
Fixed-order gain-scheduling control of overhead bridge cranes

Michele Ermidoroa, Alberto L. Colognia, Simone Formentinb, Fabio Previdia

aDipartimento di ingegneria e scienze applicate, Università degli studi di Bergamo, Italy (e-mail: michele.ermidoro@unibg.it).
bDipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy (e-mail: formentin@elet.polimi.it).

Abstract

Acceleration and deceleration in overhead cranes may induce undesirable load swinging, which is unsafe for the
surrounding human operators. In this paper, it is shown that such oscillatory behavior depends on the length of the
rope and thus a gain-scheduling control law is proposed to reduce such an effect. Specifically, to take into account the
technological limits in the controller implementation, a fixed-order controller is tuned, by also enforcing robustness
and performance constraints. The proposed strategy is experimentally tested on a real bridge crane and compared to a
time-invariant solution.
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1. Introduction

In the modern industry, many challenging manipu-
lation tasks with heavy objects are usually handled via
overhead cranes. Such cranes can be classified as gantry
cranes and bridge cranes. The former are typically used
in container terminals and are characterized by the fact
that the entire structure is wheeled along the ground. In-
stead, the bridge cranes, which are more frequently used
in the industrial environment, have a fixed supporting
structure, while the movable hoist runs overhead along
a rail or a beam.

Overhead cranes suffer from safety problems due to
the flexibility of the rope linking the load to the hoist.
In fact, the load swinging is usually very poorly damped
and the uncontrolled sway might be dangerous for hu-
man operators. Moreover, the oscillations require a cer-
tain time to stop, thus slowing the overall movement
time.

Many approaches have been proposed to solve the
problem of the load oscillations induced by the move-
ment of the crane. A second order sliding mode control
has been used in Bartolini et al. (2002) while in Liu et al.
(2005) an adaptive sliding mode control is employed.
The approaches in Auernig and Troger (1987) and Er-
midoro et al. (2014) adopt a time optimal perspective,
while Singer et al. (1997) and Sorensen et al. (2007)
propose an open-loop input shaping method.

All the above solutions do not consider the fact that
the rope length and the mass of the load may change
during the system operation; nevertheless, such events

occur quite often in practical working cycles. For this
reason, gain-scheduled controllers appear to be a suited
solution to the problem of sway suppression.

Among the solutions addressing the problem at hand
from a gain-scheduling perspective, the method in Cor-
riga et al. (1998) considers the length of the rope as a
scheduling signal for an implicit gain scheduling con-
troller and employs the knowledge of the upper bounds
in the rate of change of such a parameter to ensure
the stability of the closed-loop system. In Zavari et al.
(2014) a state-space interpolation method is used to an
analogous design purpose. This method, albeit provid-
ing good performance, does not ensure the stability of
the systems in case of parameter variations.

In all the above contributions, simplicity and robust-
ness with respect to model uncertainty are not requested
as important features of the final control system.

In this paper, the problem of sway cancelation in
overhead bridge cranes is tackled from a gain-scheduled
rationale, but also taking into account the simplicity of
the final controller (to make it suitable for implementa-
tion on a wide range of micro-controllers or PLCs) and
finding the best trade off between performance and ro-
bustness. More specifically, a fixed-order gain schedul-
ing controller is designed (thus with a user-defined
structure) aimed to minimize the integral error but also
constraining the main robustness margins. The pro-
posed method has been first introduced in Karimi et al.
(2007), but herein the minimization of the settling time
is also considered. A secondary aim of this paper is to
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show why the rope length, and not the load mass, should
be used as a scheduling variable.

The fixed-order gain scheduling controller is exper-
imentally implemented on a real bridge crane and the
achieved performance is compared to that of a linear
time-invariant controller tuned according to the same
specifications. The experiments show that, although the
employed structure is very simple, the gain scheduling
controller is able to suppress the sway in all the con-
ditions of interest, unlike the time-invariant solution.
It has to be stressed that, in the proposed closed-loop
solution, where the oscillations are estimated through
proper measurements and automatically compensated
by a feedback controller, the operator can still manu-
ally operate the system, without predefining any ref-
erence trajectory. Finally, a comparison with well es-
tablished tools for gain scheduling design shows that
similar performance in terms of sway reduction can be
achieved, but without requiring any speed feedback and
with lower order controllers.

This remainder of the paper is organized as follows.
Section II describes the experimental setup and the
problem statement. In Section III the model of the
system is derived and experimentally validated. Then,
the fixed-order gain-scheduling control design method
is described in Section IV, with a focus on how to select
the different tuning knobs. Section V presents the ex-
perimental results, while some remarks end the paper in
Section VI.

