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Highlights

• Exact derivation by Fourier transform of a universal, explicit closed-form parametric
analytical solution of the steady-state response of a uniform infinite Euler-Bernoulli
elastic beam on a Pasternak elastic foundation subjected to a concentrated load
moving at constant velocity.

• Rigorous mathematical procedure for classification of the parametric behavior of
the solution, by varying the mechanical parameters of the beam-foundation system,
based on the parametric nature of the Fourier transform poles.

• Different types of bending wave shapes are shown to propagate within the beam,
including for new solution instances that may be obtained for given values of the
physical parameters, such as for a high Pasternak modulus.

• Original re-derivation and reinterpretation of steady-state physical characteristics,
such as critical velocity and two-branch critical damping.

• Highlighting of characteristic features of the physical steady-state response by a
parametric analysis involving normalized deflection, cross-section rotation, bending
moment and shear force.
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Abstract

In this paper, the steady-state response of a uniform infinite Euler-Bernoulli elastic beam resting
on a Pasternak elastic foundation and subjected to a concentrated load moving at a constant
velocity along the beam is analytically investigated. A universal closed-form analytical solution
is derived through Fourier transform, apt to represent the response for all possible beam-
foundation parameters. A rigorous mathematical procedure is formulated for classifying the
parametric behavior of the solution, including for viscous damping. Depending on such a
classification, different types of bending wave shapes are shown to propagate within the beam,
ahead and behind the moving load position, and crucial physical characteristics, such as critical
velocity and critical damping, are reinterpreted into a wholly exact and complete mathematical
framework. Mechanical features of the solution are revealed for the steady-state response in
terms of normalized deflection, cross-section rotation, bending moment and shear force.

Keywords: Moving Load; Beam on Pasternak support; Steady-state response; Universal closed-
from analytical solution; Classification of all solutions; Critical velocity and critical damping.

1 Introduction

1.1 General framework and contextualization

Dynamic response and wave propagation phenomena under moving loads constitute a
classical research topic referring to many important engineering applications, such as in
railway and transportation engineering, e.g. in the construction of railroad tracks, roads
and concrete pavements, rocket testing facilities (e.g. Kenney (1954) [1]) and ice plates
(on this specific case see e.g. Schulkes and Sneyd (1988) [2] and Squire et al. (1996) [3]).
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Structural vibrations induced by a moving load may become very high, when the velocity
of the moving load attains a certain characteristic value, referred to as critical velocity,
which, for an infinite beam, corresponds to the minimum phase velocity of the bending
wave propagating within the beam-support system (see e.g. Kenney (1954) [1]) while,
for finite beams, it is the lowest between the modal resonant velocities (Dimitrovová and
Rodrigues (2012) [4]). In this latter paper, the developed analysis is not connected to finite
beams only, but it includes infinite beams as well, abrupt changes in foundation stiffness
and critical velocity/damping formulas are presented also for a Timoshenko beam.

In the last few decades, numerous research works have been presented, with the majority
of them considering a “moving load” problem, i.e. the problem of a single load traveling
at a constant velocity along a beam, usually supported by an elastic foundation, thus
neglecting inertial effects due to the mass of the supporting medium and considering wave
propagation just within the supported structure. The “moving mass” problem, instead,
has been studied by several authors; among those, noteworthy to mention are the works
of Duffy (1990) [5], Metrikine and Dieterman (1997) [6], Dimitrovová (2017) [7].

Comprehensive literature reviews about beams under moving loads may be found in
Frýba (1972)[8], Kerr (1981) [9], Ouyang (2011) [10] and Beskou and Theodorakopou-
los (2011) [11]. An analytical approach to the steady-state response of a beam/plate
structural system on a Winkler viscoelastic foundation under moving load has been for-
mulated in Shamalta and Metrikine (2003) [12]. Attempts in the FEM modelization of
the moving load problem have been also developed in the recent literature (see e.g. Castro
et al. (2014) [13], Castro et al. (2014) [14] and references quoted therein).

