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Abstract

In this work we present and compare three Riemann solvers for the artificial compressibility per-

turbation of the 1D variable density incompressible Euler equations. The goal is to devise an

artificial compressibility flux formulation to be used in Finite Volume or discontinuous Galerkin

discretizations of the variable density incompressible Navier-Stokes equations. Starting from

the constant density case, two Riemann solvers taking into account density jumps at fluid inter-

faces are first proposed. By enforcing the divergence free constraint in the continuity equation,

these approximate Riemann solvers deal with density as a purely advected quantity. Secondly,

by retaining the conservative form of the continuity equation, the exact Riemann solver is de-

rived. The variable density solution is fully coupled with velocity and pressure unknowns. The

Riemann solvers are compared and analysed in terms of robustness on harsh 1D Riemann prob-

lems. The extension to multidimensional problems is described. The effectiveness of the exact

Riemann solver is demonstrated in the context of high-order accurate discontinuous Galerkin

discretization of variable density incompressible flow problems. We numerically validate the

implementation considering the Kovasznay test case and the Rayleigh-Taylor instability prob-

lem.
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1. Introduction

The numerical solution of both the constant and the variable density Incompressible Navier-

Stokes (INS) equations is a challenging task. On the one hand explicit integration in time is

usually not employed due to the algebraic nature of the incompressibility constraint, on the other

hand fully coupled velocity-pressure formulations result in systems of DAEs that are expensive to

solve due to the saddle point nature of the problem. Decoupled time integration strategies based

on projection methods, see Chorin [7] and Temam [13], and artificial compressibility methods,

see Chorin [6], have been widely employed to improve the effectiveness of the solution strat-

egy. A pressure correction scheme for variable density incompressible flows was devised by

Guermond and Quartapelle [9] while Pyo and Shen proposed a Gauge-Uzawa method [12].

In the context of discontinuous Galerkin (dG) formulations of incompressible flow problems,

the artificial compressibility concept has been employed to recover hyperbolicity at inter-element

boundaries and devise a suitable Godunov numerical flux for velocity-pressure coupling, see

e.g. [3, 4]. Since artificial compressibility is introduced only at the interface flux level to obtain

a physically meaningful coupling between pressure and velocity, the resulting INS equations

discretization is consistent irrespectively of the amount of artificial compressibility introduced.

The artificial compressibility flux allows for equal degree velocity-pressure formulations and

provides robustness when dealing with convection-dominated flow regimes but it only mitigates

the difficulties involved in the solution process. In the context of fully coupled dG formulations of

the INS equations efficiency might be pursued with ad hoc preconditioners, for example a recent

work by Botti et al. [5] reports promising results by means of agglomeration based h-multigrid

solution strategies.

In this work we seek to extend the dG method introduced in [3] by Bassi et al. to variable den-

sity incompressible flows. In particular, we introduce the exact and two approximate Riemann

solvers for the artificial compressibility perturbation of the 1D variable density incompressible

Euler equations. In the approximate Riemann solvers we add a transport equation for the den-

sity unknown to the constant density artificial compressibility equations devised by Elsworth and

Toro [8] in their Riemann solver. Then we consider two choices for the density in the momentum
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equation, i.e., either a constant reference density or the variable physical density. In the former

case velocity and pressure solutions are decoupled from density fluctuations while in the latter

velocity and pressure are influenced by density jumps across the contact discontinuity. In the

exact Riemann solver the conservative continuity equation is considered in place of the density

transport equation. Only in this setting the density solution might differ from the left and right

states. Interestingly, the exact Riemann solver admits an explicit solution, therefore it is also the

most efficient. The solvers are designed to be applied in the direction normal to element faces

and are well suited to be employed in the context of high order dG discretizations. To this end

we provide a multidimensional extension for each of the proposed solvers.

The paper is organized as follows: in Section 3 and Section 4 we present the approximate

Riemann solvers while in Section 5 we derive the exact Riemann solver. In Section 7.1 we con-

sider five benchmark Riemann problems to compare the numerical fluxes provided by exact and

approximate Riemann solvers. Next we turn to the dG discretization of the variable density INS

equations, where artificial compressibility is introduced only at the flux level. The convergence

properties of the dG formulation is assessed on the 2D Kovasnzay test case in Section 7.2. Fi-

nally, the robustness of the formulation is assessed considering the Rayleigh-Taylor instability

problem in Section 7.3.

2. Governing equations of the 1D Riemann problem

The 1D variable density incompressible Euler equations, modified by means of an artificial

compressibility term, are
1

ρ0c2

∂p
∂t

+
∂u
∂x

= 0,

∂(ρu)
∂t

+
∂(ρu2 + p)

∂x
= 0,

∂ρ

∂t
+
∂(ρu)
∂x

= 0,

(1)

where p is the pressure, u the velocity and ρ is the density. Here c ∈ R\ {0} is the artificial

compressibility coefficient and ρ0 = 1 is a reference density.

Starting from the initial piecewise constant data pL, uL, ρL, and pR, uR, ρR, that distinguish
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Table 1: Sets of equations for the three Riemann solvers here considered.
CDRS SDRS ERS
1

ρ0c2

∂p
∂t

+
∂u
∂x

= 0

∂(ρ0u)
∂t

+
∂(ρ0u2 + p)

∂x
= 0

∂ρ

∂t
+ u

∂ρ

∂x
= 0

1
ρ0c2

∂p
∂t

+
∂u
∂x

= 0

∂(ρu)
∂t

+
∂(ρu2 + p)

∂x
= 0

∂ρ

∂t
+ u

∂ρ

∂x
= 0

1
ρ0c2

∂p
∂t

+
∂u
∂x

= 0

∂(ρu)
∂t

+
∂(ρu2 + p)

∂x
= 0

∂ρ

∂t
+
∂(ρu)
∂x

= 0

left (L) and right (R) initial states respectively, we wish to find the solution of the 1D Riemann

problem for model (1). The solution consists of four states separated by two centred waves,

hereafter called ”left” and ”right” waves, and a contact discontinuity (see Fig. 1). Left and right

waves can be either rarefactions or shocks depending on the initial values and across them all the

unknowns can change. Instead, in the region between waves, called star region (?), pressure and

normal velocity are constant and only the density can vary.

In Tab. 1 we report, for the sake of comparison, the sets of equations for the Riemann solvers

considered in this work. The first two solvers (CDRS and SDRS) are exact solvers based on

modified sets of equations as compared to problem (1) and thus they give rise to approximate

solutions. In particular

• CDRS (Constant Density Riemann Solver) is the Riemann solver proposed by Elsworth and

Toro [8] for constant density flows. Here, to account for density variations, we simply aug-

ment the original set of equations with the density transport equation. Note that a reference

density ρ0 equal to one is employed in the momentum equation.