2. System Description and problem statement

The typical setup of a manually operated bridge crane
is illustrated in Figure 1, where the two main compo-
nents of the system are shown: the bridge, which moves
along the Y axis on the track in the given reference
framework, and the trolley, which moves along the X
axis on the bridge. The cargo is normally suspended on
the cable by a hook and can oscillate along any direc-
tion. The sway has a detrimental effect on the maneu-
vering performance and, more worrisome, on the safety
of human operators, who manually moves the crane by
remote control.

The architecture of the bridge crane, for each axis, is
depicted in Figure 2. The operator, using a button panel,
sends commands to the motor and varies the position x
and the sway angle ϑ. The oscillation is then controlled
by means of a feedback loop.

The purpose of the paper is to design a controller
which is able to remove the sway without affecting the
human/system interaction.
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Figure 1: The typical structure of a bi-dimensional bridge crane. The
trolley moves right or left (X axis) on the bridge, which moves forward
or backward (Y axis) on the track. The payload is connected to the
trolley using a rigid rope and it can swing on both axes.
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Figure 2: Block diagram of the system. The operator enters in the
loop as a disturb.
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2.1. Experimental setup
The designed controller has been implemented and

tested on a real bridge crane, shown in Figure 3. It has
a maximum payload of 20000 kg and can move on all
the three axes. On the X-axis and Y-axis it can move
at a maximum speed of 1 m/s while on the Z-axis, it
can lift the objects at around 0.2 m/s. The bridge has
an elevation from the ground of around 7 m, while the
trolley can span for 20 m while the bridge on the Y-axis
can move for around 80 m (this distance depends even
on the presence of other overhead cranes on the same
track).

In order to estimate the oscillation angle, an inertial
platform composed by a tri-axial accelerometer and a
tri-axial gyroscope has been placed on the rope that con-
nects the load to the trolley. In order to keep the sen-
sor in a safe position it has been placed near the turn-
buckle which is the part of the rope that link the ca-
ble to the crane, and, consequentially does not move.
From the raw measurements the angle is estimated us-
ing the Extended Kalman filter described in (Comotti
et al. (2014)).

The raw estimated angle is then acquired by a PLC.
This angle is still not suitable for the control purpose,
due to some differences between the model described
in Section 3. The connection between the load and the
trolley is composed by more than one rope and they are
not connected perpendicularly to the trolley. For this
reason an high pass filter is needed to remove the offset
introduced by the connection of the rope to the turn-
buckle. Another problem introduced by the ropes is re-
lated to their not fully stiffness; in fact this leads to high
frequency vibrations of the ropes that can be easily re-
moved using a low pass filter. The PLC then drives an
inverter which puts the motor in movement. The actua-
tion chain, from the PLC to the speed of the motor is not
ideal; if the bandwidth of the motor controller can be
considered wide enough, the delay introduced can not
be neglected. This nominal delay has a fixed amount
and it is due to the disabling of the brakes.

3. Modeling

The system is assumed to be completely decoupled
as discussed in (Piazzi and Visioli (2002)), so the model
is built for a mono-axial cart-pendulum as the one visi-
ble in Figure 5. The assumption holds true also for our
experimental setup. This fact can be easily checked by
moving the crane along one axis at a time or both axes
at the same time (test in Figure 4). Notice that, since the
mutual effects of the two axes are clearly negligible, x
and y can be treated independently.

Figure 3: The real bridge crane used for the tests. The X and Y axes
are super imposed.
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Figure 4: When the crane is moving along the bridge axis (θY ), the
angle produced on the other axis is negligible and vice-versa, so the
dynamics along the two directions can be assumed to be decoupled.
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Ẍ

θ

x
z

smm

l

b

Figure 5: Structure of a mono-dimensional bridge crane.

The control will be then tuned on the identified mod-
els on the X and Y axes controlling the sway on both
directions. In Figure 5, X(t) is the position, Ẍ (t) is the
acceleration, M is the mass of the trolley; sm (t) is the
acceleration and m is the mass of the payload; l is the
rope length, b is the viscous friction coefficient and θ (t)
is the oscillation angle.

In order to simplify the modeling complexity, various
assumptions will be made.

• The payload is connected to the trolley by a mass-
less, rigid rope.

• The trolley and the bridge move along the track
without slipping.

• The speed control system is assumed to be ideal,
that is the actual speed is assumed to be equal to
the reference one.

• The moment of inertia of the load is neglected, and
it is treated as a point mass (notice that this approx-
imation is valid also in case of a multi-wire rope
H. Lee and Segura (2003))

The model can be deduced using the Eulero-
Lagrange equations of motion:

d
dt
δL
δq̇k
−
δL
δqk

= τk ; k = 1...n

L =
1
2
· (M + m) ẋ2 +

1
2

ml2θ̇2 + mlθ̇ẋ cos θ + mgl cos θ
(1)

where L = T − V is the Lagrangian of the system, de-
fined as the difference between the kinetic and the po-
tential energy, n is the number of degrees of freedom

