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Abstract

Image-based computational fluid dynamics (CFD) has shown potential to aid in the clinical 

management of intracranial aneurysms (IAs) but its adoption in the clinical practice has been 

missing, partially due to lack of accuracy assessment and sensitivity analysis. To numerically solve 

the flow-governing equations CFD solvers generally rely on two spatial discretization schemes: 

Finite Volume (FV) and Finite Element (FE). Since increasingly accurate numerical solutions are 

obtained by different means, accuracies and computational costs of FV and FE formulations 

cannot be compared directly. To this end, in this study we benchmark two representative CFD 

solvers in simulating flow in a patient-specific IA model: (1) ANSYS Fluent, a commercial FV-

based solver and (2) VMTKLab multidGetto, a discontinuous Galerkin (dG) FE-based solver. The 

FV solver’s accuracy is improved by increasing the spatial mesh resolution (134k, 1.1m, 8.6m and 

68.5m tetrahedral element meshes). The dGFE solver accuracy is increased by increasing the 

degree of polynomials (first, second, third and fourth degree) on the base 134k tetrahedral element 

mesh. Solutions from best FV and dGFE approximations are used as baseline for error 

quantification. On average, velocity errors for second-best approximations are approximately 

1cm/s for a [0,125]cm/s velocity magnitude field. Results show that high-order dGFE provide 

better accuracy per degree of freedom but worse accuracy per Jacobian non-zero entry as 

compared to FV. Cross-comparison of velocity errors demonstrates asymptotic convergence of 

both solvers to the same numerical solution. Nevertheless, the discrepancy between under-resolved 

velocity fields suggests that mesh independence is reached following different paths.

1 Introduction

Image-based Computational Fluid Dynamics (CFD) has been increasingly employed to 

investigate the role of hemodynamics in initiation, growth and rupture of intracranial 

aneurysms (IAs) see e.g. [16]-[18]-[26]-[27]. Multiple studies have shown the association of 

IA rupture risk with hemodynamic parameters like wall shear stress and oscillatory shear 
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index [17]-[36]-[18], which could potentially aid the clinicians in the management of IAs. 

However, for CFD to transition from research to aid in clinical management of IAs, it is 

important to quantify and compare the accuracy of candidate CFD solvers, sharpening the 

influence of solver parameters on the reliability of the simulated hemodynamic results [29]. 

In fact, the whole simulation workflow, from segmentation of medical images to mesh 

generation and, finally, computational simulations to obtain hemodynamics needs to be 

investigated. However, this study focuses on the CFD solver employed in this whole 

simulation workflow. In particular we ought to investigate the computational cost required to 

reach mesh independence since the computational expense can be significant and can differ 

for different approximation schemes.

CFD solvers based on Finite Element (FE) and Finite Volume (FV) methods are among the 

most celebrated in the biomedical community owing to their handling of complex 

anatomical geometries. While part of the IA research community has developed open-source 

FE-based solvers [14]-[10]-[34], most of the researchers prefer commercially available FV-

based CFD solvers which are robust, validated, user-friendly and supplemented by reliable 

mesh generators [9]-[23]. Although both CFD approaches numerically solve the flow-

governing Incompressible Navier-Stokes (INS) equations in order to simulate 

hemodynamics in IAs, there is an intrinsic difference in FE and FV spatial discretizations 

leading to different approximation properties. Form the temporal discretization viepoint both 

FE and FV CFD solvers rely on ad-hoc time integration strategies. Decoupled schemes 

based on the Pressure Poisson Equation (PPE) or block preconditioners for Differential 

Algebraic Equations (DAEs) systems are usually employed for the sake of efficiency, see 

e.g. Temam [32] and Benzi e.a. [8], respectively. Recently, alongside ubiquitous FV-based 

CFD formulations, discontinuous Galerkin FE methods (dGFEM) are gaining momentum 

for their efficacy and reliability in handling complex CFD applications. Several research 

efforts have proposed and investigated efficient solution strategies for dGFEM 

discretizations of incompressible flow problems, see e.g. [31]-[13]-[25]-[12].

Both FV and FE schemes achieve high-order of accuracy increasing the mesh density (or h-

refinement), but, in order to exploit the favourable convergece properties of higher-order 

discretizations, the degree of dGFE polynomial spaces can be increased keeping the mesh 

fixed (or p-refinement). The aim of the present study is to provide an objective comparison 

of increasingly accurate FV and dGFE hemodynamic computations performed in a complex 

patient-specific IA geometry. Instead of validating against experiments, asymptotic 

convergence is assessed cross-comparing h-refined FV with p-refined dGFE computations. 

