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Abstract

Most of the currently used models for droplet heating and evaporation are based on the assumption that

droplets are perfect spheres. At the same time the shapes of many observed droplets in engineering ap-

plications are far from spherical. We have studied the influence of droplet non-sphericity on their heating

and evaporation, approximating droplet shapes as prolate and oblate spheroids. The previously developed

exact solutions to the heat and mass transfer equations for the gas phase surrounding a spheroidal droplet

have been used as boundary conditions for the solutions to these equations in the liquid phase. The tem-

perature gradients inside and at the surface of the droplets, and the changes in their shape during the

heating and evaporation process have been taken into account. The effects of surface tension and droplet

motion on droplet heating and evaporation are ignored. The results are applied to the analysis of heating

and evaporation of an n-dodecane fuel droplet in Diesel engine-like conditions. The effect of droplet non-

sphericity is shown to be relatively small for the evaporation time of these droplets with initial eccentricities

2/3 ≤ ǫ ≤ 1.5.
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1. Nomenclature

A area [m2]

a function defined by Eq. (3)

ar half the size of a spheroid perpendicular to the z-axis [m]

az half the size of a spheroid along the z-axis [m]

B function defined by Eq. (56)

c specific heat capacity [J/kg K]
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Dv binary diffusion coefficient of vapour in air [m2/s]

F mass flux

G non-dimensionalised evaporation rate

h convective heat transfer coefficient [W/(m2 K)]

H specific enthalpy

J diffusive mass flux

k thermal conductivity [W/(m K)]

K function defined by Eq. (59)

Le Lewis number [-]

M molar mass [kg/mol]
·
mev average mass evaporation rate [kg/s]
·
m local mass evaporation rate [kg/s]

n unit vector normal to the droplet surface [-]

P gas pressure [bar]

Psat saturated vapour pressure [bar]

q heat flux due to evaporation [W/m2]

q̃ heat flux [W/m2]

Q heat rate [W]

R effective droplet radius [m]

Ru universal gas constant [J/(K mol)]

s s = 1 for prolate spheroids, s = −1 for oblate spheroids

S function defined by Eq. (5)

t time [s]

tdiff relative droplet evaporation time [%]

T temperature [K]

T0 initial uniform droplet temperature [K]

U Stefan velocity of the mixture of vapour and air [m/s]

vn normal velocity of the evaporating surface of the droplet [m/s]

W correction factor [-]

x,y,z Cartesian coordinates [-]

Y mass fraction [-]

Z1, Z2 functions defined by Eq. (60)
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Greek symbols

Γ evaporation enhancement defined by Eq. (8)

ε eccentricity (droplet deformation parameter) [-]

θ angle [rad]

η function defined by Eq. (11)

ξ, u, ϕ ellipsoidal coordinates [-]

ρ density [kg/m3]

Φ function defined by Eq. (2)

ζ function defined by Eq. (11)

Subscripts

0 initial

a air

c critical

def deformed (oblate or prolate)

eff effective

f liquid fuel

g gas mixture (air and vapour)

p at constant pressure

s surface of droplet

sph spherical

tot mixture of gases, i.e. vapour and ambient air

v vapour

∞ ambient gas (far from the droplet)

2. Introduction

Most of the models for droplet heating and evaporation developed so far have been based on the as-

sumption that droplets are perfect spheres [1]. At the same time the shapes of most actually observed

droplets in engineering and environmental applications are far from spherical [2, 3]. The effects of droplet

deformation are generally investigated assuming that the droplet shapes can be approximated as prolate or

oblate spheroids [4].

To the best of our knowledge, the heat conduction equation inside a spheroidal body (droplet) was first

solved analytically more than 135 years ago [5]. This solution, however, turned out to be too complex for
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most practical applications. In most cases this problem (and the related problem of mass transfer inside the

body) has been investigated based on the numerical solutions to heat transfer (and mass diffusion) equations

[6, 7].

The problem of heat/mass transfer inside spheroidal bodies, considered in the above-mentioned papers,

is complementary to the problem of heat/mass transfer between the ambient gas and a spheroidal body,

taking into account their relative velocity. The latter problem has been considered in numerous papers

based on the numerical solutions to the momentum and heat transfer equations in the ambient gas in the

ellipsoidal coordinate system. The analyses of [8, 9, 10, 11, 12] were based on the assumption that the body

surface temperature was fixed. Juncu [13] took into account changes in body temperature with time, while

assuming that there is no temperature gradient inside the body (the thermal conductivity of the body was

assumed to be infinitely high).

