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Abstract

We consider a loosely-coupled algorithm for fluid-structure interaction based on a Robin interface condition
for the fluid problem (explicit Robin-Neumann scheme). We study the dependence of the stability of this
method on the interface parameter in the Robin condition. In particular, for a model problem we find
sufficient conditions for instability and stability of the method. In the latter case, we find a stability
condition relating the time discretization parameter, the interface parameter, and the fluid and structure
densities. Numerical experiments confirm the theoretical findings and highlight optimal choices of the
interface parameter that guarantee accurate solutions.

Keywords: Fluid-structure interaction; loosely-coupled algorithms; Robin interface conditions; added
mass effect

1. Introduction

Loosely-coupled schemes (also known as explicit) are a very attractive strategy for the numerical solution
of the fluid-structure interaction (FSI) problem. Indeed, they are based on the solution of just one fluid and
one structure problem at each time step, thus allowing a big improvement in the computational costs in
comparison to fully-coupled (implicit) partitioned procedures and monolithic schemes. Another interesting
feature of such schemes is that pre-existing fluid and structure solvers could be often employed.

For these reasons, loosely-coupled schemes have been widely used in many engineering applications such
as aeroelasticity [28, 29, 13]. However, the stability properties of such schemes deteriorate when the so-called
added mass effect becomes relevant. This may happen, in particular, when the fluid and structure densities
are comparable, as happens in hemodynamics [31]. For example, in [10] it has been proven that the classical
explicit Dirichlet-Neumann scheme is unconditionally unstable in the hemodynamic regime, see also [17, 27].

In the recent years, there has been a growing interest in partitioned procedures that are based on Robin
interface conditions. The latter are obtained by considering linear combinations of the standard interface
conditions owing to the introduction of suitable parameters. The choice of such parameters is crucial for
accelerating the convergence of implicit schemes [3, 4, 2, 18, 19]. Some works focused then on the design
of stable loosely-coupled schemes for scenarios which would feature large added mass effect with standard
loosely-coupled schemes such as the explicit Dirichlet-Neumann one. Such schemes are based on Robin
interface conditions [26, 20, 15, 14, 8, 7, 22, 6, 9]. These studies proposed specific values of the interface
parameters which guarantee good stability properties (possibly in combination with suitable stabilizations).

In this paper, the explicit Robin-Neumann scheme, obtained by equipping the fluid subproblem with
a Robin condition with parameter α and the structure one with a Neumann condition, is considered. In
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particular, it is investigated how the choice of the interface parameter α influences the stability of the
numerical solution. To this aim, two analyses on a simplified problem, characterized by an inviscid fluid
and a generalized string structure model, are performed, the first one determining sufficient conditions for
instability of the scheme, whereas the second one sufficient conditions for its stability. This will allow us
to understand the dependence of stability and instability on the physical and numerical parameters and to
properly design stable loosely-coupled schemes which could be easily implemented also by means of available
(even commercial) solvers.

This paper is organized as follows. In section 2 we present the model problem and its discretization.
Section 3 reports the stability analysis in terms of the interface parameter and in Section 4 we present the
results of some numerical experiments, where the issue of accuracy is also discussed by proposing some
”optimal” value of the interface parameters.

2. Position of the problem

2.1. The fluid-structure interaction problem

We introduce in what follows the FSI model problem we have considered for the analyses reported below.
This problem has been proposed in [10] and then used in other works, see e.g. [3, 11]. Although simple,
this model problem allowed to obtain significant quantitiative indications about the convergence of iterative
schemes or the stability of loosely-coupled methods. For example, in [10] the authors derived the well-known
result about the stability of the explicit Dirichlet-Neumann scheme, providing an explicit constraint for the
problem parameters. As it often happens in numerical analysis, the analysis of model problems (usually the
only ones possible by analytical methods) allows to understand crucial numerical properties also related to
more complex problems. For example, the stability result of [10] provided a mathematical explanation of
the added mass effect and is at the basis of the motivation of why the explicit Dirichlet-Neumann scheme is
not feasible in hemodynamics [31].

We consider the 2D fluid domain Ωf which is a rectangle R × L, where R is denoted the “radius” and
L the length of the domain. Σ is the part where the interaction with the structure occurs, see Figure 1.
For the fluid modeling, we consider a linear incompressible inviscid problem. For the structure modeling,
we consider the 1D independent rings model [32] in the domain Ωs = Σ. The displacement can happen

Figure 1: Fluid and structure domains for the simplified fluid-structure interaction problem.

only in the radial direction. Moreover, we assume small displacements so that the structure deformation is
negligible and the fluid domain can be considered fixed. Thus, we have the following FSI problem:
Find the fluid velocity u, the fluid pressure p, and the structure displacement η, such that

ρf
∂u

∂t
+∇p = 0 in (0, T )× Ωf , (1a)

∇ · u = 0 in (0, T )× Ωf , (1b)

u · n =
∂η

∂t
on (0, T )× Σ, (1c)

ρsHs
∂2η

∂t2
+ βη − ψ∂

2η

∂x2
= p on (0, T )× Σ, (1d)
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where n is the outward normal, ρf and ρs are the fluid and structure densities, x is the axial direction
along which Σ is located, Hs is the structure thickness, and β and ψ are two suitable parameters accounting
for the elasticity of the structure. Moreover, we have to equip the fluid problem with boundary conditions
on ∂Ωf \ Σ, in particular pressure conditions imposing a pressure gradient between inlet and outlet, and
an homogeneous Dirichlet condition on the lateral boundary, see [10]. Condition (1c) represents a no-slip
condition at the interface Σ between the fluid and the structure (perfect adherence or kinematic condition).
Due to the lower space dimension of the structure, the independent rings model (1d) represents also the
third Newton law (continuity of the normal stresses or dynamic condition).

2.2. Time discretization and explicit Robin-Neumann scheme

Let ∆t denote the time discretization parameter and tn = n∆t the discrete time instants for n ≥ 1.
Given a scalar- (resp. vector-) valued function of time v(t) (resp. v(t)), we denote by vn (resp. vn) the
approximation of v(tn) (resp. v(tn)) and we set un = (un ·n)|Σ. The discretized-in-time version of problem
(25) at discrete time tn reads: Find un, pn, and ηn, such that

ρf
un − un−1

∆t
+∇pn = 0 in Ωf , (2a)

∇ · un = 0 in Ωf , (2b)

un =
ηn − ηn−1

∆t
on Σ, (2c)

ρsHsδttη
n + βηn − ψ∂

2ηn

∂x2
= pn on Σ. (2d)

Notice that we have considered a backward Euler approximation for the fluid problem and we indicated with
δtt the approximation of the second derivative in time for the structure problem, which will be specified
later on.

