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Abstract

The growing interest of research in econometric methods for systemic risk
analysis fostered a rapid development of econometric spillover and network
models to monitor the systemic risk in financial systems and improve in-
vestment management practices. The thesis contributes to the literature on
econometric interconnectedness and investment management by developing
new techniques for building models capable to reveal insights on the com-
plex relationships in economic and financial systems. From a methodological
viewpoint, the thesis mostly contributes to the econometric literature on
interconnectedness measurement and to the financial one on portfolio man-
agement. From an empirical viewpoint, financial applications are offered for
both traditional financial markets and the cryptocurrency one, whose relative
importance in the global financial system is growing over time.

The contributions of this thesis to the literature are developed in seven
self contained chapters. Chapter 2 proposes a Vector Error Correction model
based spillover methodology to monitor return connectedness and lead-lag
relationships of Bitcoin - and more generally financial - market exchanges.
Chapter 3 extends the previous study by means of an in-depth analysis of
intra-day data. Chapter 4 proposes a methodology to construct a basket
based stablecoin whose value is stable over time and resilient to shocks in
the currency market. Chapter 5 examines the lead-lag relationship between
the European countries’ sovereign CDS and bond market by means of the
effective transfer entropy methodology. Chapter 6 introduces an artificial
neural network framework for Bitcoin option pricing. Chapter 7 proposes an
asset allocation methodology capable to take into account for the systemic
risk impounded into network metrics when dealing with portfolio manage-
ment, applied to the cryptocurrency space. Chapter 8 proposes a methodol-
ogy based on chaos and dynamical systems theory for non-linear time series
forecasting and investment strategy development.
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1 General introduction

Connectedness is a key topic arisen in the field of financial risk measure-
ment and management. Connectedness features in important aspects of mar-
ket risk, i.e. portfolio concentration and return connectedness, credit risk -
default connectedness -, systemic risk, that is system-wide connectedness,
counter-party risk - bilateral and multilateral contractual connectedness, as
well as business cycle risk, with intra- and inter-country real activity - see
Diebold and Yilmaz (2009). Connectedness and systemic risk are therefore
fundamental related concepts in economic and financial fields.

World crises such as the global financial crisis of 2007 - 2009 and the
Covid-19 outbreak have stressed the importance to examine the global sys-
tems as a network of interconnected entities, where linkages play a fundamen-
tal role in the contagion dynamics. Against this, researchers have proposed
several spillover and network models which can help monitoring the systemic
risk in financial systems.

Connectedness is key to understand price discovery processes and lead-lag
relationships among financial actors. It becomes of fundamental importance
also in the investment management field, where knowing the relationships
existing among financial assets becomes crucial in the allocation problem,
as well as prior knowledge of leadership dynamics may enhance arbitrage
opportunities.

This thesis aims to contribute to the existing literature both from a
methodological and empirical viewpoint, i.e. providing new methodological
tools and extending the use of existing ones, and uncovering insights on
modern economic and financial systems. The thesis mainly contributes to
the literature on the interconnectedness and information flow, methods to
construct a stable basket-based stablecoin, novel methodologies for option
pricing and asset allocation; providing empirical applications not only to
traditional financial markets, but also to the fintech space. Indeed, several
applications are developed on the cryptocurrency market, a nascent market
with unprecedented characteristics which deserve to be explored.
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The contributions are presented in seven self contained chapters.
In chapter 2 we present a Vector Error Correction model (VECM) based

spillover methodology that builds upon the law of one price to determine
return connectedness of securities across financial market exchanges. We
apply the methodology to a set of Bitcoin market exchanges and determine
which are the leader and the follower in the shock transmission mechanisms.

In chapter 3 we make use of the interconnectedness tools to extend the
analysis reported in chapter 2. In particular, we analyze the intra-day price
change spillovers across Bitcoin exchanges and get indication of the lead-lag
relationships among the platforms at intra-day level.

In chapter 4 we propose a methodology to construct basket based stable-
coins whose value is relatively stable over time. We discuss the main policy
implications of adopting a basket based stablecoin whose weights are derived
by minimizing variability rather than a single digital currency, potentially
more sensitive to market factors.

In chapter 5 we examine the lead-lag relationship between the sovereign
CDS and bond market of a set of representative European Union countries
by means of effective transfer entropy. The effective transfer entropy allows,
differently from previous studies, to examine the post sovereign crisis pe-
riod, overcoming the need for the two markets to be cointegrated in order to
conduct the analysis.

In chapter 6 we analyze a nascent market, i.e. the Bitcoin option market,
and provide a tool to Bitcoin option pricing. The methodology proposed
builds upon classical option pricing methods such as Monte Carlo simula-
tion, trinomial tree, finite difference method, and combines them through an
artificial neural network to improve the pricing precision.

In chapter 7 we illustrate a method to construct a portfolio taking into
account for the network centrality of the assets to be included. The algorithm
is able to determine the weights as a function of the systemic risk aversion
of the investor, which determines whether to take to a greater extent core or
peripheral assets; we apply this algorithm to the cryptocurrency space.

2



In chapter 8 we propose a methodology based on chaos and dynamical
systems theory for non-linear time series forecasting and investment strat-
egy development. We construct Constant Chaoticity Portfolios (CCP) and
evaluate their performances relative to several competing alternatives on the
survival components of the STOXX Europe 50 index and the Hang Seng
index.

Chapter 2 has been published as: Giudici, Paolo, & Pagnottoni,
Paolo. 2020. Vector error correction models to measure connectedness
of Bitcoin exchange markets. Applied Stochastic Models in Business and
Industry, 36(1), 95–109.

Chapter 3 has been published as: Giudici, Paolo, & Pagnottoni,
Paolo. 2019a. High Frequency Price Change Spillovers in Bitcoin Markets.
Risks, 7(4), 111.

Chapter 4 is currently under review process as: Giudici, Paolo, Pag-
nottoni, Paolo, & Leach, Thomas. 2020a. Libra or Librae? Basket
based stablecoins to mitigate foreign exchange volatility spillovers. available
at SSRN.

Chapter 5 is currently under review process as: Caserini, Nicoló, &
Pagnottoni, Paolo. 2020. Information Flow in the Credit Risk Mar-
ket: Evidence from the European Sovereign CDS and Government Bonds.
Working Paper.

Chapter 6 has been published as: Pagnottoni, Paolo. 2019. Neural
Network Models for Bitcoin Option Pricing. Frontiers in Artificial Intelli-
gence, 2, 5.

Chapter 7 has been published as: Giudici, Paolo, Pagnottoni, Paolo,
& Polinesi, Gloria. 2020. Network models to enhance automated cryp-
tocurrency portfolio management. Frontiers in Artificial Intelligence, 3, 22.

Chapter 8 is currently under review process as: Spelta, Alessandro,
Pecora, Nicoló, & Pagnottoni, Paolo. 2020. Chaos Based Portfolio
Selection: a Constant Chaoticity Approach. Working Paper.
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2 Vector Error Correction Models and Bit-
coin Exchange Connectedness

Based on the paper:
Giudici, Paolo, & Pagnottoni, Paolo. 2020. Vector error correction
models to measure connectedness of Bitcoin exchange markets. Applied
Stochastic Models in Business and Industry, 36(1), 95–109.

2.1 Introduction

Connectedness is gaining much importance in financial econometrics and risk
management. The study of return connectedness is key to assess market risk
and, in particular, to understand which are the market exchanges whose
shocks in price are transmitted to the others; or which are those that receive
shocks from the others and adjust their prices consequently. In other words,
the study of connectedness across market exchanges is fundamental for price
discovery purposes, that is, to determine the leader-follower relationships be-
tween markets. This becomes particularly interesting when analyzing nascent
markets with peculiar features, such as the cryptocurrency one.

Several researches dealt with econometric connectedness measures de-
velopment and interdependency measurement. Diebold and Yilmaz (2012)
propose measures for the total and directional volatility spillovers, based
on forecast error variance decompositions from vector autoregressive models
(VARs). Diebold and Yılmaz (2014) relate the above said forecast error vari-
ance decompositions to a network topology representation, and apply it to
measure the connectedness of financial firms. Also Billio et al. (2012) develop
different econometric measures of connectedness and systemic risk, focusing
in the finance and insurance sectors specifically. In Ahelegbey et al. (2016),
the authors propose a Bayesian graph-based approach to solve the identifi-
cation issue in Vector Autoregressive (VAR) models, as well as it contributes
to the econometric literature on financial interconnectedness.

The available literature on price discovery on cryptocurrency (Bitcoin)
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exchanges is quite limited. The first researchers addressing this issue are
Brandvold et al. (2015), who found that Mt.Gox - a leading exchange which
went bankrupt right after their analysis - and BTC-e were the leaders of price
discovery. A more recent study by Pagnottoni and Dimpfl (2019) makes use
of the Hasbrouck (1995a) and Gonzalo and Granger (1995a) methodologies
taking into account also the impact of exchange rates. They find Chinese
exchanges to be the ones leading price discovery during their analyzed period.
More recently, Giudici and Abu-Hashish (2019) employ a VAR model, that
embeds into its correlation structure the connectedness among eight Bitcoin
exchanges. All previous papers have the merit of being the first ones in
the field but, on the other hand, they are limited as they lack either a less
restrictive modelling strategy (as is the case of the first two papers) or do not
take into account important econometric aspects such as cointegration and
stationarity of the considered series (as is the case with the third paper).

Recently, some studies which examine interconnectedness and spillovers
in the cryptocurrency market arose.Koutmos (2018) studied interconnected-
ness among 18 major cryptocurrencies and found - among others - a growing
interdependence among them. Another noticeable example is given by Yi
et al. (2018), who investigate static and dynamic volatility connectedness
among eight typical cryptocurrencies and build a volatility connectedness
network that links 52 cryptocurrencies by using the LASSO-VAR for esti-
mating high-dimensional VARs. Finally, Corbet et al. (2018b) investigate
the dynamic relationships, particularly volatility spillovers, between major
cryptocurrencies (Bitcoin, Litecoin and Ripple) and other financial assets
through the Diebold and Yilmaz (2012) generalized variance decomposition
technique.

As previously stated, a limitation the existing literature on interconnect-
edness among cryptocurrencies is that all contributions employ a generalized
VAR model, which does not take a potential cointegration structure of the
series into account, a phenomena that is particularly evident when studying
connectedness among market exchanges prices concerning the same asset,
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such as the Bitcoin. We aim to improve the latter contributions, and suggest
a model that, while fully grounded on an econometric approach, builds a com-
prehensive statistical model. To this aim, we rely on the order-invariant fore-
cast error variance decomposition proposed by Diebold and Yilmaz (2012).

Indeed, Diebold and Yilmaz (2012) develop measures of directional spillovers
in a generalized VAR framework, which are suitable for several applications.
However, when the time series under consideration are integrated of order
one (I(1)), the VAR model is not suitable to model them in levels. Moreover,
if the same time series additionally show a significant co-movement around
a common stochastic trend, i.e. they are cointegrated, Engle and Granger
(1987) show it is reasonable to model them as a VEC model (VECM),
whose error correction term accounts for the common stochastic trend driving
prices.

In line with the previous comment, here we make use of an extension of
the Diebold and Yilmaz (2012) methodology with a generalized VECM 1. To
the best of our knowledge, this is the first application of such a technique to
measure connectedness of exchange platforms, particularly of Bitcoin. The
methodology allows us to study market exchange connectedness at different
levels: pairwise and system-wide, as well as both from a static and time-
varying point of view, accounting for the common stochastic trend driving
the fundamental Bitcoin price.

We therefore contribute, from a methodological viewpoint, to the econo-
metric literature - particularly for what concerns price discovery and con-
nectedness of market exchanges - by employing an extension of the Diebold
and Yilmaz (2012) connectedness measure, which relies on VECM rather
than VAR models. The model allows to shed further light on price discov-
ery in Bitcoin markets, extending the conclusions in Pagnottoni and Dimpfl
(2019) and Giudici and Abu-Hashish (2019) and, in particular, characterizing
which are the leaders and followers in price formation among the considered

1This is in line with Pesaran and Shin (1998a), who extend the generalized impulse
analysis to VECMs.
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exchanges, along time.
The chapter proceeds as follows. Section 2 contains our methodological

proposal. Section 3 presents the analyzed data and provide their preliminary
analysis. In Section 4 we discuss the empirical results obtained. Section 5
concludes.

2.2 Proposal

We denote the Bitcoin price of an exchange i at time t as X i
t , while its

logarithm as xit. We are in the situation in which the same asset is traded
across different platforms. In such a framework the law of one price prescribes
that prices related to the same good should not deviate in the long run.
Strictly speaking, the no-arbitrage condition implies, when Bitcoin prices
are expressed in the same currency, that there exist linear combination of
their (log-) prices yielding a stationary process.

The considerations from above make us expect there is a cointegration
structure among our variables. Thus, the theoretical econometric framework
delineated by Engle and Granger (1987) suggests us to exploit the VECM.
Namely, let us denote the continuous returns for a generic exchange i at time
t as:

∆xit = xit − xit−1 (2.1)

where i = 1, 2, · · · , n and n is the number of exchanges considered.
Note that continuous returns are the first difference of the exchange prices

in log levels. Defining ∆xt = (∆x1
t , · · · ,∆xit, · · · ,∆xnt )′ with i = 1, 2, ..., n,

the model assumes the following form:

∆xt = αβ′xt−1 +
k−1∑
i=1

ζi∆xt−i + εt (2.2)

with α being the (n × h) adjustment coefficient matrix, β the (n × h)
cointegrating matrix, ζi the (n × n) parameter matrices with i = 1, ..., n, k
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the autoregressive order and εt is a zero-mean white noise process having
variance-covariance matrix Σ. We denote as h the cointegrating rank. In
our case, the time series in levels should show one common stochastic trend,
i.e. economic theory suggests that the cointegrating rank of the system is
h = n− 1.

From the VECM(k−1) in (2.2) one can derive the equivalent n−variable
VAR(k) representation, that is:

xt =
k∑
i=1

Φixt−i + εt (2.3)

where Φ1,Φ2, ...,Φk with i = 1, ..., n are the (n × n) autoregressive pa-
rameter matrices. This is done recalling that αβ′ = ∑k

i=1 Φi − In and
Ψi = −∑k

j=i+1 Φj.

Equation 2.3 is the starting point of the approach developed by Diebold
and Yilmaz (2012). Indeed, to retrieve the impact of shocks on the system
variables to others, we rewrite the VAR model in (2.3) into its vector moving
average (VMA) representation:

xt = εt + Ψ1εt−1 + Ψ2εt−2 + · · · (2.4)

where we denote as Ψ1,Ψ2, ... the (n× n) matrices containing the VMA
coefficients. The vector moving average coefficients are such that the recur-
sion Ψi = Φ1Ψi−1 + Φ2Ψi−2 + ... + ΦiΨ1 holds true, with Ψi = 0 ∀i < 0 and
Ψ1 = In.

The VMA representation of the system is fundamental to evaluate the
effect of a shock in one system variable on the others thanks to the impulse
response functions and variance decomposition tools. In particular, the vari-
ance decomposition allows to decompose the H-step-ahead error variance in
predicting xi due to shocks to xj, ∀j 6= i and ∀i = 1, ..., n.

In our contribution we rely, as in Diebold and Yilmaz (2012), on the Koop
et al. (1996) and Pesaran and Shin (1998b) (KPPS) H-step-ahead forecast
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errors. They have the advantage to be invariant to the variable ordering,
unlike the popular although restrictive Cholesky factorization, which would
require an ordering of the Bitcoin exchange prices a priori with regards to
the influence of shocks across the system variables.

Taking two generic variables xi and xj, Diebold and Yilmaz (2012) define
the own variance shares as the proportion of the H-step ahead error variance
in forecasting xi due to shocks in xi itself, ∀i = 1, ..., n, whereas the cross
variance shares (spillovers) are defined as the H-step ahead error variance in
predicting xi due to shocks in xj, ∀i = 1, · · · , n with j 6= i.

That said, using θgij(H) to denote the KPSSH-step forecast error variance
decompositions, with h = 1, · · · , H, we have:

θgij(H) =
σ−1
jj

∑H−1
h=0 (e′iΨhΣej)2∑H−1

h=0 (e′iΨhΣΨ′hej)
(2.5)

where σjj is the standard deviation of the innovation for equation j and
ei represents the selection vector with one as element i and zeros elsewhere.

However, we have that ∑H−1
h=0 θ

g
ij(H) 6= 1, i.e. the sum of the row elements

of the generalized variance decomposition is not equal to 1. That is the reason
why in the calculation of the spillover indexes, Diebold and Yilmaz (2012)
proposed to normalize the entries of the variance decomposition matrix by
the row sum, that is:

θ̃gij(H) =
θgij(H)∑n
j=1 θ

g
ij(H) . (2.6)

By construction we have that ∑n
j=1 θ̃

g
ij(H) = 1 as well as∑n

j,i=1 θ̃
g
ij(H) = n.

From the use of the total contributions to the forecast error variance
decomposition we estimate the Total Spillover Index (TSI) as:

TSI(H) =

∑n
j=1
j 6=i

θ̃gij(H)∑n
j,i=1 θ̃

g
ij(H)

· 100 =

∑n
j=1
j 6=i

θ̃gij(H)

n
· 100 (2.7)
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Moreover, we also get the Directional Spillovers Indexes (DSI) to measure
respectively through Equations (2.8) and (2.9) the spillover from exchange i
to all exchanges J , as well as the spillover from all exchanges J to exchange
i as:

DSIJ←i(H) =

∑n
j=1
j 6=i

θ̃gji(H)∑n
j,i=1 θ̃

g
ij(H)

· 100 (2.8)

DSIi←J(H) =

∑n
j=1
j 6=i

θ̃gij(H)∑n
j,i=1 θ̃

g
ij(H)

· 100. (2.9)

We also derive the Net Spillover Index (NSI) from market i to all other
markets J as:

NSIJ←i(H) = DSIi←J(H)−DSIJ←i(H). (2.10)

Finally, we derive the Net Pairwise Spillovers (NPS) to measure the dif-
ference between the gross shocks transmitted from market i to j and gross
shocks transmitted from j to i as:

PNSij(H) =
 θ̃gij(H)∑n

q=1 θ̃
g
iq(H)

−
θ̃gji(H)∑n
q=1 θ̃

g
jq(H)

 · 100. (2.11)

By means of the variance decompositions, these measures allow to analyze
exchange spillovers both from a system-wide and a net pairwise viewpoint.
Outcomes are presented in the results Section.

2.3 Data

We consider for our empirical analysis what is arguably the most relevant
cryptocurrency nowadays existing: Bitcoin. We indeed examine Bitcoin ex-
change prices denominated in USD on a daily basis during a time-frame from
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18 May 2016 and 30 April 2018, as in Giudici and Abu-Hashish (2019). Data
were collected from https://www.investing.com/crypto/bitcoin and through
the CryptoCompare API. With the aim to study system-wise connectedness
as well as the pairwise one among Bitcoin trading venues, we consider eight
Bitcoin exchanges, i.e. Bitfinex, Coinbase, Bitstamp, Hitbtc, Gemini, ItBit,
Kraken, Bittrex. We remark that the investigated exchanges are geographi-
cally widespread, with their daily trading volumes summing up to more than
75% at the ending date of the sample, as illustrated in Table 1.

Table 1: Bitcoin daily trading volume shares

Exchange Daily Volume Share

Bitfinex 27.37%
Coinbase 12.45%
Bitstamp 11.05%
Kraken 9.97%
Hitbtc 8.56%
Gemini 3.08%
Bittrex 1.84%
ItBit 1.61%
Total 75.93%

Note: The table from above shows daily trading volume shares for the consid-
ered exchanges at the end of the sample period considered (30 April 2018). We
synthesized data retrieved from https://data.bitcoinity.org/markets.

The Bitcoin price dynamics of the considered exchanges are illustrated in
Figure 1.

From Figure 1 note that prices related to the eight Bitcoin exchanges
follow a common pattern, a result in line with economic expectations, as we
are investigating the same asset traded on different venues. Furthermore,
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Figure 1: Bitcoin exchange price evolution

Note: The figure from above illustrates the eight Bitcoin exchange price series
related to the full sample period.

given the dynamics of Bitcoin prices over time, it is reasonable to expect
that in our case we deal with non-stationary time series - arguably I(1).

However, we also provide a plot of the difference between the return of
each series and the average return across exchanges in Figure 2.

What emerges from a visual inspection of Figure 2 is that prices (and
returns) may vary quite consistently across platforms. Specifically, there are
some dates in which the misalignment across exchanges prices is particularly
marked. The summary statistics in Table 2 give an overview of the features
of the dataset and confirm the previous claims.

As a preliminary analysis, we compute the pairwise correlation existing
among the exchange returns and test for their significance. Results are con-
tained in Table 3.

Table 3 confirms that, as we are investigating the same asset traded on
different platforms, returns exhibit high pairwise correlations. However, some
exchanges present lower pairwise correlations with the others, meaning that
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Figure 2: Exchange return deviation from daily average

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Note:The figure shows the return deviation of each exchange from the daily return
average of the exchanges. The plot refers to the full sample period.
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Table 2: Summary Statistics of Returns

Coinbase Kraken Bitstamp Itbit Bitfinex Hitbtc Gemini Bittrex

Mean 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042
Median 0.0042 0.0049 0.0041 0.0040 0.0042 0.0036 0.0033 0.0028
Maximum 0.2406 0.1906 0.1976 0.2073 0.2372 0.2653 0.2154 0.2364
Minimum -0.1707 -0.1728 -0.1782 -0.1770 -0.2038 -0.2023 -0.1764 -0.2069
Std. Dev. 0.0449 0.0442 0.0440 0.0440 0.0458 0.0473 0.0453 0.0500
Skewness 0.0471 -0.2035 -0.1763 -0.1685 -0.1743 0.0527 -0.1779 -0.1906
Kurtosis 6.2512 5.0798 5.5469 5.7150 6.2570 6.7983 5.9265 5.5252

Note: The table include relevant summary statistics for returns related to the
analyzed exchanges considering the entire sample period.

Table 3: Returns correlation matrix

Coinbase Kraken Bitstamp Itbit Bitfinex Hitbtc Gemini Bittrex

Coinbase 1.0000 0.7737 0.9459 0.9155 0.9674 0.9263 0.9784 0.8858
Kraken 0.7737 1.0000 0.8224 0.7896 0.7670 0.7298 0.7703 0.7211
Bitstamp 0.9459 0.8224 1.0000 0.9609 0.9504 0.9030 0.9499 0.8807
Itbit 0.9155 0.7896 0.9609 1.0000 0.9161 0.8722 0.9200 0.8525
Bitfinex 0.9674 0.7670 0.9504 0.9161 1.0000 0.9277 0.9682 0.8948
Hitbtc 0.9263 0.7298 0.9030 0.8722 0.9277 1.0000 0.9215 0.8542
Gemini 0.9784 0.7703 0.9499 0.9200 0.9682 0.9215 1.0000 0.8922
Bittrex 0.8858 0.7211 0.8807 0.8525 0.8948 0.8542 0.8922 1.0000

Note: The table illustrates the return correlation matrix related to the full sample.
Significance tests show that correlations are all significant at 1% significance level.
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Table 4: Returns partial correlation matrix

Coinbase Kraken Bitstamp Itbit Bitfinex Hitbtc Gemini Bittrex

Coinbase 1.0000 0.0656 0.0373 0.0209 0.2652 0.1830 0.5843 0.0014
Kraken 0.0656 1.0000 0.3316 -0.0022 -0.0694 -0.0236 -0.0455 0.0251
Bitstamp 0.0373 0.3316 1.0000 0.6380 0.2366 0.0529 0.1232 0.0701
Itbit 0.0209 -0.0022 0.6380 1.0000 -0.0407 0.0016 0.0500 0.0240
Bitfinex 0.2652 -0.0694 0.2366 -0.0407 1.0000 0.2249 0.2571 0.1668
Hitbtc 0.1830 -0.0236 0.0529 0.0016 0.2249 1.0000 0.0378 0.0774
Gemini 0.5843 -0.0455 0.1232 0.0500 0.2571 0.0378 1.0000 0.1164
Bittrex 0.0014 0.0251 0.0701 0.0240 0.1668 0.0774 0.1164 1.0000

Note: The table illustrates the return partial correlation matrix related to the full
sample. All partial correlations are significant at a 1% significance level.

their dynamics has a weaker link with that of the other analyzed exchanges.
In particular, we find that Kraken has a weak link with the other exchanges
during the analyzed timespan. As a matter of fact, considering that we are
analysing prices related to the same asset, correlation involving Kraken are
low on a relative basis, as it is also proved by the values of correlations
between other platforms. Note that all correlations are tested and found to
be significant at all conventional significance levels, with p-values well below
1%.

Moreover, to control for the effect of the other exchanges in the pairwise
relationship, we compute the partial correlations of the Bitcoin exchange
returns. Results are shown in Table 4.

First of all, partial correlations further support our previous considera-
tions. Indeed, Kraken shows a negative partial correlation with as much as 4
of the other exchanges out of 7, further confirming its dissimilar behaviour.
Secondly, partial correlations already suggest that the interconnectedness
among returns of different exchanges is of heterogeneous nature. Indeed,
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Table 5: Stationarity tests

ADF Tests

Coinbase Kraken Bitstamp Itbit Bitfinex Hitbtc Gemini Bittrex
log(pt) 0.8622 0.8653 0.8660 0.8646 0.8589 0.8598 0.8613 0.8547
∆log(pt) <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010

KPSS Tests

Coinbase Kraken Bitstamp Itbit Bitfinex Hitbtc Gemini Bittrex
log(pt) <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100
∆log(pt) >0.1000 >0.1000 >0.1000 >0.1000 >0.1000 >0.1000 >0.1000 >0.1000

Note: The table above illustrates the resulting p-values for the Augmented Dickey-
Fuller (ADF) and the Kwiatkowsky, Phillips, Schmidt and Shin (KPSS) tests for
the entire sample period. The tests in levels are executed including a constant but
no time trend, as well as the KPSS ones do not include trends. Both tests are
conducted using an optimal lag length determined according to the Bayes-Schwarz
information criterion, as well as on a 5% significance level. The minimum p-value
reported is 0.001 for the ADF and 0.01 KPSS tests, while the maximum p-value
reported for the KPSS test is 0.1.

while most of the exchanges show positive partial correlations, some of which
of a relatively high magnitude (being the highest +0.5843 for Coinbase and
Gemini), a few of them show negative partial correlation (being the lowest
−0.0694 for Bitfinex and Kraken).

As a further preliminary analysis, we perform stationarity and cointegra-
tion tests, to ensure that the series we analyze meet the features we expect.

To test for (non-)stationarity, we conduct the Augmented Dickey-Fuller
(ADF) - see Dickey and Fuller (1979)- and Kwiatkowsky, Phillips, Schmidt
and Shin (KPSS) - see Kwiatkowski et al. (1992) - tests on prices, expressed
in log-levels. The results from the tests are reported in Table 5.

From Table 17 note that both tests point towards non-stationarity of
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Table 6: Cointegration (Max Eigenvalue test)

h Statistics Critical Value p-value eigVal

0 215.0009 48.8789 <0.0010 0.2613
1 171.1194 42.7706 <0.0010 0.2142
2 167.6692 36.6291 <0.0010 0.2103
3 136.1324 30.4392 <0.0010 0.1745
4 122.6643 24.1605 <0.0010 0.1587
5 57.1105 17.7966 <0.0010 0.0773
6 32.6407 11.2252 <0.0010 0.0449
7 4.9952 4.1302 0.0302 0.0070

Note: The table above illustrates the statistics, critical values, p-values end eigen-
values for the Johansen Maximum Eigenvalue test for cointegration for the full
sample period. The test does not include any costant or time trend, neither in the
model specification nor in the cointegrating relationship. The minimum p-value
reported is 0.001.

the Bitcoin log-prices, while when first differencing the time series, the tests
provide support towards stationarity, for all conventional significance level
(10%, 5%, 1%). We may then argue that the series are found to be I(1).

As far as cointegration is concerned, we conduct the Johansen Maximum
Eigenvalue and the Trace tests - see Johansen (1991). As mentioned in the
Methodology Section, we expect the cointegrating rank of the system to be
h = n−g = 8−1 = 7, given that we have the same asset (Bitcoin) traded on
different platforms and we therefore reasonably expect the series to be driven
by g = 1 common stochastic trend. The results of the Maximum Eigenvalue
and Trace test are presented in Table 6 and Table 7, respectively.

Tables 6 and 7 show that, although the evidence is not particularly strong,
the p-values associated to the tests are low enough to reject their null hy-
potheses at a 1% significance level, when compared to the alternative h = 7,
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Table 7: Cointegration (Trace test)

h Statistics Critical Value p-value eigVal

0 907.3326 154.8020 <0.0010 0.2613
1 692.3317 121.7464 <0.0010 0.2142
2 521.2123 92.7173 <0.0010 0.2103
3 353.5431 67.6430 <0.0010 0.1745
4 217.4107 46.5743 <0.0010 0.1587
5 94.7464 29.5103 <0.0010 0.0773
6 37.6359 16.3589 <0.0010 0.0449
7 4.9952 6.9399 0.0302 0.0070

Note: The table above illustrates the statistics, critical values, p-values end eigen-
values for the Johansen Trace test for cointegration related to the full sample
period. The minimum p-value reported is 0.001.

meaning that tests point to a cointegrating rank of 7, which is consistent
with the fundamental economic law of "one underlying asset - one price".

2.4 Empirical findings

As already anticipated, we study connectedness and lead-lag relationships
across Bitcoin exchanges both from a static point of view and from a dynamic
one. In Subsection 2.4.1 we will present the full sample results. In Subsection
2.4.2 we split the sample in order to investigate connectedness and leaderships
before and after a period of arguable structural break. In Subsection 2.4.3
we perform a dynamic analysis to study the evolution of connectedness and
price discovery on Bitcoin exchanges.
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Table 8: Directional Spillover Indexes (DSI)

Coinbase Kraken Bitstamp Itbit Bitfinex Hitbtc Gemini Bittrex

FROM 10.7430 11.6435 11.0222 11.0059 10.6811 10.8392 10.7684 10.6276
TO 12.1979 5.9122 10.2804 10.3914 12.5541 11.1419 12.0487 12.8043

NET 1.4549 -5.7313 -0.7418 -0.6145 1.8730 0.3027 1.2803 2.1767

Note: The table shows the directional return spillover indexes "from" others
(FROM), "to" others (TO), as well as the net ones (NET) for the full sample
period. Values are expressed in percentage terms.

2.4.1 Full sample results

Here we present our results on the spillover analysis related to the full sample
period, that is from 18 May 2016 to 30 April 2018. All results are based on a
vector error correction model of order 2, where the order is determined using
the Bayes-Schwarz Information Criterion (BIC), and a generalized variance
decomposition of the H = 10 step ahead forecast errors 2.

The Total Spillover Index (TSI) based on the full sample is 87.33%. The
high value of the index shows that Bitcoin exchange prices, as we expect,
are highly interconnected among each other. In other words, a consistent
portion of the forecast error variance of the system is due to contributions
among exchanges, rather than on the own contribution of single exchanges.

We then provide outcomes for the "from", "to" and "net" Directional
Spillover Indexes (DSI) in Table 8.

Looking at the results in Table 8, we may argue that the directional
spillovers have quite similar magnitude across all exchanges, with Kraken
being the most influenced when shocks in other venues occur, and with Bit-
trex being the least influenced exchange. When looking at the directional

2The choice of H = 10 step ahead forecast errors for the generalized variance decom-
position is made for the sake of consistency and comparability with Diebold and Yilmaz
(2012).
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spillovers to others, however, the picture slightly changes. Exchanges still
show quite similar magnitudes regarding spillovers to others, with Bittrex
surprisingly resulting as the one giving more spillover to others, followed by
Bitfinex and Coinbase. This is likely due to a high peak that is registered
in one single data point which influences our results. This explanation is
further clarified in the dynamic analysis, and it is related to the anomalous
return misalignment discussed in the previous Section. On the other hand,
the exchange having the smallest impact towards the others in the system is
Kraken, which counts only about 5.91% of directional spillover to others, a
relatively low value when compared to the rest of the exchanges analyzed.

The interpretation of the net directional spillovers in Table 8 is immediate,
given that they represent the difference between the gross shocks transmitted
to and received from other platforms. We can see that the exchange show-
ing the strongest positive net contribution is Bittrex (+2.18%) - consistently
with what commented before -, followed by Bitfinex (+1.87%) and Coin-
base (+1.45%). Gemini (+1.28%) and Hitbtc (+0.30%) also show a positive
net contribution to others, despite a lower magnitude. Itbit (−0.61%), Bit-
stamp (−0.74%) and Kraken (−5.73%), instead, show a negative net return
spillover, meaning that the return shocks they receive is greater than those
transmitted to all other exchanges. This is particularly true for Kraken, that
is the exchange resulting more sensitive to return shocks occurring in other
platforms.

To provide a wider picture of connectedness, we also investigate Net Pair-
wise (return) Spillovers (NPS) between exchanges, whose results are pre-
sented in a tabular fashion in Table 9. In this way we are able to assess
the pairwise net contribution to return shocks of each exchange with the
remaining ones, investigating pairwise connectedness.

From Table 9, the net pairwise spillover outcomes are in line with what
observed before. On one hand, Bittrex transmits return spillovers to all
other exchanges, with the biggest contribution being the one towards Kraken.
On the other hand, Kraken is the most influenced exchange from a price
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Table 9: Net Pairwise Spillovers (NPS)

Coinbase Kraken Bitstamp Itbit Bitfinex Hitbtc Gemini Bittrex

Coinbase - -7.21 -2.23 -2.12 0.48 -1.1 -0.19 0.73
Kraken 7.21 - 4.97 5.12 7.61 5.99 7.03 7.92
Bitstamp 2.23 -4.97 - 0.12 2.57 1.06 2.04 2.88
Itbit 2.12 -5.12 -0.12 - 2.44 0.94 1.91 2.75
Bitfinex -0.48 -7.61 -2.57 -2.44 - -1.58 -0.61 0.31
Hitbtc 1.1 -5.99 -1.06 -0.94 1.58 - 0.93 1.95
Gemini 0.19 -7.03 -2.04 -1.91 0.61 -0.93 - 0.86
Bittrex -0.73 -7.92 -2.88 -2.75 -0.31 -1.95 -0.86 -

Note: The table contains the net pairwise return spillovers for the full sample
period. Values are expressed in percentage terms.

settlement point of view, receiving return spillovers from all other platforms.
We may additionally notice that the magnitude of spillovers towards Kraken
are relatively high.

The analysis of net pairwise spillovers helps in discriminating between the
leader and follower Bitcoin exchanges, in terms of transmitting information
about price changes to others. Besides the already mentioned Bittrex, we can
identify Bitfinex as a leading exchange, given its influence exerted to all other
markets except for Bittrex. We also identify Coinbase as a leading exchange,
whereas Bitstamp and Itbit are followers. The remaining exchanges show
both positive and negative pairwise spillovers, meaning their behaviour is
dissimilar with respect to the exchanges analyzed.

We remark that, overall, the size of return spillovers appears quite linked
to the trading volume sizes of the exchanges themselves. In other words,
exchanges whose trading volume is large generally show positive net contri-
butions to return spillovers, whereas for smaller ones the same quantity is
mostly negative.
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2.4.2 Subsample results

It could be inferred from Figure 1 that the Bitcoin price series exhibits a
possible structural break. Indeed the series has a positive trend, building up
to mid December 2017, immediately followed by a downward trend. This
phenomenon has attracted a lot of attention in the community and it should
be strictly linked to the leadership evolution of the exchanges and their in-
terconnectedness, which deserve to be investigated.

The previous setup motivates our approach, that consists of splitting the
analysis into two subsamples, denoted as subsample 1 (18 May 2016 - 15 De-
cember 2017) and subsample 2 (16 December 2017 - 30 April 2018). We then
conduct the same analysis as described before and analyze connectedness
and price discovery in the two periods of interest. All results refer to vector
error correction models of order determined through the BIC, and H = 10
step ahead forecast errors for the generalized variance decomposition.

From Tables 10 and 11 our expectations are confirmed. Overall, con-
nectedness seems to be quite stable in magnitude. Despite that, the size
of net return spillovers among Bitcoin exchanges shrinks in the period af-
ter the price surge which occurred until the end of 2017. Besides different
magnitudes, the exchanges additionally show different directions of the net
contribution in terms of return spillover. To illustrate, Bitstamp and Itbit
turn from showing a negative net spillover in the first phase, whereas they
exhibit a positive net contribution for the second phase - i.e. the Bitcoin price
decline. Furthermore, the exchange that in the previous Section showed the
strongest positive net return spillover to others reveal to be highly weaker
in its magnitude of contribution when considering the Bitcoin price decline
timespan.

To complete the overview, we investigate the net pairwise spillovers re-
lated to the two subsamples, which are presented in a tabular fashion in
Tables 12 and 13.

Pairwise results further confirm our expectations regarding the potential
change in exchange connectedness between the two analyzed sub-periods. In
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Table 10: Directional Spillover Indexes (DSI) - Subsample 1

Coinbase Kraken Bitstamp Itbit Bitfinex Hitbtc Gemini Bittrex

FROM 12.44 5.85 9.74 9.63 12.38 11.62 12.29 13.35
TO 10.71 11.65 11.10 11.11 10.70 10.77 10.73 10.53

NET 1.73 -5.80 -1.36 -1.48 1.68 0.85 1.56 2.82

Note: The table shows the directional return spillover indexes "from" others
(FROM), "to" others (TO), as well as the net ones (NET) for the subsample 1
(18 May 2016 -15 December 2017). Values are expressed in percentage terms.

Table 11: Directional Spillover Indexes (DSI) - Subsample 2

Coinbase Kraken Bitstamp Itbit Bitfinex Hitbtc Gemini Bittrex

FROM 11.23 7.59 11.53 11.62 11.28 11.56 11.36 11.28
TO 10.89 11.40 10.85 10.84 10.89 10.81 10.88 10.89

NET 0.33 -3.82 0.68 0.78 0.40 0.75 0.49 0.39

Note: The table shows the directional return spillover indexes "from" others
(FROM), "to" others (TO), as well as the net ones (NET) for the subsample 2
(16 December 2017 - 30 April 2018). Values are expressed in percentage terms.
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Table 12: Net Pairwise Spillovers (NPS) - Subsample 1

Coinbase Kraken Bitstamp Itbit Bitfinex Hitbtc Gemini Bittrex

Coinbase - -7.60 -3.14 -3.29 0.04 -0.80 -0.20 1.12
Kraken 7.60 - 4.46 4.36 7.44 6.54 7.42 8.56
Bitstamp 3.14 -4.46 - -0.13 3.00 2.23 2.94 4.15
Itbit 3.29 -4.36 0.13 - 3.12 2.36 3.06 4.26
Bitfinex -0.04 -7.44 -3.00 -3.12 - -0.84 -0.15 1.18
Hitbtc 0.80 -6.54 -2.23 -2.36 0.84 - 0.64 2.06
Gemini 0.20 -7.42 -2.94 -3.06 0.15 -0.64 - 1.22
Bittrex -1.12 -8.56 -4.15 -4.26 -1.18 -2.06 -1.22 -

Note: The table contains the net pairwise return spillovers for the subsample 1
(18 May 2016 -15 December 2017). Values are expressed in percentage terms.