Further, most accurate models could even consider wave propagation phenomena in both
beam and underlying substratum, described as a continuum of a finite depth, leading to an
even more comprehensive description in terms of characteristic features, like for the critical
velocity of passing trains, as very recently proven by Dimitrovová (2016,2017) [15, 16].

Kenney (1954) [1] solved the case of an infinitely long Euler-Bernoulli elastic beam ly-
ing on a Winkler elastic foundation. In the Winkler model, the support is represented
by a set of continuously-distributed, non-interconnected springs with a locally-constant
stiffness (see e.g. Froio and Rizzi (2016) [18], containing also an historical perspective
review, and Froio and Rizzi (2017) [19]). Kenney (1954) [1] derived the analytical solu-
tion of the steady-state response for a constant-velocity moving load, by using a Green’s
function approach, accounting for viscous damping. According to the theory of harmonic
flexural waves (see e.g. Graff (1975) [20]), the velocity of propagation of free waves for
the undamped case was obtained. Furthermore, it was shown that if the velocity of the
traveling load becomes equal to such a free wave or group velocity, displacements increase
boundlessly, in the limit case of no damping, resulting in a resonance condition. In fact,
as exposed by Simkins (1989) [21] for the analysis of gun tubes, the wave energy, which is
transferred at the group velocity, concentrates on the load front (phase velocity) and con-
tinuously builds up the deformation near the front, as time progresses. Kenney (1954) [1]
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also showed that for a load velocity lower than the critical velocity (subcritical case), the
largest wave amplitude occurs near the loading point, while, for a load velocity larger than
the critical one (supercritical case), the waves moving ahead of the load become smaller
in amplitude and in wavelength than those behind the load.

Mathews (1958) [24] and Achenbach and Sun (1965) [22] generalized Kenney’s analytical
solution for a moving load with harmonically varying amplitude and for a Timoshenko
beam, respectively; a similar set of equations was derived by Jones and Buta (1964) [23],
by investigating the steady-state response of cylindrical shells to a moving ring load.
Chen et al. (2001) [26] obtained the bifurcation curves of the critical velocities in case of
a harmonic moving load acting on an infinite compressed Timoshenko beam by using the
dynamic stiffness method. In that context, Froio et al. (2016) [25] have developed a FEM
approach to characterize such bifurcation curves for a nonlinear support.

1.2 Pasternak foundation studies

A fundamental limitation of the Winkler elastic foundation model is that of neglecting
the interactions between adjacent foundation springs, thus overlooking for the cohesive
bonds between medium particles. This may lead to unrealistic results (Limkatanyu et
al. (2015) [28]). To narrow down the gap between the real behaviour of continuous me-
dia and Winkler elastic foundation models, several researchers have enriched the Winkler
model by introducing a coupling effect between continuous Winkler springs and different
embedded structural elements. Among these models, the Pasternak one accounts for the
existence of a shear interaction between the spring elements, by connecting the top end of
each spring to an incompressible layer, which deforms under transverse shear and whose
shear elastic modulus dictates the amount of shear coupling between neighboring springs
(Selvadurai (1979) [29]). For this reason, this model is often classified as a “two-parameter”
foundation model, where the first parameter represents the vertical stiffness of the foun-
dation springs, like in a classical Winkler model, while the second parameter accounts for
their shear coupling. The simplified continuum analysis by Vlasov and Leontiev (1966) [30]
showed that the mechanical behavior of an elastic continuum can be simulated by using
springs with such a shear-type interaction.

Kerr (1972) [27], a main reference in the present mathematical framing of the underlying
differential problem, has studied the effect of a compression axial force on an undamped
beam-foundation system, which may be induced by a rise in temperature within the beam.
It is shown that the action of the compression force progressively decreases to zero the
value of the critical velocity, when it reaches the critical static buckling load of an infinite
beam. In this sense, though the essence of that structural problem is different than that
considered here, the action of a compression force in softening the model is analogous to
the effect of the Pasternak foundation in strengthening the model.

