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Abstract

Given a Riemannian manifold X with Riemannian measure µX and positive weights {ω j }
N
j=1, we

tudy the conditions under which there exist points {x j }
N
j=1 ⊂ X so that a cubature formula of the form

∫
X

PdµX =

N∑
j=1

ω j P(x j ) (1)

olds for all polynomials P of order less than or equal to L . The problem is studied for diffusion
olynomials (linear combinations of eigenfunctions of the Laplace–Beltrami operator) in the context of
bstract Riemannian manifolds and for algebraic polynomials in the context of algebraic manifolds in Rn .
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1. Introduction

Intuitively speaking, a set of sampling points {x j }
N
j=1 and positive weights {ω j }

N
j=1 is a

cubature of strength L if all polynomials of degree L are exactly integrated by the weighted
sums over the sampling values (a more detailed definition will be given in Section 2). Cubature
formulas have been deeply studied from both theoretical and practical points of view. Their
associated literature is extensive, we refer for example to the books [23,25] and references
therein. Not many explicit examples of cubature formulas are known, for a compilation of
cubature formulas, one can check [7]. The most studied case is the one of the so called
L-designs, where all the weights are equal, see [2,8,17].

See also [15], where one can find examples of L-designs for several values of L and different
manifolds, as well as examples of cubature formulas with non-equal weights.

Here we study the existence of cubature formulas on manifolds from a non-constructive
point of view. We know that the existence of a cubature of strength L depends on a relation
between the dimension d of the manifold, the degree L of the polynomials and the number N of
points and weights. In particular, the existence of exact cubatures with precisely as many terms
as the dimension of the space of polynomials of degree up to L (this dimension is essentially
Ld ) is given by Tchakaloff’s theorem (see [22, Exercise 2.5.8, p. 85]). Unfortunately, this
theorem gives no information on the location of the nodes nor the magnitude of the positive
weights.

If weights are fixed a priori, then the existence of cubature points is more complicated.
Bondarenko, Radchenko and Viazovska showed in [2] that there is a constant Cd such that
for every N ≥ Cd Ld there exists an L-design in the d-dimensional sphere with exactly N
nodes. Later, Etayo, Marzo and Ortega-Cerdà generalized this result in [10] to the case of
a compact connected affine algebraic manifold. Gariboldi and Gigante proved the analogous
result on a compact connected oriented Riemannian manifold, where polynomials are replaced
by the so-called diffusion polynomials, that is finite linear combinations of eigenfunctions of
the Laplace–Beltrami operator, see [13]. For the sphere, each eigenfunction of the Laplace–
Beltrami operator is the restriction of a polynomial, so that both, [10] and [13] apply. In general
though, the eigenfunctions of the Laplace–Beltrami operator on an algebraic manifold are not
necessarily polynomials, see Section 2.3.

Actual constructions of L-designs are difficult for most manifolds. A starting point of
a construction recipe could be taking a partition of the manifold and then identifying one
node within each region of the partition. The weights correspond to the regions volume
and uniform partitions lead to equal weights. For non-homogeneous manifolds, one may be
faced with non-uniform partitions (with smaller regions where the curvature is greater), so
that the weights are fixed but not uniform. From an applied point of view, cubature points,
L-designs, and arranging points on some manifold in general also relate to the problem of
optimal distribution (locations) of sensors in some large sensor network. For a fixed number
of sensors, the latter may be solved by geometric ad-hoc constructions or by numerical
optimization. It has been recognized that L-designs of minimal cardinality N look well-
distributed and satisfy asymptotical equidistribution properties. The existence of asymptotically
optimal L-designs, hence, suggests the existence of good sensor configurations at least for
2
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large sensor numbers. Often, information from different devices from potentially varying
manufacturers need to be combined. Therefore, varying reception ranges or sensitivities of the
sensors are a common issue that require weighted designs. The sensors now lead to prefixed
weights and the points’ locations still need to be determined. The idea of assigning weights to
the sensors is not new. Recently, complex weighted network models have been applied to the
study of wireless sensor networks, where the edge weights, and vertex degrees and strength
are taken into consideration, see [26].

In this paper we therefore study the existence of cubature points for fixed weights that are
ot all equal, in the case of compact connected oriented Riemannian manifolds with diffusion
olynomials, and compact connected real algebraic manifolds with algebraic polynomials.
n order to do so, we prove the existence of weighted area partitions on manifolds and
ome Marcinkiewicz–Zygmund type inequalities for gradients of polynomials and diffusion
olynomials.

.1. Organization

We define cubature formulas on Riemannian and algebraic manifolds in Section 2. In
ection 3 we state the main result and in Section 4 we provide the proof based on an existence
esult from Brouwer degree theory. The remaining part of the manuscript is dedicated to verify
hat the assumptions of the Brouwer degree theorem are satisfied. In particular, in Section 5
e prove a result that may be of independent interest: the existence of a partition of any
iemannian manifold into parts with given prefixed areas. Several differential geometry tools
re used throughout the paper, we refer the reader to [9] for a detailed study on this topic.

. Cubature formulas on Riemannian and algebraic manifolds

.1. Cubature formulas on Riemannian manifolds

Let M be a d-dimensional connected compact orientable Riemannian manifold without
oundary, where the Riemannian metric is normalized so that it induces a probability measure
M, µM(M) = 1. Eigenfunctions of the Laplacian on M are the key ingredient to carry an
nalogue of Fourier series on manifolds. Let {ϕk}

∞

k=0 be an orthonormal basis of eigenfunctions
of the (positive) Laplace–Beltrami operator, with eigenvalues 0 = λ2

0 < λ2
1 ≤ λ2

2 ≤ · · · ,
∆ϕk = λ2

kϕk and let ΠL (M) = span{ϕk : λk ≤ L} be the space of diffusion polynomials of
bandwidth L ≥ 0.

Definition 1. For N points {x j }
N
j=1 ⊂ M and weights {ω j }

N
j=1 ⊂ R, we say that {(x j , ω j )}N

j=1
is a cubature of strength L if∫

M
P(x)dµM(x) =

N∑
j=1

ω j P(x j ) for all P ∈ ΠL (M). (2)

Since the constant function is contained in ΠL (M), (2) implies
∑N

j=1 ω j = 1. Moreover,
by orthogonality of the eigenfunctions ϕk∫

ϕk(x)dµM(x) = 0 for all k ≥ 1,

M

3
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hence {(x j , ω j )}N
j=1 is a cubature of strength L if and only if

∑N
j=1 ω j = 1 and

N∑
j=1

ω j P(x j ) = 0 for all P ∈ Π 0
L (M),

where Π 0
L (M) = span{ϕk : 0 < λk ≤ L}.

For each L ≥ 0, we denote by N (L) the minimal number of points in a cubature of strength
L .

Proposition 2. There exists a positive constant cM such that if {(x j , ω j )}
N (L)
j=1 is a cubature

of strength L, then N (L) ≥ cMLd for every L ≥ 0.

Proof. Let {(x j , ω j )}
N (L)
j=1 be a cubature of strength L and α > d. By [3, Theorem 2.12] there

exists a constant β > 0 such that for every function f in the Sobolev space W α,1(M) one has⏐⏐⏐⏐⏐⏐
∫
M

f (x)dµM(x) −

N (L)∑
j=1

ω j f (x j )

⏐⏐⏐⏐⏐⏐ ≤ βL−α
∥ f ∥Wα,1(M).

By [3, Theorem 2.16], there exists also a constant γ > 0 such that for every L there exists a
function fL ∈ W α,1(M) with⏐⏐⏐⏐⏐⏐

∫
M

fL (x)dµM(x) −

N (L)∑
j=1

ω j fL (x j )

⏐⏐⏐⏐⏐⏐ ≥ γ N (L)−α/d∥ fL∥Wα,1(M).