Table 13: Net Pairwise Spillovers (NPS) - Subsample 2

Coinbase Kraken Bitstamp Itbit Bitfinex Hitbtc Gemini Bittrex

Coinbase - -4.04 0.33 0.42 0.04 0.40 0.15 0.03
Kraken 4.04 – 4.44 4.57 4.31 4.60 4.23 4.34
Bitstamp -0.33 -4.44 - 0.10 -0.30 0.05 -0.18 -0.31
Itbit -0.42 -4.57 -0.10 - -0.42 -0.05 -0.27 -0.43
Bitfinex -0.04 -4.31 0.30 0.42 - 0.36 0.10 -0.01
Hitbtc -0.40 -4.60 -0.05 0.05 -0.36 - -0.25 -0.36
Gemini -0.15 -4.23 0.18 0.27 -0.10 0.25 - -0.12
Bittrex -0.03 -4.34 0.31 0.43 0.01 0.36 0.12 -

Note: The table contains the net pairwise return spillovers for the subsample 2
(16 December 2017 - 30 April 2018). Values are expressed in percentage terms.
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line with the considerations from above, pairwise net return spillovers lose
their original size when considering the second subsample.

In particular, we can notice that Kraken behaves as a follower throughout
the whole analyzed period. Indeed, even though magnitudes of spillovers are
indisputably bigger when considering the first subsample, it keeps receiving
price change spillovers from other exchanges during the second time frame in
a considerable manner. In contrast, as already suggested by the net spillovers,
some of the exchanges change their behaviour from one phase to the other.
This is particularly true for Bittrex, showing most of its pairwise net contri-
butions changing not only magnitude but also sign from one period to the
other. We may therefore conclude that the leadership composition of the
exchanges also varies accordingly over time. This is in line with what found
in the price discovery studies by Brandvold et al. (2015) and Pagnottoni and
Dimpfl (2019), which rely on the Hasbrouck (1995a) information shares and
on the Gonzalo and Granger (1995a) common factor weights approaches.
Both researches find that information shares are dynamic and significantly
evolve over time.

The latter findings highlight the importance of tuning the right estimation
time-spans in order to get meaningful insights. This further motivates our
dynamic analysis, which is performed in Subsection 2.4.3.

2.4.3 Dynamic results

As noticed by Diebold and Yilmaz (2012), the full sample outcomes provide
information about the "average" or "unconditional" features of connectedness.
However, in most applications, it is of interest to examine the exchange
connectedness dynamics over time. This is the reason why in this subsection
we perform a dynamic analysis by means of rolling window estimations. In
detail, we fix a rolling estimation window of 125 day and a 10-step ahead
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forecast horizon for the variance decomposition 3. As already anticipated,
the dynamic analysis should be also able to better explain the outcomes of
the "unconditional" connectedness measures derived before.

At first, we examine the Total Spillover Index (TSI), whose plot is illus-
trated in Figure 3.

Figure 3: Total Spillover Index (TSI)
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Note: The plot contains the dynamic total spillover index for the period 22 Septem-
ber 2016 - 30 April 2018. The rolling window set for the estimations is w = 125
days

Wemay notice two different cycles in the Bitcoin return spillover evolution
across the exchanges. After a first period of relative stability for the index,
from observation 171 (4 November 2016) to roughly 371 (25 May 2017) we
can notice some turbulences. Indeed, the index becomes more volatile during
this second phase, with exchanges weakening their overall connectedness,
behaving more dissimilarly than before. This is particularly true for some of
the exchanges. However, from the end of May 2017 onwards the TSI goes
back towards its initial values and remains quite stable. The most relevant

3Repeating the analysis with different choices of the rolling estimation window and
forecast horizon steps - i.e. increasing and decreasing them up to 50% of the fixed choices
- shows that results do not change appreciably.
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Figure 4: Directional and Net Spillover Indexes
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Note: The figure from above illustrates the dynamic "from", "to" and "net" return
spillover indexes for the period 22 September 2016 - 30 April 2018. The rolling
window set for the estimations is w = 125 days. Values are expressed in percentage
terms.

peaks correspond to the dates we have discussed in the data Section, i.e.
the points in time in which we have a strong misalignment in Bitcoin prices
of the analyzed exchanges. Those misalignment are likely due to exits and
entrances of big players in the market.

We then analyze the DSI "from" and "to" others, as well as the NSI, which
are illustrated in Figure 4.

From Figure 4 note that peaks in the TSI are mainly caused by single
exchange returns, whose misalignment create turbulences in the spillover
indexes. The clearest example is the spillover from Bittrex to others, whose
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influence on 24 May 2017 becomes suddenly high and almost immediately
levels out. This occurrence has likely influenced our full sample results about
Bittrex being a return spillover transmitter.

However, what we are interested in is the dynamic leader-follower relation-
ship among exchanges, which can be visually inspected by jointly examining
the three Figures. In this regard, results are again in line with those ob-
tained in the full sample analysis: besides Bittrex, Bitfinex appears to be the
exchange receiving the least and contributing the most to others in terms of
return spillovers over time, immediately followed by Coinbase. In both cases,
the magnitude of their influence varies over time. Notice also that Kraken is
the exchange being the most influenced from others. From the beginning of
May 2017, its return spillover contribution to others starts declining, whereas
the one transmitted by others begins to rise. It is interesting to notice that
Kraken’s follower behaviour begins with the surge in Bitcoin prices, a day
in which exchanges connectedness are arguably expected to experience some
changes. This marks the beginning of a "follower phase" for Kraken, which
lasts until the end of the sample, where we see its net contribution converging
to its previous values.

As a final step, we investigate the evolution of the net pairwise spillovers
between exchanges over time. We focus on the net pairwise spillovers between
the four platforms showing the weakest net spillovers in the full sample anal-
ysis, namely Kraken, Bitstamp, Itbit and Hitbtc, whose dynamics are shown
in Figure 5. Although Kraken mostly dominates small exchanges during the
first period of analysis (roughly until May 2015), it starts losing its positive
influence by then, and receives return spillovers. It is clear that spillovers
show some kind of ciclicity. However, taking the Bitstamp-Hitbtc plot as
an example, we may argue that major exchanges (in terms of trading vol-
umes) generally show larger magnitudes of transmitted shocks, with respect
to received shocks, as expected.

In general, the dynamic analysis gives insights about the dynamic nature
of return spillovers. Indeed, the composition of leader-follower exchanges is
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Figure 5: Net Pairwise Spillovers (NPS)

0 100 200 300 400 500 600
-14

-12

-10

-8

-6

-4

-2

0

2

4

Kraken-Bitstamp

(a)

0 100 200 300 400 500 600
-14

-12

-10

-8

-6

-4

-2

0

2

4

Kraken-Itbit

(b)

0 100 200 300 400 500 600
-10

-8

-6

-4

-2

0

2

4

Bitstamp-Itbit

(c)

0 100 200 300 400 500 600
-15

-10

-5

0

5

10

15

Kraken-Hitbtc

(d)

0 100 200 300 400 500 600
-8

-6

-4

-2

0

2

4

6

8

10

12

Bitstamp-Hitbtc

(e)

0 100 200 300 400 500 600
-10

-5

0

5

10

15

Itbit-Hitbtc

(f)

Note: The figures from above illustrate the net pairwise return spillovers between
the four selected exchanges - that is Kraken, Bitstamp, Itbit and Hitbtc - for
the period 22 September 2016 - 30 April 2018. The rolling window set for the
estimations is w = 125 days. Values are expressed in percentage terms.
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time-varying and may consistently change over time. Again, this is in line
with the stream of literature about price discovery on Bitcoin exchanges -
see Brandvold et al. (2015) and Pagnottoni and Dimpfl (2019).

2.5 Conclusion

In this chapter we employ an extension of the Diebold and Yilmaz (2012)
forecast error variance decomposition, which relies on a cointegrated vector
error correction framework, in order to estimate return spillovers across Bit-
coin exchanges. We believe that our proposal can be extended, without loss
of generality, to other cryptocurrencies, as well as to traditional markets.

From a methodological point of view, we adapt the generalized variance
decomposition technique introduced by Diebold and Yilmaz (2012). While
Diebold and Yilmaz (2012) derive measures for the directional spillovers
across markets within a generalized VAR framework, we apply their method-
ology to the case in which the same asset (Bitcoin) is traded on multiple
exchanges. Since we deal with I(1) price series related to a unique asset -
i.e. arguably cointegrated -, we rely on a generalized VECM framework to
derive directional spillovers.

From an empirical viewpoint, our results show that Bitfinex and Coin-
base are the leader exchanges in the price formation process, transmitting a
significant portion of return spillover to other exchanges. Moreover, we find
Kraken among the follower exchanges. This is in line with the fact that the
exchanges in which most of the trading volumes lie are generally also the
ones giving substantial contribution to other markets from a price discovery
point of view.

In addition, our results show that return spillovers across Bitcoin ex-
changes are dynamic and sensibly evolve over time. In other words, the
leader-follower compositions are not constant in time and may consistently
evolve. This is in line with what observed by Brandvold et al. (2015) and
Pagnottoni and Dimpfl (2019), who concluded that information shares are
dynamic and may consistently evolve over time.
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3 Intra-day Price Change Spillovers in Bit-
coin Markets

Based on the paper:
Giudici, Paolo, & Pagnottoni, Paolo. 2019a. High Frequency Price
Change Spillovers in Bitcoin Markets. Risks, 7(4), 111.

3.1 Introduction

The study of connectedness is a key topic arising in the field of financial
econometrics. As Diebold and Yilmaz (2009) state, connectedness features
in important aspects of market risk, i.e. portfolio concentration and return
connectedness, credit risk - default connectedness -, systemic risk, that is
system-wide connectedness, counter-party risk - bilateral and multilateral
contractual connectedness, as well as business cycle risk, with intra- and
inter-country real activity connectedness.

In particular, throughout the study of return and volatility connectedness
of financial assets is able to retrieve system-wide and pairwise connectedness
measures that are useful to assess the systemic risk of financial groups and/or
single entities. Furthermore, the study of directional connectedness is able
to shed light on which are leading assets in terms of shock transmission and,
rather, which are those that follow others in the process. This contributes to
the stream of econometric literature studying price discovery.

However, in the financial literature there is lack of studies exploring in-
terconnectedness related to the same asset traded on different exchange plat-
forms. Indeed, it is widely known that prices of the same good traded on
different venues may consistently vary across exchange markets and that this
is possibly due to lead-lag relationships existing across exchanges. This con-
tribution aims to fill this gap, as the study of system-wide connectedness
can give insights on how much different trading platforms are synchronized
in terms of returns (and, therefore, market prices), as well as the study of
directional connectedness is able to shed light on the lead-lag relationship
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among exchange markets. Indeed, unlike previous studies, we explore dy-
namic return connectedness among different exchange markets trading the
same good: Bitcoin.

The methodology we employ can be applied, without loss of generality,
to the rest of the cryptocurrency market as well as to other financial prod-
ucts. To illustrate, studying interconnectedness and price discovery on the
same asset or commodity returns when traded on different exchange plat-
forms might give some insights on where the price formation process takes
primarily place. Moreover, this technique may be applied to highly integrated
markets to effectively measure spillovers taking into account for the common
stochastic trends driving the co-movement of the underlying variables, as it
can be the case for spot and future markets.

3.2 Literature review

Much research in the field of financial econometrics has dealt with how econo-
metric connectedness measures development. To illustrate, Billio et al. (2012)
build systemic risk and econometric measures of interdependency which are
suitable to be used in the finance and insurance sectors. Diebold and Yil-
maz (2012) develop overall and directional measures for return and volatility
spillovers which are built upon forecast error variance decompositions deriv-
ing from vector autoregressive models (VARs). In a related work, Diebold
and Yılmaz (2014) extend their previously developed measures to a network
topology representation of the forecast error variance decomposition, link-
ing the econometric connectedness literature to that of financial networks.
More recently and following the same approach, Baruník and Křehlík (2018)
propose a framework based on the spectral representation of variance decom-
positions to measure connectedness among financial variables which arise due
to heterogeneous frequency responses.

Nowadays the existing literature focuses largely on measures applied to
interconnectedness between financial entities belonging to different groups in
terms of geography, financial sectors, etc. To illustrate, Diebold and Yilmaz
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(2013) study the dynamics of global business cycle connectedness for a set of
real output of six developed countries between 1962 and 2011. Demirer et al.
(2018) study the global bank equity connectedness linking the publicly-traded
subset of the world’s top 150 banks during the period 2003-2014. Baruník
et al. (2016) explore asymmetries in volatility spillovers that emerge due to
bad and good volatility with the use of data regarding most liquid U.S. stocks
across seven different sectors.

Since the birth of cryptocurrencies, a stream of literature started focusing
on interconnectedness, spillover analyses and shock transmissions involving
the cryptocurrency market. Fry and Cheah (2016) borrow some modelling
strategies from econophysics to study shocks and crashes in cryptocurrency
markets and show that in the period of negative bubble there is a spillover
from Ripple to Bitcoin. Yi et al. (2018) use a LASSO-VAR to estimate a
volatility connectedness network linking as much as 52 different cryptocur-
rencies. In Koutmos (2018) the authors explore connectedness across 18 cryp-
tocurrencies finding growing interdependencies among them. Corbet et al.
(2018b) analyze dynamic volatility spillovers between traditional financial
assets such as gold, bond, equities and the global volatility index (VIX) and
three major cryptocurrencies, i.e. Bitcoin, Litecoin, and Ripple, through the
Diebold and Yilmaz (2012) methodology, finding evidence of a relative iso-
lation of the latter category with respect to the traditional ones. Using the
same technique, Ji et al. (2019) study connectedness across six large cryp-
tocurrencies and show that Litecoin and Bitcoin belong to the centre of the
connected network of returns, besides proving that connectedness is stronger
via negative returns rather than via positive ones. Zięba et al. (2019) use
instead minimum spanning trees (MSTs) to form cryptocurrency clusters and
VAR models to examine the transmissions of demand shocks within clusters.
They conclude that Bitcoin’s role, which was dominant until 2017, has then
diminished as well as that they show the presence of causal relationships be-
tween cryptocurrencies, excluding Bitcoin. Antonakakis et al. (2019) employ
a TVP-FAVAR connectedness approach in order to investigate the transmis-
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sion mechanism among 9 major cryptocurrencies. They conclude that total
cryptocurrency connectedness shows large dynamic variability and that, de-
spite Bitcoin still preserves its influencing role in the market, Ethereum has
recently become the number one transmitting cryptocurrency.

Some research on price discovery of cryptocurrencies has recently emerged.
Specifically, on Bitcoin exchanges. Brauneis and Mestel (2018) investigate
efficiency and predictability of a set of cryptocurrency returns time series,
concluding that they become less efficient and predictable when liquidity
raises. Brandvold et al. (2015) discovered through information share mea-
sures that Mt.Gox and BTC-e were leaders of the price formation process
during their analyzed period. On the other hand Pagnottoni and Dimpfl
(2019), who analyzed a subsequent timespan, concluded the decreased role
of BTC-e and the increased one of Chinese exchange platforms in the price
discovery mechanism by means of the Hasbrouck (1995a) and Gonzalo and
Granger (1995a) techniques. Recently, Giudici and Abu-Hashish (2019) and
Giudici and Pagnottoni (2020) have also focused on price discovery, analyzing
bitcoin daily prices, respectively with a VAR and a VECM model.

Against this background, our contribution is the extension of the Diebold
and Yilmaz (2012) methodology for high frequency data, which takes into
account the non-stationary and cointegrated behaviour of the analyzed time
series. In other words, we rely on vector error correction models (VECMs)
rather than VARs to derive the forecast error variance decompositions and
build dynamic connectedness measures, contributing both from a method-
ological and economic viewpoint. This is done by analyzing 5 major Bit-
coin intraday exchange prices, i.e. Bitstamp, Gemini, Coinbase, Kraken and
Bittrex. We conclude that total and directional connectedness consistently
evolve over time, and that, overall, Bitfinex and Gemini are leading exchanges
during the analyzed period, while Bittrex is a follower.

We also remark that our contribution bears some similarities with Kout-
mos (2018), in particular as far as the methodology to measure spillovers is
concerned. Indeed, Koutmos (2018) decompose volatility and return shocks
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among 18 major cryptocurrencies by means of the technique outlined by
Diebold and Yilmaz (2009), which is based on a VAR framework. However,
in the present contribution we look at return spillovers in Bitcoin exchanges,
meaning the same cryptocurrency trading on different venues, rather than
at spillovers among cryptocurrencies themselves. Thus, we also rely on an
extension of the methodology used in Diebold and Yilmaz (2009), with the
aim of taking into account for the peculiar non-stationary and cointegrated
behaviour of the time series analyzed through VECMs rather than VARs.
The focus on Bitcoin allows us to determine interconnectedness and lead-lag
relationships of market exchanges trading Bitcoin.

The chapter proceeds as follows. Section 2 illustrates the employed
methodology. Section 3 presents the data analyzed and provide their prelimi-
nary analysis. In Section 4 we discuss the empirical results obtained. Section
5 provides a robustness analysis. Section 6 concludes.

3.3 Methodology

The methodology builds on the law of one price, stating that the prices of
the same good traded on different venues should not deviate in the long run.
In other words, the absence of arbitrage implies that (log-)price series related
to the same asset and denominated in the same currency should yield to a
stationary process when linearly combined. Furthermore, when time series
exhibit non-stationary, and, particularly, I(1) behaviour as Bitcoin prices do,
we must take cointegration of the series into account. We thus make use of
the econometric vector error correction framework designed by Engle and
Granger (1987) to deal with the cointegration problem.

We denote continuous returns for a generic exchange i at time t as:

∆xit = xit − xit−1 (3.1)

where i = 1, 2, · · · , n and n is the number of exchanges considered, xit is
the Bitcoin (log-)price of an exchange i at time t.
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We define ∆xt = (∆x1
t , · · · ,∆xit, · · · ,∆xnt )′ with i = 1, 2, ..., n. In line

with the notations above, the vector error correction model assumes the
following form:

∆xt = αβ′xt−1 +
k−1∑
i=1

ζi∆xt−i + εt (3.2)

with α being the (n × h) adjustment coefficient matrix, β the (n × h)
cointegrating matrix, ζi the (n × n) parameter matrices with i = 1, ..., n, k
the autoregressive order and εt is the zero-mean white noise process having
variance-covariance matrix Σ and h the cointegrating rank. Financial theory
suggests that, in this case, the time series in levels shall follow one common
stochastic trend, which means having a cointegrating rank of the system
which is h = n− 1.

Recall that by means of the recursive computations αβ′ = ∑k
i=1 Φi − In

and Ψi = −∑k
j=i+1 Φj one is able to retrieve the equivalent non-stationary

n−variable VAR(k) representation from the VECM(k− 1) in (3.2), which is:

xt =
k∑
i=1

Φixt−i + εt (3.3)

where Φ1,Φ2, ...,Φk with i = 1, ..., n are the (n × n) autoregressive pa-
rameter matrices.

Note that Diebold and Yilmaz (2012) start from a stationary VAR as the
one in (3.3) to build their methodology.

We may also rewrite the systems from above in the vector moving average
(VMA) representation, namely:

xt = εt + Ψ1εt−1 + Ψ2εt−2 + · · · (3.4)

where Ψ1,Ψ2, ... the (n×n) denote the matrices of VMA coefficients. The
VMA coefficients are recursively computed as Ψi = Φ1Ψi−1 + Φ2Ψi−2 + ...+
ΦiΨ1, having Ψi = 0 ∀i < 0 and Ψ1 = In.
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As it is widely accepted in the financial econometric literature, the vari-
ance decomposition tools are used to evaluate the impact of shocks in one
system variable on the others. Strictly speaking, variance decompositions
decompose the H-step-ahead error variance in forecasting xi which is due to
shocks to xj, ∀j 6= i and ∀i = 1, ..., n.

In this chapter we make use of the KPPS H-step-ahead forecast error
variance decompositions, as Diebold and Yilmaz (2012) do. This is because
we avoid imposing an a priori ordering of Bitcoin exchange prices regarding
the influence of shocks across the system variables, as popular techniques
like the Cholesky identification scheme do - see for reference on the Cholesky
factorization, for instance, Keating (1996). Indeed, the KPPS H-step-ahead
forecast errors are convenient as they are invariant with respect to the vari-
able ordering.

As already stated, Diebold and Yilmaz (2012) found their methodology
on the H-step ahead forecast error variance decomposition. Considering
two generic variables xi and xj, they define the own variance shares as the
proportion of the H-step ahead error variance in predicting xi due to shocks
in xi itself, ∀i = 1, ..., n. On the other hand, the cross variance shares
(spillovers) are defined as the H-step ahead error variance in forecasting xi
due to shocks in xj, ∀i = 1, · · · , n with j 6= i.

In other words, denoting as θgij(H) the KPPS H-step forecast error vari-
ance decompositions, with h = 1, · · · , H, we have:

θgij(H) =
σ−1
jj

∑H−1
h=0 (e′iΨhΣej)2∑H−1

h=0 (e′iΨhΣΨ′hei)
(3.5)

with σjj being the standard deviation of the innovation for equation j

and ei the selection vector, i.e. a vector having one as ith element and zeros
elsewhere. Intuitively, the own variance shares and cross variance shares
(spillovers) measure the contribution of each variable to the forecast error
variance of itself and the other variables in the system, respectively, thus
giving a measure of the importance of each variable in predicting the others.
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Note that the row sum of the generalized variance decomposition is not
equal to 1, meaning∑H−1

h=0 θ
g
ij(H) 6= 1. Diebold and Yilmaz (2012) circumvent

this problem by normalizing each entry of the variance decomposition matrix
by its own row sum, i.e.

θ̃gij(H) =
θgij(H)∑n
j=1 θ

g
ij(H) . (3.6)

This tackles the above mentioned issue and yields to ∑n
j=1 θ̃

g
ij(H) = 1,

and ∑n
j,i=1 θ̃

g
ij(H) = n.

As a measure of the fraction of forecast error variance coming from
spillovers, Diebold and Yilmaz (2012) define the total spillover index (TSI):

TSI(H) =

∑n
j=1
j 6=i

θ̃gij(H)∑n
j,i=1 θ̃

g
ij(H)

· 100 =

∑n
j=1
j 6=i

θ̃gij(H)

n
· 100. (3.7)

Moreover, we also make use of directional spillovers indexes (DSI) to
measure, respectively through Equations (3.8) and (3.9), the spillover from
exchange i to all other exchanges J (cfr. Equation (3.8)) and the spillover
from all exchanges J to exchange i (cfr. Equation (3.9)) as:

DSIJ←i(H) =

∑n
j=1
j 6=i

θ̃gji(H)∑n
j,i=1 θ̃

g
ij(H)

· 100 (3.8)

DSIi←J(H) =

∑n
j=1
j 6=i

θ̃gij(H)∑n
j,i=1 θ̃

g
ij(H)

· 100. (3.9)

Directional spillovers may be conceived as providing a decomposition of
total spillovers into those coming from - or to - a particular variable. In other
words, they measure the fraction of forecast error variance which comes from
(or to) one of the variables included in the system - and, hence, the impor-
tance of the variable itself in forecasting the others. From the definitions of
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directional spillover indexes, it is natural to build a net contribution mea-
sure, impounded in the net spillover index (NSI) from market i to all other
markets J , namely:

NSIi(H) = DSIJ←i(H)−DSIi←J(H). (3.10)

Another very important metric to measure the difference between the
gross shocks transmitted from market i to j and gross shocks transmitted
from j to i is the net pairwise spillover (NPS), defined as:

PNSij(H) =
 θ̃gij(H)∑n

q=1 θ̃
g
iq(H)

−
θ̃gji(H)∑n
q=1 θ̃

g
jq(H)

 · 100. (3.11)

All the metrics discussed above are able to yield insights regarding the
mechanisms of market exchange spillovers both from a system-wide and a
net pairwise point of view. Furthermore, performing the analyses on rolling
windows we are able to study the dynamics of spillover indexes over time.

3.4 Data

Our empirical analysis examines the most widely known and capitalized cryp-
tocurrency in current times: Bitcoin. We consider Bitcoin exchange prices
expressed in USD sampled on hourly basis. We analyze a 1 year time-frame
which ranges from 1 July 2017 to 30 June 2018, counting 8750 observations4.
The analyzed timespan includes two sub-periods of great interest for crypto
investors: the spectacular price growth in 2017 and its correction in 2018.
The period is chosen to be quasi-symmetric around bull and bear times.

During the two sub-periods many events involving cryptocurrencies oc-
curred and some of them have meaningfully affected their price dynamics,
mostly Bitcoin. The main events are summarized in Table 14. Some notable

4Exchange prices were collected from http://www.cryptodatadownload.com/data.
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events include: in the beginning of September 2017, People’s Bank of China
ban of fund raising by Initial Coin Offerings (ICOs) was linked this with a 5
% drop in the Bitcoin price. This was followed by the dramatic announce-
ment by the Chinese authority to shut down trading of cryptocurrencies at
national level; in early December, the approval of Bitcoin futures by the
Commodities Futures Trading Commission (CFTC) had a high impact on
Bitcoin investors. Bitcoin price spectacularly grew from around 10,000 USD
a coin when the news broke to a high just below 20,000 USD on 18 Decem-
ber; at the beginning of 2018 the South Korean regulators banned anonymous
bank accounts being used to buy and sell cryptocurrencies. After that move,
Bitcoin price declined from just below 11,000 USD to a daily low of 10,179
USD. The Bitcoin price fall then continued and was accompanied by many
negative news regarding cryptocurrencies. Indeed, during the first half of
2018, the exchange platform Bitconnect shut down, Coincheck was hacked
and Coinsecure was robbed, leading to unavoidable price declines. Moreover,
the Bitcoin price suffered from the moves of the Chinese government towards
blocking all websites that enable cryptocurrency trading and ICOs and for-
eign platforms that enable bitcoin trading in February, as well as from the
social network bans on advertisements for ICOs and token sales.

Table 14: Main events related to cryptocurrencies

Date Event Description
1)
01/08/2017

Bitcoin Cash
hard fork

Bitcoin forked into two derivative digital currencies, the Bitcoin

(BTC) chain with 1 MB blocksize limit and the Bitcoin Cash

(BCH) chain with 8 MB blocksize limit.

2)
04/09/2017

China banning
ICOs

People’s Bank of China banned fund raising by Initial Coin Of-

ferings (ICOs) referring to the threat to economic and financial

stability. Largely due to the high amount of suspicious ICOs

accused of illegally raising money and aiding intentional fraud.
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3)
16/09/2017

China exiting
local trading

Chinese authorities announced a ban on trading cryptocurren-

cies at national exchange services. Firstly, leaked documents

were online just four days after the ban of ICOs, on 8 Septem-

ber. On 15 September the Chinese platforms Huobi and OK-

Coin announced that they will halt trading for local customers

by 31 October.

4)
24/10/2017

Japan es-
tablish a
self-regulatory
industry body

The Financial Services Agency (FSA), the responsible over-

seer of banking, securities, insurance, and exchange sector of

Japan, set up the Japan Virtual Currency Exchange Associ-

ation (JVCEA) - a consortium of 16 FSA-approved domestic

cryptocurrency exchanges - to establish as a certified fund set-

tlement business association.

5)
24/10/2017

Coinbase re-
ceived New
York state
banking license

Coinbase Custody received a license to operate as an indepen-

dent qualified custodian, i.e. a Limited Purpose Trust Company

chartered by the New York Department of Financial Services

(NYDFS).

6)
28/11/2017

Bitcoin price $
10,000

Bitcoin price reaches the level of $ 10,000.

7)
01/12/2017

CFTC Bit-
coin futures
approval

The Commodities Futures Trading Commission (CFTC) ap-

proved the request by CME Group and Cboe Global Markets to

launch bitcoin futures. The two markets, which were launched

on December 10 and 18 respectively, allow investors to bet on

the future price of Bitcoin.

8)
17/12/2017

Bitcoin price $
20,000

Bitcoin price reaches the level of $ 20,000.

9)
19/12/2017

Yapian filed for
bankruptcy

Yapian, a company owning the Youbit cryptocurrency exchange

in South Korea, filed for bankruptcy following a hack, saying it

lost 17% of its assets.
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10)
08/01/2018

China scruti-
nizing mining

The Public Bank of China started to investigate Bitcoin mining

and outlined the plan to deter Bitcoin miners by limiting power

consumption.

11)
08/01/2018

Korean crypto
bank accounts
investigation

Korean financial authorities launched an investigation into

cryptocurrency-related services provided by local banks. In

particular, the Financial Intelligence Unit (FIU) - a body un-

der the Financial Services Commission (FSC) which monitors

illegal financial activities - and the Financial Supervisory Com-

mission - the country’s financial supervisor - were looking into

cryptocurrency-related virtual accounts at six local banks to

check their compliance with anti-money laundering regulations.

12)
16/01/2018

Bitconnect
exchange
shut-down
announcement

Bitconnect announced it would shut down its cryptocurrency

exchange and lending operation after North Carolina and Texas

regulators issued a cease-and-desist order against it, stating it

was suspected of being fraudulent.

13)
22/01/2018

South Ko-
rean regula-
tion about
anonymity

South Korea brought in a regulation requiring all Bitcoin

traders to reveal their identity, hence banning anonymous trad-

ing of Bitcoins.

14)
26/01/2018

Coincheck
hacked

Japan’s largest cryptocurrency OTC market, Coincheck, was

hacked and as much as 530 million US dollars of NEMs were

stolen, causing Coincheck to suspend trading.

15)
05/02/2018

China’s an-
nouncement
of blocking
foreign trading

With the aim of preventing Chinese investors from financial

risks, as in September 2017, China’s authorities announced

their willingness to ban trading of cryptocurrencies by blocking

internet access to foreign trading platforms.

16)
07/03/2018

Irregular
trades

Compromised Binance API keys were used to place irregular

trades.

17) Late
03/2018

Social network
bans

Facebook, Google, and Twitter banned advertisements for ICOs

and token sales.
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18)
13/04/2018

Coinsecure
robbery

Coinsecure, one of India’s biggest exchange platforms, lost 438

Bitcoins as a result of a theft. Based on the prices at the time

of the occurrence of the event this translates to approximately

3 million $ (i.e. roughly 190 million rupees in local currency).

Note: The table reports major events related to cryptocurrencies during the sample
period analyzed in the chapter, i.e. 1 July 2019-30 June 2019.

We study return connectedness of five major Bitcoin market exchanges,
meaning Bitstamp, Gemini, Coinbase, Kraken and Bittrex5. The main fea-
tures of the Bitcoin exchange platforms analyzed in this study are summa-
rized in Table 15. Bitstamp and Kraken are two of the oldest cryptocur-
rency exchanges existing, whereas Gemini, Coinbase and Bittrex are rela-
tively newer ones. Except for Bitstamp, whose headquarter is located in
UK, all the exchanges included in the sample are US-based. The number of
traded pairs varies quite much across exchanges, with Bitstamp and Gemini
being the ones trading the smallest number coin pairs and Bittrex the one
showing more variety of trading pairs. Trading fees are generally quite com-
parable across the analyzed exchanges, whereas trading volumes during the
analyzed time-frame are all above 5 million USD and the time to withdraw
or deposit fiat currencies is generally between 1 to 5 business days, except
for Gemini, which shows lower trading volumes and higher withdrawal and
deposit time of fiat currencies. As far as the supported currencies, Kraken
is the one supporting the biggest number of fiat currencies, whereas Gemini
and Bittrex support only USD and USDT respectively.

5The five exchanges were selected accounting for their total market capitalization and
data availability over the time period studied.
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Given that in our analysis we consider the price of the same crypto (Bit-
coin) traded on different venues, prices exhibit almost identical dynamics -
i.e. they co-move. Therefore, without loss of generality, we plot the Bitstamp
price series during the considered period in Figure 6, highlighting the main
events related to cryptocurrencies described in Table 14.

Figure 6: Bitstamp price (USD)

Note: The figure shows the Bitstamp price series (USD) related to the sample
period 1 July 2017 - 30 June 2018. Dotted lines indicate the dates at which the
main events related to cryptocurrencies described in Table 14 occurred.

A simple visual inspection yields to the conclusion that the upward and
downward trend periods split the sample into two almost equal time-frames.
More importantly, from an econometric point of view it can be noticed that
the Bitcoin price series seem to be highly non-stationary in levels, arguably
I(1). This consideration, together with the non-deviation of Bitcoin exchange
prices in the long run prescribed by the law of one price, makes us expect a
cointegrating relationship among the Bitcoin price series we analyze.

For the sake of completeness, we also plot the continuous returns of the
exchange price series in Figure 7.
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Figure 7: Exchange continuous returns

Note: The figure illustrates the analyzed Bitcoin exchange continuous returns
during the sample period 1 July 2017 - 30 June 2018.
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Table 16: Summary Statistics of Returns

Bitstamp Gemini Coinbase Kraken Bittrex

Mean 0.0001 0.0001 0.0001 0.0001 0.0001
Median 0.0002 0.0001 0.0009 0.0006 0.0006
Maximum 0.1079 0.1083 0.1220 0.0980 0.0969
Minimum -0.1076 -0.1222 -0.1979 -0.1052 -0.1565
Std. Dev. 0.0122 0.0121 0.0122 0.0115 0.0124
Skewness 0.0497 0.1303 -1.3244 -0.5429 -0.9601
Kurtosis 8.0090 9.3869 25.3352 9.4711 11.2719

Note: The table includes relevant summary statistics for returns related to the
analyzed exchanges considering the entire sample period.

In this case we notice a few data points in which there is a consistent
disequilibrium in returns, meaning that they diverge quite drastically. This
suggests that some exchanges behave dissimilarly to others during certain
periods. The latter proposition is also supported by the summary statis-
tics contained in Table 16. Again from an econometric point of view, the
graph showing continuous returns provides evidence to the hypothesis that
Bitcoin price series are I(1) time series, which will be empirically tested in
the following.

As a preliminary analysis, we need to ensure that the analyzed time series
are characterized by a non-stationary and cointegrated behaviour. To this
aim, we conduct two widely employed stationarity and cointegration tests.

To test for (non-)stationarity, we perform the Augmented Dickey-Fuller
(ADF) tests - see Dickey and Fuller (1979) - on prices, expressed in log-levels.
The test results are shown in Table 17.

The ADF test provides strong support towards the non-stationarity of
the price series in log-levels, whereas it provides evidence for stationarity
of their first differences - i.e. of continuous returns. This is true for all
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Table 17: Augmented Dickey-Fuller test

Bitstamp Gemini Coinbase Kraken Bittrex

p-valuelog−levels 0.7669 0.7718 0.7232 0.7945 0.7440
p-valuelog−returns <0.0100 <0.0100 <0.0100 <0.0100 <0.0100

Note: The table shows the resulting p-values for the Augmented Dickey-Fuller
(ADF) test considering the entire sample period. The test in levels includes a
constant but no time trend in the model specification. The minimum p-value
reported is 0.01.

conventional significance level. Therefore, we can claim that the Bitcoin
price series analyzed are I(1) time series.

To test for cointegration, we employ the Johansen trace test, as proposed
by Johansen (1991). In line with our methodological approach, we expect
to find a cointegrating rank of the system which amounts to h = n − g =
5− 1 = 4. This is because the law of one price entails that prices related to
the same asset should be driven by g = 1 unique common stochastic trend.
The test outcomes are illustrated in Table 18.

The test statistics allows us to reject the null hypothesis of a cointegrat-
ing rank h of at most 3 against the alternative of a cointegrating rank of 4.
In other words, the test suggests a cointegrating rank of the system h = 4,
i.e. the presence of g = 1 common stochastic trend driving the fundamental
Bitcoin price, in line with our previous considerations. This guarantees as-
sumptions are met and the methodology can be soundly applied to our real
data.

3.5 Empirical findings

In this chapter we investigate Bitcoin exchange return connectedness from
a dynamic viewpoint. In other words, rather than estimating spillover mea-
sures on the full sample period, which would provide the "average" or "un-
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Table 18: Cointegration (Johansen Trace test)

Test stat Critical 10% Critical 5% Critical 1%

h <= 4 3.10 6.50 8.18 11.65
h <= 3 188.84 15.66 17.95 3.52
h <= 2 752.42 28.71 31.52 37.22
h <= 1 1627.95 45.23 48.28 55.43
h = 0 3230.01 66.49 70.60 78.87

Note: The table illustrates the test statistics statistics and critical values for the
Johansen Trace test for cointegration for the full sample period. The test does not
include any costant or time trend, neither in the model specification nor in the
cointegrating relationship.

conditional" connectedness, we estimate spillover indexes on rolling windows,
with the aim to explore the dynamic features of exchange interconnectedness.
In particular, we set a predictive horizon for the variance decomposition of
H = 12. As far as the approximating model is concerned, we use a VECM
lag length of 2, corresponding to a lag length of 3 in its vector autoregressive
representation. We then consider a one-sided estimation rolling window of
w = 336 hours - corresponding to two weeks 6.

Firstly, we derive the total return spillover index and provide its plot -
together with the Bitstamp Bitcoin price related to the same period - in
Figure 4.7.

The total return spillover index ranges from a minimum of 72.24% to a
maximum of 79.79%, with an average value of 78.13% over the examined
period. This suggests that system-wide return connectedness is relatively
high when considering Bitcoin exchanges.

6The first two choices are in line with (Diebold and Yılmaz, 2014), who fix their forecast
horizon to H = 12 for the variance decomposition and the lag length of the approximating
VAR model to 3. The second choice is pursued for empirical reasons, meaning that we
consider the previous two full Bitcoin trading weeks to carry on the estimations.
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Figure 8: Total Spillover Index (TSI)

Note: The plot illustrates the total return spillover index versus the Bitstamp
Bitcoin price series. The rolling window set for the estimations is 2 weeks. Values
for the total spillover index are expressed in percentage terms, while the Bitcoin
price is denominated in USD.

Similarly to the Bitcoin price, the total spillover index seems to show two
main cycles: one in which the index witness a downward trend, as well as a
following one where it steadily grows and finally smooths out. However, its
dynamics are not synchronized with that of the Bitcoin price. This suggests
that both in hype and correction periods interconnectedness may either lower
or increase depending on specific market features.

In our case, system-wide connectedness generally falls during the first cy-
cle, specifically until the beginning of November 2017, period in which the
Bitcoin price starts an unprecedented year-end rally. Right after the min-
imum peak of the index, Bitcoin prices began to surge like never before,
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and the index goes back rapidly to its previous values. This means that,
while during the first price growth phase we encounter interconnectedness
among Bitcoin exchanges lowers, contagion effects begin to be more consis-
tent during the year-end Bitcoin price hype. During the second cycle the
total spillover index wiggles and grows at first, whereas it levels out and sta-
bilizes in the range 79%-80% starting from February 2018. This also coincides
with the end of the hard correction of Bitcoin price, after which exchange
interconnectedness becomes relatively steady.

After that, we study the directional return spillover indexes, i.e. the
"from", "to" and "net" spillover indexes. A plot illustrating their dynamics
over the considered time-frame is contained in Figure 9.

