


1. Introduction

High speed in manufacturing of high precision components [1, 2] and micro-

feeding Mechatronics solutions, is a prime requirement. The main problem of

mass production of the precise components is their high price of machinery

tools and the time consumption in the production processes. To being pre-5

cise, it needs high quality in surfacing and dimensioning in the production line.

For precise producing goods, todays mechanical structures in analysis and pro-

duction parts has been reached to the highest levels in decades. But, what

mainly effects the precision in the machinery tools, is the vibration induced to

the mechanical structures from various sources such as natural frequencies of10

the working structure in higher speeds and oscillations induced by nonlinear

frictions in lower speeds [3]. In heavy duty operations like steel face milling

the critical modes for vibration are related to the whole machine tool structure

(chatter frequency is between 15 and 100Hz). The introduction of additional

damping in the machine tool structure can increase milling stability. However,15

a passive absorber is not feasible in many machining processes where the dy-

namics of the system change according to the working position and an active

damper is needed. The famous Direct Velocity Feedback (DVF) are well known

in active suspension literature [4, 5, 6, 7] from old to new methods such as sky-

hook [8, 9]. The DVF, which utilizes actuators and the acceleration signal from20

sensor, is an advanced Mechatronics solution which in performance is compa-

rable with smart materials like piezoelectric actuators in damping strategies.

This solution is cheaper in cost, but its reliability is strictly challenged by inner

algorithms for sensor fusion and controller types. Any good controller has a

bandwidth which is limited by its sensory inputs. So using high quality sensor25

feedback to controller maximizes the whole control system bandwidth. Design-

ing soft sensors to deriving high quality velocity from other sensors in real time

due to the technical difficulties is an open challenge in literature[10].

Traditional inertial velocity sensors are based on the movement of a me-

chanical mass in an electromagnetic field which produces some currents to be30
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sensed. Otherwise piezoelectric velocity sensors are accelerometers with an elec-

tronic integrator built in to the unit with a high pass filter for removing the bias

created by integrator [11]. So deriving this velocity from online numerical differ-

entiation or integration of a measured data with noises has great importance in

signal processing, control engineering [12, 13, 14], numerical analysis, or failure35

diagnostics [15]. It is used in implementation of control strategies which uses

the least cost sensors available (just position or angular). But, these low cost

sensors deliver such a noise over useful signal which using numerical differentia-

tors over them gives a high noisy results which is practically unusable in high

precision works and must use some kinds of filter where each of these filters have40

their own benefits and problems.

Different online linear filters such as Butterworth or Chebyshev Types I

and II, elliptic and some nonlinear filters such as wavelet [16, 17] have been

used in the industry for removing this kind of noise from digital differentiators.

Another approach is based on the least square on a polynomial structure [18, 19].45

High gain observers which adjust the model by weighting the observer output

deviations from the system to be controlled [20, 21] is another implementation.

Design of numerical differentiators in the frequency domain is based on the

assumption that an ideal n − th order differentiator has a frequency response

of magnitude ωn [22, 23, 24]. Extended Kalman Filter is a special strategy for50

state estimation which can be used for digital differentiation [25, 26, 27]. The

main problem in differentiator design is to combine differentiation exactness with

robustness in respect to possible measurement errors and input noises. But most

of these filters have delays because of deleting high frequency contents of the

signal and phase shifting in much frequencies. If nothing is known on the signal55

structure except some differential inequalities, then sliding modes [28, 29] for

its exactness and robustness are used. This method is good as the noise on the

signal is as low as possible, with high noise the differentiator results contains a

high chattering which makes it impossible use in real feedback control systems.

A simple and old estimation technique for velocity that is often used in the flight60

control industry is to fusion measurements in the complementary filter [30]. A
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complete overview on all these filters has been done in [31].