(DOF) of the system, {q1...qn} are a set of generalised
coordinates and {τ1...τn} represents a set of generalised
force associated to the coordinates. In bridge cranes,
the speed is controlled by the operator, so we consider
q = θ. The only external force related to the oscillation
angle is the viscous friction, so τ = bθ̇ where b is the
friction coefficient. Solving Equation (1), the equation
of motion

θ̈ (t) = −
1
l

(
Ẍ (t) cos θ (t) + g sin θ (t) +

b
ml
θ̇ (t)

)
(2)

is obtained. Linearizing the system about θ̇ = 0, θ = 0
and u = 0,

θ (s)
Ẍ (s)

= G(s) =
− 1

l

s2 + b
ml2 s +

g
l

(3)

is obtained, that is the relationship between the acceler-
ation and the angle. Since the input of the system is the
speed of the trolley (the motors are controlled using an
inner speed control loop), we obtain

θ (s)
Ẋ (s)

= F(s) =
− 1

l s

s2 + b
ml2 s +

g
l

(4)

3.1. Identification
On the basis of the model previously deduced, some

tests has been carried out with the aim of identifying the
parameters of the model.

Equation (4) can be rewritten in the following form
and the main parameters can be isolated:

F(s) =
θ(s)
Ẋ(s)

=
µ · s

D2s2 + D1s + 1

µ = −
1
g
, D1 =

b
mlg

, D2 =
l
g

(5)

A fixed delay introduced by the motor, as discussed in
Section 2.1, is also introduced. The nominal value of
this delay is set to 250 ms.

The identification tests have been made at different
length of the rope and with various loads. In particular
the rope length spans from one to six and a half meters,
while two different loads were used, one of 600 Kg and
the other of 5000 Kg (the hook by itself weighs 60 Kg).

The bridge crane was excited moving it backwards
for 10 seconds and, after a delay, moving forward for
other 10 seconds. Both the movements were made at
the maximum speed reachable by the bridge crane.

In order to identify the optimal parameters of the
model, the difference between the real data and the out-
put of the simulation of the model described in Equation
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Figure 6: Validation of the model identified on the Y axis. The rope
length is 5 m with no load.

Rope length [m] NRMSE [%]
1 39.73
2 59.02
3 67.09
4 77.50
5 82.92

6.5 77.59

Table 1: Normalized root mean square index for all the identified mod-
els.

5 has been minimized. In particular, the cost function

J =

N∑
t=0

(θreal(t) − θsim(t))2 (6)

is taken into consideration, where θreal is the acquired
angle, θsim is the simulation of the model and N is the
number of available data.

The model identified for each value of l has been then
validated in open loop. The tests has been made mov-
ing the bridge crane with a different path but with the
corresponding rope length and load. The result of the
validation for one of the models, is visible in Figure 6.

In order to analyze the effectiveness of the identifi-
cation, the NRMSE (Normalized Root-Mean Square Er-
ror) fitness value has been used as

NRMS E = 100 ·
(
1 −

||θreal − θsim||

||θreal − mean(θreal)||

)
. (7)

The average NRMSE fitness index is 67.3, with the value
for each model summarized in Table 1.
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Figure 7: Bode magnitude plots of the system with variation of the
rope length. The mass was fixed at 60 Kg, while the rope length varies
from 1 to 6.5 meters.

3.2. Sensitivity analysis

The bridge crane, due to its typical work-cycle,
changes the rope length and the mass of the load very
often. In detail, a typical work cycle is characterized
by a connection of a load, a lift, a movement, a descent
and a disconnection. It is clear that the mass of the load
and the rope length frequently change. In Figure 7, the
bode diagrams of the models identified before, by vary-
ing the length of the rope and fixing the mass at 60 Kg,
are shown. In Figure 8, the same diagrams for fixed
rope length of 5 meters but different values of the mass
are instead illustrated for a comparison.

The results confirms what can be obtained analyzing
the second order model identified before. A rope length
variation will significantly alter the bandwidth, the gain
and the damping of the system, as visible in Figure 7.
The mass, instead, will cause only a slight change in the
damping factor. For this reason, only the variation of
the rope length will be considered in the design method.

In literature most of the approaches (Corriga et al.
(1998), Zavari et al. (2014) and Lee (1998)) consider
as scheduling variable the rope length. The previous
analysis, with the fact that the rope length is the only
measurements available of the two, strengthens the idea
of creating a gain scheduling controller which changes
its value depending on the length of the rope l. This
parameter will become the scheduling variable.

4. Control design

In Section 3 the mathematical model of the bridge
crane has been deduced emphasizing how the change of
the rope length heavily influences the system. For this
reason a time invariant controller may have poor perfor-
mance and even stability problems. The rope length has
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Figure 8: Bode magnitude plots of the system with variation of the
load mass. The rope length was fixed at 5 meters, while the load mass
varies from 60 to 3000 Kg. A zoom on the resonance peak is also
provided.

an important feature, that will be exploited in the design
of the controller: it is decoupled in frequency with the
band of the oscillations of the load.

