacements u1, u2, u3 and KF estimates u1,KF, u2,KF, u3,KF, and their percentage
variation ∆ui , for different N/S ratios.

From Table 4.2, it emerges how the filter is able to significantly en-
hance the noisy measurements that may derive from displacement sen-
sors, overcoming the intrinsic limitations which characterize such a kind
of instrumentation. For instance, in the possible case of a N/S ratio equal
to 10% (see Fig. 4.3a), the sensor would have measured a maximum dis-
placement u3,noisy of 11.25 cm, against a numerically determined value u3
of 9.38 cm, in the absence of noise. Thanks to the KF support, instead, a
more reliable estimate of maximum displacement u3,KF equal to 9.32 cm is
obtained, leading to a percentage variation well below 1%.

To emphasize the effectiveness of the performed HDF procedure, and
to further prove the quality of the displacement estimates that may be
obtained through the proposed KF-based implementation, an analogous
analysis on the same structure subjected to the other seismic input signals
listed in Table 4.1, is conducted. Results are reported in tabular form in Ap-
pendix C (Tables C.1–C.10), for each considered seismic ground motion.

Similar positive conclusions about the effectiveness of the inspected
HDF-based procedure involving KF may also be drawn in these cases,
comparing noisy maximum displacement ui,noisy with corresponding fil-
tered maximum displacement ui,KF, regardless of the applied seismic in-
put. In fact, from percentage variations ∆ui , summarized in Tables C.1–C.9,
it may be observed how the proposed HDF technique appears to be very
robust, if accelerations are set as noise-free, as in this case, despite for the
significant noise levels considered on displacements. Such an approach re-
veals to be quite useful for more clearly bringing out the characteristics of
the signal in the Time Domain, configuring itself as an approach that might
play a key role within practical monitoring applications.
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4.3.2 Results in the Frequency Domain

Aiming at identifying the modal features (natural frequencies) of the mon-
itored structure, before and after the application of the proposed HDF-
based procedure, a further analysis within the Frequency Domain is also
performed. In this section, previously clarified top-floor displacement re-
sponse signal u3 is employed toward identification purposes, by means
of appropriate inverse analysis algorithms. In particular, Welch’s method
(Otis [146]) is first applied on the unprocessed (noise-corrupted) displace-
ments, and, through an automatic peak-picking procedure performed on
Welch’s PSD, it may be possible to obtain the fundamental modal frequen-
cies of the benchmark shear-type building. As it can be appreciated from
the graph in Fig. 4.4a, considering a source signal affected by a realistic
5% N/S ratio, only the first modal frequency emerges, while the other
two appear to be indistinguishable, due to the presence of the spurious
noise. The benefits which the proposed HDF-based implementation brings
in to the identification process clearly emerge in Fig. 4.4b, where a similar
Frequency-Domain analysis performed on the filtered displacements leads
to the identification of all the three natural frequencies of the 3-DOF struc-
ture, represented in the graph by the three scored frequency peaks.

To inspect the reliability of the estimates obtained through the modal
identification procedure made on the displacement seismic response sig-
nal, a more classic identification approach based on the top-floor acceler-
ation response signal, is also proposed. For this purpose, two different
methods are employed. Firstly, a Welch’s method, analogous to that previ-
ously exploited for the displacement-based identification, is performed on
acceleration response signal a3, leading to the results shown in the graph in
Fig. 4.5a. Comparing the so-obtained three natural frequencies with those
extracted from the displacements, represented in Fig. 4.4b, a good agree-
ment may be observed. Secondly, a further modal identification approach
based on accelerations, namely a standard FDD method, is performed on
same top-floor acceleration response signal a3, and represented in Fig. 4.5b.
Again, the three main frequency peaks, corresponding to the natural fre-
quencies of the monitored structure, appear to be clearly visible, and their
estimated values are very close to those previously exposed. Better esti-
mates of the structural modal properties may even be obtained by apply-
ing a more sophisticated variant of the FDD method, known as refined
FDD method, as deeply explored in Pioldi et al. [152–154] as well as in
Pioldi and Rizzi [155–158], and references cited therein.
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(a)

(b)

Figure 4.4: Identified natural frequencies by an automatic peak-picking procedure
on displacements (Welch’s method): (a) pre-KF application; (b) post-KF application.
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(a)

(b)

Figure 4.5: Identified natural frequencies by an automatic peak-picking procedure
on accelerations: (a) Welch’s method; (b) standard FDD method.
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Furthermore, numerically determined damped natural frequencies fd,i
are employed as a comparison term for evaluating the accuracy of the re-
sulting estimates, and the percentage variation between each identified fre-
quency and the corresponding numerical value is also calculated and re-
ported in Table 4.3, for the three structural vibration modes. It is worth
noting that such a table solely refers to L’Aquila 2009 earthquake, whereas
the results obtained on the other analyzed seismic ground motions may be
found in Tables D.1–D.10, as reported in Appendix D.

The very low percentage variations obtained between the identified
modal frequencies and the numerical ones, in every case around 1%, prove
the effectiveness of the proposed implementation involving a KF in deter-
mining the modal features of a monitored structure, at least concerning
L’Aquila 2009 seismic input.

Modes I II III

fd,i [Hz] 2.658 7.448 10.762

fdspl,Welch [Hz] 2.612 7.373 10.669

∆ [%] −1.73 −1.01 −0.86

facc,Welch [Hz] 2.637 7.373 10.645

∆ [%] −0.79 −1.01 −1.09

facc,FDD [Hz] 2.630 7.360 10.650

∆ [%] −1.05 −1.18 −1.05

Table 4.3: L’Aquila 2009 earthquake: natural frequencies identified from top-
floor displacements fdspl,Welch vs. natural frequencies identified from accelera-
tions facc,Welch and facc,FDD: comparison and their variation with respect to target
numerically determined damped frequencies fd,i.

Moreover, looking at the results available in Appendix D, this consid-
eration may be generalized, and extended even to the other considered
ground motions. In fact, similar trends may be highlighted for all cases,
since the frequencies identified from the processed displacements prove to
be competitive with the same frequencies identified from the accelerations.
Such estimates also reflect the targeted numerical values, proving the fact
that the identification based on displacements may be considered as a valid
alternative to the more standard identification based on accelerations.
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4.4 Final remarks

In this chapter, a KF has been involved within a HDF-based procedure,
aiming at enhancing the non-stationary (seismic) displacement response
of a numerical structural system subjected to single instances of a set of
ten different seismic ground motions. Different noise levels, in terms of
N/S ratios, have been selectively added to the displacement response sig-
nals, and the effectiveness of the proposed implementation within the Time
Domain has been evaluated by comparing the filtered displacements with
the numerically determined displacements. Instead, about the Frequency
Domain, the KF effectiveness has been assessed by extracting the natural
frequencies from the processed displacements and, subsequently, by com-
paring such estimates with the modal frequencies identified from the accel-
erations, as well as with the targeted numerically determined frequencies.

The main achievements that the presented research scenario has brou-
ght to light may be summarized in the following three salient points:

• within the Time Domain, the effectiveness of the KF may be consid-
ered to be fully proven, for all the analyzed seismic ground motions,
at least for N/S ratios commonly involved in civil engineering appli-
cations (say, in the order of less than 10%);

• within the Frequency Domain, the adoption of the presented proce-
dure has brought great benefits to the modal identification process, in
terms of number of natural frequencies which may be extracted from
the filtered displacement response signal. In fact, all the three natu-
ral frequencies of the monitored structure have been clearly identi-
fied, differently from what it had happened by considering the un-
processed displacement signal into the identification process;

• the obtained results show that the ambitious goal to successfully per-
form an output-only identification by using non-stationary response
displacement measurements, opportunely processed, instead of the
more common acceleration-based approach, may be considered to be
achieved.

In conclusion, it may be asserted that, although it is well known that
modal dynamic identification made exclusively on accelerations is often
enough to obtain reliable estimates of modal parameters of a certain struc-
ture, the possibility to exploit displacement records (possibly corroborated
by a few acceleration data) for the same identification purposes, moreover
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with reference to non-stationary input excitations, might represent an im-
portant alternative scenario in the structural identification field. In fact,
it might open up new perspectives, especially during the signal acquisi-
tion stage, since it would make it possible to monitor a specific structure
(and to deduce its current modal properties) without directly acting on it
(or only partially involving the structure through the placement of a few
accelerometers), for instance by simply using a total station.
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Chapter 5

Critical assessment of two denoising
techniques for purifying synthetic
structural vibration response signals

This chapter introduces the denoising problem, as the procedure through
which it may be possible to purify a signal from undesired noise, which
commonly affects recorded data, by altering its content. In this sense, it can
be considered as an alternative approach to the HDF-based procedure, dis-
cussed in the previous chapters, aiming at achieving a better understand-
ing of the detected data. In particular, two specific denoising techniques,
i.e. a Discrete Wavelet Transform (DWT)-based denoising, as well as a Sin-
gular Value Decomposition (SVD)-based denoising, are explored. Exclu-
sively, synthetic response signals of a different nature (non-stationary and
stationary) are involved within the analysis, for assessing the effectiveness
of the two studied denoising techniques.

The chapter is organized as follows. After a general contextualization
of the denoising problem, given in introductory Section 5.1, which aims at
providing some of the most important bibliographical references on this
topic, a brief theoretical framework concerning the adoption of the DWT
and SVD techniques for denoising purposes is presented in Section 5.2,
together with the needed strategies for their adaptation in the handling of
the present civil engineering scenario. Section 5.3 presents the analysis pro-
cedure, through the description of the benchmark dynamical system, the
process of generation of the simulated noise-affected signals and the ob-
tained results. Here, a particular importance is placed on the preliminary
calibration of the denoising technique based on DWT, through the search
for the optimal configuration of its characteristic parameters; additionally,
the criterion through which a SVD approach may effectively be exploited
toward denoising purposes is also explored. Within the same section, a
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performance assessment of the two studied approaches is presented, and a
critical comparison is provided. Conclusions and global remarks are finally
outlined in Section 5.4, as well as some possible further research perspec-
tives.

5.1 Introduction and contextualization

SHM refers to the process of a continuous assessment of the current health
condition of a structural system, aiming at improving its safety and in-
tegrity by detecting potential manifestations of damage, before this may
reach a critical state and become detrimental for structural safety. Deal-
ing with the structural engineering context in general terms, in addition to
the literary references already provided in Chapter 2, further very recent
virtuous examples in which SHM procedures have been successfully im-
plemented, on different typologies of structures, may be found in the liter-
ature, e.g. by Capellari et al. [20], Chatzi and Smyth [28], Ferrari et al. [65–
68], Koo et al. [120], Lee et al. [123], Roberts and Dodson [170], and therein
cited references. It is clear that the acquisition stage of signals, from which
the current structural conditions may be detected, constitutes a crucial
phase for the global success of such an analysis.

Referring to the civil engineering field, in particular, the most common
typologies of sensors employed for the detection of response signals may
be considered as accelerometers and displacement sensors, as the kind of
response data that can be recorded from them may be good enough to ef-
fectively describe the current health conditions of a structure. However, the
widespread need to adopt a low-cost and easy-to-use monitoring instru-
mentation, toward recording the dynamic behavior of structures subjected
to live external loads, may often lead to measurements affected by even
sensible amounts of noise. This spurious signal contamination, superposed
upon the useful structural response signal, may lead to modify its moni-
toring information content. Such a process might substantially alter the
prediction of the structural response and induce significant discrepancies
in estimating the structural dynamic behavior, increasing the induced un-
certainties and leading to unreliable SHM implementations. Consequently,
noise reduction from acquired response signals constitutes a crucial issue
in the whole process of efficient health monitoring of civil structures, in
particular, concerning the subsequent phase of signal processing after the
data acquisition stage.



5.1. Introduction and contextualization 95

The procedure through which it becomes possible to reconstruct a cer-
tain source signal, starting from a recorded, noise-affected one, removing
its noisy part, without losing the useful information contained in it, may
be referred to as denoising (Buades and Coll [17], Chen and Bui [30], Por-
tilla and Strela [159]). Two main issues have to be taken into account in
dealing with a denoising procedure, namely: (a) how the initial data may
be affected by the added noise; (b) how the reconstructed signal, out of
the denoising procedure, shall be able to correctly reproduce the original
(truthful) signal, preserving all its fundamental characteristics. Thus, the
crucial matter of each denoising process lies in removing most of the un-
wanted noise, without losing the useful part of the signal, namely the one
containing the true monitoring information.

Several computational techniques have been proposed to address the
denoising of signals, some of which are currently in continuous develop-
ment. The most basic and traditional way to remove the noise affecting the
signals is represented by the employment of band-pass filters with cut-off
frequencies, i.e. high-pass or low-pass filters, which allow to remove all the
frequency contents greater or lower than a certain frequency value, respec-
tively. Moving average filters, as well as Gaussian filters, can be considered
as typical examples belonging to such a category. However, although the
application of such filters may be useful when the noise is located within
a precise frequency band, which is different from the frequency band in
which the signal shall lay, in most cases, when the noise displays a similar
frequency content as that of the signal to be analyzed, they cannot be effec-
tive, since even much of the useful signal may be lost. This also constitutes
a main drawback in the use of the Fourier Transform toward denoising
purposes (Ergen [59]). In other words, such methods act in a global sense,
since they process the signal regardless of whether the noise displays a
uniform frequency distribution or not. However, in real cases, the noise
distribution may be far from being uniform and it may be desirable to ap-
ply a “localized” form of denoising. In the past decades, this has led to
searching for different methodological approaches and alternative filtering
techniques toward achieving an effective denoising.

Kam et al. [108] and Arezki and Berkani [8] proposed the application
of adaptive filters to remove Gaussian white-noise and impulse noise from
signals. Within their works, an iterative procedure was set up for mini-
mizing in real time the error between the original signal and the denoised
signal (Madisetti and Williams [135]). In order to suppress impulse noise,
Veerakumar et al. [207] introduced a new algorithmic approach based on
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the combination of fuzzy logic and on an asymmetric trimmed median fil-
ter, whereas in Premchaiswadi et al. [163] a kFill algorithm was combined
with a median filter for reducing the impulse noise that could occur on im-
ages (denoising methods can also be successfully applied on images, since
an image may be interpreted as a two-dimensional signal, Ergen [59]).

A further powerful methodology for separating noise out of corrupted
data involves the application of a Discrete Wavelet Transform (DWT). In
particular, in Dohono [48], a first DWT-based approach for denoising one-
dimensional signals was provided. Afterwards, Chang et al. [24] intro-
duced an innovative adaptive Wavelet thresholding for image denoising
and compression, called BaeyShrink method.

Furthermore, the use of Singular Value Decomposition (SVD) for de-
noising purposes has also attracted considerable interest, as demonstrated
e.g. in Konstantinides et al. [118] and Konstantinides and Yao [119], where
the authors introduced a new filtering and noise estimation technique,
known as Block-based Singular Value Decomposition (BSVD) filtering.

Finally, a possible alternative approach that may be adopted in enhanc-
ing the quality of noise-affected signals may concern the application of
a KF (Chatzi and Fuggini [26, 27], Ravizza et al. [166], and works cited
therein). For instance, in previous Chapter 2 and 3, a KF has been success-
fully employed within a HDF-based procedure, in order to correct noisy
displacement measurements, by enhancing them through a few reliable
acceleration response signals, toward cleaning structural acquisition ex-
traction and modal dynamic identification.

Here, two of the above-mentioned approaches are systematically re-
considered and developed, in first tackling a controlled denoising prob-
lem set on reference structural response signals. In particular, the devel-
opment of a DWT procedure as a multi-rate filter bank, as well as the im-
plementation of a SVD technique are extensively inspected, in their em-
ployment toward denoising structural response signals. Here, the two
approaches are implemented and assessed on noise-corrupted structural
vibration response signals that may be typical of practical applications be-
longing to the civil engineering context. In signal processing, DWT is ac-
tually commonly applied for many other purposes, in addition to signal
denoising. For instance, its employment shall be rather useful in detecting
trends, breakdown points, discontinuities in higher derivatives and self-
similarity of signals (Sifuzzaman et al. [191]). Moreover, as a denoising
technique, it has been already performed on signals presenting a different
nature, i.e. gravity and magnetic signals (Fedi et al. [63]), biological signals
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(Alyasseri et al. [4], Aqil et al. [9]), such as electroencephalograms (EEG) or
electrocardiograms (ECG), but also on acoustic (Feng et al. [64]) and pres-
sure signals (Shanxue and Chao [187]). However, its application in denois-
ing structural signals typical of the civil engineering field does not seem to
have been deeply inspected yet. Similarly, also SVD has found applications
in digital signal processing as a technique for noise reduction. In particular,
its effectiveness has been already proven dealing with audio signals (e.g. in
Baravdish et al. [11], where it is combined with a non-linear PDE method),
or biomedical signals (Schanze [183]), or even for radar target recognition
of electromagnetic signals (Lee et al. [126]), but also for improving the qual-
ity of images (Guo et al. [86]). Moreover, in the civil engineering domain, it
has been exploited for many purposes, including those of modal dynamic
identification (e.g. in Pioldi et al. [152–154]) and of damage detection in
structures at an early stage of development (Ruotolo and Surace [173]).

Within the present investigation, the performances of the DWT- and
SVD-based denoising techniques is first assessed on earthquake and ambi-
ent vibration synthetic response signals, and a critical comparison based on
the effectiveness of such methods is provided, at variable values of added
noise. The selection of these two types of response signals is also moti-
vated by the fact that they can be considered as being well representative
of two great families of signals, since they display a very different nature.
In particular, the earthquake excitation input is known as a typical non-
stationary signal, whereas the ambient vibration signal is instead consid-
ered as a common stationary signal, since it may almost be constant in time
and frequency. To inspect advantages and possible limitations of the men-
tioned denoising techniques, in relation to the typology of the processed
signal, shall constitute an important goal of this chapter.

In order to synthetically generate numerical response signals, the seis-
mic input as well as the ambient vibration input are separately examined
and applied on a reference structure, namely a one-bay ten-story shear-
type frame building, used as a benchmark mockup for the whole study. In
particular, the first- and last-floor acceleration responses are monitored, in
the cleaning of the response signals (accelerations). Furthermore, to sim-
ulate the effect of the errors that may occur on the measurements during
a real signal acquisition stage, within the analysis, several N/S ratios are
considered for a superimposed noise signal affecting the data.

As previously stated, the present investigation solely targets synthetic
response signals, i.e. numerically generated signals, since their employ-
ment has been preliminarily considered for a crucial, necessary condition
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validation of the denoising procedures. Further preliminary simulations
of the present research efforts confined only to synthetic signals, were pre-
sented in Ravizza et al. [167].

5.1.1 Goals of the research scenario

The main goals that this study aims to pursue are the following:

• to explore which is the optimal calibration of a DWT-based denois-
ing technique, for dealing with both seismic and ambient vibration
response signals;

• to examine the possibility to successfully exploit a SVD-based imple-
mentation, toward the clarification of the above-mentioned response
signal typologies;

• to provide a critical comparison of the strengths and weaknesses of
each denoising method, aiming at exploring their effectiveness, at a
controlled, increasing level of noise inserted on the source signals;

• to recover the original signal in the Time Domain, with also the tar-
get of preserving its spectrum in the Frequency Domain, in order to
achieve a comprehensive and more reliable reconstruction of the re-
sponse signal, to be considered as rather truthful toward real moni-
toring purposes.

All these topics will be addressed and deeply discussed throughout the
chapter, by a dedicated numerical analysis performed within a MATLAB
environment.

5.2 Theoretical framework

This section presents the denoising problem, as well as the mathematical
theory behind the DWT- and the SVD-based denoising approaches. The
Percentage Root Mean Square Difference (PrmsD) index, namely the pa-
rameter employed within the analysis for evaluating the effectiveness of
the explored denoising techniques, is also defined.
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5.2.1 Problem statement

A classical way of dealing with a typical denoising problem is to decom-
pose noise-corrupted signal y = {y1, ..., yi, ..., yN} into the sum of two dif-
ferent contributions: clean (noise-free) signal x = {x1, ..., xi..., xN}, which
contains the useful information that has to be preserved out of the de-
noising process and additive noise n = σ {ñ1, ..., ñi, ..., ñN}, of an inten-
sity given by standard deviation σ, which instead represents the portion of
the signal that shall be removed. Thus, such a relation may be expressed
as y = x + n, for each i-th component of the signals at recording time ti,
i = 1, ..., N, where N is the length of the signal:

yi = xi + σñi (5.1)

Here, the additive noise contaminating the data may be modeled as
a stationary independent zero-mean Gaussian term (Alfaouri and Daqro-
uq [2], Moulin and Liu [141]) and both noise-free and noise-corrupted sig-
nals are taken as artificially generated synthetic signals. The assumption
of these hypotheses constitutes a necessary requirement in this prelimi-
nary phase of denoising technique assessment, as it allows for working
within a controlled environment, where potentialities and critical issues of
such techniques may be brought to light in a convenient way, than for real
signals. The aim of each denoising process is to obtain a best approxima-
tion x̂ = {x̂1, ..., x̂i, ..., x̂N} of the original (noise-free) signal, starting from
the noise-affected one, removing the undesired noisy part, without losing
appreciable and useful information contained in the processed data.