The Wavelet Transform (WT) is a powerful tool of signal and image pro-

cessing and it has been vastly used in many scientific areas, such as signal

processing, image compression, computer graphics, and pattern recognition65

[32, 33, 34, 35, 36]. Noise filtering using wavelet has been a very mature tech-

nology [37, 38, 39]. On contrary the traditional Fourier Transform, the WT is

particularly suitable for the applications of non-stationary signals which may

instantaneous vary in time [40, 41]. But even the wavelet filtering alone on a

specific signal, based on its nature tries to remove(or smoothen) the higher res-70

olutions beneath the original signal, so it causes delay in output filtered signal.

Many attempts have been done in joining wavelet multi-resolution analysis with

kalman filtering to estimate states from high noise data [42, 43, 44, 45]. These

methods require application of kalman filter over each resolution level, which

needs high serially computation resources.75

So, finding fast and accurate algorithms which could give the absolute ve-

locity value of the system with low noise, least delay and stable properties, is

the main challenge of this paper. This fast and reliable velocity can give us

high precision accuracy out of control feedbacks regardless of environmental

vibrations.80

At this paper, in the next section we define the mathematical definitions

needed for presenting the position, velocity and the acceleration with some

preliminaries on discrete wavelet, Butterworth for noise canceling and Kalman

filter for state estimation have been introduced. In the third section, structure of

the proposed complementary estimator is mathematically explained and proved.85

The fourth section describes the experimental results in compare to kalman

filter, the butterworth and a complementary estimator which uses butterworth

filters instead of wavelets.
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2. Problem Definition and Preliminaries

By considering an analog position signal as Ps(t) and an analog acceleration

signal as As(t) we can construct an object motion states as:
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Where the states are X(t) = [Pr(t), Vr(t), Ar(t)]
′ and sensed data are Y (t) =90

[Ps(t), As(t)]
′. The w = N(0, Q) and v = N(0, R) are the uncertainties with

Gaussian Distribution of variances Q and R. The goal of this paper is to es-

timating Vr(t) with lowest delay as possible. In contrary to lowest delay, we

also want to acquire a velocity which is suitable for stabilizing control feedbacks

which contains integration procedures inside.95

2.1. Multi-Resolution Analysis and Discrete Wavelet Transform

Multiresolution Analysis (MRA) is a convenient framework for hierarchi-

cal representation of functions or signals on different scales. The basic idea of

multiresolution analysis is to represent a function f(x) as a limit of successive

approximations. Each of these successive approximations is a smoother ver-100

sion of the original function with more and more of the finer ”details” added.

Wavelets are terminating basis vectors which are used to decompose a signal

using a set of coefficients. The process of decomposition uses a sub-band coding

scheme that is illustrated in Fig.1. The Discrete Wavelet Transform (DWT) can

be computed using the filter banks h(k) and g(k) which form a quadrature con-105

jugate mirror filter pair with h(k) and g(k), which are given by Eqs.A.7 from

two conjugate functions, the wavelet function ψ(x) and the scaling function

φ(x). The result of the analysis step is a set of intermediate coefficients, which

represent the weights of the original signal in terms of the basis functions used,
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Figure 1: Illustration of the analysis part of a three-level decomposition scheme using sub-band

coding.

namely the scaling function and the wavelet function. The original sampled110

signal is filtered with the scaling function and the wavelet function and down

sampled by two, resulting in the trend and detail coefficients at level one. The

trend coefficients thus obtained are then used as the original signal and filtered

with the scaling function and the wavelet to yield the coefficients at level two.

This process is repeated depending upon the number of decomposition levels115

desired. For reverse procedure, the detail and the scale add up, then being

up-sampled and passed from reverse scale filter, ready to being added to detail

of the lower levels. By these coefficients the f(x) can be decomposed in wavelet

and scale spaces as equations A.6.

The problems of temporal and frequency resolution found in the analysis of120

signals with the Short time Fourier Transform (STFT), i.e. best resolution in

time at the expense of a lower resolution in frequency and vice-versa, can be

reduced through the MRA provided by Discrete Wavelet Transform (DWT).