At first glance, one may notice that the range of variation related to the
directional spillovers to others is wider than that of the directional spillovers
from others. Indeed, while the return spillover indexes from others range
from a minimum of 7.80% to a maximum of 19.23%, the spillovers indexes
to others show a minimum of 0.47% and a maximum of 39.32% during the
studied period. This reflects into an as wide range for the net return spillover
indexes, with values between -18.57% and 30.13%.

In general, we find that to some extent there is a kind of equilibrium with
regards to the directional spillovers from and to others, as well as in the net
ones. During most part of the analyzed period, Bitcoin exchanges can be
split into two groups: those who transmit return spillovers to others, namely
Bitstamp and Gemini, and those who instead receive return spillovers, i.e.
Bittrex, Coinbase and Kraken. This can be immediately stated by a visual
inspection of the net spillover indexes in Figure 9, which give us a hint on
the leading and following Bitcoin exchanges during the analyzed time-frame.
Moreover, we may add that the dynamics and magnitude of the directional
return spillovers is quite similar within the same group.

However, there is a specific period in which the equilibrium witnesses a
substantial instability. This is related to the same period in which the total
return spillover index starts to rise after a steady decline. The directional
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Figure 9: Directional Spillover Indexes (DSI)

(a) From (b) To

(c) Net

Note: The figure shows the directional return spillover indexes "from" others
(From), "to" others (To), as well as the net ones (Net). The rolling window set for
the estimations is 336 hours - corresponding to 2 weeks. Values are expressed in
percentage terms.
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spillover indexes suggest that in this phase Kraken and Coinbase rapidly
start transmitting return spillovers to others and they keep doing that until
the dramatic year-end price surge, whereas Bitstamp and Gemini receive
spillovers during the same phase, together with Bittrex. The strong change
in leadership pushes from 20% to 5% the transmitted spillover contributions
of the two exchanges leading before in less than one month, besides making
that of Bittrex drop to almost null values.

Bittrex is the unique exchange which constantly emerges as a return
spillover receiver - even more in the latter mentioned timespan - is Bittrex,
being its net spillover index values as much as 96.98% of the times below
0. This is in line with the fact that leading exchanges are generally those in
which most of the trading volumes lie, as Bittrex is the smallest exchange we
selected in terms of trading volumes.

After the year-end Bitcoin price surge, directional spillover indexes go
back to their previous equilibrium. Indeed, the down market not only brings
system-wide connectedness to its previous levels, but also re-establishes the
exchange ranking in terms of return shock transmitted. In particular, despite
some fluctuations from the end of 2017 onwards Bitstamp and Gemini re-
confirm their previous leading position, while Bittrex, Kraken and Coinbase
that of follower.

Finally, we explore the net pairwise spillover indexes, which give us in-
formation on how return shocks are transmitted across Bitcoin market ex-
changes, from a pairwise viewpoint. We plot the net pairwise spillover indexes
in Figure 10.
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First of all, pairwise spillover indexes vary in wide ranges, meaning that
pairwise connectedness relationships show considerably different magnitudes
across exchange pairs. To illustrate, the narrowest range of variation can be
found in the pairwise spillover index between Gemini and Bitstamp, which
shows a minimum of -3.56 and a maximum of 1.07, whereas the widest range
in the index is that of Bitstamp and Coinbase, that is from -6.19% to 8.88%
- more than three times the latter one.

The study of net pairwise spillover indexes provides more depth to the
conclusions on the exchange interconnectedness that emerged from the to-
tal and directional spillover indexes analysis. Overall, Bitstamp and Gemini
transmit a significant portion of return spillovers to all other exchanges,
with Bittrex being the most affected. However, in line with the earlier find-
ings, during the period before the year-end price hype, Coinbase and Kraken
transmit shocks to all other exchanges, with relatively high and comparable
magnitudes.

It is interesting to study the interaction between the exchanges on the
top of the ranking. The net pairwise spillover index between Gemini and
Bitstamp oscillates around the zero line and assumes relatively low values.
From a visual inspection Bitstamp seems to dominate Gemini in terms of
return spillover transmission, both in terms of timespan and magnitude. As
a matter of fact, the net pairwise spillover index Gemini-Bitstamp assumes
negative values as much as almost two thirds (66.58%) of the times. More-
over, the contribution of Gemini towards Bitstamp does rarely overcome a
value of 0.4 as opposed to the return spillovers transmitted from Bitstamp
to Gemini, which not only double but even triple in size.

For the sake of ranking completeness, we also investigate the relationship
between Coinbase and Kraken. It is not clear from a graphical point of view
which exchange contributes more in terms of return spillover. Contribution
magnitudes show quite comparable ranges, and the number of times Coinbase
transmits shocks to Kraken is almost the same as the opposite situation
(49.01%). It is clear that the two exchanges interact in a different way with
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respect to the two leading ones, as their net pairwise spillover index oscillates
much less around 0. This means their role of transmitter and receiver are
more stable over time than in the previous case.

To summarise our empirical contribution in a nutshell, we are able to shed
further light on price discovery among bitcoin exchange markets. Previous
papers, such as Brandvold et al. (2015) and Pagnottoni and Dimpfl (2019)
and Giudici and Pagnottoni (2020) found that the exchange markets with
higher traded volumes are typically the ones that drive prices and spillovers.
Differently from the previous papers, based on daily price data, we have
considered high frequency data. The analysis of this data leads to confirm
the conclusions from the previous papers. In addition, it allows an important
discovery on the dynamic nature of return spillovers: although stable to some
extent, the lead-lag relationship among Bitcoin exchanges is dynamic and
witnesses notable changes over time. These changes may be fundamental for
both policy makers and investors, which should monitor them for the purpose
of an efficient decision making process and investment decision, respectively.

3.6 Robustness

In this section we propose a robustness analysis of our results with respect to
the choices of the parameters used in the modelling strategy. To illustrate,
we examine the total return spillover index for alternative rolling windows
w set for the model estimations and alternative predictive horizons H. We
increased and decreased the window width and predictive horizon by +50%
and -50%, resulting in window width choices of w = 168, 336, 504 and pre-
dictive horizon choices of H = 6, 12, 18. 7 In this way we investigate the
robustness of the total spillover index when considering rolling estimation

7A similar robustness analysis is performed by Diebold and Yılmaz (2014). By means of
increasing and decreasing the estimation parameters by +50% and -50%, we are coherent
with their choices with regards to the forecast horizon (H = 6, 12, 18), while we take into
account an even wider range of rolling window widths (w = 168, 336, 504 as opposed to
w = 75, 100, 125), ensuring a punctual robustness check of our outcomes.
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windows of 1, 2 and 3 weeks as well as predictive horizons of 1
4 ,

1
2 and 3

4 of a
day. Plots related to the alternative total spillover indexes are illustrated in
Figure 11.

The total spillover index seems to be just slightly influenced by changes
in the window width w. As one may expect, the larger the rolling window
the smoother is the index, whereas tighter windows yield to a more fluctu-
ating one. However, in our case, we can state that results are qualitatively
unaffected by the choice of the rolling window.

The index appears to be more sensitive to the choice of the forecast hori-
zon H to compute the forecast error variance decompositions rather than to
the rolling window. However, there is much more similarity in the behaviour
of the spillover index between choices of the forecast horizons H of 12 and
18 rather than those of 6 and 12. This suggests that a judicious predictive
horizon choice should grant stability of the index without losing information
about its surge or decline and related magnitude. More importantly, the dy-
namics of the indexes show quite similar patterns, which just differ in their
scale of values. This means that - once more - the qualitative interpretation
of our results is not influenced by the choice of the predictive horizon H.

To conclude, our empirical outcomes appear robust with respect to the
rolling window set for the estimation and the predictive horizons used in the
forecast error variance decompositions.

3.7 Conclusion

This chapter explores system-wide and directional connectedness, along with
price discovery mechanisms among five major Bitcoin exchange markets.
This is done by extending the Diebold and Yilmaz (2012) forecast error
variance decomposition from a VAR to a VECM framework, which enables
us to take into account the non-stationary and cointegrated behaviour of the
time series analyzed.

We remark that the methodological improve illustrated above is neither
exclusively tied to Bitcoin exchange platforms, nor to cryptocurrency ones.
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Figure 11: Robustness analysis

(a) w = 168, H = 6 (b) w = 168, H = 12 (c) w = 168, H = 18

(d) w = 336, H = 6 (e) w = 336, H = 12 (f) w = 336, H = 18

(g) w = 504, H = 6 (h) w = 504, H = 12 (i) w = 504, H = 18

Note: The figure shows the total spillover index with estimation window widths w
of 168, 336 and 504 hours - corresponding to 1, 2 and 3 weeks respectively - and
predictive horizons H of 6, 12 and 18 hours. Values are expressed in percentage
terms.
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Indeed, this technique can be extended to the study of interconnectedness
among all exchange platforms trading the same financial products.

Our results show that overall connectedness strongly evolves over time
and, in particular, it generally decreases during bull market times and de-
creases during down market periods. We also find that Bitfinex and Gemini
can be all over considered as leading exchanges in the price formation process,
being mostly transmitter of a significant portion of return spillover during
the considered timespan. On the other hand, we identify Bittrex as follower,
given it acts as a receiver of return shocks during the whole time period
considered.

We also highlight the dynamic nature of return spillover across Bitcoin
exchanges, as they considerably evolve over time. This means that the lead-
lag relationships existing among Bitcoin exchanges is not constant and it is
subject to changes over time.

From a practical viewpoint, our results suggest that, to predict the di-
rection of price movements and contagion effects, potential investors should
pay attention to spillovers and particularly to the exchanges that have the
highest trading volumes - in general. However, also that the time dynamics
should be taken into account, with a particular eye on events that may affect
price volatilities and spillovers. This is true also for policy makers, who can
come up with more efficient decision making by monitoring spillover effects
due to events belonging to the regulatory framework.

Future research may include different model paradigms, based on Bayesian
analysis - as in Giudici et al. (2003), Figini and Giudici (2011) -, on network
models - as in Giudici and Bilotta (2004) - or on extreme value models - as
in Calabrese and Giudici (2015).
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4 Basket-based Stablecoins to Mitigate For-
eign Exchange Spillovers

Based on the paper:
Giudici, Paolo, Pagnottoni, Paolo, & Leach, Thomas. 2020a. Li-
bra or Librae? Basket based stablecoins to mitigate foreign exchange volatil-
ity spillovers. available at SSRN.

4.1 Introduction

Carney (2019) posed the question of whether a Synthetic Hegemonic Cur-
rency (SHC) would be best provided by the public sector. The rationale be-
ing that a global currency, underpinned by a basket of reserve assets, could
better support global outcomes. For example, an SHC could dampen the
dominating influence of the US dollar on global trade, alleviate spillovers to
exchange rates from shocks to the US economy, and trade across countries
would become less dependent on the dollar.

Discussions around global currencies, have been reignited in the overar-
ching debate around central bank digital currency (CBDC) and stablecoins.
Most notably, Facebook announced plans for its own privately issued stable-
coin that would emulate the characteristics of an SHC. In the most recent
iteration of Facebooks proposition, the idea is to supply digital tokens that
are pegged to major currencies, i.e. LibraUSD would be pegged to the US
dollar. Moreover, there will be another token whose value is derived from a
weighted basket of the currencies provided on the platform. Currently, the
exact composition of the underlying basket and its targeted exchange rate is
unspecified. In this chapter, we assume that the objective is to devise a dig-
ital currency whose exchange rate fluctuations are minimised against several
currencies, hence a global stablecoin. Facebooks plans have been met with
some resistance from regulators and face intense scrutiny before receiving
any kind of regulatory approval.

Why have regulators reacted with such caution to Facebook’s plans to
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issue a stablecoin? Firstly, as a tech-giant Facebook can push Libra to its vast
user-base, approximately 2.41 billion monthly active users.8 To put this into
perspective, currently it is estimated there around 40 million bitcoin wallets
and 1 million daily users.9 Facebook would have to successfully penetrate
2% of its user base to match what is an upper bound on a proxy for the
size of bitcoins user base, the most frequently used cryptoasset. There is
consequently significant potential for Facebook to rapidly acquire a vast user
base for its digital currency.

Against this background, we investigate the empirical aspects of the de-
sign of a currency basket i.e. "Librae" in the sense that the value is composed
of several currencies. First, we consider the optimal weights of the basket of
underlying reference currencies, such as those included in the International
Monetary fund Special Drawings Rights (SDRs). After computing the opti-
mal weights we construct the historical values of the currency and compare
the volatility against a set of major currencies, wel also use the value of SDRs
as a reference for currency baskets.

For the optimal allocation of weights in the currency basket we follow Ho-
vanov et al. (2004) to compute a basket whose value’s variance is minimised
against the currencies contained in the basket. We construct a reference bas-
ket that contains the Dollar (USD), the Euro (EUR), the Yen (JPY), the
Renminbi (CNY) and the Pound Sterling (GBP), the same currencies that
are employed for the determination of the IMF’s Special Drawing Rights
(SDR) basket. Currently, Facebook has not made explicit which currencies
it intends to use in the basket. The weights are determined by minimising
the variance of a portfolio of currencies, expressed in Reduced Normalised
Values (RNVALs). The benefit of using the RNVALs is that the value of
each currency is expressed in how much it varies against others included in
the portfolio, therefore removing fluctuations in an underlying base currency.
We use daily data from January 2002 up until November 2019. Comparing

8https://newsroom.fb.com/company-info/
9The number of bitcoin wallets: https://www.statista.com/statistics/647374/worldwide-

blockchain-wallet-users/ and the number of active wallets: https://coinmetrics.io/.
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our weights with those of the SDR, less weight is given to the dollar, and
more weight on the Euro and Renminbi.

By construction, our basket based currency should be the least varying
in comparison to those contained in the basket, and our results confirm this.
However, it is of interest to see how our basket fares against currencies out-
side of the basket, for example against the currencies of the most important
remittance markets. The comparison can answer a very important question,
that is: is the exchange rate of the SHC less volatile then the exchange rate
of the dollar and, consequently, could a basket currency increase the utility of
individuals that make remittances? To answer this question, we recompute
the currency invariant indices with the inclusion of additional currencies,
namely the Indian Rupee, the Mexican Peso, the Philippine Peso and the
Nigerian Naira. Our empirical findings show that, overall, the basket has the
lowest volatility. Therefore acting as a safe store of value for overseas workers
savings. The basket can be used as a hedge against fluctuations between the
the domestic and foreign currencies of individuals that rely on remittances.
that could be held in the basket currency. The IMF’s SDRs, performs almost
as well. Stablecoins based on single-currencies in this respect perform worse,
although during the crisis the dollar had a lower volatility.

We then study the currencies which mostly determine volatility spillovers
among exchange rates, using the framework of Diebold and Yılmaz (2014).
Specifically, we build a spillover network decomposition analysis of the cur-
rencies up to April 2020, thus including the period of the Covid-19 outbreak.
Our spillover network decomposition shows that the USD is the currency
whose dynamics has the largest impact on the others, especially in terms
of exporting contagion, although in the latest period CNY has begun over-
taking. As a consequence, a shock to USD, expressed by a one standard
deviation decrease in its normalised value with respect to the other curren-
cies, causes a shock on all currencies and, through high order contagion, on
the USD itself, leading to a new lower equilibrium. Differently, a shock in
the value of the SHC, caused by a shock of a currency in the basket, is offset
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by the diversification effect and, therefore, the starting equilibrium is main-
tained. This implies that remittances converted in basket based stablecoin
better maintain their value, with respect to those converted in dollars (or
dollar based stable coins).

The rest of the chapter is organised as follows, Section 4.2 contains a
review of the relevant literature, Section 4.3 outlines our proposed method-
ologies, Section 4.4 presents our data and the empirical findings, and finally
in Section 4.5 we conclude.

4.2 Literature Review

4.2.1 Cryptocurrencies, stablecoins and e-money

Cryptocurrencies were first conceived with the advent of Bitcoin, large at-
tributed by the work of Nakamoto et al. (2008). This was the first decen-
tralized payment system based on maintaining a public transaction ledger.
Since then, as many as 5,500 cryptocurrencies exist as of 24 May 2020. With
respect to the analysis of cryptocurrencies, the research covers a vast array
of topics. Several dealt with the description and functioning of cryptocurren-
cies (Segendorf, 2014; Dwyer, 2015b). Issues surrounding cryptocurrrencies
from a legal perspective are discussed, for example, in Murphy et al. (2015).
Cheng and Dai (2020) demonstrate the inflow capital control evasion phe-
nomenon in cryptocurrencies and show that the relative CNY to USD bitcoin
price, indicating capital inflow volume reacts more negatively to carry trade
returns.

Many studies analyse cryptocurrencies and their features from a quan-
titative viewpoint. As an example, Corbet et al. (2018c) investigate the
dynamic spillovers of cryptocurrencies with other financial assets, and find
that the two categories of financial instruments are isolated. With a similar
methodology, Giudici and Pagnottoni (2020) explore the dynamic relation-
ship of Bitcoin exchanges and show their relative importance in transmitting
information of fundamental Bitcoin price changes. Katsiampa et al. (2019)
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examine the volatility interaction of eight cryptocurrencies through the Di-
agonal BEKK and Asymmetric Diagonal BEKK methodologies and find that
despite shocks in Bitcoin are the longest lasting, the cryptocurrency is not
dominant. Bouri et al. (2019) evaluate the effectiveness of several techni-
cal trading rules in cryptocurrency markets and provide support to the best
performances of moving average based strategies.

Research on stablecoins is instead quite limited. The Financial Stability
Board (2019) defines a ’stablecoin’ as a crypto-asset designed to maintain a
stable value relative to another asset (typically a unit of currency or com-
modity) or a basket of assets. Bullmann et al. (2019) make the following
distinctions between types of stablecoins.

• Tokenised funds - denote stablecoins that are a claim on a pool of
collateral that consists of funds, including cash, electronic money, com-
mercial bank money or central bank reserve deposits e.g. Tether, Utility
Settlement Coin

• Off-Ledger Collateralised - stablecoins that are a claim on a pool of
collateral that is comprised of various assets e.g. multiple currencies,
T-Bills etc

• On-Ledger Collateralised - stablecoins that are a claim on a pool
of underlying collateral that is held on a blockchain e.g. Dai

• Algorithmic - take users expectations into account to stabilise the
value of the coin (mostly conceptual) e.g. BasisCoin

At present, tokenised funds and off-ledger collateralised are the most com-
mon occurring instances of stablecoins. The Libra concept, would fall into
the later as the foundation has plans to invest the funds that are received in
return for stablecoins. Stablecoins replicate close substitutes for cash, sim-
ilarly to electronic money. This is not the first time that electronic money
has been on the agenda for central banks and policy makers, after a flurry
of innovations in this space, in 1996 and 1998 respectively the BIS and ECB
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published reports addressing the regulation of e-money and the implications
for monetary policy.10 For various reasons, these forms of e-money never
really troubled the concerns of policy makers of the time.11. However, dis-
cussions around digitised forms of money have reared their head once again.

4.2.2 Global currencies

A global currency as put forward recently by Carney (2019) could address
certain issues in the international monetary system. Keynes originally sug-
gested the bancor as a unit of account of his proposed International Clearing
Union, intended to fix to the dual dollar gold system. The solution was
eventually conceived by the IMF who approved the Special Drawing Rights
(SDRs) in 1967. The IMF’s issuance of SDRs could be seen as a suprana-
tional currency issued by central banks, although the SDR does not fulfil all
functions of money. Whilst serving as a store of value and unit of account,
SDRs are only used by some central banks and international institutions as
a means of exchange to pay each other (Ocampo, 2019). For this, they may
not be strictly considered as a“true" global currency.

A boost to the importance of SDRs was given in 2009, when China called
for reforms to the international monetary system by adopting the SDR as
a reserve asset. Against these developments, Humpage (2009) suggests that
while the adoption of the SDR as a reserve asset is technically feasible, it
would not reduce the dollar’s role any time soon. Many foreign-exchange
transactions, even excluding US residents, are denominated and settled in
dollars. Producers typically invoice their products in dollars, which keeps
their prices in line with their competitors and simplifies cross-border price
comparisons among producers (Gopinath et al., 2016). Given the persistent
importance of the US dollar, the question is whether this will remain so
under the fintech transformation that is changing the financial world. And,
in particular, whether a dollar based stable coin is more likely to be adopted

10See European Central Bank (1998); Bank for International Settlements (1996)
11For example, see Levene (2006)
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than a basket based one.

4.2.3 Remittances and exchange rates

A stablecoin backed by a basket of currencies could be an attractive asset for
foreign workers that make remittances to families in their home countries. In
particular, where its value is not directly tied to the domestic currency. Un-
der the status quo, an appreciation in the value of the domestic currency can
reduce the remittances ratio because workers want to to keep the additional
earning from the appreciation of the currency. On the other hand, workers
based in foreign countries, where the value of the domestic currency is de-
clining, may remit money on an urgent basis. Flore (2018) recently notes the
impact that blockchain could have on reducing costs in remittance markets.

One specific challenge for countries that face large inflows of worker re-
mittances could lead to the emergence of "Dutch disease," that is, remittance
inflows could result in an appreciation of the equilibrium real exchange rate
that would tend to undermine the international competitiveness of domestic
production, particularly that of nontraditional exports. Barajas et al. (2011)
note that reasonable modifications in the modelling of the factors driving re-
mittances, or in the various macroeconomic roles that remittances may play,
could moderate or even reverse the expected impact of remittance flows on
the equilibrium value of the real exchange rate. Acosta et al. (2009) discuss
two mechanisms by which this occurs, the first mechanism is demonstrated
in the Salter-Swan-Conder-Dornbusch model, which points to a “spending
effect,” by which the increase in wealth following higher capital inflows from
remittances, combined with exogenous tradable prices, causes the prices of
nontradable goods and services to rise. These higher prices lead to an ex-
pansion in the non-tradable sector. By definition, an increase in the price of
nontradables relative to the price of tradables translates into real exchange
rate appreciation. The second mechanism is that remittances tend to in-
crease household aggregate wealth. An increase in household wealth may
lead to a decrease in labor supply as households substitute more leisure for
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work. A shrinking labor supply, in turn, puts upward pressure on wages.
Rising wages raise production costs, and higher production costs can lead
to a further contraction of the tradable sector. Both the resource realloca-
tion effects and the labor effects can cause an appreciation of the exchange
rate, thereby reducing the international competitiveness of the tradable sec-
tor, and may lead to tradable sector contraction, higher wages, and higher
production costs.

A basket based currency could dampen some of these effects as it is less
susceptible to appreciation and depreciation of the domestic and foreign cur-
rencies. However, the effects are likely to be ambiguous and depend on how
the stablecoin is used. If it gains acceptability in the home currency this
could leads to new episodes of dollarisation, whereas if the currency is only
used as a medium of exchange the effect could be negligible.

4.2.4 Our contribution

Our proposal combines the background of the previous streams of literature,
namely: the need of a global currency, which is "optimal" in terms of min-
imum volatility (maximum stability), and resilient to exchange rate shocks;
with the emergence of fintech technologies, and of blockchain based stable
coins in particular. Against this background, we contribute to the previous
literature, from an economic viewpoint, by answering the following research
question: is a basket based stable coin better than a single currency one, in
terms of stability? To answer this question, we contribute to the literature,
from a methodological viewpoint, with two main innovations: i) we provide
a methodology to build a minimum variance basket of currency, to derive the
optimal weights for a ’global stablecoin’; ii) we provide a methodology aimed
at assessing contagion spillovers among foreign exchange markets, based on
Diebold and Yilmaz variance decomposition model.
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4.3 Methodology

In this section we outline the methodologies employed in our empirical ap-
plication. Firstly, we describe the optimal control problem which yields to
the optimal stablecoin weights. Secondly, we introduce our VAR model and,
based on it, we study the spillover effects across the currencies in the basket
to determine their interconnectedness and, therefore, to understand which
are the most relevant ones in terms of shock transmission.

4.3.1 Optimal control problem

We aim to build a basket of predetermined (reference) currencies with optimal
weights, namely, weights which minimize the variability of a basket based
stablecoin. This translates into an optimal control problem which minimize
the variance of the basket constructed with the above mentioned currencies.

Hovanov et al. (2004) show that the values of any given currency depends
on the base currency chosen. The latter fact creates ambiguity in evaluating
the currency itself and its dynamics. To overcome this issue, Hovanov et al.
(2004) proposed a reduced (to the moment t0) normalized value in exchange
(RNVAL) of the i-th currency:

RNVALi (t/t0) = cij(t)
n

√∏n
k=1 ckj(t)

/
cij (t0)

n

√∏n
k=1 ckj (t0)

= n

√√√√ n∏
k=1

cik(t)
cik (t0) . (4.1)

By reducing to the moment t0 and normalizing each currency observation
by the geometric average of the other currencies at that specific point in time,
the RNVAL allows the computation of a unique optimal, minimum variance
currency basket, despite the base currency choice. The minimum variance
currency basket is derived by searching the optimal weight vector w∗ which
solves the following optimal control problem:

Min
S2(w) =

n∑
i,j=1

wiwj cov(i, j) =
n∑
i=1

w2
i s

2
i + 2

n∑
i,j=1

wiwj cov(i, j)
 (4.2)
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subject to
∑n
i=1wi = 1

wi ≥ 0

The optimal control problem in Equation (4.2) yields to the minimum
variance weights which enable us to construct the stablecoin value.

4.3.2 VAR models and spillover analysis

We evaluate spillovers through the methodology by Diebold and Yilmaz
(2012). As in their seminal paper, we start from estimating a Vector Au-
toRegressive (VAR) model, that is :

xt =
k∑
i=1

Φixt−i + εt (4.3)

where xt being the (n× 1) vector of first differences in RNVALs at time
t, Φi the (n × n) VAR parameter matrices, k the autoregressive order, εt a
zero-mean white noise process having variance-covariance matrix Σε, with n
being the number of currencies considered in order to build the basket. Note
that the VAR model is built on the variables’ first differences, as this ensure
the stationarity of the analyzed time series.

The VAR in Equation (4.3) may also be rewritten in its corresponding
vector moving average (VMA) representation, that is

xt = εt + Ψ1εt−1 + Ψ2εt−2 + · · · (4.4)

where Ψ1,Ψ2, ... the (n × n) are the matrices of VMA coefficients. The
VMA coefficients are recursively computed as Ψi = Φ1Ψi−1 + Φ2Ψi−2 + ...+
ΦiΨ1, having Ψi = 0 ∀i < 0 and Ψ1 = In.

As it is widely accepted in the financial econometric literature, the vari-
ance decomposition tools are used to evaluate the impact of shocks in one
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system variable on the others. Strictly speaking, variance decompositions
decompose the H-step-ahead error variance in forecasting xi which is due to
shocks to xj, ∀j 6= i and ∀i = 1, ..., n.

In this contribution we make use of the KPPS H-step-ahead forecast
error variance decompositions, as Diebold and Yilmaz (2012) do. This is
because we avoid imposing an a priori ordering exchange rates regarding the
influence of shocks across the system variables, as popular techniques like the
Cholesky identification scheme do. Indeed, the KPPS H-step-ahead forecast
errors have are convenient as they are invariant with respect to the variable
ordering.

As already stated, Diebold and Yilmaz (2012) found their methodology
on the H-step ahead forecast error variance decomposition. Considering
two generic variables xi and xj, they define the own variance shares as the
proportion of the H-step ahead error variance in predicting xi due to shocks
in xi itself, ∀i = 1, ..., n. On the other hand, the cross variance shares
(spillovers) are defined as the H-step ahead error variance in forecasting xi
due to shocks in xj, ∀i = 1, · · · , n with j 6= i.

In other words, denoting as θgij(H) the KPPS H-step forecast error vari-
ance decompositions, with h = 1, · · · , H, we have:

θgij(H) =
σ−1
jj

∑H−1
h=0 (e′iΨhΣej)2∑H−1

h=0 (e′iΨhΣΨ′hei)
, (4.5)

with σjj being the standard deviation of the innovation for equation j

and ei the selection vector, i.e. a vector having one as ith element and zeros
elsewhere. Intuitively, the own variance shares and cross variance shares
(spillovers) measure the contribution of each variable to the forecast error
variance of itself and the other variables in the system, respectively, thus
giving a measure of the importance of each variable in predicting the others.

Note that the row sum of the generalized variance decomposition is not
equal to 1, meaning∑H−1

h=0 θ
g
ij(H) 6= 1. Diebold and Yilmaz (2012) circumvent

this problem by normalizing each entry of the variance decomposition matrix
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by its own row sum, i.e. :

θ̃gij(H) =
θgij(H)∑n
j=1 θ

g
ij(H) . (4.6)

This tackles the above mentioned issue and yields to ∑n
j=1 θ̃

g
ij(H) = 1,

and ∑n
j,i=1 θ̃

g
ij(H) = n.

As a measure of the fraction of forecast error variance coming from
spillovers, Diebold and Yilmaz (2012) define the total spillover index (TSI):

TSI(H) =

∑n
j=1
j 6=i

θ̃gij(H)∑n
j,i=1 θ̃

g
ij(H)

· 100 =

∑n
j=1
j 6=i

θ̃gij(H)

n
· 100. (4.7)

Moreover, we also make use of directional spillovers indexes (DSI) to
measure, respectively through Equations (4.8) and (4.9), the spillover from
exchange i to all other exchanges J (cfr. Equation (4.8)) and the spillover
from all exchanges J to exchange i (cfr. Equation (4.9)) as:

DSIJ←i(H) =

∑n
j=1
j 6=i

θ̃gji(H)∑n
j,i=1 θ̃

g
ij(H)

· 100 (4.8)

DSIi←J(H) =

∑n
j=1
j 6=i

θ̃gij(H)∑n
j,i=1 θ̃

g
ij(H)

· 100. (4.9)

Directional spillovers may be conceived as providing a decomposition of
total spillovers into those coming from - or to - a particular variable. In other
words, they measure the fraction of forecast error variance which comes from
(or to) one of the variables included in the system - and, hence, the impor-
tance of the variable itself in forecasting the others. From the definitions of
directional spillover indexes, it is natural to build a net contribution mea-
sure, impounded in the net spillover index (NSI) from market i to all other
markets J , namely:
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NSIi(H) = DSIJ←i(H)−DSIi←J(H). (4.10)

Another very important metric to measure the difference between the
gross shocks transmitted from market i to j and gross shocks transmitted
from j to i is the net pairwise spillover (NPS), defined as:

PNSij(H) =
 θ̃gij(H)∑n

q=1 θ̃
g
iq(H)

−
θ̃gji(H)∑n
q=1 θ̃

g
jq(H)

 · 100. (4.11)

All the metrics discussed above are able to yield insights regarding the
mechanisms of market exchange spillovers both from a system-wide and a
net pairwise point of view. Furthermore, performing the analyses on rolling
windows we are able to study the dynamics of spillover indexes over time.

4.4 Data and empirical findings

4.4.1 Data

To test our proposal, we make use of historical data, according to a retro-
spective analysis. In particular, we use daily foreign exchange rate data over
the period January 2002 - November 2019, obtained from investing.com. To
build our optimal basket of currencies, we collect data relative to the foreign
exchange pairs between the currencies that are included in the IMF’s Spe-
cial Drawings Rights: the US dollar, the Chinese Renmimbi, the Euro, the
British pound and the Japanese Yen. According to our research assumption,
we will assume that the obtained basket of currencies correspond to a stable
coin which can be exchanged and compared with a single currency based sta-
blecoin, for example based on the US dollar. This, in particular, for foreign
individuals sending remittances to their home country. To understand the
relationship between major currencies and remittances we also collect data
on the largest remittance markets - namely, the Indian Rupee, Mexican Peso,
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Table 19: Optimal weights

Currency USD CNY EUR GBP JPY

Optimal Weights 0.17 0.2 0.23 0.19 0.21

IMF SDR Weights 0.42 0.11 0.31 0.08 0.08

Note: Weights of the currency in the chose basket, according to our methodology
(Optimal) and the IMF Special Drawing Rights (IMF SDR)

Philippines Peso, Nigerian Naira. Moreover, for what concerns the volatility
analysis, we divide the sample into subsets which define the pre-crisis period
(2002-2008), crisis period (2009-2011) and post-crisis period (2012-2019).

Finally, for the sake of comparison with a widely known basket-based
currency such as the IMF SDR, we also collect data relative to the foreign
exchange pair of the dollar with the IMF Special Drawing Rights.

4.4.2 Optimal basket and stability analysis

First of all, we compute the RNVALs as described in Section 4.3. The re-
sulting weights are contained, together with those of the IMF SDR, in Table
19.

From Table 19 note that our method yields weights which are relatively
equal among each other, in fact each are approximately a fifth, with a slightly
heavier weighting on the EUR. The weights are quite different from the
weights of the IMF SDR, which are highly concentrated on the USD dol-
lar. Fluctuations of SDRs will strongly be correlated with fluctuations in
USD and EUR. The SAC distributes the weights more evenly across the bas-
ket to minimise the variations in fluctuations. Since, the basket is comprised
of hard currencies the diversification tends to work since the currencies move
systematically over time relative to one another. Such that, if the value a
particular currency depreciates relative to the SAC, but simultaneously there
is an appreciation of another currency, their movements would tend to cancel
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each other, all else the same. Note, that China has managed a floating peg
against the USD and hence these two currencies are likely to be strongly
linked. In the SDR these two currencies make up 53% of the basket com-
pared to 37% in the SAC. Indicating, perhaps more diversification is needed
to offset movements in the dollar. To better interpret the results, Figure 12
represents the time series of the Reduced Normalised Values of all consid-
ered currencies in the basket, along with our basket based stable coin, in the
considered period.

Figure 12 shows the evolution of the RNVALs of the currencies composing
the basket during the whole sample period. From Figure 12 note that, after
a first period of small turbulences, the time series start to diverge roughly
from the beginning of 2006 onwards. From that point in time onwards, two
clusters seem to emerge from the graph: the first one includes USD and CNY,
while the second one pertains EUR, GBP and JPY. This is arguably due to
the fact that, for many years, the CNY value was pegged to the dollar and,
therefore, its dynamics over time shows quite similar patterns to that of the
USD. Note that, as expected by construction, the Reduced Normalised Value
of the basket based stable coin lies in the middle, "mediating" between the
different currencies, and compensating single deviations with diversification
benefits.

For the sake of analyzing the world’s emerging market currencies with the
highest portions of remittances, we recompute the RNVALs including them.
The corresponding graphical representation is contained in Figure 13. In the
figure we have included, besides our basket based stable coin, another one
that employs the same weights as the Special Drawing Rights.

Figure 13 shows that emerging market currencies such as the Mexican
Peso (MXN) and the Philippine Peso (PHP) appreciate consistently with
respect to the other fiat currencies in the basket over time. All the other
currencies, instead, seem to belong to another cluster, in the sense that they
do not follow an upward trend as the previous ones, but rather fluctuate
below the value of 1, with different patterns. The only exception is the
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Figure 12: Time evolution of the Reduced Normalised Values and of the
basket based stable coin (SAC)
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Figure 13: Time evolution of the Reduced Normalised Values
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Note: Time evolution of the Reduced Normalised Value of the basket currencies
(USD, CNY, EUR,GBP, JPY), of the considered emerging market currencies (INR,
MXN, NGN, PHP) and of the basket based stable coins (SAC, SDR)

Indian rupee (INR), whose value grows over time, although not with the
same magnitude as MXN and PHP do. Note that both basket based stable
coins lie in the middle, similarly as in Figure 12, although their Reduced
Normalised values fluctuate. This because the baskets are built using only
five currencies, but are normalised with respect to all nine included in Figure
13.

To understand more precisely which stable coin is more stable (Libra: sin-
gle currency based, or Librae: basket based), Table 20 presents their volatil-
ities, measured by their standard deviations in the considered time period.
The table presents also the correlations between the currencies, which help
in the interpretation of the results.

Table 20 shows, as far as correlations are concerned, that USD and CNY
exhibit relatively strong negative or little correlation with others currencies
in the basket, but are weakly positive between themselves, consistently with
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Table 20: Volatility and Correlations between the RNVALs and basket based
stable coin.

USD CNY EUR GBP JPY SAC

USD 1 0.14 -0.68 0.01 -0.41 0.02
CNY 0.14 1 -0.4 -0.8 0.17 0.02
EUR -0.68 -0.4 1 0.26 -0.09 0.03
GBP 0.01 -0.8 0.26 1 -0.64 0.02
JPY -0.41 0.17 -0.09 -0.64 1 0.02
SAC 0.02 0.02 0.03. 0.02 0.02 1

σ 0.07 0.1 0.06 0.1 0.09 0.002

what observed in Figure 12. Moreover, one can clearly notice that the EUR
acts as a good diversifier, as its pairwise correlations are quite low if compared
to those between other currencies. More importantly, from the correlation
matrix we can deduce that the stablecoin shows correlations with the other
currencies whose values are very close to zero. Low correlations with the
other currencies is a clear sign of the goodness of our stablecoin in being
isolated with respect to the fiat currencies’ dynamics and, therefore, arguably
stable. In terms of volatility, the standard deviations show that the most
volatile currency is CNY, followed by JPY and USD. Our stablecoin exhibits
a standard deviation magnitude which is much lower than those of the other
currencies and about ten times lower than that of the least volatile one,
namely EUR. This is a clear sign of stability of the proposed stablecoin, as
opposed to an hypothetical stablecoin pegged to one single currency.

To determine whether a basket-based stablecoin would be a more valuable
and more stable alternative than a stablecoin pegged to a single currency,
especially for remittances, we can, in analogy with 13, compare the volatility
of our stablecoin with that of a SDR based basket, and with the currencies
of the most important emerging markets in terms of remittances. Table 21
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Table 21: Volatility of the RNVALs

USD CNY EUR GBP INR JPY MXN NGN PHP SAC SDR

σall 0.09 0.14 0.07 0.06 0.13 0.11 0.23 0.41 0.10 0.04 0.05
σpre 0.04 0.03 0.08 0.05 0.02 0.05 0.10 0.07 0.06 0.04 0.02
σcri 0.05 0.05 0.03 0.06 0.03 0.10 0.09 0.10 0.03 0.03 0.02
σpost 0.1 0.06 0.03 0.04 0.08 0.07 0.16 0.39 0.04 0.03 0.05

Note: Volatility of the RNVALs of the basket currencies, of the emerging market
currencies, and of the two basket based stable coins, over the whole period (all),
the pre-crisis period (pre), the crisis period (cri) and the post-crisis period (post).

contains the comparison, over the whole period and also in three distinct
periods, corresponding to the pre-crisis period, the crisis period and the
post-crisis period.

From Table 21 first row, it is clear that overall the stablecoin exhibits
lower values of volatility, when compared to the other traditional fiat cur-
rencies. The other rows in the Table show that is often the case, although
especially during pre-crisis and crisis period few currencies exhibit slightly
lower volatilities, depending on how and when they were affected by the
global financial crisis. However, we can notice that the stablecoin’s volatility
is much more stable than that of the other currencies which, although for
some period slightly lower, show quite relevant jumps in magnitude. More-
over, the proposed stablecoin exhibit lower volatilities over the whole time
period if compared to the single currencies in the basket and to the single
emerging market currencies. This can be read as a strength of our stablecoin,
as it could function as a better medium of exchange than a country’s single
currency, in particular as far as remittances are concerned. Note also that the
SDR is a valid alternative to our stable coin, possibly easier to implement,
from a political consensus viewpoint.