A few indexes have been proposed in the literature toward evaluating
the performance of denoising techniques (Sadooghi and Khadem [174]). In
this study, in which a Gaussian white-noise is added to a synthetic signal
and the denoising procedure is performed on such an artificial noisy sig-
nal, the PrmsD index (Karthikeyan et al. [109]) is used as an effectiveness
denoising evaluation parameter. In fact, since both the original (noise-free)
signal and the denoised signal are entirely available, the percentage error
between them may readily be expressed by the following relation:

PrmsD = 100 ·

√√√√√√√√
N
∑

i=1
(xi − x̂i)2

N
∑

i=1
x2

i

(5.2)



100 Chapter 5

To obtain a most truthful reconstruction of the original signal, a small-
est value of PrmsD is desired. The same index will also be used as a com-
parison term to confront the performances of the two different denoising
techniques that are taken into account, namely the ones based on DWT and
SVD. Other possible evaluation indexes that may be found in the literature
as an alternative to the PrmsD index are, for instance, the Cross-Correlation
value (Al-Qazzaz et al. [3]), which expresses the similarity between two
discrete-time sequences, the Mean Square Error (MSE) (Sadooghi and Kha-
dem [174]) and the Signal-to-Noise ratio (SNR) (Gradolewski and Red-
larski [83]).

In real applications, however, the source benchmark signal, which ex-
presses the true (noise-free) response of a structure, is of course unavail-
able. Consequently, in these cases, the PrmsD index cannot be used for
the direct evaluation of the denoising effectiveness, and alternative ways
to handle with that should be considered.

In the next two sections, a fundamental theoretical framework on DWT-
and SVD-based denoising approaches is provided, especially regarding
their specific employment toward denoising both non-stationary and sta-
tionary structural vibration response signals, targeted on civil engineering
applications.

5.2.2 Discrete Wavelet Transform-based denoising

Wavelet Transform (WT) may be seen as the process through which a cer-
tain signal can be decomposed into its low and high frequency compo-
nents, via the introduction of a set of orthonormal wavelet functions, con-
stituting a wavelet basis, which originate from the mother wavelet by scal-
ing and shifting operations through two parameters known as scale param-
eter j and shift parameter k. In particular, when scale parameter j is chosen
as a power of two, a dyadic orthonormal wavelet transform is obtained
(Vetterli and Herley [209]).

The measure of frequency content similarity between the signal that
has to be denoised and the selected wavelet function is expressed by the
so-called wavelet coefficients, determined as a convolution of the signal
and the scaled wavelet function, which may be considered as an expanded
band-pass filter (Rioul and Vetterli [169]). In particular, approximation coeffi-
cients are associated with low frequency components, whereas detail coeffi-
cients refer to high frequency components. In this way, WT is implemented
with a reconstruction filter bank using an orthogonal wavelet family. Such
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an employment of WT as a filter bank for signal denoising purposes is also
known as Discrete Wavelet Transform (DWT) (Ergen [59]).

A DWT denoising procedure may be summarized according to the fol-
lowing three main conceptual steps:

(i) Decomposition of the original signal into the wavelet domain.

In general terms, a discrete recorded signal y = {y1, ..., yi..., yN}, with
i = 1, ..., N, and length N taken as a power of two, may be turned
into the wavelet domain using an orthonormal wavelet basis (Mal-
lat [138]), as follows:

Yj,k =
N

∑
i=1

yiWi,(j,k) (5.3)

where forward transform operator Wi,(j,k) is defined as:

Wi,(j,k) = 2−j/2ψ(2−ji− k) (5.4)

so that the orthonormal basis functions are all obtained through tran-
slations and dilations of a certain mother wavelet ψ by means of
shift (or translation) parameter k ∈ ℵ and scale (or dilation) pa-
rameter j ∈ ℵ, sampled along the dyadic sequence (Blue [14], Zou
and Tewlik [236]). About the choice of function ψ, it is an oscillating
function that may be selected among a set of pre-defined functions,
namely Symlet, Coiflet, Daubechies, Biorthogonal, Reverse Biorthogonal
and Discrete Meyer mother wavelets.

Thus, referring to the denoising problem here presented, and exploit-
ing the linearity of DWT, Eq. (5.1) may be rewritten in the wavelet
domain by operating Wi,(j,k) on each signal components, according to
the following relation:

Yj,k = Xj,k + Nj,k (5.5)

where a usual notation here denotes with a capital letter a quantity
in the transformed wavelet domain, i.e. the wavelet coefficients, at
fixed j and k.
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It is worth noting that the representation into the wavelet domain
allows to preserve the linear structure of the model, so that trans-
formed noise Nj,k is still distributed as a Gaussian white-noise, with
standard deviation σ, as it can be seen comparing Eq. (5.1) and (5.5).

Through the introduction of transfer function D : <+ → [0, 1], i.e.
the denoising operator, original (noise-free) signal Xj,k may be esti-
mated (X̂j,k) starting from noisy signal Yj,k, such that:

X̂j,k = DYj,k (5.6)

where D, which has to be designed to minimized the error between
Xj,k and X̂j,k, depends on the considered denoising method.

To this evaluation end, so-called estimation risk r, i.e. the Mean Squa-
red Error (MSE), is mainly adopted in measuring such an error:

r = E[(Xj,k − DYj,k)
2] =

N
∑

i=1
(Xj,k − DYj,k)

2

N
(5.7)

where E labels the expected value. Consequently, the main issue
consists in optimizing D for the current signal typologies, i.e., here,
earthquake excitation and ambient vibration.

(ii) Thresholding of the DWT coefficients.

Introducing a certain non-dimensional threshold value λ, which may
be a function of DWT decomposition level l (level-dependent thresh-
old) or not (level-independent threshold), according to Donoho and
Johnston [47], the noise affecting the signals may considerably be re-
duced by scaling the wavelet coefficients smaller than λ, so that only
the coefficients greater than λ are considered to be associated to reli-
able data, whereas the ones below λ are then set equal to zero.

The basic idea is that the noise in the transformed domain tends to
disperse over all the wavelet coefficients, so that a strategy in which
values below a proper threshold are set to zero removes most of the
noise, preserving the source information. In fact, switching into the
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wavelet domain, transformed signal Yj,k will have many more non-
zero coefficients than transformed signal Xj,k, due to the noise con-
tribution. Thus, by selecting an appropriate threshold λ, which al-
lows to switch from wavelet coefficients Yj,k to thresholded coeffi-
cients Yj,k(D, λ), it may be possible to alleviate the noise effect.

Two different types of thresholding may be performed, namely hard
thresholding and soft thresholding (Dohono and Johnston [46]). Hard
thresholding zeros out all the wavelet coefficients (in absolute value)
smaller than λ, by preserving the others as unaltered, as described by
the following relation:

Yj,k(D, λ) =


Yj,k i f

∣∣Yj,k
∣∣ ≥ λ

0 i f
∣∣Yj,k

∣∣ < λ
(5.8)

In soft thresholding, instead, wavelet coefficients (in absolute value)
greater than λ are reduced by a quantity equal to the threshold itself,
as follows:

Yj,k(D, λ) =


∣∣Yj,k

∣∣− λ i f
∣∣Yj,k

∣∣ ≥ λ

0 i f
∣∣Yj,k

∣∣ < λ
(5.9)

Since typically the noise mainly affects the high frequency compo-
nents, it is common to apply the thresholding to the so-called detail
coefficients, i.e. to the low-frequency band that usually contains the
most important components of the signal.

However, both thresholding types display some drawbacks. In fact,
soft thresholding, also known as wavelet shrinkage, although it tends
not to produce discontinuities in the resulting signal, it may lead
to unwanted bias, when the preserved coefficients are large. Hard
thresholding, instead, might be very sensitive even to small changes
in the signal, resulting unstable.

To overcame these issues, some new hybrid solutions have been pro-
vided (Gao and Andrew [73], Gao [74]). From Eqs. (5.8) and (5.9), it
clearly emerges how the most critical and delicate point in the DWT-
based approach is represented by the choice of an appropriate thresh-
old λ, since the accuracy of the denoised signal mainly depends on
it. In particular, the setting of a too small threshold λ might lead to
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a reconstructed signal that will still considerably be affected by noise
and the denoising process would not be effective. Otherwise, a too
large λ might lead to the suppression of too many coefficients, los-
ing also the useful part of the signal, containing the information to be
preserved. The importance of this choice is also demonstrated by the
large variety of methods available in the literature in that respect (Do-
hono and Johnston [46,47], Karthikeyan et al. [109]). In fact, although
for a generic signal of length N a Universal Threshold λ ∝

√
2lnN has

been proposed, many other level-dependent or block-dependent ap-
proaches exist.

Within this study, the following thresholding rules belonging to the
Donoho-Johnson thresholding method family, are considered:

• Visu shrink (Sqtwolog) (Dohono and Johnston [46]). According
to this thresholding rule, λ may be estimated starting from the
Universal method, regardless of the DWT decomposition level,
through the following relation:

λ = σ
√

2lnN (5.10)

where σ is the standard deviation of the zero-mean Gaussian
white-noise added to the clean signal.

• SURE shrink (Rigorous SURE) (Dohono and Johnston [47]). In
this case, a threshold level is assigned to each decomposition
level of the WT. The setting of threshold λ is based on the prin-
ciple of minimizing the Stein Unbiased Estimate of Risk (SURE),
as follows:

SURE(λ, y) = d +
d

∑
i=1

[min(
∣∣Yj,k

∣∣ , λ)]2 − 2(i :
∣∣Yj,k

∣∣ < λ) (5.11)

where d is the size of noisy vector data y and Yj,k are the wavelet
coefficients. This procedure is very versatile and suitable for
denoising a wide range of functions: from those that present
lots of discontinuities to those that are essentially smooth.

• Heuresure (Heuristic SURE) (Karthikeyan et al. [109]). The meth-
od combines features from the two previous thresholding rules.
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In particular, being λ1 and λ2 the threshold values obtained fr-
om Universal and Rigorous SURE methods, respectively, accor-
ding to the Heuristic SURE rule, threshold λ may be computed
as follows:

λ =


λ1 i f A < B

min(λ1, λ2) i f A ≥ B
(5.12)

where:
A =

s− N
N

, B =
√

N(log2N)3 (5.13)

being s =
N
∑

i=1
Y2

j,k the sum of the squared wavelet coefficients

(Verma et al. [208]).

• Minimax (Dohono and Johnston [49], Karthikeyan et al. [109]).
This is a level-independent method based on a Minimax statis-
tical principle. According to a Minimax criterion, the denoised
signal may be assimilated to the estimator of the unknown re-
gression function, so that Minimax realizes the minimum of the
maximum MSE obtained for a given set of functions and, conse-
quently, optimal threshold λ may be determined as follows:

λ =


0.3936 + 0.1829 · log2N i f N > 32

0 i f N ≤ 32
(5.14)

Here, all these thresholding rules have been applied, combined with
different mother wavelets, i.e. Symlet, Coiflet, Daubechies, Biorthogo-
nal, Reverse Biorthogonal and Discrete Meyer wavelets (Sadooghi and
Khadem [174]), for evaluating the effectiveness of a DWT denoising-
based approach on seismic and ambient vibration signal typologies.

(iii) Signal reconstruction.

Finally, decomposed signal x̂i can be reconstructed, returning to the
original Time Domain, by applying the inverse WT to the thresh-
olded signal:
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x̂i =
J

∑
j=1

K

∑
k=1

X̂j,kW∗i,(j,k) =
J

∑
j=1

K

∑
k=1

DYj,kW∗i,(j,k) (5.15)

by means of inverse wavelet transform operator W∗i,(j,k), defined as fol-
lows:

W∗i,(j,k) = 2j/2ψ(2ji− k) (5.16)

In next Section 5.3.3, a signal denoising analysis based on DWT is per-
formed for different N/S ratios of the added noise signal, in both Time and
Frequency Domains. In fact, not only the PrmsD index between the orig-
inal (noise-free) signal and the denoised one, but also the post-denoising
signal frequency content is inspected.

5.2.3 Singular Value Decomposition-based denoising

Differently from the denoising technique based on DWT, the one based on
Singular Value Decomposition (SVD) constitutes a non-parametric signal
analysis tool that may be implemented without pre-defined basis func-
tions. In particular, it is common to refer to SVD as a numerical method
through which a m× n matrix A of rank L, containing the data points de-
scribing noise-corrupted signal y, may be decomposed into the product of
three matrices, as follows (Zhao and Ye [230]):

A = USVT (5.17)

where U ∈ <m×m and V ∈ <n×n are orthogonal matrices, so that UTU = Im
and VTV = In (I identity matrices), while S ∈ <m×n is a “diagonal” matrix
storing the square roots of non-zero eigenvalues si of positive semi-definite
matrix ATA (i.e. the singular values of A) in decreasing order, namely
S = diag(s1, s2, ..., sL), with L = min(m, n). The SVD is adopted in several,
different statistical and engineering contexts. For instance, in the realm
of modal dynamic identification, SVD is much used in Frequency Domain
Decomposition (FDD) methods toward output-only identification (see, for
instance, Pioldi et al. [152–154], Pioldi and Rizzi [155–158], and references
quoted therein).

The SVD method is able to provide an optimal approximation of the
original signal data points, using a matrix of lower rank l with respect to
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that of A. In other words, it exists a m× n matrix Â of rank l ≤ L which
minimizes the sum of the squared errors between the elements of matrix A
and the corresponding elements of reconstructed matrix Â, so that:

Â = UlSlVT
l (5.18)

where subscript l ≤ L denotes the reduced rank of each matrix. In par-
ticular, matrix Â is obtained by considering only the largest (significant) l
singular values, whereas the remaining ones are replaced by zeros, so that:

si > ε, i = 1, ..., l; si ≤ ε, i = l + 1, ..., L (5.19)

choosing an appropriate threshold value ε, for instance in the order of 101.
This procedure resembles the way of proceeding of the mentioned DWT-
based denoising approach, in the sense that, there, wavelet coefficients be-
low a certain λ threshold are removed. Such a property may successfully
be exploited for signal data reduction also in a SVD-based denoising, al-
lowing to alleviate a conspicuous amount of noise from noisy signals.

Considering now a typical denoising problem, as the one described by
Eq. (5.1), according to Antoni and Randall [7], it may be expressed in vector
notation as follows:

y = x + n (5.20)

where y denotes the generic noisy vibration signal, which it can be inter-
preted as the sum of a noise-free signal x and of a noise effect n. Conse-
quently, also matrix A related to y may be seen as the sum of two contribu-
tions: aforementioned matrix Â, containing noise-free data, i.e. the useful
information embedded within the signal, and matrix N, representing the
noise contribution, which has to be removed. From Eqs. (5.17) and (5.18) it
follows that:

A = Â + N =
[
Ul U0

] [Sl 0
0 S0

] [
VT

l
VT

0

]
(5.21)

where Â and N are related to x and n, respectively, Sl contains only signif-
icant singular values si (i = 1, ..., l), which are employed in the reconstruc-
tion of the uncontaminated signal, while S0 includes the remaining smaller
singular values si (i = l + 1, ..., L), which have to be set at zero. Thus,
concerning the application of the SVD method, the main issue now shifts
in estimating optimal threshold ε for successfully separating the contami-
nated part of the signal from the good one. In this regard, many different
approaches dealing with this point appear in the literature (e.g. Chen and
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Zhang [33], Jing et al. [101]), mainly based on the construction of matrix A
using measured data. Among them, the one based on the Hankel matrix is
the most widely employed, essentially thanks to its zero phase-shift prop-
erty and wavelet-like characteristics (Zhao and Ye [230]).

Similarly to the denoising method based on DWT, also the SVD-based
approach may be summarized according to the following three main con-
ceptual steps (Zhao and Jia [233]):

(i) Construction of the Hankel matrix.

Since in the common practice detected signals are expressed as time
series, they have to be first reshaped into a matrix form in order
to be suitable for denoising purposes based on a SVD implementa-
tion. Considering a generic discrete noise-corrupted vibration signal
y = [y1, ..., yi, ..., yN ], this may be done by assembling its Hankel ma-
trix as follows (Jensen et al. [98]):

A =


y1 y2 . . . yn
y2 y3 . . . yn+1
...

...
. . .

...
ym ym+1 . . . yN

 (5.22)

where parameter m = N − n + 1 is usually adopted for determining
the number of decomposed components in SVD in the way that m
should be about three times greater than number of components N
in the noise-affected signal (Di Monte and Arun [43]).

(ii) Signal decomposition and reconstruction.

Above-mentioned Hankel matrix A is then used within a SVD proce-
dure, according to Eq. (5.17):

A =
[
u1 u2 . . . um

]


s1 0 . . . 0
0 s2 . . . 0
...

...
. . .

...
0 0 . . . sm




vT
1

vT
2
...

vT
n

 =

=
m

∑
i=1

siuivT
i =

m

∑
i=1

Ai

(5.23)
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In this way, matrix A has been expressed as the superposition of m
sub-matrices Ai = siuivT

i , each of them corresponding to a singular
component yi of the noise-corrupted signal. It is worth noting that,
consequently, such a signal may be completely reconstructed by sim-
ply adding all decomposed singular components yi (which may be
obtained from sub-matrices Ai by applying the diagonal averaging
method (Sanliturk and Cakar [180])), as displayed in the following
relation:

y =
m

∑
i=1

yi (5.24)

(iii) Signal denoising.

The basic concept, according to the SVD approach, is based on the as-
sumption that the core signal pattern is mainly embedded within sin-
gular components yi with large singular values (Zhao and Ye [232],
Zijian and Zhengrong [235]). Consequently, the main issue is now
concerning how to appropriately select threshold ε in order to de-
noise the noise-corrupted signal, by preserving the singular compo-
nents with the largest singular values s1, ..., sl , while lower compo-
nents sl+1, ..., sL may be replaced by zeros, namely:

Â =
[
u1 u2 . . . um

]


s1 0 . . . 0 0
0 s2 . . . 0 0
...

...
. . .

...
...

0 0 . . . sl 0
0 0 . . . 0 0




vT
1

vT
2
...

vT
n

 =

=
l

∑
i=1

siuivT
i =

l

∑
i=1

Âi

(5.25)

from which:

x̂ =
l

∑
i=1

x̂i (5.26)

where Â and x̂ are the denoised matrix and signal, respectively.
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5.3 Analysis procedure

5.3.1 Presentation of a selected benchmark structure

Within the current numerical investigation, a one-bay 10-DOF shear-type
frame building, as sketched in Fig. 5.1, is considered as a benchmark dy-
namical system. Such a selection appears rather reasonable because, al-
though its characteristics may be well suitable for describing real civil en-
gineering cases, even more complex ones, such a modelization may nev-
ertheless allow for a rather easy analytical and numerical treatment of the
present structural problem and for a convenient exploitation of the denois-
ing techniques in this context.

Figure 5.1: Schematic view of the analyzed one-bay 10-DOF shear-type frame build-
ing.

To make the analysis as much realistic as possible, in the characteri-
zation of the structure, reasonable geometrical properties as well as reli-
able values of mass, stiffness and modal damping ratio (uncoupled modal
damping is assumed), are considered. For the first floor, greater values of
mass and stiffness are assumed, with respect to those of the upper floors.
In particular, m1 = 100 t and k1 = 2 · 106 kN/m for each bearing column
(see Fig. 5.1), whereas mi = 80 t and ki = 1.5 · 106 kN/m, with i = 2, ..., 10.
Mass-normalized stiffness matrix K̃ = M−1/2KM−1/2 is used within the
performed implementation in handling the solution of the structural eigen-
value problem. In addition, a modal damping ratio ζi equal to 5%, namely
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a typical value concerning engineering structures, is considered, for all the
modes. Through the proposed implementation, up to two dofs may simul-
taneously be monitored.

In particular, the present structural analysis context focuses on the mo-
nitoring of the first and last floor’s dynamic acceleration responses of the
benchmark structure represented in Fig. 5.1, as subjected to two different
types of excitation input: an earthquake acceleration excitation, acting at
the base of the building, and an ambient vibration force distribution, as a
common white-noise time signal applied along the structure with a linear
(triangular) variation (the signal magnitude increases from the bottom to
the top of the building, from zero to a maximum value).