By introducing the stability paramater α > 0, we can substitute in (2) the kinematic condition (2c) with
the following linear combination obtained with the dynamic condition (2d):

− αun + pn = −αη
n − ηn−1

∆t
+ ρsHsδttη

n + βηn − ψ∂
2ηn

∂x2
on Σ. (3)

Of course, the solution of problem (2a)-(2b)-(3)-(2d) coincides with that of (2).
We consider a partitioned strategy where condition (3) is given to the fluid problem, whereas (2d) is in

fact the structure problem. Since the fluid problem has been discretized with an implicit method, in (3) we
use the following implicit approximation of the second derivative:

δttη
n = δImpltt ηn =

ηn − 2ηn−1 + ηn−2

∆t2
.

Instead, in the structure problem (2d) we use the explicit leap-frog approximation:

δttη
n = δExpltt ηn =

ηn+1 − 2ηn + ηn−1

∆t2
.

We observe that, due to the explicit time discretization of the structure problem, the fluid and structure
problems are in fact decoupled and, accordingly, we can introduce the following algorithm.

Algorithm 1. Explicit Robin-Neumann algorithm. Given u0, η1, η0, η−1, for n ≥ 1, at time step tn:
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1. Solve the fluid problem discretized in time by means of the implicit backward Euler method, with a
Robin condition at the interface Σ:

ρf
un − un−1

∆t
+∇pn = 0 in Ωf , (4a)

∇ · un = 0 in Ωf , (4b)

− αun + pn = −αη
n − ηn−1

∆t
+ ρsHs

ηn − 2ηn−1 + ηn−2

∆t2
+ βηn − ψ∂

2ηn

∂x2
on Σ; (4c)

2. Solve the structure problem discretized in time by means of the explicit leap-frog method (coinciding
with a Neumann condition at the interface Σ):

ρsHs
ηn+1 − 2ηn + ηn−1

∆t2
+ βηn − ψ∂

2ηn

∂x2
= pn on Σ; (5)

3. Update the discrete time: tn → tn+1.

Remark 2.1. Notice that both subproblems (4) and (5) are discretizations at time tn. The fluid problem,
due to the implicit discretization, is solved for un, whereas the structure problem, due to the explicit
discretization, is solved for ηn+1. This allowed us to obtain a global explicit method, where just one fluid
and one structure problem are solved at each time step.

Remark 2.2. The choice of an inviscid fluid is a simplification that allowed us to provide the analyses
reported below and which has been already used in previous stability analyses, see e.g. [10]. In the numerical
experiments reported in Section 4, we have considered a viscous fluid, due to the application we have in mind,
i.e. hemodynamics. We believe that the choice of an inviscid fluid in the analyses could however provide
meaningful stability results that could be used also for the viscous case. Indeed, the coupling between fluid
and structure is mainly driven by the fluid pressure. For example, in [16] the authors showed that, in
the framework of a Dirichlet-Neumann scheme, it is enough to strongly couple fluid pressure and structure
displacement to have a stable scheme. This is also showed by our numerical results that confirmed all the
theoretical findings, see Section 4.

In the next section, we study how the stability of Algorithm 1 is affected by the choice of the parameter
α.

3. Stability analysis

3.1. Preliminaries

First, we notice that by using Algorithm 1, the discrete kinematic condition (2c) is not satisfied anymore.
Indeed, from (5) we have

βηn − ψ∂
2ηn

∂x2
− pn = −ρsHs

ηn+1 − 2ηn + ηn−1

∆t2
,

where it is understood from now on that the equations we derive hold true at the interface Σ. By introducing
the latter expression in (4c), we obtain

−αun = −αη
n − ηn−1

∆t
+ ρsHs

ηn − 2ηn−1 + ηn−2

∆t2
− ρsHs

ηn+1 − 2ηn + ηn−1

∆t2
,

which leads to

un =
ηn − ηn−1

∆t
+ ρsHs

ηn+1 − 3ηn + 3ηn−1 − ηn−2

α∆t2
. (6)

The latter equation provides a ”correction” of the discrete kinematic condition (2c) as a consequence of the
explicit treatment.
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Following [10], we consider the added mass operator M : H−1/2(Σ) → H1/2(Σ), which allows us to
write the following relation between fluid pressure and velocity at the interface, under the assumption of
null external pressure:

p = −ρfM
(
∂(u · n)

∂t

)
in (0, T )× Σ. (7)

At the time discrete level, we have

pn = −ρfM
(
un − un−1

∆t

)
.

Inserting (6) for both un and un−1 in the previous equation, we obtain

pn = −ρfM
(
ηn − 2ηn−1 + ηn−2

∆t2
+
ρsHs

α∆t3
(
ηn+1 − 4ηn + 6ηn−1 − 4ηn−2 + ηn−3

))
, (8)

which gives a relation between pressure and displacement at the interface.
We can write ηm for any m ≥ 1 as a linear combination of the L2 orthonormal basis functions{

gi(x) =
√

2/L sin
(
iπx
L

)}
:

ηm(x) =
∞∑
i=1

ηmi gi(x),

for suitable coefficients ηmi , see [10, 3]. Notice that gi are eigenfunctions of both the added mass operator
M and of the Laplace operator L = −b ∂xx|Σ, with eigenvalues given by

µi =
L

iπ tanh
(
iπR
L

) , λi =

(
iπ

L

)2

,

respectively.
It is useful for later purposes to highlight that the eigenvalues µi and λi of the discrete versions of the

operatorsM and L obtained with a finite elements approximation, feature the following behaviours [10, 3]:

µmin ∼ h, λmax ∼ h−2, µmax ∼ h0, (9)

where h is the space discretization parameter.

3.2. Sufficient conditions for instability

We present in what follows a first result that provides sufficient conditions that guarantee conditional
instability of the explicit Robin-Neumann scheme. This result generalizes the one proven in [10] about the
unconditional instability of the Dirichlet-Neumann scheme (α→ +∞, see Proposition 3 in [10]).

Proposition 1. The explicit Robin-Neumann scheme is unstable if

ρsHs < max
i
γi, γi = α∆t

4ρfµi + ∆t2 (β + ψλi)

16ρfµi + 4α∆t
. (10)

Proof. We start by inserting in the interface condition (5) the expression of pn given by (8), obtaining

ρsHs
ηn+1 − 2ηn + ηn−1

∆t2
+ βηn − ψ∂

2ηn

∂x2
+

ρfM
(
ηn − 2ηn−1 + ηn−2

∆t2
+
ρsHs

α∆t3
(
ηn+1 − 4ηn + 6ηn−1 − 4ηn−2 + ηn−3

))
= 0.
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Notice that the previous is a relation in the discrete structure displacement solely. Multiplying it by the
basis function gi and integrating over the interface Σ, we obtain

ρsHs

∆t2

(
1 +

ρfµi
α∆t

)
ηn+1
i +

(
−2ρsHs

∆t2
+ β + ψλi +

ρfµi
∆t2

− 4ρsHsρfµi
α∆t3

)
ηni +(

ρsHs

∆t2
− 2

ρfµi
∆t2

+
6ρsHsρfµi
α∆t3

)
ηn−1
i +

(
ρfµi
∆t2

− 4ρsHsρfµi
α∆t3

)
ηn−2
i +

ρsHsρfµi
α∆t3

ηn−3
i = 0.