78



Table 22: Currency spillovers

USD CNY EUR GBP JPY FROM

USD 44.94 35.33 13.02 6.67 0.04 11.01
CNY 34.49 49.40 10.76 5.34 0.00 10.12
EUR 15.81 15.22 62.29 6.48 0.19 7.54
GBP 11.4 10.21 6.28 69.58 2.53 6.08
JPY 0.41 0.14 0.01 3.94 95.51 0.90
TO 12.42 12.18 6.01 4.49 0.55 35.66

4.4.3 Spillover network analysis

We now consider spillovers between exchanges, to evaluate the price change
connectedness of the currencies that compose the basket, and to understand
which is the relative importance of each of the currencies in transmitting
shocks. In this way, we are also able to determine which currencies potentially
cause strong (or weak) price changes in our proposed stablecoin value.

As far as specifications are concerned, VAR models are built on price
changes in reduced normalised values (RNVALs). We use a VAR lag deter-
mined by a Bayes-Schwarz information criterion (BIC) that penalises over-
parameterisation compared to other widely employed information criteria.
The optimal number of lag determined by the BIC is 1. We use a H = 100
step-ahead forecast horizons for forward iteration of the system. Additionally,
dynamic spillovers use a rolling estimation window of length 100 observations.

Firstly, we provide an analysis of unconditional price change spillovers,
that are spillovers evaluated on the whole sample period. The results are
shown in Table 22.

From Table 22 note that there are two currencies which are highly in-
terconnected with the others, meaning USD and CNY, whereas EUR, GBP
and in particular JPY are more isolated in terms of return connectedness.
Furthermore, the scene appears to be dominated by USD and CNY, whose
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Figure 14: Overall spillovers

contributions in terms of price change spillovers towards other currencies are
much higher than those of the remaining currencies in the basket.

The analysis of dynamic spillovers is able to clarify the results obtained
in the unconditional spillover analysis by means of observing the evolution
of spillovers over time. Figure 14 shows the results.

Figure 14 depicts the overall dynamic spillover plotted over the sample
period. The overall spillover within the basket ranges from a minimum of
17.87% to a maximum of 80.00%. It seems that the overall spillover follows
a generally decreasing trend, as it starts from 54.51% at the beginning of the
sample period, while it diminishes to 34.43% at the end of the studied time
frame.

Dynamic directional spillovers can shed light on which of the currencies
transmit price change spillovers to others and which of them receive price
change spillovers from others. We plot from, to, net and pairwise spillovers
in Figures 15, 16 and 17, respectively.

From the joint analysis of Figures 15, 16 and 17 we can highlight that that
USD is the most influential currencies in terms of return spillovers. Indeed,
the magnitude of spillovers received from others is weak compared to that
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Figure 15: From spillovers

Figure 16: To spillovers
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Figure 17: Net spillovers

transmitted to others. Moreover, the net spillover dynamics summarizes the
dominant position of the USD, being it always positive and taking relatively
high values over the sample period. However, the magnitude of spillovers
transmitted by USD follows a negative trend over time, meaning the currency
is gradually losing its potentiality to contribute to the evolution of the others,
perhaps due to the affirmation of emerging economies in the latter period,
especially after the 2009 crisis. CNY is indeed emerging as a dominant
currency during the recent times. Despite that, the latter considerations
are in line with the full sample results obtained above, which point to the
dominance of USD as a spillover transmitting currency.

Differently from what emerged in the full sample analysis, instead, the
dynamic analysis shows that CNY has not been such a leading currency in
transmitting price change shocks from an historical viewpoint. Indeed, the
full sample result is arguably driven by a noticeable spike which occurred
on 21 July 2005. Indeed, during that day the Chinese Central Bank offi-
cially announced the abandonment of the eleven-year-old peg to the dollar
and pegged the CNY to a basket of currencies whose composition was not
disclosed. This caused a prompt revaluation to CNY 8.11 per USD, as well
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as to 10.07 CNY per euro. However, the peg to the dollar was reinstituted
as the financial crisis strengthened in July 2008. These results indicate that
CNY does not particularly contribute to the price change evolution of the
other currencies in the basket, although it can exert shocks through sudden
policy decisions.

The dominance of the USD and, to a lesser extent, of CNY emerges also
when analyzing the directed network structure of the currencies in terms of
net pairwise spillovers represented in Figure 18. In this context, the network
edges are represented by the currencies in the basket, whereas edges represent
the magnitude of net pairwise spillovers for each currency pair.

To verify the loss of importance of the dollar, we can extend the spillover
network analysis to cover the Covid-19 outbreak period of March-April 2020.
Specifically, we analyze two subsamples with the year 2020 as cutting point,
to detect major changes in country forex spillover dynamics.

The spillover network gives a ranking in terms of spillover transmission
capacity and, therefore, price discovery. The most influential currency in
terms of price change shock transmission is USD, followed by CNY and, to
a lesser extent, GBP. The two receivers are instead JPY and, at most, EUR.
The highest influence is given by USD towards EUR, followed by CNY to
JPY. This suggests that the contagion occurs to a greater extent within Asian
currencies and across American and European ones.

However, the picture is different when analyzing spillovers during two dis-
tinct sub-samples: one ranging from September 2017 to December 2019, and
another one from January 2020 to April 2020, both depicted in Figure 19.
Indeed, overall interconnectedness has increased in the second sub-sample,
likely due to the Covid-19 outbreak, thus markets move more similarly as a
consequence of the epidemic. This is equivalent to say there are more con-
tagion dynamics occurring since the Covid-19 outbreak and that magnitude
of information transmitted from the currencies sharply increased after the
Covid-19 crisis. Moreover, they highlight that the contagion dynamics is
very different from that of the pre-crisis period. USD is no longer dominant,
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Figure 18: Spillover network (full sample)

Note: The figure represents the spillover network of the currencies included in the
basket over the full sample period. The nodes are represented by the currencies
included in the basket. The magnitude of the links is represented by the net
pairwise spillovers between each currency pair.

whereas Asian countries with CNY and JPY, which encountered the Covid-19
outbreak before others, turn out to be the strongest currency shock propa-
gators, along with an augmented relative importance of GBP. This suggests
that the spillover dynamics has been somehow linked to the virus spread,
meaning financial shocks occurred first in the countries first hit by the virus,
specifically the Asian ones, and then awareness gradually spread through
the Euro zone and the United States. It also highlights the importance of
monitoring the spillover dynamics in the basket both to have a systemic risk
indicator and to determine lead-lag relationships among currencies in the
basket when designing basket-based stablecoins.
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Figure 19: Spillover networks (sub-samples)

Note: The figure represents the spillover network of the currencies included in
the basket. The first representation corresponds to the period September 2017 to
December 2019 (panel a), while the second one from January 2020 to April 2020
(panel b). The nodes are represented by the currencies included in the basket.
The magnitude of the links is represented by the net pairwise spillovers between
each currency pair.

4.5 Conclusion

In this chapter we present a methodology to build a basket based stable coin
whose weights can maximise stability over a long time period. The weights
have been calculated, retrospectively, for the period that follows 2002, and
show a distribution more even than the IMF Special Drawing Rights weights.

The proposed stable coin (Librae) appears to be less volatile than single
currencies and, therefore, with respect to single currency stable coins (Libra).
It can thus constitute a valuable proposal especially for workers who live
abroad and make remittances to their own country, a market segment with
a high potential of being attracted by payments in stablecoins.

We have also proposed a variance decomposition technique based on a
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VAR model aimed at showing which currencies mostly impact the Foreign
Exchange market and whether a single currency or a basket based stablecoin
is more resilient to currency shocks. Our results show that the dollar is
the currency which mostly impact the market, and that a basket based coin
is better than a dollar based one, from a stability and value maintenance
viewpoint. However, CNY is taking over as spillover transmitter and USD is
gradually losing its influence over time, especially with regards to the latest
period, characterised by the Covid-19 otubreak.

With a basket based stablecoin it is possible to offset the risk of currencies
shocks. This is of relevance for different policy purposes and, in particular,
for emerging markets and countries having high remittances. Indeed, by
holding stablecoins rather than single currencies the risks associated to cur-
rency shocks are mitigated and stablecoins holder can count on a currency
whose value is less volatile than traditional fiat currencies and, thereby, more
reliable. The latter fact has also positive consequences on cross-border pay-
ments side, provided that the stability of the stablecoin mitigates the foreign
exchange risk, thus contributing to the fact that buyers and sellers give or
receive an amount of money whose value is less sensitive to variations over
time.

Future research may consider basket that dynamically evolve over time
("AI baskets"), although these are bound to be more difficult to achieve
consensus. Furthermore, currency volumes in circulation may be taken to
account, along with the technical characteristics of the coins (for example:
cybersecurity, redeemability, reliability), from a different, more theoretical,
viewpoint.
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5 Information Flow in the Credit Risk Mar-
ket: Evidence from the European Sovereign
CDS and Government Bonds

Based on the paper:
Caserini, Nicoló, & Pagnottoni, Paolo. 2020. Information Flow in
the Credit Risk Market: Evidence from the European Sovereign CDS and
Government Bonds. Working Paper.

5.1 Introduction

The rapid development of credit derivative products, in particular by the
first decade of 2000, led to a remarkable financial innovation which could
considerably improve the protection of market participants against the ex-
posure to the credit risk of a specific entity. Among credit derivatives, credit
default swap (CDS) has become one of the most widely traded instruments,
especially in the aftermath of the collapse of the investment bank Lehman
Brothers in September 2008. When the market pricing of government and
company debt was significantly affected during the crisis outbreak, investors
all over the world widely used the CDS market to hedge their credit expo-
sures as well as to extend their investment opportunities. The CDS premium,
which depends on the default probability of the underlying entity, played a
growing role as an instrument through which information on credit risk is
disclosed, potentially in competition with the bond market (Coudert and
Gex, 2013). Indeed, the CDS premium should be approximately equal to the
spread of a bond over a risk-free rate on the same reference entity and of the
same maturity, since both instruments price the credit risk associated with
a specific underlying entity. As a consequence, an approximate arbitrage
relation between the bond spread and the CDS premium exists, as clearly
discussed by Duffie (1999).

In light of this, the literature on credit risk started to investigate the
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dynamic relationship between the CDS and the bond market, in order to
assess which of these two assets is faster at incorporating information about
the credit risk of the underlying entity in their prices. In other words, the
relation between the CDS and bond market has been explored to investigate
which market leads the price discovery process. Many researches devoted
particular attention to the information leadership of credit risk in CDS and
bond markets using data on corporate entities. In this context, economet-
ric approaches based on cointegration revealed that the CDS market moves
quicker than the bond one in terms of price discovery. Such results, mostly re-
ferring to the global financial crisis, are closely related to the relative size and
liquidity of the CDS and the corporate bond market. As discussed in detail
by Coudert and Gex (2013), market participants are more prone to benefit of
particular information regarding a given company by trading a CDS rather
than a bond, due to the greater liquidity of the CDS market. Consequently,
liquidity seems to play an important role in fostering a market’s leadership
in the price discovery process.

This finding in the corporate framework led a branch of the literature
to investigate the relationship between the CDS and the bond market across
governments, in order to examine which market is the most efficient in pricing
the information of the sovereign credit risk, and especially to examine if the
CDS market could be entitled as a leader in the price discovery process for
sovereign entities as well. However, as opposed to the corporate framework,
results are found to be very mixed and ambiguous for sovereigns, as discussed
by Augustin (2014). Different authors suggest that these discrepancies in the
price discovery analysis may be related for example to the relative liquidity
of both markets (see Ammer and Cai (2011)) or to market frictions, such as
counterparty risk and funding costs (see Arce et al. (2013)) or to differences
in how bond spread are calculated (see Gyntelberg et al. (2013)). As a
consequence, no unique results have been found on the leadership between
the two markets so far.

As a common point discussed by the extant literature, the arbitrage rela-
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tion between the CDS premium and the bond spread is not perfect. Market
imperfections, such as the cheapest-to-deliver (CTD) option, unavailability of
instruments with exactly matching maturity dates, or liquidity premia can
impair the relationship between the two markets in the long-run. Indeed,
the existence of a long-run equilibrium relationship is not always proved
and, when the lack of this assumption occurs, information measures based
on Vector Error Correction Models (VECM) cannot be applied. This is usu-
ally circumvented by means of the Granger causality test based on a Vector
Autoregressive Model (VAR), able to detect lead-lag relationship between
the two markets when no evidence of cointegration is found. However, as
for the VECM, Granger causality requires restrictive assumptions for the
linear dynamics of the model. Thus, the failure to provide the existence of
a long-run equilibrium relationship between the two time series and the re-
strictive assumptions for the linear dynamics of the models require additional
techniques to detect a possible interaction between the CDS and the bond
market.

In this chapter we cope with the missing cointegration relation between
the CDS premium and the bond spread, and we measure the interactions be-
tween the CDS and the bond markets by means of the practical background
proposed by Dimpfl and Peter (2013). It consists of an alternative method-
ology which uses the concept of transfer entropy to examine the information
flow between the CDS and the corporate bond market. Based on the concept
of Shannon Entropy developed in information theory by Shannon (1948),
transfer entropy has been subsequently introduced by Schreiber (2000) to
measure the dependency between two variables in time. Such a measure is
a model-free approach able to detect statistical dependencies without being
restricted to linear dynamics. Indeed, the use of the transfer entropy does
not require the assumptions of the standard models, like cointegration in
the present context, and can be applied more easily in a variety of areas in
research.

Against this background, our aim is to analyze the interactions between
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the CDS and the government bond market for countries of the European
Union, and to address the question of which market is the first to reflect new
information in pricing sovereign credit risk. Given the puzzling conclusions
for sovereign entities provided by the literature so far, we aim to shed some
light on the price discovery leadership between the CDS and bond markets.
This is done through the transfer entropy methodology outlined by Dimpfl
and Peter (2013). Therefore, our contribution to the literature is mainly
twofold.

Firstly, we contribute by applying transfer entropy to the CDS and bond
market in the sovereign context. As a matter of fact, due to the increasing
evidence of the highly nonlinear market interactions in the framework of
econophysics, transfer entropy has become an appealing tool and has been
widely used from the quantification of information flow between stock indices
(Marschinski and Kantz, 2002) to the interaction between exchange rates and
stock markets (Sensoy et al., 2014). However, to the best of our knowledge,
there is no study yet examining price discovery in the sovereign CDS and
bond market using such a technique, which allows us to overcome restrictive
assumptions on the data.

Secondly, the choice of the selected period from 1 January 2010 to 31
December 2018 gives a relevant contribution to the reference literature. In-
deed, most of the analyses conducted on European countries did not deeply
investigate the relationship between the two markets after 2012, when still
the situation in the Eurozone was changing drastically, especially for the
countries with slower economic growth and higher spread. On the contrary,
analyzing a wider timespan allows us to yield results for both the European
sovereign crisis and the post-crisis period, characterized by very low bond
yields.

Results show evidence of a significant bi-directional information flow be-
tween the CDS and the bond market and a clear dominance of the bond
market from a price discovery point of view. In particular, during the period
which covers the sovereign debt crisis, the information flow from the bond to
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the CDS market is more remarkable with respect to that from the CDS to
the bond market, especially for core countries of the European Union with
lower yield. During the post-crisis period, less information flow between both
markets is observed and a few sovereigns behave dissimilarly, although gen-
erally speaking the bond market still dominates the CDS market in terms of
price discovery.

Our results on the dominance of the bond market might give relevant
insights for policy makers and market participants. From a risk management
prospective, our findings highlight the importance of the bond spread as
a reliable market indicator of sovereign credit risk during a crisis period,
provided that it is able to respond faster to economic fundamentals and global
financial market factors. This suggests to policy makers that an extensive
use of the CDS market as a hedging instrument does not directly lead to
a consequent increase of funding costs of the sovereigns, and hence to high
level of bond spread. In addition, institutional investors can benefit to know
which market has a leadership role on the other, so to take advantage of
market imperfections and to set up profitable arbitrage strategies.

The remainder of this chapter is structured as follows. Section 2 provides
a literature review on the relation between the CDS and the bond market
and on the transfer entropy. Section 3 introduces the concept of transfer
entropy. In section 4 the data will be presented and analyzed. Section 5
illustrates and discusses the empirical outcomes. Section 6 concludes.

5.2 Literature review

This contribution relates to a branch of the literature based on the relation
between the CDS and the bond markets and especially on the identification
of the leading market in pricing the credit risk. To give a better understand-
ing of the fundamental empirical and methodological framework, we firstly
introduce the literature regarding price discovery and efficiency between the
two markets. After that, we discuss the methodological background linked
to our analysis.
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5.2.1 Price discovery process in CDS and Bond markets

As explained in theory by Duffie (1999), the spread on a par floating-rate
bond over a risk-free benchmark should be equal to the CDS premium for
the same entity and maturity, since both markets offer a similar exposure
to the credit risk of the underlying entity. Therefore, the two markets are
linked by an approximate arbitrage relationship. Against this background,
the CDS premium and the bond spread should be cointegrated and driven
by a common stochastic trend, interpreted in this case as the efficient price
of credit risk. This relationship led many researchers to analyze the dynamic
behavior of the two assets, in order to ascertain the informationally dominant
market.
The pillar methodologies of the price discovery analysis in this field were
applied in first place by Blanco et al. (2005). They used a VECM to find
an equilibrium long-run relation between the pricing in the two markets for
a sample of 33 investment-grade North American and European firms in a
restricted period of 18 months between 2001 and 2002. As far as the firms for
which the equilibrium holds are concerned, the empirical measures of Has-
brouck (1995b) and Gonzalo and Granger (1995b) highlight that the CDS
market leads the bond market in determining the price of credit risk. Con-
secutive studies found the predominance of the CDS market with respect
to the bond market in corporate entities (e.g., Zhu (2006); Baba and Inada
(2009); Molleyres (2018)), and a common point of the aforementioned liter-
ature regards the discussion of various market imperfections that can hinder
the equal price of the two markets in the long term, making the arbitrage re-
lationship not perfect. Such market imperfections move the so-called "basis",
defined as the difference between the premium on the CDS and the corre-
sponding bond spread on the same entity and with the same maturity, away
from the theoretical value of zero. The arbitrage opportunity due to such
deviations from the parity led various researches to analyze the topic from
two main viewpoints.

On the one hand, a branch of literature discusses empirical causes of a
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non-zero basis, especially in the area of sovereign entities in times of market
stress (e.g., Ammer and Cai (2011); Palladini and Portes (2011); Arce et al.
(2013); Fontana and Scheicher (2016); Gyntelberg et al. (2017)). Among
the main factors that can deviate the basis away from the theoretical value
of zero, particular attention has been dedicated to the CTD option. By
means of the CTD option, the buyer of the CDS has the incentive to deliver
the lowest valued bond of the underlying entity in case of default, causing
disadvantage for the seller and a higher CDS premium. Liquidity premia is
another factor that can, for example, increase the bond spread if the risk-free
bond market is more liquid than the risky bond. The counterparty risk of the
seller of a CDS can also affect the basis, due to the over-the-counter nature
of the respective derivative market. The perception of a lower quality of the
contract sold may affect the price of the CDS, hence yielding to a negative
value of the basis.

On the other hand, a wide stream of literature employ a variety of inves-
tigation strategies to examine the relationship between the two markets with
the aim of identifying the leading one in terms of price discovery in sovereign
contexts. Ambiguous results in sovereign entities can be found in the litera-
ture, with consequent considerations regarding the key determinants of price
discovery. The relationship has initially been investigated among emerging
countries. Chan-Lau and Kim (2004) examined the equilibrium price rela-
tionship and the price discovery process for eight emerging sovereigns in the
period between 2001 and 2003, but the mixed results accomplished by the
Granger causality test combined with the price discovery measures did not
deliver to the authors any strong conclusion about the price discovery lead-
ership. Using data for nine emerging sovereigns for the period from 2001 to
2005, Ammer and Cai (2011) found that bond spread leads the CDS premium
more often than what had been found for investment-grade corporate enti-
ties. This finding has been reported for emerging economies that have issued
more bonds, confirming the key determinant role of liquidity in capturing the
relative contribution to price discovery, as discussed by Chakravarty et al.
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(2004). In contrast, Li and Huang (2011) found that in emerging sovereigns
the CDS market plays a greater role than the bond market in the price discov-
ery process for the period between 2004 and 2008, by means of an empirical
analysis based on VECM and Granger causality tests.

Consecutive studies have been conducted on European economies, and
still divergent results persisted. Fontana and Scheicher (2010) studied weekly
CDS premia and bond spreads of ten countries of the European Union for the
period between 2006 and 2010 and found heterogeneous otucomes on the lead-
lag relationship between the two markets. Delis and Mylonidis (2011) focused
on Southern European countries with fiscal vulnerabilities, such as Greece,
Italy, Portugal, and Spain, performing a series of rolling Granger causality
test and showed that the CDS market Granger causes the government bond
market after since the start of the global financial crisis in 2007. A notable
contribution in the methodology has been proposed by Delatte et al. (2012),
who used a Panel Smooth Transition Error Correction Model to overcome
the restricting hypothesis of the linear specifications. The model, applied to
eleven European Union countries in the phase of the global financial crisis,
revealed the bond market of core European economies as leader of the price
discovery process during calm periods. A leadership in the CDS market
was instead found during distress periods. A considerable contribution to
the extant literature is that of Coudert and Gex (2013), who focused on
the interaction between the two markets during the global financial crisis,
from the beginning of 2007 to 2010. By means of the Gonzalo and Granger
(1995b) measure, they showed the leadership of the CDS market in the price
discovery process for a sample of 17 financial companies. However, the same
analysis conducted on 18 sovereigns, including both advanced and emerging
economies, delivered different results and highlighted a leader role of the
bond market for low-yield government issuers. Recently, Agiakloglou and
Deligiannakis (2020) investigated the relationship for eight European Union
countries between the two markets using Granger causality. They did not
find evidence of cointegration between the two markets during calm period,
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and conclude that the bond market led the price discovery process during
the post-crisis period. Another recent analysis has been conducted by Patanè
et al. (2019), who analyzed the link between the CDS premium and the bond
spread for core and peripheral countries in the Eurozone during a wider
timespan, ranging from 2011 to 2018. When cointegration was found, they
concluded that the bond market played a leader role in the price discovery
process during the period of financial distress, and only during the subsequent
period between 2014 and 2018 the CDS market gained more importance.

The ambiguity of results in the literature may be caused by the differ-
ences in the analyzed timespans and by the different maturities of the relative
assets used in the analysis, as discussed in Gyntelberg et al. (2013). Addi-
tionally, different econometric procedures are usually implemented, due for
example to the nonlinearity mechanism between the bond market and the
CDS market, as discussed in Delatte et al. (2012), and to the lack of coin-
tegration that motivates the use of the Granger causality test. In order to
overcome these problems, this chapter gives a considerable contribution to
the sovereign analysis proposed by the literature so far, making use of a
model-free approach, which enables us to circumvent restrictive assumptions
and model configurations.

5.2.2 Transfer entropy in economic and financial contexts

Various time series analysis approaches have been recently introduced in or-
der to widen the class of statistical measures applied in social sciences. The
growing evidence of nonlinear market interactions animated the literature to
investigate the stock markets making a considerable use of methods borrowed
from the statistical physics. Among these, the development of the transfer
entropy turned out to be a very useful instrument to quantify information
flows between financial time series. The concept of transfer entropy has been
originally introduced by Schreiber (2000), based on the theory of Shannon
entropy, to quantify the statistical coherence between systems evolving in
time. As explained by the author, the mutual information developed by
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Shannon (1948) was widely used to quantify the overlap of information con-
tent of two systems. However, since the mutual information does not express
dynamical or directional information, the transfer entropy concept has been
developed upon it, taking the dynamics of information transport into account
(Schreiber, 2000, p. 461).

The introduction of the transfer entropy delivered to the financial liter-
ature an appealing tool to estimate information flows between time series
in different contexts. One of the first research analyzing the information
flows between financial time series has been accomplished by Marschinski
and Kantz (2002). They proposed a modified version of the transfer entropy,
called the effective transfer entropy, which overcomes the likely biased esti-
mates due to small sample effects yielded by the methodology of Schreiber
(2000). The authors investigated the information flow between the Dow
Jones Industrial Average and the DAX stock index. The improvement of
their results performed by the straightforward implementation of the estima-
tor paved the way to a new measure able to quantify the information flows
between various financial time series.

A stream of literature started to apply the transfer entropy and the mod-
ified version proposed by Marschinski and Kantz (2002) across international
financial markets. Baek et al. (2005) focused on the daily closure price of
135 stocks listed on NYSE of different business sectors in order to investi-
gate which industry influences at most the whole market. Kwon and Yang
(2008a) examined the information flow between the S&P 500 index, the Dow
Jones index and the stock price of 125 individual companies. Similarly, Kwon
and Yang (2008b) analyzed the strength and direction of information flows
among 25 stock indices. Reddy and Sebastin (2008) studied the interactions
between the Indian stock and commodity market, while Sensoy et al. (2014)
investigated the information flow between exchange rates and stock prices in
different emerging countries.

Dimpfl and Peter (2013) offer a contribution to the literature which is
very close to ours, as they studied the relationship between the corporate
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CDS and the bond market through the transfer entropy methodology. Be-
cause of a possible lack of cointegration between CDS premium and bond
spread, price discovery measures that rely on the existence of a cointegra-
tion relationship cannot be applied. To cope with this, they quantified the
information flow between the two markets using the effective transfer en-
tropy on 27 iTraxx Europe companies from January 2004 to December 2011.
The provided results showed the dominance of the CDS market in pricing
the credit risk, especially during the financial crisis period, in line with the
existing literature (see Blanco et al. (2005)). In addition, Dimpfl and Peter
(2013) proposed to assess the statistical significance of the estimated informa-
tion flows through a bootstrap procedure of the underlying Markov process,
which allows to derive the distribution of the estimated transfer entropy un-
der the null hypothesis of no information flow and to subsequently evaluate
the significance of results.

In this chapter we employ the transfer entropy methodology and the
statistical significance metrics proposed by Dimpfl and Peter (2013) to the
sovereign framework, rather than to the corporate one. In this way we are
able to investigate the relation between the CDS premium and the bond
spread for every sovereign analyzed, even as regards to the countries for
which a cointegrating relationship is not supported by the data.

5.3 Methodology

The concept of transfer entropy in the context of time series has been firstly
introduced by Schreiber (2000), and the foundations of such methodology
are based on the information theory originally proposed by Shannon (1948).
Shannon (1948) constructed a measure for uncertainty by averaging the
amount of information gained from a certain state of a random variable
over all possible states that can be assumed by the random variable itself
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12. In order to address a theoretical explanation, consider a discrete random
variable J with probability distribution p(j), where j denotes the different
outcomes that the variable J can take. According to Shannon (1948), the
average number of bits needed to optimally encode independent draws from
the distribution of J is given by

Hj = −
∑
j

p(j) log (p(j)), (5.1)

where the log is taken to be to the base 2 in order to indicate bits as units in
which the information is measured, and the sum extends over all states j that
can be assumed by the variable J . Strictly speaking, the higher the entropy
measured by Hj, the higher is the uncertainty about the random variable J .
Therefore, the Shannon entropy in Equation (5.1) shows the largest amount
of uncertainty when all possible states of J are equally likely to be observed.

The Shannon entropy combined with the concept of Kullback-Leibler dis-
tance (see Kullback and Leibler (1951)) allows to measure the information
flow between two processes. The Kullback-Leibler distance is used to mea-
sure the difference between two probability distributions, assuming that one
of them represents an approximation of the other. As mentioned by Schreiber
(2000), the Kullback entropy gives the excess number of bits needed in the
encoding when a different probability distribution is used. In the bivariate
case, the Kullback entropy is known as the formula for mutual information.
In addition to J , consider another discrete random variable I with probabil-
ity distribution p(i). The corresponding Kullback entropy of the two random
variables I and J , whose joint probability distribution is defined by pIJ(i, j),
is given by

MIJ =
∑
i,j

pIJ(i, j) log
(
pIJ(i, j)
p(i)p(j)

)
, (5.2)

12As shown in the related literature, the quantity log(1/pj), with pj indicating the
probability of the event j, gives the amount of information that can be gained from the
particular outcome j. The average amount of information per outcome over the total n
outcomes, presented as

∑n
j=1 pj log (1/pj), brings to the formula of Shannon (1948).
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where p(i) and p(j) represent the marginal probability distributions of I and
J , and the sum extends over all states i and j which can be assumed by the
variables I and J , respectively. The mutual information in Equation (5.2)
measures the deviation from the independence of the two random variables,
and can be thought of as the reduction of uncertainty about one variable
given by the knowledge of the other. However, it must be mentioned that
the direction of information cannot be distinguished due to the symmetry of
the measure.

For the application of these measures in time series context, Schreiber
(2000) introduced a dynamical structure by considering transition probabili-
ties. The relative measure to quantify the information flows is derived under
the assumption that the dynamical structure of a discrete random variable
I corresponds to a stationary Markov process of order k, implying that the
probability to observe I at time t+ 1 in state i conditional on the k previous
observations is p(it+1|it, ..., it−k+1) = p(it+1|it, ..., it−k). The average number
of bits needed to encode one more state - or one more time series observation
in the present case - if the previous states are known is then represented by

hI(k) = −
∑
i

p(it+1, i
(k)
t ) log (p(it+1|i(k)

t )), (5.3)

where i(k)
t = (it, ..., it−k+1). In the case of two processes I and J , still as-

suming that both are stationary Markov processes with k and l representing
their respective order, Schreiber (2000) proposed to quantify the information
flow from J to I by measuring the deviation from the generalized Markov
property p(it+1|i(k)

t ) = p(it+1|i(k)
t , j

(l)
t ). The deviation from this assumption,

embodied in the Kullback-Leibler distance, defines the transfer entropy (TE),
which is computed as

TEJ→I(k, l) =
∑
i,j

p(it+1, i
(k)
t , j

(l)
t ) log

p(it+1|i(k)
t , j

(l)
t )

p(it+1|i(k)
t )

 , (5.4)

where TEJ→I measures the amount of information flow from process J to
process I. If the previous observations of J do not affect the transition
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probability of I, then the transfer entropy TEJ→I is zero and no information
flow in this direction is found. Since the transfer entropy is an asymmetric
measure, TEI→J can be similarly computed and it measures the information
flow from I to J . Hence the difference between TEJ→I and TEI→J allows to
discover the dominant direction of the information flow.

As mentioned in Schreiber (2000), common choices of the order of the
Markov process for l are l = k or l = 1, and the last is usually preferred.
Thus, the analysis in the current study is conducted by setting k = l = 1.

Since the transfer entropy measure in Equation (5.4) is constructed for
discrete data, a partition of the time series into discretized values is neces-
sary to conduct it for continuous ones, as it is frequently done in empirical
applications. Following Dimpfl and Peter (2013), the symbolically encoded
series S(t) is obtained by partitioning the time series y(t) into three bins as
follows:

S(t) =


1 for y(t) ≤ q1

2 for q1 < y(t) < q2

3 for y(t) ≥ q2

. (5.5)

In this way it is possible to replace each value of the time series yt by a
corresponding integer (1,2,3). As we will discuss further, the distribution of
changes in the CDS premium and bond spread series motivates the choice of
the quantiles in this setting.

Most of the related studies on financial time series data are conducted
using a modification of the above transfer entropy, proposed by Marschinski
and Kantz (2002). The adjustment suggested by the authors derives by
the fact that small sample effects may lead the estimates of the transfer
entropy to be biased. Therefore, a modified version called effective transfer
entropy (ETE) is obtained by subtracting from the transfer entropy shown
in Equation (5.4) the transfer entropy computed by using a shuffled version
of the time series of the variable J . The effective transfer entropy can be
formulated as follows:

ETEJ→I(k, l) = TEJ→I(k, l)− TEJshuffled→I(k, l), (5.6)
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where the transfer entropy calculated with a shuffled version of the series
J is represented by TEJshuffled→I(k, l). This methodology nullifies both the
statistical dependencies between the two time series J and I and the time
series dependencies of J , since a new time series is generated by a realign-
ment of randomly drawing values from the time series J . As a consequence,
TEJshuffled→I(k, l) converges to zero when the sample size increases and val-
ues of TEJshuffled→I(k, l) different from zero are due to small sample effects.
As mentioned by Dimpfl and Peter (2013), it is common to shuffle the se-
ries many times and to use the transfer entropy estimate averaged over the
replications in order to calculate the effective transfer entropy.

To conduct inference on the estimated information flows, we rely on the
methods discussed in Dimpfl and Peter (2013). In other words, we assess
statistical significance of the transfer entropy estimates by bootstrapping
the underlying Markov process n times. By means of this procedure, the
statistical dependencies between the series J and I are eliminated, but the
dependencies within them are retained. Consequently, the distribution of the
estimates under the null hypothesis of no information flow can be obtained
by repeating the estimation of the transfer entropy using the simulated time
series. Given the bootstrapped distribution of the transfer entropy estimates,
the dominant direction of the information flow can be confirmed by deriving
standard errors and p-values for the effective transfer entropy.

5.4 Data description and preliminary analysis

We analyze daily data on five-year sovereign CDS premia and sovereign bond
yields for eight countries of the European Union, i.e. Italy, Belgium, Aus-
tria, France, the Netherlands, Ireland, Portugal and Spain. The sample
includes what are arguably the core countries of the European Union (Bel-
gium, Austria, France and the Netherlands) and peripheral countries with
higher spreads (Italy, Ireland, Portugal and Spain). The time period exam-
ined ranges from 1 January 2010 to 31 December 2018. The time series of
CDS premia and bond yields are collected from Thomson Reuters Datas-
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tream. The time series of CDS premia and sovereign bond yields have the
same maturity as well as they are all denominated in Euro.

The use of five-year maturity contracts with respect to the ten-year is
justified by the higher liquidity of the CDS market, especially when the
sovereign debt crisis intensified, as documented in Gyntelberg et al. (2013).
The analysis of five-year maturity contracts is also in line with most of the
extant literature.

In order to determine the government bond spread, the difference between
the five-year bond yield of each sovereign and a five-year risk-free rate has to
be computed. The risk-free rate is usually chosen between the swap rate or
the bond yield of the country considered as less risky of a certain area. The
use of the swap rate would be justified by the introduction in the analysis of
Germany, which is the benchmark of the Euro area and hence usually used
as the risk-free rate. Nevertheless, using the Euro interest swap rate yields
negative values of the bond spread related to countries with high creditwor-
thiness in the sample. To avoid this, the five-year German bond yield is
used as risk-free rate in the present contribution, as it benefited from a lower
interest rate on debt with respect to the other countries in the sample.

The sample period is selected to analyze the relationship between the
two markets in crucial times for the European Union, i.e. from the beginning
of the sovereign debt turmoil to the post-crisis period. Such a wide period
allows us to adequately separate the sample into two phases and to indepen-
dently conduct two selected sub-period analyses, one for the sovereign crisis
period and the other for the post-crisis period. The phase from 2010 to the
end of 2014 aims to detect the leading market for credit risk considering a
larger interval of time than that usually adopted by previous literature. By
doing so, the results are carried out both for the great intensity phase of the
crisis in 2011 and 2012, when longer-term refinancing operations and bail-out
programs were conducted by the International Monetary Fund and European
Union institutions, and for the end of the year 2014, marked by the decline
of government bond spreads due to the start of the programme of Outright
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Monetary Transactions implemented by the European Central Bank. These
results are then compared with the ones of the period from 2015 to the end
of 2018, characterized by a relatively tranquil period and flattening of the
analyzed curves, as a result of the European Central Bank monetary policies,
the quantitative easing started at the beginning of 2015 and a lower trading
activities in the CDS market as well.

The dynamics of the CDS premium and bond spread time series across
countries are shown in Figure 20. During the sample period considered, both
markets increased and reached their maximum level between 2011 and 2013,
the peak of the European debt crisis. This effect levelled out and low levels
of both CDS premium and bond spread can be observed in the subsequent
years.

From the descriptive statistics reported in Table 23 we may notice a
clear distinction between the core and peripheral countries. A significant
similarity among the core countries consists of their low mean and volatility
of both CDS premium and bond spread. This group maintains an average
of the CDS premium below 61 basis points for the entire sample period. In
contrast, there is a marked heterogeneity across the peripheral countries. The
Portuguese’s credit risk is the one with the highest and most volatile figures
across the sample. The Portuguese CDS premium reached the maximum
level of 1521.50 basis point in January 2012, when the country was going
through what was arguably one of the most severe moment of its economic
crisis. A similar level is reached by Ireland, followed by Italy and Spain.

Before we employ our approach, we need to ensure that the time series
we model are stationary. We test for stationarity to detect the order of inte-
gration of each time series by means of the Augmented Dickey Fuller (ADF).
The results of the ADF tests for the entire sample period in levels and on
first difference are reported in Table 24. The t-statistics of the ADF test
indicate that the null hypothesis of a unit root cannot be rejected at a 5%
significance level for all countries for both CDS premium and bond spread.
The results for the other two sub-periods are also reported in Table 24. The
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Figure 20: CDS premium and bond spread for each sovereign entity
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Note: The figure shows the time series of five-year CDS premium and bond spread
(calculated over the five-year German bond yield) quoted in basis point, for the
countries of the European Union, relative to the period 4 January 2010 - 31 De-
cember 2018.
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Table 23: Descriptive statistics for sovereign CDS premium and bond spread

CDS premium Bond spread

Country Period Mean St.Dev. Min Max Mean St.Dev. Min Max
Italy Full sample 153.02 97.372 42.04 498.66 184.37 118.89 45.35 641.91

2010 - 2014 200.65 107.52 69.25 498.66 232.48 131.74 45.35 641.91
2015 - 2018 93.51 22.60 42.04 140.50 124.27 60.11 64.12 324.62

Belgium Full sample 60.44 62.78 8.37 341.98 55.82 62.85 7.63 436.68
2010 - 2014 92.00 69.14 21.53 341.98 87.59 69.43 11.06 436.68
2015 - 2018 21.01 9.65 8.37 45.96 16.13 5.22 7.63 34.44

Austria Full sample 34.41 32.74 6.47 159.23 31.20 29.06 5.18 218.94
2010 - 2014 51.23 35.74 12.18 159.23 44.99 32.88 6.39 218.94
2015 - 2018 13.40 4.58 6.47 23.04 13.94 3.56 5.18 28.10

France Full sample 42.30 33.64 7.15 171.56 33.10 27.41 5.03 186.97
2010 - 2014 61.62 33.98 21.03 171.56 44.07 31.85 5.03 186.97
2015 - 2018 18.16 7.34 7.15 37.73 19.39 9.24 9.08 65.59

Netherlands Full sample 24.59 21.03 5.34 122.91 19.86 14.02 2.17 85.85
2010 - 2014 36.44 21.70 10.62 122.91 28.02 14.06 2.17 85.85
2015 - 2018 9.77 3.29 5.34 17.95 9.65 2.80 3.16 20.31

Ireland Full sample 183.11 230.29 11.43 1191.2 220.43 263.13 15.23 1579.40
2010 - 2014 304.04 249.93 35.72 1191.2 66.70 276.49 32.93 1579.40
2015 - 2018 32.03 12.77 11.43 70.23 37.68 10.74 15.23 71.75

Portugal Full sample 323.87 303.82 38.29 1521.50 403.42 386.39 53.82 2049.60
2010 - 2014 474.16 334.58 73.11 1521.50 593.89 427.5 55.38 2049.60
2015 - 2018 136.11 65.77 38.29 286.38 165.47 74.80 53.82 315.78

Spain Full sample 134.87 106.11 17.71 492.07 173.03 129.90 31.87 721.59
2010 - 2014 200.37 101.50 45.42 492.07 248.51 131.57 39.93 721.59
2015 - 2018 53.04 20.01 17.71 105.03 78.75 18.00 31.87 135.44

Note: The table reports descriptive statistics for daily five-year CDS premium
and bond spread, calculated over the five-year German bond yield denominated in
Euro. Min and Max are the minimum and the maximum value of the time series.
The measures are reported for the full sample (4 January 2010 - 31 December
2018), together with two sub-periods (4 January 2010 - 31 December 2014 and 1
January 2015 - 31 December 2018).
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null hypothesis of a unit root cannot be rejected at any conventional signifi-
cance level for all the time series during the period between 2010 and 2014,
given the increasing default probability of the sovereign states. We obtain a
different result for bond spreads during the recovery phase for countries such
as Belgium, Austria, France, the Netherlands, Ireland, and Spain, when the
persistence of low bond yield led to a stationary behaviour of the time series.
The ADF test statistics applied on the first difference series indicates that the
unit root hypothesis is always rejected for every period and every country,
hence stationarity is confirmed. Thus we model returns for our analysis.