These approaches are equally applicable to solid bodies and droplets. In the case of droplets, however,

both heating and evaporation processes should be taken into account. Grow [14] was perhaps the first

to solve the problem of heat and mass transfer in the vicinity of spheroidal particles assuming that their

relative velocities are equal to zero, although she considered coal chars rather than droplets. One of the

main limitations of that paper is that both mass and heat transfer equations were presented in the form

of the Laplace equations, which implies that the effects of the Stefan flow from the surface of the particles

were ignored. The latter effects were taken into account in the exact solutions to the mass and heat transfer

equations in the gas phase around a spheroidal droplet in the model suggested in [4]. In that paper it

was assumed that the temperatures at all points on the surface of the droplet are identical and constant,

and that the droplet’s shape remains the same. A combined problem of spheroidal droplet heating and

evaporation, similar to the one studied in [4], was considered in [15]. As in [4], the authors of [15] based

their analysis on the solution to the species conservation equation in the gas phase and assumed that the

thermal conductivity of droplets is infinitely large. In contrast to [4], the authors of [15] took into account

the relative velocities of droplets, assuming that the dependence of the Nusselt and Sherwood numbers on

the Reynolds and Prandtl numbers is the same as for spherical droplets. Also, they took into account the

time dependence of droplet temperatures and sizes, although their analysis was focused on oblate droplets

only.

As follows from the above brief overview, a self-consistent model of heating and evaporation of spheroidal

droplets is far from being developed. We believe, however, that the results presented in [4] could be consid-

ered as a starting point for constructing this model, at least for droplets that are almost spherical (slightly

deformed spheres). In this paper we present the development of this new model.1

1The preliminary results were presented in our conference paper [16]; some minor mistakes made in the formulae and plots

in the latter paper will be corrected.
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Our model is based on several simplifications, the most significant of which is the assumption that the

droplet remains spheroidal during the heating and evaporation process, although the parameters of the

spheroid, including its eccentricity, are allowed to change with time. The changes in the droplet parameters

are attributed to the heating and evaporation processes only, not to the droplet oscillations driven by the

surface tension. These assumptions do not allow us to apply the model to realistic moving and oscillating

droplets, but we believe that our model can be considered an important step in this direction. It removes

many assumptions made in previously proposed models [4]. Note that the effect of oscillations on the

heating and evaporation process can be ignored if the characteristic period of droplet oscillation is much

longer than the droplet heating and evaporation time [4]. This is expected in extreme operating conditions

that include low values of surface tension, large droplets, low latent heat of evaporation and/or high ambient

temperatures.

The main ideas of the model described in [4] and its possible generalisations are summarised in the next

section.

3. Gas phase

We start with a brief overview of the analysis reported in [4], which was focused on exact solutions to

the mass and heat transfer equations in the gas phase around a spheroidal droplet, assuming a uniform

Dirichlet boundary condition along the droplet surface. The model will be generalised to account for non-

uniform conditions on the droplet surface, assuming that the gradients of temperature and vapour density

perpendicular to the droplet surface are much greater than those along the droplet surface.

In [4] a droplet was assumed to be mono-component and the following steady-state equation for the

vapour mass fraction (Yv = ρv/ρtot) was solved in the gas phase:

∇ (ρtotUYv − ρtotDv∇Yv) = 0, (1)

where ρtot = ρv + ρa is the density of the mixture of vapour (with density ρv) and ambient air (with density

ρa), U is the Stefan velocity of the mixture of vapour and air, Dv is the diffusion coefficient of vapour in

air.

Eq. (1) was solved using spheroidal coordinates ξ, u, ϕ defined as:

x = aΦ−(ξ) sin(u) cos(ϕ)

y = aΦ−(ξ) sin(u) sin(ϕ)

z = aΦ+(ξ) cos(u)



















where

Φ±(ξ) =
eξ ± s(ε)e−ξ

2
, s(ε) = sign(ε− 1), ε = az/ar, (2)
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2az and 2ar are the sizes of the spheroid along and perpendicular to the z-axis, respectively (ε > 1 and

s = 1 for prolate spheroids, ε < 1 and s = −1 for oblate spheroids).2 It can be shown that the coordinate u

is linked with θ = arctan
[

√

x2 + y2/z
]

by the relation tanu = ε tan θ, which is valid for both prolate and

oblate spheroids.

In this coordinate system the spheroidal surface is defined by the equations:

ξ = ξ0 = ln

√

εs + 1

εs − 1
; a = R0

∣

∣1− ε2
∣

∣

1/2

ε1/3
, (3)

where R0 is the radius of a sphere which has the same volume as the spheroid.

The authors of [4] solved Eq. (1) assuming that the values of Yv and all other scalar properties are the

same along the whole surface of the droplet and equal to Yv = Yvs, and Stefan velocity and diffusive fluxes

are perpendicular to the droplet surface (U = (Uξ, 0, 0), ∇Yv = (dYv

dξ , 0, 0) ). These assumptions allowed the

authors of [4] to simplify Eq. (1) to:

ρtotUξ
dYv

dξ
=

Dv

aS2

d

dξ

[

ρtotΦ−(ξ)
dYv

dξ

]

, (4)

where

S2 ≡ S2(ξ, u) = Φ−(ξ)
[

Φ2
−(ξ) cos

2 u+Φ2
+(ξ) sin

2 u
]1/2

. (5)

Note that Eq. (4) is different from the one on which the analysis of [15] was based (see their Eq. (10)). The

latter equation was the Laplace-type equation which is valid only in the case when the effect of the Stefan

flow is ignored.