5.3.2 Synthetic generation of noise-corrupted response signals

Considering real signals of any nature and typology, it may be stated that
signals without noise may not exist. In particular, during the phase of
signal detection, extrinsic noise sources, i.e. cross-talk noise or environ-
mental perturbations, and intrinsic noise sources, i.e. thermal noise, diffu-
sion noise, white-noise or shot noise, constitute inevitable causes of distur-
bance, which tend to overlap onto the useful signal, altering its information
content (Vasilescu [206]). Moreover, the impossibility to precisely identify
the physical reason lying behind the noise appearance led to the conclu-
sion that it cannot be considered as a deterministic process and, thus, it
has to be modeled by means of statistical approaches. In particular, the
noise process may be assimilated to a stationary stochastic process, whose
characteristics do not change over time. Furthermore, it is characterized
by a Gaussian distribution of amplitudes and mean value equal to zero, so
that all its spectral components are uniformly distributed over the whole
frequency spectrum. The fact that it indifferently affects every single fre-
quency component over the whole length of the signal makes the Gaussian
white-noise the most difficult kind of noise to be removed. Since the noise
has its importance not in absolute terms but always in relation to the useful
signal to which it overlaps, in order to express such an influence in percent-
age terms, the N/S ratio is again adopted. Solely for academic purposes,
N/S ratios up to 50% will be investigated, in the forthcoming analysis,
even though, in common sensor technology, N/S ratios greater than about
20% might already be considered as rather unrealistic.
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In this section, the process of signal corruption is presented with refer-
ence to the two analyzed input types.

The selected non-stationary input is the earthquake excitation that in
1986 struck Kalamata, the capital town of the Messinia prefecture of south-
ern Peloponnese, Greece. The seismic record is shown in Fig. 5.2, in both
Time and Frequency Domains.
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Figure 5.2: Kalamata (1986) seismic input acting at the base on the benchmark
structure: (a) Time Domain; (b) Frequency Domain.

High spectral accelerations characterized the records, responsible for
the partial or total collapse of several reinforced concrete buildings. Peak
Ground Acceleration (PGA) of 0.24 g, magnitude of M = 5.9 and focal
depth of 22 km were recorded. The main shock’s epicenter (37.07◦ N,
22.18◦ E) was very near Kalamata, and many aftershocks followed, caus-
ing extensive damage in most parts of the ancient town, as well as in some
nearby villages (Lyon-Caen et al. [134]).

Such a seismic excitation has been assumed acting at the base of the
ten-story shear-type frame building represented in Fig. 5.1, and the struc-
tural response determined by a numerical integration through a dynamic
direct analysis based on Newmark’s integration method. In particular, nu-
merically determined acceleration response signals related to the first and
tenth floor have been recorded. Results are depicted in following Fig. 5.3,
as well as with the process of generation of noisy data, obtained from the
clean ones by adding different white Gaussian noise levels (in the figure,
the case of 25% N/S ratio is reported).
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Figure 5.3: Dynamic acceleration response signals of the benchmark structure under
Kalamata earthquake input and noise addition process (25% N/S ratio); (a) 1st floor;
(b) 10th floor.

Ambient vibration is then investigated. Also known as “microtremor”,
it represents the stationary excitation to which a structure is subjected to
during its regular operational conditions (Farrar and James III [62]). It is
associated to environmental loads, such as wind or, dealing with bridges,
traffic load and wave motion. Ambient vibration may be considered as a
random type of signal, which affects a broad frequency range and, despite
being characterized by limited amplitudes, it is usually enough to excite
several modes of structural vibration. Within the present analysis, a very
light ambient vibration input force of around 3 kN is considered acting at
the top-floor of the reference structure, whose characterization in Time and
Frequency Domains may be appreciated in Fig. 5.4.

Similarly to the earthquake input case, also the dynamic response of
the benchmark structural system subjected to ambient vibration input has
been inspected in terms of acceleration for the first and last floors. The
outcomes and the process of noise corruption of the response signals are
shown in Fig. 5.5, where a 25% N/S ratio is still considered in affecting the
source data.
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Figure 5.4: Ambient vibration input acting on the last floor of the benchmark struc-
ture: (a) Time Domain; (b) Frequency Domain.
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Figure 5.5: Dynamic acceleration response signals of the benchmark structure under
ambient vibration input and noise addition process (25% N/S ratio); (a) 1st floor; (b)
10th floor.
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5.3.3 Denoising application and results

Artificially generated noise-corrupted acceleration response signals ẍ(t),
reported in previous Fig. 5.3 and Fig. 5.5, are now processed within a
denoising-based implementation involving the DWT and SVD approaches,
aiming at evaluating their performances in the clarification of noisy re-
sponse signals, in both Time and Frequency Domains. All the analyses
have been performed within a self-implemented numerical computing en-
vironment (MATLAB).

5.3.3.1 DWT-based denoising application

As previously stated, since the DWT-based denoising method constitutes
a non-parametric signal analysis tool, it necessarily requires a preliminary
phase of calibration of some pre-defined parameters, namely the mother
wavelet typology, the thresholding rule, the type of thresholding and the
wavelet decomposition level. In this section, in order to prove the effective-
ness of such a denoising method, and to determine the optimal calibration
to be set for the subsequent analysis, several tests in which the wavelet
assessment is based on the PrmsD between the original (noise-free) sig-
nal and the denoised signal, have been performed. In particular, optimal
wavelet parameters are selected according to a criterion of minimization of
such a PrmsD index.

In order to select the most appropriate combination of mother wavelet
and thresholding rule for the denoising of earthquake and ambient vibra-
tion response signals, at first, the N/S ratio is maintained constant and
equal to 10%, as well as the wavelet decomposition level, set to 3.

The denoising performance is assessed for several mother wavelets of a
diverse nature, i.e. Symlet, Coiflet, Daubechies, Biorthogonal, Reverse Biorthog-
onal and Discrete Meyer, combined with the previously treated four main
thresholding rules, belonging to the Donoho-Johnston family, i.e. Heuris-
tic SURE, Sqtwolog, Minimax and Rigorous SURE. Furthermore, for each
mother wavelet, different numbers of oscillations have been considered
(indicated with a number next to the wavelet mother name).

Since the performed analysis has not revealed substantial differences
in the processing of the 1st- and 10th-floor acceleration responses, in the
rest of the chapter, only results concerning the top-floor acceleration sig-
nal are reported, and commented on. The PrmsD index for the explored
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combinations of mother wavelets and thresholding rules are summarized
in Table 5.1.

Mother wavelet Thresholding rule
Heursure Sqtwolog Minimax Rigrsure

seismic ambient seismic ambient seismic ambient seismic ambient

sym2 0.22 6.27 0.84 7.22 1.97 7.71 0.69 7.57
sym3 0.42 5.33 0.90 6.79 2.11 7.12 0.91 7.31
sym4 0.47 5.05 0.90 6.16 2.18 6.70 0.96 6.86
sym5 0.46 5.60 0.86 5.93 2.19 6.26 0.99 5.80
sym6 0.47 5.05 0.92 5.92 2.19 6.13 0.92 6.88
sym7 0.46 5.34 0.85 5.31 2.20 6.01 1.00 5.53
sym8 0.43 5.49 0.55 7.46 2.21 5.74 0.92 6.18

coif1 1.24 5.17 0.67 8.20 0.29 7.56 1.92 6.77
coif2 1.43 4.90 0.82 5.89 0.32 5.17 2.12 5.63
coif3 1.50 4.89 0.93 6.25 0.39 5.66 2.14 4.94
coif4 1.46 4.93 0.85 5.29 0.35 4.74 2.15 4.92
coif5 1.49 4.92 0.94 5.89 0.39 5.30 2.14 4.69

db1 0.87 9.66 1.45 9.35 0.58 9.82 0.52 9.97
db2 0.55 7.47 0.29 7.15 1.28 7.06 1.02 9.08
db3 0.84 7.22 0.52 7.65 1.41 6.75 1.21 7.59
db4 0.82 5.94 0.50 8.46 1.43 5.69 1.24 7.41
db5 0.93 6.55 0.56 7.07 1.49 6.08 1.27 7.97
db6 0.84 5.57 0.51 7.52 1.44 5.40 1.23 6.93
db7 0.94 6.21 0.59 7.11 1.51 5.73 1.27 7.71
db8 0.85 5.41 0.50 6.91 1.44 5.37 1.24 6.67
db9 0.94 5.94 0.58 7.28 1.51 5.42 1.28 7.45
db10 0.86 5.44 0.51 6.40 1.45 5.44 1.24 6.68

bior1.1 0.87 8.65 0.92 8.73 0.50 8.80 0.91 8.99
bior2.4 0.84 7.45 0.90 6.35 1.36 7.93 0.98 6.14
bior3.5 0.98 6.53 1.19 5.28 1.50 7.56 1.08 6.27
bior6.8 0.89 5.70 1.06 4.95 1.42 6.59 0.97 5.30

rbio1.1 0.87 9.66 0.32 9.80 0.45 9.82 0.28 9.41
rbio2.4 0.88 6.29 1.47 5.44 1.46 7.25 1.61 5.14
rbio3.5 1.18 4.97 1.74 5.12 1.75 4.87 1.86 4.91
rbio6.8 0.90 5.51 1.52 5.46 1.52 6.80 1.62 5.78

dmey 0.94 5.37 0.27 6.44 1.51 5.50 0.55 5.01

Table 5.1: PrmsD index [%] between original (noise-free) signal and denoised signal
for different mother wavelets and thresholding rules (10% N/S ratio, decomposition
level 3).
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It is interesting to observe how, while for the seismic excitation the re-
sults do not seem to be significantly affected by the number of oscillations
characterizing the considered mother wavelet, for the ambient excitation
signal, instead, a considerable dispersion of the outcomes occurs.

Moreover, from the performed analysis it can be affirmed that, assum-
ing seismic response signals, Smylet having two oscillations in its mother
wavelet combined with a Heursure thresholding rule lead to the lowest
value of PrmsD index (see Table 5.1), whereas, considering ambient vi-
bration response signals, the best solution seems to be produced by the
combination of Coiflet, having four oscillations in its mother wavelet, with
a Minimax thresholding rule (see Table 5.1). These settings will then be kept
constant throughout the whole forthcoming investigation.

Once the optimal combination of mother wavelet and thresholding rule
are established, the decomposition level that minimizes the PrmsD index
may be obtained, for both soft and hard thresholding. Analysis results are
presented in Table 5.2.

Decomposition Thresholding
level soft hard

seismic ambient seismic ambient

PrmsD [%]

1 0.33 6.43 0.33 6.43
2 0.20 5.41 0.13 5.30
3 0.22 4.74 0.21 4.58
4 1.38 14.41 0.96 4.98
5 4.48 28.20 1.06 7.03
6 7.32 45.72 1.17 7.77
7 7.95 51.21 1.17 8.75
8 8.41 52.09 1.18 9.10
9 8.72 52.62 1.23 9.20

10 8.70 52.85 1.23 9.32

Table 5.2: PrmsD index [%] between original (noise-free) signal and denoised signal
for different decomposition levels and thresholding types (10% N/S ratio).

From the outcomes, dealing with seismic response signals with a 10%
N/S ratio, it is suggested to adopt a hard thresholding at level 2, whereas,
for ambient vibration response signals affected by the same N/S ratio, the
optimal setting is given by a hard thresholding at level 3. In light of the de-
rived results, it clearly emerges how the choice of the mother wavelet type
as well as the selection of the decomposition level, play a crucial role for
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the success of the DWT-based denoising approach. Such a mother wavelet
should be chosen such that it shall be able to well characterize the pro-
cessed signal, and this may be established according to the correlation be-
tween the wavelet and the signal itself.

Moreover, also the setting of the decomposition level has to be care-
fully decided. In principle, if the noise is hardly noticeable, more levels
of decomposition might be needed, in order to reconstruct even the finest
details of the signal; consequently, in some cases, it may be useful to work
with multiple decomposition levels. Since the optimal decomposition level
of the wavelet may be different, depending on the level of noise affecting
the data, within the present analysis, the optimal decomposition level will
be each time re-adjusted, according to the considered N/S ratio, in order
to achieve the best denoising estimates.

Fig. 5.6 shows the denoised seismic response signal, in comparison
with the noise-corrupted one, assuming now a 25% N/S ratio. The DWT-
based denoised technique has been applied in its optimal configuration
(i.e. Smylet2 + Heursure, adopting a hard thresholding at level 2) and the
benefits of the denoising process are tangible, as it may be seen from the
last graph in such a figure, in which the difference between the denoised
signal and the clean (numerically determined) signal is represented. It may
be stated that, at least in dealing with simulated seismic response signals,
through the DWT-based denoisng approach, the noise is largely success-
fully removed and the original data set can almost completely be recon-
structed.

The same considerations cannot be drawn for the processing of ambient
vibration response signals, as represented in Fig. 5.7. In fact, although the
optimal calibration has been set for dealing with this specific kind of signal
(i.e. Coiflet4 + Minimax, adopting a hard thresholding at level 3), the error
in terms of difference between the original clean signal and the denoised
one is not negligible.

Already at this stage, the discrepancy in the displayed results shows
how the effectiveness of the DWT-based denoising technique strongly de-
pends on the nature of the source signal to be processed. In fact, if the
denoising performed on non-stationary response signals can be very ef-
fective, viceversa, the use of DWT for denoising purposes on stationary
response signals displays visible limitations.
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5.3.3.2 SVD-based denoising application

The SVD application in the digital signal processing field for noise reduc-
tion is based on the calculation of the singular values of a characteristic ma-
trix A representing noisy signal y. Since it has been shown that mainly the
smaller singular values of A are related to the noisy part of the signal, re-
moving those lower than a selected threshold ε, a new matrix Â (of a lower
rank) containing the estimated filtered signal purified by noise x̂, may be
obtained. As previously stated, it clearly emerges how, at this stage, the
critical point is represented by the choice of an appropriate threshold ε. To
this end, a similar criterion as used in the DWT-based denoising approach
has been adopted, through which it has been proven that the lowest PrmsD
index between noise-free and denoised signal may be obtained for ε = 101,
in the present setting.

By applying the SVD-based denoising procedure to the seismic accel-
eration response signal affected by a 25% N/S ratio, it has been possible
to remove most of the initially present noise, obtaining a very reliable pu-
rified signal, as represented in Fig. 5.8. Results seem to be in accordance
with the previously treated DWT-based denoising and, in this sense, the
SVD-based approach might constitute a valid alternative in clarification of
noise-corrupted non-stationary signals.

Reliable outcomes derive even from the SVD-based denoising, perfor-
med on a stationary signal, namely the top-floor acceleration response of
the studied benchmark building subjected to ambient vibration input, as
it may be appreciated from Fig. 5.9. In fact, in this case, differently from
what it has been obtained by applying the DWT approach (see Fig. 5.7),
the error between the clean (noise-free) signal and the denoised one can
be reduced to a value very close to zero, and an accurate estimate of the
truthful response signal may be provided.

In conclusion, this SVD-based denosing technique appears to be more
robust with respect to the previous treated DWT-based denoising approa-
ch, since its outcomes seem to be significantly less affected by the nature of
the noise-corrupted signal to be processed, thus leading to a more reliable
solution.
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Figure 5.6: DWT-based denoising of noise-corrupted ẍ(t) under seismic input
(25% N/S ratio).
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Figure 5.7: DWT-based denoising of noise-corrupted ẍ(t) under ambient vibration
(25% N/S ratio).
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Figure 5.8: SVD-based denoising of noise-corrupted ẍ(t) under seismic input
(25% N/S ratio).

0 5 10 15 20 25 30

t [s]

-5

0

5

ẍ(
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Figure 5.9: SVD-based denoising of noise-corrupted ẍ(t) under ambient vibration
(25% N/S ratio).
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5.3.4 Denoising technique comparison

In this section, a performance evaluation of the two inspected denoising
approaches on synthetic signals is proposed. In particular, for a global un-
derstanding of the strengths and weaknesses of such inspected techniques,
the evaluation of their performances is conducted in parallel, in both the
Time Domain and the Frequency Domain.

5.3.4.1 Confrontation in the Time Domain

An analysis in the Time Domain is first presented. Here, the effectiveness
of DWT- and SVD-based denoising techniques is assessed based on the
PrmsD index between the denoised signal and the original (numerically
determined) one, for increasing N/S ratios of added noise. Within the anal-
ysis, the two different acceleration response signals (seismic and ambient
vibration) are assumed to be contaminated by N/S ratios up to 50%. Re-
sults are reported in both tabular (Table 5.3) and graphical form (Fig. 5.10).

N/S ratio [%] 5 10 15 20 25 30 35 40 45 50

PrmsD [%]

Seismic
DWT 0.06 0.13 0.18 0.20 0.88 1.18 1.23 1.39 2.11 2.69

SVD 0.23 0.34 0.46 0.55 0.44 0.69 0.59 0.55 0.60 0.71

Ambient
DWT 0.59 1.25 2.64 3.80 4.58 4.93 5.23 5.90 6.21 6.82

SVD 0.15 0.07 0.21 0.39 0.57 0.53 0.66 1.19 2.33 2.88

Table 5.3: PrmsD [%] index between original and denoised signal, for different
signal typologies and N/S ratios: DWT vs. SVD.

As it may be appreciated from Fig. 5.10a, in which the errors (in terms
of PrmsD) of the two mentioned denoising techniques are compared, for
the case of a seismic acceleration response signal, the DWT-based approach
seems to be more performing, dealing with N/S ratios approximately low-
er than 20%, i.e. for typical values that may be encountered in real appli-
cations. However, for higher N/S ratios, the denoising based on SVD ap-
pears to be more robust, since it is not so affected by the level of noise con-
sidered on the data, and the PrmsD index remains at around 0.6%. Any-
way, especially for limited N/S ratios, both the examined approaches may
be considered as rather competitive in clarifying signals displaying a non-
stationary nature.

The same cannot be affirmed for the case of ambient vibration response
signals, as represented in Fig. 5.10b. In fact, only the SVD-based approach
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Figure 5.10: Effectiveness evaluation of DWT- and SVD-based denoising techniques
for increasing N/S ratios and different signal typologies: (a) earthquake excitation;
(b) ambient vibration. Notice that scales on the PrmsD axes are different, almost
twice for (b). Indicated trends come from a polynomial fit of a degree 2.

seems to be able to effectively reduce the amount of noise on stationary
signals, in particular for N/S ratios between 5% and 15%. This makes this
technique very useful in practical cases, as it may lead to a very accurate
reconstruction of the truthful signal, differently from the DWT-based ap-
proach, whose estimates present sensible errors and, consequently, they
cannot be considered as reliable enough.

Concerning the results and the benefits that the two investigated de-
noising techniques have brought about on the signal clarification, it is ap-
propriate to investigate this cleaning effect even in terms of an alteration
of the signal main peak value. This might be relevant, especially for the
non-stationary response signals, where the acceleration peak may play a
key role in the design or assessment phases. The acceleration peak values
according to the two explored denoising techniques, as well as their per-
centage alteration, with respect to the noise-affected peak (∆na) and with
respect to the clean numerically determined peak value (∆nd), are com-
puted for each denoising approach, and summarized in Table 5.4. Both the
analyzed signal typologies, i.e. non-stationary signal and stationary signal,
are considered to be affected by increasing levels of Gaussian white-noise.
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NON-STATIONARY (SEISMIC) SIGNAL

DWT denoising SVD denoising

N/S Ratio Signal peak peak ∆na ∆nd peak ∆na ∆nd

[%] [m/s2] [m/s2] [%] [%] [m/s2] [%] [%]

0 7.05 7.05 0.00 0.00 7.07 +0.28 0.28

5 7.18 7.09 −1.30 0.57 7.13 −0.69 1.13

10 7.41 7.15 −3.51 1.42 7.20 −2.83 2.13

15 7.76 7.17 −7.60 1.70 7.19 −7.34 1.99

20 8.01 7.22 −9.86 2.41 7.30 −8.86 3.55

25 8.22 7.26 −11.68 2.97 7.37 −10.30 4.53

30 8.37 7.30 −12.78 3.55 7.45 −10.99 5.67

35 8.61 7.39 −14.17 4.82 7.60 −11.73 7.80

40 8.90 7.44 −16.40 5.53 7.67 −13.82 8.79

45 9.06 7.58 −16.33 7.52 7.80 −13.91 10.64

50 9.20 7.64 −16.95 8.37 7.88 −14.35 11.77

STATIONARY (white-noise) SIGNAL

DWT denoising SVD denoising

N/S Ratio Signal peak peak ∆na ∆nd peak ∆na ∆nd

[%] [m/s2] [m/s2] [%] [%] [m/s2] [%] [%]

0 3.48 3.46 −0.57 0.57 3.45 −0.86 0.86

5 3.58 3.53 −1.40 1.43 3.50 −2.23 0.57

10 3.80 3.66 −3.68 5.17 3.57 −6.05 2.59

15 3.99 3.68 −7.77 5.75 3.71 −7.01 6.61

20 4.36 3.85 −10.49 10.63 3.80 −12.84 9.20

25 4.75 3.91 −17.68 12.36 3.77 −20.63 8.34

30 4.90 4.00 −18.37 14.94 3.85 −21.42 10.63

35 5.16 4.12 −20.16 18.39 3.95 −23.45 13.51

40 5.31 4.25 −19.96 22.13 4.08 −23.16 17.24

45 5.59 4.31 −22.90 23.85 4.13 −26.12 18.68

50 5.83 4.47 −23.33 28.45 4.27 −26.76 22.70

Table 5.4: Peak acceleration values of the DWT and SVD denoised signals, and their
variation with respect to the noise-affected signal peak (∆na) and to the numerically
determined signal peak (∆nd), for different typologies of signals (i.e. non-stationary
(seismic) signal and stationary (white-noise) signal) and N/S ratios.