We analyze then the cointegrating relationship between CDS premium
and bond spread. We argue that this is not always proven for such time se-
ries, making it necessary to find alternative methodologies such as the trans-
fer entropy measures to investigate their price discovery process. We examine
cointegration through the Johansen Trace and Maximum Eigenvalue tests,
whose results are reported in Table 25. It is clear that the hypothesized coin-
tegrating relationship between the two time series is not always supported
by the data. With respect to the entire sample period, cointegration is not
confirmed by both tests for three out of eight countries. Furthermore, the ab-
sence of a long-run relation between the two markets in the two sub-periods
is observed for almost all the entities. According to the Maximum Eigen-
value test, cointegration is found to be statistically significant at 5% only for
France, Ireland and Portugal during the period between 2010 and 2014. The
same test on the period between 2015 and 2018 shows significant cointegrat-
ing relationships at 5% for Austria and Ireland, and no evidence is found
for the remaining countries. This finding revealed the difficulty to assess a
cointegration relationship between the CDS premium and the bond spread
during period of low financial stress, as also discussed by previous studies (see
Fontana and Scheicher (2010) and Agiakloglou and Deligiannakis (2020)).

To derive the information flow between the CDS premium and the bond
spread with the transfer entropy methodology we need to partition the obser-
vations of the time series into discretized values following Equation (5.5). By
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Table 24: Augmented Dickey Fuller Test Statistics for sovereign CDS pre-
mium and bond spread

Country Period CDS premium Bond spread

Levels First diff. Levels First diff.
Italy Full sample -1.9493 -24.4419∗∗∗ -2.1405 -13.3398∗∗∗

2010 - 2014 -1.7448 -18.44188∗∗∗ -1.7541 -23.1969∗∗∗

2015 - 2018 -2.4759 -11.0051∗∗∗ -1.5857 -11.6793∗∗∗

Belgium Full sample -1.4441 -25.8122∗∗∗ -1.7834 -19.5834∗∗∗

2010 - 2014 -1.3301 -19.2251∗∗∗ -1.7038 -16.1998∗∗∗

2015 - 2018 -1.3364 -24.4883∗∗∗ -2.5819∗∗ -19.6293∗∗∗

Austria Full sample -1.4497 -12.8408 ∗∗∗ -2.0691 -15.5855∗∗∗

2010 - 2014 -1.4975 -23.3357∗∗∗ -1.6974 -11.6827∗∗∗

2015 - 2018 -0.7302 -21.4159∗∗∗ -4.3960∗∗∗ -18.6868∗∗∗

France Full sample -1.4860 -19.9528∗∗∗ -1.9453 -14.8564∗∗∗

2010 - 2014 -1.6458 -15.6494∗∗∗ -1.5316 -12.9203∗∗∗

2015 - 2018 -2.3474 -15.5197∗∗∗ -2.5611∗ -31.3841∗∗∗

Netherlands Full sample -1.6904 -15.8882∗∗∗ -2.3439 -19.7682∗∗∗

2010 - 2014 -1.5946 -11.8021∗∗∗ -2.4914 -14.5612∗∗∗

2015 - 2018 -1.1279 -31.4867∗∗∗ -2.8448∗ -10.8596∗∗∗

Ireland Full sample -1.0174 -15.9963∗∗∗ -1.5047 -12.2163∗∗∗

2010 - 2014 -0.8586 -11.8729∗∗∗ -1.3901 -13.0456∗∗∗

2015 - 2018 -1.5047 -7.7359∗∗∗ -3.1551∗∗ -17.9393∗∗∗

Portugal Full sample -1.3646 -14.5825 ∗∗∗ -1.2912 -16.2117∗∗∗

2010 - 2014 -1.4751 -21.9709∗∗∗ -1.2268 -12.0775∗∗∗

2015 - 2018 -1.0341 -21.2223∗∗∗ -1.1538 -13.7751∗∗∗

Spain Full sample -1.5630 -27.9765∗∗∗ -1.6611 -22.1389∗∗∗

2010 - 2014 -1.6186 -20.8201∗∗∗ -1.6841 -21.3086∗∗∗

2015 - 2018 -1.6881 -13.5407∗∗∗ -3.2488∗∗ -14.3744∗∗∗

Note: The table reports the t-statistic of the ADF test statistics in levels and on
the first difference for the entire sample period, together with two sub-periods.
The null hypothesis for the test is non-stationarity. The ADF test is based on
regressions including constant term but no time trend. The 95% critical value
of the ADF t-statistic for regression including a constant term is -2.86. ∗∗∗, ∗∗,
∗ indicate rejection of the null hypothesis at 1%, 5%, and 10% significance level,
respectively.
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Table 25: Johansen Trace test and Johansen Maximum Eigenvalue test

Country Period Trace test Max eigenvalue test

r = 0 r = 1 r = 0 r = 1
Italy Full sample 12.6636 3.5528 9.1108 3.5528

2010 - 2014 16.6830 3.2921 13.3909 3.2921
2015 - 2018 8.8900 2.1608 6.7291 2.1608

Belgium Full sample 16.7774 2.0553 14.7221∗ 2.0553
2010 - 2014 10.4195 1.9459 8.4737 1.9459
2015 - 2018 16.0767 2.7258 13.3508 2.7258

Austria Full sample 26.2266∗∗∗ 2.3656 23.8611∗∗∗ 2.3656
2010 - 2014 15.3661 1.4629 13.9032 1.4629
2015 - 2018 19.3988∗ 0.8567 18.5421∗∗ 0.8567

France Full sample 27.1848∗∗∗ 3.4234 23.7613∗∗∗ 3.4234
2010 - 2014 19.7876∗ 3.0508 16.7367∗∗ 3.0508
2015 - 2018 21.8275∗∗ 7.3840 14.4435∗ 7.3840

Netherlands Full sample 17.6276 2.5617 15.0660∗ 2.5617
2010 - 2014 12.6264 3.2052 9.4213 3.2052
2015 - 2018 11.7675 1.7461 10.0214 1.7461

Ireland Full sample 30.9152∗∗∗ 1.5878 29.3273∗∗∗ 1.5878
2010 - 2014 20.9281∗∗ 1.4414 19.4867∗∗ 1.4414
2015 - 2018 18.5605∗ 1.3054 17.2551∗∗ 1.3054

Portugal Full sample 31.1199∗∗∗ 1.6343 29.4857∗∗∗ 1.6343
2010 - 2014 19.2433∗ 1.5246 17.7187∗∗ 1.5246
2015 - 2018 14.2060 2.4542 11.7519 2.4542

Spain Full sample 20.2142∗∗∗ 4.3596 15.8545∗∗ 4.3596
2010 - 2014 13.4069 4.4084 8.9985 4.4084
2015 - 2018 18.1568∗ 2.3025 15.8543∗ 2.3025

Note: The table reports the results of the Trace test and the Maximum Eigenvalue
test. The tests include a constant but no time trend. The number of lags up to
15 included in the VECM is determined by the AIC based on a VAR in first
differences. r indicates the number of cointegrating relations. The null hypothesis
of the tests is r = 0, indicating the absence of cointegration, and r = 1, indicating
one cointegrating relation. ∗∗∗, ∗∗, ∗ indicate rejection of the null hypothesis at
1%, 5%, and 10% significance level, respectively.
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doing so, the series are partitioned into three bins. The analysis is conducted
setting the 0.05 quantile for q1 and the 0.95 quantile for q2, maintaining a
large intermediate bin. This partition of the time series permits to obtain
a symbolically encoded series where extreme negative values are contained
in the first bin, while the third bin contains extreme positive values. The
motivation of this choice depends on the excessive kurtosis found in the dis-
tribution of the series of the CDS premium and bond spread series in first
difference, which are illustrated together with their associated normal dis-
tributions in Figure 21. The series deviate from the normal distribution,
showing fatter tails and a peaked center. If a market is found to be informa-
tionally dominant, the extreme changes in this market should be incorporated
consequently into the other market’s price. Thus, the data in the tails of the
distribution of the first difference series turn out be of extreme relevance. By
keeping the intermediate bin large, extreme changes can be identified more
clearly, especially when a significant amount of noise in the series occurs, as
in the present case.

The modelling strategies for the estimation of the effective transfer en-
tropy are based on the paper of Behrendt et al. (2019). The estimates are
calculated by setting the number of shuffles equal to 100 and the number
of bootstrap replications to obtain the distribution of the entropy estimates
under the null hypothesis of no information flow to 300. The robustness
analysis reported in the Appendix confirms the stability of our results with
respect to the different modelling strategies.

5.5 Empirical results and discussion

The effective transfer entropy estimates for the entire sample and the two sub-
periods 2010-2014 and 2015-2018 are reported in Table 26. We also illustrate
the net information flow from the CDS to the bond market, meaning that
when this quantity is positive, the CDS informationally dominates the bond
market, whereas when it is negative, the bond market leads.

As far as the entire sample period is concerned, the null hypothesis of no
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Figure 21: Kernel density plot of CDS premium and bond spread first dif-
ferences
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Note: The figure shows the kernel density of CDS premium and bond spread
first differences for the countries of the European Union, relative to the period 4
January 2010 - 31 December 2018.
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Table 26: Effective transfer entropy estimates

Country Period ETECDS→BS Std. Err. ETEBS→CDS Std. Err. NIF
Italy 2010 - 2018 0.00969∗∗∗ 0.00135 0.00971∗∗∗ 0.00143 -0.00002

2010 - 2014 0.00499∗∗ 0.00246 0.01534∗∗∗ 0.00263 -0.01036
2015 - 2018 0.00154 0.00295 0.01027∗∗∗ 0.00292 -0.00873

Belgium 2010 - 2018 0.02205∗∗∗ 0.00151 0.02825∗∗∗ 0.00142 -0.00620
2010 - 2014 0.00142 0.00251 0.01094∗∗∗ 0.00229 -0.00952
2015 - 2018 0.00000 0.00306 0.00000 0.00311 0.00000

Austria 2010 - 2018 0.01295∗∗∗ 0.00153 0.02006∗∗∗ 0.00150 -0.00712
2010 - 2014 0.00656∗∗ 0.00246 0.01206∗∗∗ 0.00251 -0.00549
2015 - 2018 0.00000 0.00299 0.00000 0.00294 0.00000

France 2010 - 2018 0.02350∗∗∗ 0.00137 0.03105∗∗∗ 0.00148 -0.00754
2010 - 2014 0.00789∗∗ 0.00252 0.02203∗∗∗ 0.00240 -0.01414
2015 - 2018 0.00510∗∗ 0.00302 0.02941∗∗∗ 0.00296 -0.02431

Netherlands 2010 - 2018 0.00780∗∗∗ 0.00142 0.00979∗∗∗ 0.00144 -0.00198
2010 - 2014 0.00461∗ 0.00236 0.01313∗∗∗ 0.00265 -0.00852
2015 - 2018 0.00424∗ 0.00307 0.00217 0.00301 0.00208

Ireland 2010 - 2018 0.02187∗∗∗ 0.00144 0.03363∗∗∗ 0.00145 -0.01176
2010 - 2014 0.00918∗∗∗ 0.00234 0.01561∗∗∗ 0.00245 -0.00643
2015 - 2018 0.00175 0.00294 0.01199∗∗∗ 0.00296 -0.01024

Portugal 2010 - 2018 0.02452∗∗∗ 0.00149 0.02592∗∗∗ 0.00149 -0.00140
2010 - 2014 0.01226∗∗∗ 0.00249 0.02844∗∗∗ 0.00239 -0.01618
2015 - 2018 0.00555∗∗ 0.00315 0.00771∗∗ 0.00319 -0.00216

Spain 2010 - 2018 0.00624∗∗∗ 0.00152 0.00916∗∗∗ 0.00145 -0.00293
2010 - 2014 0.00624∗∗∗ 0.00241 0.00805∗∗∗ 0.00264 -0.00181
2015 - 2018 0.00904∗∗ 0.00307 0.00264 0.00292 0.00640

Note: The table reports the results of the effective transfer entropy estimates. The
third and the fourth columns show the estimates of the effective transfer entropy
from the CDS to the bond market (ETECDS→BS) and the standard error (Std.
Err). The fifth and the sixth columns show the estimates of the effective trans-
fer entropy from the bond to the CDS market (ETEBS→CDS) and the standard
error (Std. Err.). The last column reports the net information flow (NIF), the
difference between ETECDS→BS and ETEBS→CDS . ∗∗∗, ∗∗, ∗ indicate rejection of
the null hypothesis of no information flows at 1%, 5%, and 10% significance level,
respectively.
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information flow between the CDS and the bond market can be rejected at
any conventional significance level for all the European countries. In other
words, there is a significant bi-directional information flow between the two
markets. The net information flow shows a larger information transmission
from the bond to the derivative market. Hence, the results suggest that the
bond spread dominates the market for credit risk for all the countries of the
analysis. The largest net information flow is found for Ireland, followed by
countries of the core group such as France, Austria, and Belgium. The high
estimate of the effective transfer entropy from the bond to the CDS market
is noteworthy also for Spain, the Netherlands, and Portugal, while for Italy
a relatively smaller net information flow is observed.

When considering the period 2010-2014, we find again a clear dominance
of the bond market across all the countries. Specifically, bi-directional infor-
mation flow is not found to be statistically significant at any conventional
significance level for every sovereign, and such finding reveals an interesting
distinction between core and peripheral countries.

For core countries, the effective transfer entropy from the bond to the CDS
market is larger and with higher significance than the one in the opposite
direction. This is the case for Austria, France, and even more remarkable for
the Netherlands. With respect to the analysis conducted on the full sample,
the information flow for France and the Netherlands shows a huge increase
from the bond to the CDS market.

For peripheral countries, there is still significant bi-directional information
flow. The interactions between the CDS and the bond market are relatively
strong and significant in both directions for Ireland, Portugal, and Spain.
The net information flow still reveals the dominance of the bond market also
in the periphery.

These outcomes are in line with the previous literature. The results for
the core countries lead to the same conclusion of Coudert and Gex (2013) and
Fontana and Scheicher (2010), who found a leadership of the bond market
in low yield sovereigns during the high stress caused by the financial crisis.
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Similar outcomes are also derived by Patanè et al. (2019), who found a dom-
inant role of the bond market for Germany and France during the period
between April 2011 and May 2014. According to the results of Coudert and
Gex (2013) and Fontana and Scheicher (2010), the bond market leads the
price discovery process in countries exhibiting low bond yields. During the
period of the crisis, investors could have moved their own positions towards
these sovereign bond markets, considered as arguably safe. Indeed, the CDS
market has been less used by the investors to hedge their credit exposure on
countries with a low probability of default. Additionally, the liquidity of the
government bond market of core economies is greater than the one of the
CDS market, given the higher size of the respective market. To illustrate,
the International Monetary Fund reports that at the end of 2011 the total
government debt outstanding was 50 trillion USD, whereas the size of the
sovereign CDS reached only 3 trillion USD13. This could have played a role
in determining the bond asset as the leader market, since the market that is
able to incorporate faster the information of the underlying entity is usually
the most liquid one.

During the crisis period, the bond market dominated the CDS one also
when considering countries with higher spread. The effective transfer entropy
from the bond market exceeds that from the CDS market for all the four
sovereigns, confirming the bond market as the dominant one in the sovereign
credit risk sphere. Previous results in the literature regarding the leader
market in the price discovery process could not lead to a specific conclusion.
Even though the effective transfer entropy estimates of the core countries
are in line with the findings of Coudert and Gex (2013) and Fontana and
Scheicher (2010), results for countries with weak fiscal vulnerabilities are in
contrast to them, but in line with others: Arce et al. (2013) showed that the
bond market led the price discovery process during the crisis period in the

13For further details, see the Global Financial Stabilty Report of April
2013: https://www.imf.org/en/Publications/GFSR/Issues/2016/12/31/Old-Risks-New-
Challenges.
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Eurozone for peripheral countries; Gyntelberg et al. (2017) found evidence
of bond leadership in the Irish market.

In addition to liquidity, counterparty risk may have also played a role in
contrasting the leadership of the derivative market in the price discovery
process. Due to the over-the-counter nature of the derivative market in
question, a negative effect on the CDS price may be the consequence of
a high counterparty risk of the seller of the CDS contract, and hence a lower
quality of the protection sold. Therefore, the lower quality of the protection
sold may have affected the capability of the derivative market in reflecting
better than the bond market the credit risk of the sovereign entities. This
explanation has been proved by Arce et al. (2013), who showed how the
contribution of the bond market becomes greater after an increase in the
counterparty risk.

In light of what has emerged, the bond market holds a dominant role
during the entire period of the debt sovereign crisis, from the drastic increase
of risk among the countries to a more stable financial situation after the
implementations of programs by the European Central Bank. The interest
rate could have also played an important role in determining the dominance
of the bond market. Especially for the safest governments, investors might
have moved their own positions towards the bond markets when the yield
was constantly decreasing, expecting a greater price of the sovereign bond in
the future and making a considerable profitable investment.

In addition to the literature so far, we examine how the relationship
between the two markets evolved in the aftermath of the European debt
crisis over the period 2015-2018. This period is characterized by very low
bond yields, and for many countries the time series of bond spread and CDS
premia do not even satisfy a cointegrating relationship.

In general, the information transmission between the two markets heavily
decreased in this period. In addition, although the bond market is still
broadly dominant with respect to the CDS one, there are some differences in
the behaviour of the European countries in the sample.
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The lower information flow on the period 2015-2018 is not surprising. A
difficulty to verify a cointegrating relationship, hence a co-movement between
the CDS and the bond market during no-crisis periods is a common result of
the literature. During periods of low financial turbulence, the higher safety
of the sovereign debts could lead the market participants to make less use of
the credit derivative market to protect their own exposure. As a matter of
fact, CDS premia are relatively constant in the aftermath of the crisis, due to
the lower trading activities in the CDS market. As explained by Fontana and
Scheicher (2010), for the period before the financial crisis of 2008 CDS premia
and bond spreads across sovereigns exhibited weaker relationships due to the
lower arbitrage forces between the two markets. The low information flow
in the period after the sovereign crisis confirm the weaker relationship of the
two markets during such times.

The information flows highlight the existence of three main groups of
countries in terms of behaviour. The first one is composed by Italy, France,
Ireland and Portugal, whose leading market remains the bond one, as it was
during the sovereign debt crisis period. The second group consists of the
Netherlands and Spain, which show that the CDS market became informa-
tionally dominant to the detriment of the bond one during the post-crisis
period. The last group is the one including countries for which there is no
information flow between the two markets, i.e. Belgium and Austria.

In detail, effective transfer entropy estimates are found to be statistically
significant in both directions only for France and Portugal, and the two
estimates still confirm the role of the bond market in incorporating faster the
information of the sovereign credit risk. Information flow is significant only
in one direction for Italy, Ireland, Spain and the Netherlands, and as far as
the latter two countries evidence provides that the CDS market dominates
the bond one, though with lower levels of significance. Hence the results
related to the recovery period do not reveal a unique market leader across
all analyzed countries, but they suggest that - even if to a smaller extent -
the bond market is still dominating the CDS one.
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Overall, our results show significant information transmission between
the CDS and the bond market across all the countries for the whole period
1 January 2010 - 31 December 2018 and a clear dominance of the bond
market. When focusing on the crisis period, the effective transfer entropy
confirms that information on the sovereign credit risk are expected to be
reflected initially in the bond market. This strong conclusion cannot be
drawn for every country during the post-crisis period, when the information
flow between the two markets decreased.

5.6 Conclusion

This chapter explores the dynamic relationship between the CDS premium
and the bond spread of European Union countries using the concept of ef-
fective transfer entropy. The lack of a cointegrating framework between the
CDS premium and the bond spread requires alternative methodologies to
detect the informationally dominant market between the CDS and the bond
one. Hence, we make use of a model-free approach, without being restricted
to linear dynamics, to discover which market incorporates faster the infor-
mation on sovereign credit risk.

Our results show a significant bi-directional information flow between
the CDS and the bond market for the European Union countries, and a
dominant position for the bond market. During the European debt crisis,
we find a strong predominance of the bond market, especially as regards to
core countries. During the post-crisis period, the information flow between
the CDS and the bond market significantly weakens in almost all countries,
mainly due to the lower turmoil and trading activities in the CDS market.
However, although some countries behave dissimilarly, we still find an overall
predominance of the bond market also during the recovery period.

Our findings have a direct implication for policy makers, who can rely on
the bond spread as a market indicator of sovereign credit risk during periods
of financial distress. This result addresses the issue to know whether an ex-
tensive use of the CDS market could fuel a sovereign crisis. The leadership of
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the bond market overcomes this possibility, suggesting that the CDS market
can be used as hedging instrument without a direct impact on the finan-
cial position and stability of the sovereigns. Our results can also enhance
profitability on arbitrage activities for institutional investors, who can take
advantage of the knowledge of which asset has an influence over the other
and profit from the theoretical deviation between the two markets.
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6 Neural Network Models for Bitcoin Option
Pricing

Based on the paper:
Pagnottoni, Paolo. 2019. Neural Network Models for Bitcoin Option
Pricing. Frontiers in Artificial Intelligence, 2, 5.

6.1 Introduction

Stock options are a category of financial derivatives which became widely
employed by investors and speculators during the last few decades. Never-
theless, investors may ineffectively manage their portfolios if they are not
able to value options in a proper way. For this reason, a reliable methodol-
ogy capable to yield an option’s current price or forecast is fundamental for
investors in order to produce a rigorous decision making. This is particularly
true when considering non-mature and volatile markets like the cryptocur-
rency one.

The theory of option pricing is broad and involves various types of pricing
techniques, largely parametric ones. The most widely known option pricing
method is arguably the one defined by Black and Scholes (1973). Although
this technique has been widely employed by practitioners, its strict set of
assumptions, as well as subjectivity with respect to the parameter choices,
often yields to unreliable results to some extent. To illustrate, the leptokur-
tic behavior of return distributions and the volatility smiles and skews are
features that cannot be captured by such a simplistic technique.

Besides the Black-Scholes model and its modifications, other paramet-
ric models have been developed and became widely used, among which the
(binomial and trinomial) tree models, the finite difference method and the
Monte Carlo simulation. While tree models converge to the Black-Scholes
one in case the time occurring between steps is small enough, other method-
ologies take into consideration pricing aspects that these two models do not.
Indeed, the Monte Carlo simulation allows for random shocks other than
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those provided by the volatility and the movement probabilities of the tree
models, whereas the finite difference method relies on a different simulation
scheme. This is the reason why in this chapter examines and includes tree
models, the Monte Carlo simulation and the finite difference method as pric-
ing methodologies.

Alongside the category of classical derivative and option pricing models,
non-parametric models such as neural networks gradually emerged, mainly
thanks to their improved predictive performance with respect to the for-
mer techniques. Yao et al. (2000) predicts prices related to the Nikkei 225
index futures using back-propagation neural networks. Their results show
that, despite the Black-Scholes model is still good for pricing at-the-money
options, the neural network outperforms it, in particular when considering
volatile markets. Another research conducted by Liang et al. (2009) moti-
vates our contribution, as the authors use classical models (binomial tree,
finite difference method and Monte Carlo simulation) in a first stage to fore-
cast the option price and refine those forecasts through neural networks and
support vector machines in a second stage. This technique allows to notably
reduce forecast error, i.e. it substantially improves price forecasts in their
Hong Kong option market framework. Nonetheless, there are many other
examples on neural network models for derivative securities pricing which
found that neural networks outperform classical models - see, for instance,
Hutchinson et al. (1994), Malliaris and Salchenberger (1996), Amilon (2003),
Binner et al. (2005), Lin and Yeh (2005).

Research related to the cryptocurrency market, as the phenomenon itself,
is relatively new. Despite that, there is a massive interest of the academic
community in investigating this new market and its peculiar features from all
points of view, with a particular focus on Bitcoin. Indeed, since Nakamoto
(2008) introduced the concept of Bitcoin as a purely peer-to-peer version
of electronic cash, researches developed following different and multidisci-
plinary fields. Some researchers provide a general descriptional analysis of
the cryptocurrency framework. To illustrate, in Dwyer (2015a) we may find
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a detailed overview on technical issues of Bitcoin and the cryptocurrency
market in general. Also White (2015) goes through the key concepts of cryp-
tocurrencies, while focusing on the so called "Altcoins".14 Kaplanov (2012)
describes the usage, the mining process, exchange, acceptance and storage of
Bitcoin in details, and it analyses the regulatory issues linked to this market.
A further study by Kroll et al. (2013) examines the Bitcoin mining process
thoroughly. An informative and useful collection of all modelling methodolo-
gies applied to the Bitcoin sphere can be found in Fantazzini et al. (2017).
Another stream of the literature, with studies conducted by Brandvold et al.
(2015) and Pagnottoni and Dimpfl (2019), finds the leader and follower Bit-
coin exchanges of the price discovery process through an econometric analysis
of its price across different exchange. A related analysis, provided by Giu-
dici and Pagnottoni (2020), studies system-wide and pairwise connectedness
among Bitcoin exchanges and provides further insights on price discovery on
Bitcoin exchange platforms.

Despite the quite wide set of studies in the cryptocurrency area, to the
best of our knowledge there is not yet any research trying to address option
pricing related to Bitcoin (or cryptocurrency) derivatives. The aim of this
study is to propose a pricing methodology that is feasible to price cryptocur-
rency options. Without loss of generality, the chapter focuses on european
style Bitcoin put and call options which became recently available on the
market. To this end, the study makes use of a two stage approach. The first
stage consists of option pricing through parametric approaches such as tree
models, finite difference method and Monte Carlo simulation. In the second
stage, artificial neural networks are employed in order to combine the para-
metric option pricing approaches and capture the residual errors by learning
schemes in the current status of the option market. Their performance is
then compared to the conventional option pricing techniques obtained in the
first stage. Results point to the predominance of the neural network mod-

14"Altcoin" stands for "alternative coin". The term is used to indicate all cryptocurren-
cies except for Bitcoin.
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els with respect to the conventional methods in pricing Bitcoin options and,
therefore, in capturing their real price dynamics. As a robustness check, an
out-of-sample analysis confirm the previous result, as well as a cross vali-
dation analysis through random sub-sampling reveals that - despite there is
still some room for improvement - results are arguably stable and the neural
network is a suitable model in order to price options written on Bitcoin.

The remainder of the chapter proceeds as follows. Section 2 outlines the
methodology employed. Section 3 describes and analyzes the data. Section 4
presents the results. Section 5 illustrates the robustness analysis conducted.
Section 6 concludes.

6.2 Methodology

This section briefly introduces the classical parametric option pricing tech-
niques used in this chapter: specifically, tree models, finite difference method
and Monte Carlo simulation. After that, I discuss the neural network model
and the comprehensive approach for option pricing.

The following notation will be used. S represents the underlying asset
price, C is the option price, K is the options’ exercise price, σ denotes the
asset price volatility, r represents the risk-free interest rate, ∆t is the time
interval (i.e. the time period length) and T is the time to maturity.

6.2.1 Tree models

Tree models are widely used not only to price European style options, but
also closed-form American options, as they can account for the early exercise
feature. Milestone references for binomial trees are the ones of Cox et al.
(1979) and Rendleman and Bartter (1979). Further extensions are proposed
by Boyle (1977), Nelson and Ramaswamy (1990), Hull and White (1990a).

In the binomial tree setup, the underlying asset price St,i with t =
0, 1, 2, ..., n − 1 may either experience an up movement to St+1,i or a down
movement to St+1,i+1, with t = 1, 2, ..., n. This happens according to an
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upward rate u and a downward rate d, which Cox et al. (1979) define as:

u = eσ
√
4t, d = e−σ

√
4t (6.1)

where 4t = T
n

denotes the time step from t to t + 1 and n the total
number of time steps in the binomial tree.

A graphical representation of a n-step binomial tree is illustrated in Fig-
ure 22. Arrows constitute possible paths for the price dynamics, whereas
nodes represent the underlying price St,i from which the option price Ct,i is
computed. Option prices are then recursively computed from the last ones
to the first one, going backwards, according to the following:

Ct−4t,i = e−r4t(pCt,i+1 + (1− p)Ct,i) (6.2)

where r is the risk-free rate, and the probabilities of up (p) and down (pd)
movements are defined as

p = er4t − d
u− d

, pd = 1− p. (6.3)

The trinomial tree (Figure 23) works in a similar way. However, in this
setup, the underlying asset price St,i with t = 0, 1, 2, ..., n − 1 may either
experience an up movement to St+1,i, a middle movement to St+1,i+1 or a
down movement to St+1,i+2, with t = 1, 2, ..., n. This happens according to
an upward rate u, downward rate d and middle rate m defined as:

u = eσ
√

24t, d = e−σ
√

24t, m = 1. (6.4)

In this case, the probabilities of up (p), down (pd) and middle (pm) move-
ments are defined as:
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Figure 22: Binomial tree

Figure 23: Trinomial tree
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p = (e
(r) ∆t

2 − e−σ
√

∆t
2

eσ
√

∆t
2 − e−

√
∆t
2

)2, pd = ( eσ
∆t
2 − e(r) ∆t

2

eσ
√

∆t
2 − e−

√
∆t
2

)2, pm = 1− (p+ pd).

(6.5)

Among the advantages of using the trinomial trees, computational effi-
ciency as well as precision are of our interest. Indeed, the trinomial tree
should yield to more precise prices with less time steps if compared to the
binomial counterpart.

6.2.2 Finite difference method

As extensively described in Brennan and Schwartz (1977), the finite differ-
ence method allows to price options through the solution of some differential
equations with respect to the option prices. These equations are transformed
into difference equations, whose solutions are iteratively solved by CPUs.

According to the finite difference method, the time to maturity T is seg-
mented into p equally sized time periods ∆t, whereas the asset price is seg-
mented into q steps of length ∆S, ranging from a minimum of 0 to a maximum
of Smax. This can be represented as a grid in which the horizontal line is the
number of periods and the vertical one the asset prices.

In the present case, the application uses the so called explicit finite dif-
ference method, which solves the differential equations in a forward way, as
elucidated by Hull and White (1990b). The reason behind our choice is that
the explicit finite difference method is arguably more efficient than the im-
plicit one, which in contrast solves the differential equations backwards. In
particular, the equation to be solved is the well known partial differential
equation of Black-Scholes, i.e. :

∂C

∂t
+ 1

2σ
2S2∂

2C

∂S2 + rS
∂C

∂S
= rC (6.6)
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Where i = 1, 2, ..., p and j = 1, 2, ..., q. The discrete version of Equation
(6.6) is:

−Ci,j − Ci−1,j

∆t = 1
2σ

2Ci,j+1 − 2 Ci,j + Ci,j−1

∆S2 +

+rSCi,j − 2 Ci,j−1

2∆S − rCi+1,j.

(6.7)

The option price can then be derived as:

Ci,j = 1
1 + r∆t(pCi+1,j+1 + pmCi+1,j + pdCi+1,j−1) (6.8)

where the probabilities associated with an up, middle or down movement
are, respectively:

p = Sjr
∆t

2∆S + 1
2S

2
j σ

2 ∆t
∆S2 (6.9)

pm = 1− S2
j σ

2 ∆t
∆S2 (6.10)

pd = −Sjr∆t2∆S + 1
2S

2
j σ

2 ∆t
∆S2 (6.11)

For a detailed explanation of the finite difference method, refer to Brennan
and Schwartz (1977) and Hull and White (1990b).

6.2.3 Monte Carlo simulation

The Monte Carlo simulation is used to obtain the underlying asset price
at the option maturity by means of averaging a sufficiently high number
of stochastic asset price paths, obtained by assuming that the underlying
price follows a log-normal distribution, that is simulating L scenarios for the
underlying price evolution as:
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ST = Ste
(r− 1

2σ)(T−t)+σ
√
T−t∆Wt (6.12)

where Wt denotes a standard Wiener process at time t.
After that, option prices are found by discounting that average result

backwards. In other words, given the payoffs at maturity T of call and put
options respectively as:

CT = max(0, ST −K), PT = max(0, K − ST ) (6.13)

the resulting call and put prices are obtained as an average of the L
simulated scenarios, i.e. :

Ct = 1
L

L∑
l=1

Cl, Pt = 1
L

L∑
l=1

Pl (6.14)

where l = 1, 2, ..., L.

6.2.4 Neural networks to improve precision

Option prices dynamics depend on several variables as well as on an eco-
nomic environment and rules that continuously change. Despite parametric
methods mimic the behavior of real option prices, it may be argued that they
do not fully reflect the actual market evolution of option prices.

To cope with that, similarly to Liang et al. (2009), this chapter defines a
two-step procedure in order to consistently evaluate option prices. The first
step consists of pricing options according to the three parametric methods
described above, i.e. tree models, finite difference method and Monte Carlo
simulation. The prices obtained in the first step are then used as input train-
ing vector of a neural network model in the second step. As a consequence,
once the main information regarding an option’s price are captured through
the parametric methods in the first step, the machine learning neural network
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can concentrate its modelling power to approximate the nonlinear features
of the option pricing errors. A graphical representation of the model can be
found in Figure 24.

Figure 24: The multilayer perceptron neural network model

Note: The following notation is used: NN stands for the neural network model,
TT corresponds to the trinomial tree, FDM represents the finite difference method
and MC for the Monte Carlo simulation.

It is well known that the option market is a complex system with non-
linear characteristics. This further motivates our approach, since the use of
a particular kind of neural network model, the multilayer perceptron one,
allows to account for these features. Indeed, through the multilayer percep-
tron neural network one is able to include include hidden layers and nonlinear
activation functions that may capture the non linearity of the option mar-
ket. An organic description of multilayer perceptron neural networks can be
found, for example, in Haykin et al. (2009).
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6.2.5 Performance assessment

In this Subsection the the assessment criteria used to evaluate our models
are presented. Performances of our pricing methods are judged according to
three widely employed measures, i.e. the mean absolute error (MAE), mean
squared error (MSE) and the mean absolute percentage error (MAPE). These
criteria are defined by

MAE = 1
N

N∑
n=1
|At,n − Ft,n| (6.15)

MAPE = 1
N

N∑
n=1
|At,n − Ft,n

At,n
| (6.16)

MSE = 1
N

N∑
n=1

(At,n − Ft,n)2 (6.17)

where A is the actual option value and F is the fitted value obtained by
the corresponding pricing model, being t the specific time at which the option
is evaluated and N the number of observations. Additionally, we remark that
newly conceived model validation metrics could be used in order to further
evaluate model predictive accuracy - see the RG or RGA measure in Agosto
et al. (2019) and Agosto and Raffinetti (2019).

6.3 Data

An option market for cryptocurrencies - and Bitcoin - is gradually emerging.
I analyze data from deribit.com, a platform offering trading of futures and
European style options written on Bitcoin. In particular, the corresponding
underlying on which the options are written consists of the deribit BTC
index15.

15Detailed information regarding the deribit BTC index can be found on
www.deribit.com
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Data are collected from 16 May 2018 to 15 July 2018, on a daily basis,
every day at the same time (11:00 UTC). To be precise, the retrieved data
are the deribit BTC index and all available option prices related to that day
(European calls and puts).

Following Liang et al. (2009) the analysis is restricted to options having
a time to maturity comprised between 5 and 20 days, as well as to in-the-
money options having a spread which is lower than 50%. In this way it is
possible to overcome price fluctuations related to the expiration effect and
liquidity problems linked to the long term time to maturity options, as well as
to eliminate outliers reflecting expectations which are somehow not rational
and may heavily affect results. Furthermore, the choice of such a maturity
range is in line with the peculiar short term feature of cryptocurrency options,
whose maturities are generally smaller than the ones related to traditional
option markets. To illustrate, the majority of options in our full dataset were
issued only 8 days before maturity.

Given the set of restrictions adopted above, the dataset ends up with a
total number of 281 call and 695 put prices. In the current analysis, the first
10 weeks will be used for the estimation purposes, while the last two weeks
will be used for out-of-sample performance assessment.

As far as the parameter specifications, a 15-day historical volatility for
the deribit BTC index and the 2-month Libor interest rate as risk-free rate
are used. Moreover, the finite difference method has a grid of size 3T and
the Monte Carlo simulation involves 10,000 repetitions.

The neural network involves several specifications, too. Firstly, the study
relies on the widely spread backpropagation algorithm for the parameter
estimation. Secondly, the most widely employed activation functions are
tested in order to choose the one ensuring the best performance in terms
of fitting16. Results indicate that the sigmoid function is the one ensuring
the smallest sizes of prediction error. Thirdly, an analysis of the optimal

16In particular, the following activation functions are tested: sigmoid, taylor, identity,
tanh, softplus, gauss.
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number of hidden layers and neurons in the network is conducted, following
the iterative procedure described in Stathakis (2009). Results suggest a
model having 2 neurons and 1 hidden layer.

6.4 Empirical findings

In this section results are presented distinguishing between call and put op-
tions.

Without loss of generality, a plot of a representative option price evolu-
tion against one of the parametric methods (the trinomial tree) prediction
is shown in Figure 25. Overall, classical parametric option pricing methods
(i.e. trinomial tree, finite difference method and Monte Carlo simulation)
lead to price predictions which are consistently lower than the actual option
prices, both in the put and the call cases. Consequently, it may be argued
that options written on Bitcoin are systematically overpriced by the platform
when considering the parametric methods in question. Notwithstanding this,
theoretical prices yielded by parametric methods converge to the real option
prices as the time to maturity becomes smaller. This is in line with the be-
havior of the traditional markets for option exchanges, where a small time
to maturity leads to a convergence of theoretical and real option prices.