Eq. (4) was solved assuming that at large distances from the droplet Yv = Yv∞ = const, and the condition

ρtot = ρv + ρa = const is valid (see [1]). The assumption ρtot = ρv + ρa = const was relaxed in [17].

Average evaporation mass rate (
·
mev) and local evaporation mass rate per unit area (vapour mass flux)

(dṁ/dA) were found as [4]:

·
mev = 4πR0ρtotDvΓ (ε) ln

1− Y
(v)
v∞

1− Y
(v)
vs

, (6)

dṁ

dA
=

ε2/3

|1− ε2|S2 (ξ, u)R0
ρtotDvΓ (ε) ln

1− Y
(v)
v∞

1− Y
(v)
vs

, (7)

where

Γ(ε) =

∣

∣1− ε2
∣

∣

1/2

ε1/3















1

π−2 arctan
(√

1+ε
1−ε

) oblate

1

ln
(√

1+ε
ε−1+1

)

−ln
(√

1+ε
ε−1−1

) prolate.
(8)

As mentioned earlier, in [4] it was assumed that Yvs = const. In the general case, these formulae could

be applied when Yvs = Yvs(u) provided that the gradients of Yv in the direction perpendicular to the droplet

2Note that in [11, 12] prolate and oblate spheroids were defined as those with ε < 1 and ε > 1, respectively; the same

definition is used in Fig. 1 of [10].
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surface are much larger than those along the surface. This condition is expected to be satisfied when the

spheroid is a slightly deformed sphere (ε is close to 1).

The generalisation of the approach suggested in [17] to the case of spheroidal droplets has not been

considered so far to the best of our knowledge.

Under the above-mentioned assumptions, the energy conservation equation was presented as (see Ap-

pendix 1):

ρtotUcpv∇T = kg∇
2T, (9)

where cpv is the vapour specific heat capacity at constant pressure and kg is the thermal conductivity of gas

(a mixture of fuel vapour and air in the general case). Note that this equation is different from the one used

in [4] (see Appendix 1 for the details).

This equation was solved using spheroidal coordinates for uniform temperature distributions along the

droplet surface, assuming that the temperature at a large distance from the droplet is equal to T∞ = const.

The solution for the temperature distribution in the gas phase was obtained in the form:

T =
T∞ − Ts

1− η

[

ηζ(ξ,ε) − η
]

+ Ts, (10)

where

η = exp

[

−
1

Lev
ln

1− Yv∞
1− Yvs

]

, (11)

ζ(ξ, ε) =











π−2 arctan(eξ)
π−2 arctan

(√

1+ε
1−ε

) oblate

ln(eξ+1)−ln(eξ−1)
ln(ε+

√
ε2−1)

prolate,

Lev = kg/ (ρtotcpvDv) is the Lewis number for fuel vapour. Eq. (10) is identical to one derived by [4] when

c in [4] is replaced with cpv. The assumption that Yv is the same along the whole surface of the droplet,

used for the derivation of Eq. (4), implies that the tangential component of the temperature gradient along

the surface of the droplet is nil. This is consistent with the assumption made by [4] that droplet thermal

conductivity is infinitely large.

Considering heat transfer from an evaporating droplet, essentially the same analysis as presented above

can be repeated, using the weaker assumption that the temperature gradients in the directions perpendicular

to the droplet surface are much larger than along this surface (cf. the generalisation of the analysis by [4] for

Yv discussed earlier). In this case η becomes a function of u in the general case (recall that Yvs = Yvs(Ts)).

Expression (10) allows us to find the local convective heat transfer coefficient h based on the following

formula:

h = −

∣

∣

∣
−kg∇T |ξ=ξ0

∣

∣

∣

|T∞ − Ts|
. (12)
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Although the value of h was not explicitly calculated in [4], this calculation follows in a straightforward

way from the previous analysis by these authors:

h =
−kgη ln η

R0 (1− η)



















ε1/3
[

π−2 arctan
(√

1+ε
1−ε

)]

√

(

1
1−ε2

−sin2 u
)

oblate

ε1/3

[ln(ε+
√
ε2−1)]

√

(

1
ε2−1

+sin2 u
)

prolate
(13)

where η is defined by Expression (11). This equation can be rearranged as:

h =
−kgη ln η

R0 (1− η)
ε1/3

















√
1−ε2

[

π−2 arctan
(√

1+ε
1−ε

)] oblate

√
ε2−1

[ln(ε+
√
ε2−1)]

prolate







√

1 + ε2 tan2 θ

1 + ε4 tan2 θ
. (14)

Perhaps the most important limitation of the model summarised above is that it does not take into

account the changes in the shape of the droplets during the evaporation process. A simplified model, taking

into account these changes and predicting the time evolution of redistribution of the temperature inside

droplets is described in the next section.