By multiplying the last identity by α∆t
ρfµi

, we obtain the following characteristic polynomial corresponding to

the previous difference equation:

χ(y) =
ρsHs

∆t2

(
1 +

α∆t

ρfµi

)
y4 +

(
−2αρsHs

ρfµi∆t
+
α∆t

ρfµi
(β + ψλi) +

α

∆t
− 4ρsHs

∆t2

)
y3

+

(
αρsHs

ρfµi∆t
− 2

α

∆t
+

6ρsHs

∆t2

)
y2 +

(
α

∆t
− 4ρsHs

∆t2

)
y +

ρsHs

∆t2
.

(11)

Next, we compute the value of the previous polynomial for y = −1:

χ(−1) =
16ρsHs

∆t2
+

4αρsHs

ρfµi∆t
− 4α

∆t
− α∆t

ρfµi
(β + ψλi)

= ρsHs

(
4α

ρfµi∆t
+

16

∆t2

)
−
(

4α

∆t
+
α∆t (β + ψλi)

ρfµi

)
.

It follows that, under condition (10), χ(−1) < 0 for at least one value of i. Since limy→−∞ χ(y) = +∞,
it follows that in this case there exists at least one real root ȳ < −1 of the polynomial associated to the
difference equation, implying that the method is unstable.

Remark 3.1. We notice that from the expression of γi in (10), this quantity blows up for i→∞. However,
our interest will be that of analyzing the thesis of Proposition 1 in the discretized case, see Section 3.4 for
further details.

3.3. Sufficient conditions for stability

We discuss in the following result some sufficient conditions that guarantee that the explicit Robin-
Neumann scheme is conditionally stable. The idea is to start again from the polynomial (11) and discuss
when its four roots have all modulus less than 1.

To this aim, we first introduce the following version of the implicit function theorem.

Theorem 3.2. Let f ∈ C1
(
R2
)

and suppose that for all x ∈ Ω, an open interval, and for all

y ∈ (ϕ1 (x) , ϕ2 (x)) ,

where ϕ1, ϕ2 : Ω→ R are continuous functions, either

∂f

∂y
(x, y) ≥ b (x) > 0 (12)

or
∂f

∂y
(x, y) ≤ b (x) < 0,

for some continuous function b : Ω→ R hold true. Let g : Ω→ R be such that for all x ∈ Ω

g (x) ∈ (ϕ1 (x) , ϕ2 (x)) , (13a)

g (x)− f (x, g (x))

b (x)
∈ (ϕ1 (x) , ϕ2 (x)) . (13b)
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Then, there exists a unique function ξ : Ω → R such that, for all x ∈ Ω, ξ (x) ∈ (ϕ1 (x) , ϕ2 (x)) and
f (x, ξ (x)) = 0. Furthermore, for all x ∈ Ω

|ξ (x)− g (x)| ≤
∣∣∣∣f (x, g (x))

b (x)

∣∣∣∣ .
Proof. Let us consider the case ∂f

∂y (x, y) ≥ b (x) > 0. The other case follows from it after replacing f (x, y)

with −f (x, y) and b (x) with −b (x). Fix x ∈ Ω. By strict monotonicity of the function y 7→ f (x, y) in the
interval (ϕ1 (x) , ϕ2 (x)), there exists at most one value ξ (x) ∈ (ϕ1 (x) , ϕ2 (x)) for which f (x, ξ (x)) = 0.
This proves uniqueness.

The function y 7→ f (x, y) takes the value f (x, g (x)) at y0 = g (x). Next, consider the point

y1 = y0 −
f (x, y0)

b (x)
,

and assume without loss of generality that y0 ≤ y1, that is f (x, y0) ≤ 0. By the hypotheses, it holds
[y0, y1] ⊆ (ϕ1 (x) , ϕ2 (x)), so that for all y ∈ [y0, y1] it holds ∂f

∂y (x, y) ≥ b (x) > 0 and

f (x, y1) =

∫ y1

y0

∂f

∂y
(x, t) dt+ f (x, y0)

≥ b (x) (y1 − y0) + f (x, y0)

= b (x)

(
y0 −

f (x, y0)

b (x)
− y0

)
+ f (x, y0) = 0.

By the intermediate value theorem, there exists a point ξ (x) ∈ [y0, y1] such that f (x, ξ (x)) = 0. This proves
existence.

Finally,
y0 ≤ ξ (x) ≤ y1

means

g (x) ≤ ξ (x) ≤ g (x)− f (x, g (x))

b (x)

so that

|ξ (x)− g (x)| ≤
∣∣∣∣f (x, g (x))

b (x)

∣∣∣∣ ,
proving the last part of the theorem.

We are ready to introduce the main result of this work.

Theorem 3.3. For all positive ρs, ρf , α, Hs and for all finite sequences of positive eigenvalues {µi}Ni=1,

{λi}Ni=1, there exists a positive δ such that, if 0 < ∆t < δ, then, for all i = 1, . . . , N , the polynomial (11)
has four simple roots in the open unit disc in the complex plane.

Proof. It is convenient to normalize χ (y), setting

Q (y) =
∆t2

ρsHs
χ (y)

= (1 +Biz) y
4 −

(
4 + (2Bi −A) z −ACiz3

)
y3 + (6 + (Bi − 2A) z) y2

− (4−Az) y + 1,
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where

z = ∆t > 0,

A =
α

ρsHs
> 0,

Bi =
α

ρfµi
> 0,

Ci =
1

ρfµi
(β + ψλi) > 0.

For technical reasons, we will equivalently study the polynomial

P (x) = x4Q

(
1

x

)
= x4 − (4−Az)x3 + (6 + (Bi − 2A) z)x2

−
(
4 + (2Bi −A) z −ACiz3

)
x+ (1 +Biz) ,

(14)

showing that all its four roots have modulus greater than 1. Observe first that when z = 0, P (x) reduces to

x4 − 4x3 + 6x2 − 4x+ 1 = (x− 1)
4
.

By classical results, this implies that for sufficiently small z, P (x) has four simple roots as close as desired
to x = 1 in the complex plane (see [21], page 122). Unfortunately, this is not sufficient for our purposes,
and for this reason we need a deeper analysis.