• SDRS (Switched Density Riemann Solver) is the exact Riemann solver for problem (1)

except that the continuity equation is simplified imposing a solenoidal velocity field. As a

result the density is a purely advected property.

• ERS is the Exact Riemann Solver for model (1).
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Figure 1: Structure of the Riemann problem.

3. Constant density approximate Riemann solver (CDRS)

The exact 1D Riemann solver devised by Elsworth and Toro in [8] for constant density incom-

pressible flows is based on the following hyperbolic set of equations

1
ρ0c2

∂p
∂t

+
∂u
∂x

= 0,

∂(ρ0u)
∂t

+
∂(ρ0u2 + p)

∂x
= 0.

(2)

Setting
Dρ
Dt

=
∂ρ

∂t
+ u

∂ρ

∂x
= 0, (3)

we consider the density as a purely advected property, i.e., a property that can change only across

the contact discontinuity. Moreover, according to Eq. (2), pressure and velocity solutions inside

the star region are decoupled from the density fluctuations and can be obtained by means of the

solver of [8]. The density solution reads

ρ?L = ρL, and ρ?R = ρR. (4)
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4. Switched density approximate Riemann solver (SDRS)

As for the constant density Riemann solver, the switched density Riemann solver enforces the

divergence free constraint inside the continuity equation of problem (1). Accordingly, the density

is a purely advected property, and its solution inside the star region reads

ρ?L = ρL, and ρ?R = ρR. (5)

Since the density can vary only across the contact discontinuity, the first two equations of problem

(1) can be rewritten as
1

ρ0c2

∂p
∂t

+
∂u
∂x

= 0,

∂u
∂t

+
∂(u2 + p/ρ̂)

∂x
= 0,

(6)

where the constant density ρ̂ takes the left (resp. the right) value on the left (resp. on the right)

of the contact discontinuity. In compact form, system (6) reads

∂w
∂t

+
∂F(w)
∂x

= 0, (7)

with

w =


p

u

 , F (w) =


ρ0c2u

u2 +
p
ρ̂

 . (8)

The flux Jacobian matrix is given by

A =
∂F (w)
∂w

=


0 ρ0c2

1
ρ̂

2u

 , (9)
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and eigenvalues vector λ and left and right eigenvector matrices L and R are

λ =


u − a

u + a

 ,

L =


1
ρ̂

u − a

1
ρ̂

u + a

 ,

R =
1
2a


ρ̂ (u + a) −ρ̂ (u − a)

−1 1

 ,

(10)

where

a =
√

u2 + ĉ2, ĉ2 =
ρ0

ρ̂
c2. (11)

Acconding to the definition of c and a it is clear that λ− = (u − a) < 0 and λ+ = (u + a) > 0.

Left and right waves can be rarefactions or shocks and the solution across them is computed by

means of Riemann invariants and Rankine-Hugoniot jump conditions, respectively.

4.1. Rarefaction waves and Riemann invariants

The solution across a rarefaction wave can be obtained by means of Riemann invariants Γ.

Indeed, invariants are conserved inside this kind of wave and in particular they assume constant

values along the characteristic curves

C± (x, t) = x + λ±t. (12)

By definition, the gradients of the Riemann invariants are the left eigenvectors Li of matrix A,

where i = 1, 2 is the row number of matrix L. It follows that

dΓ− = L1 · dw =
1
ρ̂

dp + (u − a) du = 0 on C−,

dΓ+ = L2 · dw =
1
ρ̂

dp + (u + a) du = 0 on C+.

(13)
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Therefore, the Riemann invariants are

Γ− =
p
ρ̂

+
1
2

[
u (u − a) − ĉ2 ln (u + a)

]
= const. on C−,

Γ+ =
p
ρ̂

+
1
2

[
u (u + a) + ĉ2 ln (u + a)

]
= const. on C+,

(14)

and we recall that the left rarefaction is crossed by C+ characteristic lines and the right rarefaction

by C− characteristic lines.

4.2. Shock waves and Rankine-Hugoniot jump conditions

The jumps of variables ∆w = w2 − w1 and of fluxes ∆F = F (w2) − F (w1) across a shock are

related to each other by means of the Rankine-Hugoniot conditions

∆F = s∆w, (15)

where s is the shock speed. Applied to (8),(15) gives

ρ0c2∆u = s∆p,

∆u2 +
∆p
ρ̂

= s∆u.
(16)

It follows that
p2 − p1

ρ̂
= ĉ2 u2 − u1

s
,

s± =
u2 + u1

2
±

√(u2 + u1

2

)2
+ ĉ2,

(17)

where s− < 0 and s+ > 0 are the left and right shock speeds, respectively.

4.3. Star region pressure and velocity solutions

The Riemann solution in the star region is obtained as a function of the initial piecewise

constant data exploiting the Riemann invariants and the Rankine-Hugoniot conditions across

rarefaction (superscript R) and shock (superscript S ) waves, respectively. Recalling the solution

for the density given by (5), we impose ρ̂ = ρL for the left wave and ρ̂ = ρR for the right wave.
8



• If the left wave is a rarefaction then the Γ+ Riemann invariant is preserved

Γ+? = Γ+L, (18)

that means

p? = pL + f R
L (uL, ρL, u?), (19)

with

f R
L (uL, ρL, u?) def

=
1
2
ρL

[
uL (uL + aL) + c2

L ln (uL + aL)

−u? (u? + a?L) − c2
L ln (u? + a?L)

]
,

(20)

where

aL =

√
u2

L + c2
L, a?L =

√
u2
? + c2

L, c2
L =

ρ0

ρL
c2. (21)

• If the left wave is a shock then from relations (17) it follows that

p? = pL + f S
L (uL, ρL, u?), (22)

with

f S
L (uL, ρL, u?) def

= ρLc2
L

u? − uL

s?L
, (23)

where

s?L =
u? + uL

2
−

√(u? + uL

2

)2
+ c2

L, c2
L =

ρ0

ρL
c2. (24)

• If the right wave is a rarefaction then the Γ− Riemann invariant is conserved

Γ−R = Γ−?, (25)

that is

p? = pR + f R
R (uR, ρR, u?), (26)
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with

f R
R (uR, ρR, u?) def

=
1
2
ρR

[
uR (uR − aR) − c2

R ln (uR + aR)

−u? (u? − a?R) + c2
R ln (u? + a?R)

]
,

(27)

where

aR =

√
u2

R + c2
R, a?R =

√
u2
? + c2

R, c2
R =

ρ0

ρR
c2. (28)

• If the right wave is a shock then relations (17) can be applied to get

p? = pR + f S
R (uR, ρR, u?), (29)

with

f S
R (uR, ρR, u?) def

= ρRc2
R

u? − uR

sR?
, (30)

where

sR? =
uR + u?