4. Liquid phase

For the liquid phase, the transient heating of an evaporating droplet is described by the following equa-

tion:

ρfcf
∂T

∂t
−∇(kf∇T ) = 0, (15)

where kf , ρf , and cf are thermal conductivity, density and specific heat capacity, respectively, of liquid fuel.

The analytical solution for the gas phase around a spheroidal droplet, presented in [4] and discussed above,

is used for the boundary condition at the droplet surface:

−n(−kf∇T ) = q + h(T∞ − T ) at ξ = ξ0, (16)

where n is the unit vector normal to the droplet surface, the convective heat transfer coefficient h is defined

by (14) and q is the heat flux due to evaporation to be specified later.

We take into account the decrease in the droplet size due to evaporation but not the effect of thermal

swelling. The shape of the droplet is recalculated at each time step assuming that the droplet remains

spheroidal. The dimensions of the droplet along and perpendicular to the z-axis are described by the

following ordinary differential equations

a′r(t) = −
1

ρf

dṁ

dA

∣

∣

∣

∣

u=π/2

, a′z(t) = −
1

ρf

dṁ

dA

∣

∣

∣

∣

u=0

, (17)
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and initial conditions

ar(0) = ar0, az(0) = az0,

where evaporation mass flux dṁ
dA varies along the droplet surface; it is defined by Eq. (7). Temperature, T ,

and the vapour density, ρv, at the droplet surface are linked by the ideal gas law

ρvs =
MvPsat

RuTs
. (18)

We assume that ρv∞ = 0. The ideal gas law is also used for air density near the droplet surface and in

ambient conditions:

ρas =
Ma(P − Psat)

RuTs
, ρa∞ =

MaP

RuT∞
, (19)

where P is the ambient gas pressure and Psat is the saturated vapour pressure, Ru is the universal gas

constant, Mv and Ma are molar masses of the vapour and the ambient air, respectively.

Our model is based on the assumption that at each stage of heating and evaporation, the droplet shape

can be approximated by that of a spheroid but with time dependent ar and az. The initial distribution of

the temperature is assumed to be uniform inside the droplet, T = T0, and the temperature in the ambient

gas, T∞, is assumed to be constant.

The effects of surface tension and droplet oscillations on heating and evaporation processes are ignored.

It is assumed that the droplet does not move relative to air.

5. Parameters of the model and numerical method

Our analysis will be focused on Diesel fuel droplet heating and evaporation in Diesel engine-like condi-

tions, in view of our specific interest in modelling the processes in these engines (the results of our previous

analysis are quite general and are expected to be used in a much wider range of applications). Diesel fuel is

approximated by n-dodecane C12H26, although the limitations of this approximation are well known [18]).

Following [19, 20], we define the saturated vapour pressure, the diffusion coefficient of vapour in air, thermal

conductivity of liquid fuel, the specific heat capacity of liquid fuel and fuel vapour, and the heat flux due to

evaporation for n-dodecane as

Psat∗ = exp
(

8.1948− 7.8099 (300/Ts)− 9.0098 (300/Ts)
2
)

(bar), (20)

Psat =







Psat∗ when Ts 6 0.99Tcr

exp (15(Ts − 0.99Tcr)/0.99Tcr)Psat∗ when Ts > 0.99Tcr

, (21)

Dv = 5.27 · 10−6(Teff/300)
1.583P−1(m2/s)(P in bar), (22)

Teff =
2Ts + T∞

3
, (23)

kf = 0.1405− 0.00022(T − 300) (W/mK), (24)
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cf = 2.18 + 0.0041(T − 300) (k J/kgK), (25)

cpv = 0.2979 + 1.4394(Teff/300) + 0.1351(Teff/300)
2 (k J/kgK), (26)

q = 37.44 · 103(Tcr − T )0.38ρfvn, (27)

where Teff and Tcr K are the effective (using the 1/3 rule) and critical temperatures, vn is the normal velocity

of the recession of the evaporating surface of the droplet (see Appendix 2),

vn = vrnr + vznz, (28)

vr = −r(r2a′r/a
3
r + z2a′z/a

3
z), vz = z(r2a′r/a

3
r + z2a′z/a

3
z), (29)

nr = −r/a2r
√

r2/a4r + z2/a4z, nz = −z/a2z
√

r2/a4r + z2/a4z. (30)

Assuming that the contribution of fuel vapour to the thermal conductivity of the mixture of vapour and

air can be ignored, we can approximate empirical data given in [21] by the following function:

kg = 0.0036 + 0.0252(Teff/300)− 0.00189(Teff/300)
2 (W/mK). (31)

The values of other parameters used in our analysis are presented in Table 1.