The primary goal is to identify the mesh density and the polynomial degree required to 

approach mesh independence in steady state simulations. The secondary goal is to 

objectively compare FV and dGFEM solvers based on the number of degrees of freedom and 

sparsity of the Jacobian matrix (the number of non-zeroes entries of the Jacobian matrix will 

be considered). We do not pretend to identify the best numerical strategy but rather to 

estimate accuracy and computational expense objectively. In particular we neglect wall clock 

time comparison due to the influence of efficacy, fine-tuning and scalability of the solution 

strategy.
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The material in this paper is organized as follows. In Section 2.2 we introduce the 

computational flow domain and its discretization by means of a h-refined mesh sequence. 

The prescribed flow conditions are described in Section 2.3. Section 3 tackles the 

computational methods. As a first point we briefly review FVM and dGFEM focusing on 

asymptotic convergence rates of increasingly accurate spatial discretizations, thus we give 

some details regarding the solution strategy, the iterative solver parameters and the 

convergence history. The comparison of increasingly accurate FV and dG solutions based on 

achieved precision and computational expense is presented in Section 4. Our comparison 

metrics provides a fair ground for cross-evaluating the influence of mesh density and 

polynomial degree on computational hemodynamics in the IA model. We hope that this 

work will contribute to raise the awareness of the subtleties involved in using CFD and will 

provide additional tools to critically evaluate computational studies.

2 Hemodynamics of a patient specific intracranial aneurysm geometry

2.1 Spatial discretizations comparison based on increasingly accurate hemodynamics

Comparison of hemodynamic computations in vascular models based on h-refined FV 

discretizations and p-refined dG discretizations is challenging because of the lack of an 

analytical description of the complex vascular geometry. On one hand h-refined mesh 

sequences intrinsically improve the approximation of the computational domain boundaries 

allowing them to closely replicate the vessel wall smoothness. On the other hand p-

refinement implies that the grid cardinality is fixed and improvements of the computational 

geometry must be pursued by means of higher-order curved elements meshes [33]. Since 

different domain boundaries approximations prevent numerical schemes from reaching same 

numerical solutions, in this study we fix the domain boundaries representation for the FV 

and FE schemes. This allows us to safely compare different scheme’s convergence strategies 

without introducing a bias related to the mesh generation technique. Indeed, even if the 

accuracy of the numerical solution with respect to the (unknown) exact solution on the 

(unknown) exact geometry might be impacted by a rougher computational geometry, the 

convergence properties with respect to the exact solution on the approximated geometry are 

not altered. Accordingly, the accuracy obtained on the approximated geometry is 

representative of the accuracy that would be obtained considering more precise 

approximations of the domain geometry.

2.2 The computational domain and its discretization

The computational domain ΩH is a patient-specific IA geometry reconstructed from medical 

images. After approval by University of Buffalo institutional review board, 3D-Digital 

Subtraction Angiography (DSA) is employed for aneurysm evaluation. The Internal Carotid 

Artery (ICA) aneurysm is located sidewall, immediately after a double bend of the carotid 

syphon. The aneurysm sac and inlet radius measures 9mm and 1.3mm, respectively. For 

image segmentation and surface mesh generation we relied upon the open-source Vascular 

Modelling Toolkit (VMTK) [1]. Vessel walls are approximated by means of a 28k triangular 

elements mesh. Starting from the computational domain boundaries ∂ΩH, the reference 

volume mesh 𝒯1 approximating ΩH is generated by means of the open source software 

Gmsh [21], see Figure 1. The element size is kept proportional to the curvature of vessel 
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walls for a total of 134k tetrahedral elements. The average, maximum and minimum element 

measures are 5.52×10−3, 5.73×10−2 and 2.37×10−4 mm3, respectively. Next, in order to 

obtain a sequence of four h-refined grids 𝒯i i = 1, 2, 3, 4,𝒯1 is uniformly refined four times. 

At each refinement step each tetrahedral element is subdivided in 8 tetrahedral sub-elements, 

such that card 𝒯i = 8i − 1 card 𝒯1 , where card 𝒯i  represents the cardinality of the mesh 

set 𝒯i . Accordingly the mesh step size h halves at each refinement step, that is hi =
h1

2i − 1 .