From the obtained results, concerning the effect that the denoising ap-
plication displays on the main peak acceleration value of the processed
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signals, the following considerations may be drawn:

• The denoising process always leads to a peak reduction; this evident
feature, may be interpreted by the fact that the artificial noise, applied
onto the signals, acts in an additive sense. Thus, the resulting peak
reduction, once the signal is cleaned.

• Considering the non-stationary (seismic) response signals, in particu-
lar, it may be stated that the application of the SVD-based denoising
seems to be leading to a flattening effect on the main signal peak,
which results to be slightly less evident than that obtained by apply-
ing the DWT-based denoising, as it may be appreciated by comparing
the values of ∆na obtained for the two analyzed signal typologies (Ta-
ble 5.4).

• About the ambient vibration signal, it is generally associated to grea-
ter percentage variation values ∆nd; however, this main peak analysis
is more pertinent to non-stationary signals, for which ∆nd presents
low values, at least for common N/S ratios. In fact, in addition to
having a greater practical relevance for vibration assessment pur-
poses, the analysis conducted on non-stationary response signals tu-
rns out to be more significant than that performed on stationary sig-
nals, since the main acceleration peak clearly emerges and it is im-
mediate to be detected, configuring itself as a characteristic feature
describing this kind of signal.

An analogous analysis within the Time Domain will be conducted even
on real non-stationary acceleration signals in next Chapter 6, and similari-
ties, as well as differences, with the outcomes shown on the synthetic anal-
ysis, will be outlined.

5.3.4.2 Confrontation in the Frequency Domain

In order to inspect whether through the application of the studied denois-
ing techniques it would be possible to even preserve the frequency content
of the original (noise-free) response signal, a further analysis is performed
in the Frequency Domain. Welch’s method (Otis [146]) has been imple-
mented, and the signal response spectrum has been obtained by decom-
posing the original time series data into possibly overlapping segments
(weighted sinusoids), computing a modified periodogram of each segme-
nt, and averaging the Power Spectral Density (PSD) estimates.
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The so-obtained response spectra of the processed response signals are
depicted in Figs. 5.11–5.14. In particular, for both the analyzed denoising
approaches, a comparison between the PSD of the original (noise-free) sig-
nal and the PSD of the denoised one, is shown. Two specific and significant
noise levels are assumed on the clean signal, namely a 10% N/S ratio, since
it may be considered as well representative of the amount of noise that may
generally affect low-cost sensor instrumentations, and a 25% N/S ratio, i.e.
the same noise level to which the previous Time Domain plots referred to.

Figs. 5.11 and 5.13 concern the earthquake response signal. The fre-
quency spectrum of the original signal results well approximated by the
spectrum of the purified signal, obtained through the SVD approach ap-
plication (Figs. 5.11b and 5.13b). Even in the Frequency Domain, the SVD
denoising approach provides better results with respect to the DWT ap-
proach, especially within the frequency band after 10 Hz, referring to the
10% N/S ratio case (see Fig. 5.11a), or within the frequency band between
10 and 20 Hz, considering the 25% N/S ratio case (see Fig. 5.13a). However,
the first peaks, corresponding to the natural frequencies of the first modes
of vibration of the benchmark structural system, may clearly be identified
in both cases.

The outcomes of a similar analysis procedure performed on ambient
vibration response signals are instead represented in Figs. 5.12 and 5.14.
In this case, the response spectrum of the original (noise-free) signal al-
ready does not appear to be as pure as the previous one. Moreover, the
denoising procedure does not allow to satisfactorily recover it, especially
referring to the DWT-based approach, which may also lead to the appear-
ance of relevant peaks in the sub-band frequency region (see in particular
Fig. 5.14a), i.e. the frequency band where the noise most affects the signal,
which do not exist in the clean signal, and that can be ascribed to the the ef-
fect of noise. In fact, within such a range of frequencies, the reconstructed
spectrum results much more consistent with the spectrum of the noise-
corrupted signal than with the clean one. Again, better results derive from
the SVD-based approach (see Figs. 5.12b and 5.14b); however, also con-
cerning this denoising technique, at least in this preliminary recognition
phase, it is advisable not to consider as reliable the signal frequency con-
tent approximately between 10 and 15 Hz; curiously, a similar frequency
band where it has been shown also the inefficiency of DWT-based denois-
ing, concerning non-stationary signals affected by a 25% N/S ratio.
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Figure 5.11: Seismic response signal in the frequency domain (10% N/S ratio). PSD
of the noise-free signal vs. PSD of the denoised signal, for the two analyzed denoising
techniques: (a) DWT-based denoising; (b) SVD-based denoising.
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Figure 5.12: Ambient vibration response signal in the frequency domain (10% N/S
ratio). PSD of the noise-free signal vs. PSD of the denoised signal, for the two
analyzed denoising techniques: (a) DWT-based denoising; (b) SVD-based denoising.
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Figure 5.13: Seismic response signal in the frequency domain (25% N/S ratio). PSD
of the noise-free signal vs. PSD of the denoised signal, for the two analyzed denoising
techniques: (a) DWT-based denoising; (b) SVD-based denoising.
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Figure 5.14: Ambient vibration response signal in the frequency domain (25% N/S
ratio). PSD of the noise-free signal vs. PSD of the denoised signal, for the two
analyzed denoising techniques: (a) DWT-based denoising; (b) SVD-based denoising.



5.3. Analysis procedure 131

As a further evaluation strategy of the performance of the two treated
denoising techniques in the Frequency Domain, numerically determined
undamped natural frequencies fn,i of the benchmark structure have been
computed for each i-th mode, as well as associated damped modal frequen-

cies fd,i = fn,i

√
1− ζi

2, inherent to the analyzed damped case of ζi=5%.
Analysis results are summarized in Table 5.5, for both the aforementioned
levels of noise applied on the measurements (i.e. 10% and 25% N/S ra-
tios), and such frequencies are compared with identified damped natu-
ral frequencies fid,DWT and fid,SVD, obtained from the clarified seismic and
ambient vibration acceleration response signals, through a standard peak-
picking procedure performed on Welch’s diagram itself (Figs 5.11–5.14).
Here, only the most evident frequency peaks have been considered as re-
liable estimates, in order to reconstruct the natural frequencies of the ref-
erence structure, since the focus of the present investigation is not specif-
ically on the modal identification techniques. However, more refined re-
sults may alternatively be obtained by either Time Domain or Frequency
Domain algorithms, such as those developed in Pioldi and Rizzi [157,158],
and references quoted therein.

Mode I II III IV V VI VII VIII IX X

fn,i [Hz] 1.055 3.131 5.107 6.930 8.567 10.019 11.285 12.336 13.127 13.617

fd,i [Hz] 1.053 3.127 5.101 6.921 8.556 10.006 11.271 12.321 13.111 13.600

10% N/S

Seis.
fid,DWT [Hz] 0.976 3.127 5.170 7.031 8.208 - - - - -

fid,SVD [Hz] 0.985 3.127 5.267 7.120 8.008 - - - - -

Amb.
fid,DWT [Hz] 1.000 3.127 5.121 6.899 8.750 10.090 - - - -

fid,SVD [Hz] 1.000 3.127 5.125 6.901 8.756 10.130 - - - -

25% N/S

Seis.
fid,DWT [Hz] 0.977 3.125 5.273 - - - - - - -

fid,SVD [Hz] 0.982 3.125 5.270 - - - - - - -

Amb.
fid,DWT [Hz] 1.116 3.125 5.012 6.874 - - - - - -

fid,SVD [Hz] 1.125 3.125 5.126 6.875 - - - - - -

Table 5.5: Original (ζi=5%) and identified natural frequencies from the denoised
signal by a standard peak-picking on Welch’s diagram: comparison involving dif-
ferent response signal typologies (seismic excitation vs. ambient vibration) and de-
noising techniques (DWT vs. SVD). The cases with 10% and 25% N/S ratios are
reported.
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Concerning the 10% N/S ratio case, through an inverse analysis proce-
dure performed on the purified seismic response signal, it has been possi-
ble to clearly identify the first five natural frequencies of the benchmark
structure; whereas, for the ambient vibration signal typology, even the
sixth natural frequency can reliably be reconstructed. Consequently, it may
be affirmed that, for modal identification purposes, in terms of number
of identifiable frequencies, the results show that the choice of the imple-
mented denoising technique does not appear to be as crucial as the nature
of the processed signal (non stationary vs. stationary), which instead seems
to significantly condition the number of modal frequencies that may dis-
tinctly be identified.

With regard to the 25% N/S ratio initially present on the measurements,
and considering the purified seismic response signal, instead, it may be
observed that the identified frequencies result clearly and correctly deter-
mined only until the third mode, regardless for the implemented denoising
technique. Similarly to the previous case, also here better results may be
achieved for the ambient vibration response signal, where also the fourth
peak, corresponding to the natural dumped frequency related to the fourth
vibrational mode of the benchmark structure, appears as clearly identifi-
able. Also in this case, the denoising method does not seem to significantly
affect the estimates, contrary to the signal typology. In particular, from
what it has been observed, it may be stated that, as generally expected de-
spite for the noise character, a stationary signal allows for a slightly better
reconstruction of the structural modal properties (natural frequencies) in
the Frequency Domain, with respect to a non-stationary one.

5.3.4.3 Further SVD identification analysis

To complete the numerical analysis based on synthetic response signals, a
possible further research development, which involves both the two de-
noised signals (i.e. seismic excitation and ambient vibration), here solely
obtained through the SVD-based denoising approach (for self-coherence),
is now investigated.

In particular, the attempt concerns a further application of a standard
SVD implementation in the Frequency Domain, on the already denoised
signals in the Time Domain, by further applying a SVD on a previous
Welch periodogram, directly on the PSD matrix (thus nearing what is nor-
mally performed in FDD methods, see e.g. Pioldi et al. [152–154] and Pioldi
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and Rizzi [155–158], and therein cited references, for the pertinent litera-
ture).

Then, through an automatic peak-picking procedure performed on the
obtained SVD response spectra of the singular values, the natural frequen-
cies of the 10th-floor benchmark structure may be identified. Such a pro-
posed implementation, which might constitute a new interesting approach
toward modal identification problems based on denoising signals, as a
way to couple denoising and identification techniques, is schematically de-
scribed in the conceptual flowchart depicted in Fig. 5.15.

Time
Domain

Frequency
Domain

FDD

Raw signal ü(t)
(seismic or ambient)

SVD denoising DWT denoising

Denoised signal üdn(t)

Welch (PSD)

SVD processing

Peak picking

Frequency
identification

1

Figure 5.15: SVD-based implementation conceptual flowchart: an additional SVD
is over applied on the Welch periodogram for modal frequency identification purposes.

It is worth mentioning that, as it may be appreciated within the up-
per Time-Domain box, although in this circumstance solely an SVD-based
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denoising is considered for clarifying the Time Domain noise-affected re-
sponse signals (seismic and ambient vibration), the denoising of such row
acceleration signals may also be performed by applying the DWT-based
approach. The core of the Frequency Domain implementation lies instead
in the reconstruction of a similar FDD approach, by performing the SVD
on the PSD matrix, obtained through a Welch periodogram application. Fi-
nally, damped modal frequencies fid of the 10-DOF shear-type benchmark
structure are thus extracted, by a standard peak-picking procedure on the
first singular value for each processed signal.

The results of this procedure are illustrated in Fig. 5.16, for a very high
artificial N/S ratio of 50%, to challenge the procedure, applied on both
numerically determined seismic response signal (Fig. 5.16a) and ambient
vibration response signal (Fig. 5.16b). Moreover, the frequencies thus iden-
tified are also summarized in Table 5.6, and compared to the source nu-
merically computed damped modal frequencies.
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Figure 5.16: Modal identification based on SVD denoising and post-processing (first
singular value). Natural frequencies identified through a peak-picking application on
the first singular value of each analyzed denoised response signal typology: (a) seis-
mic excitation; (b) ambient vibration. A 50% N/S ratio is assumed to be affecting
both the original signals.
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Vibration mode

SVD denoising I II III IV V VI VII VIII IX X

fd,i [Hz] 1.053 3.127 5.101 6.921 8.556 10.006 11.271 12.321 13.111 13.600

Seismic fid [Hz] 1.082 3.125 5.249 6.975 8.503 - - - - -

Ambient fid [Hz] 1.125 3.125 5.012 7.001 8.376 10.022 - - - -

Table 5.6: Identified natural frequencies from SVD denoised acceleration response
signals and post-processing: seismic excitation vs. ambient vibration (50% N/S ra-
tio).

As it may be appreciated from the reported results, a good agreement
emerges, with numerically determined damped modal frequencies fn,i (see
Table 5.6). Also, the fact that the seismic response signal proves to be more
challenging to be processed is confirmed and, consequently, a lower num-
ber of frequencies may be extracted. Specifically, from the seismic acceler-
ation response signal, five frequency peaks may doubtlessly be identified,
with respect to the six frequencies obtained from the ambient vibration re-
sponse signal, which also presents even more pronounced peaks.

However, despite the higher noise level assumed on the source sig-
nals (50% N/S ratio), with respect to the previous scenarios (10% and 25%
N/S ratios), the procedure leads to even better estimates, to the point of
stating that this new proposal of a further SVD processing, toward iden-
tification purposes draws promise about representing a viable option in
coupling denoising and refining the modal dynamic identification process.

5.4 Final remarks

In this chapter, an original implementation and application of a DWT-
based technique and a SVD-based approach toward signal denoising pur-
poses has been presented, and inspected within the civil engineering range.
Reference has been made to acceleration response signals artificially de-
rived from a one-bay ten-story shear-type frame building, subjected to in-
put loads of a different nature. In particular, within the analysis, a non-
stationary input (i.e. Kalamata seismic excitation) and a stationary input
(i.e. white-noise ambient vibration) have been considered as singularly
acting on the structure, leading to different denoising outcomes on numer-
ically generated synthetic response signals.
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In particular, the salient contributions which the present investigation
has brought to light may be summarized in four main items, as detailed
below:

• Concerning the preliminary and necessary phase of calibration of the
DWT-based denoising technique, the optimal configuration for deal-
ing with non-stationary and stationary signals has been established.
In particular, considering seismic response signals, the combination
of Smylet having two oscillations in its mother wavelet and Heursure
hard thresholding type at decomposition level 2, renders the smallest
error (in terms of PrmsD index) between the original (noise-free) sig-
nal and the denoised one. The same analysis has been performed on
ambient vibration response signals and, in this case, the optimal set-
ting has been obtained by the combination of Coiflet having four os-
cillations in its mother wavelet and Minimax hard thresholding type
at decomposition level 3.

• A critical comparison between DWT- and SVD-based denoising me-
thods based on their performance evaluation as a function of the in-
creasing level of Gaussian noise affecting the signals has been pro-
posed. Most of the noise has been suppressed and the effective-
ness in denoising earthquake response signals has been satisfacto-
rily proven, for both the treated methods, as well as some limitations
have been found in dealing with ambient vibration response signals,
especially with reference to the implementation of the DWT-based
approach. A further advantage in the use of a SVD-based denoising
is that it does not require any preliminary calibration, except for the
threshold selection, and it is well suited for different N/S ratios, even
if the signal to be processed may strongly be affected by noise. In
general, it may be stated that the denoising based on SVD provides
a better approximation of the original response signal; however, in
some cases, the combined use of both techniques might represent an
even more valid strategy.

• A further investigation approach for evaluating the denoising effec-
tiveness has been based on the alteration of the main signal peak
value. It emerged that non-stationary signals lead to better results
than stationary signals, in term of percentage peak variation ∆nd with
respect to the numerically determined value, confirming the general
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trend. Also, another emerged feature is that SVD-based denoising
seems to less flatten out the peaks than the DWT-based approach.

• Moreover, in order to compare the response spectrum of the denoised
signal with the original one, a subsequent analysis within the Fre-
quency Domain has also been performed, through the implemen-
tation of Welch’s method. Quite satisfactory results have been ob-
tained, considering seismic response signals, in particular those de-
riving from the SVD-based approach, whereas, concerning ambient
vibration, the clarified response spectrum does not seem to be so co-
herent with the truthful spectrum, especially for the sub-band fre-
quency region, where the noise more affects the signal. This may
constitute a strong motivation for further research on this latter spe-
cific class of structural vibration response. In terms of peak-picking,
the first three natural frequencies are anyway well identified, with an
expected better representation for stationary ambient vibration input.

Finally, after this first necessary phase of effectiveness assessment of
the two exposed denoising methods, where only numerically simulated
synthetic signals have been involved, the next developments concern the
employment and denoising of real response signals. To this specific further
research topic, next Chapter 6 is dedicated.
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Chapter 6

Denoising technique assessment for
purifying real structural vibration
response signals

Within the present Doctoral Thesis, exclusively synthetic signals have been
considered so far, namely pseudo-experimental signals numerically gener-
ated prior to the HDF-based analysis or to the denoising-based analysis.
In fact, their employment within a numerical environment has been pre-
liminarily considered as a crucial and necessary-condition validation for
the presented research developments. Here, as well as in the next chapter,
the focus is instead placed on real response signals, namely signals directly
acquired “in situ", by means of appropriate sensors located on an existing
monitored structure.

In particular, non-stationary acceleration response signals detected on a
short-span railway RC bridge, are considered, within the denoising-based
analysis. In the presented real scenario, both DWT and SVD-based denois-
ing techniques are reinterpreted, aiming at exploring their effectiveness in
clarifying these real experimentally recorded vibration response signals.

This chapter is organized as follows. Section 6.1 introduces the real case
study object of the present analysis, i.e. a short-span railway RC bridge
(monitored by ETH Zürich), and the typologies of the signals to be pro-
cessed are also outlined. Section 6.2 describes the response signals in de-
tail, through their presentation in both Time and Frequency Domains, and
the previously treated denoising techniques, i.e. the DWT- and the SVD-
based denoising approaches, are reconsidered. Results of the denoising
analysis performed on real signals are then reported in Section 6.3, distin-
guishing between outcomes within the Time Domain and results within
the Frequency Domain, and the similarities as well as the differences with
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the previous analysis involving synthetic signals are also discussed. Final
comments are eventually provided in last Section 6.4.

6.1 Case study with real response signals

After a necessary condition validation by the numerical study discussed
in previous Chapter 5, which has assessed the effectiveness of the two
considered denoising techniques on numerically generated synthetic re-
sponse signals, a case study with real signals is now developed and pre-
sented. In particular, real noisy acceleration signals are considered from
the recordings on a modern railway RC bridge and, aiming at relieving the
amount of noise affecting the signal, both DWT- and SVD-based denoising
approaches are employed. They are first adjusted to the needs of treatment
of real signals and then adopted for a complete assessment and compari-
son investigation.

Similarly to the previous numerical analysis, in order to strengthen the
validity of the obtained results, even in this real application, the analysis
is in parallel conducted, both in the Time Domain and in the Frequency
Domain. In fact, in the absence of a numerically determined acceleration
response value, assumed as a touchstone during the synthetic analysis, a
more comprehensive description of the signal characteristics may be pro-
vided, in view of assessing whether the signal has been effectively cleaned
from spurious noise, while preserving the useful information incorporated
within it. In the next section, the structure selected as a benchmark speci-
men for the current monitoring analysis is first presented, and a brief de-
scription is provided.