Therefore

γ N (L)−α/d∥ fL∥Wα,1(M) ≤

⏐⏐⏐⏐⏐⏐
∫
M

fL (x)dµM(x) −

N (L)∑
j=1

ω j fL (x j )

⏐⏐⏐⏐⏐⏐ ≤ βL−α
∥ fL∥Wα,1(M)

and this gives N (L) ≥

(
γ

β

)d/α

Ld .

The precise definition of the Sobolev spaces W α,1(M) can be found for example in
3, Definitions 2.2 and 2.3]. □

In fact, the condition proved in Proposition 2 can be extended to the more general setting
f quasi-metric measure spaces, and for the much larger class of approximate quadrature
easures, for which it suffices that identity (2) holds up to a small error. In particular, in

20, Theorem 4], the author proves that the support of an approximate quadrature measure of
rder L must contain at least cLd points. We emphasize that according to [20], the hypothesis
hat for every x ∈ M,

∑N (L)
j=1 |ω j |χB(x,1/L)(x j ) ≤ cL−d has to be required on the cubature

x j , ω j }, whereas in Proposition 2 no further hypotheses on the cubature are required (here
B(x, 1/L) is the geodesic ball centered at x and with radius 1/L). In the same paper a
ariational problem giving a construction of the points x j so as to achieve approximate
uadrature measures is presented.

In [13], the authors proved that if N ≥ CMLd with CM a fixed constant depending only on
, then there exists a set of points {x j }

N
j=1 such that {(x j , 1/N )}N

j=1 is a cubature of strength
L . What happens if weights are fixed, but not all equal? Existence of a cubature of strength L

ith the same cardinality in this case is not always guaranteed, as we show in Example 3.
4
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Example 3. This example elaborates upon the theory exposed in [3]. Let M be a d-
imensional manifold as described in the beginning of this section. Let the weights be given
y

ω1 = 1 −
1

N + 1
, ω j =

1
(N + 1)(N − 1)

, 2 ≤ j ≤ N .

ssume that {(x j , ω j )}N
j=1 is a cubature of strength L on M. Let f be a function such that f

s supported on a ball of radius cN−1/d around x1, f (x1) = 1,
∫
M f (x)dµM(x) = N−1 and

∥ f ∥W d+dε,1(M) ≤ cN
d+dε

d −1
= cN ε,

where ε is a small positive number and f is a function as in the proof of Theorem 2.16 in [3].
By [3, Theorem 2.12], we have⏐⏐⏐⏐⏐⏐

∫
M

f (x)dµM(x) −

N (L)∑
j=1

ω j f (x j )

⏐⏐⏐⏐⏐⏐ ≤ C L−(d+dε)
∥ f ∥W d+dε,1(M).

ince ⏐⏐⏐⏐⏐⏐
∫
M

f (x)dµM(x) −

N (L)∑
j=1

ω j f (x j )

⏐⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐ 1
N

−

(
1 −

1
N + 1

)
f (x1) + O

(
N

1
N 2

)⏐⏐⏐⏐ = 1 + O
(

1
N

)
and

L−(d+dε)
∥ f ∥W d+dε,1(M) ≤ L−(d+dε) N ε,

one has

N ≥ C L
d+dε
ε .

Therefore {(x j , ω j )}N
j=1 cannot be a cubature of strength L with the above choice of weights

under the only hypothesis N ≥ C Ld .

In fact, it has been recently proved, see [4], that the following estimate holds

1 ≥ CMLd
N∑

j=1

ω2
j

for all real weights {ω j }
N
j=1 such that

∑N
j=1 ω j = 1.

.2. Cubature formulas on algebraic manifolds

Let V ⊂ Rn be a smooth, connected and compact affine algebraic manifold of dimension d

V =
{

x ∈ Rn
: p1(x) = · · · = pr (x) = 0

}
,

where p1, . . . , pr ∈ R[X ] are polynomials with real coefficients and the normal space at x ∈ V
s of dimension n − d. V carries a Riemannian structure with measure µV inherited from the

Riemannian metric induced by the embedding of V in Rn . We normalize this measure so that
µ (V) = 1. Hence, the definitions and statements of the previous section do apply in principle
V

5
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a

(provided that V is orientable). Here, however, we replace the diffusion polynomials by the
lgebraic polynomials on Rn restricted to V and denoted by

ΠL (V) := {P|V : P ∈ R[z1, . . . , zn] : total degree of P is ≤ L}.

For an algebraic manifold and in analogy to Definition 1, we now define the concept of
algebraic cubatures.

Definition 4. For N points {x j }
N
j=1 ⊂ V and weights {ω j }

N
j=1 ⊂ R, we say that {(x j , ω j )}N

j=1
is an algebraic cubature of strength L if∫

V
P(x)dµV (x) =

N∑
j=1

ω j P(x j ) for all P ∈ ΠL (V).

Let Π 0
L (V) denote the orthogonal complement of the constant function within ΠL (V). As

before, since
∑N

j=1 ω j = 1, then {(x j , ω j )}N
j=1 is an algebraic cubature of strength L if and

only if
N∑

j=1

ω j P(x j ) = 0 for all P ∈ Π 0
L (V).

The analogue of Proposition 2 also holds for an algebraic manifold, i.e., there exists a
positive constant cV such that if {(x j , ω j )}N

j=1 is an algebraic cubature of strength L , then
N ≥ cV Ld for every L ≥ 0, the proof of [10, Proposition 2.1] for L-designs can be extended
to this case step by step.

Notice that given a Riemannian algebraic manifold, we have two different definitions for a
cubature of strength L , the one given in Definition 1 and the one given in Definition 4. Observe
though that the first definition is intrinsic, whereas the second is extrinsic and depends on the
specific embedding of the manifold in the Euclidean space Rn .

2.3. On the relation between polynomials and diffusion polynomials

The relation between polynomials and diffusion polynomials on an algebraic manifold has
not been deeply understood. Nevertheless, we know this relation for some particular manifolds.
In the case of the sphere Sd , the eigenfunctions of the Laplacian are polynomials in the ambient
space Rd+1 restricted to the sphere. The Grassmannian manifold Gk,m , consisting of the k-
dimensional subspaces of Rm , can be isometrically embedded into Rm2

by seeing it as the
set of symmetric m × m matrices which are projection operators and have trace equal to k
(see [6, Section 1.3.2.]). Any diffusion polynomial on the Grassmannian manifold is then the
restriction of a polynomial in the ambient space Rm2

, see [5]. In general, though, eigenfunctions
of the Laplacian on an algebraic manifold V are not necessarily restrictions of polynomials.
In the following example we show that there are diffusion polynomials on the ellipse that are
not restrictions of polynomials in the ambient space. Notice that the circle and the ellipse are
different algebraic manifolds, but they coincide as Riemannian manifolds.

The (positive) Laplacian ∆R/2πZ on R/2πZ is simply −∂2
t acting on 2πZ periodic

real-valued functions on R. Its eigenvalues are k2, for k ∈ N, with associated eigenfunctions

t ↦→ cos(kt), t ↦→ sin(kt).

So we have two eigenfunctions associated to each eigenvalue k2.
6
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Definition 5. For fixed A, B > 0, we consider the ellipse

E A,B =

{
(x, y) ∈ R2

:
x2

A2 +
y2

B2 = 1
}
,

hich is parametrized by

u A,B : R/2πZ → E A,B, t ↦→ (A cos(t), B sin(t)).

The circle is a particular case of the ellipse, for which the relations of Laplacian eigenfunc-
tions and polynomials are well-studied.

Example 6 (Circle S1). For A = B = 1, the mapping u1,1 is an arc-length parametrization of
S1, hence, an isometry, so that

∆S1 f = (∆R/2πZ( f ◦ u1,1)) ◦ u−1
1,1 (3)

holds for every f ∈ C∞(S1). In particular, the eigenvalues of ∆S1 are k2 with associated
eigenfunctions

fk : S1
→ R, gk : S1

→ R,
(x, y) ↦→ cos(ku−1

1,1(x, y)), (x, y) ↦→ sin(ku−1
1,1(x, y)).