The temporal resolutions, ∆t, and frequency, ∆f , indicate the precision time

and frequency in the analysis of the signal. Both parameters vary in terms125

of time and frequency, respectively, in signal analysis using DWT. Unlike the

STFT, where a higher temporal resolution could be achieved at the expense

of frequency resolution. Intuitively, when the analysis is done from the point

of view of filters series, the temporal resolution should increase increasing the

center frequency of the filters bank. Thus, ∆f is proportional to f . The main130

difference between DWT and STFT is the time-scaling parameter. The result
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Figure 2: Comparison between STFT and DWT in their frequency domain signal decompo-

sition.

is geometric scaling that gives the DWT logarithmic frequency coverage with

nonlinear phase distortion in contrast to the uniform frequency coverage of the

STFT, as compared in Fig.2.

2.2. Butterworth Filter135

The Butterworth filter is a type of signal processing filter designed to have

as flat a frequency response as possible in the passband. It is also referred to

as a maximally flat magnitude filter. In [46, 47] design procedures has been

described. For selection of an optimal cutoff frequency and order has been

discussed in [48, 49] exhaustively. But for precision, it has been developed a140

pattern search optimization method which finds the optimal cutoff frequency

and order with comparison of the filter output to offline computed velocity

data. These velocity data has been processed by a non casual offline smooth

differentiation from position data in 512 sampling windows. The optimal cutoff

frequency found for our system is 30[Hz] frequency with the order of 2 by a delay145

of 7[ms] in the output. In Fig.3, use of this filter after a direct differentiator

has been shown. As it is obvious there is a delay in results which makes this

filter unreliable in high precision-high speed processes.
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Figure 3: Numerical Differentiator followed by a butterworth filter.

2.3. Kalman Filter

Kalman filter is the most famous for estimation of system states by fusion

of the noisy input signals [50]. In this paper for comparison we have considered

a tri-state system differentiator which has been derived by discretization of the

continuous object motion states:
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Where the discrete states are X(k) = [P (k), V (k), A(k)]′ and sensed data are150

Y (k) = [Ps(k), As(k)]
′ by considering sample time ∆t. The w = N(0, Q) and

v = N(0, R) are the uncertainties with Gaussian Distribution of variances Q

and R. Kalman filter has a two-step procedure for state estimation. In the

prediction step, The current state and error noise covariances are used to project

forward through the state model in order to estimate the predicted mean and155

covariances. This is called as the a priori estimate. Once the outcome of the
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next measurement (corrupted with random noise) is observed, these estimates

are updated using a weighted average, with more weight being given to estimates

with higher certainty. These two steps equations for our differentiator case are

as follows:160

• Initialization: It consists of choosing good initials for X−

k−1 and P−

k−1

• Prediction:

X̂−

k = ΓX̂k−1

P−

k = ΓPk−1Γ
T +Q

(3)

• Update:

Kk = P−

k C
T (CP−

k C
T +R)−1

X̂k = X̂−

k +Kk(Y − CX̂−

k )

Pk = (I −KkC)P−

k

(4)

The algorithm is recursive. It can run in real time, using only the present input

measurements and the previously calculated state and its uncertainty matrix,

so no additional past information is required.

2.4. Complementary Filters165

Complementary Filter (CF) scheme is used wildly in many areas of digital

technology we have, from aerospace [51, 30] to mobile tracking devices [52]. This

filter is actually a steady state Kalman filter (i.e., a Wiener filter) for a certain

class of filtering problems[30]. A complementary Filter shown in Fig.4 consists

of two or more filters, which in together produce one output from multi-input,170

where each filter choose to give one part of the output based on the space which

the filters are complementary in. This configuration shows how a low pass filter

G(s) can remove high frequency noise n2 and low frequency disturbance n1 from

variableX . Traditionally CFs, shown in Fig.5 has been used in finding tilte angle

of Mechatronics or UAVs in an accurate low noise signal from accelerometer and175

gyroscope [53, 54].
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Figure 4: Complementary filter scheme.

Figure 5: Traditional complementary filter for estimating title from accelerometer and gyro-

scope.