6.1.1 SU Unterwalden railway bridge generalities

The structure considered for the case study in assessing the denoising ef-
fectiveness on real structural response signals is the SU Unterwalden rail-
way bridge, located between the Unterwalden-Sempach railway stations,
within the district of Sursee (canton of Lucerne, Switzerland). It is owned
by Swiss Federal Railways (SBB), and inspected by monitoring campaigns
at ETH Zürich. The bridge, which can be appreciated in the photographic
representation in Fig. 6.1, as well as in the sectional drawing in Fig. 6.2
(Swiss railway database), is a typical short-span structure, having the main
feature of being built with Ultra-High Performance Fiber Reinforced Con-
crete (UHPFRC). The use of this rather novel material already identifies



6.1. Case study with real response signals 141

the structure itself as an interesting object to be monitored, through the
investigation of its structural safety and integrity, along time.

Figure 6.1: View of SU Unterwalden railway bridge (district of Sursee, canton of
Lucerne, Switzerland).

35
0

60 465 60465
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Figure 6.2: Transverse section of SU Unterwalden railway bridge (adapted from
Swiss railway database; quotes in cm).

Toward this purpose, a sensor network instrumentation including easy-
to-handle and low-cost sensors, such as accelerometers, a laser distance
meter, tiltmeters, strain gauges and a temperature and humidity sensor,
has been installed on the structure since 2018. This shall allow to acquire
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a deep insight on the structural behavior of the bridge within the two sub-
sequent years, as well as information on the performance of UHPFRC as
a pertinent structural material, within the civil engineering field. In the
present research context, solely acceleration data are going to be treated,
since they represent the most common physical quantity involved in usual
monitoring activities typical of civil engineering applications, in view, here,
of the target of denoising post-processing.

6.2 Denoising technique application

Two real (noise-affected) acceleration signals ẍ1(t) and ẍ2(t), recorded on
the SU Unterwalden railway bridge at a train passage, on different times,
will be made the subject of the following denoising analysis. Their main
features are summarized in Table 6.1 and a representation of the two real
signals in both Time and Frequency Domains is also provided in Figs. 6.3
and 6.4.

Signal Recording day Recording time Samples Duration [s] RMS [m/s2] Peak [m/s2]

ẍ1(t) 16.10.2018 22:53:10 2048 20 0.0068 0.2006

ẍ2(t) 19.10.2018 22:40:08 2048 20 0.0031 0.0581

Table 6.1: Global information on noisy real acceleration response signals ẍ1(t)
and ẍ2(t) recorded on the SU Unterwalden railway bridge at a train passage on
different times.

Such vibration response acceleration signals have been recorded by the
passage of two different five-wagon trains on the short-span RC bridge, for
a total recording time of 20 s each and, given their characteristics in Time
and Frequency Domains, they clearly display a non-stationary nature. In
particular, real acceleration signal ẍ1(t) (Fig. 6.3a) is characterized by a
RMS equal to 0.0068 m/s2 and a peak acceleration value of 0.2006 m/s2,
whereas real acceleration signal ẍ2(t) (Fig. 6.4a), which displays lower am-
plitudes (notice the different scales of the y-axes), presents a RMS equal
to 0.0031 m/s2 and a peak acceleration value of 0.0581 m/s2. Such values
are then adopted for describing the signal within the Time Domain and,
based on these, considerations about the amount of noise affecting the sig-
nal are going to be provided. Also note that a restricted time window of
0–3.5 s is considered for both the response signals, since the useful signal
information is thereby embedded.
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Figure 6.3: SU Unterwalden railway bridge acceleration signal ẍ1(t) under a five-
wagon train passage excitation: (a) Time Domain recording (time window 0–3.5 s);
(b) Frequency Domain spectrum (Welch’s PSD estimate) with frequency normalized
to sampling frequency (200 Hz).

About the representation within the Frequency Domain (Figs. 6.3b and
6.4b), the Welch’s Power Spectral Density (PSD) estimate is expressed in
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Figure 6.4: SU Unterwalden railway bridge acceleration signal ẍ2(t) under a five-
wagon train passage excitation: (a) Time Domain recording (time window 0–3.5 s);
(b) Frequency Domain spectrum (Welch’s PSD) with frequency normalized to sam-
pling frequency (200 Hz). Notice that in (a) a different amplitude scale is adopted
with respect to that in Fig. 6.3a.

normalized frequency, defined as the frequency (Hz) divided by the sam-
pling frequency (Hz) of the considered signal, so that a normalized fre-
quency equal to 1 represents the sampling frequency and a normalized fre-
quency equal to 0.5 means the Nyquist frequency. In the considered signal,
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the recording sampling frequency is 200 Hz.
An important issue that shall be considered, in dealing with real re-

sponse signals, concerns the modality of assessment of the denoising tech-
nique effectiveness. In this current phase of the analysis, in fact, the com-
parison term represented by the numerically determined response signal
is no longer available and, consequently, the PrmsD index between the
noise-corrupted signal and the denoised one cannot be computed. Thus,
the effectiveness of the implemented denoising techniques has to be neces-
sarily proven in alternative ways. A dual approach, aiming at evaluating
the greater clarity acquired by the denoised signal with respect to the real
one, is proposed. Two main points are considered, as follows:

• firstly, both DWT- and SVD-based denoising approaches are perfor-
med on the real acceleration signals and a comparison among the
Time Domain results is sought, in terms of RMS and acceleration
peak value, between the processed signal and the original (noise-
affected) one;

• in addition, a critical comparison between the denoised signal re-
sponse spectrum and the response spectrum of the real (noise-affec-
ted) signal is also considered. In this current phase of the analysis,
in fact, without a reliable numerical reference, the analysis in the Fre-
quency Domain becomes needful for evaluating if the signal, after
the denoising procedure, shall preserve its useful information, specif-
ically in terms of the underlying modal properties of the bridge.

Specific notions concerning the application of the two examined de-
noising techniques within a real scenario, as well as the similarities and
differences with respect to the previously treated synthetic scenario, are
presented in the next section.

6.3 Analysis results

6.3.1 Results in the Time Domain

The two denoising techniques are first independently implemented on two
recorded real acceleration response signals ẍ1(t) and ẍ2(t) and, secondly,
their results are compared. The DWT-based denoising approach is first
investigated and processed denoised signal ẍ1(t) is shown in Fig. 6.5a, to-
gether with the real (noise-affected) acceleration signal. For a better read-
ing of the results, the plot just refers to the passage of the first wagon on
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the bridge (time window 0.2–0.7 s). This representative choice is motivated
by the fact that, in such a region, the signal shows its most peculiar char-
acteristics, since the two main peak values are there attained. In particular,
the primary acceleration peak lies between 0.40 and 0.45 s, whereas the
secondary one is located in the time interval between 0.30 and 0.35 s. The
importance of the acceleration peak value is well known in practice, for
vibration assessment purposes, since it constitutes a fundamental design
parameter and, in this sense, it shall need to be carefully determined and
monitored. Acceleration response signal ẍ2(t) is then processed within the
same DWT-based denoising technique, and the obtained denoised signal
is compared with the source (noisy) signal in Fig. 6.6a. In this case, the plot
refers to the passage of the second wagon on the SU Unterwalden railway
bridge (time window 0.9–1.3 s), since it is in this time region that the most
characteristic signal features may be appreciated.

About the DWT-based denoising technique performed on real signals,
the salient points and novelties emerged with respect to the previous anal-
ysis with synthetic signals, are mentioned below:

• The numerical analysis on synthetic data proves to be a necessary
and useful starting point on which to base the analysis with real sig-
nals. In fact, in the phase of signal decomposition into the frequency
domain, the mother wavelet typology (i.e. Smylet mother wavelet),
as well as the thresholding rule (i.e. Heursure thresholding) and the
decomposition level (i.e. a decomposition level 2), have been kept
unchanged. However, this is not sufficient to guarantee good results
with real signals.

• Consequently, the ideal setting of a DWT-based approach has to be
slightly corrected, with respect to the previously performed numer-
ical analysis with synthetic signals. Specifically, in the present sce-
nario, the number of oscillations in the mother wavelet has been in-
creased from 2 to 20, in order to achieve a better clarification of the
real acceleration signal in the Time Domain and, at the same time, for
obtaining a response spectrum coherent with the frequency content
of the original signal.

• Thus, Smylet mother wavelet having 20 oscillations, combined with
Heursure thresholding rule at decomposition level equal to 2, is as-
sumed as a basic configuration for the current denoising method on
real signals.
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The benefits of the DWT denoising application in purifying the real
signals result clear and tangible, as it may be appreciated from Figs. 6.5a
and 6.6a, in which both denoised signals appear to be much smoother,
if compared to the real, noise-affected, ones. An important effect of the
DWT-based denoising application is a relevant alleviation of the peak val-
ues, in particular concerning the secondary acceleration peak of response
signal ẍ1(t), which is drastically reduced. A similar trend may even be
observed for acceleration denoised signal ẍ2(t), albeit to a lesser extent.
Based on these assumptions, and comparing the real response signals with
the denoised signals, it may be stated that the noise effect within the Time
Domain mainly alters the peak values. Recall that such a feature was also
revealed by the earlier analysis on synthetic signals, thus showing a gen-
eral characteristics of the considered denoising process.

The SVD-based denoising approach is then performed, and results are
shown in Figs. 6.5b and 6.6b. With regard to this specific technique applied
to real signals, the following considerations are worth mentioning:

• Again, the numerical analysis performed on synthetic signals proves
to be needful for establishing an appropriate order of magnitude for
the threshold value to be adopted in dealing with real signals but, in
this scenario, it is not enough for implementing an optimal denoising
effect.

• As a consequence, in the calibration of the denoising technique based
on SVD, greater threshold values have been explored with respect to
those used for treating the synthetic analysis, for adapting the SVD-
based denoising to real application contexts, aiming at achieving a
denoised signal with a much coherent frequency content.

• Thus, in the calibration of the denoising based on SVD, to be per-
formed on real acceleration signals, a threshold value equal to 30 is
set (with respect to 10 for synthetic signals).

Concerning the results and the benefits that this second denoising ap-
proach has brought about, in terms of signal clarification, similar consid-
erations to those outlined for the previously treated DWT-based denoising
approach, may be drawn. In particular, also in this case, a significant re-
duction of the peaks, although not so pronounced as before (especially re-
garding the secondary acceleration peak of response signal ẍ1(t)), is clearly
visible. Thus, SVD-based denoising seems to flatten out the peaks slightly
less than DWT-based denoising. A similar relative effect among SVD- and
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Figure 6.5: Denoising application on SU Unterwalden railway bridge real accelera-
tion signal ẍ1(t) under a five-wagon train passage (first wagon representation, time
domain window 0.2–0.7 s): (a) DWT-based denoising; (b) SVD-based denoising.

DWT-denoising peak flattening was recorded for synthetic signals (see Ta-
ble 5.4, non-stationary response signal case), likely pointing out to a gen-
eral feature among the two considered techniques.

Comparing the results reported in Figs. 6.5a and 6.5b, as well as those
shown in Figs. 6.6a and 6.6b, a good agreement emerges between the two
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ẍ
(t
)
[m

/s
2
]

Real signal

Denoised signal (SVD approach)

(b)

Figure 6.6: Denoising application on SU Unterwalden railway bridge real accelera-
tion signal ẍ2(t) under a five-wagon train passage (first wagon representation, time
domain window 0.9–1.3 s): (a) DWT-based denoising; (b) SVD-based denoising.

treated techniques, in denoising the examined real acceleration signals.
This is even more evident by the graphical comparisons further shown in
following Figs. 6.7 and 6.8, which focus on the main acceleration peak of
denoised signal ẍ1(t) (time window 0.35–0.6 s) and denoised signal ẍ2(t)
(time window 1–1.25 s), respectively.
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Figure 6.7: DWT vs. SVD-based denoising performed on SU Unterwalden railway
bridge real acceleration signal ẍ1(t) (zoomed time window 0.35–0.6 s).

1 1.05 1.1 1.15 1.2 1.25

t [s]

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

ẍ
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Figure 6.8: DWT vs. SVD-based denoising performed on SU Unterwalden railway
bridge real acceleration signal ẍ2(t) (zoomed time window 1–1.25 s). Notice that a
different amplitude scale is adopted with respect to that in Fig. 6.7.

Such denoised peak values, as well as the RMS computed on the en-
tire denoised signals (time window 0–3.5 s), namely the most character-
istic signal values in the Time Domain analysis, are then reported in Ta-
ble 6.2. Their variations ∆na with respect to the same parameters com-
puted on the real (noise-affected) signals (refer also to earlier Table 5.4), are
also indicated. In particular, the noise reduction in terms of RMS provides
information about the amount of noise affecting the original real signal
which, concerning acceleration signal ẍ1(t), may be estimated in a N/S ra-
tio equal to 8.82% according to the DWT-based approach, and a N/S ratio
of 7.35% concerning the SVD-based approach. Considering then acceler-
ation signal ẍ2(t), a similar trend may be outlined, with the DWT-based
approach leading to a relevant RMS reduction of 9.68%, against a lower
value of 6.45% for the SVD-based technique. About the main acceleration
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Signal RMS [m/s2] ∆na [%] Peak [m/s2] ∆na [%]

Real (noisy) signal ẍ1(t) 0.0068 0.2006

DWT denoised signal 0.0062 −8.82 0.1402 −30.11

SVD denoised signal 0.0063 −7.35 0.1465 −26.97

Real (noisy) signal ẍ2(t) 0.0031 0.0581

DWT denoised signal 0.0028 −9.68 0.0420 −27.71

SVD denoised signal 0.0029 −6.45 0.0425 −26.85

Table 6.2: Characteristic values of the entire denoised signals in the Time Domain
and their variation ∆na with respect to the real (noise-affected) signals: RMS and
peak acceleration values.

peak, the noise influence appears to be even more deleterious, since in the
case of source signal ẍ1(t), a percentage reduction of 30.11% and 26.97% is
measured for the DWT- and SVD-based denoising techniques, respectively,
while concerning source signal ẍ2(t), the application of the same denoising
approaches leads to a similar peak reduction of 27.71% and 26.85%.

6.3.2 Results in the Frequency Domain

The very similar results provided by the two implemented approaches in
the Time-Domain analysis might be considered as an encouraging sign
for the success of the denoising process, on the inspected type of non-
stationary railway vibration response signals. However, the evaluation of
the denoising techniques, conducted within the Time Domain, may not
be sufficient to fully prove their effectiveness, if not accompanied as well
by an accurate analysis within the Frequency Domain, which aims at ex-
ploring the signal frequency content after the denoising application. So,
through an output-only inverse analysis based on Welch’s method, the PSD
of the signal is computed, before and after the denoising application, and
the response spectrum is obtained, for both the real (noise-affected) signal
and the denoised signal.

Real acceleration signal ẍ1(t) is first investigated, and a comparison be-
tween the two response spectra is shown in Fig. 6.9, for the DWT-based
denoising technique, in both linear scale (Fig. 6.9a) and logarithmic scale
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(Fig. 6.9b). A clear reduction of the noise is visible, especially in the med-
ium to high frequency bands, where the cleaning effect of the denoising
application becomes more tangible, and the response spectrum turns out
very smooth. However, an unjustified frequency peak (though at lower
magnitude) appears in the medium frequency band (within a normalized
frequency between 0.3 and 0.4), probably due to a deleterious effect pro-
duced by the remaining amount of noise, which could not be removed.
Within the low frequency region, instead, the useful information has been
successfully preserved, since the peaks corresponding to the significant
modal frequencies of the structural system have been kept unchanged.

An analogous inverse analysis within the Frequency Domain is then
performed on the denoised signal obtained through the SVD-based denois-
ing approach, and the resulting response spectrum is shown in Fig. 6.10, to-
gether with the noisy response spectrum. The denoising technique based
on SVD proves to be even more performing than the previous DWT one,
leading to a denoised response spectrum that is totally smooth in the sub-
band frequency region. Again, the useful information embedded into the
signal has been preserved, and it may be stated that the denoising was
rather successful.

The same analysis within the Frequency Domain is then performed
on SU Unterwalden railway bridge real acceleration signal ẍ2(t), aiming
at strengthening the results obtained about the denoising of real signals
and generalizing some interesting aspects that have emerged. So, a fur-
ther output-only inverse analysis based on Welch’s method is performed,
the response spectrum of denoised signal ẍ2(t) is obtained and then com-
pared with that of the source (noisy) signal. Results are shown in Figs. 6.11
and 6.12 for the case of DWT-based denoising and SVD-based denoising,
respectively. Analogous considerations may be drawn even concerning
this second analyzed real signal ẍ2(t), since the noise effect seems to be
largely relieved in both the studied denoising scenarios, even slightly more
effectively than for the previously treated wider acceleration signal ẍ1(t),
in particular considering the denoising technique based on DWT (compare
Figs. 6.9 and 6.11).
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Figure 6.9: SU Unterwalden railway bridge real acceleration signal ẍ1(t) in the Fre-
quency Domain. DWT-based denoising technique. PSD of the real (noise-affected)
signal vs. PSD of the denoised signal: (a) linear scale in frequency normalized to
sampling rate (200 Hz); (b) logarithmic scale.



154 Chapter 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

M
a
g
n
it
u
d
e
[d
B
]

Real signal
Denoised signal (SVD approach)

(a)

10
0

10
1

10
2

10
3

Frequency [Hz]

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

M
a
g
n
it
u
d
e
[d
B
]

Real signal

Denoised signal (SVD approach)

(b)

Figure 6.10: SU Unterwalden railway bridge real acceleration signal ẍ1(t) in the
Frequency Domain. SVD-based denoising technique. PSD of the real (noise-affected)
signal vs. PSD of the denoised signal: (a) linear scale in frequency normalized to
sampling rate (200 Hz); (b) logarithmic scale.
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Figure 6.11: SU Unterwalden railway bridge real acceleration signal ẍ2(t) in the
Frequency Domain. DWT-based denoising technique. PSD of the real (noise-
affected) signal vs. PSD of the denoised signal: (a) linear scale in frequency nor-
malized to sampling rate (200 Hz); (b) logarithmic scale.
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Figure 6.12: SU Unterwalden railway bridge real acceleration signal ẍ2(t) in the
Frequency Domain. SVD-based denoising technique. PSD of the real (noise-affected)
signal vs. PSD of the denoised signal: (a) linear scale in frequency normalized to
sampling rate (200 Hz); (b) logarithmic scale.
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In light of what it has been shown, the effectiveness of DWT- and SVD-
based denoising techniques may be considered to be proven, even for the
examined real non-stationary railway vibration response acceleration sig-
nals. However, if in the Time Domain the benefits of the denoising appli-
cation clearly emerge, some little inconsistencies remain about the analysis
in the Frequency Domain. In fact, although sufficient for a validation of the
Time-Domain results, it did not allow to identify a larger number of modal
frequencies, with respect to the unprocessed signal, reinforcing the need
for possible further research in such a direction.

6.4 Final remarks

In this chapter, real acceleration response signals have been successfully
processed from experimental recordings on a railway RC bridge, as non-
stationary vibration response acceleration signals at train passage. In fact,
after the numerical validation of DWT- and SVD-based denoising tech-
niques, performed on synthetic signals in previous Chapter 5, here, a sub-
sequent development has concerned the denoising of real signals, directly
acquired in situ on a specific structure, by predisposing appropriate ac-
celerometer sensors at a certain number of locations. In particular, two real
non-stationary acceleration signals detected on the SU Unterwalden rail-
way RC bridge (Switzerland) by ETH Zürich have been analyzed.

Both DWT and SVD-based denoising techniques have been indepen-
dently adapted and employed, leading to the following outcomes:

• The benefits of the denoising application in purifying the consid-
ered real (noise-affected) acceleration response signals clearly appear
within the Time-Domain analysis. In fact, results from the DWT and
SVD-based denoising approaches seem to be in excellent agreement
with each other, leading to similar values in terms of noise reduction,
on the main acceleration peak and on the RMS value, with respect to
the original real signals. This might also be considered as a proof of
the fact that the effect of noise acts in an additive sense on the ampli-
tude of the signal itself.

• As regard to the reduction of peak predictions by the denoising meth-
ods on synthetic signals, discussed in the previous chapter, here, the
main trends are confirmed since, even with real signals, the denoised
peak appears to be flatter than the real (noise-affected) one, according
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to both the applied denoising techniques. Moreover, the SVD-based
approach confirmed to less flatten out the peaks than the DWT-based
technique, configuring this to appear as a general trend of such de-
noising techniques.

• In order to inspect the frequency content of the signal after the de-
noising application, a further analysis within the Frequency Domain
has been as well performed. The useful information embedded into
the signals appears to be preserved even within the Frequency Do-
main, since the main modal frequencies turn out to be unchanged,
despite for a visible cleaning of the noise in the medium and high
frequency regions. However, there does not seem to appear any sig-
nificant improvement in terms of the number of identifiable modal
frequencies, at least for the available embedded content as a struc-
tural response trace within the recorded signals.