Hence, we observe, for t ∈ R/2πZ,

fk(cos(t), sin(t)) = cos(kt),

gk(cos(t), sin(t)) = sin(kt).

All eigenfunctions of ∆S1 are restrictions of algebraic polynomials in R2, which can be derived
from the Chebycheff-polynomials of first and second type, Tk and Uk , via

R2
∋ (x, y) ↦→ Tk(x), Tk(cos(t)) = cos(kt),

R2
∋ (x, y) ↦→ Uk−1(x)y, Uk−1(cos(t)) sin(t) = sin(kt), t ∈ R.

We now state that the situation is very different for A ̸= B.

Proposition 7. If A ̸= B, then each nonzero eigenvalue of the Laplacian on E A,B has
an eigenfunction that is not the restriction of any algebraic polynomial on R2 with complex
coefficients.

Proof. Let us consider the parametrization of the ellipse u A,B given in Definition 5. For
A ̸= B, u A,B is not an isometry. To compute the arc-length parametrization of E A,B , we define
ℓA,B :=

∫ π
−π

∥u̇ A,B(t)∥dt and

h A,B : [0, 2π ] → [0, ℓA,B], t ↦→

∫ t

0
∥u̇ A,B(s)∥ds. (4)

We now identify h A,B with its periodic extension h A,B : R/2πZ → R/ℓA,BZ. The arc-length
parametrization of E A,B is

ψ : R/ℓ Z → E , t ↦→ u (h−1 (t)) = (A cos(h−1 (t)), B sin(h−1 (t))).
A,B A,B A,B A,B A,B A,B A,B

7
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We deduce that two linearly independent eigenfunctions on E A,B with respect to the eigenvalue
2, for 0 < k ∈ N, are

fk : E A,B → R, gk : E A,B → R,

(x, y) ↦→ cos
(

2π
ℓA,B

kψ−1
A,B(x, y)

)
, (x, y) ↦→ sin

(
2π
ℓA,B

kψ−1
A,B(x, y)

)
.

They span the eigenspace associated to k2. Since ψA,B , u A,B , and h A,B are bijections, this
implies, for t ∈ R/2πZ,

fk(A cos(t), B sin(t)) = cos
(

2π
ℓA,B

kh A,B(t)
)
, (5)

gk(A cos(t), B sin(t)) = sin
(

2π
ℓA,B

kh A,B(t)
)
. (6)

o prove our claim, we now assume that both, fk and gk , are restrictions of algebraic
olynomials on R2, i.e., for x, y ∈ E A,B ,

fk(x, y) =

∑
m,n∈N

αm,n xm yn,

gk(x, y) =

∑
m,n∈N

βm,n xm yn,

ith finitely many nonzero coefficients αm,n, βm,n ∈ C. Thus, (5) and (6) imply, for t ∈ R/2πZ,

cos
(

2π
ℓA,B

kh A,B(t)
)

=

∑
m,n∈N

αm,n Am cosm(t)Bn sinn(t), (7)

sin
(

2π
ℓA,B

kh A,B(t)
)

=

∑
m,n∈N

βm,n Am cosm(t)Bn sinn(t). (8)

rigonometric identities, in particular power reduction formulae and product to sum identities,
mply that both, (7) and (8), are trigonometric polynomials, i.e., finite linear combination of
os(lt) and sin(mt), l,m ∈ N. Therefore, their derivatives

t ↦→ − sin
(

2π
ℓA,B

kh A,B(t)
)

2π
ℓA,B

kh′

A,B(t), (9)

t ↦→ cos
(

2π
ℓA,B

kh A,B(t)
)

2π
ℓA,B

kh′

A,B(t), (10)

re also trigonometric polynomials. The obvious identity

h′

A,B(t) = cos2
(

2π
ℓA,B

kh A,B(t)
)

h′

A,B(t) + sin2
(

2π
ℓA,B

kh A,B(t)
)

h′

A,B(t)

mplies that h′

A,B is a trigonometric polynomial due to (7), (8), and (9), (10) being trigonometric
olynomials and the latter being an algebra. Hence, the definition of h A,B(t) in (4) yields that

h′

A,B(t) = ∥u̇ A,B(t)∥ =

√
A2 sin2(t) + B2 cos2(t) =

√
A2 + B2 + (B2 − A2) cos(2t)

is a trigonometric polynomial. The infinite Taylor expansion of the square root implies that
the above right-hand-side has an infinite Fourier series if and only if B2

− A2
̸= 0. More

elementary, since h′

A,B(t) is an even function, it must be a finite linear combination of cos(lt),
∈ N. Since the square of h′ (t) coincides with A2

+ B2
+ (B2

− A2) cos(2t), the largest l
A,B

8
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that can occur with nonzero coefficient in h′

A,B is l = 1 due to product to sum identities for
the cosine. Since there is no cos(t) term in the square of h′

A,B(t), we deduce A2
= B2, which

ontradicts the assumption of the proposition. □

emark 8. Note that in Proposition 7 we prove a result stronger than needed, since we
llow the polynomials to have complex coefficients meanwhile ΠL (V) is a vector space of
olynomials with real coefficients.

.4. Notation

We use the notation ≳ meaning the right-hand side is less than or equal to the left-hand
side up to a positive constant factor that is only allowed to depend on M or V and hence on
d. The symbol ≲ is used analogously.

For a more compact notation, we make the convention that X either denotes M or V as
defined in Section 2. Then µX will denote respectively µM or µV , and ΠL (X) and Π 0

L (X) will
denote the diffusion polynomials ΠL (M) and Π 0

L (M) or the algebraic polynomials ΠL (V) and
Π 0

L (V).

3. Main result

Our main result holds for the Riemannian manifold M with diffusion polynomials and for
the algebraic manifold V with algebraic polynomials.

Theorem 9 (Main Result). Let h = 1 if X = M, and h = d if X = V . There exists a constant
= CX such that for all b ≥ 1, if

N ≥ Cb2h+2Ld

and if the weights {ω j }
N
j=1 are such that

N∑
j=1

ω j = 1 and 0 ≤ ω j ≤
b
N
,

hen there exists {x j }
N
j=1 ⊂ X such that {(x j , ω j )}N

j=1 is a cubature/algebraic cubature of
trength L.

This result is a direct consequence of the following weaker version, where a lower bound
n the weights is imposed.

heorem 10. Let h = 1 if X = M, and h = d if X = V . There exists a constant C = CX
such that for all 0 < a ≤ 1 ≤ b, if

N ≥ Cb
(

b
a

)2h

Ld

nd if the weights {ω j }
N
j=1 are such that

N∑
j=1

ω j = 1 and
a
N

≤ ω j ≤
b
N
,

then there exists {x j }
N
j=1 ⊂ X such that {(x j , ω j )}N

j=1 is a cubature/algebraic cubature of
trength L.
9
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The proof of Theorem 10 is presented in the subsequent section. Here, we show how
heorem 9 follows from Theorem 10.

roof of Theorem 9. Assume all weights are in increasing order, ω1 ≤ ω2 ≤ · · · ≤ ωN .
Let us organize the set of weights in blocks with total mass at least 1/N . Thus let j1 be such
hat

∑ j1−1
j=1 ω j < 1/N but W1 =

∑ j1
j=1 ω j ≥ 1/N . Let j2 be such that

∑ j2−1
j= j1+1 ω j < 1/N but

W2 =
∑ j2

j= j1+1 ω j ≥ 1/N , and so on, up until jm = N in such a way that
∑N−1

j= jm−1+1 ω j < 1/N
but Wm =

∑N
j= jm−1+1 ω j ≥ 1/N . Notice that the construction ends correctly since ωN ≥ 1/N .