2.5. Delay Analysis of Complementary Filters

All the complementary filters use simple properties of All-Pass band Filters[55]

(APF). In an APF we have two or more filters which the summation of their

gain is unity with kernel based phase delay and with their group delay could

change the behavior of the signal[56]. Group delay denoted by τg(ω) vs Phase

delay denoted by τp(ω) is the time delay of the amplitude envelopes of the var-

ious sinusoidal components of a signal through a device under test, and is a

function of frequency for each component. Phase delay, in contrast, is the time

delay of the phase as opposed to the time delay of the amplitude envelope. If

the filter’s transfer function is H(jω), then we have:

φ(ω) = arg{H(jω)}
τg(ω) = − dφ(ω)

dω

τp(ω) = −φ(ω)
ω

(5)

The complementary filter can be reconfigured as in Fig.6 from Fig.4. In this case

the input to G(s) is n2−n1, so that the filter G(s) just operates on the noise and

the original variable X flows out by the delay configured according to the unity180

APF phase. For illustration in Fig.7 the group delay of a butterworth filter
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Figure 6: Reconfigured complementary filter, which shows the Unity all-pass filter affect on

the estimated variable.

and Haar wavelet(1th order) has been shown. As it is obvious the Haar wavelet

group delay is just half a sample which is high better than the butterworth

nonlinear with high samples of delay.
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Figure 7: The group delay of butterworth filter shows a nonlinear behavior with high peak

of 11[samples] around 0.2 × π/sample, in contrary Haar wavelet(1th order) has a very low

(0.5[Sample]) of group delay.
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3. Wavelet Complementary Estimator185

As shown in Fig.8 and Fig.9, We have designed a moving horizon comple-

mentary filter in which two wavelet filters produce one output velocity data

from two sources. The first source comes from differentiating of position sensor

and the second one comes from integrating of acceleration data. If we consider

position and acceleration as:

P (k) = Pr(∆t× k) +Np(0, σp)

A(k) = Ar(∆t× k) +Na(0, σa)
(6)

where P (k) and A(k) are sample of position and acceleration from continuous

Pr and Ar with sample time of ∆t. These two signals carry white noises with

covariances σp and σa. Now if we take numerical derivative from P (k) and

numerical integration from A(k) we get two numerical representation of real

velocity V (n) as:

Vd(n) = V (n− dd) +
∆Np(0,σp)

∆t

Vi(n) = V (n− di) + b0n+
∑
Na(0, σa)

(7)

where dd and di are the delay produced by numerical operators, differentiation

and integration respectively. The first one consists of violet noise (Differentiation

of white noise), but without any drift in output and the second one is a good

velocity data but having bias b0 came from numerical integration procedure on

initial mean value of acceleration and local mean of discrete white noise and a190

brown(ian) noise (Integration of white noise).

3.1. Mathematical Definition

As said in introduction, wavelet filters alone removes data from signals. But

here by combining two higher and lower resolutions data from two relevant signal

we get almost all data back. If we consider the delays from operators could

be neglected, we can derive the discrete wavelet transform of both velocities by
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Figure 8: Scheme of the Wavelet Complementary Velocity Estimator which is consists of two

parts. the upper part is numerical differentiator and the lower part is the numerical integrator.

Figure 9: Moving Horizon of the Wavelet Complementary Estimator which is consists of 2N

buffered samples.

using appendix A equations for data length of 2N as:

cdN,k =
∑

k

{V (n) +Nviolet(0, σ)}φN,k(n)

ddm,k =
∑

k

{V (n) +Nviolet(0, σ)}ψm,k(n)

ciN,k =
∑

k

{V (n) + b0n+Nbrown(0, σ)}φN,k(n)

dim,k =
∑

k

{V (n) + b0n+Nbrown(0, σ)}ψm,k(n)

(8)

As the function {Nviolet(0, σ)}φN,k(n) is an even function and {b0n}ψm,k(n) is

an odd function over large k we can expect that the following summations goes

to zero:

C =
∑

k

{Nviolet(0, σ)}φN,k(n) ≈ 0

D =
∑

k

{b0n+

≈0
︷ ︸︸ ︷

Nbrown(0, σ)}ψm,k(n) ≈ 0

(9)
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We have constructed our new complementary filter by choosing the filter coef-

ficients as:

fc(x) =
∑

k

ccN,kφN,k(x) +
N∑

m=1

∑

k

dcm,kψm,k(x)

ccN,k = cdN,k

dcm,k = dim,k

(10)

This gives us a results with much less bias and noise. In addition based on the

structure we can connect this estimator concurrently in serially manner.