Next, set x = 1 + U . This simplifies our formulas, since we look for roots that are close to 1. This gives

P (1 + U) = U4 +AzU3 + (Bi +A) zU2 +ACiz
3U +ACiz

3. (15)

Recalling that U is a complex variable, we write it as U = u+ iv where u and v are its real and imaginary
parts, respectively. Thus, the equation

(u+ iv)
4

+Az (u+ iv)
3

+ (Bi +A) z (u+ iv)
2

+ACiz
3 (u+ iv) +ACiz

3 = 0

reduces to the system v4 − v2
(
6u2 + 3Azu+ z (A+Bi)

)
+ u4 +Azu3 + (A+Bi) zu

2

+ACiz
3u+ACiz

3 = 0,
v
(
−v2 (4u+Az) + 4u3 + 3Au2z + 2uz (A+Bi) +ACiz

3
)

= 0.
(16)

Notice that the solution of the second equation v = 0 reduces the first equation to

u4 + (u+ 1)Azu2 +Bizu
2 +ACiz

3 (u+ 1) = 0,

which does not have any real solution u > −1 (all summands are positive). Since we look for roots u + iv
close to 0, we disregard the solution of the second equation v = 0 and focus on the other solution

v2 =
4u3 + 3Au2z + 2uz (A+Bi) +ACiz

3

4u+Az
, (17)

which reduces the first equation to

T6u
6 + T5u

5 + T4u
4 + T3u

3 + T2u
2 + T1u+ T0 = 0, (18)
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where

T6 = −64,

T5 = −96Az,

T4 = 32 (A+Bi) z + 48A2z2,

T3 = 32A (A+Bi) z
2 + 8A3z3,

T2 = 4 (A+Bi)
2
z2 + 8A

(
A2 +BiA− 2Ci

)
z3 + 4A2Ciz

4,

T1 = −2A (A+Bi)
2
z3 + 8A2Ciz

4 − 2A3Ciz
5,

T0 = −A2Ci (Bi − zCi) z5.

Since we look for roots that go to 0 with z, we may assume that u is O (z) as z → 0. The original
equation (18) can therefore be approximated with

T2u
2 + T1u+ T0 = 0;

further, disregarding all higher order terms in z, it can be approximated with

4 (A+Bi)
2
u2 − 2A (A+Bi)

2
zu−A2z3CiBi = 0. (19)

If u = O (z), then the third term in the above equation can be neglected and the same equation can be
approximated with

4u− 2Az = 0,

which gives the approximate solution

u =
A

2
z.

If u = O
(
z2
)
, then the first term in equation (19) can be neglected and (19) can be approximated with

2 (A+Bi)
2
u+Az2CiBi = 0,

which gives the approximate solution

u = − ACiBi

2 (A+Bi)
2 z

2.

Next, we need to estimate the derivative with respect to u of

f (z, u) = T6u
6 + T5u

5 + T4u
4 + T3u

3 + T2u
2 + T1u+ T0,

that is
∂f

∂u
(z, u) = 6T6u

5 + 5T5u
4 + 4T4u

3 + 3T3u
2 + 2T2u+ T1. (20)

We are ready to apply Theorem 3.2, with the two following choices for g suggested by the previous
approximate solutions:

g1(z) =
A

2
z,

g2(z) = − ACiBi

2 (A+Bi)
2 z

2.

Assume first u close to g1 (z) . Precisely, assume that for some K1 > 0, ϕ1 (z) = g1 (z) − K1z
2 ≤ u ≤

ϕ2 (z) = g1 (z)+K1z
2, so that hypothesis (13a) in Theorem 3.2 is satisfied. In particular, u = g1 (z)+O

(
z2
)

9



and, from (20),

∂f

∂u
(z, u) = 8 (A+Bi)

2
z2u− 2A (A+Bi)

2
z3 +O

(
z4
)

= 8 (A+Bi)
2
z2g1 (z)− 2A (A+Bi)

2
z3 +O

(
z4
)

= 2A (A+Bi)
2
z3 +O

(
z4
)
.

Thus, for some small positive δ1, if 0 < z < δ1 and g1 (z)−K1z
2 ≤ u ≤ g1 (z) +K1z

2, it holds

∂f

∂u
(z, u) ≥ A (A+Bi)

2
z3 = b1 (z) ,

which shows that, with the above choices, hypothesis (12) in Theorem 3.2 is satisfied.
Next, we need to check hypothesis (13b) in Theorem 3.2, that is

g1 (z)−K1z
2 ≤ g1 (z)− f (z, g1 (z))

b1 (z)
≤ g1 (z) +K1z

2,

or, in other words,
f (z, g1 (z))

b1 (z)
= O

(
z2
)
.

It holds:

f (z, g1 (z))

b1 (z)
=

4 (A+Bi)
2
z2g1 (z)

2 − 2A (A+Bi)
2
z3g1 (z) +O

(
z5
)

A (A+Bi)
2
z3

=
(A+Bi)

2
z2A2z2 −A (A+Bi)

2
z3Az +O

(
z5
)

A (A+Bi)
2
z3

= O
(
z2
)
,

since the first two terms at numerator vanish. Thus, it follows from Theorem 3.2 that there exists a unique
function

u1 : (0, δ1)→
(
A

2
z −K1z

2,
A

2
z +K1z

2

)
such that f (z, u1 (z)) = 0 for all z ∈ (0, δ1) . Furthermore, for all z ∈ (0, δ1)∣∣∣∣u1 (z)− A

2
z

∣∣∣∣ ≤ f (z, g1 (z))

b1 (z)
,

which implies that

u1 (z) =
A

2
z +O

(
z2
)

as z → 0+.
Similarly, let us assume u close to g2 (z) . Precisely, assume that for some K2 > 0, ψ1 (z) = g2 (z)−K2z

3 ≤
u ≤ ψ2 (z) = g2 (z) +K1z

3. Then, it holds u = g2(z) +O
(
z3
)

and

∂f

∂u
(z, u) = −2A (A+Bi)

2
z3 +O

(
z4
)
.

Thus, for some small positive δ2, if 0 < z < δ2 and g2 (z)−K2z
3 ≤ u ≤ g2 (z) +K2z

3, it holds

∂f

∂u
(z, u) ≤ −A (A+Bi)

2
z3 = b2 (z) .

10



Next, we need to check if

g2 (z)−K2z
3 ≤ g2 (z)− f (z, g2 (z))

b2 (z)
≤ g2 (z) +K2z

3

or, in other words, if
f (z, g2 (z))

b2 (z)
= O

(
z3
)
.

It holds:

f (z, g2 (z))

b2 (z)
=
−2A (A+Bi)

2
z3g2 (z)−A2z5CiBi +O

(
z6
)

−A (A+Bi)
2
z3

=
z3A2CiBiz

2 −A2z5CiBi +O
(
z6
)

A (A+Bi)
2
z3

= O
(
z3
)
.

Thus, it follows from Theorem 3.2 that there exists a unique function

u2 : (0, δ2)→

(
− ACiBi

2 (A+Bi)
2 z

2 −K2z
3,− ACiBi

2 (A+Bi)
2 z

2 +K2z
3

)

such that f (z, u2 (z)) = 0 for all z ∈ (0, δ2) . Furthermore, for all z ∈ (0, δ2)∣∣∣∣∣u2 (z) +
ACiBi

2 (A+Bi)
2 z

2

∣∣∣∣∣ ≤ f (z, g2 (z))

b2 (z)
,

which implies that

u2 (z) = − ACiBi

2 (A+Bi)
2 z

2 +O
(
z3
)

as z → 0+.
Let us compute v2 by means of (17) for these two choices. Setting u = u1 (z) = A

2 z +O
(
z2
)
, we obtain

v2
1 =

4u3
1 + 3Au2

1z + 2u1z (A+Bi) +ACiz
3

4u1 +Az

=
Az2 (A+Bi) +O

(
z3
)

3Az +O (z2)

=
(A+Bi)

3
z +O

(
z2
)
.