By construction, for all i = 1, . . . ,m,

1
N

≤ Wi ≤
b + 1

N
, 1 =

N∑
j=1

ω j =

m∑
i=1

Wi ≤ m
b + 1

N
,

o that m ≥ N/(b + 1) ≳ (b + 1)2h+1Ld . We can therefore apply Theorem 10 to the weights
Wi }

m
i=1 and we conclude that there are points {xi }

m
i=1 such that {(xi ,Wi )}m

i=1 is a cubature of
strength L . By repeating the point xi for all the weights ω j with ji−1 + 1 ≤ j ≤ ji we obtain
the desired cubature {(xi , ωi )}N

i=1. □

Remark 11. By Proposition 2, Theorem 9 is sharp, in the sense that the exponent d in the
condition N ≥ Cb2h+2Ld is best possible. On the other hand, we do not know if any of the
other constants there, say C or the exponent 2h + 2, are sharp.

Remark 12. We do not know if one can show the existence of algebraic cubatures of strength
L with N ≈ Ld points, if the manifold is not contained in the zero set of a collection
of polynomials. It is known however that one such cubature in the equal weight case in a
non algebraic d-dimensional manifold should be rather pathological. Indeed, for example, by
[1, Theorem 3], the nodes of the cubature should be non uniformly separated. Also, by
[16, Theorem 5.1], for all L there should be a point x0 such that replacing any node of the
cubature with x0, the error in the corresponding cubature should be greater than

1
2N

sup
M

|P|

or at least one polynomial P of degree not exceeding (2d + 2)N 1/(d+1).

. Proof of Theorem 10

As in [2,10,13], the proof is based on a result from the Brouwer degree theory.

emma 13 ([21, Theorem 1.2.9]). Let H be a finite dimensional Hilbert space with inner
roduct ⟨·, ·⟩. Let f : H → H be a continuous mapping and Ω an open bounded subset with
oundary ∂Ω such that 0 ∈ Ω ⊂ H. If ⟨x, f (x)⟩ > 0 for all x ∈ ∂Ω , then there exists x ∈ Ω
atisfying f (x) = 0.

The following result is the main tool to define a mapping with the properties stated in
emma 13.

emma 14. Let h = 1 if X = M and h = d if X = V . There exists a constant C = CX > 0
b )2h Ld and for all
uch that the following holds: for all 0 < a ≤ 1 ≤ b, for all N ≥ Cb( a

10
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f
{

N
a

weights {ω j }
N
j=1 such that

N∑
j=1

ω j = 1 and
a
N

≤ ω j ≤
b
N
,

there exists a continuous mapping

F : Π 0
L (X) → XN

P ↦→ (x1(P), . . . , xN (P)),

such that for all P ∈ Π 0
L (X) with

∫
X ∥∇ P(x)∥dµX(x) = 1,

N∑
j=1

ω j P(x j (P)) > 0.

We postpone the proof of Lemma 14 and now verify our main result.

Proof of Theorem 10. Fix L and define

Ω =

{
P ∈ Π 0

L (X) :

∫
X

∥∇ P(x)∥dµX(x) < 1
}
, (11)

which is clearly an open subset of Π 0
L (X) such that 0 ∈ Ω ⊂ Π 0

L (X). Since
∫
X ∥∇ P(x)∥dµX(x)

is a norm in the finite dimensional space Π 0
L (X), it is equivalent to the L2 norm in Π 0

L (X), so
Ω is also bounded in Π 0

L (X) ⊂ L2(X). Take C = CX as in Lemma 14, let N ≥ Cb( b
a )2h Ld

nd let xi (P) be the points defined by the map F in Lemma 14 for P ∈ ∂Ω .
By the Riesz Representation Theorem, for each point x ∈ X there exists a unique polynomial

Gx ∈ Π 0
L (X) such that

⟨Gx , P⟩ = P(x)

or all P ∈ Π 0
L (X). Then a set of points {x j }

N
j=1 ⊂ X together with a set of weights

ωi }
N
j=1 ⊂ R+ is a cubature formula of strength L if and only if

N∑
i=1

ω j Gx j = 0.

ow let U : XN
→ Π 0

L (X) be the continuous map defined by U (x1, . . . , xN ) =
∑N

i=1 ω j Gx j

nd let us consider the composition

f = U ◦ F : Π 0
L (X) → Π 0

L (X).

Then, by Lemma 14, for every P ∈ ∂Ω we have

⟨P, f (P)⟩ =

N∑
j=1

ω j P(x j (P)) > 0.

We conclude with Lemma 13, stating that there exists Q ∈ Ω such that U (F(Q)) = 0, that is,
such that

∑N
j=1 ω j Gx j (Q) = 0, which implies that {(x j (Q), ω j )}N

j=1 is a cubature formula of
strength L . □

In order to complete the above proof, we must verify Lemma 14. We define the application

F through a gradient flow with initial points that are taken from a partition of the manifold

11
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D
R

into regions with areas corresponding to the weights. To verify suitable properties of the
flow, Marcinkiewicz–Zygmund inequalities for the gradient of diffusion polynomials and
algebraic polynomials are required. These are the topics of the subsequent sections. We start
with weighted area partitions, where the result holds for both scenarios and then we prove
Marcinkiewicz–Zygmund inequalities separately for polynomials and diffusion polynomials.

5. Weighted area partitions

Here we generalize the results in [14] for the case of equal weight partitions to the case of
ot all equal weights.

efinition 15. Let 0 < a ≤ 1 ≤ b and 0 < c3 < c4. We say that a collection of subsets of X,
= {R j }

N
j=1 is a partition of X with constants a, b, c3 and c4 if the following hold:

• ∪
N
j=1 R j = X and µX(Ri ∩ R j ) = 0 for all 1 ≤ i < j ≤ N ,

• a/N ≤ µX(R j ) ≤ b/N for j = 1, . . . , N ,
• each R j is contained in a geodesic ball X j of radius c4b1/d N−1/d and contains a geodesic

ball Y j of radius c3
(
a2/b

)1/d N−1/d .

We denote by P(a, b, c3, c4) the collection of all such partitions.

Proposition 16. There exist two constants 0 < c3 < c4 such that for all constants a and b with
0 < a ≤ 1 ≤ b, for every N ≥ 1 and for every choice of weights {ω j }

N
j=1 with

∑N
j=1 ω j = 1

and a/N ≤ ω j ≤ b/N, there is a partition of X, R = {R j }
N
j=1 ∈ P(a, b, c3, c4) such that

µX(R j ) = ω j for all j = 1, . . . , N.

The proof of Proposition 16 is based on the following lemma on non-atomic measures not
having gaps in their range:

Lemma 17 ([14, Corollary 3]). Let S be a measurable subset of X. Then, for any 0 ≤ r ≤

µX(S), there is Γ ⊂ S such that µX(Γ ) = r .

Note that this lemma holds for more general spaces X than the ones we consider in the
present manuscript, see [14] for a brief discussion.

Corollary 18. Given positive weights {ω j }
N
j=1 ⊂ R, let S and Q1, . . . , QN ⊂ S be measurable

subsets of X. If {Q j }
N
j=1 are pairwise disjoint with µX(Q j ) ≤ ω j and µX(S) ≥

∑N
j=1 ω j ,

then there are pairwise disjoint R1, . . . , RN ⊂ S, such that Q j ⊂ R j and µX(R j ) = ω j ,
j = 1, . . . , N.