2
+

√(uR + u?
2

)2
+ c2

R, c2
R =

ρ0

ρR
c2. (31)

Comparing Eqs. (19), (22), (26) and (29), it follows that

F(pL, uL, ρL, pR, uR, ρR, u?) = pR − pL + fR(uR, ρR, u?) − fL(uL, ρL, u?) = 0, (32)

where fR(uR, ρR, u?) and fL(uL, ρL, u?) must be set according to the nature of centred waves

fL(uL, ρL, u?) =


f S
L (uL, ρL, u?) u? < uL

f R
L (uL, ρL, u?) otherwise,

fR(uR, ρR, u?) =


f S
R (uR, ρR, u?) uR < u?

f R
R (uR, ρR, u?) otherwise,

(33)

where the inequalities uR < u? and u? < uL satisfy the entropy condition for right and left shocks

respectively, i.e., shocks are always compressive (see first relation of (17) for proof).
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The solution of the nonlinear Eq. (32) by means of the Newton’s method gives the velocity u?

in the star region 
uk+1
? = uk

? −
F(uk

?)
F′(uk

?)

u0
? =

uR + uL

2
.

(34)

At each iteration k the function F is the one appropriate for the wave pattern defined by Eq. (33).

Typically, convergence to a relative tolerance of 10−14 is achieved in 4 or 5 iterations. For the

sake of completeness, we report the derivative functions with respect to u?

f
′S
L (uL, ρL, u?) =

∂ f S
L

∂u?

∣∣∣∣∣∣
uL,ρL

= 2ρLc2
L

u? − s?L

s?L (u? + uL − 2s?L)
,

f
′R
L (ρL, u?) =

∂ f R
L

∂u?

∣∣∣∣∣∣
uL,ρL

= −ρL (u? + a?L) ,

f
′S
R (uR, ρR, u?) =

∂ f S
R

∂u?

∣∣∣∣∣∣
uR,ρR

= 2ρRc2
R

u? − sR?

sR? (u? + uR − 2sR?)
,

f
′R
R (ρR, u?) =

∂ f R
R

∂u?

∣∣∣∣∣∣
uR,ρR

= −ρR (u? − a?R) ,

(35)

recalling that

F′(uL, ρL, uR, ρR, u?) =
∂F
∂u?

∣∣∣∣∣
uL,ρL,uR,ρR

= f ′R(uR, ρR, u?) − f ′L(uL, ρL, u?). (36)

Finally, given the solution u? and Eqs. (33), the pressure p? in the star region is computed as

p? = pR + fR(uR, ρR, u?) = pL + fL(uL, ρL, u?). (37)

5. Exact Riemann solver

The equations system (1) can be written in the compact form as

∂w
∂t

+
∂F(w)
∂x

= 0, (38)
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where

w =


p

ρu

ρ

 , F (w) =


ρ0c2u

ρu2 + p

ρu

 . (39)

The flux Jacobian matrix reads

A =
∂F (w)
∂w

=



0
ρ0

ρ
c2 −

ρ0

ρ
c2u

1 2u −u2

0 1 0


, (40)

with eigenvalues vector λ and left and right eigenvector matrices L and R

λ =



λ−

λ0

λ+


=



u − a
2

u

u + a
2


,

L =



1
aλ+

λ−
aλ+

−
λ−λ0

aλ+

1
λ−λ+

λ0

λ−λ+

−
λ2

+ + λ−λ0

λ−λ+

−
1

aλ−
−
λ+

aλ−

λ0λ+

aλ−


=



2
a (u + a)

u − a
a (u + a)

−
u (u − a)
a (u + a)

−
ρ

ρ0c2 −
ρu
ρ0c2

ρu2 + ρ0c2

ρ0c2

−
2

a (u − a)
−

u + a
a (u − a)

u (u + a)
a (u − a)


,

R =



λ2
+ 0 λ2

−

λ− λ0 λ+

1 1 1


=



(u + a)2

4
0

(u − a)2

4
u − a

2
u

u + a
2

1 1 1


,

(41)

where

a =

√
u2 + 4

ρ0

ρ
c2 (42)

According to the definition of c and a it is clear that λ− < 0, λ+ > 0 and λ− < λ0 < λ+.
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5.1. Rarefaction waves and Riemann invariants

Riemann invariants are conserved across rarefaction waves and assume constant values along

the characteristic curves

C (x, t) = x + λt, (43)

that means

dΓ− = L1 · dw = dp +
u − a

2
d(ρu) − u

u − a
2

dρ = 0 on C−, (44)

dΓ0 = L2 · dw = dp + ud(ρu) −
(
u2 +

ρ0

ρ
c2

)
dρ = 0 on C0, (45)

dΓ+ = L3 · dw = dp +
u + a

2
d(ρu) − u

u + a
2

dρ = 0 on C+, (46)

where Li are the left eigenvectors of matrix A, i.e., row vectors of matrix L, or in primitive

variables

dΓ− = dp + ρ
u − a

2
du = 0 on C−, (47)

dΓ0 = dp + ρudu −
ρ0

ρ
c2dρ = 0 on C0, (48)

dΓ+ = dp + ρ
u + a

2
du = 0 on C+. (49)

Since ρ depends on u, a relation between density and velocity is needed in order to integrate

Eqs. (47) and (49) . The sought relation can be found by means of characteristic curves intersec-

tion

dΓ0− = dΓ0 − dΓ− = 2ρdu + (u − a) dρ = 0 on C0 ∩C−, (50)

dΓ0+ = dΓ0 − dΓ+ = 2ρdu + (u + a) dρ = 0 on C0 ∩C+. (51)

Considering the definition (42) and imposing u , 0, we can multiply Eqs. (50) and (51) by u and
13



obtain the relations

dΓ0− =
sign(u)√

ρu2 (
ρu2 + 4ρ0c2)d(ρu2) −

1
ρ

dρ = 0 on C0 ∩C−, (52)

dΓ0+ =
sign(u)√

ρu2 (
ρu2 + 4ρ0c2)d(ρu2) +

1
ρ

dρ = 0 on C0 ∩C+, (53)

which can be integrated exactly to give

const. =


ln

[
ρ (a − u)