Setting u = u2 (z) = − ACiBi

2(A+Bi)
2 z2 +O

(
z3
)
, we obtain

v2
2 =

4u3
2 + 3Au2

2z + 2u2z (A+Bi) +ACiz
3

4u2 +Az

=
2z (A+Bi)

(
− ACiBi

2(A+Bi)
2 z2
)

+ACiz
3 +O

(
z4
)

Az +O (z2)

=
ACiA
A+Bi

z3 +O
(
z4
)

Az +O (z2)

=
CiA

A+Bi
z2 +O

(
z3
)
.
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Thus, (u1, v1) and (u2, v2) are solutions of system (16). This means that u1 ± iv1 and u2 ± iv2 are the 4
roots of (15) and 1 + u1 ± iv1 and 1 + u2 ± iv2 are the four roots of (14).

The final step of the proof is to show that these four roots for P (x) have modulus greater than 1.
Accordingly, it holds

(1 + u1)
2

+ v2
1 = 1 +Az +

(A+Bi)

3
z +O

(
z2
)
, as z → 0+.

Thus, there exists a positive δ3 such that (1 + u1)
2

+ v2
1 > 1 for z < δ3. Moreover, it holds

(1 + u2)
2

+ v2
2 =

(
1− ACiBi

2 (A+Bi)
2 z

2

)2

+
CiA

(A+Bi)
z2 +O

(
z3
)

= 1− ACiBi

(A+Bi)
2 z

2 +
CiA

(A+Bi)
z2 +O

(
z3
)

= 1 +
CiA

2

(A+Bi)
2 z

2 +O
(
z3
)
, as z → 0+.

Thus, there exists a positive δ4 such that (1 + u2)
2

+ v2
2 > 1 for z < δ4.

This proves that the four roots of χ(y) in (11) have all modulus strictly less than 1, provided that
∆t < δ = min{δ1, δ2, δ3, δ4}.

Remark 3.4. We observe that δ in the previous theorem depends on ρs, ρf , α, Hs, µi λi. However, since
such values are fixed for a given specific problem, we were able to prove the stability of the method provided
that ∆t is small enough.

3.4. Discussion on the stability and instability conditions

The results proven above give us sufficient conditions for instability or stability of the explicit Robin-
Neumann scheme. In particular, in the last case, we found that, given α > 0, for ∆t small enough this
scheme is absolutely stable.

In view of the numerical experiments, we discuss hereafter more in detail the hypotheses of the previous
results in the discretized case, that is considering eigenvalues λi and µi in a range of interest characterized
by the relevant frequencies induced by the introduction of the computational mesh, see in particular (9). To
this aim, in what follows we propose three (non equivalent) sufficient conditions that imply the instability
condition (10):

i)

ρsHs < α∆t
4ρfµmin + ∆t2 (β + ψλmax)

16ρfµmin + 4α∆t
= η. (21)

This is obtained by taking the greatest possible value of i in (10);

ii) 
ρsHs < ρfµmin + ∆t2 (β + ψλmax) /4 = η1

α >
16ρfµminρsHs

∆t (4ρfµmin + ∆t2 (β + ψλmax)− 4ρsHs)
= α1.

(22)

This is obtained by solving (21) in the variable α;

12



iii) 
ρsHs < ρfµ1 = η2

α >
4ρfµ1ρsHs

∆t (ρfµ1 − ρsHs)
= α2.

(23)

This is obtained by taking i = 1 in (10), deleting the term ∆t2 (β + ψλ1) and solving in α.

1. Dependence on ρsHs. By looking at conditions (22) and (23), we see that when ρsHs < max (η1, η2),
the explicit Robin-Neumann scheme is unstable if α is large enough. In particular, for decreasing values
of ρsHs < η1 (i.e. for scenarios where the added mass effect would increase if the explicit Dirichlet-
Neumann scheme was used), the value of α1 decreases, enlarging the range of α such that the scheme
is unstable. The same argument holds true for α2 when ρsHs < η2.

2. Dependence on ∆t. From Theorem 3.3, it holds that for any fixed α > 0, the explicit Robin-Neumann
scheme is stable provided that ∆t is small enough. This result is consistent with Proposition 1. Indeed,
for all indices i, it holds

lim
∆t→0

γi = lim
∆t→0

α∆t
4ρfµi + ∆t2 (β + ψλi)

16ρfµi + 4α∆t
= 0.

Accordingly, it holds also from (22):
lim

∆t→0
α1 = +∞.

Observe also that, by (23), for ρsHs < η2 instability of the scheme follows if

∆t >
4ρfµ1ρsHs

α (ρfµ1 − ρsHs)
.

This means that in order to have stability according to Theorem 3.3 we need at least δ ≤ cα−1. The
dependence of δ on α is still under study and will be hopefully discussed in future studies.

3. Dependence on h. By exploiting the behaviour of µmin and λmax with respect to h, see (9), we find
from (21) that limh→0 η = +∞ for ∆t fixed. This means that the stability properties of the method
deteriorates when h decreases. This is justified by the fact that when h becomes small, the fluid and
structure solutions should match a larger number of d.o.f. at the interface and, due to the implicit
treatment for the fluid time discretization and the explicit one for the structure, this matching becomes
more and more difficult to be satisfied for decreasing values of h.

4. ∆t,h→ 0. From (9) and (22), it holds that if ∆t ∼ h, then lim∆t,h→0 α1 ' 16ρsHsρf
ψ−4ρsHs

. When ρsHs is

small enough (i.e. in presence of large added mass effect if the explicit Dirichlet-Neumann scheme was
used), this limit is positive and bounded, unlike the case ∆t → 0, h fixed (cf. point 2). This means
that in this case we have instability for a wide range of values of α even as ∆t → 0. This suggests
that the value of δ in Theorem 3.3 should be smaller (up to a constant) than h. Indeed, we have the
following result.

Lemma 3.5. The value of δ in Theorem 3.3 satisfies the relation

δ < ch,

for a suitable constant c.

Proof. Fix α > 0. Call δ = f(h) the relationship between δ and h. Let assume that the thesis is not
true, that is that there exists a sequence of values hj and correspondingly δj = f(hj), such that

lim
j→+∞

δj
hj

= +∞. (24)
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From Theorem 3.3, it holds that stability is guaranteed if ∆t = ∆tj = δj/2. On the other side, from
(24) and the choice of ∆t above, it holds hj = o(δj) = o(∆tj). From (21), it holds that in the range
h = o (∆t), lim∆t,h→0 η = +∞, obtaining unconditional instability. This contradicts the previous
finding about stability. This means that the thesis is true.

5. The cases α = +∞ and α = 0. Theorem 3.3 holds true for any α ∈ (0,+∞). The case α = +∞
corresponds to the explicit Dirichlet-Neumann scheme. In this case, the polynomial χ(y) in (11)
corresponds to the one found in [10] (see Proposition 3 therein), where it is shown that at least one
root has modulus greater than one independently of ∆t (cf. also (21)).