4.1. Fixed-order gain-scheduling control design

The procedure used to design the controller is based
on the methodology described in Kunze et al. (2009);
in order to tune the fixed-order linearly parameter-
ized gain-scheduled controller a linear programming ap-
proach is used. The Nyquist diagram of the open-loop
transfer function is shaped in order to respect some con-
straints which will guarantee lower bound on the robust-
ness margin and optimal closed loop load disturbance
rejection in terms of Integrated Error (IE):

IE =

∫ ∞

0
|e(t)|dt (8)

where e(t) is the difference between the desired output
and the measured output.
The method guarantees the performance formulated be-
fore only in the frequency band used during the tuning
of the controller. The closed-loop stability is locally en-
sured.

Defined the structure of the controller, the constraints
on the robustness and performance, the problem is
solved using an optimization algorithm which will find
the best parameters for the controller. In particular, the
linear programming problem has been solved using the
CVX libraries (Grant and Boyd (2014)).

4.1.1. Plant Model
The method can be applied only to a particular class

of SISO LPV systems: the plant model needs to depend
on a nl−dimensional vector l of scheduling parameters
and must have no Right Half-Plane (RHP) poles. The
dependence of the plant model from the scheduling pa-
rameter must be decoupled in frequency.

The definition of the nl−dimensional vector will de-
fine a set of model, directly identified from the real
plant. Suppose that this set covers all the range of val-
ues that can be assumed by the scheduling parameter
and that it is available a sufficient amount of frequency
points N to capture the dynamic of the systems; then the
plant model can be parameterized in this manner:

M = {F ( jωk, li) | k = 1, . . . ,N; i = 1, . . . ,m} (9)

where ωk is the vector of frequency for which the sys-
tem will be evaluated and li is the vector of the schedul-
ing parameter.

4.1.2. Controller definition
Consider the following class of controllers:

K (s, l) = ρT (l) φ (s) (10)

with
ρT (l) =

[
ρ1(l), ρ2(l), . . . , ρnp (l)

]
φT (l) =

[
φ1(l), φ2(l), . . . , φnp (l)

] (11)

where np is the number of parameter ρ polinomially de-
pendent from l and φi(s), i = 1, . . . , np are rational basis
functions with no RHP poles. The dependence of ρi on
the parameter l can be represented using a polynomial
of order pc:

ρi(l) =
(
ρi,pc

)T
lpc + · · · +

(
ρi,1

)T l +
(
ρi,0

)T (12)

where lk represent the element-by-element power of k of
vector l. The controller can be completely defined using
only the vectors of real parameters ρi,pc , . . . , ρi,1, ρi,0.

Following the previous parametrization, a PID con-
troller, with a quadratic dependence from the scheduling
variable can be synthesized as follows:

ρT (l) = [Kp(l),Ki(l),Kd(l)] (13)

φT (s) = [1,
1
s
,

s
1 + T s

] (14)

where T is the time constant of the noise filter; as said
before, considering a second order dependence from the
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scheduling variable l, the controller parameters ρ(l) are
then:

Kp(l) = Kp,0 + Kp,1l + Kp,2l2 ,

Ki(l) = Ki,0 + Ki,1l + Ki,2l2 ,

Kd(l) = Kd,0 + Kd,1l + Kd,2l2
(15)

The parametrization of the controller defined before
associated with a set of non-parametric models, permits
us to write every point of the Nyquist plot of the open-
loop L( jω, li) = K( jω, li)F ( jω, li) as a linear function
of the vector ρi(l) (Leith and Leithead (2000)):

K( jω, li)F ( jω, li) = ρT (li)φ( jω)F ( jω, li) =

ρT (li)R(ω, ll) + jρT (li)I(ω, li) =

(Ml̄i)TR(ω, l̄i) + j(Ml̄i)TI(ω, l̄i) (16)

where

M =


(ρ1,pc )

T . . . (ρ1,1)T (ρ1,0)T

...
...

. . .
...

(ρnp,pc )
T . . . (ρnp,1)T (ρnp,0)T


l̄i =

[
lpc
i . . . li ~1

]
,

with R(ω, ll) and I(ω, li) defined as the real and the
imaginary part of φ( jω)F ( jω, li).

The system is now fully defined, and some optimiza-
tion in terms of performance and robustness, can be per-
formed.

4.1.3. Optimization for performance
Once the structure of the controller is defined, the op-

timization problem aim to find the controller parameters
which are able to satisfy the following performance in-
dexes:

• The system must remain stable for each variation,
within a range, of the scheduling parameter. These
constraints can be called robustness constraints.

• The Integrated Error (IE) must be reduced at its
minimum. These constraints can be named perfor-
mance constraints.