Proof of Corollary 18. We start with S1 := S \
⋃N

j=1 Q j . Since

µX(S1) ≥ µX(S) − µX(∪N
j=1 Q j ) ≥

N∑
j=1

ω j −

N∑
j=1

µX(Q j ) ≥ ω1 − µX(Q1),

there is Γ1 ⊂ S1 such that µX(Γ1) = ω1 − µX(Q1). We set R1 := Q1 ∪ Γ1. Next, we define
S2 := S1 \ R1. There is Γ2 ⊂ S2 such that µX(Γ2) = ω2 − µX(Q2). Let R2 := Q2 ∪ Γ2 and so
on. □
12
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Our assumptions on X imply that there are constants 0 < c1 ≤ c2 < ∞ such that

c1rd
≤ µX(B(x, r )) ≤ c2rd , for all x ∈ X, 0 < r ≤ diam(X), (12)

where B(x, r ) denotes the ball of radius r centered at x . The proof of Proposition 16 proceeds
as in the equal weight case in [14], with a few technical modifications. As in [14], we know
that there is a family of δ-adic cubes in X, i.e., for any 0 < δ < 1 there exist 0 < u1 ≤ u2 < ∞,
a collection of open subsets {Qk

α : k ∈ Z, α ∈ Ik} in X, where each Ik is a finite index set,
and points {zk

α : k ∈ Z, α ∈ Ik} with

(i) µX(X \
⋃
α∈Ik

Qk
α) = 0, for all k ∈ Z,

(ii) for l > k and α ∈ Il , there is β0 ∈ Ik such that

• Ql
α ⊂ Qk

β0
,

• Ql
α ∩ Qk

β = ∅, for all β ∈ Ik with β ̸= β0

(iii) B(zk
α, u1δ

k) ⊂ Qk
α ⊂ B(zk

α, u2δ
k), for all k ∈ Z, α ∈ Ik .

Assume first

N ≥
2b

c1δd diam(X)d
. (13)

hoose k ∈ Z such that

u1δ
k+1 <

(
2
c1

b
N

)1/d

≤ u1δ
k, (14)

o that we obtain the estimates

µX(Qk
α) ≥ µX(B(zk

α, u1δ
k)) ≥ c1ud

1δ
kd

≥ 2
b
N
. (15)

ere, we have used (12), so that we still need to ensure u1δ
k

≤ diam(X). Indeed, using (13)
e derive

u1δ
k

=
u1δ

k+1

δ
≤

( 2
c1

b
N )1/d

δ
≤ diam(X).

Thus, (15) is a valid estimate.
Similarly, we derive an upper bound

µX(Qk
α) ≤ µX(B(zk

α, u2δ
k)) ≤ c2ud

2δ
kd <

c2

c1

(u2

u1

)d 2
δd

b
N

=
c2

c1

(u2

u1

)d 2
δd

b
a

a
N
.

ith C :=
c2

c1

(u2

u1

)d 2
δd

3d b
a

, we have checked

2
b
N

≤ µX(Qk
α) ≤

C
3d

a
N
. (16)

For the cube generation k, we now build a graph with vertices Ik . For α, β ∈ Ik , we put an
dge (α, β) if and only if B(zk

α, u1δ
k)∩B(zk

β, u1δ
k) ̸= ∅. This graph is connected, see [14, Proof

of Theorem 2], so that we can extract a spanning tree with leaf nodes, intermediate nodes, and
one root node. We create the directed tree T by directing the edges from the root towards the
leaves, so that (α, β) ∈ T is the directed edge between α and its child β.

The triangular inequality yields

Qk
α ∪

⋃
Qk
β ⊂ B(zk

α, 3u2δ
k),
(α,β)∈T

13
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cf. [14, Corollary 2]. Hence, we obtain the volume estimate

µX(Qk
α ∪

⋃
(α,β)∈T

Qk
β) ≤ µX(B(zk

α, 3u2δ
k)) ≤ c2(3u2δ

k)d
≤ C

a
N
. (17)

e now aim to take a younger generation of δ-adic cubes, say l = k + m, such that all cubes
f generation l have measure smaller than 1

C
a
N . Indeed, let m be the positive integer such that

δm
≤ 3C−2/d < δm−1. (18)

otice that 3C−2/d < 1, so that this choice is possible. Thus, for all α ∈ Il , we get from (18)
and (14)

µX(Ql
α) ≤ µX(B(zl

α, u2δ
l)) ≤ (c2ud

2δ
kd )δmd

≤ (c2ud
2δ

kd )3dC−2

≤
Ca

3d N
3dC−2

≤
1
C

a
N
.

e now construct the partition by running through the directed tree T and using the above
stimates, which are overkill for the leaves but are more appropriate for the remaining nodes.
et us denote the weights by Ω := {ω j }

N
j=1.

eaves
Start with a leaf node α ∈ Ik . Take a maximal set of weights from Ω such that their sum is

ot bigger than µX(Qk
α). Denote this maximal set with Ωα and its cardinality with Nα . Each

ube of generation l has measure at most 1
C

a
N , so that the volume of Nα cubes of generation

is bounded by

Nα

1
C

a
N

≤
1
C
µX(Qk

α) ≤
1
C
µX

⎛⎝Qk
α ∪

⋃
(α,β)∈T

Qk
β

⎞⎠ ≤
a
N
,

here we have used (17). According to (16), Qk
α has sufficient volume that we can choose Nα

ubes of generation l inside of Qk
α . Let us denote them by Ql

β1
, . . . , Ql

βNα
. By Corollary 18,

e enlarge each of such cubes within Qk
α , so that their measure matches the weights in Ωα ,

o that we obtain {Rβi }
Nα
i=1. The remainder in Qk

α , i.e., Wα := Qk
α \

⋃Nα
i=1 Rβi has volume less

than b/N , because we took the maximal number of weights.
We repeat the above steps for each leaf node but only allow weights in Ω that have not

been chosen previously. After having finished all leaves, we have remainders Wα ⊂ Qk
α , for

each α ∈ Ik that corresponds to a leaf.

Intermediate nodes
For each α ∈ Ik that is neither a leaf nor the root, start with Xα = Qk

α ∪
⋃

(α,β)∈T Wβ , that
is we add all the remainders coming from the children of α. Note that we can proceed with
the intermediate nodes in an ordering such that the remainders Wβ with (α, β) have indeed
all been already computed. Note also that we can assume Wβ ⊂ Qk

β , for all (α, β) ∈ T (take
this as an induction hypothesis. It is clearly true if β is a leaf node, and will follow at the end
of this paragraph for the intermediate nodes). Now repeat the same argument as before with
Xα in place of Qk

α . Take a maximal set of the remaining weights from Ω such that their sum
is not bigger than µX(X k

α). Again, denote this maximal set with Ωα and its cardinality with
Nα . As we saw before, the entire volume of Nα cubes of generation l is at most a/N , so that
they can be chosen within Qk . Let us denote these cubes by Ql , . . . , Ql . The volume of
α β1 βNα

14
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Qk
α \
(⋃Nα

i=1 Ql
βi

)
is still at least b/N . According to Lemma 17, there is Wα ⊂ Qk

α \
(⋃Nα

i=1 Ql
βi

)
ith volume

µX(Wα) = µX(Xα) −

∑
ω∈Ωα

ω < b/N .

By Corollary 18, we extend the cubes Ql
β1
, . . . , Ql

βNα
within Xα \ Wα , so that the volumes

match the weights in Ωα , yielding subsets {Rβi }
Nα
i=1. By comparing volumes, the union of the

extensions now covers the neighboring remainders Wβ (at least up to a set of measure zero),
and the new remainder Wα is indeed contained in Qk

α .
We proceed with the remaining weights for each of the intermediate nodes in a suitable

order.

Root
We do the same as for intermediate nodes but comparing volumes yields that the remainder

of the root node must have measure zero.
After having treated each node in T , we have collected a partition {R j }

N
j=1, so that we

obtain, with a suitable reordering, µX(R j ) = ω j , for j = 1, . . . , N .
Since each R j contains a cube of generation l, it contains a ball of radius u1δ

l . A short
calculation yields δl ≳

( a2

b

)1/d N−1/d . On the other hand, each R j is contained in a ball of
adius 3u2δ

k ≲ b1/d N−1/d .
Assume now that

1 ≤ N ≤
2b

c1δd diam(X)d
.