]
u < 0

ln (u + a) u > 0
on C0 ∩C−, (54)

const. =


ln (a − u) u < 0

ln
[
ρ (u + a)

]
u > 0

on C0 ∩C+, (55)

or, reminding the eigenvalues definition and noting that λ−λ+ = −ρ0c2/ρ,

const. = Γ0− = ρλ−, u , 0 on C0 ∩C−, (56)

const. = Γ0+ = ρλ+, u , 0 on C0 ∩C+. (57)

that means for u , 0

ρ =
Γ2

0−

ρ0c2 + uΓ0−
on C0 ∩C−, (58)

ρ =
Γ2

0+

ρ0c2 + uΓ0+

on C0 ∩C+. (59)

Moreover, imposing u = 0 and integrating Eqs. (50) and (51), one obtains

ρ = const. (60)

along both C0 ∩ C− and C0 ∩ C+. Then, Eqs. (56), (57) and Eqs. (58), (59), which in the limit

u→ 0 verify the condition (60), can be considered valid for any value of u.
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Using relations (56) and (57) the Riemann invariants associated with the characteristic curves

C± can be finally defined integrating Eqs. (47) and (49)

const. = Γ− = p + Γ0−u on C−, (61)

const. = Γ+ = p + Γ0+u on C+. (62)

5.2. Shock waves and Rankine-Hugoniot jump conditions

Jumps ∆w = w2 − w1 and ∆F = F (w2) − F (w1) across a shock are related to each other by

means of Rankine-Hugoniot conditions

∆F = s∆w, (63)

where s denotes the shock speed.

Applying (63) to (39) we get the system

ρ0c2∆u = s∆p,

∆
(
ρu2

)
+ ∆p = s∆ (ρu) ,

∆ (ρu) = s∆ρ,

(64)

from which we can derive the pressure and density relations

p2 − p1 = ρ0c2 u2 − u1

s
, (65)

ρ2

ρ1
=

u1 − s
u2 − s

. (66)

Moreover, combining the first two relations of the system (64) with the Eq. (66) it follows the

relation

ρX (uX − s) +
ρ0c2

s
= 0, (67)
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whose solutions are the left (−) and right (+) moving shock speeds

s± =
uX ± aX

2
, aX =

√
u2

X + 4
ρ0

ρX
c2, (68)

where due to Eq. (66) X can be either 1 or 2 without any restriction. Notice that s− < 0 and

s+ > 0.

5.3. Star region solution

Starting from the initial piece-wise constant datum and basing on Riemann invariants and

Rankine-Hugoniot conditions the Exact Riemann problem solution in the star region is now

performed. Here again superscript R denotes the rarefaction wave and superscript S the shock

wave.

• If the left wave is a rarefaction then Γ+ and Γ0+ Riemann invariants are preserved

Γ+? = Γ+L,

Γ0+? = Γ0+L,

(69)

that means

p? = pL + f R
L (uL, ρL, u?),

ρ?L = fρR
L(uL, ρL, u?),

(70)

with

f R
L (uL, ρL, u?) def

= Γ0+L (uL − u?) ,

fρR
L(uL, ρL, u?) def

=
Γ2

0+L

ρ0c2 + u?Γ0+L
,

(71)

where

Γ0+L = ρL
uL + aL

2
, aL =

√
u2

L + 4
ρ0

ρL
c2. (72)
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• If the left wave is a shock then from relations (65) and (66) it follows that

p? = pL + f S
L (uL, ρL, u?),

ρ?L = fρS
L (uL, ρL, u?),

(73)

with

f S
L (uL, ρL, u?) def

= ρ0c2 u? − uL

sL
,

fρS
L (uL, ρL, u?) def

= ρL
uL − sL

u? − sL
,

(74)

where

sL =
uL − aL

2
, aL =

√
u2

L + 4
ρ0

ρL
c2. (75)

• If the right wave is a rarefaction then Γ− and Γ0− Riemann invariants are conserved

Γ−? = Γ−R,

Γ0−? = Γ0−R,

(76)

that is

p? = pR + f R
R (uR, ρR, u?),

ρ?R = fρR
R(uR, ρR, u?),

(77)

with

f R
R (uR, ρR, u?) def

= Γ0−R (uR − u?) ,

fρR
R(uR, ρR, u?) def

=
Γ2

0−R

ρ0c2 + u?Γ0−R
,

(78)

where

Γ0−R = ρR
uR − aR

2
, aR =

√
u2

R + 4
ρ0

ρR
c2. (79)

• If the right wave is a shock then relations (65) and (66) can be applied to get

p? = pR + f S
R (uR, ρR, u?),

ρ?R = fρS
R(uR, ρR, u?),

(80)
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with

f S
R (uR, ρR, u?) def

= ρ0c2 u? − uR

sR
,

fρS
R(uR, ρR, u?) def

= ρR
uR − sR

u? − sR
,

(81)

where

sR =
uR + aR

2
, aR =

√
u2

R + 4
ρ0

ρR
c2. (82)

Comparing Eqs. (70), (73), (77) and (80) we derive

F(pL, uL, ρL, pR, uR, ρR, u?) = pR − pL + fR(uR, ρR, u?) − fL(uL, ρL, u?) = 0, (83)

where fR(uR, ρR, u?) and fL(uL, ρL, u?) must be set accordingly to the nature of centered waves

fL(uL, ρL, u?) =


f R
L (uL, ρL, u?) u? < uL

f S
L (uL, ρL, u?) otherwise,

fR(uR, ρR, u?) =


f S
R (uR, ρR, u?) uR < u?

f R
R (uR, ρR, u?) otherwise,

(84)

with the uR < u? and u? < uL inequalities satisfying the entropy condition for the right and

left shock respectively, i.e. shocks are always compressive. However, we can notice that the

pressure-velocity dependence inside the star region is invariant with respect to the wave nature.

Indeed, we prove that

f R
L (uL, ρL, u?) = Γ0+L (uL − u?) = ρLλ+L (uL − u?) =

= ρ0c2 u? − uL

λ−L
= ρ0c2 u? − uL

sL
= f S

L (uL, ρL, u?), (85)
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f R
R (uR, ρR, u?) = Γ0−R (uR − u?) = ρRλ−R (uR − u?) =

= ρ0c2 u? − uR

λ+R
= ρ0c2 u? − uR

sR
= f S

R (uR, ρR, u?). (86)

Moreover, from Eq. (71), (74), (78) and (81) it is clear that this dependence is linear thus allowing

to compute the star region velocity explicitly

u? =
pR − pL + uRΓ0−R − uLΓ0+L

Γ0−R − Γ0+L
. (87)

As a consequence, the star region pressure p? can be found as

p? = pR + f X
R (uR, ρR, u?) = pL + f X

L (uL, ρL, u?) (88)

where we can refer either to the shock (X = S ) or the rarefaction wave (X = R).