• Although the relevance of the denoising process mainly lies within
the Time Domain, where its cleaning effect looks more evident, a fur-
ther validation within the Frequency Domain looks needed, to check
if the response spectrum of the signal after the denoising application
may still be coherent with its source inherited modal properties, and
the useful information of the signal has effectively been preserved.

• In conclusion, the effectiveness of DWT- and SVD-based denoising
techniques may be considered to be proven, even for real signals, at
least for what it concerns a non-stationary acceleration signal typol-
ogy, as that considered for the recorded railway bridge response at
train passage (recall that the denoising analysis with synthetic am-
bient vibration signals has revealed to be more challenging, than for
non-stationary signals).

After this validation phase of the two studied denoising approaches
with real non-stationary response signals, possible subsequent develop-
ments of the present research scenario might concern the denoising of other
typologies of real response signals that may be found in civil engineer-
ing contexts. In addition, not only accelerations but also displacement
response signals might also be considered within the denoising analysis,
even possibly through HDF approaches, as presented in previous Chap-
ters 3–4. In fact, displacement data are typically associated with higher
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N/S ratios, with respect to acceleration data, mainly due to greater intrin-
sic errors, which shall characterize displacement sensor technologies. Con-
sequently, the employment of DWT- and SVD-based denoising techniques
for improving the quality of such signals could represent a very useful re-
source, leading to important practical implications in real applications.

Finally, a further possible research scenario may concern the deepening
of the employment of such denoised signals toward modal identification
purposes, aiming at significantly improving the structural identification
phase within the Frequency Domain (see e.g. Pioldi et al. [152–154] and
Pioldi and Rizzi [155–158]). This might result of a crucial interest for real
applications related to the SHM context, within the civil engineering field.

To these research developments, which aim at integrating HDF proce-
dures with denoising-based approaches toward modal identification pur-
poses, the next chapter is devoted.
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Chapter 7

An integrated monitoring strategy for
current condition assessment of
historic bridges

In this chapter, the two post-processing approaches covered in the present
Doctoral Thesis, namely HDF procedures (Chapter 3–4) and denoising-
based techniques (Chapter 5–6), are reconsidered and rejoined, toward
developing an innovative signal processing methodology for current con-
dition assessment of (historic) bridges. In particular, such signal post-
processing approaches are combined within an integrated and innovative
monitoring strategy, in an effort to enhance the reliability of the monitoring
process. The effectiveness of the proposed platform is tested on data from
a real structure, namely a historic bridge. Both dynamic acceleration and
displacement response signals are processed within the proposed method-
ology, and then employed toward modal dynamic identification purposes.

The chapter is organized as follows. Section 7.1 aims at contextual-
izing the present research scenario, through a statement on the motiva-
tions as well as on the research goals that are targeted to be achieved.
In Section 7.2, a brief description of the structure of interest is outlined,
whereas the proposed monitoring strategy is formulated and presented in
Section 7.3. Then, the obtained results are reported and discussed in Sec-
tion 7.4. Finally, last remarks and summary comments are provided within
the conclusions reported in Section 7.5.

7.1 Introduction and contextualization

The analysis presented in this chapter is motivated by the awareness quest
on the critical health condition that may characterize existing and historical



162 Chapter 7

infrastructures, especially those nearing the end of their life cycle. Despite
their age, these structures often continue to play a crucial role in everyday
life, constituting essential connections within the transportation network
of several territories and communities. Consequently, a prompt and ef-
fective adoption of appropriate and modern strategies and action models
toward their conservation and protection shall be set in place. In this sce-
nario, the development of monitoring-based strategies toward structural
condition assessment of such important infrastructures, shall constitute a
fundamental tool toward the competent analysis.

Accordingly, within the civil engineering context, the SHM research
field is becoming increasingly important, since the goal of achieving struc-
tural safety is only possible through the possibility to extract more abun-
dant and precise information about the health condition of a structure to
be monitored, for instance by analyzing its current structural dynamic re-
sponse. As a consequence, within SHM applications, after the signal ac-
quisition stage, to be directly acquired on the structure by predisposing
appropriate sensor networks, the subsequent phase of signal processing
displays a determinant role, toward the success of the whole monitoring
procedure.

Here, two complementary and possibly interacting approaches for the
post-processing of structural response signals are reconsidered, i.e. a HDF
procedure (see Chapter 3–4), as well as a denoising approach (see Chap-
ter 5–6), aiming at achieving a better screening of real structural response
signals, which may be corrupted by some amount of noise, especially in
case of the use of a low-cost instrumentation.

In particular, recall that denoising techniques aim at clarifying the sig-
nal content, by directly acting on the contaminating noise, reducing its
amount, while preserving the useful information embedded within the sig-
nal itself. Several denosing-based techniques may be employed for this
purpose, including those exploiting SVD or DWT, as recently investigated
in Ravizza et al. [167,168] and reported in previous chapters, where the ef-
fectiveness of these approaches has been inspected for both stationary (am-
bient vibration) and non stationary (seismic excitation) synthetic response
signals (Chapter 5), and for instances of real vibration signals (Chapter 6).

Instead, recall that HDF-based approaches are procedures through whi-
ch heterogeneous measurements may be combined all together, with the
analogous purpose to enhance their quality, by alleviating the amount of
noise on the signals and, consequently, reducing the induced uncertainties
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affecting the monitoring results. As already mentioned in the literary re-
view in Chapter 2, several virtuous examples of HDF applications within
the civil engineering field may be found in the literature, as for instance in
Chatzi and Fuggini [26,27], Ferrari et al. [65–67] and in Ravizza et al. [166],
where a KF has been involved within a HDF scheme between artificially
generated acceleration and displacement response signals, aiming at ob-
taining enhanced displacement response measurements, for a 3-DOFs nu-
merical dynamic system (see Chapter 3).

Here, a denoising-based approach, and a HDF procedure are consid-
ered all together and possibly coupled within an integrated monitoring
methodology for the purification of real response signals, specifically dis-
placement signals, which usually appear to be affected by higher levels
of noise, if compared to accelerations. The obtained post-processed en-
hanced displacement measurements may then be employed toward modal
dynamic identification purposes (see e.g. Pioldi et al. [152–154] and Pioldi
and Rizzi [155–158]), and this might result of a crucial interest for real ap-
plications related to the SHM context.

Although the proposed methodology aims at a general formulation,
as to be suitable for the monitoring of different structural systems, here,
a specific real test structure is assumed as a case study for the analysis,
in order to highlight the feasibility of the proposed monitoring strategy
and show its effectiveness. For this purpose, the historic reinforced con-
crete (RC) bridge at Brivio (1917), i.e. a strategic infrastructure for some
local connections within the northern Italy automotive road notwork, has
been considered (Santarella and Miozzi [181], Ferrari et al. [68]).

7.1.1 Research goals

The multiple goals that this research scenario aims at achieving are:

• to pursue an effective denoising of real acceleration response data,
detected on the monitored structure, through appropriate (wireless)
acceleration sensors. In fact, although accelerations usually display a
good resolution, when the sensor instrumentation employed during
the signal acquisition stage is somehow of a low cost/quality, this
may become necessary;

• to successfully perform a denoising-based approach on the original
(raw) displacement signals, aiming at clarifying their content in the
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Time Domain, then resulting in a better representation and reading
of the Time Domain signal features;

• to perform a successful HDF, by involving a KF within the fusion pro-
cedure between denoised acceleration and denoised displacement re-
sponse signals, in order to obtain a further enhancement of the dis-
placement data in the Time Domain;

• to employ the enhanced displacements, downstream from the HDF
processing, toward possible modal dynamic identification purposes
within the Frequency Domain, aiming at estimating the modal char-
acteristics of the considered infrastructure.

To prove that the proposed monitoring methodology becomes compet-
itive, leading to visible benefits to the structural identification process, the
modal natural frequencies identified from post-processed displacements
are then compared with the frequencies identified from raw data. The ef-
fectiveness of the method is proven, as well as its possible generalizations
to different typologies of structures.

7.2 Presentation of the monitored structure

The peculiar class of structural systems to which this research develop-
ment is addressed to, aims at covering civil engineering structures charac-
terized by a significant and strategic importance, possibly combined with
a historical-architectural value. In particular, the monitored structure con-
sidered as a case study in the current analysis, is the RC Brivio bridge (1917)
(Santarella and Miozzi [181], Ferrari et al. [67]), represented in Fig. 7.1.

The bridge, located in northern Italy (Lombardia region), constitutes
an important automotive connection between the provinces of Lecco and
Bergamo, linking the banks of the Adda river (Brivio (LC) and Cisano
Bergamasco (BG)), at an approximate height of 8 m from water.

About its description, the Brivio bridge consists of three spans, each
characterized by a couple of parabolic arches, symmetrically located to the
mid-longitudinal plane. The two spans aside the river banks are 43.4 m
long; the central span is 44 m long, for a total length of 130.8 m. The deck is
9.2 m wide and hosts two roadway lanes and two cantilever sidewalks, of a
0.8 m width each. The deck structural frame of each span is constituted by
a grid supporting a RC slab of a thickness of 0.15 m. The peculiar parabolic
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Figure 7.1: RC three-span arched Brivio bridge (1917) over the Adda river.

arches of the bridge display a span of 42.80 m and a rise of 8.00 m. The
symmetric arches show a cross section that is 0.60 m wide, with a height
varying from 1.25 m (at the middle) to 1.37 m (at the ends). Sixteen ver-
tical RC hangers, characterized by a rectangular cross section of sides of
0.32 m and 0.60 m, connect the deck to each arch. The bridge is supported
on the river bed through two tapered concrete piers, each one presenting
maximum dimensions at the basis equal to 12.8 m (transverse direction)
and 3.8 m (longitudinal direction). The piers rest on foundation RC piles
driven into the riverbed for a depth of 13 m to 16 m (Froio and Zanchi [72]).

The choice of Brivio bridge being taken as a benchmark structure for
this study is motivated by the fact that, despite its age of more than one
hundred years, the bridge is still subjected to continuous traffic loading,
likely much heavier than that for which it was originally designed way
back to 1917. Present use includes daily transit of heavy-duty and var-
ious vehicles in both rush hours and all day long. Indeed, similarly to
other bridges located in the nearby territories (see e.g. the Paderno d’Adda
bridge, Ferrari et al. [69], placed south downstream for just a few kilome-
ters), the Brivio bridge still plays a crucial role in the local transportation
network and, for this reason, it may largely benefit from a condition moni-
toring under operational conditions.

It is worth noting that all signals processed in the present analysis have
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been acquired during a three-day measurement campaign, performed di-
rectly on the Brivio bridge, in June 2014. Further details about such a mea-
surement campaign, as for instance information about the employed mea-
surement instrumentation, as well as on the sensor location, may be found
in Ferrari et al. [65–68].

7.3 Monitoring methodology description

In this section, a comprehensive monitoring strategy for the health con-
dition assessment of historic bridges is presented, by specifically assum-
ing for illustration the case study of the RC Brivio bridge under opera-
tional loading conditions. Both acceleration and displacement response
signals, directly detected on the structure as an integrated sensor network
are involved within the proposed scheme. In fact, acceleration-based and
displacement-based recordings are commonly exploited towards vibrati-
on-based monitoring purposes, and the choice of which approach should
be preferred, usually depends on the specific monitoring goals to be pur-
sued, as well as on the physical configuration of the analyzed structure.

In particular, acceleration-based monitoring allows to detect changes
in the structural health conditions, which may be revealed by identifying
variations in the structural modal properties, such as natural frequencies,
mode shapes or modal damping ratios, since these quantities may then be
employed within damage detection strategies for the current condition as-
sessment of the monitored structure. Displacement-based monitoring, on
the other hand, is often exploited both for evaluating the presence of exces-
sive loads under standard service conditions, and for quantifying regular
operational loads (e.g. traffic), to serve as reference in bridge design prac-
tice.

In this sense, acceleration- and displacement-based monitoring approa-
ches may be considered as complementary, in providing useful tools to-
ward an effective global assessment of historic and strategic infrastructural
systems. However, especially due to the increasing demand for the adop-
tion of low-cost monitoring instrumentation during the signal acquisition
stage, these measurements may typically be accompanied by a significant
amount of noise, which contaminates the structural response itself, by in-
creasing the induced uncertainties and rendering more difficult their em-
ployment for SHM purposes. Such a deleterious noise effect is generally
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more evident on displacement data rather than on acceleration data, due
to the intrinsic limits characterizing the present displacement sensor tech-
nology.

To address this issue, in the proposed monitoring methodology, a deno-
ising-based approach is possibly integrated with a HDF-based procedure,
aiming at exploiting the (more reliable) acceleration measurements for clar-
ifying the dynamic displacement response signal of the bridge, acquired
by means of a non-contact QDaedalus system (Bürki et al. [18]). The so-
obtained purified displacement data may then be employed toward modal
identification purposes, e.g. for extracting the natural frequencies and the
mode shapes of the monitored structure, and assessing its current struc-
tural conditions.

The present methodology combines a Time-Domain analysis and a Fre-
quency-Domain analysis, as illustrated in the flowchart of Fig. 7.2, repre-
senting a global conceptual view of the considered monitoring scheme.

The Time-Domain analysis aims at a better appreciation of the raw dis-
placement recordings, to be later exploited for modal identification pur-
poses. In doing so, the additional availability of acceleration response data,
collected by means of wireless MEMS accelerometers, can be taken at a dis-
posal.

Differently from data acquired through wired piezoelectric accelerom-
eters, which may be considered as a rather reliable recording devices, even
such raw acceleration data may first need to be purified, by applying ap-
propriate denosing techniques, for reducing the noise level affecting the
signal, while preserving the useful information within the recorded signal.
To this purpose, a DWT-based denoising technique is implemented within
the monitoring platform, resulting in the clarification of the detected ac-
celeration response signal. Details about the calibration of the DWT-based
denoising settings, adopted within this study, are provided in the next sec-
tion. It is worth mentioning that also a SVD-based approach might be
employed for the denoising of dynamic response signals; however, deal-
ing with non stationary signals, such as those involved in this analysis, the
DWT-based denoising approach should be preferred, as deeply shown and
discussed in Ravizza et al. [167, 168].

In parallel to the (optional) acceleration denoising, a more frequently
needed denoising of QDaedalus displacements is also foreseen. The same
DWT-based technique is adopted, for the aforementioned reasons, and a
preliminary cleaning effect on the signal is made achievable.



168 Chapter 7

Time
Domain

Frequency
Domain

Raw accelerations

Denoising (DWT)

Denoised acc.

HDF
via KF

Enhanced data

Modal dynamic identification

Natural frequencies Mode shapes

Raw displacements

Denoising (DWT)

Denoised displ.

1

Figure 7.2: Flowchart of the proposed monitoring methodology, integrating a
denoising-based and a HDF-based approach for the enhancement of response data
collected on the structure, and a subsequent structural dynamic identification.

The core of the current implementation is now represented by the in-
volvement of a KF (Chatzi and Fuggini [26]), see Chapter 3 (Section 3.2.3),
within the HDF process, resulting in the merge of denoised QDaedalus
displacements with acquired denoised accelerations, and an enhanced dis-
placement response signal can be obtained.

A subsequent analysis within the Frequency Domain is then perfor-
med, in which the ambitious goal of successfully performing the modal
dynamic identification on displacement data is inspected. In particular, the
enhanced displacement response signal is employed for pursuing this pur-
pose and, through an automatic peak-picking procedure performed on the
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Welch’s periodogram, the modal natural frequencies of the Brivio bridge
may be identified.

It is worth noting that, as it can be appreciated from the flowchart in
Fig. 7.2, the monitoring platform also contemplates the possibility to per-
form the modal dynamic identification of the structure by solely using ei-
ther the denoised accelerations or the denoised displacements (dashed ar-
rows in Fig. 7.2), but the results may be less reliable, especially considering
just the displacements. However, they can be exploited for comparative
purposes, aiming at highlighting the benefits deriving from a HDF-based
methodology in assessing the current health condition of the specific ana-
lyzed bridge, although such a monitoring platform also aims at assuming
a more general connotation, being useful for the structural monitoring of
any characteristic infrastructure.

7.4 Analysis results

In this section, some first outcomes obtained by applying the proposed
monitoring methodology to the real case of the RC Brivio bridge, are sho-
wn. Time-Domain analysis results are firstly presented, followed by out-
comes derived from a subsequent analysis within the Frequency Domain.
Signals are taken from a measurement campaign as acquired and reported
in Ferrari et al. [67].

7.4.1 Time-Domain analysis

The present analysis (upper box in Fig. 7.2) aims at purifying a raw dis-
placement signal, making its features to emerge more clearly in the Time
Domain, through an effective HDF with recorded accelerations, supposed
to be more reliable. However, in some cases, a preliminary denoising of
such acceleration data, may also become necessary, e.g. when the sensor
instrumentation employed in the signal acquisition phase is not so per-
forming. In fact, as opposed to a previous analysis by Ferrari et al. [67],
in which wired acceleration signals have been processed, it is worthwhile
to remark that, here, wireless data are newly employed within the post-
processing analysis, taken benefit from both denoising and HDF applica-
tion. Therefore, a DWT-based denoising technique is implemented on the
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detected (original) accelerations (from wireless sensors), and the obtained
denoised signal is reported in Fig. 7.3, as compared with the original one.
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Figure 7.3: Brivio bridge (wireless) acceleration response signal, pre and post DWT-
based denoising.

Given the non-stationary nature of the response data, a 60 seconds
length acceleration response signal from a wireless sensor is denoised, by
applying a DWT-based denoising technique, which shall best fit with this
signal typology, as shown in Ravizza et al. [167, 168]. In previous Chap-
ter 5, the optimal calibration of the parameters involved within this tech-
nique to deal with non-stationary signals has been inspected, resulting in
the adoption of a Smylet2 mother wavelet, combined with a Heursure hard
thresholding rule, at decomposition level 2. Thus, the same setting is here
assumed.

The effect of the denoising application is visible, especially in the time
window between 25 s and 40 s, as it may be appreciated in Fig. 7.3, lead-
ing to a signal reduction of 6.58%, in terms of Root Mean Square (RMS).
The acceleration peak value is also considered, as it represents one most
peculiar Time-Domain signal feature, and a reduction of 9.11% is recorded.
Such values are reported in following Table 7.1, for both the original and
the denoised acceleration response signals.
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Acceleration signal RMS [m/s2] ∆ [%] Peak [m/s2] ∆ [%]

Original (raw) signal 0.0319 0.2742

DWT denoised signal 0.0298 −6.58 0.2492 −9.11

Table 7.1: Characteristic values of the analyzed acceleration response signals in the
time domain and their variation with respect to the original (noise-affected) signal:
RMS and peak acceleration values.

An analogous DWT-based denoising approach is now implemented,
for the preliminary clarification of a 60 seconds length QDaedalus displace-
ment response signal, acquired on the Brivio bridge. Despite the very small
amplitude of such recordings, which might affect the success of the denois-
ing technique, the denoised estimates appear to be considerably clearer, if
compared to the original (raw) data, as represented in Fig. 7.4.
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Figure 7.4: Brivio bridge (total station) displacement response signal, pre and post
DWT-based denoising.

After this preliminary phase, devoted to the pre-treatment of the ac-
quired data, the obtained denoised acceleration and displacement response
signals are then processed within a HDF-based implementation, aiming at
further enhancing the measured displacements, by enriching them through
the information embedded within the denoised accelerations. To this end,
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a KF algorithm is exploited (see Chapter 3), allowing for the effective merge
of the two heterogeneous source signals (Chatzi and Fuggini [26], Ferra-
ri et al. [67], Ravizza et al. [166]). The result is represented by a new en-
hanced displacement signal, as shown in Fig. 7.5, which more reliably re-
flects the response of the monitored bridge.
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Figure 7.5: Enhanced Brivio bridge displacement response signal, obtained by HDF
via KF with the denoised acceleration response signal.

To complete the Time Domain analysis, RMS and peak deflection val-
ues of the displacement signals are also computed, and summarized in
Table 7.2. A reduction of both values, although lighter than that recorded
in the previous acceleration case, is still observable, configuring itself as
a peculiar feature of such techniques, as previously shown for synthetic
signals in Chapter 5, as well as for real signals in Chapter 6.