The finer mesh tops at 68.5m tetrahedral elements. Clearly, defining ∂𝒯i as the union of the 

boundary faces of the volume mesh, we have ∂𝒯i = ∂ΩH .. This trivial refinement strategy 

does not cluster elements near the vessel walls to better capture boundary layers but 

maintains a uniform mesh quality and allows to obtain a sequence of nested grids (where 

each element of 𝒯i, i = 2, 3, 4, is contained in exactly one element of 𝒯i−1).

2.3 Prescribed flow conditions

Since the focus is on the accuracy of FV and dGFEM spatial discretizations we consider 

steady state flow conditions for this study. This is a preliminary step prior to tackling 

unsteady pulsatile flow conditions, where the accuracy of the temporal discretization also 

comes into play. In fact, in order to correctly estimate the temporal error, the spatial 

discretization error must be small enough.

The flow domain has one inlet and one outlet where a plug-flow and a traction-free 

boundary conditions are imposed, respectively. The plug-flow instead of a fully developed 

Poiseuille velocity profile was chosen for simplicity. The computational domain is extended 

in the outward normal direction with respect to the inflow artificial boundary (with the so 

called flow extension) in order to ensure that the flow is fully developed prior to the first 

bend. At the vessel walls a no-slip boundary conditions is imposed.

We consider a physiological flow rate of 260 ml/ min corresponding to an inflow Reynolds 

number of approximately 600. The Reynolds number is high enough that convection 

balances/dominates diffusion, as confirmed by the complexity of velocity profiles observed 

over transversal sections all along the vessel centerline. The tortuosity of the carotid syphon 

produces a non-trivial flow behavior: the bulk of the flow tends to occupy the outward 

portion of the bend while recirculating secondary vortices develop within the cornering arc 

downstream to the bend.

3 Computational methods

This section provides details about the solution strategies and setups of the two CFD solvers 

compared in this work. multidGetto (VMTKLab’s solver) relies on a dG discretization while 

Fluent (ANSYS Inc., Canonsburg, PA) on a FV discretization. Interestingly, dGFEM and 

FVM share some common features: i) They are well suited to discretize conservation laws 

written in flux divergence conservative form, where the unknown variables appear as 

argument of flux functions. ii) They rely on a discrete form of the control volume method 

where each cell of the discretized flow domain is treated as an individual control volume. iii) 
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The definition of suitable numerical fluxes at inter-element boundaries (the surfaces 

bounding each cell’s control volume) ensure conservation of physical quantities and the 

coupling between neighboring elements.

However, the main differences between these solution schemes hinge on the solution 

representation.

• FV: in each mesh element, each unknown variable’s degree of freedom (DOF) is 

its cell averaged value.

• dG: in each mesh element, each unknown variable’s degrees of freedom (DOFs) 

are the coefficients of its polynomial expansion of degree k ⩾ 1.

Accordingly, if fluxes are functions of both the variables and the gradient of variables, also 

the way spatial derivatives are computed differs.

• FV: the gradient is reconstructed using averaged values of neighboring cells.

• dG: the gradient is evaluated in an element-by-element fashion computing the 

spatial derivatives of the polynomial expansion.

Both methods rely on conservation laws in flux divergence conservative form integrated over 

each mesh element. The following procedure is applied to obtain the spatial discretizations.

• FV: cell integrals involving the divergence of flux functions are rewritten as 

surface integrals of (numerical) fluxes using the divergence theorem.

• dG: cell integrals are multiplied by a suitable test function and the terms 

involving the divergence of flux functions are integrated by parts.

Definition of numerical fluxes completes the definition of the method in case of FV. dGFEM 

also requires to introduce piecewise polynomial spaces whose the solution as well as the test 

function belongs to, and quadrature rules for numerical integration over mesh elements and 

mesh faces.

In this work we solve the steady constant density INS equations for Newtonian fluids. The 

continuity equation coupled with the momentum equation for the conservation of mass and 

momentum are discretized by means of dGFEM and FV discretizations.