Finally, the density is defined by means the function fρ

ρ?L = fρX
L (uL, ρL, u?), ρ?R = fρX

R(uR, ρR, u?), (89)

where again fρ can be computed independently on the centered waves nature since

fρR
L(uL, ρL, u?) =

Γ2
0+L

ρ0c2 + u?Γ0+L
=

ρLλ+L

−λ−L + u?
= ρL

uL − sL

u? − sL
= fρS

L (uL, ρL, u?), (90)

fρR
R(uR, ρR, u?) =

Γ2
0−R

ρ0c2 + u?Γ0−R
=

ρRλ−R

−λ+R + u?
ρL

uR − sR

u? − sR
= fρS

R(uR, ρR, u?). (91)

5.4. Wave speeds

In order to completely define the exact solution we still need to determine wave speeds S .

• For the rarefaction wave there exist two significant wave speeds associated with the head

(h) and the tail (t) of the fan, respectively. More in particular speed values are defined by
19



the eigenvalues of the states on either side of the rarefaction

S R
hL = λ−L, S R

tL = λ−∗L, (92)

S R
hR = λ+R, S R

tR = λ+∗R. (93)

• For the shock wave the wave speed is given by the relation (68)

S S
L = s−L, S S

R = s+R. (94)

• For the contact discontinuity (superscript C) the speed is simply defined by the star region

velocity

S C = u?. (95)

Careful analysis of the above wave speeds leads to interesting remarks. Knowing that the

Riemann invariant (56) (resp. (57)) is conserved on the left (resp. right) rarefaction wave it is

possible to prove that head and tail speeds coincide, indeed

S R
hL = λ−L =

−ρ0c2

ρLλ+L
=
−ρ0c2

ρ?Lλ+∗L
= λ−∗L = S R

tL, (96)

S R
hR = λ+R =

−ρ0c2

ρRλ−R
=
−ρ0c2

ρ?Rλ−∗R
= λ+∗R = S R

tR. (97)

This result shows that the exact solution of problem (5) always jumps across centered waves

(although the rarefaction wave is expansive and not compressive like the shock one). Moreover,

rarefactions and shocks have the same speeds

S S
L = s−L = λ−L = S R

L , S S
R = s+R = λ+R = S R

R, (98)

thus making the exact solution completely independent from the nature of centered waves. Fi-

nally, there exists a critical value of the artificial compressibility coefficient cX ∈ C for which the
20



contact wave is as fast as the left or the right centered wave

u? = S X , (99)

where u? is defined by Eq. (87) and X = L or X = R for the left or the right wave, respectively.

Depending on the initial Riemann problem left and right states, the critical artificial compress-

ibility coefficient might be a real number. Interestingly, when cX ∈ R, for c2 < c2
X , the wave

pattern arising from the exact solver predicts a contact wave overtaking the centered wave. Since

this configuration violates the wave pattern postulated in Fig. 1, the solver is no longer exact in

this occurrence.

A deeper analysis having the goal of determining c values able to preserve the prescribed wave

pattern will be addressed in a future work. Note that all Riemann Solvers presented in this work

share the issue of potentially violating the wave pattern. In particular also the original Riemann

Solver of [8] might admit real values of cX depending on the initial state, even for constant

density flows.

6. The Split 3D Riemann problem

As usual with most upwind-type methods, the extension of the 1D Riemann solvers to the 3D

case is based on the solution of the x-split Riemann problem


∂w
∂t

+
∂F(w)
∂x

= 0

w(0) = wX ,

(100)
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with wX = wL (resp. wX = wR) for the initial left state (resp. right state) and

w =



p

ρu

ρθ

ρ


, F (w) =



ρ0c2u

ρu2 + p

ρθu

ρu


, (101)

where x is the local coordinate normal to the inter-element boundary and the variable θ denotes

either tangential velocity component v or w. Similarly to the 1D case, c ∈ R\ {0} is the artificial

compressibility coefficient and ρ0 = 1 is a reference density.

The wave pattern arising from the split 3D Riemann problem (100) is almost identical to that

of the 1D case reported in Fig. 1. Indeed, the pressure and the normal velocity u are constant

inside the star region while the tangential velocity component θ and the density can vary across

the centred waves and the contact discontinuity.

Tab. 2 collects the sets of x-split governing equations for each of the Riemann solvers con-

sidered in this work. Comparing Tab. 2 and Tab. 1, we see that in the x-split 3D case we have

the additional x-split momentum equation for the variable θ, i.e., for either tangential velocity

component. Hence, the relations that define the properties p?, u?, ρ?L and ρ?R in the star region

are identical to those of the 1D case and only the relations for θ?L and θ?R must be derived. In

particular

• For the CDRS the reference density ρ0 is employed also in the tangential momentum equa-

tions. Therefore the evolution of θ is decoupled from the density variation and can be

obtained as shown in [8] and [3].

• For the SDRS it can be noticed that combining the last two equations we get the same

conservation equation for the quantity θ used in the CDRS

∂θ

∂t
+
∂(θu)
∂x

= 0. (102)
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Table 2: Sets of x-split 3D equations for the three Riemann solvers here considered.
CDRS SDRS ERS
1

ρ0c2

∂p
∂t

+
∂u
∂x

= 0

∂(ρ0u)
∂t

+
∂(ρ0u2 + p)

∂x
= 0

∂(ρ0θ)
∂t

+
∂(ρ0θu)
∂x

= 0

∂ρ

∂t
+ u

∂ρ

∂x
= 0

1
ρ0c2

∂p
∂t

+
∂u
∂x

= 0

∂(ρu)
∂t

+
∂(ρu2 + p)

∂x
= 0

∂(ρθ)
∂t

+
∂(ρθu)
∂x

= 0

∂ρ

∂t
+ u

∂ρ

∂x
= 0

1
ρ0c2

∂p
∂t

+
∂u
∂x

= 0

∂(ρu)
∂t

+
∂(ρu2 + p)

∂x
= 0

∂(ρθ)
∂t

+
∂(ρθu)
∂x

= 0

∂ρ

∂t
+
∂(ρu)
∂x

= 0

Hence, the expressions for θ?L and θ?R of the CDRS are valid also for the SDRS.