3.2. WCE Delay Analysis195

One of the main characteristics of the wavelet filter banks is their lossless

reconstruction of the data from converted data through filter banks[57] if the

processing frequency is greater than sampling frequency. This feature comes

from recursive algorithms which wavelet’s kernels are based on. In contrary to

Fig.6 that there is just an APF with nonlinear phase and group delay in the200

middle of the input and output signal, the WCE uses an APF in each sub down

resolution. This procedure is shown in Fig.10. Based on Eq.10 it can be seen

that the first source (S1) in the (N − j)
th

level is added to the second source

(S2) in the same level through a low pass filter ↑ Φ′

N−j−1(ω) which is consisted

of a high sampler and low pass filter of scale wavelet function to (N − j − 1)
th

205

level, and this procedure continues up to level 0. I(ω) is the APF and the same

for our Haar wavelet kernel based WCE at each resolution.

Figure 10: The wavelet complementary procedure involves a unity filter and wavelet low pass

filter at each sub-resolution.
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As it is said before the complementary structure of the wavelet filter banks

allow them to lossless reconstruction of the data which shows their APF struc-

ture as unity in gain and zero in phase delay. This is easy to show in our

selected Haar kernel. The Haar wavelet filter bank is consisted of two level

decomposition, scale and details. It can be written as:

xc
j−1[n] = (xc

j [2n] + xc
j [2n− 1])/

√
2

xd
j−1[n] = (xc

j [2n] − xc
j [2n− 1])/

√
2

(11)

If we define xcj−1[n] as y, x
d
j−1[n] as z, and 2n as k, we can write upper

equations as:

y = (xc
j[k] + xc

j [k − 1])/
√
2

z = (xc
j [k]− xc

j [k − 1])/
√
2

(12)

which indicates that, the Haar wavelet filter bank operates as a simple first

order low pass and a first order high pass filters for its immediate lower resolu-

tion. The fourier transform of Eqs.12 is as:

Y (ω) = Xc
j (ω)(1 + e−iω)×

√
2

Z(ω) = Xc
j (ω)(1− e−iω)×

√
2

(13)

By adding these two simple equations together to construct an APF for

that resolution we can go back to original estimated lower resolution. This

characteristic shows why we can reconstruct lower resolutions from higher ones210

without losing data or phase and group delay (if processing frequency is higher

than sampling).

4. Results and Discussions

For illustrating the power of this filter we tried two basket of data. One is the

artificial sinusoidal function with white Gaussian noise over them to benchmark

it with other methods and the other is some collected position and acceleration

data from a real shaking table shown in Fig.11. The shaking table is activated

by various input voltage signals, where here in this article we have used the step

function input as case study. The position and acceleration measurements of
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the system are carried out by linear potentiometer transducer PC-M-300) and

accelerometer (ADXL05EM-EM-3) separately. Every measurement is recorded

with the sampling frequency of 2K[Sps], which is shown in Fig.12. The

Figure 11: Physical shaking table in our laboratory.

Figure 12: Structure of data gathering system.

sinusoidal function, shown in Fig.13 are:






S = 10 sin(2πt) +N(0, σ1)

dS
dt

= 20π cos(2πt)

d2S

dt2
= −40π2 sin(2πt) +N(0, σ2)

(14)

In the simulation case, the position sensor Signal to Noise Ration (SNR) is set

to 70[dB] and the acceleration sensor SNR is set to 10[dB]. The Fig.14 shows215

comparison between butterworth and our estimator. The WCE results have

almost no delay with respect to butterworth filter in spite of more digestible

noise over it. As it is clear the WCE takes more time to converges to the real

velocity. The next comparison is with the Kalaman Filter, which has been
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Figure 13: Sinusoidal Position, Real Velocity, Velocity from numerical differentiation and