Let k be now the unique integer such that

c2(u2δ
k)d

≤
a
N
< c2(u2δ

k−1)d .

his implies that all the cubes of generation k have measure smaller than all the values ω j .
hen take any N distinct cubes of generation k and extend them by means of Corollary 18 to

disjoint sets {R j }
N
j=1 with measures ω j , respectively. Each R j contains its corresponding cube

of generation k and therefore a ball with radius

u1δ
k >

u1δ

u2c1/d
2

a1/d

N 1/d .

n the other hand, every R j is trivially contained in a (any) ball with radius

diam (X) ≤
21/d

c1/d
1 δ

b1/d

N 1/d .

his concludes the proof of Proposition 16.

emark 19. Proposition 16 and its proof hold for any complete, connected metric measure
paces that satisfy (12), cf. [14] for further details.

. Marcinkiewicz–Zygmund inequalities

.1. MZ-inequalities on Riemannian manifolds

The Marcinkiewicz–Zygmund inequality for diffusion polynomials on manifolds has been
roved by Maggioni, Mhaskar and Filbir throughout the papers [11,12,19]. For our proof
15
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we need the Marcinkiewicz–Zygmund inequality for the gradient of diffusion polynomials.
Note that when M is the d-dimensional sphere, then the gradient of a polynomial is again a

olynomial. In the case of a general Riemannian manifold, this fails (see [13]). Here we prove
Marcinkiewicz–Zygmund inequality for gradients of diffusion polynomials in the case of a
iemannian manifold and with prefixed weights. Throughout this section, let M, µM, ΠL (M)
nd Π 0

L (M) be as defined in Section 2.1.

roposition 20. Let M be as in Section 2.1 and let 0 < c3 < c4. Then, there exists a constant
= CM(c3, c4) ≥ 1 such that for all 0 < a ≤ 1 ≤ b, for all integers N ≥ Cb( b

a )2Ld , for all
artitions R = {R j }

N
j=1 ∈ P(a, b, c3, c4), for all x j ∈ R j , for all P ∈ Π 0

L (M) it holds⏐⏐⏐ ∫
M

∥∇ P(x)∥dµM(x) −

N∑
j=1

ω j∥∇ P(x j )∥
⏐⏐⏐ ≤

1
2

∫
M

∥∇ P(x)∥dµM(x), (19)

here ω j = µM(R j ), for all j = 1, . . . , N.

roof. This proof follows the sketch of the proof of [13, Theorem 5]. Fix ε > 0 and let
ε : [0,+∞] → R be a C∞ function such that

vε(u) =

{
u if u ≥ ε

ε/2 if u ≤ ε/4
(20)

nd vε(u) ≥ u for all u ≥ 0. Let P ∈ Π 0
L (M) and let T and S be the vector fields defined as

T (x) =
∇ P(x)

vε (∥∇ P(x)∥)
, S(x) =

∇T P(x)
vε (∥∇T P(x)∥)

.

herefore,

T P (x) =

⟨
∇ P (x) ,

∇ P (x)
vε (∥∇ P (x)∥)

⟩
(21)

ST P (x) =

⟨
∇T P (x) ,

∇T P (x)
vε (∥∇T P (x)∥)

⟩
. (22)

We define also for every L ≥ 0 the kernel WL as

WL (x, y) =

∑
λk>0

1
λ2

k
H
(
λk

L

)
ϕk(x)ϕk(y), (23)

here H is a C∞ even function such that

H (u) =

{
1 if u ∈ [−1, 1]
0 if |u| ≥ 2.

et ΨL (x, y) be a reproducing kernel for Π 0
L (M) defined as

ΨL (x, y) = ∆y WL (x, y) =

∑
0<λk

H
(
λk

L

)
ϕk (x) ϕk (y) . (24)

Here and in the following formulas, the index y or x of the operators ∆, ∇, etc. specifies which
variable the operator is acting on.

It has been proved in [13, proof of Theorem 5] that there exists a constant κ > 0 such that

∥∇ S T W (x, y)∥ ≤ κLd+1 1 + L|x − y|
−d−1 . (25)
y x x L ( )

16
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Notice that

T P (x) =

⟨
∇ P (x) ,

∇ P (x)
vε (∥∇ P (x)∥)

⟩
=

∥∇ P (x)∥2

vε (∥∇ P (x)∥)
≤ ∥∇ P (x)∥

nd therefore⏐⏐⏐⏐⏐⏐
∫
M

∥∇ P (x)∥ dµM (x)−

N∑
j=1

ω j
∇ P

(
x j
)⏐⏐⏐⏐⏐⏐

≤

⏐⏐⏐⏐∫
M
(∥∇ P (x)∥ − T P (x)) dµM (x)

⏐⏐⏐⏐+
⏐⏐⏐⏐⏐⏐
∫
M

T P (x) dµM (x)−

N∑
j=1

ω j T P
(
x j
)⏐⏐⏐⏐⏐⏐

+

⏐⏐⏐⏐⏐⏐
N∑

j=1

ω j
(
T P

(
x j
)
−
∇ P

(
x j
))⏐⏐⏐⏐⏐⏐

≤ 2ε +

⏐⏐⏐⏐⏐⏐
∫
M

T P (x) dµM (x)−

N∑
j=1

ω j T P
(
x j
)⏐⏐⏐⏐⏐⏐ .

Let δ be the maximum diameter of the balls X j as in Definition 15, so δ ≤ 2c4b1/d N−1/d .
Hence,⏐⏐⏐⏐⏐⏐

∫
M

T P (x) dµM (x)−

N∑
j=1

ω j T P
(
x j
)⏐⏐⏐⏐⏐⏐ ≤

N∑
j=1

∫
R j

⏐⏐T P (x)− T P
(
x j
)⏐⏐ dµM (x)

≤

N∑
j=1

ω j sup
x,z∈R j

|T P (x)− T P (z)|

≤

N∑
j=1

ω j sup
x,z∈R j

sup
t∈[0,|x−z|]

∥∇T P (α(t))∥ |x − z|.

here α is a normalized geodesic joining x and z. Since R j is contained in the ball X j , the
eodesic α is contained in the ball 2X j with the same center as X j and radius twice the radius
f X j . It follows that⏐⏐⏐⏐⏐⏐

∫
M

T P (x) dµM (x)−

N∑
j=1

ω j T P
(
x j
)⏐⏐⏐⏐⏐⏐ ≤ δ

N∑
j=1

ω j sup
x∈2X j

∥∇T P (x)∥ .

rom Eq. (22) one has that

ST P (x) =
∥∇T P(x)∥2

vε(∥∇T P(x)∥)
≤ ∥∇T P (x)∥

and therefore

δ

N∑
ω j sup

x∈2X
∥∇T P (x)∥
j=1 j

17
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W{
t

a

≤ δ

N∑
j=1

ω j sup
x∈2X j

|∥∇T P (x)∥ − ST P (x)| + δ

N∑
j=1

ω j sup
x∈2X j

|ST P (x)|

≤ δε + δ

N∑
j=1

ω j sup
x∈2X j

|ST P (x)| .

Hence we have obtained⏐⏐⏐⏐⏐⏐
∫
M

∥∇ P (x)∥ dµM (x)−

N∑
j=1

ω j
∇ P

(
x j
)⏐⏐⏐⏐⏐⏐ ≤ (2 + δ) ε + δ

N∑
j=1

ω j sup
x∈2X j

|ST P (x)| .