Solving the following minimization problem permits
to satisfy the previous indexes:

max
M

Kmin

s.t.
(
Ml̄i

)T
(cotαI(ωk, li) − R(ωk, li)) + Kr ≤ 1

∀ ωk, i = 1, . . . ,m
np∑
j=1

γ jρ j (li) − Kmin ≥ 0 f or i = 1, . . . ,m

(17)

where M is the matrix of the controller parameters and
Kmin is a term used to ensure the maximization of the
low frequency part of the controller, represented by the

term k0 =
np∑
j=1
γ jρ j (li). The parameters γ j allow to ex-

press k0 as a linear combination of ρ(l) in order to keep
the formulation convex. For further details, see Karimi
et al. (2007); Kunze et al. (2009).

The design variables are Kr, which is linked to the
gain margin value, and α, whose value is related to the
phase margin (as described later in this Section). In
Equation (17), the first constraints are related to the ro-
bustness performance, while the second type defines a
constraint on the performance. Notice that the perfor-
mance constraints focus on disturbance rejection, which
is our goal. For this reason, the low-frequencies compo-
nents of the controller have to be maximized (Åström
and Hägglund (2006)).

The robustness constraints guarantee that the Nyquist
plot of the open loop system will be below a line b that
divide the complex plane in two regions, as visible in
Figure 9. The line crosses the real axis in −1 + Kr with
0 < Kr < 1 and with an angular coefficient defined by
the value of α ∈ ]0° 90°].
Ensuring that the Nyquist contour will be below the line
b has the same meaning of ensuring that the open loop
Nyquist plot wil not encircle the critical point (−1, j0).
In this manner, exploiting the Nyquist criterion (Nyquist
(1932)), it is possible to assure asymptotic stability
against slow variation of the scheduling parameter.
Furthermore, placing the Nyquist curve of the open-
loop transfer function on the right side of b, en-
sures lower bounds on conventional robustness margins
(Karimi et al. (2007)):

Gm ≥
1

1 − Kr
(18)

φm ≥

arccos
(
(1 − Kr) sin2 α + cosα

√
1 − (1 − Kr)2 sin2 α

)
(19)

Mm ≥ Kr sinα (20)

Where Gm, φm and Mm are the gain margin, the phase
margin and the modulus margin.
As said before, α and Kr, are the design variables of the
controller and their values highly influence the system
performance. A wise decision of their values will be
subject to discussion.

Analyzing the maximization problem presented in
(17), it appears that the number of constraints depends
on the frequency points ω and on the range of the
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Figure 9: Definition of the parameters used during the control design.
The line b, defined by the parameter Kr and the angle α, divides the
complex plane in two areas. The green area, below the line b is con-
sidered safe, while the red one, over the line b has to be avoided in
order to keep the stability of the system.

scheduling parameter. Due to that, in order to solve
the problem these two variables must be bounded. In
particular, the problem related to the scheduling param-
eter is easy to solve since it is obvious that the set of
non-parametric models available defines the length of
the vector li.
The problem related to the frequency points, by the way,
it is still unresolved since they are infinite. A solution
to that is gridding the frequency domain: first, the band
of the system must be analyzed, and then in that band, a
finite number of equally spaced points is taken, making
the number of constraints finite. Notice that the best dis-
cretization of the frequency axis is a trade-off choice be-
tween computational load and accuracy. However, this
choice is strongly depending on the shape of the fre-
quency response of the system and a general rigorous
way to grid the frequency axis is subject of ongoing re-
search.

4.2. Tuning of α

As described in Section 4.1.3, α is the angle by
which, the line b, crosses the real axis defining the area
where the Nyquist plots have to be. The value of this
parameter has a relevant role inside the tuning of the
controller, leading to an increment or decrement of the
performance.
The other design variable, Kr is directly connected to
the Gain Margin of the closed loop system by Equation
(18). Once this performance index is fixed, the others
(module margin and phase margin) can be decided and

consequentially even the value of α can be chosen. In-
stead of maximizing the phase margin, our approach is
different: it is important to remove the sway as fast as
possible, even permitting overshoot in the angle. For
this reason it has been decided to fix the gain margin in
order to obtain a robust controller and then compute the
value of α by minimizing the time response to the sway
disturbance. Summarizing, the following procedure is
adopted.

1. Grid the parameter α within its range;
2. Tune a controller for each value of α by solving the

constrained optimization problem (17);
3. Evaluate the settling time ts of the closed-loop sys-

tem for each α, where ts is defined as the time
elapsed from the application of an ideal instanta-
neous step input to the instant at which the output
has entered and remained within a symmetric error
band of 5%.

4. Choose the αwhich minimizes the mean of the set-
tling time ts (over the scheduling parameter l)

Jα =
1
nl

nl∑
i=1

ts(α, li)

An alternative to the minimization of the mean of the
obtained settling times is the minimization of the worst
case. In that sense, the following cost could be used in
place of Jα:

Vα = max
i

ts(α(i)).