Regarding α = 0, we obtain χ(y) = ρsHs

∆t2 (y−1)4. This means that the solution does not blow up, even
if it is not strictly absolute stable. This is in accordance with the fact that in this case the numerical
solution does not evolve during the time evolution, being always equal to the initial condition (the
same Neumann datum is transferred at the interface). Thus, accuracy is completely lost. From this
observation, we can argue that too small values of α, even though give stability, do not lead to an
accurate solution.

4. Numerical results

4.1. Preliminaries

In this section we present some numerical results with the aim of validating the theoretical findings
reported in the previous section. In particular, we studied the effectiveness of the analyses obtained for the
model problem (25), when applied to complete three-dimensional fluid and structure models. Indeed, the
analysis, although performed over a simplified model, might give important indications about the stability
of the explicit Robin-Neumann scheme also in more complex scenarios. This is a quite common attitude,
see for example [10, 3, 11] which used the same simplified model for the analysis and then investigated the
effectiveness of their findings in more complex numerical experiments.

All the simulations are inspired from hemodynamics. This problem is of great interest for our purposes
since it is in general characterized by a large added mass effect, so that the stability of explicit methods is
a challenging issue.

We considered in particular a 3D incompressible fluid described by the Navier-Stokes equations written
in the Arbitrary Lagrangian-Eulerian formulation [12] and a 3D linear elastic structure. Ωf and Ωs are the
fluid and structure domains, Σ the fluid-structure interface, Σout the external structure surface, n the unit
normal outgoing the fluid domain, and ns the unit normal outgoing the structure domain. Then, for each
t, we have [30]:

ρf∂
A
t u+ ρf ((u−w) · ∇)u−∇ · T f (u, p) = 0 in Ωf , (25a)

∇ · u = 0 in Ωf , (25b)

u = ∂tη on Σ, (25c)

T fn = T sn on Σ, (25d)

ρs∂ttη̂ −∇ · T̂ s(η̂) = 0 in Ω̂s, (25e)

γST η̂ + T̂ s(η̂)ns = 0 on Σ̂out, (25f)

where T f (u, p) = −pI + µ(∇u + (∇u)T ) is the fluid Cauchy stress tensor and µ the dynamic viscosity;
∂At is the ALE time derivative and w is the velocity of the fluid domain obtained by solving an harmonic
extension of the interface structure velocity with homogeneous Dirichlet boundary conditions on ∂Ωf \ Σ.
The structure problem (25e) is instead solved in a Lagrangian framework, identified by ̂. Moreover, T s is
the structure Cauchy stress tensor given by

T s(η) = E
2(1+ν) (∇η + (∇η)T ) + νE

(1+ν)(1−2ν) (∇ · η)I,
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where E is the Young modulus E and ν the Poisson ratio. Condition at the external surface (25f) represents
a Robin condition to account for the effect of an elastic surrounding tissue with elasticity modulus γST [23].
The previous problem needs to be completed with boundary and initial conditions.

For the time discretization, we used the same BDF schemes of the analysis for both the fluid and
structure, with a semi-implicit treatment of the fluid convective term, whereas for the space discretization
we employed P1bubble − P1 finite elements for the fluid and P1 finite elements for the structure. The
fluid domain at each time step is obtained by extrapolation of previous time steps (semi-implicit approach
[16, 5, 25]). We used the following data: fluid viscosity µ = 0.035 g/(cms), fluid density ρf = 1 g/cm3,
structure density ρs = 1.1 g/cm3, Poisson ratio ν = 0.49, Young modulus E = 3 · 105 Pa, surrounding tissue
parameter for the structure problem [23] γST = 1.5 · 105 Pa/cm.

The fluid domain is a cylinder with length L = 5 cm and radius R = 0.5 cm, whereas the structure
domain is the external cylindrical crown with thickness Hs = 0.1 cm. The thickness of the structure is small
enough to make acceptable the use of a membrane model in the stability analysis of model problem (25).
We considered a couple of meshes with 4680 tetrahedra and 1050 vertices for the fluid and 1260 vertices for
the structure (mesh I). Another couple of meshes (mesh II) has been obtained by halving the values of the
space discretization parameter.

In all the cases we reported also the numerical solution obtained with the same ∆t by using an implicit
method, in particular the Robin-Neumann scheme, with an absolute tolerance of 10−7 on the convergence of
the interface conditions. In these cases, the value of α has been set by following the optimization procedure
proposed in [19] for the Robin-Robin scheme in the case of cylindrical interfaces. This leads to two optimal
values αoptf and αopts in the Robin interface conditions. Since in the hemodynamic regime the convergence

properties of the implicit Robin-Neumann scheme with the optimal value αoptf are very similar to that of

the ”optimal” implicit Robin-Robin scheme [18], we propose here to use α = αoptf for the implicit Robin-

Neumann scheme. In Table 1 we reported the values of such optimal values αoptf for different ∆t and for
mesh I.

∆t αoptf

10−3 1702
5 · 10−4 1045

2.5 · 10−4 866
1.25 · 10−4 857
6.25 · 10−5 900
3.125 · 10−5 1034

Table 1: Values of the optimal parameter αopt
f obtained to accelerate the implicit RN scheme.

If not otherwise specified, at the inlet we prescribed a Neumann condition given by the following pressure
function

Pin = 500

(
1− cos

(
2πt

0.01

))
dyne/cm2, t ≤ T = 0.04 s,

with absorbing resistance conditions at the outlets [26, 24].
All the numerical results have been obtained with the parallel Finite Element library LIFEV [1].

4.2. On the stability of the numerical solution

In the first set of numerical experiments, we study the stability of the solution obtained by means of the
explicit Robin-Neumann scheme. The time discretization parameter is ∆t = 0.0005 s. In Figure 2 we report
the mean pressure over the middle cross section of the cylinder obtained for different values of α and with
the RN implicit method.

From these results we observe stability of the numerical solution obtained with the explicit Robin-
Neumann method for some values of the interface parameter α. The accuracy deteriorates for values of α
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Figure 2: Fluid mean pressure over the middle cross section (z = L/2 = 2.5 cm) for different values of α. In black the solution
obtained with an implicit method.

approaching 0 (cf. point 5 in the Discussion of Sect. 3.4). Notice also that with α = 2500 the numerical
solution (not reported here) blows up. The same happens for bigger values of α. This is consistent with
the result proven in Proposition 1, for which an unstable solution is obtained for α greater than a threshold
when the ratio between fluid and structure densities is large enough, see (22)-(23) (cf. also point 1 in the
Discussion of Sect. 3.4).

In Table 2 we indicate if stability is achieved for different space and time discretizations parameters.
From the first two rows, we observe that, given a value of α, stability is achieved only if ∆t is small enough.

Mesh ∆t α Stability
I 0.625 · 10−4 4689 OK
I 1.25 · 10−4 4689 NO
I 1.25 · 10−4 2000 OK
I 5 · 10−4 2000 OK
II 5 · 10−4 2000 NO

Table 2: Stability of the explicit RN scheme for different values of the parameters.