Table 1: The values of the parameters used in the analysis

Parameter Value Notes

ε0 1.5 (2/3) initial droplet deformation for prolate (oblate) droplet

R0 10−5 m initial effective droplet radius

ρf 744.11 kg/m3 liquid n-dodecane (C12H26) density

T0 300 K initial droplet temperature

T∞ 700 K ambient gas temperature

P 30 bar ambient gas pressure

Ru 8.3154 J/(Kmol) universal gas constant

Mv 170.33·10−3 molar mass of vapour

Ma 28.97·10−3 molar mass of ambient air

Tcr 659 K critical n-dodecane temperature

Equations (15)-(17) were solved numerically until the droplet effective radius, R, dropped below 5 · 10−8

m. They were integrated using the finite-element-based PDE modules of COMSOL Multiphysics including

Moving Mesh (ALE). We ensured that the solutions remained unaffected by the mesh size and time steps

below certain minimal values.
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6. Results

In this section, we consider the results of numerical solutions to Equations (15)-(17), describing heating

and evaporation of a stagnant spheroidal droplet surrounded by air. Functionality testing of the model

was carried out to ensure that the solution for spherical droplets, using the previously developed approach

[22], agrees with the predictions of the newly developed model in the limiting case when spheroidal droplets

become spherical (ε → 1) (see Appendix 3).

Figure 1: Temperature profiles along the vertical cross section of a prolate droplet at four instants of time: A) t = 0 s, B)

t = 0.001 s, C) t = 0.004 s, D) t = 0.004885 s. Droplet initial temperature, T0 = 300 K; ambient gas temperature, T∞=700 K;

gas pressure, P = 30 bar.

In Fig. 1, the temperature profiles along the vertical cross section of a prolate evaporating droplet at

four time instants are shown. The initial droplet deformation parameter is assumed equal to ε0 = 1.5 and

the initial effective radius R0 = 10−5m. As follows from Fig. 1B, the temperatures inside the droplet and at

its surface increase over time and reach their highest values at the spheroid’s extremities (poles) where the

surface curvature is the greatest. As a result of higher evaporation in these regions of the droplet surface,

the shape of the droplet becomes more spherical with time. Similar qualitative behaviour is shown in Fig. 2
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Figure 2: Temperature profiles along the vertical cross section of an oblate droplet at four instants of time: A) t = 0 s, B)

t = 0.0001 s, C) t = 0.004 s, D) t = 0.004885 s. Drop initial temperature, T0 = 300 K; ambient gas temperature, T∞=700 K;

gas pressure, P = 30 bar.

for an evaporating oblate droplet with initial deformation parameter ε0 = 2/3 and an initial effective radius

R0 = 10−5m.

Fig. 3A shows a schematic of a prolate droplet with an initial deformation parameter ε0 = 1.5; ar and

az are the radial and axial semi-axes. Figs. 3B-D demonstrate how characteristics of the prolate (solid

lines) and oblate (dashed lines) spheroids change with time. Fig. 3D shows that the evaporation at the

droplet surface regions with higher curvature (e.g. point B in Fig. 3A for a prolate droplet) is higher than

at point A (by up to 700%). Higher evaporation means that droplet eccentricity will move towards 1 (see

Fig. 3B). This suggests that the evaporation of a droplet causes it to become more spherical. In Fig. 3C,

we demonstrate that local temperatures at point A (TA) and point B (TB), of the deformed droplet surface

can vary noticeably (by up to more than 35 K). Using (17) for constant temperature along the droplet

surface, we obtain, a′z/a
′
r = ε. Thus, once the temperature along the droplet surface becomes uniform (or

close to uniform), the ratio a′z/a
′
r = ε. Furthermore, it can be shown analytically that the droplet shape
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remains ellipsoidal when the droplet temperature is uniform (see Appendix 4). Note that in our analysis

this temperature is not uniform in the general case (see Fig. 3B).

Figure 3: (A) A schematic of a prolate droplet with an initial deformation parameter ε0 = 1.5; ar and az are the radial and

axial droplet semi-axes; (B) ratio ε = az/ar versus time (s) for prolate (solid) and oblate (dashed) droplets; (C) absolute value

of the temperature difference (in K) at points A and B of prolate (solid) and oblate (dashed) droplets versus time (s); TA and

TB are surface temperatures at points A and B, respectively; (D) ratio a′z/a
′

r vs time for prolate (solid) and oblate (dashed)

droplets. Droplet initial temperature, T0 = 300 K; ambient gas temperature, T∞ = 700 K; gas pressure, P = 30 bar.

Fig. 4 shows how the effective radius of prolate (solid), oblate (dashed) and spherical (dotted) droplets

changes with time due to evaporation (curves for prolate and oblate droplets are indistinguishable). This

figure demonstrates that prolate and oblate droplets, with initial effective radius R0 = 10−5 m and initial

deformation parameters ε0 = 1.5 and ε0 = 2/3, evaporate slightly faster (by 1.4%) than a spherical droplet

with the same initial volume (same R0).