• For the ERS, combining again the last two equations it follows that the tangential velocity

is treated as a purely advected property

Dθ
Dt

=
∂θ

∂t
+ u

∂θ

∂x
= 0. (103)

This means that θ can only change across the contact discontinuity, whereby

θ?L = θL, and θ?R = θR. (104)

7. Results

In this section the proposed Riemann solvers are first assessed on a set of five 1D Riemann

problems. The 1D test cases serve the purpose of evaluating and comparing the Riemann solvers

both in terms of the numerical fluxes they provide for the considered Riemann problems and

in terms of their behaviour when implemented in a dG P0 solver for the numerical solution of

the system (1), i.e., including the artificial compressibility term in the divergence constraint.

The reference solutions for these test cases are the exact self-similar solutions of the system (1)

provided by the exact Riemann solver.

Then we address 2D test cases which we compute by means of a high-order dG solver for

the variable density INS equations. This solver employs the exact Riemann solver to compute
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the inviscid numerical fluxes responsible for the velocity-pressure-density coupling. We remark

that, as was the case for the constant density INS solver employed in [3, 4], the variable density

INS solver does not include any artificial compressibility term in the divergence constraint of the

governing equations.

7.1. 1D test cases

Table 3 gathers the initial data of five 1D Riemann problems employed to assess and compare

the Riemann solvers for variable density incompressible flows presented in this work, i.e., the

constant density Riemann solver (CDRS), the switched density Riemann solver (SDRS) and the

exact Riemann solver (ERS).

T1 was proposed by Elsworth and Toro in [8] and was especially conceived to investigate the

robustness of Riemann solvers for constant density artificial compressibility equations. T2, T3,

T4 were proposed by Toro in [14]. T2 considers a strong pressure jump as initial condition and

its solution consists of a strong shock wave, a contact surface and a left rarefaction wave. T3 and

T4 challenge the ability of Riemann solvers to reproduce a contact discontinuity in particular an

isolated stationary contact wave (T3) and an isolated contact moving slowly to the right (T4). T5

is a modification of T1 conceived to investigate the robustness of Riemann solvers for variable

density artificial compressibility equations. We keep the same velocity-pressure left and right

states of T1 and introduce a strong density discontinuity as if we were to simulate air on the left

and water on the right.

In Table 4 we report the artificial compressibility coefficient with the output time for each

Riemann problem. Notice that for test cases T2 and T5 it is possible to a find a real value of

c on the right or the left wave. In particular, for T2, the critical value is remarkably high thus

requiring to use a higher value of the artificial compressibility coefficient in order to ensure the

exact solver effectiveness.

In Table 5 we compare the Godunov numerical fluxes provided by the Riemann solvers along

the space-time line x/t = 0 taking as reference the Godunov fluxes provided by Exact Solver. It

is interesting to remark that the fluxes provided by the solvers are identical for test cases T3 and

T4 because all the Riemann solvers share the ability of exactly resolving a contact discontinuity,
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Table 3: Initial piece-wise constant data for the 5 test Riemann problems.
test pL uL ρL pR uR ρR

T1 1.00E−01 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
T2 1.00E+03 0.00E+00 1.00E+00 1.00E−02 0.00E+00 1.00E+00
T3 1.00E+00 0.00E+00 1.40E+00 1.00E+00 0.00E+00 1.00E+00
T4 1.00E+00 1.00E−01 1.40E+00 1.00E+00 1.00E−01 1.00E+00
T5 1.00E−01 1.00E+00 1.25E−03 1.00E+00 1.00E+00 1.00E+00

Table 4: Artificial compressibility coefficients and output time (T ) for the 5 test Riemann problems.
test c2

L c2
R c2 T

T1 - - 0.81 0.1
T2 - 499.995 1000 0.005
T3 - - 1 2
T4 - - 1 2
T5 0.09398 - 1 0.005

Table 5: Comparison of Riemann solvers for each test Riemann problem.

solver f1 = ρ0c2u? f2 = ρ?u2
? + p? f3 = ρ?u?

value % error value % error value % error

T
1

CDRS 0.51010 11.87 1.2478 2.938 0.62975 20.10
SDRS 0.51010 11.87 1.2478 2.938 0.62975 20.10
ERS 0.45597 0.0 1.2122 0.0 0.78813 0.0

T
2

CDRS 15302. 3.223 614.92 7.762 153.02 45.16
SDRS 15302. 3.223 614.92 7.762 153.02 45.16
ERS 15811. 0.0 666.67 0.0 105.41 0.0

T
3

CDRS 0.0 0.0 1.0 0.0 0.0 0.0
SDRS 0.0 0.0 1.0 0.0 0.0 0.0
ERS 0.0 0.0 1.0 0.0 0.0 0.0

T
4

CDRS 0.1 0.0 1.014 0.0 0.14 0.0
SDRS 0.1 0.0 1.014 0.0 0.14 0.0
ERS 0.1 0.0 1.014 0.0 0.14 0.0

T
5

CDRS 0.65349 273.7 0.83661 332.7 0.00082 100.7
SDRS −0.19027 49.41 0.17889 7.482 −0.19027 63.23
ERS −0.37611 0.0 0.19336 0.0 −0.11656 0.0

i.e. uL = uR and pL = pR. Instead, significant differences are observed in test cases T1, T2 and

T5. Since in test cases T1 and T2 ρL = ρR = ρ? = ρ0, CDRS and SDRS provide the same

fluxes and, hence, the same errors with respect to the exact solution. Test case T5 is the most

severe one. Since ρL � ρ0 and ρ0 is the actual density employed in the momentum equation,

CDRS introduces very large errors, to the point that the contact discontinuity travels in the wrong
25



Figure 2: Fluxes computed with the three RS proposed at the space-time line x/t = 0 for the T5 with artificial compress-
ibility values in the range c = [1, 1000]. Percentage errors with respect to the fluxes exact solution ( fx) computed with
ERS are reported on the right.
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direction (note the opposite sign of the numerical fluxes f1 and f3 compared to the exact values

in Table 5). SDRS is more accurate than CDRS on T5 providing errors comparable with those

observed in T1 and T2.

In Figure 2 we consider most severe Riemann problem T5 and we report the Godunov nu-

merical flux behaviors and relative errors with respect to the exact fluxes provided by ERS while
26



Figure 3: DG P0 method with different Riemann solvers applied to test T1. Comparison between numerical and exact
solutions.
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varying the artificial compressibility parameter c in the interval [1, 1000]. It is interesting to

remark that SDRS shows significant errors when c is close to unit while errors tends to disap-

pear while increasing c. This is expected since for a large c the velocity field is asymptotically

solenoidal and, hence, the continuity equation is asymptotically equivalent to a transport equation

for density (see Table 1). For the same reason the CDRS fluxes f1 and f3 tend to coincide with

whose of ERS for c � 1. Instead, the momentum equation flux f2 computed with CDRS shows

a very large difference with respect to the ERS independently on the artificial compressibility

value. This behaviour is to ascribe to the ρ0 employed in the momentum equation.