Indeed, with the greatest ∆t no stability is achieved and the numerical solution blows up. This was expected
from the theoretical findings, cf. Theorem 3.3, Remark 3.4 and point 2 in the Discussion of Sect. 3.4. From
the first three lines, we observe that the value of ∆t needed to have stability could be increased when α is
decreased. This is in accordance with point 2 in the Discussion of Sect. 3.4. Finally, from the last two rows,
we find that stability is achieved for given values of α and ∆t if the mesh is not too fine. Indeed, with the
finest mesh (mesh II) no stability is achieved and the numerical solution blows up. Again, this confirms the
observation made in the Discussion of Sect. 3.4, see point 3.

4.3. On the selection of α for the explicit Robin-Neumann scheme

Two very interesting topics that are not yet discussed are: i) how to select not empirically a reasonable
value of α that should fall in the range of stability and ii) which the dependence of the accuracy of explicit
Robin-Neumann methods on α is. Here and in the next section we provide some preliminary answers to
these two points.

A reasonable answer to question i) is to use for the explicit RN scheme the optimal value αoptf introduced
to guarantee an efficient convergence of the implicit Robin-Neumann scheme, see Sect. 4.1. Since such
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a value makes the convergence factor of the implicit method (thus the error at each iteraton) small, we
expect that the use of the same value of α for the explicit counterpart of the method could reduce the error
accumulated at each time step. Although this does not guarantee that the best value of α (in terms of
accuracy of the explicit RN scheme) is achieved, it provides an effective way to obtain a value of α which is
easily computable (see procedure reported in [19]), avoiding the manual investigation of several values of α.

We consider the same numerical experiment as above, with time discretization parameter ∆t = 0.001 s.
In Figure 3, we report the mean pressure and displacement over the middle cross sections for α = αoptf (=
1702), 1500, 2250, 3000.

Figure 3: Fluid mean pressure (up) and structure mean displacement (bottom) over the middle cross section (z = L/2 = 2.5 cm)

for different values of α close to αopt
f . Notice in black the solution obtained with an implicit method.

For α > 3500 the solution blows up, whereas for α < 1500 the accuracy deteriorates. We observe that the
solution obtained with the value αoptf proposed a priori is very close to the optimal ”manual” one (α = 3000)
found empirically (the latter intended as the most close to the implicit one). This result highlights that
an effective a priori choice of α that guarantees stability and accuracy is possible, at least in the case of a
cylindrical domain.

Remark 4.1. Notice that, from the computation of αoptf for decreasing values of ∆t, we found that its value
is greater than zero and does not blow up when ∆t→ 0. Thus, from point 2 of the Discussion of Sect. 3.4,
we have that δ ≤ c(αopt)−1 still makes sense also when ∆t→ 0, since δ > 0.
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4.4. On the accuracy of the explicit Robin-Neumann scheme

Regarding issue ii) reported in the previous section, i.e. the accuracy of the explicit RN scheme, we
present here numerical results obtained for mesh I and for different values of ∆t, using the same data as
above. In particular, in Figure 4 we report a comparison between the RN implicit and explicit solutions
obtained both with αoptf . From these results, we observe that the two solutions, as expected, tend to coincide

Figure 4: Comparison between the implicit RN and the explicit RN solutions for different values of ∆t.

when ∆t becomes smaller and smaller.
We also notice that the implicit solution reached experimental convergence (in the sense that the solution

for smaller ∆t did not change so much) for ∆t = ∆t1 = 0.000125. On the other side, the explicit solution
changed also for smaller values of ∆t and only for ∆t = 0.00003125 = ∆t2 = ∆t1/4 it seemed to have
reached convergence. However, to obtain the implicit RN solution about 14 iterations (in average) per time
step are required. This means that to go from t to t + ∆t1, we need to solve about 14 fluid and structure
subproblems by using the implicit RN scheme, against 4 (= ∆t2/∆t1) fluid and structure subproblems
needed by the explicit RN scheme (which needs to solve only 1 fluid and structure subproblems per time
step). This shows the reliability (at least for the proposed numerical experiment) of the explicit RN in terms
of stability, accuracy and efficiency.

In order to go further towards the application of the explicit RN scheme to cases with physiological data,
we present in what follows numerical results obtained by prescribing a physiological Dirichlet condition at
the inlet of the cylindrical domain. This test aims at providing preliminary results towards the study of the
reliability of the explicit Robin-Neumann scheme in real cases coming from hemodynamics. In particular,
we consider the flow rate X(t) depicted in figure 5, top, together with a parabolic velocity profile at each
time step.

In Figure 5, bottom, we report the mean pressure over the middle cross section obtained for ∆t = 4·10−3,
both for the implicit and the explicit solutions obtained by the Robin-Neumann scheme. We observe a better
agreement between implicit and explicit solutions (even with a larger value of ∆t) with respect to the previous
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Figure 5: Up: Physiological flow rate prescribed at the inlet; Bottom: Fluid mean pressure over the middle cross section
(z = L/2 = 2.5 cm) obtained for the explcit RN scheme, for ∆t = 40 · 10−4 and different values of α. Implicit solution in black.

test (see Figure 4). Probably, this is due to the smaller frequencies of the physiological signal with respect
to cos

(
2πt
0.01

)
. This is a very interesting result in view of clinical applications. This means that the explicit

Robin-Neumann scheme seems to provide very accurate results with a decreased computational effort with
respect to the implicit RN scheme, also in the case of a physiological input.

5. Conclusions

In this work we propose, for a model problem, an analysis of stability of a loosely-coupled scheme of
Robin-Neumann type for the fluid-structure interaction problem, possibly featuring a large added mass
effect. This allows us to find sufficient conditions for the value of the interface parameter α for both stability
and instability solutions. In particular, the range of α guaranteeing stability becomes smaller for increasing
added mass effect but it is not empty, indicating that also for a large added mass effect the loosely-coupled
scheme is stable. Such a range increases its dimension for decreasing values of ∆t, whereas for h → 0 the
stability properties worsen.
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In order to make the results found in this paper reliable for concrete applications, we need now to apply
them to realistic geometries and boundary data. This would make the explicit Robin-Neumann scheme an
effective strategy to be considered for example in hemodynamics, where the added mass effect is elevated.

Acknowledgments

C. Vergara has been partially supported by the H2020-MSCA-ITN-2017, EU project 765374 ”ROMSOC
- Reduced Order Modelling, Simulation and Optimization of Coupled systems” and by the Italian research
project MIUR PRIN17 2017AXL54F. “Modeling the heart across the scales: from cardiac cells to the whole
organ”. The authors would like also to thank the anonimous referees for their useful suggestions that allowed
to improve the paper.

20



References

[1] Lifev user manual, http://lifev.org, 2010.

[2] M. Astorino, F. Chouly, and M. Fernández. Robin based semi-implicit coupling in fluid-structure
interaction: stability analysis and numerics. SIAM J. Sci. Comput., 31(6):4041–4065, 2009.

[3] S. Badia, F. Nobile, and C. Vergara. Fluid-structure partitioned procedures based on Robin transmission
conditions. J. Comput. Physics, 227:7027–7051, 2008.