3.1 Discontinuous Galerkin Finite Element Method

We apply the fully coupled spatial dG discretization introduced by Bassi e.a. [4] which relies 

on the artificial compressibility approach devised by Chorin [19] to recover the hyperbolicity 

at inter-element boundaries. In particular, based on the Godunov’s scheme approach, the 

convective numerical flux is computed by solving Riemann problems associated to the 

artificial compressibility perturbation of the one dimensional Euler equations, see Elsworth 

and Toro [20] and Bassi e.a. [5] for more details. Since artificial compressibility is 

introduced only at the interface flux level, the resulting INS equations discretization is 

consistent irrespective of the amount of artificial compressibility introduced. The artificial 

compressibility flux allows for equal polynomial degree velocity-pressure formulations and 
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improves solver’s robustness when dealing with convection dominated flows. The viscous 

term is discretized by means of the BR2 formulation, see [6].

Unknown trial functions (representing the unknown variables) and test functions belong to 

the following polynomial space

𝒫k 𝒯h : = ×
T ∈ 𝒯h

ℙk T (1)

where ℙk T  is the space of polynomial functions in three variables (one for each space 

dimension) and total degree ⩽ k defined over each mesh element T. Accuracy of dG 

discretizations can be improved refining the grid (h-refinement) or increasing the polynomial 

degree of discrete spaces (p-refinement). If the same polynomial degree is employed for 

each velocity component and for pressure, the resulting dG discretization converges as hk+1 

and hk for the velocity and pressure error in L2(ΩH) norm, respectively. The polynomial 

degree can be chosen to be arbitrarily high, and consisting of arbitrarily shaped elements. 

Fast exponential convergence is obtained in p-refinement (increasing k and keeping the grid 

fixed), faster than any power of h. The steady state solution is sought by means of the 

Pseudo-Transient-Continuation method by Kelley and Keyes [24], a globalization strategy 

that improves convergence of Newton’s method in the presence of rough initial guesses. 

Jacobian matrices are exactly computed leading to a fully implicit fully coupled strategy. 

The Successive Evolution Relaxation (SER) strategy by Mulder e.a. [28] is employed for 

evolving the pseudo time step and the adaptive forcing term choice proposed by Botti [11] is 

applied to avoid oversolving of the Newton equations. The agglomeration based h-multigrid 

solver strategies proposed by Botti e.a. [12] is employed to efficiently solve the linearized 

equations systems of Newton’s method.

3.1.1 Increasing the accuracy of steady state dGFEM hemodynamics—In this 

work we approximate hemodynamics in the IA geometry by means of p-refined dG 

discretizations on the coarse grid 𝒯1. Since p-convergence is steeper than h-convergence, 

see e.g. [2], we do not consider h-refined dG discretizations. We employ polynomial spaces 

of degree k = 1, 2, 3, 4, corresponding to linear, quadratic, cubic and quartic polynomials in 

each mesh element T ∈ 𝒯1 . All computations are initialized with fluid at rest and steady 

state is reached when the Euclidean norm of residual vector, or alternatively the Euclidean 

norm of the solution increment vector, drops below 10‒12. Simulations are run on the 

Cineca’s Marconi HPC facility (x86 Intel Xeon architecture, two 18 cores CPUs per node). k 
= 1, 2, 3, 4 dG solutions are computed in parallel using 8,36,72 and 144 MPI processes, 

respectively. The k = 4 steady state solution is reached in 53 pseudo-transient continuation 

steps, for a total of 213 h-multigrid V-cicle preconditioned FGMRES (Flexible GMRES) 

iterations. Iteration count is almost independent from the polynomial degree, as already 

reported in [12]. V-cycle relies on two coarse agglomerated elements meshes in addition to 

the fine grid, for a total of three multigrid levels. At each agglomeration step a seven-fold 

decrease of the grid cardinality is observed. At each level but the coarsest a single iteration 

of GMRES is employed as a smoother. GMRES is preconditioned with an Additive 
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Schwartz domain decomposition Method (ASM) which relies on a Incomplete Lower Upper 

(ILU) decomposition in each sub-domain. At the coarsest level the convergence criterion for 

the GMRES iteration is set such that the relative residual norm drops below 10−4.

3.2 Finite Volume Method

As a representative FV CFD solver, we employed the commercially popular ANSYS Fluent 

to solve the steady INS equations, hereinafter be referred to as the FV solver. We set 

accuracy to second order for the momentum (second order upwind) and the continuity 

equation, and rely on the recently introduced fully-coupled pressure-based solver. The 

gradient is reconstructed using the cell-based least square approach.