7.4.2 Frequency-Domain analysis

The enhanced displacement data, downstream obtained from the HDF pro-
cedure with the denoised accelerations, are now employed for performing
a modal dynamic identification analysis within the frequency domain. In
particular, by applying a Welch’s method on such displacements, the PSD
function of the signal may be obtained. In following Fig. 7.6, the response
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Displacement signal RMS [mm] ∆ [%] Peak [mm] ∆ [%]

Original (raw) signal 0.4039 3.056

DWT denoised signal 0.4001 −0.94 3.015 −1.34

HDF enhanced signal 0.3972 −1.66 2.833 −7.30

Table 7.2: Characteristic values of the analyzed displacement response signals in the
Time Domain and their variation with respect to the original (noise-affected) signal:
RMS and peak deflection values.

spectrum derived from the HDF displacement signal and from the original
(raw) displacement signal are represented and compared.
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Figure 7.6: Brivio Bridge displacement (PSD) response spectrum: original (raw)
displacement signal vs. HDF (enhanced) displacement signal.
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The effect of the previously applied Time-Domain filtering techniques
(i.e. DWT-based denoising and KF application) is evident, resulting in
smoother curves, as well as in the reduction of the signal magnitude, es-
pecially within the medium-high frequency region (approximately greater
than 6 Hz), where the embedded noise mainly affects the data.

The benefits that the proposed methodology has brought to the identifi-
cation process emerge by the comparison between the frequency content of
the two signals. In fact, whether the original signal allows for the detection
of just one frequency peak, corresponding to the first natural frequency of
the bridge, the post-processed displacement signal reveals a greater num-
ber of frequency response peaks, which were previously indistinguishable,
due to the deleterious effect of spurious noise. Consequently, a greater
number of natural frequencies may be extracted.

However, due to the limited length of the time window, even the peaks
associated to the external loading acting on the bridge (i.e. traffic load)
might appear in the response spectrum, making harder the identification
process. Thus, to distinguish such peaks from structural modes, an auto-
matic peak-picking procedure is performed on the Welch’s periodogram,
and the first eight natural frequencies of the monitored structure may be
identified. To emphasize the benefits that the proposed methodology may
bring to the identification process, the same peak-picking technique is per-
formed on the PSD of the original (raw) displacement signal, leading to
the identification of the first natural frequency only. Such a comparison is
represented in Fig. 7.7, where the modal natural frequencies are marked by
vertical red lines, and further reported in Table 7.3, which coherently com-
pare to analogous results provided in Ferrari et al. [67], namely frequencies
identified through a classical FDD method on acceleration signals acquired
out of standard wired accelerometer sensors.

Modes I II III IV V VI VII VIII

fid,WD [Hz] 3.247 4.211 6.016 7.280 7.815 9.378 11.406 13.140

fid,AC [Hz] 3.564 3.857 6.018 7.178 7.690 9.009 11.377 13.086

∆ [%] −8.89 9.18 −0.03 1.42 1.63 4.10 0.25 0.41

Table 7.3: Brivio bridge natural frequencies fid,WD identified from a HDF dis-
placement response signal (wireless sensor), compared to frequencies fid,AC (Fer-
rari et al. [67]) identified from an acceleration response signal (wired sensor), and
their variation.

Except for the first two and the sixth natural frequencies, which display
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Figure 7.7: Brivio bridge identified natural frequencies from displacements. Peak-
picking procedure on Welch’s periodogram: original (raw) displacement signal vs.
HDF (enhanced) displacement signal.

a not negligible discrepancy with the respective outcomes deriving from a
FDD-based inverse analysis on wired accelerations, assumed here as refer-
ence, the results show a good agreement, as the percentage variation is in
any case below 2%.

Finally, from a FDD analysis (Pioldi et al. [152–154]) on displacement
signals (corroborated as above by acceleration data), the bridge first span
mode shapes, corresponding to the previously identified frequencies, are
obtained and represented in following Fig. 7.8. In particular, the QDaeda-
lus displacement data, enriched by reliable accelerations, as those acquired
through a wireless detection system, represent the selected 8-channel input
considered within the current analysis, for the representation of the mode
shapes of the monitored structure.

Even concerning the vibration mode shapes, many analogies with the
respective results reported in Ferrari et al. [67] may be observed. In par-
ticular, mode 1 and mode 2 show a very similar behaviour, although they
are related to different natural frequencies. Moreover, most of the modes
seem to be regular, characterized by bending or torsion, except for mode 7,
in which bending and torsion appear to be coupled.

These similarities between the results may be considered as a further
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Figure 7.8: FDD vibration mode shapes of Brivio bridge first span.

proof of the reliability of the proposed monitoring strategy, which pro-
vides an alternative approach aiming at evaluating the structural health
condition of a generic civil structural system.

7.5 Final remarks

In this chapter, an innovative monitoring methodology that integrates a
denoising-based approach with a HDF-based strategy is proposed, for the
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structural health condition assessment of historic and strategic bridges. In
particular, the main achievements that the present research scenario has
highlighted may be summarized as follows:

• the beneficial effect of the analyzed denoising technique is more pro-
nounced within the Time Domain, where, after the DWT-based de-
noising application, the main signal features (i.e. peak value and
RMS) may more clearly emerge;

• the acquired Brivio bridge acceleration and displacement response
signals have been successfully denoised and, subsequently, involved
within a HDF-based implementation, and an enhanced displacement
response signal has been obtained;

• the output-only modal identification analysis performed on the en-
hanced displacement signal reveals the natural frequencies of the in-
vestigated structure, proving the effectiveness of the proposed meth-
odology;

• by comparing the obtained results, by effective post-processing of re-
sponse signals detected through wireless sensors, with those derived
from signals acquired through standard wired sensors, no substan-
tial differences emerge: this reinforces the belief that modern wireless
sensor technology may become competitive at the signal acquisition
stage, if adequately treated as here described, leading to reliable esti-
mates.

In conclusion, the possibility of setting a monitoring platform that inte-
grates a denoising-based approach with a HDF-based strategy may allow
the user to achieve a more complete and reliable description of specific re-
sponse signals, bringing to light their more peculiar characteristics, in both
Time and Frequency Domains. In this sense, the proposed post-processing
methodology may constitute a useful tool within Structural Health Moni-
toring applications.
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Chapter 8

Conclusions

This Doctoral Thesis has concerned the implementation of multiple post-
processing approaches for the treatment of spurious noise affecting struc-
tural response signals of a different nature (non-stationary vs. station-
ary), and for their subsequent analysis, toward Structural Health Moni-
toring (SHM) purposes.

It is specifically aimed at improving the reliability of the monitoring
process, in order to determine, with an adequate degree of precision, the
current health condition of a certain examined structure. In particular,
Heterogeneous Data Fusion (HDF) -based approaches between accelera-
tion and displacement measurements, Denoising-based techniques, as well
as integrated hybrid post-processing approaches, have been inspected, and
addressed toward modal identification purposes, through the adoption
of appropriate inverse analysis algorithms. To achieve an adequately ex-
haustive understanding of the research topics covered in the present work,
firstly synthetic signals, i.e. pseudo-experimental signals artificially gener-
ated by numerical computation prior to the analysis, and subsequently real
signals, namely signals truly recorded in situ through appropriate sensors,
have been considered within the analysis.

Here, some of the main achievements that this Doctoral Thesis shall
have brought to light are summarized and reported, chapter by chapter.
Finally, possible future research developments, relevant to the covered top-
ics, are also outlined.

Chapter 2 has been devoted to provide a main literature review on
HDF procedures within SHM applications. With a chief reference to the
civil engineering field, such a literature review has been conceived as a
trait d’union between the practical finality of evaluating the health condi-
tions of a monitored structure, and the need to develop post-processing ap-
proaches, which aim at improving the quality of response signals acquired
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by sensors of a different nature, by fusing them together. A Kalman Fil-
ter (KF) has been employed toward this purpose, as it represents a power-
ful and consolidated tool to deal with heterogeneous data, as it has further
been revealed by the present research work.

In the literature review of the chapter, the following salient points have
been disclosed.

• Role of accelerations and displacements for SHM purposes (through
a comparison between strengths and weaknesses of the instrumen-
tation employed for acquiring such types of data). From the litera-
ture, it has emerged that, for “on field” measurements, accelerome-
ters have proven to be more reliable than displacement sensors, and
this consideration has constituted a milestone for the whole analysis
conducted in the present thesis.

• Main issues of inherent data treatment that may occur within DF pro-
cedures. In particular, a classification according to the typology of
error that may affect the data (i.e. imperfection, correlation, incon-
sistency, disparateness) has been proposed. Sub-categories of such
errors have also been mentioned.

• Existing theories dealing with data affected by errors. Great impor-
tance has been given to Probability Theory, that has allowed to in-
troduce KF as an important tool for implementing DF-based proce-
dures. In this instance, the linear-Gaussian assumption has also been
disclosed, as well as its importance for the success of DF-based pro-
cesses. Hybrid approaches (Fuzzy DSET Theory and Random Finite
Set Theory) have also been presented, as valid alternatives to more
classical ones, for treating imperfect data. However, a global theory
able to deal with all the different kind of errors affecting the data has
not been developed yet.

• Emerging trends and future perspectives in DF procedures (stressing
on the necessity of common criteria for evaluating the effectiveness
of a fusion system). From this, the need of a standardization of the
measures of performance has emerged, as applicable to the practical
evaluation of DF-based procedures.

• Need of filtering procedures to reduce uncertainty (in data that have
to be fused). The main characteristics of a basic filter, such as oper-
ation in discrete time, linearity, optimality and finite dimensionality,
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have been inspected, as well as the probabilistic origin of KF, helpful
to understand its operating conditions.

• KF applications for SHM purposes within the structural engineer-
ing field. Based on the fact that information about the dynamic re-
sponse of a structure may allow to identify changes in its mechanical
properties, KF may be employed for estimating such a dynamic re-
sponse. This approach may also be extended to the identification of
the structural modal parameters from the observation of the dynamic
behaviour of an examined system.

Finally, recent examples in which a KF has been employed to merge
data from heterogeneous sensors (i.e. accelerometers and GPS transduc-
ers), aiming at deriving more accurate displacement estimates, have also
been provided.

Chapter 3 proposed several numerical analyses involving KF into the
fusion of acceleration and displacement response signals, aiming at en-
hancing this specific latter class of data. As previously mentioned, the
choice of these types of response data is reflected in practical applications.
In fact, within the civil and mechanical engineering fields, accelerometers
are most often used, although displacement sensors are becoming more
and more common and useful for SHM purposes. This suggests, wher-
ever possible, to combine acceleration and displacement measurements, in
order to obtain estimates of an improved accuracy. Moreover, this may cir-
cumvent the issue of the time integration of the acceleration data, which
may lead to the so-called drift, as well as other issues involved in the dif-
ferentiation of displacement data, which may amplify the high-frequency
noise. In addition, the high-frequency resolution of displacement sensors
is limited, and usually low sampling rates are used. In contrast, accelerom-
eters are often more accurate within the high-frequency region, and higher
sampling rates are often available. Thus, the merging of these measure-
ments should combine data sampled at different frequencies. Accordingly,
a multi-rate KF approach has been proposed, to tackle this issue. In order
to simulate the errors that may occur during the measurement acquisition
stage, different N/S ratios have been added to synthetic response data ob-
tained from a 3-DOF shear-type dynamic system subjected to stationary
ambient vibration top-floor loading.

Two main scenarios have been inspected, according to the level of noise
affecting the acceleration measurements, namely (i) noise-free acceleration
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case and (ii) noise-affected acceleration case. Main conclusions about the
proposed numerical analyses are listed in the following, for each of the
above-mentioned scenarios.

(i) Noise-free acceleration case. This represents the most explored sce-
nario within the DF literature (Smyth and Wu [192]). From the analy-
sis performed in this thesis, it has been proven that KF turns out to be
able to provide reliable estimates of the structural dynamic response,
for N/S ratios on displacements up to 50%. Indeed, in such cases,
RMS errors below 1% between the estimated displacements after KF
application and the original (noise-free, numerically determined) dis-
placements, have been observed. Results of this scenario seem to be
in accordance with those reported within the reference literature.

(ii) Noise-affected acceleration case. This scenario does not seem to have
been deeply inspected in the literature yet. Results have shown that
only N/S ratios on acceleration below 1% may lead to reliable esti-
mates of the dynamic response after KF adoption. Consequently, in
practice, the accelerometer placement shall play a key role for achiev-
ing reliable KF estimates. In fact, if the intrinsic error characteriz-
ing accelerometers appears to be greater than 1%, RMS errors greater
than 8% between the estimated displacements after KF application
and the original (noise-free, numerically determined) displacements,
turn out to be observed.

Chapter 4 has concerned a subsequent research development of what it
has been covered in the previous chapter, namely the extension of a HDF-
based approach to the more challenging case of seismic-excited structural
systems. In particular, a set of ten different seismic input signals, each one
assumed to be singularly applied at the basis of the same 3-DOF bench-
mark structure, has been considered. A multi-rate KF is employed within
a HDF procedure between acceleration and displacement response signals
of such a structure and, through the proposed implementation, it has been
possible to enhance the considered non-stationary displacement response
signals, by integrating it with a few standard acceleration measurements
(considered as noise-free). Based on the obtained results, it may be stated
that the procedure turned out to be rather effective, leading to a much bet-
ter understanding of the structural modal properties within the Frequency
Domain, specifically in terms of natural frequencies of the analyzed sys-
tem. Furthermore, it has been shown that the resulting estimates obtained
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through the modal identification procedure carried out on the enhanced
displacement signals, proved to be competitive with those deriving from
accelerations. This might open up new interesting perspectives within
SHM applications, since displacement signals may easily be acquired also
through indirect instrumentation techniques, without directly acting on
the monitored structure, for instance by means of a total station. As a re-
sult, this could ease the signal acquisition phase, making it faster and more
efficient.

Chapter 5 introduced a new research topic, deeply treated in this Doc-
toral Thesis, namely the issue of signal denoising, with reference to both
non-stationary and stationary synthetic acceleration response signals. The
main goal of such a procedure has concerned the purification of such noise-
corrupted response signals, by removing the deleterious noise but main-
taining the useful information contained within the signals. In particular,
two denoising-based approaches have been studied, i.e. DWT- and SVD-
based denoising techniques, assuming as a benchmark application struc-
ture a 10-DOF shear-type building. Through a numerical analysis within
both the Time and the Frequency Domains, it has been possible to provide
a comprehensive comparative framework on the effectiveness of the two
implemented denoising approaches, leading to the following salient con-
siderations:

• in general terms, both the denoising techniques revealed that station-
ary signals proved to be more problematic to be purified than for
non-stationary ones, due to their almost constant distribution in time
and frequency;

• the effectiveness of the SVD-based denoising method may be con-
sidered as being fully proven. It has been stated that it constitutes a
rather robust technique, which is able to return reliable estimates of
the original (noise-free) signal, despite for the significant amount of
additive noise assumed on the source data. Moreover, this technique
seems to be suitable for both non-stationary and stationary response
signals;

• the DWT-based approach may be considered as useful for the de-
noising of non-stationary signals, such as seismic response signals,
especially for N/S ratios lower than 20%, where it may provide even
better results than those for the SVD-based approach. However, the
performed analysis has proven also its limitations, especially in the
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processing of stationary signals, for which the application of the de-
noising method based on SVD should instead be suggested;

• about a further analysis aiming at evaluating the alteration of the
main signal peak value, after the denoising application, it emerged
that non-stationary signals lead to a more evident percentage peak
reduction with respect to the numerically determined value, than for
stationary response signals.

• interesting results have been obtained even within the Frequency Do-
main, where, through a comparison between the signal response spe-
ctra, pre- and post-denoising application, it has been possible to bet-
ter appreciate the denoising effect, in particular within the medium-
high frequency region.

Chapter 6 introduced the analysis of real response signals, detected on
a short-span RC railway bridge (monitored at ETH Zürich), and their pro-
cessing within a denoising-based implementation, aiming at clarifying the-
ir content in both Time and Frequency Domains. In particular, the previ-
ously presented DWT- and SVD-based denoising approaches have there
been reconsidered, for dealing with such real acceleration response sig-
nals, and the considerations to which the obtained results led, may briefly
be summarized as follows:

• the outcomes proved to be coherent with those deriving from the nu-
merical analysis with synthetic signals, reinforcing the usefulness of
such a denoising-based approach during the signal post-processing
phase;

• the beneficial effect of the denoising application in alleviating the
noise affecting the examined real response signals has mainly emer-
ged within the Time-Domain analysis, where the processed signal
appeared to be smoother, with respect to the noisy source signal and,
consequently, its features might more clearly emerge;

• about the Frequency-Domain analysis, the useful information which
the signals contain appeared to be preserved, as the most significant
modal frequencies turned out to be unchanged, although there did
not seem to be a marked gain in the number of identifiable modal
frequencies, justifying the need for further possible research on this
aspect;
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• the reduction of the acceleration peak, visible on synthetic signals
after the denoising application, has been confirmed even on real sig-
nals, according to both the applied denoising techniques, to such an
extent that it may reasonably be considered as a general trend of such
denoising techniques.

From the analysis presented in Chapters 5 and 6, it can be concluded
that the effectiveness of DWT- and SVD-based denoising techniques in
clarifying both synthetic and real structural response signals may be con-
sidered to have been proven. Consequently, such a denoising-based ap-
proach should be taken into account within SHM applications, since it
may provide a decisive contribution to the monitoring process, especially
within the Time Domain, as regards the post-processing phase of the ac-
quired response signals.

Chapter 7 has finally concerned the development of an integrated mon-
itoring strategy, which involves a HDF-based procedure via KF, and a de-
noising-based approach, aiming at enhancing real dynamic response sig-
nals detected on historic infrastructures. In particular, the historic RC Bri-
vio bridge (1917) under operational conditions has been monitored, thro-
ugh the HDF between its accelerations and displacements, previously pro-
perly denoised by means of the DWT-based denoising technique. The pre-
sented strategy was specifically addressed to clarify the acquired wireless
displacements, which have been subsequently employed for extracting the
modal properties of the bridge, namely its natural frequencies and asso-
ciated mode shapes. Satisfactory results have been achieved, as briefly
summarized as follows:

• the DWT-based denoising confirmed to be effective for clarifying bo-
th real acceleration and displacement response signals, and the main
Time-Domain signal features (i.e. the signal peak, as well as its RMS)
could appear more clearly;

• the HDF-based approach, instead, revealed to be more useful within
the Frequency Domain, allowing for the modal identification of the
first eight natural frequencies of the monitored bridge, as well as of
the associated vibration modes;

• the modal identification procedure performed on the post-processed
displacements has proven to be effective, configuring itself as a com-
petitive alternative to the most common modal identification per-
formed on accelerations.
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Concluding, it may be stated that an integrated procedure which ex-
ploits both the potential of a HDF-based approach and of a denoising-
based approach, revealed to be an important tool which may allow the
user to better understand the peculiar characteristics of real response sig-
nals, and, consequently, to perform a more effective monitoring of the ex-
amined structure.

Finally, some possible future research developments which are worth
mentioning, are also outlined. A first scenario could represent the ex-
clusive employment of (possibly cleaned) displacement response signals
for modal identification purposes, without the support of any acceleration
data, in order to avoid directly acting on the structure, by predisposing
accelerometers at a certain number of locations. This would speed up the
phase of signal acquisition during in situ measurement campaigns.

A further scenario might eventually concern the extension of the pre-
sented methodologies to other classes of dynamic signals, also not nec-
essarily strictly belonging to the mechanical response within the civil en-
gineering field, such as, for instance, temperature and humidity signals,
since their variation may display some implications also on the structural
behaviour and, consequently, they are worth being monitored, for a com-
plete success of SHM applications.
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Appendix A

Selected seismic ground motions

In present Appendix A, the data of the seismic ground motions employed
within the HDF-based analysis developed in Chapter 4 are reported. The
associated seismic input signals have been supposed as singularly acting at
the base of a 3-DOF shear-type building (see Fig. 4.1), taken as a benchmark
structure for the related investigation. In particular, a set of ten earthquake
excitations, which differ for location of the epicenter, magnitude, duration
and Peak Ground Acceleration (PGA), are considered, as summarized in
Table A.1.

Earthquake Station Comp. M Dur. [s] PGA [g]
(A.1) Imperial Valley 1940 El Centro S00E 6.9 40 0.359
(A.2) Tabas 1978 70, Boshrooyeh WE 7.3 43 0.929
(A.3) Imperial Valley 1979 01260 NS 6.4 58 0.331
(A.4) Loma Prieta 1989 Corralitos 0 7.0 25 0.801
(A.5) Northridge 1994 24436 WE 6.7 60 1.778
(A.6) L’Aquila 2009 Valle Aterno WE 5.8 50 0.676
(A.7) Chile 2010 Angle WE 8.8 180 0.697
(A.8) New Zealand 2010 163541 NS 7.1 82 0.752
(A.9) Tohoku 2011 Sendai NS 9.0 180 1.402

(A.10) Katmandu 2015 Kanti Path NS 7.8 100 0.164

Table A.1: Seismic input data-set generalities and reference labels adopted in the
subsequent plots.