Note that the results shown in Figs. 1(D) and 2(D) should be viewed with caution as for very small

droplets kinetic, molecular dynamics and even quantum chemical effects, ignored in our analysis, are likely

to become important [20, 23, 24].

13



Figure 4: Effective radii of prolate (solid), oblate (dashed) and spherical (dotted) droplets versus time during the heating

and evaporation processes. Droplet initial temperature, T0 = 300 K; surrounding gas temperature, T∞=700 K; gas pressure,

P = 30 bar.

6.1. Parameter sensitivity analysis

We analysed the sensitivity of the model to deviations in the key parameters shown in Table 1. We intro-

duce tdiff characterising the relative evaporation time difference between spherical and deformed droplets,

tdiff = (tsph − tdef)/tsph · 100%, (32)

where tsph and tdef are evaporation times of the spherical and deformed droplets, respectively. Fig. 5 shows

how tdiff is influenced by changes in parameters R0 (its default value is 1 · 10−5 m; the range of values

[2 · 10−6 m, 2 · 10−5 m] was considered), T∞ (its default value is 700 K, the range of values [500 K, 900 K]

was considered), T0 (its default value is 300 K, the range of values [300K, 500 K] was considered) and P (its

default value is 30 bar, the range of values [5 bar, 60 bar] was considered).

The results of our analysis demonstrate that tdiff changes only in the range 1% to 3%; there is no visible

dependence of tdiff on R0 for prolate droplets. Thus, the evaporation time difference tdiff shows almost no

sensitivity to variations in these parameters and tdiff for spherical and deformed droplets was shown to be

small.
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Figure 5: The results of sensitivity analysis for four parameters: R0, T∞, T0 and P . The relative differences in the droplet

evaporation times for spherical and deformed droplets (prolate (solid) and oblate (dashed) spheroids), tdiff, are shown to be

small (less than 3%).

7. Conclusions

A new mathematical model for heating and evaporation processes of a liquid spheroidal (prolate and

oblate) droplet is described.

The previously obtained exact solutions to the heat and mass transfer equations for the gas phase

surrounding a spheroidal droplet were used as boundary conditions for the solutions to these equations in

the liquid phase. The temperature gradients, inside and at the surface of the droplets, and the changes

in their shape during the heating and evaporation process were taken into account, assuming that the

gradients of temperature perpendicular to the droplet surface are much larger than those along this surface.

The results were applied to the analysis of heating and evaporation of an n-dodecane (approximation of

Diesel fuel) droplet in Diesel engine-like conditions.
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It is shown that local temperatures can vary noticeably along the droplet surface (by up to more than

35 K) and significant changes in local evaporation rates (by up to 700%) were observed. Droplet heating is

shown to be more intense in the regions with greatest curvature.

Higher evaporation at the droplet surface in these regions led to a decrease in droplet eccentricity

(ε = az/ar) for prolate and an increase for oblate droplets. In both cases this eccentricity is shown to

tend towards 1 at the end of the evaporation process (i.e. the droplet becomes more spherical).

The effect of droplet non-sphericity on the evaporation time of droplets was shown to be relatively small

for the range of parameter values under consideration.
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Appendix 1. Energy equation with inter-diffusional terms

We consider an energy transport process in a mixture of N gases. The steady-state energy equation for

this mixture, taking into account inter-diffusional terms (but ignoring work and dissipation terms), can be

presented as [25]:

∇j (ρtotUjHtot) = −∇j q̃j −∇j

N
∑

i=0

HiJ
(i)
j , (33)

where Hi is the specific enthalpy of species i , J
(i)
j is the jth component of the diffusive mass flux of species

i; Htot, ktot and ρtot are the enthalpy, thermal conductivity and density of the gaseous mixture, respectively

(Htot =
∑N

i=0 HiY
(i)); Uj and q̃j = −ktot∇jT are the jth components of the velocity vector of the gaseous

mixture and the heat flux, respectively.

Let us rewrite Equation (33) in the form:

∇j

[

ρtotUj

N
∑

i=0

HiY
(i) +

N
∑

i=0

HiJ
(i)
j

]

= ∇j (ktot∇jT ) . (34)

The left-hand side (LHS) of Equation (34) can be rewritten as

∇j

[

ρtotUj

N
∑

i=0

HiY
(i) +

N
∑

i=0

HiJ
(i)
j

]

= ∇j

N
∑

k=0

Hi

(

ρtotUjY
(i) + J

(i)
j

)

. (35)

Introducing the total mass flux (sum of diffusive and convective fluxes)

F
(i)
j = ρtotUjY

(i) + J
(i)
j , (36)

the right-hand side of Equation (35) can be presented as:

∇j

N
∑

i=0

Hi

(

ρtotUjY
(i) + J

(i)
j

)

= ∇j

N
∑

i=0

F
(i)
j Hi. (37)

This allows us to present Equation (33) as

∇j

N
∑

i=0

F
(i)
j Hi = ∇j (ktot∇jT ) . (38)

This is the equation ‘H ’ in Table 19.2-4 of [25] (
∑N

i=0 F
(i)
j Hi in our paper is the same as

∑N
i=0 N

(i)
j h̄i in

[25], h̄i is the partial molar enthalpy of species i).