Figure 25: Real and predicted option prices

Note: Real option prices (black) against trinomial tree price predictions (red) for
the option expiring on 29 June 2018, K = 8000, call (left) and put (right).
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Prediction errors associated with each category of options are illustrated
in Table 26. Absolute and relative model performance measures are quite
comparable across the considered classical parametric methods. Besides that,
it is clear that the neural network outperforms them in terms of prediction
accuracy. This is also graphically represented in Figure 26, which shows the
model performance metrics of the neural network against those of the "best"
classical model, meaning the parametric model among the ones used in this
study showing the lowest prediction error. To illustrate, when comparing
the neural network and the "best" classical model performances the MAPE
lowers by 6% in the call case and 7.33% in the put one, the MAE by 21.58%
(call) and 0.4% (put) as well as the MSE by 64.07% (call) and 51.75% (put).
This is mainly due to the fact that the multilayer perceptron neural network
can deal with the complexity and non-linearity of the option market and the
cryptocurrency market. Indeed, price predictions yielded in the first step
by the conventional approach are then refined into the second step by the
neural network, which focuses on lowering the errors existing between the
real option prices and the predicted ones.

The obtained results are in accord with the existing literature on option
pricing through non-parametric methods and, particularly, neural networks
- see Hutchinson et al. (1994), Malliaris and Salchenberger (1996), Amilon
(2003), Binner et al. (2005), Lin and Yeh (2005). Indeed, all these studies
point to an overall predominance of neural network based models in pricing
options with respect to conventional methodologies. It may be argued that
this holds true also for particular markets like the cryptocurrency one, whose
particular features are well captured by non-parametric models such as the
neural network.

6.5 Robustness analysis

With the aim of testing the robustness of our model, this Section provides
an out-of-sample performance analysis as well as a cross-validation analysis
through repeated random sub-sampling.
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Table 27: In-sample performance of neural network and classical models

- TT FDM MC NN
- Call

MAPE 0.0713 0.0713 0.0716 0.0670
MAE 42.78 42.79 43.2 33.55
MSE 5362.41 5362.65 5401.13 1926.66

- Put
MAPE 0.0546 0.0547 0.0546 0.0506
MAE 56.00 56.05 56.08 33.63
MSE 4764.71 4764.81 4765.29 2299.11

Note: The following notation is used: NN represents the neural network model,
TT corresponds to the trinomial tree, FDM stands for finite difference method
and MC for the Monte Carlo simulation.
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Figure 26: In-sample performance of neural network and "best" classical
model

Note: The figure compares the in-sample performance of the neural network model
(red) and "best" classical model (blue).

6.5.1 Out-of-sample performance

The out-of-sample performance is tested on the options available on the de-
ribit platform between 1 August 2018 and 15 August 2018. Options are
selected according to the same criteria described in Section 3. The final
out-of-sample dataset consists of 29 call and 47 put option prices.

Results of the out-of-sample performance of the investigated models are
illustrated in Table 28. At a first glance, one may notice that results linked
to both absolute and relative performances change quite consistently. This
is mainly due to the different structure of the out-of-sample dataset, in par-
ticular to the different maturities and market expectations.

As also depicted in Figure 27, it is clear that the neural network model
proposed still outperforms the considered parametric methods. In addition,
the difference in performance is even higher than the in-sample one. When
comparing the performance of the neural network and the "best" classical
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Table 28: Out-of-sample performance of neural network and classical models

TT FDM MC NN
Call

MAPE 0.0429 0.0429 0.0425 0.0283
MAE 26.64 26.65 26.77 17.93
MSE 1016.11 1016.28 1026.79 441.94

Put
MAPE 0.0642 0.0643 0.0642 0.035
MAE 73.4 73.4 73.23 41.45
MSE 6668.17 6667.56 6646.12 2978.26

Note: The following notation is used: NN represents the neural network model,
TT corresponds to the trinomial tree, FDM stands for finite difference method
and MC for the Monte Carlo simulation.

model, the MAPE lowers by 33.41% in the call case and 45.48% in the put
one, the MAE by 32.7% (call) and 43.4% (put) as well as the MSE by 55.23%
(call) and 55.06% (put). This provides further support to the fact that the
neural network is a feasible model to price Bitcoin options.

6.5.2 Cross-validation

To further assess the robustness of our proposed model, the approach of
repeated random sub-sampling for cross-validation purposes is adopted. In
other words, the dataset is randomly split into training and validation set
for 50 times and then the methodology and procedures described in this
study are repeated. In this way, one is able to determine whether the neural
network performance achieved in the results section are stable, as well as to
evaluate the model’s relative performance after random sub-sampling with
respect to the conventional option pricing methods.

Results linked to the random sub-sampling procedure are illustrated through
the boxplots contained in Figure 28 (call case) and Figure 29 (put case).
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Figure 27: Out-of-sample performance of neural network and "best" classical
model

Note: The figure compares the out-of-sample performance of the neural network
model (red) and "best" classical model (blue).

Overall, outcomes are satisfactory provided that performance variability lies
in ranges which are arguably not too wide. To illustrate, the interquartile
ranges for MAPE and MAE are respectively less than 3% and below 10 USD
in the call case, whereas in the put case they amount to roughly 1% and 5
USD.

Furthermore, comparing the distributions of the assessment criteria with
the results in Table 28, it may be noticed that even in the context of resam-
pling the neural network achieves again satisfactory results in terms of pre-
cision. Indeed, despite the MAPE results coming from the repeated random
sub-sampling are partly worse than those of classical option pricing meth-
ods, the absolute assessment criteria still point to a substantial improvement
when considering the neural network model rather than the conventional
option pricing methods.

To conclude, there may be room for improvement in the modelling strat-
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Figure 28: Model performance distribution (call)

Figure 29: Model performance distribution (put)
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egy, as well as this needs to be adapted to the specific case of interest. As
an example, it can be argued that the neural network performances would
benefit from increasing the number of observations and, specifically, by us-
ing high frequency data. In addition, as the market is highly volatile and
the option market follows fast changing rules and patterns, different choices
of the neural network specifications - different input layers, structure of the
layers, activation functions, etc. - may result more feasible in other con-
texts. Nevertheless, it may be claimed that the multilayer perceptron neural
network model proposed is suitable for pricing options written on Bitcoin.
Moreover, it may be argued that its application can be extended to the whole
cryptocurrency framework, as well as to traditional markets.

6.6 Conclusion

This chapter proposes an approach that relies on artificial neural network
models for the purpose of Bitcoin option pricing. The methodology involves
a first step in which options are priced according to some of the most widely
employed parametric methodologies, i.e. tree models, Monte Carlo simulation
and finite difference method. The option prices obtained in this way are then
used as input layers in a second step by the neural network, which is capable
to refine the price predictions delivered by the parametric models in the first
step. We believe that the proposed model can be extended, without loss of
generality, to other cryptocurrency derivatives, as well as to traditional ones.

Empirical results show that the investigated conventional pricing method-
ologies yield to the conclusion that Bitcoin options are extensively overpriced.
In contrast, by applying the proposed neural network model one is able to
better represent the real market dynamics of Bitcoin option prices. Indeed,
prediction errors consistently reduce when comparing the neural network
pricing model to the classical parametric ones.

Further studies may benefit and improve prediction precision by using
high frequency data as well as different model specifications. As an exam-
ple, improvements could be achieved by the use of different models, such as
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stochastic volatility models, as input layers in the proposed neural network
framework.
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7 Network Models to Enhance Automated Cryp-
tocurrency Portfolio Management

Based on the paper:
Giudici, Paolo, Pagnottoni, Paolo, & Polinesi, Gloria. 2020. Net-
work models to enhance automated cryptocurrency portfolio management.
Frontiers in Artificial Intelligence, 3, 22.

7.1 Introduction

FinTech innovations are rapidly expanding nowadays, with applications in-
cluding payments, lending, insurance and asset management, among oth-
ers. Two technical reports from the Financial Stability Board (FSB) - FSB
(2017a), FSB (2017b) - establish several key drivers for FinTech, i.e. the
shift of consumer preferences on the demand side, the change of financial
regulations on the supply side and the technology evolution.

In this context, services of automated financial consulting are widely
spreading and, in particular robo-advisors17. They are supposed to match
the investors’ risk profile with specific class of financial assets and thereby
build an efficient portfolio allocation for each specific client. However, the
mechanisms underlying the portfolio construction are often obscure, as well
as they arguably do not properly take into account for multivariate dependen-
cies across securities which are key to achieve diversification and, therefore,
mitigate financial risk. This is particularly true when dealing with peculiarly
volatile markets such as the cryptocurrency one, which could be one of the
future target market of robo-advisors, given its rapidly growing influence in
the financial world.

Indeed, after its introduction by Nakamoto (2008), Bitcoin was launched
17An article published on "Statista" in 2019 states that assets under management in

the robo-advisory segment amounts to roughly 981 billion USD, as well as that they
are expected to grow at an annual growth rate (CAGR 2019-2023) of 27% (source:
https://www.statista.com/outlook/337/100/robo-advisors/worldwide)
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online in 2009 and paved the way for many other cryptocurrencies. As a
matter of fact, as of 17 October 2019, the cryptocurrency market capitaliza-
tion amounts to approximately 220 billion USD, with a daily trading volume
of roughly 52 billion USD.

Along with descriptive and qualitative studies, many researches dealt with
quantitative analysis applied to the cryptocurrency market. In particular, a
stream of research focuses on price discovery on Bitcoin markets, aiming to
determine which are the leaders and followers of the Bitcoin price formation
process - see Brandvold et al. (2015), Pagnottoni and Dimpfl (2019) and
Giudici and Abu-Hashish (2019). Other related researches studied the in-
terconnectedness and spillover in the cryptocurrency market, such as Corbet
et al. (2018b), Giudici and Pagnottoni (2019) and Giudici and Pagnottoni
(2020). Another important area regards the study of Bitcoin derivatives -
i.e. options and futures written on Bitcoin -, with studies conducted by Cor-
bet et al. (2018a), Baur and Dimpfl (2019) and Pagnottoni (2019). Several
studies are approaching the field of profitability of the Bitcoin market, such
as Resta et al. (2020).

From a methodological viewpoint, we base our analysis on an important
stream of literature, which focuses on stock and financial networks built on
correlation matrices. The seminal paper by Mantegna (1999) uses correla-
tion matrices to infer the hierarchical structure of stock markets, deriving
a distance measure based on correlation matrices and building the so called
Minimal Spanning Tree (MST), a graphical representation able to connect
assets which are similar in terms of returns in a pairwise manner. After that,
a research by Tola et al. (2008) uses the Random Matrix Theory (RMT)
together with several clustering techniques and show that this significantly
lowers portfolio risks. Subsequently, other papers about portfolio construc-
tion involving the network structure of financial assets followed - see León
et al. (2017), Raffinot (2017), Ren et al. (2017) and Zhan et al. (2015).

To the best of our knowledge, there are no papers yet that exploit network
topologies to build portfolios composed by cryptocurrencies. We fill this gap
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proposing a model that exploits the network structure of cryptocurrencies
to provide a portfolio asset allocation that well compares with traditional
ones. Following Mantegna (1999) we use Markowitz’ asset allocation as a
benchmark, and we check whether our proposal is able to improve on it, in
terms of risk/return profile.

Indeed, the originality of the current contribution is twofold. From a
methodological point of view, we improve the traditional Markowitz (1952)
portfolio allocation strategy by means of RMT and MST and by taking net-
work centralities specifically into account. Moreover, throughout this tech-
nique we are able to set a parameter of systemic risk aversion that investors
can tune to better match their investment strategies with their own risk pro-
file. From an empirical viewpoint, we apply our methodology to data coming
from a nascent and highly volatile market, i.e. the cryptocurrency one. This
is particularly interesting, as the cryptocurrency market is rapidly expanding
and its opportunities due to the high uncertainty (and volatility) around it
are quite appealing, and thus a greater number of investors will likely enter
it in the short run.

Our empirical findings confirm the effectiveness of our model in achieving
better cumulative portfolio performances, while keeping a relatively low level
of risk. In particular, we show that our proposed model which employs RMT,
MST and centrality measures rapidly adapts to market conditions, and is able
to yield satisfactory performances during bull market periods. During bear
market periods - instead - our Network Markowitz model employing RMT
and MST realizes the best performances, protecting investors from relatively
high losses which are instead generated by many other asset allocation strate-
gies tested. Furthermore, the riskiness of our strategy is still lower than most
of the competing model we analyze. These outcomes suggest that a sound
combination of the proposed models should be employed in order to achieve
an efficient cryptocurrency allocation strategy, which could be also used as
robo-advisory toolboxes to improve automated financial consultancy.

The chapter proceeds as follows. Section 2 presents our methodology
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and, particularly, the Random Matrix Theory, the Minimal Spanning Tree
and the portfolio construction. Section 3 illustrates our empirical results.
Section 4 concludes.

7.2 Methodology

7.2.1 Random Matrix Theory

Random Matrix Theory (RMT) is widely employed in several fields such
as quantum mechanics (Beenakker, 1997), condensed matter physics (Guhr
et al., 1998), wireless communications (Tulino et al., 2004), as well as eco-
nomics and finance (Potters et al., 2005). This technique is able to remove
the noise component from the pure signal which is embedded into correlation
matrices.

The algorithm tests subsequent empirical eigenvalues of the correlation
matrix: λk < λk+1; k = 1, . . . , n, against the null hypothesis that they are
equal to the eigenvalues of a random Wishart matrix R = 1

T
AAT of the

same size, being A a N × T matrix containing N time series of length T .
The elements of A are i.i.d. random variables, with zero mean and unit
variance.

Marchenko and Pastur (1967) show that as N → ∞ and T → ∞, and
the ratio Q = T

N
≥ 1 is fixed, there is convergence of the sample eigenvalues’

density to:

f(λ) = T

2π

√
(λ+ − λ)(λ− λ−)

λ
, (7.1)

with λ ∈ (λ−, λ+), λ± = 1 + 1
Q
± 2

√
1
Q
.

Provided that, if λk > λ+ the null hypothesis is rejected from the k-th
eigenvalue onwards. Hence, through a singular value decomposition the RM
approach builds up a filtered correlation matrix - see Eom et al. (2009).

In our specific case, consider the continuous log return time series ri of a
generic cryptocurrency i at any time point t. i.e. :

rti = logP t
i − logP t−1

i , (7.2)
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where P t
i is the price of the cryptocurrency i at time t.

Considering a bunch of N cryptocurrency return time series, let C be
the N ×N correlation matrix of the cryptocurrency return time series. The
random matrix approach filters the correlation matrix, thus obtaining a new
matrix C∗ as:

C∗ = VΛVT, (7.3)

with

Λ =
{

0 λi < λ+

λi λi ≥ λ+

and V being the matrix of the deviating eigenvectors linked to the eigenval-
ues which are larger than λ+.

7.2.2 The Minimal Spanning Tree

In order to simplify the relationships given by the filtered correlation matrix
C∗ obtained from the random matrix approach, we apply the Minimal Span-
ning Tree representation of the cryptocurrency return time series. This is
consistent with the literature on stock similarities, i.e. Mantegna and Stan-
ley (1999), Bonanno et al. (2003) and Spelta and Araújo (2012).

Given the filtered correlation matrix obtained in the step above, we may
derive an Euclidean distance for each pairwise correlation element in the
matrix, i.e. :

dij =
√

2− 2c∗ij, (7.4)

where c∗ij is a generic element (i, j) of the matrix C∗, with i, j = 1, ..., N .
Each pairwise distance can be inserted in the so-called distance matrix D =
{dij}. The MST algorithm is able to reduce the number of links between the
assets from N(N−1)

2 to N − 1 linking each node to its closest neighbour. In
particular, we initially consider N clusters associated to the N cryptocur-
rencies and, at each subsequent step, we merge two generic clusters li and lj
if:

d (li, lj) = min {d (li, lj)} ,

144



with the distance between clusters being defined as:

d̂ (li, lj) = min {dpq} ,

being p ∈ li and q ∈ lj. This procedure is iteratively repeated until we remain
with just one cluster at hand.

Moreover, with the aim of explaining the evolution of relationships evolve
over time, Spelta and Araújo (2012) proposed the so-called residuality coef-
ficient, which compares the relative strength of the connections above and
below a threshold distance value, i.e. :

R =

∑
di,j>L

d−1
i,j∑

di,j≤L
d−1
i,j

(7.5)

with L being the highest threshold distance value ensuring connectivity of
the MST. Intuitively, the residuality coefficient R increases when the number
of links increases - meaning the network becomes more sparse -, and viceversa
lowers with decreasing number of links

7.2.3 Network centrality measures

In this chapter we employ of centrality measures in order to develop a portfo-
lio allocation that takes into account the centrality of a node (cryptocurrency)
in the system. Network theory includes several centrality measures such as
the degree centrality, counting how many neighbours a node has, as well cen-
trality measures based on the spectral properties of graphs - see Perra and
Fortunato (2008). Among the spectral centrality measures we remark Katz’s
centrality - see Katz (1953) -, PageRank - Brin and Page (1998) -, hub and
authority centralities - Kleinberg (1999) - and the eigenvector centrality -
Bonacich (2007).

In this chapter we employ of the eigenvector centrality, as it measures the
importance of a node in a network by assigning relative scores to all nodes in
the network. Relative scores are based on the principle that being connected
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to few high scoring nodes contributes more to the score of the node in question
than equal connections to low scoring nodes. In other words, considering a
generic node i, the centrality score is proportional to the sum of the scores
of all nodes which are connected to it, i.e. :

xi = 1
λ

N∑
j=1

d̂i,jxj (7.6)

where xj is the score of a node j, d̂i,j is the element (i, j) of the adjacency
matrix of the network, λ is a constant. The equation from above can be
rewritten in a compact form as:

D̂x = λx (7.7)

where D̂ is the adjacency matrix, λ is the eigenvalue of the matrix D̂, with
associated eigenvector x, a vector of scores of dimension N , meaning one
element for each node. Note that as our networks are based on distances
between returns, the higher the centrality measure associated to a node, the
more the node behaves dissimilarly with respect to the other nodes in the
network.

7.2.4 Portfolio construction

Asset correlations are key items in investment theory and risk measurement,
in particular for optimization problems as in the case of the widely known
portfolio theory described by Markowitz (1952). As a consequence, corre-
lation based graphs are useful tool to build optimal investment strategies.
In this Subsection we show how portfolio construction can be enhanced by
means of a combination of the RMT, MST and network centrality measures
described above.

Several researches have investigated the relationship between the network
structure of financial assets and portfolio strategies. The study Onnela et al.
(2003) shows how a portfolio constructed via Markowitz theory is mainly
composed by assets that lie in the periphery of the asset network structure,
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i.e. outer node assets, and not in its core. Pozzi et al. (2013) find that periph-
eral assets in the network yield to better performances and lower portfolio
risk with respect to central ones. Peralta and Zareei (2016) show that the
centrality of assets within a network are negatively related with the optimal
weights obtained through the Markowitz technique. Building on that, Vỳrost
et al. (2018) conclude that asset allocation strategies including the network
structure of financial asset are able to improve a portfolio’s risk-return profile.

Another stream of literature focused on proposing alternative portfolio
allocation strategies based on the network structure of financial assets. To
illustrate, Plerou et al. (2002) and Conlon et al. (2007) use the random ma-
trix theory to filter the correlation matrix to be inserted in the Markowitz
minimization problem, while Tola et al. (2008) add the MST obtaining im-
provements with respect to the raw model.

In the present context we aim to study the differences in the risk-return
profiles of our strategy, which includes topological measures in the opti-
mization problem, with respect to the traditional Markowitz model, possibly
yielding to better risk-return characteristics of the portfolios. The originality
of our approach builds on the fact that we do not only use RMT and MST
as alternative approaches to quantify risk diversification, but we employ an
extension of the traditional Markowitz method by including these techniques
in the minimization problem. Indeed, in the present case we want to solve
the following problem:

min
w

wTΣ∗w + γ
n∑
i=1

xiwi (7.8)

subject to


∑n
i=1wi = 1

µP ≥
∑n

i=1 µi

n

wi ≥ 0
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where w is the vector of portfolio weights, being wi the weight associated
to the cryptocurrency i, Σ∗ is the filtered variance-covariance matrix with
generic element (i, j) represented by σiσjc∗i,j, γ is the parameter representing
the risk aversion of the investor, xi is the eigenvector centrality associated
with the cryptocurrency i, µP indicates the return of the portfolio and µi the
return of the generic cryptocurrency i.

Generally speaking, portfolios built upon the traditional Markowitz the-
ory are such that the risk is minimized for a given expected return, us-
ing as input the raw variance-covariance matrix of returns. In our case,
the methodological improvement is twofold. Firstly, we modify the input
variance-covariance matrix, which is filtered by both RMT and MST. Sec-
ondly, we add a component derived from the MST structure which relates
to an extra risk component the investor may want to control for. Indeed, by
modulating γ the investor can set its own level of risk aversion towards sys-
temic risk specifically, and not just to the portfolio risk as in the Markowitz
framework. As a matter of fact, being centralities inversely related with
distances, a small value of γ yields to portfolios composed by less system-
ically risky cryptocurrencies, which generally lie in the peripheral part of
the network. Conversely, a large value of γ makes the algorithm select more
systemically relevant cryptocurrencies, meaning those who are in the centre
of the network structure. For the sake of completeness, we will test different
values of the systemic risk aversion parameter in the course of the current
application.

7.3 Empirical findings

7.3.1 Data description and network topology analysis

In our empirical application we consider 10 time series of returns referred to
cryptocurrencies traded over the period 14 September 2017 - 17 October 2019
(764 daily observations). In particular, we consider the first 10 cryptocurren-
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cies in terms of market capitalization as of 17 October 201918. To be precise,
we analyze the return time series of the following cryptocurrencies: Bit-
coin (BTC), Ethereum (ETH), Ripple (XRP), Tether (USDT), Bitcoin Cash
(BCH), Litecoin (LTC), Binance Coin (BNB), Eos (EOS), Stellar (XLM),
Tron (TRX).

We provide some basic descriptive statistics of our data in Table 29. From
Table 29 one may notice that average daily returns are all close to zero, in
line with the general economic theory regarding asset returns. However,
the 10 cryptocurrencies exhibit different standard deviations, meaning that
the variability in returns differs quite strongly among cryptocurrencies. To
illustrate, USDT is the one showing the lowest relative variability; this is
in line with the fact that this cryptocurrency is classified as stable coin,
therefore its price should not deviate too much on a daily basis. On the
other hand, TRX is the one showing the highest standard deviation; indeed,
this particular cryptocurrency witnessed a period of high fluctuations during
the considered sample period. As far as kurtosis is concerned, most of the
cryptocurrencies exhibit values which reflects the non-gaussian and heavy
tailed behaviour of their associated distribution. This is particularly true
for XLM and XRP, whose kurtosis are relatively larger than the ones of the
other time series.

To better understand the dynamics of the cryptocurrency time series, we
plot the normalized price series in Figure 30 and Figure 3119. The two figures
confirm well known features of cryptocurrencies, such as their overall high
volatility (with TRX being the most volatile), the stability of the stable coin
(USDT) as well as the low liquidity that some of them exhibit (such as TRX).

In order to apply the filter through RMT, we divide the dataset into
consecutive overlapping windows having a width T = 120 (4 trading months).
We set the window step length to one week (7 trading days), which makes
up a total of 93 weekly four-month windows.

18We exclude Bitcoin SV (BSV) in order to achieve a sufficiently large timespan, meaning
a more than 2-year time period.

19We split the plot in two different figures for scale reasons.
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Table 29: Summary statistics

Mean Std Kurtosis Skewness
BTC 0.0009 0.04 3.35 -0.07
ETH -0.0007 0.05 2.90 -0.33
XRP 0.0004 0.07 15.73 1.80

USDT 0.0000 0.01 4.28 0.22
BCH -0.0011 0.08 6.47 0.49
LTC -0.0003 0.06 8.02 0.66
BNB 0.0033 0.07 7.74 0.78
EOS 0.0017 0.07 3.93 0.60
XLM 0.0021 0.10 26.19 2.03
TRX 0.0021 0.15 13.15 0.66

Note: The table shows relevant summary statistics for the 10 cryptocurrencies
considered related to the whole sample period, i.e. 13 September 2017 - 10 October
2019.

For each time window considered, we use 15 weeks of daily observations
to estimate the model, while the last week is used for validation purposes. In
other words, we compute 93 correlation matrices between the 10 cryptocur-
rency return time series, each one based on 15 weeks of daily returns and
then filter them by means of the Random Matrix approach. Applying the
Random Matrix filtering, correlation matrices are rebuilt considering only
the eigenvectors corresponding to the deviating eigenvalues.

In order to have a better understanding of the links existing between
cryptocurrencies, the filtered correlation matrices are then used to derive the
MST representation over two main periods of interest. In particular, we plot
the MST structure emerging from the period of the cryptocurrency price
hype (September 2017- January 2018) in Figure 32, while the MST structure
related to the latest trading period analyzed (June 2019- October 2019) in
Figure 33.
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Figure 30: Normalized cryptocurrency price series I

Note: The figure shows the normalized price series for 5 cryptocurrencies:
BTC,ETH,USDT, BCH,LTC, relative to the period 7 January 2018 - 17 Octo-
ber 2019.

As it is clear from the graph, the two networks show quite similar fea-
tures. Indeed, ETH is the cryptocurrency which always lies in the centre of
the structure, indicating its central role in the cryptocurrency market. The
only difference between the two graphical representations concerns USDT,
which during the price hype is not connected directly to ETH as the other
cryptocurrencies, but to LTC. This is linked to the fact that USDT is a sta-
ble coin and, therefore, behaves dissimilarly from the other cryptocurrencies
considered, being it much less volatile. However, this difference in behaviour
levels out during the latest period, as it emerges from Figure 33.

To better understand the dynamics of the MST among cryptocurrencies,
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Figure 31: Normalized cryptocurrency price series II

Note:The figure shows the normalized price series for 5 cryptocurrencies: XRP,
BNB, EOS, XLM,TRX, relative to the period 7 January 2018 - 17 October 2019.

we investigate the evolution of the links over time. Indeed, we compute two
different measures: the Max link, i.e. the value of the maximum distance be-
tween two pairs of nodes in the tree, and the residuality coefficient, meaning
the ratio between the number of links which are dropped and the number of
those who are kept by the MST algorithm. The two metrics, computed over
the whole sample period, are illustrated in Figure 34.

From Figure 34 one may notice that the Max link increases during the
Bitcoin price hype and fluctuates around relatively large values until roughly
mid 2018, meaning that during this period correlations between cryptocur-
rency returns are strongly misaligned. After that, the index bounces back
towards its previous values and even below, suggesting that cryptocurrency
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Figure 32: MST September 2017- January 2018

Note: The figure shows the MST representation relative to the period of the spec-
ulative bubble.

Figure 33: MST June 2019- October 2019

Note: The figure shows the MST relative to the period June 2019- October 2019.

returns start to behave more similarly during the latest period. Furthermore,
the residuality coefficient increases during the very beginning of the sample
period, while it sharply declines during the price hype phase. After the de-
crease, the coefficient stays quite stable and then gently increases not without
fluctuations from mid 2018 to the end of the sample period. This suggests
that the number of links until mid 2018 was quite limited - and, therefore,
returns misaligned -, whereas the same number started to increase after that
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Figure 34: MST thresholds and residuality coefficients

Note: The black line shows the Max link distance, while the red line shows the
residuality coefficient, whose values are reported respectively on the left and right
y axis.

phase, meaning there were more connections and thus more synchronicity
across cryptocurrency returns.

7.3.2 Portfolio construction

In this Subsection we illustrate the results related to the proposed port-
folio strategies. The optimal portfolio weights are obtained through the
constrained minimization of the objective function in Equation (7.8). For
the sake of completeness, we use different values of the systemic risk aver-
sion parameter γ, meaning γ = 0.005, 0.025, 0.05, 0.15, 0.7, 1. These values
have been chosen, without loss of generality, to be representative of different
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aversion profiles. While γ = 0 indicates no aversion, γ = 1 indicates a high
aversion, with systemic risk being given the same importance as non-systemic
one.

We use fifteen weeks, i.e. to compute the optimal portfolio weights as de-
scribed in Section 7.2. We then use the last week associated to each window
to evaluate the out-of-sample performance of our technique, meaning to com-
pute the portfolio returns and, therefore, the resulting Profit & Losses. We
then compute portfolio returns for the period 7 January 2018 - 17 October
2019, accounting for rebalancing costs, which are supposed to amount to 10
basis points.

In Figure 35 we plot the returns of our investment strategies for the dif-
ferent values of γ mentioned above as well as for γ = 0 (Network Markowitz),
meaning the results of the Markowitz portfolio strategy using the variance-
covariance matrix filtered by RMT and MST. In doing so, we plot portfolio
performances under the hypotesis of investing 100 USD at the beginning
of the period, and examining how much is lost along time. The results
of our strategies are compared with the performance of several strategies
and indicators: the benchmark portfolio (CRIX20), the Markowitz portfolio
with variance-covariance matrix filtered by the Glasso21 technique (Glasso
Markowitz), the naive portfolio (Equally Weighted) and the Markowitz port-
folio (Classical Markowitz). To better highlight the results of our best pro-
posed model, we plot the results only for a selection of portfolio strategies in
Figure 36. To complement this information, we report the 4-month cumula-
tive Profits & Losses of each of the considered strategy in Table 30.

Overall, we are considering a period in which the cryptocurrency market
witnesses a down period - except for the first part of our analyzed timespan
and several short periods consequently occurring. Therefore, as the mar-

20The CRIX is a cryptocurrency market index following the Laspeyres methodol-
ogy for the construction of indexes. More information about CRIX can be found at
https://thecrix.de/

21The sparsity parameter ρ has been set to 0.01, as in the reference paper by Friedman
et al. (2008).
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Figure 35: Performances of different portfolio strategies

Note: The plot reports the profits and losses of a portfolio with initial value
of 100 USD obtained by the CRIX benchmark index (Benchmark (CRIX)), the
optimization using the Markowitz approach with the variance-covariance matrix
filtered by Glasso (Glasso Markowitz), the naive portfolio (Equally Weighted),
our optimization using RMT and MST applied to the variance-covariance ma-
trix (Network Markowitz), our model based on different values of γ (γ =
0.005, 0.025, 0.05, 0.15, 0.7, 1), and the standard Markowitz portfolio (Classical
Markowitz). The portfolio values are plotted for the period 7 January 2018 -
17 October 2019.

ket is not profitable during the studied period, we aim to achieve through
our allocation strategies losses which are lower than those yielded by other
competing methodologies.

On the one hand, during a first phase which lasts roughly until mid 2018,
the traditional Markowitz porfolio seems to overperform the other portfolio
allocation strategies. Indeed, the allocation by Markowitz’ technique yields
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Figure 36: Performances of selected portfolio strategies

Note: The plot reports the profit and losses of a portfolio with initial value of 100
USD obtained by the CRIX benchmark index (Benchmark (CRIX)), the optimiza-
tion using the Markowitz approach with the variance-covariance matrix filtered by
Glasso (Glasso Markowitz), the naive portfolio (Equally Weighted), our optimiza-
tion using RMT and MST applied to the variance-covariance matrix (Network
Markowitz) and the standard Markowitz portfolio (Classical Markowitz). The
portfolio values are plotted for the period 7 January 2018 - 17 October 2019.

to positive (cumulative) returns until January 2018 and just slightly negative
ones until May 2018, however still lower than the losses provided by the other
strategies in absolute terms.

On the other hand, from September 2018 onwards all portfolios start pro-
viding strong negative returns. Indeed, the returns yielded by the portfolio
constructed via Markowitz start to decline dramatically, together with those
of the model including the systemic risk aversion parameter. This is because
the latter model takes into account the centrality of the cryptocurrencies in
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Table 30: Cumulative Profits & Losses

Period CRIX GM EW CM NW γ = 0.005 γ = 0.025 γ = 0.05 γ = 0.15 γ = 0.7 γ = 1
Jan-2018 -0.14 -0.13 -0.16 0.04 -0.22 -0.21 -0.26 -0.27 -0.36 -0.43 -0.43
May-2018 -0.67 -0.62 -0.60 -0.12 -0.79 -0.78 -0.73 -0.66 -0.83 -1.08 -1.10
Sep-2018 -1.37 -1.37 -1.43 -0.88 -0.83 -1.02 -1.24 -1.23 -1.40 -1.60 -1.64
Jan-2019 -1.85 -1.78 -1.78 -1.32 -0.87 -1.50 -1.86 -1.98 -2.19 -2.29 -2.31
May-2019 -1.35 -1.25 -1.27 -1.01 -0.74 -1.22 -1.33 -1.29 -1.44 -1.55 -1.57
Sep-2019 -0.99 -1.45 -1.49 -1.02 -0.54 -1.19 -1.34 -1.44 -1.86 -2.13 -2.15

Note: The table shows the cumulative 4-month Profits & Losses of portfolios under
different strategies. Particularly, Profits & Losses are computed for the CRIX
benchmark index (CRIX), the Glasso Markowitz (GM), the naive portfolio (EW),
the Network Markowitz (NW), the classical Markowitz (CM), and the proposed
models with different values of γ (γ = 0.005, 0.025, 0.05, 0.15, 0.7, 1). All values are
expressed in percentage terms.

the network and is therefore more adaptive to market conditions, regardless
of whether they are favourable or not. Indeed it can be noticed that - overall
- during bull market periods our model taking into account for risk aversion
reacts very fast to upward movements and yields to good cumulative perfor-
mances; conversely, during down market periods, the same model yields to
worse relative performances due to declining market conditions.

However, during the second half of our sample period our proposed model
with the systemic risk aversion parameter γ set to 0 (Network Markowitz)
clearly overwhelms the other portfolio allocation strategies. To illustrate, if
we look at the cumulative performance of the above mentioned method, we
can see that it more than halves losses with respect to the equally weighted
portfolio, to the Glasso Markowitz portfolio and to all portfolios including
a risk aversion parameter γ > 0. Moreover, it almost halves the losses with
respect to the benchmark index (CRIX) and to the traditional Markowitz
methodology. This suggests that this model is capable to provide a stronger
coverage for losses in case of down market periods with respect to all other
considered asset allocation strategies 22.

22A sensitivity analysis reported in the Appendix
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In Table 31 we compute the 4-month Value at Risk (VaR) with a confi-
dence level of 0.05 % for the benchmark index (CRIX), the equally weighted
portfolio, our Network Markowitz portfolio, the Glasso Markowitz and the
traditional Markowitz portfolios. This is done in order to compare, together
with cumulative returns, the potential riskiness of our strategy with respect
to the alternative portfolio allocation methods considered.

Table 31: Value at Risk

Period CRIX EW NW GM CM
Jan-2018 0.11 0.13 0.15 0.14 0.03
May-2018 0.04 0.05 0.02 0.05 0.03
Sep-2018 0.11 0.11 0.10 0.12 0.02
Jan-2019 0.07 0.10 0.05 0.07 0.01
May-2019 0.04 0.02 0.03 0.02 0.04
Sep-2019 0.05 0.05 0.02 0.05 0.01

Note: The table shows the 4-month Value at Risk of portfolios under different
strategies for a confidence interval of 95 %. In particular, the VaR is computed
for the CRIX benchmark index (CRIX), the naive portfolio (EW), the Network
Markowitz (NW), the Glasso Markowitz (GM) and the classical Markowitz (CM).
All values are expressed in absolute terms multiplied by a scale factor of 100.

Table 31 shows that, except for the price hype period, our proposed Net-
work Markowitz approach generally yields to lower values at risk with re-
spect to the benchmark index (CRIX), the naive portfolio and the Glasso
Markowitz. The aforementioned model is instead more risky than the tradi-
tional Markowitz model, although the latter, overall, yields too far way larger
negative returns. In general, the riskiness of our strategy seems to be quite
satisfactory with respect to the alternative allocation strategies analyzed.

To further support our conclusions, Table 32 presents the Sharpe ratio
under the different strategies.

Table 32 gives further evidence to support our conclusions: the proposed
Network Markowitz approach yields better Sharpe Ratios.
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Table 32: Sharpe Ratio

Period GM EW CM NW γ = 0.005 γ = 0.025 γ = 0.05 γ = 0.15 γ = 0.7 γ = 1
Jan-2018 -0.05 -0.05 -0.03 -0.13 -0.12 -0.08 -0.06 -0.08 -0.09 -0.10
May-2018 -0.14 -0.14 -0.19 -0.03 -0.04 -0.08 -0.09 -0.08 -0.07 -0.07
Sep-2018 -0.10 -0.09 -0.17 -0.04 -0.17 -0.17 -0.20 -0.20 -0.18 -0.17
Jan-2019 0.10 0.09 0.11 0.09 0.06 0.08 0.11 0.12 0.12 0.12
May-2019 -0.02 -0.02 0.01 0.08 0.02 0.02 -0.00 -0.03 -0.04 -0.04
Sep-2019 -0.06 -0.06 -0.03 0.03 0.07 -0.11 -0.14 -0.14 -0.14 -0.14

Note: The table shows the 4-month values of Sharpe ratio of portfolios under differ-
ent strategies. In particular, the SR is computed for the Glasso Markowitz (GM),
the naive portfolio (EW), the classical Markowitz (CM), the Network Markowitz
(NW) and for all the value of γ.

To strengthen the robustness of our conclusions, Table 33 presents the
Rachev ratio, with a confidence level of 10%, under the different strategies.
The Rachev ratio is a useful supplement of the Sharpe ratio, when data is
non-symmetric, as in our context. It is calculated as the ratio between an
extreme gain and an extreme loss.

Table 33: Rachev Ratio

Period GM EW CM NW γ = 0.005 γ = 0.025 γ = 0.05 γ = 0.15 γ = 0.7 γ = 1
Jan-2018 0.74 0.75 0.63 0.64 0.69 0.77 0.79 0.78 0.77 0.99
May-2018 0.73 0.75 0.95 0.83 0.74 0.77 0.83 0.87 0.87 0.55
Sep-2018 0.81 0.84 0.87 0.61 0.80 0.75 0.76 0.80 0.80 0.48
Jan-2019 1.16 1.11 1.47 1.24 1.34 1.36 1.39 1.40 1.40 1.26
May-2019 0.80 0.80 1.05 0.97 0.93 0.84 0.75 0.72 0.72 0.98
Sep-2019 0.75 0.78 1 1.14 0.43 0.38 0.38 0.38 0.37 0.78

Note: The table shows the 4-month values of Rachev Ratio (RR) of portfolios
under different strategies. In particular, the RR is computed for the Glasso
Markowitz (GM), the naive portfolio (EW), the classical Markowitz (CM), the
Network Markowitz (NW) and for all the value of γ.

Table 33 shows that the Network Markowitz approach yields the best
performances in the initial and final periods, and the Classic Markowitz in
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all other periods. The other strategies generally show worse performances.
This is consistent with our previous findings, and with the fact that the
Rachev ratio takes higher values during periods characterised by decreasing
returns, such as the quarter preceding January 2019.

Overall, we cannot say that the proposed model overperforms traditional
approach (such as Glasso Markowitz and Classical Markowitz). It does so in
certain periods and according to certain risk aversion parameterisations.