The acceleration records describing the considered earthquake motions
are instead depicted in following Figs. A.1–A.10, which refer to previous
Table A.1. Further information on time-frequency spectra may be found in
Pioldi and Rizzi [157, 158], as well as in Pioldi et al. [152–154].
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Figure A.1: Imperial Valley (1940) seismic accelerogram.
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Figure A.2: Tabas (1978) seismic accelerogram.
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Figure A.3: Imperial Valley (1979) seismic accelerogram.
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Figure A.4: Loma Prieta (1989) seismic accelerogram.
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Figure A.5: Northridge (1994) seismic accelerogram.
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Figure A.6: L’Aquila (2009) seismic accelerogram.
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Figure A.7: Chile (2010) seismic accelerogram.
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Figure A.8: New Zealand (2010) seismic accelerogram.
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Figure A.9: Tohoku (2011) seismic accelerogram.
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Figure A.10: Katmandu (2015) seismic accelerogram.



215

Appendix B

KF application on L’Aquila
earthquake case

A KF application on a displacement response signal of a 3-DOF shear-type
building (see Fig. 4.1) subjected to L’Aquila earthquake input (see Fig. A.6),
leads to the following results. In particular, in Table B.1, the top-floor dis-
placement response estimates (pre- and post-KF application), in terms of
signal peak, are reported. Percentage variation ∆u3 between the filtered KF
estimates and the numerically determined displacements is also reported,
for increasing N/S ratios.

N/S ratio u3,noisy u3,KF ∆u3

[%] [cm] [cm] [%]

00 9.38 9.38 0

05 10.13 9.41 0.32

10 11.25 9.32 0.64

15 10.60 9.50 1.28

20 12.71 9.12 2.77

25 14.60 9.85 5.01

Table B.1: L’Aquila (2009) earthquake: maximum values of numerically determined
top-floor displacements u3 and KF estimates u3,KF, and their percentage varia-
tion ∆u3 , for different N/S ratios.

Furthermore, the outcomes are also presented in graphical form, in fol-
lowing Figs. B.1–B.6, which refer to previous Table B.1.
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Figure B.1: KF application on top-floor displacement signal (0% N/S ratio).
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Figure B.2: KF application on top-floor displacement signal (5% N/S ratio).
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Figure B.3: KF application on top-floor displacement signal (10% N/S ratio).
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Figure B.4: KF application on top-floor displacement signal (15% N/S ratio).
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Figure B.5: KF application on top-floor displacement signal (20% N/S ratio).
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Figure B.6: KF application on top-floor displacement signal (25% N/S ratio).
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Appendix C

KF application on different seismic
response signals

Maximum values of displacement response signals of an examined 3-DOF
shear-type building (see Fig. 4.1) subjected to single instances from a set of
ten seismic ground motions listed in Table A.1 are reported in following Ta-
bles C.1–C.10, for increasing N/S ratios. Percentage variation ∆ui between
the displacement response signal post-KF application and the numerically
determined value is also reported, for each of the three analyzed dofs.

N/S ratio u1,noisy u1,KF ∆u1 u2,noisy u2,KF ∆u2 u3,noisy u3,KF ∆u3

[%] [cm] [cm] [%] [cm] [cm] [%] [cm] [cm] [%]
00 2.28 2.28 0 3.45 3.45 0 4.43 4.43 0
05 2.34 2.27 0.44 3.51 3.48 0.87 4.58 4.50 0.08
10 2.48 2.34 2.63 3.69 3.51 1.74 4.78 4.54 0.16
15 2.88 2.35 3.07 3.80 3.63 5.22 5.22 4.80 0.08
20 3.31 2.18 4.39 4.04 3.72 7.83 5.47 4.91 3.27
25 3.62 2.41 5.70 4.29 3.81 10.43 5.83 5.03 0.82

Table C.1: Imperial Valley (1940) earthquake: maximum values of numerically de-
termined displacements u1, u2, u3 and KF estimates u1,KF, u2,KF, u3,KF, and their
percentage variation ∆ui , for different N/S ratios.



220 Appendix C. KF application on different seismic response signals

N/S ratio u1,noisy u1,KF ∆u1 u2,noisy u2,KF ∆u2 u3,noisy u3,KF ∆u3

[%] [cm] [cm] [%] [cm] [cm] [%] [cm] [cm] [%]
00 5.46 5.46 0 9.62 9.62 0 12.35 12.35 0
05 6.08 5.58 2.19 10.14 9.65 0.31 12.10 12.39 0.32
10 6.45 5.32 2.56 10.53 9.78 1.66 12.89 12.47 0.97
15 6.79 5.40 1.10 10.92 9.95 3.43 13.13 12.61 2.11
20 7.66 5.66 3.66 11.22 10.05 4.47 14.06 12.69 2.75
25 8.49 5.87 7.51 12.25 10.36 7.69 14.87 12.04 2.51

Table C.2: Tabas (1978) earthquake: maximum values of numerically determined
displacements u1, u2, u3 and KF estimates u1,KF, u2,KF, u3,KF, and their percentage
variation ∆ui , for different N/S ratios.

N/S ratio u1,noisy u1,KF ∆u1 u2,noisy u2,KF ∆u2 u3,noisy u3,KF ∆u3

[%] [cm] [cm] [%] [cm] [cm] [%] [cm] [cm] [%]
00 1.86 1.86 0 3.25 3.25 0 3.97 3.97 0
05 1.93 1.90 2.15 3.16 3.24 0.31 4.10 3.92 1.26
10 1.81 1.84 1.08 3.68 3.33 2.46 4.56 4.02 1.26
15 2.49 1.99 6.99 3.95 3.16 2.77 4.59 3.91 1.51
20 2.45 1.82 2.15 3.99 3.40 4.62 4.71 4.07 2.52
25 3.32 1.79 3.77 4.07 3.41 4.92 4.62 4.06 2.27

Table C.3: Imperial Valley (1979) earthquake: maximum values of numerically de-
termined displacements u1, u2, u3 and KF estimates u1,KF, u2,KF, u3,KF, and their
percentage variation ∆ui , for different N/S ratios.

N/S ratio u1,noisy u1,KF ∆u1 u2,noisy u2,KF ∆u2 u3,noisy u3,KF ∆u3

[%] [cm] [cm] [%] [cm] [cm] [%] [cm] [cm] [%]
00 5.29 5.29 0 9.59 9.59 0 12.22 12.22 0
05 5.53 5.36 1.32 10.01 9.66 0.73 13.16 12.23 0.08
10 6.85 5.19 1.89 12.09 9.36 2.40 13.33 12.24 0.16
15 7.43 5.21 1.51 12.77 10.13 5.63 14.48 12.23 0.08
20 8.03 5.56 5.10 14.19 10.21 6.46 14.94 11.82 3.27
25 10.06 4.88 7.75 14.56 9.90 3.23 16.78 12.32 0.82

Table C.4: Loma Prieta (1989) earthquake: maximum values of numerically de-
termined displacements u1, u2, u3 and KF estimates u1,KF, u2,KF, u3,KF, and their
percentage variation ∆ui , for different N/S ratios.
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N/S ratio u1,noisy u1,KF ∆u1 u2,noisy u2,KF ∆u2 u3,noisy u3,KF ∆u3

[%] [cm] [cm] [%] [cm] [cm] [%] [cm] [cm] [%]
00 8.60 8.60 0 15.26 15.26 0 18.75 18.75 0
05 9.20 8.56 0.47 16.71 15.27 0.07 18.04 18.63 0.64
10 9.71 8.83 2.67 18.04 15.21 0.33 19.69 18.59 0.85
15 10.68 7.89 8.26 18.99 15.08 1.18 20.50 19.08 1.76
20 11.50 9.62 10.60 19.50 15.67 2.69 21.22 19.01 1.39
25 12.23 7.80 9.30 20.78 14.80 3.01 22.47 18.93 0.96

Table C.5: Northridge (1994) earthquake: maximum values of numerically deter-
mined displacements u1, u2, u3 and KF estimates u1,KF, u2,KF, u3,KF, and their
percentage variation ∆ui , for different N/S ratios.

N/S ratio u1,noisy u1,KF ∆u1 u2,noisy u2,KF ∆u2 u3,noisy u3,KF ∆u3

[%] [cm] [cm] [%] [cm] [cm] [%] [cm] [cm] [%]
00 4.15 4.15 0 7.48 7.48 0 9.38 9.38 0
05 4.58 4.18 0.72 8.29 7.50 0.27 10.13 9.41 0.32
10 4.48 4.20 1.20 8.87 7.53 0.67 11.25 9.32 0.64
15 5.48 4.22 1.69 10.82 7.68 2.67 10.60 9.50 1.28
20 5.65 4.34 4.57 12.15 7.76 3.74 12.71 9.12 2.77
25 6.59 4.41 6.27 12.46 8.08 8.02 14.60 9.85 5.01

Table C.6: L’Aquila (2009) earthquake: maximum values of numerically determined
displacements u1, u2, u3 and KF estimates u1,KF, u2,KF, u3,KF, and their percentage
variation ∆ui , for different N/S ratios.

N/S ratio u1,noisy u1,KF ∆u1 u2,noisy u2,KF ∆u2 u3,noisy u3,KF ∆u3

[%] [cm] [cm] [%] [cm] [cm] [%] [cm] [cm] [%]
00 4.42 4.42 0 7.78 7.78 0 10.04 10.04 0
05 4.76 4.45 0.68 8.15 7.99 2.27 10.42 10.07 0.30
10 5.37 4.41 0.23 8.79 8.05 3.47 10.79 10.38 3.39
15 6.64 4.24 4.07 8.20 7.83 0.65 11.81 10.24 1.99
20 7.52 4.38 0.90 10.66 8.17 5.01 12.94 10.22 1.79
25 10.32 4.94 11.76 10.68 8.38 7.71 14.41 9.74 2.99

Table C.7: Chile (2010) earthquake: maximum values of numerically determined
displacements u1, u2, u3 and KF estimates u1,KF, u2,KF, u3,KF, and their percentage
variation ∆ui , for different N/S ratios.
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N/S ratio u1,noisy u1,KF ∆u1 u2,noisy u2,KF ∆u2 u3,noisy u3,KF ∆u3

[%] [cm] [cm] [%] [cm] [cm] [%] [cm] [cm] [%]
00 5.13 5.13 0 9.02 9.02 0 11.20 11.20 0
05 5.48 5.04 1.75 9.58 9.03 0.11 11.71 11.24 0.36
10 5.31 5.16 0.58 10.31 9.20 1.96 12.32 11.27 0.63
15 6.72 5.38 4.87 11.01 9.27 2.77 12.98 11.44 2.14
20 7.40 5.37 4.67 12.12 9.57 6.10 13.61 11.56 3.21
25 8.02 5.58 8.77 13.41 9.89 9.65 14.27 11.70 4.46

Table C.8: New Zealand (2010) earthquake: maximum values of numerically de-
termined displacements u1, u2, u3 and KF estimates u1,KF, u2,KF, u3,KF, and their
percentage variation ∆ui , for different N/S ratios.

N/S ratio u1,noisy u1,KF ∆u1 u2,noisy u2,KF ∆u2 u3,noisy u3,KF ∆u3

[%] [cm] [cm] [%] [cm] [cm] [%] [cm] [cm] [%]
00 7.68 7.68 0 13.63 13.63 0 16.74 16.74 0
05 7.39 7.54 1.82 14.00 13.67 0.29 17.31 16.86 0.72
10 8.51 7.39 3.78 14.81 13.88 1.83 18.04 16.66 0.48
15 9.39 7.17 6.64 15.51 13.17 3.37 18.74 16.20 3.23
20 9.81 8.18 6.51 15.87 13.09 3.96 19.12 16.25 2.93
25 10.44 8.23 7.16 16.42 13.02 4.48 19.79 16.12 3.70

Table C.9: Tohoku (2011) earthquake: maximum values of numerically determined
displacements u1, u2, u3 and KF estimates u1,KF, u2,KF, u3,KF, and their percentage
variation ∆ui , for different N/S ratios.

N/S ratio u1,noisy u1,KF ∆u1 u2,noisy u2,KF ∆u2 u3,noisy u3,KF ∆u3

[%] [cm] [cm] [%] [cm] [cm] [%] [cm] [cm] [%]
00 1.10 1.10 0 1.92 1.92 0 2.36 2.36 0
05 1.17 1.09 0.91 1.87 1.92 0 2.49 2.37 0.42
10 1.70 1.14 3.64 1.97 1.90 1.04 2.68 2.33 1.27
15 1.75 1.16 5.45 2.46 1.95 1.56 2.71 2.41 2.12
20 2.31 1.07 2.73 2.67 2.00 4.16 3.15 2.37 0.42
25 2.37 1.09 0.91 3.20 1.86 3.13 3.21 2.39 1.27

Table C.10: Katmandu (2015) earthquake: maximum values of numerically deter-
mined displacements u1, u2, u3 and KF estimates u1,KF, u2,KF, u3,KF, and their
percentage variation ∆ui , for different N/S ratios.
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Appendix D

Modal identification on filtered
displacements

Additional results concerning the Frequency-Domain analysis presented
in Section 4.3.2 are here reported. In particular, the natural frequencies
identified from a benchmark structure (a 3-DOF shear-type building de-
picted in Fig. 4.1), subjected to single instances from a set of ten different
seismic ground motions (see list in Table A.1) are summarized in following
Tables D.1–D.10. Specifically, natural frequencies fdspl,Welch, identified from
the top-floor displacement response signal after KF application, are com-
pared to frequencies facc,Welch and facc,FDD, identified from the top-floor ac-
celeration response signals, through the application of Welch’s method and
of the FDD method, respectively. For each case, the variation between the
identified frequencies and the numerically determined frequencies, is also
shown. A N/S ratio equal to 10% is considered on the source displacement
response signals.
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Modes I II III

fd,i [Hz] 2.658 7.448 10.762

fdspl,Welch [Hz] 2.661 7.300 10.376

∆ [%] +0.11 −1.99 −3.59

facc,Welch [Hz] 2.661 7.251 10.400

∆ [%] +0.11 −2.65 −3.36

facc,FDD [Hz] 2.656 7.344 10.385

∆ [%] −0.08 −1.40 −3.50

Table D.1: Imperial Valley (1940) earthquake: natural frequencies identified from
top-floor displacements fdspl,Welch vs. natural frequencies identified from accelera-
tions facc,Welch and facc,FDD: comparison and their variation with respect to numer-
ically determined damped frequencies fd,i.

Modes I II III

fd,i [Hz] 2.658 7.448 10.762

fdspl,Welch [Hz] 2.686 7.340 10.524

∆ [%] +1.05 −1.45 −2.21

facc,Welch [Hz] 2.602 7.381 10.540

∆ [%] −2.11 −0.90 −2.06

facc,FDD [Hz] 2.646 7.365 10.480

∆ [%] −0.45 −1.11 −2.62

Table D.2: Tabas (1978) earthquake: natural frequencies identified from top-
floor displacements fdspl,Welch vs. natural frequencies identified from accelera-
tions facc,Welch and facc,FDD: comparison and their variation with respect to nu-
merically determined damped frequencies fd,i.
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Modes I II III

fd,i [Hz] 2.658 7.448 10.762

fdspl,Welch [Hz] 2.686 7.324 10.498

∆ [%] +1.05 −1.66 −2.45

facc,Welch [Hz] 2.661 7.300 10.400

∆ [%] +0.11 −1.99 −3.36

facc,FDD [Hz] 2.690 7.345 10.402

∆ [%] +1.20 −1.38 −3.35

Table D.3: Imperial Valley (1979) earthquake: natural frequencies identified from
top-floor displacements fdspl,Welch vs. natural frequencies identified from accelera-
tions facc,Welch and facc,FDD: comparison and their variation with respect to numer-
ically determined damped frequencies fd,i.

Modes I II III

fd,i [Hz] 2.658 7.448 10.762

fdspl,Welch [Hz] 2.702 7.381 10.660

∆ [%] +1.66 −0.90 −0.95

facc,Welch [Hz] 2.688 7.375 10.590

∆ [%] +1.13 −0.98 −1.60

facc,FDD [Hz] 2.631 7.400 10.607

∆ [%] −1.02 −0.64 −1.44

Table D.4: Loma Prieta (1989) earthquake: natural frequencies identified from
top-floor displacements fdspl,Welch vs. natural frequencies identified from accelera-
tions facc,Welch and facc,FDD: comparison and their variation with respect to numer-
ically determined damped frequencies fd,i.
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Modes I II III

fd,i [Hz] 2.658 7.448 10.762

fdspl,Welch [Hz] 2.630 7.361 10.590

∆ [%] −1.05 −1.17 −1.60

facc,Welch [Hz] 2.628 7.400 10.547

∆ [%] −1.13 −0.64 −2.00

facc,FDD [Hz] 2.611 7.377 10.470

∆ [%] −1.77 −0.95 −2.71

Table D.5: Northridge (1994) earthquake: natural frequencies identified from top-
floor displacements fdspl,Welch vs. natural frequencies identified from accelera-
tions facc,Welch and facc,FDD: comparison and their variation with respect to nu-
merically determined damped frequencies fd,i.

Modes I II III

fd,i [Hz] 2.658 7.448 10.762

fdspl,Welch [Hz] 2.612 7.373 10.669

∆ [%] −1.73 −1.01 −0.86

facc,Welch [Hz] 2.637 7.373 10.645

∆ [%] −0.79 −1.01 −1.09

facc,FDD [Hz] 2.630 7.360 10.650

∆ [%] −1.05 −1.18 −1.05

Table D.6: L’Aquila (2009) earthquake: natural frequencies identified from top-
floor displacements fdspl,Welch vs. natural frequencies identified from accelera-
tions facc,Welch and facc,FDD: comparison and their variation with respect to nu-
merically determined damped frequencies fd,i.
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Modes I II III

fd,i [Hz] 2.658 7.448 10.762

fdspl,Welch [Hz] 2.661 7.251 10.376

∆ [%] +0.11 −2.64 −3.59

facc,Welch [Hz] 2.661 7.249 10.400

∆ [%] +0.11 −2.67 −3.36

facc,FDD [Hz] 2.656 7.344 10.391

∆ [%] +0.08 −1.40 −3.45

Table D.7: Chile (2010) earthquake: natural frequencies identified from top-floor dis-
placements fdspl,Welch vs. natural frequencies identified from accelerations facc,Welch
and facc,FDD: comparison and their variation with respect to numerically determined
damped frequencies fd,i.

Modes I II III

fd,i [Hz] 2.658 7.448 10.762

fdspl,Welch [Hz] 2.601 7.402 10.350

∆ [%] −2.14 −0.62 −3.83

facc,Welch [Hz] 2.612 7.365 10.401

∆ [%] −1.73 −1.11 −3.35

facc,FDD [Hz] 2.620 7.380 10.478

∆ [%] −1.43 −0.91 −2.64

Table D.8: New Zealand (2010) earthquake: natural frequencies identified from
top-floor displacements fdspl,Welch vs. natural frequencies identified from accelera-
tions facc,Welch and facc,FDD: comparison and their variation with respect to numer-
ically determined damped frequencies fd,i.
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Modes I II III

fd,i [Hz] 2.658 7.448 10.762

fdspl,Welch [Hz] 2.637 7.422 10.655

∆ [%] −0.79 −0.35 −0.99

facc,Welch [Hz] 2.637 7.422 10.693

∆ [%] −0.79 −0.35 −0.64

facc,FDD [Hz] 2.655 7.433 10.671

∆ [%] −0.11 −0.20 −0.85

Table D.9: Tohoku (2011) earthquake: natural frequencies identified from top-
floor displacements fdspl,Welch vs. natural frequencies identified from accelera-
tions facc,Welch and facc,FDD: comparison and their variation with respect to nu-
merically determined damped frequencies fd,i.

Modes I II III

fd,i [Hz] 2.658 7.448 10.762

fdspl,Welch [Hz] 2.661 7.324 10.889

∆ [%] +0.11 −1.66 +1.18

facc,Welch [Hz] 2.686 7.324 10.690

∆ [%] +1.05 −1.66 −0.67

facc,FDD [Hz] 2.658 7.420 10.662

∆ [%] +0.00 −0.38 −0.93

Table D.10: Katmandu (2015) earthquake: natural frequencies identified from
top-floor displacements fdspl,Welch vs. natural frequencies identified from accelera-
tions facc,Welch and facc,FDD: comparison and their variation with respect to numer-
ically determined damped frequencies fd,i.
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