In the case of a binary mixture of a vapour and a gas (F(v) = F(1) and F(g) = F(0)), Equation (38) is

simplified to

∇j

(

F
(v)
j Hv + F

(g)
j Hg

)

= ∇j (ktot∇jT ) . (39)

Taking into account that the net ambient gas flux is zero (convective flux compensates for the diffusion flux),
(

F(g) = 0
)

, we have:

F
(v)
j = ρtotUjY

(v) + J
(v)
j . (40)
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Remembering that [1]:

J
(v)
j = ρtotUjY

(g), (41)

we can rewrite Equation (39) as:

∇jρtotUjHv = ∇j (ktot∇jT ) . (42)

Remembering that

Hv = cpvT +Hv0 (43)

and the mass conservation equation (∇U = 0) we obtain,

ρtotUjcpv∇jT = ∇j (ktot∇jT ) . (44)

Equation (44) is identical to Equation (10). This equation is the same as given in [4] if c in the latter paper

is replaced with cpv.

The solution to Equation (44) yields (as in [26], except for the value of cpv) the non-dimensionalised heat

rate,

Q̃s =
Qs

4πR0kT∞
=

(

T̃s − 1

eG̃Γ(ε) − 1

)

G̃, (45)

where T̃s =
Ts

T∞
is the non-dimensionalised surface temperature, G̃ =

ṁevcpv
4πR0ktot

is the non-dimensionalised

evaporation rate, Qs = −4πR2
0ktot∇nT , and ∇nT is the normal component of the themperature gradient.

The analysis of the case without inter-diffusional terms (considered in [4]) would yield the same equation as

(45) but with G̃′ =
ṁevcpg
4πR0ktot

= G̃
cpv
cpg

:

Q̃′
s =

(

T̃s−1

eG̃′Γ(ε)−1

)

G̃′ =

(

T̃s−1

e
G̃

cpv
cpg

Γ(ε)
−1

)

G̃
cpv
cpg

=
(

T̃s−1

eG̃Γ(ε)−1

)

G̃

[

cpv
cpg

eG̃Γ(ε)−1

e
G̃

cpv
cpg

Γ(ε)
−1

]

=

= Q̃sW,

(46)

where

W =
cpv
cpg

eG̃Γ(ε) − 1

e
G̃

cpv
cpg

Γ(ε)
− 1

(47)

is a correction factor. If G̃ is small,

eG̃Γ(ε) = 1 + G̃Γ(ε) +O(G̃2) (48)

and W = 1 + O(G̃2). Thus, the solution to Equation (10), considered in this paper, becomes close to the

solution considered in [4].
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Appendix 2. Derivation of Equation (29)

The normal velocity of the recession of the droplet evaporating surface used in Equations (27)-(29) can

be presented as:

vn = vrnr + vznz, (49)

vr = −r(r2a′r/a
3
r + z2a′z/a

3
z), vz = z(r2a′r/a

3
r + z2a′z/a

3
z). (50)

Note that the normal velocity of the recession of the droplet evaporating surface is related to the local mass

evaporating flux, dṁ
dA , as:

vn(u) = −
1

ρf

dṁ

dA
(51)

(cf. Equation (17)).

We assumed that the evaporating droplet shape remains spheroidal ’so that we could apply the analytical

solution (6)-(14). At each time step, we define the sizes (az and ar) and their derivatives (a′z and a′r) along

and perpendicular to the z-axis, using (17), and then calculate the evaporation flux at other points on the

spheroidal droplet, using interpolation.

To derive Equation (27), let us follow a point at the droplet surface (r1, z1) that moves to a point (r2,

z2) at the deformed droplet surface due to evaporation when time changes from t1 to t2, assuming that t1

is close to t2. Taking into account the fact that points (r1, z1) and (r2, z2) are at the surfaces of spheroids

with semi-axes ar1, az1 and ar2, az2, respectively, we obtain,































(

r1
ar1

)2

+

(

z1
az1

)2

= 1,
(

r2
ar2

)2

+

(

z2
az2

)2

= 1,

ar2
ar1

=
az2
az1

.

(52)

Assuming that

∆ar = ar2 − ar1, ∆az = az2 − az1 (53)

are small, and omitting second order terms in (52), we obtain























r2 − r1 = −r1

(

(

r1
ar1

)2

∆ar +

(

z1
az1

)2

∆az

)

,

z2 − z1 = −z1

(

(

r1
ar1

)2

∆ar +

(

z1
az1

)2

∆az

)

.