5. Results

In this section the results achieved on the real bridge
crane will be presented. Firstly two different controller
tuning processes will be presented and then, the tuned
controllers will be tested on the real system.

5.1. Controller tuning

The method used for the tuning of the controller de-
scribed in Section 4 is here applied on the real system.
In particular, two different type of controller will be
tuned. The first one will be tuned using the model of
the system only at l = 4.5 m while the second one will
be tuned knowing all the models connected to the vari-
ation of the scheduling parameter l.
The controller structure has been defined as

K(s, l) = P1(l)
1

1 + T s
+ P2(l)

s
1 + T s

(21)
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Figure 10: The best P1 (left) and P2 for fixed values of l. The figure
shows that a linear interpolation is good but a quadratic one is slightly
better. A cubic interpolation is instead uselessly complicated.

where P1 and P2 have a quadratic dependence on the
scheduling parameter l:

Pi (l) = Pi,2l2 + Pi,1l + Pi,0 i = 1, 2 (22)

The selected structure arises from various consideration
about the aim of the controller and the model of the sys-
tem. Firstly the controller was chosen without a pure
integral part since the cancellation with the derivator in
the transfer function may hide some unstable behavior.
For this reason a pole in low frequency has been added;
the same pole increase even the gain at low frequency of
the controller, increasing the disturbance rejection. The
zero was added to increase the phase of the system; at
the end the controller has a relative degree equal to zero,
avoiding the introduction of delay in the loop.

Moreover, recall that the bridge crane is a differen-
tially flat system that can be stabilized by a dynamic
feedback controller when the input is the crane speed
Kolar and Schlacher (2013). It turns out that the con-
trol signal needs to contain at least one integrator, which
corresponds to our a-priori assumption on the controller
structure.

In order to choose the correct dependence of the con-
troller parameter from l, an LTI controller has been
tuned for six different values of the length. From Fig-
ure 10, it is clear that a quadratic dependence accurately
captures both the mappings of P1 and P2 at different
lengths.

The only parameter that must be chosen for the tun-
ing of the controller is Kr. For a real-word application
the recommended gain margin is at least 5 dB, leading
to a Kr = 0.8 from equation (18). However, as it can
be easily checked by simulations, this value of Kr leads
to poor performance. A better trade-off between robust-
ness and performance is instead Kr = 0.2, which is then

set as design parameter.

5.1.1. Time Invariant controller - KT I

The Time Invariant controller, as the name explains,
does not have a dependence from the scheduling pa-
rameter l. In fact its parameters depends only from the
model identified at l = 4.5m. For this reason, the con-
troller structure presented in Equation (21) is changed,
removing the dependency from l:

K(s) = P̄1
1

1 + T s
+ P̄2

s
1 + T s

. (23)

Using the method described in 4 the controller does not
guarantee robustness and optimal performance for all
the variation of l, but only for l = 4.5m. This should
lead to loss of performance for the other value of the
scheduling parameter.

The bridge crane used for the tests has a rope length
which spans from 1 to 6.5 meters, leading to a frequency
bandwidth going from 0.19 Hz to 0.49 Hz. For this rea-
son the frequency limits has been set from 0.01 Hz to 10
Hz, gridded every 0.001 Hz, leading to 9991 frequency
points.1 During the tuning of this controller, only one
model has been used, the one identified during the test
with the rope length set at 4.5 meters.

The gain margin Kr, has been set equal to 0.2, while
the other design variable, α, as described in 4.2, has
been tuned evaluating the step response time; in par-
ticular the best performance were achieved at α = 80°.
These values lead to a bound in the gain margin of 1.25
and a phase margin of 28°. To be noticed that these val-
ues are valid only for the controller tuned at 4.5 m. The
controller parameters obtained are the following:

P̄1 = −2.704, P̄2 = −9.882 (24)

In Figure 11 it is shown the Nyquist diagrams of the
open-loop system with the previously computed con-
troller. In particular the Nyquist contour is presented
for different rope lengths: from 1 to 6.5 meter. As
understandable, since during the tuning phase only the
model at 4.5 meter has been considered, the constraints
related to performance and robustness may not be
respected. In particular it is clear how the Nyquist
contour exceeds the line b in 4 of the 6 different models
(without considering the one at 4.5m). More in deep,
the controller for the model at one and two meters
pushes the Nyquist diagram to rotate around the critical

1Note that a logarithmically spaced frequency grid instead of an
equidistant gridding could be equivalently used. In this case, no par-
ticular differences in performance can be shown.
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Figure 11: Nyquist plots of the open loop system with the KT I con-
troller. The stability is guaranteed only for l = 4.5m; in fact the system
with this rope length is below the line b, while for other length, like
for example 1, 2, 3 and 4 meter the Nyquist contours is over the line.
This does not mean that the system is unstable.

point (−1, j0) making the closed loop system unstable.