3.2.1 Increasing the accuracy of steady state FVM hemodynamics—The 

solution is computed on the sequence of uniformly h-refined grids 𝒯i i = 1, 2, 3, 4, see 

Section 2.2, where both the velocity and the pressure error in L2 (ΩH) norm are expected to 

converge as h2. FV computations are performed in parallel using 4,8,12 and 28 processes for 

i = 1, 2, 3, 4, respectively, on a proprietary HPC resource at the University of Bergamo. 

Convergence to steady state is achieved when the residual of the continuity and momentum 

equation stagnates around a constant value. Residual of the momentum equation drops 

below 10−12 in 550 and 700 multigrid iteration for computations on 𝒯3 and 𝒯4 respectively. 

Stagnation around 10−7 and 10−9 is observed after 200 and 300 multigrid iterations for 

computations on 𝒯1 and 𝒯2 respectively. Upon convergence to steady state, residual of the 

continuity equation is two orders of magnitude higher than the residual of momentum. As 

already stated in the introduction, no attempt has been made to optimize Fluent solver’s 

parameters. Default options are employed.

4 Comparison of FV and dGFEM

After having computed four increasingly accurate FV and dGFEM numerical solutions by 

means of uniform h-refinement and uniform p-refinement, respectively, the most accurate 

solutions for both schemes are considered as a reference to evaluate the error of less resolved 

approximations. In order to provide a metric for comparing the accuracy also the number of 

DOFs and Jacobian matrix Non-Zeroes entries (JNZs) is evaluated.

4.1 Degrees of freedom and Jacobian matrix sparsity

The total number of DOFs reads

dG DOFs = Nvars dim 𝒫k 𝒯i , (2)

FV DOFs = Nvars card 𝒯i , (3)
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where Nvars = 4 for the INS equations in three space dimensions (three velocity components 

plus pressure), and

dim 𝒫k 𝒯h = card 𝒯i dim ℙk , (4)

dim ℙk = k + 1 k + 2 k + 3
6 , (5)

see definition 1. Note that the number of DOFs associated to each mesh element T ∈ 𝒯i

reads

dG DOFs T = Nvarsdim ℙk , (6)

FV DOFs T = Nvars . (7)

The Jacobian is a sparse square matrix of order equal to the number of DOFs. The matrix 

has a block structure where diagonal and off-diagonal blocks represent element and inter-

element contributions of the spatial discretization, respectively. The number of off-diagonal 

blocks is equal to the number of neighbors of each mesh element. The order of each square 

block is (DOFs(T))2. Accordingly, the total number of Jacobian Non-Zeroes entries (JNZs) 

can be estimated as follows

dG : JNZs ≃ card 𝒯i Nelem Neighbors+1 Nvarsdim ℙk
2 (8)

FV : JNZs ≃ card 𝒯i Nelem Neighbors+1 Nvars
2 (9)

where the average number of element neighbors is Nelem Neighbors ≃ 4 for a tetrahedral 

element mesh. Note that NelemNeighbors < Nfaces = 4 for each tetrahedral element adjacent to 

the computational domain boundary ∂ΩH.

The number of DOFs and JNZs for increasingly accurate dG and FV computations is 

reported in Table 1. dGFEM’s DOFs and JNZs increase at a lower pace with respect to 

FVM’s eight fold increase. While dG 𝒫1 𝒯1  has four times more DOFs than FV on 𝒯1, dG 

𝒫4 𝒯1  has approximately fifteen times less DOFs than FV on 𝒯4. Similarly the JNZs ratio 

drops to two and a half starting from sixteen.
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4.2 Accuracy evaluation

Let’s introduce the set C collecting the centroids of all mesh elements T ∈ 𝒯4, so that card 

(𝒞) = 68.5m and C ϵ 𝒞 is the centroid of mesh element T. The relative velocity errors in L1-

norm are computed as follows

E
L1 Ω H

dGk, FV4: = C ∈ C
v𝒫k

dG , h1 C − vh4
FV C

card 𝒞 (10)

E
L1 Ω H

FVi, dG4: = C ∈ C
vhi

FV, C − v𝒫4
dG , h1 C

card 𝒞 (11)

E
L1 Ω H

dGk : = C ∈ C
v𝒫k

dG , h1 C − v𝒫4
dG , h1 C

card 𝒞 (12)

E
L1 Ω H

FVi : = C ∈ C
vhi

FV, C − vh4
FV C

card 𝒞 (13)

where v𝒫k
dG , h1 ∈ 𝒫k 𝒯1

3 and vhi
FV, C ∈ 𝒫0 𝒯i

3 are the dG and FV velocity solutions, 

respectively, and v C ∈ ℝ3 is the velocity solution evaluated at the cell’s centroid C.