(54)

Dividing both parts of Equations (54) by t2 − t1 and remembering that t2 − t1 → 0, we obtain:

vr|(r1,z1) = −r1(r
2
1a

′
r1/a

3
r1 + z21a

′
z1/a

3
z1), vz|(r1,z1) = z(r21a

′
r1/a

3
r1 + z21a

′
z1/a

3
z1). (55)

These expressions are identical to those given in Equation (29).
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Appendix 3. Predictions of the new model and the one described in [22] for a spherical droplet

In what follows, the predictions of the model described in [22] for a spherical droplet are compared with

the predictions of our model in the limit when the droplet evaporation parameter (eccentricity) is equal

to 1 (spherical droplet) and the other parameter values are as given in Table 1. Fig. 6 shows the effective

radius of a droplet and its surface temperature, predicted by the model described in [22] (dashed) and our

model (solid) versus time. In our model the droplet was assumed to be spherical when the deformation

parameter ε was equal to 1.001. Fig. 6 demonstrates a reasonably good agreement between the predictions

of both models, the difference between the results turned out to be less than about 3%. These differences

are comparable with the accuracy of the models used in our analysis (the model used in [22] was based on

the analytical solution to the heat transfer equation inside droplets at each time step, while our model was

based on the numerical solution of this equation; the approximations of the transport and thermodynamics

properties of the fluids used in both models were slightly different).

Appendix 4. A simplified analysis of droplet shape evolution

Consider a point on a spheroidal surface (r1, z1), where r1 =
√

x2
1 + y21 , and evaluate the time derivative

of the following parameter,

B =
r21
a2r

+
z21
a2z

. (56)

Note that initially B = 1. Differentiating (56) with respect to time gives

1

2

dB

dt
=

r1ṙ1a
2
r − r21arȧr
a4r

+
z1ż1a

2
z − z21azȧz
a4z

. (57)

Note that for a spheroid we have the following relations:

r1 = R0ε
−1/3 sin θ1; z1 = R0ε

2/3 cos θ1,

ar = R0ε
−1/3; az = R0ε

2/3.

The time derivative of (r1, z1) can be calculated as:

(ṙ1, ż1) = −
ṁev

4πR2
0ρf

K (θ1) (nr, nz, ) (58)

where (nr, nz) are the radial and z-component of the unit vector normal to the surface:

(nr, nz) =

(

ε2/3 sin θ, ε−1/3 cos θ
)

(

ε−2/3 cos2 θ + ε4/3 sin2 θ
)1/2

,

K (θ1) =
ε2/3

√

1 + (ε2 − 1) sin2 (θ1)
, (59)
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Figure 6: Radii of a spherical droplet and its surface temperature as functions of time predicted by the model developed in

this paper (solid) and the model described in [22] (dashed).

ṁev

4πR2
0
is the average evaporation flux at the surface of the droplet. Equation (58) can be rewritten in a more

explicit form as:

(ṙ1, ż1) = −
ṁev

4πR2
0ρf

(

ε5/3 sin θ1, ε
2/3 cos θ1

)

(

1 + (ε2 − 1) sin2 θ1
)3/2

.

The time derivatives of the half-axes are estimated as:

ȧr = −
v
(

θ = π
2

)

ρf
= −

ṁev

4πR2
0ρf

K
(π

2

)

= −
ṁev

4πR2
0ρf

ε−1/3

ȧz = −
v (θ = 0)

ρf
= −

ṁev

4πR2
0ρf

K (0) = −
ṁev

4πR2
0ρf

ε2/3.

Thus the values of ar, az, r1 and z1 and their derivatives can be presented as:

ar = R0ε
−1/3; az = R0ε

2/3

ȧr = −Z1ε
−1/3; ȧz = −Z1ε

2/3
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r1 = R0ε
−1/3 sin θ1; z1 = R0ε

2/3 cos θ1

ṙ1 = −Z2ε
5/3 sin θ1; ż1 = −Z2ε

2/3 cos θ1,

where

Z2 =
ṁev

4πR2
0ρf

1
(

1 + (ε2 − 1) sin2 θ1
) ; Z1 =

ṁev

4πR2
0ρf

. (60)

Substituting this expression into Equation (57) gives:

1

2

dB

dt
=

r1ṙ1a
2
r − r21arȧr
a4r

+
z1ż1a

2
z − z21azȧz
a4z

= ε−1/3 sin2 θ1
−Z2ε

4/3 + ε−2/3Z1

R0ε−1
+ ε2 cos2 θ1

−Z2 + Z1

R0ε2
=

=
1

R0

ṁev

4πR2
0ρf

(

sin2 θ1
(

1− ε2
)

− 1
(

1 + (ε2 − 1) sin2 θ1
) + 1

)

= 0.

Since B = 1 at the start of the process, it remains equal to 1 during the development of the process. Hence:

B =
r21
a2r

+
z21
a2z

= 1

at any time. Thus the shape of the droplet remains spheroidal.

Note that this result refers to isothermal spheroids, which are different to the ones considered in our

paper in the general case.
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