We need to estimate the sum above. Notice that by Green’s formula we have

P (x) =

∫
M

P (y)ΨL (x, y) dµM (y) =

∫
M

P (y)∆y WL (x, y) dµM (y)

=

∫
M

⟨
∇y P (y) ,∇y WL (x, y)

⟩
dµM (y) ,

where WL is defined in (23) and ΨL in (24). Therefore by (25) we have

δ

N∑
j=1

ω j sup
x∈2X j

|ST P (x)|

= δ

N∑
j=1

ω j sup
x∈2X j

⏐⏐⏐⏐∫
M

⟨
∇y P (y) ,∇y Sx Tx WL (x, y)

⟩
dµM (y)

⏐⏐⏐⏐
≤ δ

N∑
j=1

ω j sup
x∈2X j

∫
M

∇y P (y)
 ∇y Sx Tx WL (x, y)

 dµM (y)

≤ κδ

N∑
j=1

ω j sup
x∈2X j

∫
M

∇y P (y)
 Ld+1 (1 + L |x − y|)−d−1 dµM (y)

≤ κδ

∫
M

∇y P (y)
⎛⎝ N∑

j=1

Ld+1ω j sup
x∈2X j

(1 + L |x − y|)−d−1

⎞⎠ dµM (y) .

e reduce to estimate the sum in the integral. To do this, for any fixed y, let J =

j : dist
(
2X j , y

)
≥ 2δ

}
and J ′ its complement. We start considering j ∈ J . If we call q j

he point in 2X j closest to y, and p j the point in 2X j farthest from y, then

1 +
L
2

⏐⏐p j − y
⏐⏐ ≤ 1 +

L
2

(⏐⏐q j − y
⏐⏐+ 2δ

)
≤ 1 + L

⏐⏐q j − y
⏐⏐

nd therefore for the sum over J , we have∑
j∈J

Ld+1ω j sup
x∈2X j

(1 + L |x − y|)−d−1

=

∑
j∈J

Ld+1ω j
(
1 + L

⏐⏐q j − y
⏐⏐)−d−1

≤

∑
j∈J

Ld+1ω j

(
1 +

L
2

⏐⏐p j − y
⏐⏐)−d−1

=

∑∫
R

Ld+1
(

1 +
L
2

⏐⏐p j − y
⏐⏐)−d−1

dµM (x)

j∈J j

18
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N
b

T

W

A
m

≤

∑
j∈J

∫
R j

Ld+1
(

1 +
L
2

|x − y|

)−d−1

dµM (x)

≤

∫
M

Ld+1
(

1 +
L
2

|x − y|

)−d−1

dµM (x)

≤ c5Ld+1
∫

+∞

0

(
1 +

L
2

s
)−d−1

sd−1ds

≤ c5Ld+1

(∫ 1/L

0
sd−1ds +

(
2
L

)d+1 ∫ +∞

1/L
s−2ds

)
≤ (d−1

+ 2d+1)c5L .

ow we consider J ′. We have that its cardinality is bounded above by the number of inner
alls Y j that are contained in the ball B(y, 4δ), and this number is bounded above by the ratio

µM(B(y, 4δ))
min j=1,...,N µM(Y j )

≤
8dc2cd

4 b2

c1cd
3 a2

.

hus, since a
N ≤ ω j ≤

b
N , and assuming N ≥ b3a−2Ld ,∑

j∈J ′

Ld+1ω j sup
x∈2X j

(1 + L |x − y|)−d−1
≤

∑
j∈J ′

Ld+1ω j ≤
8dc2cd

4 b3

c1cd
3 a2

Ld+1

N
≤

8dc2cd
4

c1cd
3

L .

e have obtained⏐⏐⏐⏐⏐⏐
∫
M

∥∇ P (x)∥ dµM (x)−

N∑
j=1

ω j
∇ P

(
x j
)⏐⏐⏐⏐⏐⏐

≤ (2 + δ) ε + κ

(
(d−1

+ 2d+1)c5 +
8dc2cd

4

c1cd
3

)
δL
∫
M

∥∇ P (y)∥ dµM (y) .

If we take

ε =

κ

(
(d−1

+ 2d+1)c5 +
8dc2cd

4

c1cd
3

)
δL

2 + δ

∫
M

∥∇ P (y)∥ dµM (y) ,

we obtain⏐⏐⏐⏐⏐⏐
∫
M

∥∇ P (x)∥ dµM (x)−

N∑
j=1

ω j
∇ P

(
x j
)⏐⏐⏐⏐⏐⏐ ≤ C̃b1/d L N−1/d

∫
M

∥∇ P (y)∥ dµM (y) ,

where

C̃ = 4c4κ

(
(d−1

+ 2d+1)c5 +
8dc2cd

4

c1cd
3

)
. (26)

ssuming now N ≥ 2dC̃dbLd one obtains (19). The Proposition now follows with C =

ax{1, 2dC̃d
}. □
19
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6.2. MZ-inequalities on algebraic manifolds

For an algebraic manifold with fixed weights, the Marcinkiewicz–Zygmund inequality does
ot follow from [11,12,19] as in Section 6.1 since we are not dealing with diffusion polynomials
ut with algebraic polynomials. Instead, one can apply arguments that use complexification of
he variety V as in [10]. Throughout this section, let V , µV , ΠL (V) and Π 0

L (V) be as defined
n Section 2.2. The following proposition states the Marcinkiewicz–Zygmund inequality for
lgebraic polynomials and their gradients.

roposition 21. Let V be as in Section 2.2 and let 0 < c3 < c4. Then, there exists a constant
= CV (c3, c4) ≥ 1 such that for all 0 < a ≤ 1 ≤ b, for all integers N ≥ Cb( b

a )2d Ld , for all
artitions {R j }

N
j=1 ∈ P(a, b, c3, c4), for all x j ∈ R j , for all P ∈ Π 0

L (V) it holds⏐⏐⏐ ∫
V

|P(x)|dµV (x) −

N∑
j=1

ω j |P(x j )|
⏐⏐⏐ ≤

1
2

∫
V

|P(x)|dµV (x), (27)

⏐⏐⏐ ∫
V

|∇ P(x)|dµV (x) −

N∑
j=1

ω j |∇ P(x j )|
⏐⏐⏐ ≤

1
2

∫
V

|∇ P(x)|dµV (x), (28)

here ω j = µV (R j ) for all j = 1, . . . , N.

roof of Proposition 21. We follow the equal weight case in [10] with minor technical
odifications. We start with (27). Triangle and reverse triangle inequalities lead to⏐⏐⏐ ∫

V
|P(x)|dµV (x) −

N∑
j=1

ω j |P(x j )|
⏐⏐⏐ =

⏐⏐⏐ N∑
j=1

∫
R j

|P(x)|dµV (x) −

N∑
j=1

∫
R j

|P(x j )|dµV (x)
⏐⏐⏐

≤

N∑
j=1

∫
R j

⏐⏐|P(x)| − |P(x j )|
⏐⏐dµV (x)

≤

N∑
j=1

∫
R j

⏐⏐P(x) − P(x j )
⏐⏐dµV (x).

here are x ′

j ∈ 2X j , j = 1, . . . , N , such that ∥∇ P(x ′

j )∥ ≥ ∥∇ P(x)∥, for all x ∈ 2X j . Since
iam(X j ) ≤ 2c4b1/d N−1/d ,⏐⏐⏐ ∫

V
|P(x)|dµV (x) −

N∑
j=1

ω j |P(x j )|
⏐⏐⏐ ≤

N∑
j=1

ω j diam(2X j )∥∇ P(x ′

j )∥

≤ 2c4b1/d N−1/d
N∑

j=1

ω j∥∇ P(x ′

j )∥.

Let Y denote the complexification of V , which consists of the complex zeros of the ideal
efining V . Assume N ≥ 8dcd

4 bLd , so that 2X j ⊂ B(x ′

j , L−1). From [1, Section 2.4], see
lso [10], we know that since P ∈ Π 0

L (V),

∥∇ P(x ′

j )∥ ≲ L2d+1
∫

′ −1
|P(z)|dµY(z),
BY(x j ,L )

20
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T

s

P

a

7

P

µ

where BY(x ′

j , L−1) denotes the ball in Y of radius L−1 centered at x ′

j and µY denotes the
measure on the complexification.

If π is any permutation of {1, . . . , N }, for which
m⋂

i=1

BY(x ′

π (i), L−1) ̸= ∅,

then, as in [10], for a constant β ≥ 1 depending only on V ,
m⋂

i=1

B(x ′

π (i), βL−1) ̸= ∅.