The four velocity errors in 10–11-12–13 reported in Table 2 allow to cross-compare the 

accuracy. Asymptotic convergence towards the same numerical solution is confirmed by the 

monotonic decrease of E
L1 Ω H

dGk, FV4 and E
L1 Ω H

FVi, dG4. The errors associated with the dG𝒫3 𝒯1

numerical solution confirm that p-convergence is faster than h-convergence. Note in 

particular that

E
L1 Ω H

dG3, FV4 < E
L1 Ω H

FV3 and E
L1 Ω H

dG3 <

E
L1 Ω H

FV3, dG4

2 .
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E
L1 Ω H

FVi  errors confirm that second order of convergence for FV numerical solution in 

closely approached, indeed log 

E
L1 Ω H

FV2

E
L1 Ω H

FV3
/log 2 ≈ 1.85. Accordingly, an almost four-fold 

decrease of the error is obtained halving the mesh step size h.

Relative velocity errors between under-resolved dG and FV computations are computed as 

follows

E
L1 Ω H

dGk, FVi: = C ∈ C
v𝒫k

dG , h1 C − vhi
FV C

card 𝒞 , with i = k = 1, 2, …, 4 (14)

Table 3 reports velocity errors against the most accurate dG and FV solutions, see definitions 

10–11, as well as under-resolved velocity errors defined in 14. It is interesting to remark that 

the distance between under-resolved FV and dG velocity fields E
L1 Ω H

FVi, dGk  is comparable 

with the distance between under-resolved FV velocity fields and the most accurate dG 

computations E
L1 Ω H

FVi, dG4 . This suggests that, while solutions computed within the 

asymptotic convergence region are in good agreement, under-resolved computations differ. 

Accordingly FV and dG approximations approach asymptotic convergence from different 

paths. This observation will be confirmed by visual evaluation of velocity solutions in 

Section 4.3.

Figure 2 compares FVM and dGFEM based on accuracy per DOF and accuracy per JNZ. 

The former metric is favorable to dGFEM while the latter suggests that FVM is most 

efficient. Both metrics are relevant in the context of implicit formulation based on inexact 

Newton’s method, where Newton equations are approximately solved by means of iterative 

solvers. Indeed the cost of a Krylov iteration scales linearly with the number of non-zeroes 

entries plus the number of Krylov spaces times the matrix order (equal to the number of 

DOFs), see e.g. Quarteroni e.a. [30].

4.3 Solution evaluation

In this Section we propose a qualitative comparison of dGFEM and FVM solutions 

evaluating the accuracy in picture norm, that is sensing the distance between increasingly 

accurate solutions by cross-comparing pictures depicting their most relevant features. Even 

if this comparison is only qualitative, the complexity of vortex structures can be guessed and 

the very good agreement between sufficiently resolved FV and dG solutions can be fully 

appreciated. Note that, for the sake of comparison, dGFEM solutions of polynomial degree k 
are interpolated to the nodes of the 𝒯i = k grid.
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We first consider a velocity magnitude contour at 65cm/s, see Figures 3-4-5-6. Note that the 

velocity magnitude range is [0,125]cm/s for the most accurate dG and FV velocity solutions. 

Coarse grid FV solutions are clearly over dissipative while low polynomial degree dG 

solutions preserve most of the velocity solution features, being slightly under dissipative. 

This behavior is confirmed by the velocity magnitude range: [0,118]cm/s for the FV solution 

on 𝒯1 and [0,170]cm/s for the dG 𝒫1 𝒯1  solution. Note that the 𝒫2 𝒯1  dG solution has a 

number of DOFs comparable to the FV solution on 𝒯2 (the 1.1m mesh) whereas dG 𝒫1 𝒯1
has four times the DOFs of FV on 𝒯1, see Table 1.

Figure 7 focuses on hemodynimacs inside the aneurysm sac. It is possible to appreciate how 

𝒫2 𝒯1  dG solutions are able to capture most of the flow features. Looking at the aneurysm 

alone the resemblance between second, third and fourth polynomial degree solutions is 

remarkable. As opposite, only the FV solution on 𝒯3 and 𝒯4 are able to satisfactorily 

reproduce the intensity of the primary vortex inside the aneurysm balloon, note in particular 

the peak velocity “gust” travelling near the aneurysm wall.