For the sake of completeness, we plot the portfolio weights of the winning
strategy over the evaluation time horizon in Figure 37. As one can clearly
see, the composition of the portfolio varies quite much over time. Indeed,
during the first period of the sample, approximately until February 2018,
the portfolio is composed by various assets, with USDT gaining a high share
over time, being it the most stable across all. After that, BTC is the cryp-
tocurrency which is mostly selected by our algorithm, roughly until October
2018 (with some exceptions), as it is considered a proxy of the whole market.
Finally, the algorithm selects different cryptocurrency compositions until the
end of the sample, being the latter a highly uncertain period for the market.

Last, we present, for comparison purposes, the the portfolio weights as-
sociated with γ = 1.

While Figure 37 gives the weights relative to the situation of no systemic
risk aversion, Figure 38 gives the weight corresponding to a very high systemic
risk aversion, in which it has the same importance as non systemic risk.

7.4 Conclusion

In this chapter we have proposed a methodology that aims to build an al-
location strategy which is suitable for highly volatile markets, such as cryp-
tocurrency ones. In particular, we have applied our models to a set of 10
cryptocurrency return time series, selected in terms of market capitaliza-
tion. We have shown that the use of network models can enhance portfolios’
risk-return profiles and mitigate losses during down market periods.

We have demonstrated how the use of centrality measures, together with
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Figure 37: Winning strategy portfolio weights

Note: The figure shows the portfolio weights associated to the winning strategy -
i.e. the Network Markowitz (NW) - for the analyzed time period.

tuning an investor’s systemic risk aversion, is a suitable methodology to make
profits during bull market periods, as this method is rapidly adaptive to
market conditions. We have also shown that, to protect investors from losses
during bear market periods, the combination of Random Matrix Theory and
Minimal spanning trees can yield to acceptable risk-return profiles and/or
mitigate losses.

Our empirical findings show that, overall, the proposed method is ac-
ceptable, even during downturn periods. However, we cannot claim that this
proposed model should always be used in automated consultancy . It should
always be compared with competing alternatives, according to different mar-
ket conditions and different risk aversions.
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Figure 38: Highly risk adverse strategy portfolio weights

Note: The figure shows the portfolio weights associated to a highly systemic risk
adverse strategy - γ = 1- for the analyzed time period.

Further research should involve, besides the application to other contexts,
the consideration of different base portfolio allocation models. We have used
Markowitz’ as it is the most employed by robot advisory platforms.
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8 Chaos Based Portfolio Selection: a Con-
stant Chaoticity Approach

Based on the paper:
Spelta, Alessandro, Pecora, Nicoló, & Pagnottoni, Paolo. 2020.
Chaos Based Portfolio Selection: a Constant Chaoticity Approach. Working
Paper.

8.1 Introduction

The evolution of stock market data is known to be highly non-linear and to
predict their future values for the formation of a profitable portfolio is un-
doubtedly a challenging task. The difficulties of stock returns prediction lie
on the fact that data are non-stationary or non-linear in nature, and their pat-
terns are difficult to be captured. Non-linearities are an evidence of economic
life and for many financial applications the source of which is even apparent,
yet empirical evidence of their existence is still weak. For instance, stock re-
turn dynamics are largely influenced by investor attitudes towards expected
risk and return and by the strategic interaction between market participants,
both of which are intrinsically non-linear. This translates into a plain obsta-
cle for making effective forecasts and for selecting optimal portfolios. The
foundation of portfolio theory dates back to the mean-variance model by
Markowitz (1952) which constitutes the classic paradigm of the modern fi-
nance theory for asset allocation. However this approach suffers from some
drawback since the estimation results that derive from this method may lead
to portfolios having weights concentrated on only few stocks, thus increasing
the risk of the investment. Moreover, the mean-variance model can be seen
as an approach adopting a rear-view mirror for providing a portfolio selection
and as a result it turns out to be inherently slower to react to changes in
news and volatility.
Following Markowitz (1952), various researchers proposed enhanced models
with the same goal of maximizing the expected return and to minimize risk
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portfolio. These approaches include traditional linear and non-linear mod-
els as well as artificial intelligence (AI) based techniques. There exists a
burgeoning literature related to traditional (linear) statistical methods such
as Moving Averages, Exponential Smoothing or Auto-regressive Integrated
Moving Averages (ARIMA) for financial time series prediction (see e.g. Box
and Tiao 1975, Wheelwright et al. 1998). While these methods are statis-
tically powerful, they have failed to yield accurate predictions on the test
data and to capture regularities in such time series. Many non-linear time
series models have been proposed in the statistical literature, such as the
bilinear models of Granger and Andersen (1978), the threshold autoregres-
sive (TAR) model of Tong and Lim (2009), the state-dependent model of
Priestley (1980), and the Markov switching model of Kuan (2002). AI-based
models employ artificial neural networks (ANN) which also includes multi-
layer perceptron (MLP) and radial basis function (RBF) as in Chen (1994),
support vector machines (SVM) as or instance in Gavrishchaka and Banerjee
(2006), support vector regression (SVR) as in Burges (1998); Huang et al.
(2005), genetic algorithms (GA), particle swarm optimization (PSO) as in
Majhi et al. (2008), artificial fish swarm (AFS) as Neshat et al. (2014) and
general regression neural network (GRNN) as introduced by Specht et al.
(1991). All these approaches share the aim of reducing the uncertainty of
predictions by including forms of forward-looking forecasting techniques in
order to take into account the continuous availability of data and news.

It is against this background that chaos theory may offer an alternative
device to consider and model the underlying non-linear dynamic behaviour
of financial time series. In particular, we shall show that the adoption of
the tools from non-linear systems and chaos theory allows us to improve
the forecasting objective through a forward-looking approach that can make
long-term time series predictions.
Since several decades researchers have been looking for chaotic dynamics in
economic and financial time series. The hypothesis that deterministic chaos
may underlie apparently random variation in financial series has been re-
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ceiving a huge interest (see LeBaron (1994), Benhabib (1996), Peters (1996),
and Mandelbrot (1999) among others). Recognizing and quantifying chaos
in financial time series constitutes an important step towards the under-
standing of the nature of such series and revealing the extent to which short
and eventually long term forecasts may be improved. The possibilities of
chaos in economic systems brought an enormous amount of initial interest.
From forecasting movements in foreign exchange and stock markets, to un-
derstanding international business cycles, chaos in economics and finance has
a broad range of potential applications. However, initial studies have been
somewhat inconclusive (see Barnett and Serletis (2000)) and there have been
no reports of exploitable deterministic dynamics in financial time series (see
Malliaris and Stein (1999)). LeBaron (1994) argued that any chaotic dynam-
ics that exist in financial time series are probably insignificant compared to
the stochastic component and are not easy to detect. Nonetheless, in addi-
tion to the main stochastic component, we are interested in whether there is
a significant non-linear determinism, and chaos, exhibited by financial series,
and how such determinism may be exploited from a forecasting perspective.
In an effort to quantify determinism and chaos, a variety of measures have
been applied to a vast range of economic and financial time series. Exam-
ples refer to the estimation of Lyapunov exponents as in Schittenkopf et al.
(2000), the correlation dimension as in Harrison et al. (1999) and Hsieh
(1991), the closely related BDS statistic of Brock et al. (1991), the mutual
information and other complexity measures by Darbellay and Wuertz (2000)
and non-linear predictability of Agnon et al. (1999). The rationale of each
of these methods was to apply a measure of non-linearity or “chaoticity” to
the supposed i.i.d. returns (or log-returns). The work by Small and Chi
(2003) showed that the system generating the financial time series analyzed
in their paper is a non-linear dynamical system driven by noise that is either
not in equilibrium or undergoing bifurcation/non-stationarity. Accordingly,
despite the non-stationarity, they found a characteristic non-linear determin-
istic structure that persists.
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Starting from these premises, we build on the literature related to the con-
nection of chaos and dynamical systems to non-linear time series analysis.
Once chaos is detected in a system, much more is known about its dynamical
behavior, which is particularly useful for building investment strategies and
predictions. In this chapter, we make use of non-linear measures, such as
the Lyapunov exponents, which allow us to make long-term predictions that
can be exploited for forecasting strategies. In particular, starting from the
non-linear properties of financial time series, following an approach similar
to Golestani and Gras (2014), we build a portfolio strategy that goes beyond
the simple one-step ahead prediction and that features a reasonable level of
accuracy and performance in terms of generated profits. Our methodology
begins with the reconstruction of the attractor phase space from a single time
series; once this step is accomplished, a unique characteristic that somehow
represents the chaotic behaviour of the series is extracted. Then the fore-
casting method generates successive new values that continue the series, each
value minimising the difference between the chaoticity of the new time series
and the initial one. Finally, the forecasted prices are employed to build what
we name the Constant Chaoticity Portfolio (CCP). We create top-bottom
portfolios through stocks’ single sorting, in which we generate a signal com-
puted using price forecasts or, alternatively, past prices and which suggests
the future market direction for each stock. Then, a further portfolio is gen-
erated according to a double sorting criterion, in which we simultaneously
take into account signals computed using price forecasts and past prices. We
test our methodology with two different datasets, namely the STOXX Eu-
rope 50 index and the Hang Seng index. The results, in terms of portfolio
performances, show that our methodology is able to correctly make forecasts
at a long time horizon and to generate net profits that overcome those ob-
tained by portfolios computed by simply considering the past returns, equally
weighted portfolios or ARIMA based portfolios.

The remainder of the chapter is organized as follows: Section 2 is devoted
to the methodology and outlines the main steps of our forecasting procedure
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which is adopted for the construction of the portfolios; Section 3 describes in
detail the datasets and presents the results; Section 4 contains the sensitivity
analysis which aims at checking the robustness of our method by showing how
portfolio performances react to changes in the underlying model parameters
and forecast horizon choice. Finally, Section 5 concludes.

8.2 The Constant Chaoticity Portfolio: methodology

This Section is devoted to shed light on the creation of the Constant Chaotic
Portfolio (CCP) resulting from the stocks prices forecasts. As a reference
benchmark we consider the survival components of the STOXX Europe 50
index and the Hang Seng index. These assets are those which remained
within the indexes throughout the whole period under analysis.
In a nutshell, the CCP is developed by employing a dynamical system per-
spective. Accordingly price forecasts are obtained by choosing prediction
values such that the time series is left with the same amount of chaos mea-
sured by the largest Lyapunov exponents. Top-bottom portfolios are then
created by sorting stocks through a signal which exploits price forecasts and
past returns.

8.2.1 Phase space Reconstruction

The modeling of a dynamical system relies on the concept of a phase space,
that is the collection of the possible system states. For a system that can
be mathematically modeled through differential equations, the phase space
is known from these laws of motion. On the contrary, for the majority of
real dynamical systems, which often exhibit chaos, the phase space and the
precise mathematical description of the equations governing their dynamics
are often unknown. The observation of a real process usually does not yield
all possible state variables. Either not all state variables are known or not
all of them can be measured. Accordingly, attractor reconstruction methods
have been developed as a mean to build up the phase space and develop new
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predictive models (see e.g. Rosenstein et al. 1993; Vlachos and Kugiumtzis
2008; Kliková and Raidl 2011).

The state of the system can be described by its state variables x1(t), x2(t), ..., xd(t).
The d state variables at time t form a vector in a d-dimensional space which
is called phase space. A system typically changes in time and, in turn, the
vector in the phase space that describes the trajectory representing the time
evolution of the system changes as well. The shape of the trajectory gives
hints about the phase space portrait, whether this is periodic, quasi-periodic
or even chaotic.
Due to the couplings between the system’s components, it is possible to re-
construct a phase space trajectory from a single observation xi of a time
series X = {x1, x2, ..., xT}′ by a time delay embedding method (see Rosen-
stein et al. (1993)).
The reconstructed trajectory, Xr, can be expressed as a matrix where each
row is a phase space vector. That is:

Xr = [Xr
1 , X

r
2 , ..., X

r
M ]′ (8.1)

where Xr
i is the state of the system at discrete time i and M is the number

of measurements. For a T -point time series, {x1, x2, ..., xT}, each Xr
i is given

by:
Xr

i = [xi, xi+τ , ..., xi+(m−1)τ ] (8.2)

where i = 1, 2, ..., T − (m− 1)τ . The parameter τ defines the reconstruction
delay and m represents the embedding dimension. The delay for phase space
reconstruction is estimated using Average Mutual Information (AMI). For
reconstruction, the time delay is set to be the first local minimum of AMI
computed as:

AMI =
T∑
i=1

p(xi, xi+1) log2

[
p(xi, xi+1)
p(xi)p(xi+1)

]
(8.3)

where p(xi, xi+1) is the joint probability density function of xi and xi+1, and
where p(xi) and p(xi+1) are the marginal density functions. The AMI, there-
fore, indicates how similar the joint distribution p(xi, xi+1) is to the products
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of the factored marginal distributions. If xi and xi+1 are completely unre-
lated (and therefore independent), then p(xi, xi+1) would equal p(xi)p(xi+1),
and this measure would be zero.
The embedding dimension is the dimension of the space in which the phase
portrait is reconstructed and it is specified as a scalar vector. The embed-
ding dimension for phase space reconstruction is estimated using the False
Nearest Neighbor algorithm, as in Rhodes and Morari (1997).
For a point i at dimension d, the points Xr

i and its nearest points Xr∗
i in the

reconstructed phase space {Xr
i }, i = 1, ..., T , are false neighbors if:√√√√R2

i (d+ 1)−R2
i (d)

R2
i (d) > thr (8.4)

where R2
i (d) = ||Xr

i −Xr∗
i ||2 is the distance metric and thr = 10 is a tun-

ing parameter to determine the number of points that are False Nearest
Neighbors (FNN) in the reconstructed phase space. The estimated embed-
ding dimension d is the smallest value that satisfies the condition pfnn < ω

where pfnn is the ratio of FNN points over the total number of points in
the reconstructed phase space, while ω = 0.1 is a threshold such that if the
percentage of false nearest neighbors (pfnn) drops below the tuning param-
eter ω at a dimension d, then d is considered as the embedding dimension.
After reconstructing the phase space, for a point i the algorithm locates the
nearest neighbor i∗ that satisfies mini∗ ||Xr

i − Xr
i∗ || on the trajectory such

that |i− i∗| > 1.

8.2.2 Lyapunov exponent

The subsequent step of our approach is the computation of the Lyapunov
exponent (see Rosenstein et al. (1993); McCue and Troesch (2011)). The
Lyapunov exponent is a useful tool to estimate the amount of chaos in a
system. In particular, by considering two trajectories in the phase space
with nearby initial conditions on an attracting manifold, sensitivity to initial
conditions is quantified by the Lyapunov exponent. When the attractor is

170



chaotic, the trajectories diverge, on average, at an exponential rate character-
ized by the largest Lyapunov exponent. The presence of a negative Lyapunov
exponent indicates convergence, while a positive Lyapunov exponent is asso-
ciated with divergence and/or chaos. Mathematically, the largest Lyapunov
exponent can be computed as:

λ = 1
T

T∑
i=1

 1
K

Kmax∑
K=Kmin

ln ||X
r
i+K −Xr

i∗+K ||
||Xr

i −Xr
i∗||

 (8.5)

where K = Kmax − Kmin is the expansion range, which we select in the
interval [1, 5], and it is used to estimate the local expansion and to calculate
the largest exponent.

8.2.3 The GenericPred Algorithm

The basic idea of GenericPred (see Golestani and Gras 2014) is to extract
a unique characteristic from an existing time series that somehow repre-
sents the chaotic behaviour of the series. Subsequently the method generates
successive new values that continue the series, each value minimising the dif-
ference between the chaoticity of the new time series and the initial one.
In particular, let us consider a time series X = {x1, x2, ...., xT}. The first
step of the GenericPred method involves the reconstruction of the attractor
phase space from a single time series. Then, the largest Lyapunov exponent
λ is computed on X to have a single value which quantifies the amount of
chaos in the dynamics of the time series. The value λ(X) is the reference
value that is used for forecasting the next k values of the time series xT+i,
1 ≤ i ≤ k.
The forecast of the new value xT+i is chosen by randomly drawing j = 50
proposal xjT+i from a Normal distribution N(xT , σ2) where the mean is equal
to the last observed value of the series and the variance is estimated as the
difference of the two last observations, i.e. xT − xT−1. In other words, the
new value must be chosen from a set of potential values generated from the
probability distribution P (xi|xi−1). In particular, the selected forecast xjmin

T+i
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is then computed by picking the xjT+i that minimizes the distance between
the λ(X) of the original time series and the one of the augmented series,
where

jmin =j (|λ(Xj)− λ(X)|) (8.6)

and Xj = x1, x2, ...., xT , x
j
T+1.

The predictions are made one step per time because the predicted value in
the current step is necessary for determining the valid range of change for the
next step. Therefore, after xjmin

T+i has been computed, the series is augmented
by this new value and the method is run again in order to find the new future
value.

8.2.4 The Constant Chaoticity Portfolio formation

In this Section, we describe how to employ both past and forecasted prices
to build different portfolio strategies. First, we describe how we create top-
bottom portfolios through stocks’ single sorting. In this step we generate a
signal which is computed using price forecasts or, alternatively, past prices
and which suggests the future market direction for each stock. Secondly,
according to a double sorting criterion, we also build portfolios using simul-
taneously signals computed using price forecasts and past prices.
With a rolling window of 220 days, at each step of the window, we first gen-
erate the stock price forecasts Xjmin for the next five days23. Then, we create
a signal Sz associated to each stock z as the difference between the mean
and the median of its five days price predictions24. The signal is intended for
extracting a scalar measure, which is able to discriminate between bearish
and bullish assets. In formula:

Sz = 1
Z

Z∑
z=1

Xjmin
z −

Xjmin
z d l+1

2 e+ Xjmin
z b l+1

2 c
2 (8.7)

23As a robustness exercise we also employ 10 days as an out of sample range. Results
are shown in Appendix.

24The signal is also computed analogously using the past five days prices.
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where Xjmin
z has been previously sorted in ascending order, l is the number

of components of the vector Xjmin
z , while b·c and d·e denote the floor and

ceiling functions, respectively.
The signal embeds information on the shape of the price forecasts distribu-
tion of each stock. Indeed, when the mean and the median are equal, the
price forecasts distribution is symmetric. On the contrary, the larger the dif-
ference between the mean and the median is, the more asymmetric the price
forecasts distribution is. In particular, if the mean is lower than the median,
the distribution will be skewed to the left, meaning that some predictions
present low forecasted values with respect to the bulk of the distribution.
We interpret this occurrence as a sell signal. On the other hand, if the mean
is larger than the median, the price forecasts distribution is positively skewed:
some predictions present high forecasted values with respect to the core of
the distribution. This is interpreted as a buy signal.
Once the signal is generated for all the stocks, the assets associated with
the lowest Sz values, i.e. stocks whose signal is below a predetermined low-
percentile of the distribution, are selected as bearish assets and thus a buy
position is taken over them. For those stocks returns are computed as:

Rt = pt+1 − pt
pt

. (8.8)

On the contrary, stock signals that lie above a predetermined up-percentile
of the distribution are selected as bullish assets, and therefore a buy position
is assumed on these instruments. For those stocks, returns are computed as:

Rt = pt − pt+1

pt+1
. (8.9)

Finally, the top-bottom portfolio is computed by equally weighting the se-
lected stocks. The top-bottom portfolio strategy foresees to take a long
position on the top stocks group and a short position on the bottom stock
group. The performance of the portfolio is given by the sum of profits and
losses of each open position on top/bottom stock groups.
The trading strategy is back-tested using a walk forward approach. We opt
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for an in-sample data time window of 220 days. Then we compute top-bottom
portfolio performance in the next trading week, i.e. portfolio re-balancing is
computed every working week. The in-sample time window is subsequently
shifted forward by the period covered by the out of sample test, and the
process is repeated. At the end, all the recorded results are used to assess
the performance of the trading strategy, i.e. each top-bottom portfolio per-
formance is connected from July 2003 to January 2018.
Moreover, we are also interested in understanding whether portfolios’ prof-
itability is influenced by both past price behavior and forecasted values.
Therefore, we propose an alternative portfolio based on a double sorting
procedure. This method selects the top stocks as those instruments having
a signal Sz value higher than the 65th percentile of the S-distribution for
both past returns and price forecasts. On the contrary, bottom stocks are
identified as those assets having a signal Sz lower than the 35th percentile of
the S-distribution for both past returns and price forecasts. In other words,
stocks belonging to the top portfolio have both an increasing past trend as
well as a predicted positive price trend, thus signaling a strong bullish market
phase. On the contrary, stocks composing the bottom portfolio are charac-
terized by both decreasing past and forecasted price trends, thus signaling a
strong but negative market phase. Finally, as before, portfolio’s profits and
losses are computed by summing the daily returns of open long positions on
top stocks and the returns of the open short positions on bottom stocks.

8.3 Data and empirical results

In this Section, we firstly describe the main qualitative and quantitative
features of the datasets related to the STOXX Europe 50 and the Hang
Seng indexes. Secondly, we present the results of our stock price forecasting
methodology. Finally, we illustrate the portfolio performances together with
those of different top-bottom strategies. In particular, the our contribution
shows the empirical outcomes obtained by applying our methodology to the
STOXX Europe 50 index, while results linked to the Hang Seng index are
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shown in Appendix A.

8.3.1 Data

In order to test the efficacy of the CCP method, we analyze the closing price
dynamics of two different indices, namely the STOXX Europe 50 and the
Hang Seng indexes, and their constituents.

The STOXX Europe 50 provides a representation of supersector lead-
ers in Europe. It is composed by the first 50 Europe’s leading blue-chip
stocks from 17 European countries, namely: Austria, Belgium Czech Re-
public, Denmark, Finland, France, Germany, Ireland, Italy, Luxembourg the
Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United
Kingdom. The STOXX Europe 50 data have a daily frequency and range
from 29th July 2003 to 22nd January 2018. The leader sectors presented
in the index are Health and Banks accounting for the 14% and 18% of blue
chips stocks belonging to these sectors respectively; Personal & Household
Goods and Industrial Goods & Services, instead, impact on the index com-
position for almost the 12% and 10% respectively25. For sake of simplicity we
compute portfolio selections on the 29 survival components of the STOXX
Europe 50 index constituents. These assets are the ones that have remained
within the index throughout the whole period under analysis.
The Hang Seng index, on the other hand, is the free-float adjusted mar-
ket capitalization weighted index of the Hong Kong Stock Exchange. It is
composed by 50 constituent companies, which represent about 58% of the
capitalisation of the Hong Kong Stock Exchange26. It is used to record and
monitor daily changes of the largest companies of the Hong Kong stock mar-
ket and is the main indicator of the overall market performance in Hong
Kong. As for the STOXX Europe 50 index, we employ the survival com-
ponents of the Hang Seng index. For the Asian index we collect the daily
closure price of the 47 components which have remained within the index

25https://www.stoxx.com/index-details?symbol=SX5P
26https://www.hsi.com.hk/eng
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from 12th March 2014 to 11nd March 2020.

Table 34: Summary Statistics - STOXX Europe 50

Periods Min. Max. Mean Std. Skew. Kurt.
01-01-03 to 05-31-07 -0.0832 0.0970 0.0006 0.0126 -0.0267 5.2492
06-01-07 to 01-31-09 -0.3214 0.2565 -0.0017 0.0294 0.2418 13.7365
02-01-09 to 12-31-13 -0.2035 0.2198 0.0004 0.0211 0.0805 10.6831
01-01-14 to 01-22-18 -0.2303 0.1241 0.0002 0.0162 -0.6153 11.5442

Note: Summary statistics of the STOXX Europe 50 components divided into four
sub-periods, namely from January 2003 to May 2007, from June 2007 to January
2009, from February 2009 to December 2013 and finally, from January 2014 to
January 2018. For each sub-period, the table reports the minimum (Min.), the
maximum (Max.), the average (Mean) values of the daily returns along with the
standard deviation (Std.), the skewness (Skew.), and the kurtosis (Kurt.).

Table 34 provides some summary statistics related to the STOXX Europe
50, divided into four time-spans referring to the prior-crisis period (2003-
2007), the global financial crisis (2007-2009), the European Sovereign debt
crisis (2009-2013) and the post-crisis period (2014-2018). The time intervals
are not equally spaced. Instead, the length of each sub-period is set according
to the economic and financial events which have affected the global capital
markets. The table reports the minimum, the maximum, the mean, the stan-
dard deviation, the skewness and the kurtosis of the daily return distribution
of the survival components of the STOXX Europe 50 index. Summary statis-
tics show that during both the global financial crisis and the European Debt
crisis, stocks of the STOXX Europe 50 index were affected by market tur-
moils, which had a negative impact on the index performance. Moreover,
the global financial crisis affected the markets more heavily than the Euro-
pean debt crisis. Indeed, the minimum return recorded in this sub-period is
the highest in absolute value and the average return takes a negative value.
On the contrary, despite the standard deviation of the two crisis periods are
comparable, the daily average return during the European Debt crisis turns
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positive and even higher than the one of the post crisis sub-interval.

Table 35: Summary Statistics - Hang Seng

Periods Min. Max. Mean Std. Skew. Kurt.
12-03-14 to 11-03-16 -0.2239 0.1763 0.0000 0.0196 0.1755 8.6279
12-03-16 to 11-03-18 -0.1458 0.1560 0.0010 0.0164 0.2853 8.8455
12-03-18 to 11-03-20 -0.2759 0.1207 -0.0004 0.0184 -0.1812 10.1443

Note: Summary statistics of the Hang Seng components divided into three sub-
periods, namely from March 2014 to March 2016, from March 2016 to March 2018
and finally, from March 2018 to March 2020. For each sub-period, the table reports
the minimum (Min.), the maximum (Max.), the average (Mean) values of the daily
returns along with the standard deviation (Std.), the skewness (Skew.), and the
kurtosis (Kurt.).

Table 35 shows the summary statistics related to the Hang Seng compo-
nents, for three equally spaced time intervals, namely from March 2014 to
March 2016, from March 2016 to March 2018 and finally, from March 2018
to March 2020. These statistics highlight that during the last considered
period, the Hong Kong stock market has been affected by the turmoil due
to the anti-government protests and the spread of the Covid-19 infection,
which had a negative impact on the index performance. In particular, if we
focus on the first three month of the year 2020, this dynamics is even more
pronounced with a minimum return figure of −0.1925, a maximum of 0.0770,
and an average return of −0.0026.

8.3.2 Forecasting stock prices

In this Subsection, we illustrate the outcome of the forecasting procedure
obtained with a five days forecasting horizon. As an example, in Figure 39
we report the predicted and actual price patterns of a single component of
the STOXX Europe 50 index. Such stock is identified with the numeric ID
405780, which refers to l’OREAL. This is the first company worldwide in
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terms of turnover, operating in the beauty & cosmetics sector, specialized in
cosmetics and beauty products.

Figure 39: The price pattern prediction at five days forecasting horizon for
the stock component 405780 (l’OREAL) of the STOXX Europe 50

Note: The price forecast obtained by our methodology is represented by the red
line; the price forecasts given by the ARIMA(1,1,1) and ARIMA(2,1,1) models are
represented by the light blue and blue lines, respectively; the gray line identifies
the actual stock price during the analyzed period. The y-axis refers to the stock
price. The x-axis, instead, indicates the timeline. At the top left of the graph an
enlargement describes the price pattern during the global financial crisis period,
in particular, from May 2008 to August 2009.

Figure 39 shows the comparison between the price pattern of a repre-
sentative stock composing the survival set of assets for the STOXX Europe
50 and its forecasted dynamics obtained through our proposed methodology.
Additionally, we consider the predicted dynamics of several configurations
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of ARIMA models as competing forecasting alternatives27. The in-sample
period corresponds to 220 observations (one year) while the forecasting out-
of-sample window is set to five days ahead. The gray line reports the stock
price path, the red line refers to the price series predicted through our fore-
casting procedure, the light blue and blue lines are associated with the series
predicted by the ARIMA(1,1,1) and ARIMA(2,1,1) models, respectively. We
observe that the forecasted series, resulting from the application of our model,
is able to follow quite closely the real path of the stock price. Moreover, de-
spite being generally less accurate, ARIMA models are also able to capture
the pattern of the stock price.

By analyzing the figure in detail, during the period preceding the global
financial crisis, the stock features a positive performance, jumping from a 60$
price level to almost 100$, with a 67% increase in value. However, the stock
price dynamics suffers from the global financial crisis: in fact, between June
2007 and January 2009, it loses about 60% of its values by dropping from a
100$ price level to almost 40$. In particular, this depreciation can be seen
in the inset of Figure 39. During the post crisis period, instead, the method
predicts a bullish trend of the stock dynamics. In fact, the price quadruples
its value, reaching the 180$ price level at the end of the time sample. Finally,
the shaded red areas represent the error bounds obtained by applying a
bootstrapping procedure. In other words, for each time point forecast we
have repeated the predictive methodology 10 times. The size of the bounds
suggests that the methodology is robust against the re-sampling procedure,
meaning that no significant improvement or reduction in forecasting accuracy
can be observed by considering a larger number of random draws.

27In particular, throughout the analyses we illustrate configurations of ARIMA models
which have been reported as good candidates for making satisfactory predictions, namely
ARIMA(1,1,1) and ARIMA(2,1,1).
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8.3.3 Portfolio results

This Subsection illustrates the results of the CCP method in terms of prof-
its and losses (P&L), performances relative to the market index and risk-
adjusted performances. Figure 40 represents the daily cumulative returns
obtained by performing investment strategies based on different approaches.
The single and the double way sorting methods employed for constructing
the Constant Chaoticity Portfolios are compared against the equally weighted
portfolio P&L and the ones based on ARIMA models28, which only encom-
pass the survival stocks of the index, and the market index performance.
P&L include transaction costs of 20 basis-points per each stock composing
a certain portfolio at each rebalancing. Furthermore, top-bottom portfolios
are computed with the 65th and 35th percentiles as a benchmark.

From a visual inspection of Figure 40, it is possible to evaluate the horse-
race of different strategies and to compare their behaviors in terms of prof-
itability. For the sake of completeness, the performance of the top-bottom
portfolio generated by past price analysis has also been inserted into the fig-
ure. Notice that, since the bootstrapping procedure creates a forecasted price
distribution for each time point, we have decided to consider the median of
the prediction distribution as the reference forecasted value. During the pre-
crisis period, the market index associated with a buy&hold strategy (black
line) is the best performing followed by the double sorting portfolio (violet
line). The other approaches, instead, exhibit a lateralized trend. However,
the most interesting period, seems to be the financial crisis phase: the market
index (gray line) suffers from the downturn due to the banking sector tur-
moil, which covers a significant part of the STOXX Europe 50 dynamics. The
equally weighted portfolio performance drops as expected, while the ARIMA
portfolios and the single sort strategy are less responsive when the market
witnesses a bearish phase. The double sorting portfolio, instead, seems to be

28Portfolios based on ARIMAmodels are constructed in the same way as CCP portfolios,
with the only exception that we use ARIMA predictions rather than the forecasts given
by our predictive method to derive portfolio weights.
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Figure 40: Portfolio performances with five days forecasting horizon for the
European case

Note: The figure shows the profits and losses (P&L) of different portfolio strategies.
The gray line represents the performance of the STOXX Europe 50 index, indicated
as Mkt. Index. The black line represents the performance of the equally weighted
portfolio obtained by selecting all the survival components of the STOXX Europe
50 (labelled as Aver). The green line shows the P&L of the past return top-
bottom portfolio (Past Ret). The yellow line shows the performance of the CCP
obtained with the single sort strategy computed on the forecasted prices (Single);
the violet line identifies double sort strategy performance (Double); the light blue
line represents the ARIMA(1,1,1) strategy performance (Arima(1,1,1)); the blue
line that of ARIMA(2,1,1) (Arima(2,1,1)). The y-axis represents in percentage
the P&L while the x-axis reports the timeline. Top-bottom portfolios are created
by considering the 35th and 65th percentiles as reference thresholds of the signal
distribution.
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less affected by the financial downturn as shown by its performance during
the period from June 2008 to April 2009. However, the post crisis period
shows how both the single (yellow line) and the double sort strategies out-
perform the STOXX Europe 50 index, the equally weighted portfolio and the
ARIMA-based portfolios. The single sort approach does better than all com-
peting alternatives, but the double sort portfolio strategy, on average, turns
out to be the most profitable strategy, overcoming the single sort portfolio
from the second half of 2011 until the end of the sample period.

We also compute Sharpe Ratios and Jensen’s Alphas for each portfolio
strategy in order to support the results described through the analysis. The
Sharpe Ratio is an indicator which helps investors to understand the return
of an investment compared to its risk. Indeed, the ratio expresses the average
return earned per unit of volatility or total risk. It is calculated by dividing
the return of the portfolio by its standard deviation29. In formula, the Sharpe
Ratio (SR) is expressed as:

SR = Rp

σp
(8.10)

where Rp is the return of portfolio and σp is the standard deviation of the
portfolio’s returns.

We also consider the Jensen’s Alpha, which is a risk-adjusted performance
indicator that measures the excess returns earned by the portfolio compared
to the returns implied by a CAPM model (RM). The Jensen’s Alpha can be
calculated using the following formula:

α = Rp − βRM . (8.11)

This metric can assume both positive or negative (besides null) values.
High positive values suggest a better portfolio performance compared to the
market performance, while negative values indicate that the portfolio under

29Notice that the Risk-free asset of cash is absent in our computation, provided that we
are interested in proposing a measure of risk adjusted returns.
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Table 36: Sharpe Ratio and Jensen’s Alpha of different portfolio strategies

Sharpe Ratio
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 TOT

Market Index 0,113 0,3 0,129 0,031 -0,243 0,09 -0,043 -0,097 0,127 0,138 0,023 -0,018 0,069 0,126 0,013
Aver. Market 0,124 0,081 -0,035 0,045 -0,237 0,038 -0,088 -0,008 0,132 -0,034 0,077 0,055 0,234 0,112 0,006
Past Returns -0,257 -0,123 0,369 -0,179 -0,095 -0,19 0,008 0,048 0,216 0,067 -0,007 0,113 -0,121 0,132 -0,02
Single Sort 0,162 0,044 -0,169 -0,17 -0,097 0,196 0,131 0,108 0,13 0,094 0,226 0,26 0,115 0,069 0,075
Double Sort 0,227 0,1 0,267 -0,161 -0,153 -0,032 0,299 0,166 0,229 -0,044 0,011 0,395 0,075 0,089 0,074
ARIMA(1,1,1) -0,212 0,12 0,093 -0,07 -0,026 -0,067 -0,153 -0,196 0,068 0,124 0,068 -0,24 0,212 -0,162 -0,026
ARIMA(2,1,1) -0,508 -0,115 0,046 -0,294 0,006 0,022 -0,073 0,018 -0,131 0,075 -0,017 -0,233 -0,132 -0,129 -0,058
Jensen’s Alpha

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 TOT
Aver. Market 0,036 -0,232 -0,283 0,035 -0,071 -0,148 -0,154 0,253 0,053 -0,267 0,125 0,213 0,452 0,003 -0,013
Past Returns -0,228 -0,062 0,285 -0,207 -0,495 -0,329 0,018 0,076 0,198 0,079 -0,014 0,142 -0,166 0,086 -0,026
Single Sort 0,114 0,001 -0,122 -0,16 -0,342 0,373 0,131 0,157 0,151 0,098 0,238 0,25 0,127 0,058 0,088
Double Sort 0,24 0,191 0,317 -0,296 -0,906 -0,055 0,6 0,481 0,349 -0,064 0,01 0,807 0,211 0,14 0,165
ARIMA(1,1,1) -0,168 0,058 0,063 -0,069 -0,314 -0,095 -0,153 -0,354 0,057 0,135 0,069 -0,24 0,288 -0,179 -0,032
ARIMA(2,1,1) -0,389 -0,129 0,062 -0,284 0,037 0,119 -0,084 0,001 -0,227 0,116 -0,02 -0,192 -0,13 -0,119 -0,078

Note: The table reports the Sharpe Ratio and the Jensen’s Alpha of the analyzed
strategies at five days forecast horizon. The benchmark used to calculate the
Jensen’s Alpha is the STOXX Europe 50 index.

analysis performs worse than the market. In other words, if Alpha is positive,
the portfolio outperforms the benchmark index (in this case the STOXX
Europe 50 is used as the reference RM variable), otherwise it is less profitable
than the market index.

Table 36 shows the Sharpe Ratios and Jensen’s Alphas computed for the
different portfolio strategies considered at a five days forecasting horizon.
We report both the annual measurements and the total Sharpe Ratio and
Jensen’s Alphas computed over the whole time period.

On the one hand, the best performing strategy in terms of risk-adjusted
returns turns out to be the top-bottom portfolio generated by the single sort-
ing method, followed by the double sorting top-bottom portfolio. Indeed, the
higher the portfolio’s Sharpe Ratio, the better the associated risk-adjusted-
performance is. However, the magnitude of the difference between the two
Sharpe Ratios is very low, meaning the two proposed strategies exhibit fairly
comparable risk-return profiles.
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On the other hand, Jensen’s Alpha indicates that the double sorting port-
folio strategy, on average, produces the best performance in terms of CAPM
extra returns, while the single sorting strategy comes second. These results
are also confirmed by Figure 40: indeed, even if the single sorting strategy
does not differ much from the double sorting portfolio in terms of perfor-
mance between 2004 and 2011, the P&L of the latter significantly exceeds
that of the former from the end of 2011 onwards. Moreover, notice that the
portfolio made up by sorting stocks according to their past returns shows a
negative Sharpe Ratio together with a negative Jensen’s Alpha, thus indi-
cating that the index performance is larger than the P&L of this strategy.

8.4 Sensitivity analysis of the portfolio strategies

In this Section, we present the sensitivity analysis related to our portfo-
lio strategies. We conduct three types of sensitivity analyses. Firstly, we
analyse the sensitivity of portfolio performances subject to changes in the
underlying model parameters. Secondly, we examine the sensitivity of our
results with respect to the forecast horizon choice. Thirdly, we study the
overall sensitivity of portfolio performances, that is the sensitivity to both
the underlying model parameters and the forecast horizon choices. In par-
ticular, we show the sensitivity analyses related to the STOXX Europe 50
index results, whereas we illustrate those linked to the Hang Seng index in
Appendix B.

8.4.1 Sensitivity to the underlying model parameters

In this Subsection, we test how a certain parametric configuration impacts
the portfolios’ final P&L. We let the percentiles considered for creating the
top-bottom portfolio vary from 91 − 9 to 65 − 35. Indeed, the previous
results were obtained only considering top-bottom portfolios computed with
the 65th and 35th percentiles respectively, as a benchmark for the European
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market.
In Figure 41 we report the sensitivity test generating different top-bottom

portfolios for the past return, ARIMA(1,1,1), ARIMA(2,1,1), single and dou-
ble sort cases related to the STOXX Europe 50. As a reference measure, we
use the final P&L recorded at the end of the sample.