A formal integral solution of the general dynamic problem of the transient and steady-
state vibrations of an infinite Euler-Bernoulli beam on an elastic foundation has been
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obtained by both Stadler and Shreeves (1970) [31] and Sheehan and Debnath (1972) [32],
by applying the joint Laplace and Fourier transforms. By assuming the beam as a two-
dimensional elastic continuum, Saito and Terasawa (1981) [33] derived the equations of
motion of an elastic infinite beam supported by a Pasternak-type foundation and subjected
to a moving load distributed on a narrow finite length. The Fourier transform technique
was applied to compute the steady-state response, even though no analytical formulation
of the solution was present. Numerical results revealed unimportant discrepancies between
the two-dimensional elastic theory and the Euler-Bernoulli and Timoshenko beam theories.

The response of a uniform Timoshenko beam of infinite length placed on a generalized
Pasternak viscoelastic foundation and subjected to a harmonic arbitrary distributed mov-
ing load was computed numerically by Kargarnovin and Younesian (2004) [34] by using
the Fourier transform coupled with the Gaussian quadrature method. In a subsequent
work, Younesian and Kargarnovin (2009) [35] considered the same problem, but with a
stochastic variation of the Winkler modulus along the beam axis. Nonlinear problems in-
volving an infinite beam on a Pasternak foundation seem rather limited in the literature;
one example may be found in the work of Ding et al. (2013) [36], where the Adomian
Decomposition method was applied to determine the dynamic response of the beam.

Regarding the steady-state response of infinite elastic plates on an elastic support under
moving load, the interested reader may be referred to the works of Stadler (1971) [37] and
of Watanabe (1981) [38]. Stadler (1971) [37] considered a Winkler support and derived
the analytical solution of the steady-state response of the plate in integral form by using
the Fourier transform. On the other hand, the problem of an elastic plate resting on an
undamped Pasternak foundation under a concentrated load moving at a constant velocity
along a straight line was analyzed byWatanabe (1981) [38]. By applying the double Fourier
transform, the author derived a formal integral expression of the solution, by means of
which he finally numerically computed the plate response. Thus, such a representation is
not fully explicit in analytical terms and anyhow neglects the role of damping.

1.3 Present developments on analytical steady-state response

In the present paper, a homogeneous infinite Euler-Bernoulli elastic beam of constant
cross-section resting on a uniform Pasternak elastic foundation is considered. Smeared
structural viscous damping is accounted for. The beam is subjected to a constant point
load moving with a constant velocity along the beam. A steady-state solution response
is sought, derived and interpreted in terms of all the involved characteristic structural
parameters of the beam-foundation system. After the general premises above, detailed
analytical studies directly related to the specific subject of the present work are briefly
discussed below, to further motivate the problem statement, to outline the developed
method for the analytical solution and to highlight the differences and novelties of the
present work with respect to such previous important research contributions.

Some authors have derived the analytical solution for the steady-state vibrations of
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an infinite beam on a Pasternak foundation, in analogy with the analysis proposed by
Kenney (1954) [1] and Kerr (1972) [27]. Mallik et al. (2006) [39] and Basu and Kameswara
Rao (2013) [40] based their derivation on a priori assuming an exponential form of the
solution, while a Fourier transform technique was employed by Cao and Zhong (2008) [41]
and Uzzal et al. (2012) [42], to find out the analytical solution for some solution cases. A
purely numerical approach based of a Fast Fourier Transform technique (FFT) was instead
employed by Evcan and Hayir (2013) [43], who analyzed numerically the undamped beam
displacement response at subcritical moving load velocities.

In further details, Mallik et al. (2006) [39] derived the variation of the dynamic am-
plification factor of maximum settlement, uplift and bending moment of the beam as a
function of load velocity, by evidencing an analogy with the frequency response curve of
a SDOF system. The critical velocity of the beam-foundation system under moving load
plays the same role of the resonance frequency of the SDOF system, leading to an un-
bounded response. In addition, the effect of viscous damping on the dynamic amplification
factor becomes very similar in both cases.

Cao and Zhong (2008) [41] presented the effect of the velocity of the moving load and of
the Pasternak modulus on the dynamic displacement response. In such a work, damping
was not taken into account, and consequently only a subcritical range of velocities was
considered, as in Evcan and Hayir (2013) [43]. The maximum deflection of the beam,
placed always beneath the load, increased slightly at growing load velocity, and rather
significantly by reducing the Pasternak modulus.