5 Discussion and Conclusions

The outcome of this work can be considered trivial: given the same computational domain 

and numerically solving the same equations with the same steady state boundary flow 

conditions over it, convergence towards the same numerical solution is observed. This is the 

expected result, even employing different spatial discretizations. Nevertheless, how fine the 

grid should be and how high the polynomial degree should be to approach mesh 

independence is a crucial point that need to be addressed, at least from the viewpoint of the 

relevance of the question itself, see also Valen-Sendstad e.a. [35]. We demonstrated that 

meshes that are considered fine-enough to accurately capture hemodynamics might lead to 

under-resolved velocity fields. Moreover, we show that, even if solutions computed within 

the asymptotic convergence region are similar, different approximation schemes can 

approach asymptotic convergence from different paths. Underestimating the issue can lead 

to frustration when validating against experiments. For example, overly diffusive FV 

velocity fields could be in better agreement than FE velocity fields if compared with under-

resolved Particle Image Velocimetry (PIV) acquisitions.

The accuracy versus DOFs and JNZs analysis reported in Section 4 shows the benefits of 

high-order polynomial expansions from the convergence rate viewpoint. In this regard, the 

ability of mesh generators to provide satisfactory approximations of domain boundaries with 

a number of mesh elements that suits the solver requirements is of crucial importance. 

Indeed, since increasing the polynomial degree provides more accuracy per DOF, coarser 

meshes would allow to further raise the polynomial degree without incurring in excessive 

computational costs (due to an excessive growth of the number of DOFs and JNZs). 

Unfortunately, given the complexity of the vascular district geometries, the generation of 

coarse meshes providing satisfactory approximations of domain boundaries is a user 

dependent and time consuming practice. Further research efforts in the field of high-order 
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mesh generation techniques are required to streamline and automate the meshing stage, see 

e.g. [3]-[7].

Since spatial accuracy is a prerequisite for considering high-order accurate unsteady flow 

computations, the present investigation can be considered a preliminary step to tackle 

physiologic pulsatile flow conditions. Indeed, the mesh density and polynomial degree 

requirements identified by means of steady flow simulations can be safely extrapolated to 

unsteady flow computations provided that the peak Reynolds number (observed at the 

systolic peak) is simulated. Roughly speaking, since the higher the Reynolds number the 

higher the spatial accuracy requirements, the worst case scenario should be taken into 

account. As a limitation to the proposed approach, it is worth to mention that steady state 

boundary flow conditions might lead to the onset of flow instabilities if the flow is 

convection dominated. This can be observed at moderate Reynolds numbers, lower than 

those associated with transition to turbulence, see e.g. [15]. In this occurrence numerical 

studies combining high-order accurate time integration with high-order accurate spatial 

discretizations should be performed.

This paper demonstrates the urge for a posteriori error estimation strategies, possibly in 

combination with adaptive numerical methods that could reduce the error by local 

enrichments at a minimal computational expense. Even if such strategies exist, their actual 

application in the field of computational hemodynamics seems to be quite limited. As an 

extenuating circumstance, it should be considered that several sources of uncertainty might 

dominate over the spatial and temporal errors of the numerical solution. Consider the 

following incomplete list. i) The uncertainty in the computational domain representation. ii) 

The uncertainty in boundary conditions imposed on fictitious inflow and outflow 

boundaries, see e.g. Heywood e.a. [22]. iii) The assumption of rigid walls or the uncertainty 

in actual response of the wall in fluid-structure interaction computations. iv) The uncertainty 

in the constitutive law for blood, in particular for low-speed flows or high-speed flows with 

transition to turbulence. In order to give precise meaning to accuracy requirements, precision 

should be related to uncertainty in the inputs to the mathematical model by means of 

sensitivity analysis. The present investigation does not address this important aspect but 

demonstrates that accurate enough computations (with fine enough meshes and/or high-

enough polynomial degrees in case of FV and dGFEM computations, respectively) will be 

required to do so.
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Figure 1: 
Approximated IA vascular district geometry ΩH. Left, surface mesh of ∂ΩH. Right, clip of 

𝒯1  and 𝒯2  (top and bottom, 134k and 1.07m elements, respectively) showing 

tetrahedral elements within the fluid domain.
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Figure 2: 
Comparison of the velocity error in L1 (ΩH) norm against DOFs (square dots) and JNZs 

(circular dots) for FV (filled dots) and dG (empty dots) discretizations. Increasingly accurate 

FV and dG solutions are obtained by means of h-refinement and p-refinement, respectively. 