Let zπ be a point in this intersection. A volume comparison implies

m ≤
µV (B(zπ , 2βL−1))

mini=1,...,m{µV (Yπ (i))}
≤

2dc2β
dbN

c1cd
3 a2Ld

.

herefore, we derive
N∑

j=1

∫
BY(x ′

j ,L
−1)

|P(z)|dµY(z) ≤
2dc2β

dbN
c1cd

3 a2Ld

∫
⋃N

j=1 BY(x ′
j ,L

−1)
|P(z)|dµY(z)

According to [10, Lemma 3.1], this leads to
N∑

j=1

∫
BY(x ′

j ,L
−1)

|P(z)|dµY(z) ≲
2dc2β

db
c1cd

3 a2

N
L2d

∫
V

|P(x)|dµV (x),

o that we obtain
N∑

j=1

ω j∥∇ P(x ′

j )∥ ≲
2dc2β

db2

c1cd
3 a2

L
∫
V

|P(x)|dµV (x).

utting all this together, we derive⏐⏐⏐ ∫
V

|P(x)|dµV (x) −

N∑
j=1

ω j |P(x j )|
⏐⏐⏐ ≲ 2c4b1/d N−1/d 2dc2β

db2

c1cd
3 a2

L
∫
V

|P(x)|dµV (x)

≲
2d+1c2c4β

db2+1/d

c1cd
3 a2

L N−1/d
∫
V

|P(x)|dµV (x)

≤
1
2

∫
V

|P(x)|dµV (x)

s long as one adjusts the constant in the assumption N ≳ b( b
a )2d Ld .

The inequality (28) follows from (27) as in [10]. We omit the details. □

. Gradient flow

We now apply Propositions 20 and 21 to verify Lemma 14.

roof of Lemma 14. Here we follow closely the proof from [2, Section 4]. According
to Proposition 16 there exists a partition of X in P(a, b, c3, c4), R = {R j }

N
j=1, such that

(R ) = ω for all j = 1, . . . , N . Recall that h = 1 if X = M and h = d if X = V .
M j j

21
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Let now N ≥ CX(c3, 13c4)b(b/a)2h Ld , where CX(·, ·) is as in Propositions 20 and 21. We
tart choosing an arbitrary x j ∈ R j for all 1 ≤ j ≤ N and consider the map U : Π 0

L (X)
→ X (X)

U (P)(y) =
∇ P(y)

vε (∥∇ P(y)∥)
,

here X (X) is the space of differentiable vector fields on X and vε is as in Eq. (20). For each
≤ j ≤ N let y j : Π 0

L (X) × [0,+∞) → X be the map satisfying the differential equation{ d
dt

y j (P, t) = U (P)(y j (P, t))

y j (P, 0) = x j

for each P ∈ Π 0
L (X). For every P ∈ Π 0

L (X) and for every j , the map t → y j (P, t) is defined
and smooth on the whole real line (see [24, Theorem 6, p. 147]). Furthermore, U (P)(y) is
Lipschitz continuous with respect to P . It follows that for each j the map P → y j (P, ·) is
continuous in P (see [18, Corollary 1.6, p. 68]). Now set

F(P) = (x1(P), . . . , xN (P)) =

(
y1

(
P, 12c4b

1
d N−

1
d

)
, . . . , yN

(
P, 12c4b

1
d N−

1
d

))
.

y the above considerations, we have that F is continuous on Π 0
L (X). Let us take P ∈ Π 0

L (X)
uch that∫

X
∥∇ P(x)∥dµX(x) = 1,

hich means P ∈ ∂Ω , where Ω is defined as (11). Then we can split

N∑
j=1

ω j P(x j (P)) =

N∑
j=1

ω j P
(

y j

(
P, 12c4b

1
d N−

1
d

))

=

N∑
j=1

ω j P(x j ) +

∫ 12c4b
1
d N−

1
d

0

d
dt

⎛⎝ N∑
j=1

ω j P(y j (P, t))

⎞⎠ dt.

Observe first that⏐⏐⏐⏐⏐⏐
N∑

j=1

ω j P(x j )

⏐⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐
N∑

j=1

∫
R j

(P(x j ) − P(x))dµX(x)

⏐⏐⏐⏐⏐⏐ ≤

N∑
j=1

∫
R j

⏐⏐P(x j ) − P(x)
⏐⏐ dµX(x)

≤

N∑
j=1

ω j diam(R j ) max
z∈2X j

∥∇ P(z)∥ ≤
2c4b

1
d

N
1
d

N∑
j=1

ω j∥∇ P(z j )∥,

where z j is the point that realizes the maximum and X j is the geodesic ball described in
Definition 15. We consider now the partition R′

= {R′

1, . . . , R′

N } ∈ P(a, b, c3, 2c4) where
R′

j = R j ∪ {z j }. Notice that this is a partition of X and µM(R′

j ) = ω j for all j = 1, . . . , N .
Therefore, by Propositions 20 and 21 applied to P ∈ ∂Ω and the partition R′, we have⏐⏐⏐⏐⏐⏐

N∑
ω j P(x j )

⏐⏐⏐⏐⏐⏐ ≤
2c4b

1
d

N
1
d

N∑
ωi∥∇ P(z j )∥
j=1 j=1

22
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F

t

R

≤
2c4b

1
d

N
1
d

⏐⏐⏐⏐⏐⏐
N∑

j=1

ωi∥∇ P(z j )∥ −

∫
X

∥∇ P(z)∥dµX(z)

⏐⏐⏐⏐⏐⏐+ 2c4b
1
d

N
1
d

∫
X

∥∇ P(z)∥dµX(z)

≤
3c4b

1
d

N
1
d

∫
X

∥∇ P(z)∥dµX(z) =
3c4b

1
d

N
1
d
.

urthermore, for t ∈ [0, 12c4b
1
d N−

1
d ], we have

d
dt

⎛⎝ N∑
j=1

ω j P(y j (P, t))

⎞⎠ =

N∑
j=1

ω j
∥∇ P(y j (P, t))∥2

vϵ(∥∇ P(y j (P, t))∥)

≥

∑
j :∥∇ P(y j (P,t))∥≥ϵ

ω j∥∇ P(y j (P, t))∥ ≥

N∑
j=1

ω j∥∇ P(y j (P, t))∥ − ϵ.

Since |y j (P, t)− x j | ≤ t , the partition R′′
= {R′′

1 , . . . , R′′

N } ∈ P(a, b, c3, 13c4) where
R′′

j = R j ∪ {y j (P, t)} is a partition of X and µX(R′′

j ) = ω j for all j = 1, . . . , N . We can
herefore now apply Propositions 20 and 21 to P and the new partition R′′:

d
dt

⎛⎝ N∑
j=1

ω j P(y j (P, t))

⎞⎠ ≥

N∑
j=1

ω j∥∇ P(y j (P, t))∥ − ϵ

≥

∫
X

∥∇ P(y)∥dµX(y) −

⏐⏐⏐⏐⏐⏐
∫
X

∥∇ P(y)∥dµX(y) −

N∑
j=1

ω j∥∇ P(y j (P, t))∥

⏐⏐⏐⏐⏐⏐− ϵ

≥
1
2

∫
X

∥∇ P(y)∥dµX(y) − ϵ =
1
2

− ϵ,

for every P ∈ ∂Ω and for every t ∈ [0, 12c4b
1
d N−

1
d ]. In conclusion we obtain

N∑
j=1

ω j P(x j (P)) =

N∑
j=1

ω j P(x j ) +

∫ 12c4b
1
d N−

1
d

0

d
dt

⎛⎝ N∑
j=1

ω j P(y j (P, t))

⎞⎠
≥

12c4b
1
d

N
1
d

(
1
2

− ϵ

)
−

3c4b
1
d

N
1
d

= (3 − 12ϵ)
c4b

1
d

N
1
d
> 0. □
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