With the KT I controller, a test has been carried out
in order to evaluate the effects of a change in the load
mass. In figure 8 it is possible to see that a change in the
mass influences the resonance peak of the model; ana-
lyzing the same parameter variation in the system with
the KT I controller, it is possible to see how the mass will
influence only the radius of the Nyquist contour, which
is directly connected to the resonance peak, as visible in
Figure 12. As a consequence, for the considered system,
a change in the mass will not create problem in terms of
stability or loss of performance; this, with the motiva-
tions described in Section 3.2, confirms that scheduling
the controller on the rope length is a wise choice.

5.1.2. Gain Scheduling - KGS

The gain scheduling has been tuned exploiting six
different identified model at different rope length. In
particular the rope length varied from 1 to 6.5 with 6
almost equispaced steps. The controller has the same
structure of the one described in Sections 5.1.1 and 4.
The two parameters of the controller have a quadratic
dependence on the scheduling parameter.
The frequency band is the same of the KT I controller,
so the number of constraints related to the robustness
index for each rope length is still the same, 9991. The
difference here is that, instead of only one scheduled
parameter, there are 6 different values of the parameter.
This leads to 9991 · 6 = 59946 constraints. The other
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Figure 12: Nyquist plots of the open loop system with the KT I con-
troller, at 4.5 meter, with different masses connected. The change of
the load mass influences only the resonance peak of the system, and
consequentially, only the radius of the Nyquist contour.

type of constraints, the performance ones, are related
only to the number of values assumed by the scheduling
parameter, so only 6, leading to a total number of 59952
constraints.

The optimization problem leads to the following con-
troller parameters:

P1(l) = −0.004 · l2 + 0.016 · l − 2.66

P2(l) = 0.433 · l2 − 3.338 · l + 1.451 (25)

These parameters were obtained with an α = 75°,
which permits to minimize the step response time, and
a Kr = 0.2. These values permits to have a gain mar-
gin equal to 1.25 and a phase margin of around 24.4°.
Notice that the value of α employed here is different
from that used for the time-invariant controller in the
previous subsection. This is due to the fact that the se-
lection rule is the same but the two controllers refer to
two different plants: one considering all possible values
of l and the other considering only the nominal value
of l. These indexes are lower bound for all the differ-
ent values assumed by the scheduling parameter l. With
the controller obtained, as visible in Figure 13, all the
Nyquist plots for different rope lengths are in the safe
are, below the line b defined by the parameters α and
Kr.

In Figure 14, the step response of the KT I controller,
the KGS controller and the system without control are
shown. It can be observed that the KT I controller, at
its tuning point 4.5 meters, has better performance, in
terms of response time, compared to the Gain Schedul-
ing controller.
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Figure 13: Nyquist plots of the closed loop system with the Gain
Scheduling controller. It is visible how all the contours, varying the
rope length l, remain below the line b.

At six meter the time invariant controller still have bet-
ter performance compared to KGS , but the performance
loss in the Gain Scheduling case is due to the high level
of robustness requested, which is not insured by KT I . In
the three meter case instead, the damping of the sway
is more similar. To be remembered that the KT I con-
troller is not able to guarantee the stability of the closed
loop system in all the conditions. At one and two me-
ters the system is unstable, leading to unusability of the
controller in a real environment.

The closed-loop simulator can be used also to fi-
nally validate the fact that the mass variation can be ne-
glected in the GS controller design. In fact, from Figure
15, which shows the closed-loop step responses corre-
sponding to different values of the load, it is evident that
the system with very different masses has practically the
same behavior.

5.2. A comparison with state of the art tools
One may think to track the operator speed reference

signal together with the zero sway angle, instead of let-
ting the operator command in open loop. Therefore, in
this subsection, the proposed method is compared with
a second control scheme, where both the operator speed
reference and the zero load oscillation are tracked.

More specifically, the feedback control architecture
shown in Fig. 16 is employed, where

• w is the collection of the reference signals, i.e. the
input of the operator and the zero reference angle;

• z describes the performance indexes, that include
the error between the reference speed and the ac-
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Figure 14: Simulation results of a step response of the closed loop sys-
tem without control, with the time invariant and with the gain schedul-
ing controller. The results are shown for three different rope length.
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neglected in the design of the controller.
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tual speed and the error between the reference an-
gle and the measured angle;

• y is the output of the system (used as input of the
controller). In this case, y = z is selected;

• u is the control variable of the system, namely the
motor command input;

• P is the plant, the bridge crane;

• K is a H∞ gain scheduling controller.

To provide a fair comparison, the H∞ gain schedul-
ing controller is tuned by means of the well established
Matlab tool hinfgs following the method in Apkarian
et al. (1995).