Velocity errors for FV and dG dicretizations are computed as defined in 13 and 12, 

respectively.
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Figure 3: 
Velocity magnitude contour at 65cm/s (front view). Qualitative comparison of FVM (first 

row, 𝒯1, 2, 3, 4 meshes) and dGFEM (second row, 𝒫1,2,3,4 polynomial spaces) increasingly 

accurate solutions (from left to right).
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Figure 4: 
Velocity magnitude contour at 65cm/s (rear view ). Qualitative comparison of FVM (first 

row, 𝒯1, 2, 3, 4 meshes) and dGFEM (second row, 𝒫1,2,3,4 polynomial spaces) increasingly 

accurate solutions (from left to right).
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Figure 5: 
Velocity magnitude contour at 65cm/s (back view). Qualitative comparison of FVM (first 

row, 𝒯1, 2, 3, 4 meshes) and dGFEM (second row, 𝒫1,2,3,4 polynomial spaces) increasingly 

accurate solutions (from left to right).

Botti et al. Page 19

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2019 February 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: 
Velocity magnitude contour at 65cm/s (back view ). Qualitative comparison of FVM (first 

row, 𝒯1, 2, 3, 4 meshes) and dGFEM (second row, 𝒫1,2,3,4 polynomial spaces) increasingly 

accurate solutions (from left to right).
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Figure 7: 
Velocity magnitude on a plane cutting the aneurysm in two halves. Qualitative comparison 

of FVM (first row, 𝒯1, 2, 3, 4 meshes) and dGFEM (second row, 𝒫1,2,3,4 polynomial spaces) 

increasingly accurate solutions. All sub-figures use the same 12-colors RGB map for the 

interval [50‒0]cm/s.
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Table 1:

Number of Degrees Of Freedom (DOFs) and Jacobian Non-Zeroes (JNZs) of dG and FV discretizations.

dG FV

polynomial space grid DOFs JNZs grid DOFs JNZs

𝒫1 𝒯1 535k 171.2m 𝒯1 134k 10.7m

𝒫2 𝒯1 1.34m 1.070b 𝒯2 1.07m 85.62m

𝒫3 𝒯1 2.67m 4.280b 𝒯3 8.56m 684.9m

𝒫4 𝒯1 4.68m 13.11b 𝒯4 68.5m 5.48b
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Table 2:

Cross-comparison of velocity error in L1 Ω H  norm. E
L1 Ω H

dGk  and E
L1 Ω H

FVi  compare the error of dGFEM and 

FVM against the most accurate dG and FV solution, respectively. E
L1 Ω H

dGk, FV4 and E
L1 Ω H

FVi, dG4 compare the error of 

dGFEM and FVM against the most accurate FV and dG solution, respectively, see text for details.

dG error [cm/s] FV error [cm/s]

polynomial degree E
L1 Ω H

dGk E
L1 Ω H

dGk, FV4
mesh index E

L1 Ω H

FVi, dG4 E
L1 Ω H

FVi

k = 1 6.73003 6.54353 i = 1 13.4277 13.4227

k = 2 4.02893 4.12215 i = 2 5.58825 5.30604

k = 3 0.88863 1.29241 i = 3 2.07106 1.47922

k = 4 - 0.83734 i = 4 0.83734 -

ref. sol. dG𝒫4 𝒯1 FV𝒯4 ref. sol. dG𝒫4 𝒯1 FV𝒯4
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Table 3:

Cross-comparison of velocity error in L1 Ω H  norm. E
L1 Ω H

dGk, FV4 and E
L1 Ω H

FVi, dG4 compare the error of dGFEM and 

FVM against the most accurate FV and dG solution, respectively. E
L1 Ω H

FVi, dGk compares the error of under-

resolved FV and dG computations.

dG vs. FV E
L1 Ω H

FVi, dGk E
L1 Ω H

dGk, FV4 E
L1 Ω H

FVi, dG4

i = k = 1 11.7134 6.54353 13.4277

i = k = 2 5.31248 4.12215 5.58825

i = k = 3 2.18439 1.29241 2.07106

i = k = 4 0.83734 0.83734 0.83734
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