Next we compare the solutions of a dG P0 discretization of the 1D artificial compressibility

Euler equations which employs the proposed Riemann solvers at inter-element boundaries. In

Figures 3, 4, 5, and 6 we compare dG P0 solutions with the exact solutions for test cases T1, T2,

T3-T4, and T5, respectively, over a 100 elements grid of the unit line, i.e. Ω = [0, 1], with initial
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Figure 4: DG P0 method with different Riemann solvers applied to test T2. Comparison between numerical and exact
solutions.
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Figure 5: DG P0 method with different Riemann solvers applied to T3 (left) and T4 (right). Comparison between
numerical and exact solutions.
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discontinuity at x0 = 0.5.

As expected, the solutions provided for test cases T3 and T4 are equivalent for all the Riemann

solvers and, in particular, for T3 the computed and the exact solutions coincide. Small, hardly
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Figure 6: DG P0 method with different Riemann solvers applied to test T5. Comparison between numerical and exact
solutions.
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appreciable, differences are observed for T1 and T2, while it is evident that the most accurate

numerical solution for T5 is obtained relying on the ERS.

In Figure 7 we evaluate convergence to the exact solution in ”picture norm” considering a

sequence of grids with {10i+1}, i = 1, 2, 3 mesh elements. The exact solution is satisfactorily

replicated on the finest grid here considered for test cases T1, T2 and T5. We do not consider

test cases T3 and T4 because the exact solution is accurately reproduced on the coarsest grid (see

Figure 5).

7.2. Kovasznay test case

In order to numerically validate the dG solver employing the exact Riemann solver at inter-

element boundaries in two space dimensions we consider the Kovasznay test case [11] at

Reynolds number 40 over Ω = [−0.5, 1.5]×[0, 2]. We consider the variable density incompress-
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Figure 7: DG P0 method with the ERS applied to test T1, T2 and T5. Comparison between numerical and exact solutions
on three grids of 100 (grida), 1000 (gridb) and 10000 (gridc) elements, respectively.
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ible flow equations in Einstein notation

∂u j

∂x j
= 0,

∂

∂t
(ρui) +

∂

∂x j
(ρuiu j) = −

∂p
∂xi

+
∂τi j

∂x j
+ ρgi,

∂ρ

∂t
+

∂

∂x j
(ρu j) = 0,

(105)

where u ∈ Rd is the vector velocity, p is the pressure, ρ is the density and the viscous stress

tensor reads

τi j = 2µ
[
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
−

1
3
∂uk

∂xk
δi j

]
. (106)

The dG discretization for (105) can be obtained with the usual dG machinery, i.e., multiply by

a suitable test function, integrate by parts and introduce suitable numerical fluxes. For inviscid
30



Table 6: Kovasznay test case - Pressure (p), velocity components (u, v) and density (ρ) errors computed in L2-norm with
respective order of convergence for dG P1, P2, P3 and P4 space discretization on grids of 22i elements.

i errp order erru order errv order errρ order

P1

3 2.01E−3 − 7.91E−3 − 1.54E−3 − 2.11E−3 −

4 5.88E−4 0.89 1.90E−3 2.06 4.29E−4 1.84 5.49E−4 1.94
5 1.58E−4 1.90 4.38E−4 2.12 1.07E−4 2.00 1.21E−4 2.18
6 4.10E−5 1.95 1.02E−4 2.10 2.54E−5 2.07 2.55E−5 2.25
7 1.05E−5 1.96 2.43E−5 2.07 5.99E−6 2.09 5.51E−6 2.21
8 2.69E−6 1.96 5.90E−6 2.04 1.43E−6 2.06 1.25E−6 2.14

P2

3 2.41E−4 − 4.22E−4 − 1.11E−4 − 1.16E−4 −

4 6.46E−5 0.95 5.17E−5 3.03 1.56E−5 2.83 1.76E−5 2.72
5 1.70E−5 1.93 6.53E−6 2.99 2.15E−6 2.86 2.36E−6 2.90
6 4.41E−6 1.95 8.29E−7 2.98 2.87E−7 2.90 3.09E−7 2.94
7 1.13E−6 1.97 1.05E−7 2.98 3.74E−8 2.94 3.98E−8 2.96
8 2.86E−7 1.98 1.32E−8 2.99 4.78E−9 2.97 5.08E−9 2.97

P3

3 1.46E−5 − 3.45E−5 − 7.77E−6 − 2.11E−5 −

4 1.47E−6 1.66 2.33E−6 3.89 5.34E−7 3.86 5.49E−7 3.69
5 1.56E−7 3.24 1.50E−7 3.96 3.61E−8 3.89 1.21E−8 3.72
6 1.79E−8 3.12 9.45E−9 3.98 2.41E−9 3.90 2.55E−9 3.91
7 2.16E−9 3.05 5.93E−10 3.99 1.58E−10 3.93 5.51E−10 4.06
8 2.67E−10 3.02 3.72E−11 4.00 1.02E−11 3.95 1.25E−10 4.17

P4

3 1.50E−6 − 1.05E−6 − 2.82E−7 − 6.36E−7 −

4 1.13E−7 1.86 3.22E−8 5.03 9.57E−9 4.88 2.51E−8 4.66
5 7.83E−9 3.86 9.93E−10 5.02 3.04E−10 4.97 9.11E−10 4.79
6 5.13E−10 3.93 3.09E−11 5.01 9.47E−12 5.01 2.99E−11 4.93
7 3.28E−11 3.97 9.66E−13 5.00 2.94E−13 5.01 9.12E−13 5.04
8 2.08E−12 3.98 3.02E−14 5.00 9.13E−15 5.01 2.63E−14 5.12

fluxes we consider the Godunov fluxes obtained by means of the Exact Riemann Solver ERS

while for viscous fluxes we employ the BR2 method of [2].