Figure 41: Sensitivity analysis with five days forecasting horizon for the
European case

Note: The figure shows the results of the sensitivity analysis on the main portfolio
strategies created with five days forecasting horizon. The figure associates the final
P&L at 01-18 with various parameter configurations. Namely, the x-axis identifies
the top-bottom percentiles thresholds while the y-axis reports the cumulative per-
formance of top-bottom portfolios for the cases of single (yellow line) and double
(violet) sorting along with the past returns top-bottom portfolio (green line), the
ARIMA(1,1,1) portfolio (light blue line) and the ARIMA(2,1,1) portfolio (blue
line).

From Figure 41 one can notice that, for a relatively wide range of per-
centiles, that is above 87 − 13, the past return portfolio performs slightly
better than the double sorting one. This is due to the poor number of stocks
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selected with such percentile thresholds, which makes the portfolio highly
sensitive to small changes in single stock prices. However, considering the
same ranges, our single sorting portfolio performance dominates those of the
other competing alternatives, confirming our previous findings.

When considering all parameter configurations lower than the 87 − 13
percentiles, the performance of the double sort top-bottom portfolio and the
one of the single sort turn out to be the highest, with a remarkable out-
performance with respect to the backward-looking top-bottom portfolio and
ARIMA portfolios. In particular, the double sorting method generates the
highest P&L around the 83−17 percentiles, followed by an as well outstand-
ing performance when the range tightens to 70−30 and below. Furthermore,
neither the single nor the double sorting portfolio generate a negative perfor-
mance, differently from the past return and ARIMA top-bottom portfolios.

8.4.2 Sensitivity to the forecast horizon choice

This Subsection analyses the sensitivity of portfolio performances with re-
spect to changes in the forecast horizon. In particular, we perform the anal-
yses starting from the Results Section considering a longer forecast horizon,
namely 10 days.

Figure 42 shows the price predictions for l’OREAL, in the case of ten
days forecasting horizon. Despite the shape of the price dynamics and the
long run trend are still correctly predicted, a fair comparison with Figure 39
shows that the actual and forecasted prices diverge more consistently when
considering a longer forecasting horizon, both in the case of our predictive
model and ARIMA ones. Indeed, the wider predictive horizon influences the
model performance, due to its updates with a delay of ten days with respect
to the actual price. This fact causes a deviation between our predicted price
(red line) along with ARIMA predictions (light blue and blue lines) and the
actual stock price path (gray line).
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Figure 42: The price pattern prediction at ten days forecasting horizon for
the stock component 405780 (l’OREAL) of the STOXX Europe 50

Note: The price forecast obtained by our methodology is represented by the red
line; the price forecasts given by the ARIMA(1,1,1) and ARIMA(2,1,1) models are
represented by the light blue and blue lines, respectively; the gray line identifies
the actual stock price during the analyzed period. The y-axis refers to the stock
price. The x-axis, instead, indicates the timeline. At the top left to the graph an
enlargement describes the price pattern during the global financial crisis period,
from May 2008 to August 2009.

Subsequently, top-bottom portfolio performances based on a forecasting
horizon of ten days are derived. Between 2004 and the end of 2007, the
equally weighted portfolio yields the highest P&L compared to the other
strategies. However, during the global financial crisis, the double sort strat-
egy turns out to be the most profitable choice, beating all the other alter-
native portfolio allocation strategies. Between 2010 and 2011, the double
sorting portfolio outperforms the other strategies by lateralizing around the
level of 100%. The ARIMA portfolios, instead, exhibit the lowest P&L at the
end of the sample, with the single sorting method performing slightly better
than them. Finally, during the global financial crisis and the post crisis, the
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market index shows the worst cumulative daily returns in concurrence with
the ARIMA portfolios.

Figure 43: Portfolio performance with ten days forecasting horizon

Note: The figure shows the profits and losses (P&L) of different portfolio strategies.
The gray line represents the performance of the STOXX Europe 50 index, indicated
as Mkt. Index. The black line represents the performance of the equally weighted
portfolio obtained by selecting all the survival components of the STOXX Europe
50 (labelled as Aver). The green line shows the P&L of the past return top-
bottom portfolio (Past Ret). The yellow line shows the performance of the CCP
obtained with the single sort strategy computed on the forecasted prices (Single);
the violet line identifies double sort strategy performance (Double); the light blue
line represents the ARIMA(1,1,1) strategy performance (Arima(1,1,1)); the blue
line that of ARIMA(2,1,1) (Arima(2,1,1)). The y-axis represents in percentage the
P&L while the x-axis the timeline.

Overall, a comparison between Figure 42 and Figure 40 shows that the
performance of the single sort top-bottom portfolio at five days horizon di-
verges significantly from the P&L obtained with a wider forecasting win-
dow. On the contrary, the double sort top-bottom portfolio still features the
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best performance even when the forecasting window is longer. In particular,
from mid 2007 onwards, the double sort portfolio outperforms all the other
strategies, yielding to outstanding net profits relative to the other competing
alternatives.
Results are also confirmed by the Sharpe Ratios and Jensen’s alpha statis-
tics reported in Table 37. The double sorting strategy generates the highest
Sharpe Ratio, thus indicating that the portfolio creates the best risk-return
performance with respect to the other strategies. This is also confirmed by
the Jensen’s alpha. The worst performing portfolio, instead, turns out to
be the single sorting one. We believe this is mainly due to the fact that,
differently from the double sorting portfolio, the single sorting one takes into
account exclusively predicted values to form the top-bottom portfolio com-
position. Thus, being the forecast horizon longer and therefore less precise,
the information coming from past returns becomes more valuable, leading to
the far way better performance of the double sorting method, which is both
forward and backward-looking. The latter finding deepens the conclusions
drawn in Section 8.3.

8.4.3 Overall sensitivity

In this Subsection, we examine how both variations in the underlying model
parameters and forecast horizon choice affect portfolio performances. In par-
ticular, we investigate how the portfolio performances react to changes in
the underlying model parameters and predictive horizon by letting the per-
centiles considered for creating the top-bottom portfolio vary from 91− 9 to
65− 35 and - at the same time - by considering an ahead forecast period of
ten days.

Figure 44 shows the sensitivity analysis on single and double sorting meth-
ods together with those based on past returns and ARIMA models. The
figure displays some regularities in the parameter grid. In fact for extreme
percentiles of the signal distribution the past return portfolio outperforms
both the single and the double sort strategies; instead, when the top-bottom
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Table 37: Sharpe Ratio and Jensen’s Alphas at ten days forecasting window

Sharpe Ratio
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 TOT

Market Index 0,135 0,405 0,174 0,032 -0,42 0,152 -0,054 -0,156 0,18 0,19 -0,022 -0,003 0,097 0,147 0,018
Aver. Market 0,126 0,228 0,034 -0,003 -0,265 0,157 -0,068 -0,198 0,245 0,064 0,044 0,019 0,196 0,151 0,006
Past Returns 0,142 -0,161 0,129 -0,009 0,079 0,151 0,206 0,045 0,032 -0,085 -0,294 0,331 -0,385 0,061 0,031
Single Sort -0,435 0,144 0,245 0,047 0,003 -0,021 0 0,014 -0,45 0,225 -0,213 0,206 -0,196 0,06 -0,011
Double Sort -0,297 0,339 0,291 0,283 0,354 0,192 0,195 0,055 -0,228 0,089 -0,351 0,154 -0,119 0,084 0,098
ARIMA(1,1,1) -0,275 -0,044 -0,125 -0,103 -0,11 -0,1 -0,392 -0,299 -0,092 0,306 -0,206 -0,26 0,248 -0,266 -0,106
ARIMA(2,1,1) -0,175 -0,25 -0,185 -0,176 -0,18 -0,435 0,011 -0,046 -0,139 -0,241 0,006 -0,034 0,046 -0,056 -0,143
Jensen’s Alpha

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 TOT
Aver. Market -0,011 -0,273 -0,366 -0,084 0,861 0,07 -0,076 -0,277 0,264 -0,268 0,159 0,099 0,401 0,022 -0,044
Past Returns 0,141 -0,113 0,218 -0,025 0,196 0,517 0,568 0,213 0,197 -0,072 -0,426 0,438 -0,596 0,048 0,073
Single Sort -0,39 0,264 0,292 0,071 0,193 -0,157 -0,052 0,023 -0,546 0,21 -0,294 0,353 -0,244 0,108 -0,019
Double Sort -0,577 0,551 0,829 0,993 0,963 0,929 0,808 0,267 -0,49 0,188 -0,905 0,385 -0,246 0,099 0,323
ARIMA(1,1,1) -0,313 0,035 -0,182 -0,182 -0,821 -0,499 -0,476 -0,708 -0,159 0,327 -0,326 -0,383 0,535 -0,287 -0,213
ARIMA(2,1,1) -0,234 -0,274 -0,297 -0,194 -1,238 -2,454 0,032 -0,11 -0,291 -0,398 0,011 -0,041 0,105 -0,043 -0,331

Note: Table reports the Sharpe Ratio and the Jensen’s Alpha of the analyzed
strategies at ten days forecast window: the single sorting, the double sorting, the
average, the past return and the reference market index which is the STOXX
Europe 50. The benchmark used to calculate alphas is the STOXX Europe 50
index.
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portfolios become wider, the double sort method is the best performing one.
This fact confirms that by choosing stocks, which have both an increasing
past trend as well as a predicted positive trend (top assets), and stocks
which have both decreasing past and forecasted price trends (bottom as-
sets), ensures to catch the most valuable market trend. Moreover, this is in
line with two previous considerations: on the one hand, the low number of
stocks selected with wide percentile thresholds makes the portfolio perfor-
mances highly sensitive to small changes in single stock prices; on the other
hand, a longer predictive horizon makes information coming from past re-
turns become more essential to predict market directions, leading to a better
performance of the double sorting method under these conditions. Overall,
it is clear that by choosing the right combination of model parameters to
perform top-bottom stock selection and forecast horizon, our models tend to
outperform the competitive alternatives considered.

8.5 Conclusion

Stock market prediction is a task of utmost importance for investors and
decision makers, in particular when dealing with portfolio allocation strate-
gies. Nevertheless, difficulties naturally arise due to the non-stationary and
non-linear behaviour of the time series under analysis, which make most of
traditional allocation strategies fail in practice. Together with this, the usage
of merely backward-looking techniques often yields to inefficient asset alloca-
tion, hence paving the way for the study and application of forward-looking
ones.

To cope with this, we propose a forward-looking methodology built on
chaos theory which is able to capture non-linearities in financial time se-
ries, thus making reliable predictions. Throughout Lyapunov exponents, we
are able to make reasonably accurate forecasts in a forward-looking perspec-
tive and use such predictions to construct the Constant Chaoticity Portfolio,
which is built upon signals computed by price forecasts (single sorting) and,
eventually, historical prices (double sorting).
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Figure 44: Sensitivity analysis with ten days forecasting horizon

Note: The figure shows the results of the sensitivity analysis on the main portfolio
strategies created with five days forecasting horizon. The figure associates the final
P&L at 08-17 with various parameter configurations. Namely, the x-axis identifies
the top-bottom percentiles thresholds while the y-axis reports the cumulative per-
formance of top-bottom portfolios for the cases of single (yellow line) and double
(violet) sorting along with the past returns top-bottom portfolio (green line), the
ARIMA(1,1,1) portfolio (light blue line) and the ARIMA(2,1,1) portfolio (blue
line).
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Our methodology is tested on the survival components of the STOXX
Europe 50 and the Hang Seng indexes. As far as the European case, results
show that both single and double sorting CCP portfolios achieve successful
performances, being their net profits at the end of the period as much as
approximately 3 and 5.5 times higher than those of the corresponding mar-
ket index, respectively, and overwhelming those of the considered competing
alternatives. Besides net profits, Sharpe Ratios suggest that these portfolios
exhibit better risk-return profiles than all competing alternatives. As far as
the Asian case, the single sorting method outperforms the others in terms of
portfolio returns. Also in this case, Sharpe Ratios further confirm that the
CCP is able to generate a higher return on a risk-adjusted basis.

A sensitivity analysis on the underlying model parameters as well as on
the forecast horizon choice confirm that results are robust with respect to
different model configurations. As a matter of fact, by varying the percentile
intervals for creating top-bottom portfolios in a sound way and by increasing
the forecast horizon to make predictions, we show that CCP portfolios still
over-perform the considered alternative allocation strategies, both in terms
of net profits and risk-adjusted returns.
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9 Concluding remarks

The motivation of this thesis is grounded on the growing attention of econo-
metric methods for systemic risk analysis and investment management. The
rapid development of econometric spillover and network models has paved
the way to a strand of new methods to monitor the systemic risk in the finan-
cial system and enhance investment management effectiveness. The global
financial system can be seen as a network of interconnected institutions,
where links are of utmost importance to study the spread of contagion. The
thesis contributes to the literature on econometric interconnectedness and
investment management by developing new techniques capable to foster our
understanding of the economic and financial systems. Financial applications
are not tied exclusively to traditional financial markets, but also to the fintech
sphere, particularly to the cryptocurrency market.

In chapter 2 we employed an extension of the Diebold and Yilmaz (2012)
methodology with a generalized VECM to effectively monitor systemic risk
and lead-lag behaviours across major cryptocurrency exchange platforms.
The methodology allows to study market exchange connectedness at pairwise
and system-wide levels, as well as both from a static and time-varying point
of view, accounting for the common stochastic trend driving the fundamental
Bitcoin price. We therefore contributed, from a methodological viewpoint,
to the econometric literature - particularly for what concerns price discovery
and connectedness of market exchanges - by the extension of the Diebold
and Yilmaz (2012) connectedness measure, which relies on VECM rather
than VAR models. The model allowed to shed further light on price discov-
ery in Bitcoin markets, extending the conclusions in Pagnottoni and Dimpfl
(2019) and Giudici and Abu-Hashish (2019) and, in particular, characterizing
which are the leaders and followers in price formation among the considered
exchanges, along time.

In chapter 3 we proposed an extension of the previous application to
the intra-day setting. We studied directional connectedness and shed light
on which are leading Bitcoin exchanges in terms of shock transmission and,

194



rather, which are those that follow others in the price formation process. This
contributes to the stream of econometric literature studying interconnected-
ness and price discovery on the cryptocurrency market. Results showed that
the frequency at which connectedness is measured highly influences the em-
pirical outcomes, and that the leadership composition evolves over time, as
the extant literature agrees - see Brandvold et al. (2015), Pagnottoni and
Dimpfl (2019) and Giudici and Pagnottoni (2020).

In chapter 4 we proposed a methodology to construct basket based stable-
coins whose value is relatively stable over time. We discussed the main policy
implications of adopting a basket based stablecoin whose weights are derived
by minimizing variability rather than a single digital currency, potentially
more sensitive to market factors.

In chapter 5 we examined the lead-lag relationship between the sovereign
CDS and bond market of a set of representative European Union countries
by means of effective transfer entropy. The effective transfer entropy al-
lowed, differently from previous studies in the literature, to examine the
post sovereign crisis period, overcoming the need for the two markets to be
cointegrated in order to conduct the analysis.

In chapter 6 we proposed a feasible pricing methodology to price cryp-
tocurrency options. We have presented a two stage approach: the first stage
consists of option pricing through parametric approaches such as tree mod-
els, finite difference method and Monte Carlo simulation; in the second stage,
artificial neural networks are employed in order to combine the parametric
option pricing approaches and capture the residual errors by learning schemes
in the current status of the option market. Their performance is then com-
pared to the conventional option pricing techniques obtained in the first
stage. Results highlighted to the predominance of the neural network mod-
els with respect to the conventional methods in pricing Bitcoin options and,
therefore, in capturing their real price dynamics and the non-linear dynamics
typical of the option market time series.

In chapter 7 we extended the traditional Markowitz (1952) portfolio allo-
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cation strategy by means of RMT and MST and by taking network centrality
measures of the assets into account. By means of this technique we are able
to set a parameter of systemic risk aversion that investors can tune to better
match their investment strategies with their own risk profile. We have applied
our methodology to the cryptocurrency domain, and our empirical findings
confirm the effectiveness of our model in achieving better cumulative portfo-
lio performances, while keeping a relatively low level of risk. In particular, we
showed that our proposed model rapidly adapts to market conditions, and is
able to yield satisfactory performances during bull market periods. During
bear market periods - instead - our model employing RMT and MST realizes
the best performances, protecting investors from relatively high losses which
are instead generated by many other asset allocation strategies tested.

In chapter 8 we proposed a methodology based on chaos and dynamical
systems theory for non-linear time series forecasting and investment strategy
development. We constructed Constant Chaoticity Portfolios and evaluate
their performances relative to several competing alternatives on the survival
components of the STOXX Europe 50 index and the Hang Seng index, con-
cluding they can enhance traditional portfolio allocation methodologies.

Overall, in this thesis we have analyzed many different data to solve
cutting edge problems coming from the systemic risk and investment man-
agement spheres, both in the context of traditional financial markets and
Fintech. This has been accomplished throughout the development and usage
of a variety of techniques related to different mainstream domains, such as
statistics, financial econometrics, financial mathematics and econophysics.
The lessons learned from the current thesis are manifold. Firstly, each of
the technique employed has a particular context in which it is suitable to
be applied, and some may incur in pitfalls when considering specific situ-
ations (see, for instance, non-linearity). Secondly, what clearly emerges is
that cryptocurrency markets widely differ from traditional financial markets
- such as the stock and credit markets - from a variety of viewpoints, espe-
cially when it comes to volatility dynamics. This suggests future research to
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bear in mind relevant market-specific features when dealing with quantita-
tive analyses on interconnectedness and investment management related to
traditional and nascent financial markets, also tailoring methodologies to the
specific phenomenon under examination.

The methodological tools presented in this thesis have a variety of real
world applications, especially in the empirical economics and finance do-
mains. The empirical applications here developed do only partially cover the
immense range of analyses which can be done and questions to be answered.
Future research30 might extend and improve the methodological frameworks
presented so far, as well as provide further interesting domains of application
for the methodologies proposed, given their highly interdisciplinary nature.

30For more detailed discussions about future research, please refer to the concluding
section of each chapter.
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[179] Vỳrost, T., Lyócsa, Š., and Baumöhl, E. (2018). Network-based asset allo-
cation strategies. The North American Journal of Economics and Finance.

[180] Wheelwright, S., Makridakis, S., and Hyndman, R. J. (1998). Forecasting:
methods and applications. John Wiley & Sons.

[181] White, L. H. (2015). The market for cryptocurrencies. Cato Journal, 35(2).

[182] Yao, J., Li, Y., and Tan, C. L. (2000). Option price forecasting using neural
networks. Omega, 28:455–466.

[183] Yi, S., Xu, Z., and Wang, G.-J. (2018). Volatility connectedness in the
cryptocurrency market: Is bitcoin a dominant cryptocurrency? Interna-
tional Review of Financial Analysis, 60:98–114.

[184] Zhan, H. C. J., Rea, W., and Rea, A. (2015). An application of correlation
clustering to portfolio diversification. arXiv preprint arXiv:1511.07945.

[185] Zhu, H. (2006). An empirical comparison of credit spreads between the
bond market and the credit default swap market. Journal of Financial
Services Research, 29(3):211–235.

[186] Zięba, D., Kokoszczyński, R., and Śledziewska, K. (2019). Shock transmis-
sion in the cryptocurrency market. is bitcoin the most influential? Inter-
national Review of Financial Analysis, 64:102–125.

215



A Appendix

A.1 Technical Details of Chapter 5

In this Appendix, we assess the robustness of our empirical results with
respect to alternative modelling strategies.

We let the number of shuffles vary from 100 to 300. The effective transfer
entropy estimates, reported in Table 38, seem just slightly influenced by
the change of number of shuffles, and bi-directional information flow is still
confirmed across all the sovereigns. Hence, results do not change from a
qualitative viewpoint.

We then let the number of bootstrap replications vary from 300 to 600.
Results are reported in Table 38. Also in this case, effective transfer entropy
estimates are statistically significant for both directions, and the magnitude
of information transmitted from the bond market still exceeds that of the
CDS market.

We also investigate the information flow in a tighter sub-sample related
to the sovereign crisis. Results for the estimated information flows from
January 2010 to December 2013 are shown in Table 39. Except for Spain31,
the significance of our analysis strengthen the conclusions on the leadership
of the bond market for core countries.

A.2 Technical Details of Chapter 7

To further investigate the robustness of our results, we have performed a
twofold sensitivity analysis. On the one hand, we have shifted the starting
point of investing 4, 8, and 12 weeks into the future and computed cumula-
tive portfolio returns again. In this analysis we have maintained our rolling
15 weeks window for correlation estimation. Outcomes are represented in
Figure 45, panels a, b and c, respectively. On the other hand, we have per-
formed the analysis again, but using a 19-week estimation window, meaning

31The result is in line with the finding of Agiakloglou and Deligiannakis (2020).
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Table 38: Robustness checks for the effective transfer entropy estimates sig-
nificance

Country Period Number of shuffles = 300 Bootstrap replications = 600

ETECDS→BS ETEBS→CDS ETECDS→BS ETEBS→CDS

Italy Full sample 0.00934∗∗∗ 0.00981∗∗∗ 0.00957∗∗∗ 0.00964∗∗∗

(0.00139) (0.00141) (0.00155) (0.00137)

Belgium Full sample 0.02202∗∗∗ 0.02838∗∗∗ 0.02211∗∗∗ 0.02829∗∗∗

(0.00141) (0.00149) (0.00157) (0.00136)

Austria Full sample 0.01293∗∗∗ 0.02017∗∗∗ 0.01273∗∗∗ 0.02019∗∗∗

(0.00136) (0.00142) (0.00147) (0.00153)

France Full sample 0.02384∗∗∗ 0.03089∗∗∗ 0.02353∗∗∗ 0.03086∗∗∗

(0.00140) (0.00146) (0.00152) (0.00148)

Netherlands Full sample 0.00791∗∗∗ 0.00964∗∗∗ 0.00779∗∗∗ 0.00992∗∗∗

(0.00148) (0.00151) (0.00135) (0.00161)

Ireland Full sample 0.02195∗∗∗ 0.03364∗∗∗ 0.02189∗∗∗ 0.03368∗∗∗

(0.00153) (0.00151) (0.00151) (0.00148)

Portugal Full sample 0.02422∗∗∗ 0.02630∗∗∗ 0.02413∗∗∗ 0.02608∗∗∗

(0.00143) (0.00154) (0.00149) (0.00152)

Spain Full sample 0.00610∗∗∗ 0.00913∗∗∗ 0.00584∗∗∗ 0.00927∗∗∗

(0.00147) (0.00140) (0.00143) (0.00149)

Note: The table reports the results of the effective transfer entropy estimates. The
third and the fourth columns show the estimates of the effective transfer entropy
from the CDS to the bond market (ETECDS→BS) and from the bond to the CDS
market (ETEBS→CDS), setting the number of shuffles equal to 300. The fifth and
the sixth columns show the estimates of the effective transfer entropy from the
CDS to the bond market (ETECDS→BS) and from the bond to the CDS market
(ETEBS→CDS), setting the number bootstrap replications equal to 600. Standard
errors are given in parentheses. ∗∗∗, ∗∗, ∗ indicate rejection of the null hypothesis
of no information flows at 1%, 5%, and 10% significance level, respectively.
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Table 39: Robustness checks for the effective transfer entropy estimates dur-
ing the sovereign debt crisis

Country Period ETECDS→BS Std. Err. ETEBS→CDS Std. Err. NIF
Italy 2010 - 2013 0.00593∗∗ 0.00325 0.02017∗∗∗ 0.00327 -0.01424

Belgium 2010 - 2013 0.00083 0.00316 0.02271∗∗∗ 0.00304 -0.02188

Austria 2010 - 2013 0.00106 0.00272 0.00984∗∗∗ 0.00284 -0.00878

France 2010 - 2013 0.00584∗∗ 0.00298 0.01828∗∗∗ 0.00299 -0.01244

Netherlands 2010 - 2013 0.00557∗ 0.00319 0.00616∗∗ 0.00320 -0.00059

Ireland 2010 - 2018 0.00162 0.00334 0.01568∗∗∗ 0.00296 -0.01406

Portugal 2010 - 2013 0.01026∗∗∗ 0.00294 0.01489∗∗∗ 0.00319 -0.00463

Spain 2010 - 2013 0.00935∗∗ 0.00318 0.00080 0.00307 0.00856

Note: The table reports the results of the effective transfer entropy estimates. The
third and the fourth columns show the estimates of the effective transfer entropy
from the CDS to the bond market (ETECDS→BS) and the standard error (Std.
Err). The fifth and the sixth columns show the estimates of the effective trans-
fer entropy from the bond to the CDS market (ETEBS→CDS) and the standard
error (Std. Err.). The last column reports the net information flow (NIF), the
difference between ETECDS→BS and ETEBS→CDS . ∗∗∗, ∗∗, ∗ indicate rejection of
the null hypothesis of no information flows at 1%, 5%, and 10% significance level,
respectively.
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from rolling 4 months to rolling 5 months, changing both the starting point
of investing and the window for correlation estimation. Results are shown
in Figure 46. In both cases, outcomes suggest that our results are robust
even with shifting starting points and different rolling estimation windows.
Indeed, performances show that the Network Markowitz model outperforms
the competitive strategies even with varying the starting point of the anal-
ysis and the estimation window choice. Moreover, the strategy results with
profits rather than losses in some cases when shifting the investment starting
point.

A.3 Technical Details of Chapter 8

A.3.1 Hang Seng Index Results

In this Appendix we present the results related to the Hang Seng index. We
firstly introduce the stock price forecast results. After that, we examine the
portfolio performances both in terms of net profits and adjusted-risk returns.

Figure 47 shows the forecasts and the price pattern of the CK Hutchison
Holdings Limited (ID 0001.HK) as a reference example for the Hang Seng
index. As for the STOXX Europe 50, the price forecasts are able to follow
quite closely the actual path of the CK Hutchison Holdings Limited stock
price. This evidence is also clearly reported in the inset of the figure where
an oscillating phase is correctly recognized, in particular way by the proposed
forecasting method. This is in line with what we observe for the STOXX 50
Europe stocks.

Figure 48 shows the portfolio performances related to the Asian market.
As for the European case, the single and the double sorting portfolios are
compared against the market index performance, the equally weighted port-
folio and the ARIMA-based portfolios. Notice that, differently from the Eu-
ropean case, P&L include transaction costs of 50 basis-points per each stock
composing a certain portfolio at each rebalancing. Moreover, top-bottom
portfolios are computed with the 85th and 15th percentiles as a benchmark
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Table 40: Sharpe Ratio and Jensen’s Alpha of different portfolio strategies

Sharpe Ratio
2015 2016 2017 2018 2019 2020 TOT

Market Index -0,117 0,073 0,376 -0,129 0,077 -0,319 0,01
Aver. Market -0,062 0,088 0,339 -0,164 0,248 -0,411 0,036
Past Returns -0,089 -0,022 0,014 -0,249 -0,123 -0,509 -0,106
Single Sort 0,024 0,013 0,066 0,205 0,055 0,028 0,078
Double Sort 0,181 -0,139 0,189 -0,086 0,062 -0,648 0,034
ARIMA(1,1,1) -0,004 0,051 0,247 0,05 -0,106 0,335 0,046
ARIMA(2,1,1) -0,14 0,052 0,02 -0,07 -0,258 0,721 -0,056
Jensen’s Alpha

2015 2016 2017 2018 2019 2020 TOT
Aver. Market 0,133 0,043 0,037 -0,129 0,355 -0,226 0,062
Past Returns -0,172 -0,065 -0,025 -0,511 -0,162 -0,449 -0,188
Single Sort 0,049 0,031 0,013 0,442 0,048 -0,07 0,123
Double Sort 0,85 -0,416 0,389 -0,199 0,216 -2,666 0,117
ARIMA(1,1,1) 0,069 0,077 0,508 0,093 -0,148 0,456 0,085
ARIMA(2,1,1) -0,325 0,063 0,073 -0,217 -0,369 0,986 -0,099

Table reports the Sharpe Ratio and the Jensen’s Alpha of the analyzed strategies
at five days forecast horizon. The benchmark used to calculate the Jensen’s Alpha
is the Hang Seng index.
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Figure 45: Cumulative returns for selected portfolio strategies with shifting
starting points.

Note: The plot illustrates the profit and losses of a portfolio with initial value
of 100 USD obtained by the CRIX benchmark index (Benchmark (CRIX)), the
optimization using the Markowitz approach with the variance-covariance matrix
filtered by Glasso (Glasso Markowitz), the naive portfolio (Equally Weighted),
our optimization using RMT and MST applied to the variance-covariance matrix
(Network Markowitz) and the standard Markowitz portfolio (Classical Markowitz).
Starting points are shifted by 4 weeks (panel a), 8 weeks (panel b) and 12 weeks
(panel c) for sensitivity purposes.
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Figure 46: Cumulative returns for selected portfolio strategies with different
rolling estimation windows

Note: The plot reports the profit and losses of a portfolio with initial value of 100
USD obtained by the CRIX benchmark index (Benchmark (CRIX)), the optimiza-
tion using the Markowitz approach with the variance-covariance matrix filtered by
Glasso (Glasso Markowitz), the naive portfolio (Equally Weighted), our optimiza-
tion using RMT and MST applied to the variance-covariance matrix (Network
Markowitz) and the standard Markowitz portfolio (Classical Markowitz). We use
a rolling estimation window of 19 weeks for sensitivity purposes.

for the Asian case, rather than the 65th and 35th percentiles considered for
the European one. This variation is due to the different number of com-
ponents of each index, meaning that the Hang Seng index counts a higher
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Figure 47: The price pattern prediction at five days forecasting horizon for
the stock component ID 0001.HK (CK Hutchison Holdings Limited) of the
Hang Seng index

Note: The price forecast obtained by our methodology is represented by the red
line; the price forecasts given by the ARIMA(1,1,1) and ARIMA(2,1,1) models are
represented by the light blue and blue lines, respectively; the gray line identifies
the actual stock price during the analyzed period. The y-axis refers to the stock
price. The x-axis, instead, indicates the timeline. At the bottom left of the graph
an enlargement describes the price pattern during the period ranging from March
2016 to January 2017.
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Figure 48: Portfolio performance with five days forecasting horizon, for the Asian
case

Note: The figure shows the profits and losses (P&L) of different portfolio strate-
gies. The gray line represents the performance of the Hang Seng index, indicated
as Mkt. Index. The black line represents the performance of the equally weighted
portfolio obtained by selecting all the survival components of the Hang Seng (la-
belled as Aver). The green line shows the P&L of the past return top-bottom
portfolio (Past Ret). The yellow line shows the performance of the CCP obtained
with the single sort strategy computed on the forecasted prices (Single); the violet
line identifies double sort strategy performance (Double); the light blue line repre-
sents the ARIMA(1,1,1) strategy performance (Arima(1,1,1)); the blue line that of
ARIMA(2,1,1) (Arima(2,1,1)). The y-axis represents in percentage the P&L while
the x-axis the timeline. Top-bottom portfolios are created by considering the 85th
and 15th percentiles as reference thresholds of the signal distribution.
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number of survival components than the STOXX Europe 50.
Results highlight that the single sort approach performs better than all

the other strategies, while the double sort portfolio strategy comes second.
The lower performance of the latter is mainly due to the negative P&L of its
backward-looking component as also confirmed by the poorest performance
of the portfolio based on past returns.

Table 40 displays the yearly Sharpe Ratios and Jensen’s Alphas for the
Hong-Kong stock market. As for the European case, the single sorting port-
folio has the highest risk-return performance considering the whole timespan.
Moreover, this portfolio strategy also features positive Sharpe Ratio values
for each year and in particular it is the only strategy that does not report
a negative value in 2020 since the CCP is able to capture the market down-
turn associated with the Covid-19 outbreak. Finally, also the Jensen’s alpha
confirms the previous findings being the single and the double sort portfolios
the best performers.

A.3.2 Hang Seng Index Sensitivity

In this Appendix we perform a sensitivity analysis of the results concerning
the Hang Seng index. We proceed as in the main text, and we firstly examine
the sensitivity of our results subject to changes in the underlying model
parameters. After that, we examine the sensitivity of portfolio performances
to the forecast horizon choice. Finally, we analyse the sensitivity to both
underlying model parameter and forecast horizon choices.

Figure 49 illustrates the sensitivity analysis with respect to the model
parameters. In particular, also in this case, we let the percentiles used for
creating the top-bottom portfolio vary from 91 − 9 to 65 − 35 and plot the
corresponding portfolio net profits at the end of the period. Results are
similar to the European case. Indeed, the single sorting portfolio outperforms
the double sorting strategy for the highest percentiles intervals while the
outcome reverts for the lowest percentiles of the grid. However, for choices of
the percentile ranges of 84-16 and 71-29 the ARIMA(1,1,1) performs better
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Figure 49: Sensitivity analysis with five days forecasting horizon for the Asian
case

Note: The figure shows the results of the sensitivity analysis on the main portfolio
strategies created with five days forecasting horizon. The figure associates the final
P&L at 03-20 with various parameter configurations. Namely, the x-axis identifies
the top-bottom percentiles thresholds while the y-axis reports the cumulative per-
formance of top-bottom portfolios for the cases of single (yellow line) and double
(violet) sorting along with the past returns top-bottom portfolio (green line), the
ARIMA(1,1,1) portfolio (light blue line) and the ARIMA(2,1,1) portfolio (blue
line).

than the single and double sorting methods. This suggests that our proposed
CCPs in this case are best performing for extreme values of the percentile
choices. Furthermore, we claim that a sound choice of the percentiles used to
choose the top-bottom stocks to be included in the portfolio yields to CCPs
able to beat the competing alternatives in terms of performances.

Figure 50 shows the price dynamics and forecasts of the CK Hutchison
Holdings Limited (ID 0001.HK) as a reference example for the Hang Seng
index, employing a forecast horizon of 10 days for sensitivity purposes. Re-
sults show that the predictive models are still able to capture the actual price
dynamics, despite the presence of larger variations with respect to the real
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Figure 50: Price pattern prediction at ten days forecasting horizon for the
stock component ID 0001.HK (CK Hutchison Holdings Limited) of the Hang
Seng index

Note: The price forecast obtained by our methodology is represented by the red
line; the price forecasts given by the ARIMA(1,1,1) and ARIMA(2,1,1) models are
represented by the light blue and blue lines, respectively; the gray line identifies
the actual stock price during the analyzed period. The y-axis refers to the stock
price. The x-axis, instead, indicates the timeline.

price pattern. This is in line with what we observe for the European case,
and can be imputed to the longer forecast horizon which causes a delay in
the forecast updates.

Figure 51 shows the top-bottom portfolio performances based on a fore-
cast horizon of ten days. Before 2016, there is no clear best performing
portfolio, being the horse-race contested among the double sorting portfolio,
the past return, the average and the ARIMA(2,1,1) one. This is in line with
the considerations drawn from the European case, as the importance of past
values grows together with the forecasting horizon: this is the reason why
methods like the past returns, the double sorting and the ARIMA with longer
memory tend to outperform the alternative allocation strategies. However,
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from the beginning of 2017 onwards it is clear that the double sorting port-
folio outperforms all competing alternatives, followed by the single sorting
one, yielding to net profits which are as much as triple than those of the
second best alternative. This is, again, in line with what we observed for the
European case.

Figure 51: Portfolio performance with ten days forecasting horizon, for the
Asian case

Note: The figure shows the profits and losses (P&L) of different portfolio strate-
gies. The gray line represents the performance of the Hang Seng index, indicated
as Mkt. Index. The black line represents the performance of the equally weighted
portfolio obtained by selecting all the survival components of the Hang Seng (la-
belled as Aver). The green line shows the P&L of the past return top-bottom
portfolio (Past Ret). The yellow line shows the performance of the CCP obtained
with the single sort strategy computed on the forecasted prices (Single); the violet
line identifies double sort strategy performance (Double); the light blue line repre-
sents the ARIMA(1,1,1) strategy performance (Arima(1,1,1)); the blue line that of
ARIMA(2,1,1) (Arima(2,1,1)). The y-axis represents in percentage the P&L while
the x-axis the timeline. Top-bottom portfolios are created by considering the 85th
and 15th percentiles as reference thresholds of the signal distribution.
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Table 41 confirms the previous findings, being the overall Sharpe Ratios
and Jensen’s Alphas associated to the CCPs the highest ones, with the double
sorting being the best proposed method. This remarks that the two methods
outperform the others also in terms of risk-adjusted returns.

Table 41: Sharpe Ratio and Jensen’s Alpha of different portfolio strategies

Sharpe Ratio
2015 2016 2017 2018 2019 2020 TOT

Market Index -0,179 0,125 0,684 -0,202 0,133 -0,725 0,018
Aver. Market -0,083 0,181 0,468 -0,168 0,207 -0,971 0,061
Past Returns -0,056 0,052 0,384 -0,018 0,013 -0,249 0,052
Single Sort -0,388 0,149 0,259 0,242 0,305 0,52 0,103
Double Sort 0,028 0,421 0,192 -0,004 0,075 -0,305 0,137
ARIMA(1,1,1) -0,351 -0,124 -0,177 -0,15 0,025 2,558 -0,156
ARIMA(2,1,1) 0,299 0,003 -0,087 0,127 0,102 0,639 0,076
Jensen’s Alpha

2015 2016 2017 2018 2019 2020 TOT
Aver. Market 0,349 0,218 -0,218 0,081 0,245 -0,552 0,151
Past Returns -0,3 0,137 0,452 -0,072 0,131 -2,749 0,136
Single Sort -0,76 0,377 0,101 0,836 0,664 0,444 0,24
Double Sort 0,343 1,94 -1,29 -0,097 0,374 -1,524 0,687
ARIMA(1,1,1) -1,4 -0,215 -0,676 -0,219 -0,02 0,865 -0,47
ARIMA(2,1,1) 0,46 -0,007 -0,639 0,259 0,135 0,45 0,194

Note: Table reports the Sharpe Ratio and the Jensen’s Alpha of the analyzed
strategies at ten days forecast horizon. The benchmark used to calculate the
Jensen’s Alpha is the Hang Seng index.

Figure 52 shows the sensitivity analysis with respect to variations in both
model parameters and forecast horizons. In particular, we study how port-
folio performances change by letting contemporaneously the percentiles for
creating the top-bottom portfolio and the predictive horizon vary from 91−9
to 65− 35 and from five to ten days, respectively. These results clearly con-
firm that the double sorting method for creating portfolios outperforms all
the other methods and, in this case, for the whole timespan considered. The
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double sorting method performances are followed by the single sorting and
the ARIMA(2,1,1) portfolios and - in short stretches - by the past return
portfolio. The latter outcome is in line both with the previous findings and
considerations regarding the importance of the past when forecasting at a
longer horizon.

Figure 52: Sensitivity analysis with ten days forecasting horizon for the Asian
case

Note: The figure shows the results of the sensitivity analysis on the main portfolio
strategies created with five days forecasting horizon. The figure associates the final
P&L at 03-20 with various parameter configurations. Namely, the x-axis identifies
the top-bottom percentiles thresholds while the y-axis reports the cumulative per-
formance of top-bottom portfolios for the cases of single (yellow line) and double
(violet) sorting along with the past returns top-bottom portfolio (green line), the
ARIMA(1,1,1) portfolio (light blue line) and the ARIMA(2,1,1) portfolio (blue
line).
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