[4] S. Badia, F. Nobile, and C. Vergara. Robin-Robin preconditioned Krylov methods for fluid-structure
interaction problems. Comput. Methods Appl. Mech. Engrg., 198(33-36):2768–2784, 2009.

[5] S. Badia, A. Quaini, and A. Quarteroni. Splitting methods based on algebraic factorization for fluid-
structure interaction. SIAM J Sc Comp, 30(4):1778–1805, 2008.

[6] J.W. Banks, W.D. Henshaw, and D.W. Schwendeman. An analysis of a new stable partitioned algorithm
for fsi problems. part i: Incompressible flow and elastic solids. J. Comput. Physics, 269:108–137, 2014.

[7] M. Bukac, S. Canic, R. Glowinski, B. Muha, and A. Quaini. A modular, operator-splitting scheme for
fluid–structure interaction problems with thick structures. Int. J. Num. Meth. Fluids, 74(8):577–604,
2014.

[8] M. Bukac, S. Canic, R. Glowinski, J. Tambaca, and A. Quaini. Fluid–structure interaction in blood
flow capturing non-zero longitudinal structure displacement. J. Comput. Physics, 235:515–541, 2013.

[9] E. Burman and M.A. Fernández. Explicit strategies for incompressible fluid-structure interaction prob-
lems: Nitsche type mortaring versus robin–robin coupling. Int. J. Num. Methods Engrg., 97:739–758,
2014.

[10] P. Causin, J.F. Gerbeau, and F. Nobile. Added-mass effect in the design of partitioned algorithms for
fluid-structure problems. Comput. Methods Appl. Mech. Engrg., 194(42-44):4506–4527, 2005.

[11] W.G. Dettmer, A. Lovric, C. Kadapa, and D. Peric. New iterative and staggered solution schemes for
incompressible fluid-structure interaction based on dirichlet-neumann coupling. Int. J. Num. Methods
Engrg., pages 1 – 32, 2020.

[12] J. Donea. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure
interaction. Comput. Methods Appl. Mech. Engrg., 33:689–723, 1982.

[13] C. Farhat, K.G. van der Zee, and P. Geuzaine. Provably second-order time-accurate loosely-coupled
solution algorithms for transient nonlinear computational aeroelasticity. Comput. Methods Appl. Mech.
Engrg., 195:1973–2001, 2006.

[14] M. Fernandez, J. Mullaert, and M. Vidrascu. Explicit robin–neumann schemes for the coupling of
incompressible fluids with thin-walled structures. Comput. Methods Appl. Mech. Engrg., 267:566–593,
2013.

[15] M.A. Fernández. Incremental displacement-correction schemes for incompressible fluid-structure inter-
action - stability and convergence analysis. Numerische Mathematik, 123(1):21–65, 2013.

[16] M.A. Fernández, J.F. Gerbeau, and C. Grandmont. A projection semi-implicit scheme for the coupling
of an elastic structure with an incompressible fluid. Int. J. Num. Methods Engrg., 69(4):794–821, 2007.

[17] C. Forster, W. Wall, and E. Ramm. Artificial added mass instabilities in sequential staggered cou-
pling of nonlinear structures and incompressible viscous flow. Comput. Methods Appl. Mech. Engrg.,
196(7):1278–1293, 2007.

21



[18] L. Gerardo Giorda, F. Nobile, and C. Vergara. Analysis and optimization of robin-robin partitioned
procedures in fluid-structure interaction problems. SIAM J. Numer. Anal., 48(6):2091–2116, 2010.

[19] G. Gigante and C. Vergara. Analysis and optimization of the generalized schwarz method for elliptic
problems with application to fluid-structure interaction. Numer. Math., 131(2):369–404, 2015.

[20] G. Guidoboni, R. Glowinski, N. Cavallini, and S. Canic. Stable loosely-coupled-type algorithm for
fluid–structure interaction in blood flow. J. Comput. Physics, 228:6916–6937, 2009.

[21] K. Knopp. Theory of functions: Parts I and II. Dover Publications, 1996.

[22] M. Lukacova-Medvid’ova, G.Rusnakova, and A.Hundertmark-Zauskova. Kinematic splitting algorithm
for fluid–structure interaction in hemodynamics. Comput. Methods Appl. Mech. Engrg., 265:83–106,
2013.

[23] P. Moireau, N. Xiao, M. Astorino, C. A. Figueroa, D. Chapelle, C. A. Taylor, and J.F. Gerbeau.
External tissue support and fluid–structure simulation in blood flows. Biomechanics and Modeling in
Mechanobiology, 11(1–2):1–18, 2012.

[24] F. Nobile, M. Pozzoli, and C. Vergara. Time accurate partitioned algorithms for the solution of fluid-
structure interaction problems in haemodynamics. Computer & Fluids, 86:470–482, 2013.

[25] F. Nobile, M. Pozzoli, and C. Vergara. Inexact accurate partitioned algorithms for fluid-structure inter-
action problems with finite elasticity in haemodynamics. Journal of Computational Physics, 273:598–
617, 2014.

[26] F. Nobile and C. Vergara. An effective fluid-structure interaction formulation for vascular dynamics by
generalized Robin conditions. SIAM J Sc Comp, 30(2):731–763, 2008.

[27] F. Nobile and C. Vergara. Partitioned algorithms for fluid-structure interaction problems in haemody-
namics. Milan Journal of Mathematics, 80(2):443–467, 2012.

[28] K.C. Park, C.A. Felippa, and J.A. De Runtz. Stabilisation of staggered solution procedures for fluid-
structure interaction analysis. Comput. Methods Appl. Mech. Engrg., 26, 1977.

[29] S. Piperno and C. Farhat. Partitioned prodecures for the transient solution of coupled aeroelastic
problems-Part II: energy transfer analysis and three-dimensional applications. Comput. Methods Appl.
Mech. Engrg., 190:3147–3170, 2001.

[30] A. Quarteroni, L. Dede’, A. Manzoni, and C. Vergara. Mathematical Modelling of the Human Cardio-
vascular System - Data, Numerical Approximation, Clinical Applications. Cambridge University Press,
2019.

[31] A. Quarteroni, A. Manzoni, and C. Vergara. The cardiovascular system: Mathematical modelling,
numerical algorithms and clinical applications. Acta Numerica, 26:365–590, 2017.

[32] A. Quarteroni, M. Tuveri, and A. Veneziani. Computational vascular fluid dynamics: Problems, models
and methods. Computing and Visualisation in Science, 2:163–197, 2000.

22


	Introduction
	Position of the problem
	The fluid-structure interaction problem
	Time discretization and explicit Robin-Neumann scheme

	Stability analysis
	Preliminaries
	Sufficient conditions for instability
	Sufficient conditions for stability
	Discussion on the stability and instability conditions

	Numerical results
	Preliminaries
	On the stability of the numerical solution
	On the selection of  for the explicit Robin-Neumann scheme
	On the accuracy of the explicit Robin-Neumann scheme

	Conclusions