Parametric analyses were also obtained by Uzzal et al. (2012) [42], who described the
variation of the beam deflections and of the bending moments with respect to different
velocity ratios, Pasternak moduli and foundation stiffnesses. As a rather unexpected
occurrence, the reported results seemed to display some differences with respect to the
response earlier depicted by Mallik et al. (2006) [39].

Basu and Kameswara Rao (2013) [40] investigated deflection, bending moment, shear
force and contact pressure for a load moving at subcritical and supercritical velocities,
for different damping ratios. The dependence of the critical velocity and of the critical
damping, i.e. the amount of damping for which the wavelength of the wave propagating
behind the load becomes infinite, on the foundation parameters was also investigated.

Even though analytical and numerical solutions have been determined in the studies
above, their application seems to have been limited to certain combinations of beam
and foundation stiffness parameters, and some considered just the undamped case. For
instance, no special importance was given to the consideration of a “large” Pasternak
modulus GP>

√
4kEJ , although this may apply to practical instances, since the stiffness

of the beam or of the support may widely vary (see e.g. Razaqpur and Shah (1991) [44]).
Instead, focusing also on the explicit inspection on large values of GP brings further
attention on a second branch of the critical damping curve (as depicted later in Fig. 6),
each branch corresponding to a specific traveling wave pattern, shifting from propagating
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to evanescent wave, either in front (left branch) or behind (right branch) the moving load
position, thus highlighting an important feature of a complete analytical investigation.

In order to provide an analytical tool endowed of a general validity, the objective of the
present paper is to analyze all possible instances of the characteristic system parameters
and to analytically derive a universal explicit formulation for the steady-state response, by
a rigorous Fourier transform approach. Through a complete mathematical treatment, a
comprehensive classification of all solution cases is achieved in the paper, according to the
values of the characteristic system parameters, which determine the nature of the poles of
the Fourier transform of the solution. By virtue of such a classification, an a priori charac-
terization about how the beam-foundation steady-state response shape changes according
to the paths followed in the space of the system parameters, by varying load velocity,
Pasternak shear modulus and damping coefficient, is developed. Characteristic features
of the steady-state response such as critical velocity and critical damping are rigorously
derived and interpreted. A unified analytical representation of the solution is also obtained
and then adopted to plot, inspect and interpret the associated structural response.

The present analysis focuses on the various mathematical steps of the derivation and on
their implications in the external manifestation of the achieved steady-state solution. The
motivation of the present research work is to provide a whole complete and general solution,
seemingly lacking in the several contributions dispersed in the literature, accounting all
together for the presence of Pasternak modulus, structural viscous damping and the other
characteristic mechanical parameters of the beam-foundation system, possibly varying over
all their range of existence, thus becoming useful for reference and validation of numerical
implementations of moving load problems (Eftekhari (2016) [45]), in all possible parameter
and solution ranges. Such a derivation is conceived as to be rigorous and self-contained,
so that the reader may follow all the truly needed steps. This has led to the main result of
the paper, as condensed in the synoptic chart later shown in Fig. 4 (and solution regions
in Fig. 2), complementing the previous contributions above. Such an achievement would
allow readers to analytically plot and inspect the analytical solution, at variable system
parameters (i.e. by independently reproducing the trends that will be depicted in following
Figs. 8-12), without wondering much about the various underlying solution cases.

Presentation in the paper is organized as follows. Section 2 introduces the steady-state
formulation of an infinite Euler-Bernoulli elastic beam resting on a Pasternak foundation.
In Section 3, a complete Fourier transform approach developed for deriving the analytical
solution is reported. In Section 4, after the determination of the general parametric form of
the poles of the Fourier transform of the solution, the analytical solution is finally derived
in exact closed form by inverting the Fourier transform, according to a universal solution
representation. The singular cases of critical velocity and critical damping are also derived
and analyzed. In Section 5, normalized curves of the complete steady-state response
of the beam-foundation system (deflection, rotation, bending moment and shear force)
are represented, and their dependence on the characteristic parameters of the dynamical
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