We consider first, second, third, and fourth polynomial degree dG discretizations on a sequence

of h-refined grids with 22i, i = 3, 4, ..., 8 quadrilateral elements and report the convergence rates

in Table 6. The expected convergence rates of hk for the pressure error in L2 norm and hk+1 for

the velocity and the density error in L2 norm are confirmed by numerical results. All the results

reported in Table 6 have been obtained setting c = 1 and we verified that the same convergence

rates are observed choosing c = 10±
j
2 with j = 0, 1, ..., 6. The influence of c on the pressure,

velocity and density errors are reported in Figure 8 considering a 32x32 quadrilateral elements

grid. While velocity errors are almost independent from the choice of c, pressure and density
31



Figure 8: Kovasznay test case. Numerical errors on pressure (p), velocity components (u, v) and density (ρ) solutions
computed for different artificial compressibility c values on grid 32x32 with dG P1, P2, P3, P4 space discretization.
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errors behave in an opposite fashion. The density error decreases linearly for c > 1 while the

pressure error increases linearly for c >> 1. Note that the pressure error increase shifts towards

higher values of c while increasing the polynomial degree. Overall the numerical results confirm

that it is safe to choose c close to unit if smooth solutions are expected.

7.3. The Rayleigh–Taylor instability test case

In this section we assess the performance of the proposed dG method on the variable density

flow problem of the Rayleigh–Taylor instability (RTI). This test case consists of two layers of

immiscible fluids initially at rest and evolving under the effect of the downward gravity field. The

density ratio is set to 3, hence the Atwood number, defined as At = (ρmax − ρmin)/(ρmax + ρmin),

is equal to 0.5 [15]. Following Guermond and Quartapelle [9], the transition between the two
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(a) t = 1.75 (b) t = 2 (c) t = 2.25 (d) t = 2.5

Figure 9: RTI test case. Influence of the c value on the ρ = 2 isoline for the Re = 1 000 P4 solution. Red line: c = 1, blue
line: c = 10, black line: c = 1000.

fluids is regularized according to the law

ρ(x, y, t = 0)
ρmin

0

= 2 + tanh
(

y − η(x)
0.01d

)
, (107)

where η(x) = −0.1d cos(2πx/d) is the initial position of the perturbed interface between the

two fluids, and d is a reference length (d = 1 in our computational domain). The L2 projec-

tion of this analytical density distribution on the solution polynomial space provides the initial

density field. The solutions have been computed on a Cartesian mesh with 16×128 quadrilat-

eral elements, imposing symmetry conditions on all the boundaries of the rectangular domain

Ω = [0, 0.5]×[−2, 2]. All the simulations have been integrated in time with a high-order linearly-

implicit, fourth-order, six-stage Rosenbrock scheme [1] with 447 time steps per time unit of

Tryggvason [15].

The time history of the density contours at times t = {1, 1.5, 1.75, 2, 2.25, 2.5} in the scale of
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(a) t = 1 (b) t = 1.5 (c) t = 1.75 (d) t = 2 (e) t = 2.25 (f) t = 2.5

Figure 10: RTI test case. Re = 1 000, time history of the density contours, c = 10, P6 solution.

Tryggvason are shown in Figs. 10 and 11 for the Re = 1 000 and Re = 5 000 cases, respectively.

These results were obtained with c = 10 and a P6 polynomial approximation resulting in 57 344

degrees of freedom. This value of c was chosen on the basis of preliminary results for the case

Re = 1 000 with P4 polynomial approximation. For this case we assessed the influence of the

artificial compressibility parameter by comparing the time evolution of the density isoline ρ = 2

for the set of values c = {1, 10, 1000} reported in Figure 9. A close look at this time history

reveals that the solutions for c = 10 and c = 1000 appear almost superimposed, while for c = 1

the solution is slightly different with the lighter fluid penetrating more in depth into the plume.

Since the c sensitivity study performed on the Kovasznay test case showed that low c values are

preferable, and since high values of c deteriorate the convergence of the linear solver, we decided

to set c = 10 in all the following viscous computations.
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(a) t = 1 (b) t = 1.5 (c) t = 1.75 (d) t = 2 (e) t = 2.25 (f) t = 2.5

Figure 11: RTI test case. Re = 5 000, time history of the density contours, c = 10, P6 solution.

The solutions for Re = 1 000 are in reasonable agreement with the results of Guermond and

Salgado [10] obtained with much more degrees of freedom on a mesh of 235 552 triangles with

a third-order finite elements approximation resulting in 466 572 nodes. Although the height

reached by the plume of the high-density fluid for the Re = 5 000 case is similar to their results,

our computations show more wiggles at the interface between the two fluids. The results of

the inviscid version of this test were slightly more dependent on the artificial compressibility

parameter value as shown in Fig. 12 for the time levels t = 1.75 and t = 2.25. We remark that all

the computations presented in this work have been performed without any stabilization technique

to control possible spurious oscillations around sharp density gradients. The implementation of

suitable techniques for the control of spurious oscillations will be the subject of future work.
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(a) c = 1 (b) c = 10 (c) c = 1000 (d) c = 1 (e) c = 10 (f) c = 1000

Figure 12: RTI test case. Influence of the c value on the density contours for the inviscid case at time levels t = 1.75
(Figs. 12(a)–12(c)) and t = 2.25 (Figs. 12(d)–12(f)) , P4 solution.

8. Conclusions

In this work we presented three Riemann solvers for the artificial compressibility perturbation

of the 1D variable density incompressible Euler equations and we extended the dG discretization

of the INS equations proposed by Bassi et al. [3] to cope with variable density incompressible

flows. Among the proposed solvers, the exact Riemann solver is of particular interest, both from

the accuracy and the efficiency viewpoint. It admits an explicit exact solution, therefore it does

not require iterative solutions of nonlinear equations. As a welcome side effect, the ability to

manufacture exact solutions can be exploited for validation purposes.

The Riemann solvers here devised can be employed in the context of numerical formulations

relying on Godunov fluxes which are solution of local Riemann problems arising at inter-element

boundaries. Using the exact Riemann solver to compute the inviscid fluxes for the velocity-
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pressure-density triad in the framework of a high-order accurate dG discretization of the variable

density INS equations, the convergence properties of the method have been demonstrated by

extensive computations of the Kovasznay test case. The influence of the artificial compressibility

parameter on the error with respect to the exact solution has been investigated. Challenging

numerical solutions of the Rayleigh-Taylor instability problem have been obtained at different

Reynolds numbers showing good agreement with previously published results. The inviscid flow

regime was also addressed to demonstrate the robustness of the dG formulation here proposed.

Since the inviscid Godunov numerical fluxes provided by the exact Riemann solver are explic-

itly available, also the relation between the star region solution and the left and the right states

can be explicitly determined. Accordingly, the numerical fluxes are well suited to be employed

in the context of hybrid and hybridizable dG formulations relying on inter-element unknowns.

This extension will be the subject of future work.
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