The responses of speed and sway angle using the
above scheme and the proposed fixed-order controller
are shown in the simulations of Figure 17. From the
results, it can be seen that the H∞ gain scheduling con-
troller clearly outperforms the proposed one as far as
speed tracking is concerned (the step responses have no
overshoot for any value of the length). Instead, concern-
ing closed-loop sway dynamics, the H∞ gain schedul-
ing controller performs generally slightly better, but the
worst case (l = 1m) is worse than with the proposed
fixed order controller. Moreover, notice that the pro-
posed controller makes the system response almost con-
stant for all the interesting values of the length. This
means that the system behaviour with the proposed so-
lution is repeatable and more easily predictable, thus
making the interaction with the operators more safe.

Nonetheless, the controller provided by hinfgs turns
out to be a 4th order controller (thus of higher order
than the proposed one) and requires the knowledge of
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Figure 17: Closed-loop performance with the proposed controller
(right) and the H∞ gain scheduling controller tuned via hinfgs (left).

the mass of the cart for its design as well as the avail-
ability of the measurement of the speed of the bridge
crane. Notice that, in many existing bridge cranes, the
speed measurement is not available and the mass value
is difficult to recover accurately.

To conclude, although both the design strategies seem
good for the considered control purpose, the best choice
between them is not obvious and depends on system
limitations, performance requirements and controller
complexity. In some specific situations, e.g. if the speed
sensor is not available, the proposed solution is the only
applicable one.

5.3. Experimental results

On the bridge crane described in Section 2.1, some
tests have been carried out, in order to evaluate the per-
formance of the two controllers previously designed.
In particular the aim was to evaluate the effectiveness
of the Gain scheduling controller compared to the time
invariant one. To do this, three tests at different rope
length, were made:

• Test 1: step response of the system with a rope
length of 3 m;

• Test 2: step response of the system with a rope
length of 4.5 m;

• Test 3: step response of the system with a rope
length of 6 m;

The input of the system, in these three tests, is not a
real step, since it is physically impossible to implement
a real step on a mechanical system like the bridge crane.
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Figure 18: Real tests made on the bridge crane. The results are shown
for the system with the time invariant controller and with the gain
scheduling controller, for three different rope length.

Due to the high inertia and to some structural limitations
it was possible to use as input only a ramp that reach
the maximum speed in 1 second. Higher acceletarions
introduce slipping of the wheel on the track, and excite
the nonlinear behavior of the system.

All the tests were made without any load connected
and moving the bridge crane only on the y axis.
The results of these tests can be seen in Figure 18; in
particular in the top figure it is visible the Test 1, in
the middle the Test 2 and the bottom figure is the Test
3. These results show the effectiveness of the Gain
Scheduling controller, which is able to attain the aim
of reducing the sway of the load in all the conditions.

The controller has been digitalized using Tustin and a
working frequency of 100 Hz and then implemented on
a PLC (Programmable Logic Controller).

The performance has been evaluated computing the
RMS error; the values of this index are shown in Table
2 for each type of controller.

5.4. Discussion
The Figure 18 confirms the results achieved with the

controller. In particular the introduction of the Gain
Scheduling controller permits to maintain an high level
of performance in terms of assessment time. Further
more the KGS controller is more robust compared to the
KT I one; in fact in the Test 1 the system become unsta-
ble with the KT I controller. This is due to differences
between the real model and the mathematical one. The
uncertainty with the largest issue is related to the delay;
in fact it is not fixed, its value changes even in the same
condition.

Rope Length [meter]
RMS Error [°]

Nominal GS

3 4.89 1.49

4.5 1.23 1.32

6 1.40 1.38

Table 2: Root mean square error, in degree, of the oscillation angle
compared with the desired one. This index is shown for the two dif-
ferent type of control.

Different tests showed that the delay may vary from
190 up to 290 ms. Notice that the delay influences the
phase margin of the system. Since the GS controller en-
sures a lower bound on this parameter (in our case 24°),
the system with such a controller is also more robust to
possible variation of the delay. The KT I controller en-
sures the same lower bound on the phase margin only at
4.5 m, while in the other cases, a change in the delay de-
creases the phase margin. It follows that, with the LTI
controller, in the worst case the stability of the closed
loop system is not even guaranteed.

These results are confirmed by the RMS error, which
shows a similar value for KT I and KGS with a rope
length of 4.5 m and 6, while for the case of 3 meter
the gain scheduling has better performance. The RMS
error is resumed in Table 2.

6. Conclusions

In this paper, the problem of sway reduction in bridge
cranes is tackled. To this aim, a fixed-order gain
scheduling controller is designed, with the aim of being
robust with respect to unmodeled dynamics and max-
imizing the speed performance. The original tuning
method has been extended by adding a performance ori-
ented tuning of α and the resulting controller has been
experimentally validated and compared with a time-
invariant law tuned according to the same specifications
and with a state of the art tool for gain scheduling de-
sign.

The proposed control algorithm, thanks to its low
computational burden, can be implemented on a low
cost hardware, thus permitting to improve the perfor-
mance of existing bridge cranes.

Future work will be devoted to LPV control of bridge
cranes for fast load lifting.
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