Acceleration for benchmarking the Wavelet Complementary Estimator.
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Figure 14: Comparison of Wavelet Complementary Estimator with butterworth filter, it shows

the delay conventional filters.

shown in Fig.15. Kalman Filter after 3 seconds has been successfully converged220

to the real velocity. This result is comparable to next simulation of kalman filter

which could not converge to real velocity, which proposes that the kalman filter

is just applicable in data sets which has no bias. Besides our complementary

estimator, we have designed an Ordinary Complementary Estimator (OCE) that

uses traditional butterworth filters, one highpass for integration part and one225

lowpass for differentiation part, instead of our wavelet filter banks. The results

are shown in Fig.16. For benchmarking the WCE, we have considered

the long term (10[s]) velocity integration to compare it with real position. This

test bench shows how much the data produced can be trustable for producing
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Figure 15: Comparison between the Kalman Filter and WCE which shows WCE’s faster

convergences, but kalman filter’s better results in non biased data sets.
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Figure 16: Results of the ordinary complementary estimator shows a stable, fast converging

but biased output.

0 0.5 1 1.5 2 2.5
 Time[s]

-80

-60

-40

-20

0

20

 P
os

iti
on

 

Real Position
BWF
WCE
KF

2 2.02 2.04
0

1

2
 

Figure 17: Integration benchmark for Kalman and Butterworth filters and the WCE. Kalman

Filter goes off and the other two stays with real position data.
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Figure 18: Position and Acceleration gathered from sensors.
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Figure 19: Velocity estimation by Wavelet Complementary and Butterworth 2π60(rad)order2

Filters.
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Figure 20: Velocity estimation by Wavelet Complementary and Kalman filters.

stable control outputs in feedback systems. Fig.17 shows the integration results.230

Integration of the Kalman Filter goes wild off the road, but butterworth and

19



1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
 Time[s]

-0.05

0

0.05

0.1

0.15

0.2

 V
el

oc
ity

 

WCE
BWF

Figure 21: Comparing velocity estimation with Butterworth filtering 2π30(rad)order4 after

numerical differentiator.
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Figure 22: Velocity estimation by Wavelet Complementary and Ordinary Complementary

with butterworth 2π30(rad)order2 Filters.
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Figure 23: Position from velocity integration of filters to comparison, as seen kalman filter

has a large bias in this benchmark.
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Table 1: Mean Square Error comparison of four filters in Velocity and Position from long

integration for sinusoidal signal.

WCE KalmanF BWF OCE

MSE[Vel] 3.629 100.003 1.974×103 5.925

MSE[IPos] 0.002 3.701×103 0.3314 0.126

the WCE stays in stable manner. As it is obvious, WCE has no delay with

compare to the butterworth filter.

For better comparison the Mean Square Error of the results has been tabled in

the table.1. In the Fig.18, a gathered data set of the position and acceleration235

is shown. We try to estimate the velocity of system based on these two gath-

ered data. In a control feedback, usually we need a stable and clean data to

compensate the disturbances in output. So, removing delay and stabilization

are the most important goals of any state estimators. Here in Figs.19-22, we

have compared the velocity results of the four methods, Butterworths, Kalman240

Filter and Wavelet Complementary Estimator with real data. The butterworth

filter has order 2 with cutoff frequency of 60[Hz]. The moving horizon width

of the Wavelet Complementary Estimator is chosen 256 samples with the Haar

wavelet kernel. The results of Fig.19 shows that the butterworth filter even

with high cutoff frequency has the delay and oscillation problems. In contrary245

kalman filter results are much smooth and stable, but with a large bias that is

unusable in state feedback nonlinear controllers. For illustration of the stability

of the WCE, in Fig.23 the integration of these three filters has been shown which

implies the correctness of the WCE beside the conventional buttherworth.

5. Conclusions250

In this paper we have proposed a simple algorithm with just one parameter

of moving horizon windows length to estimate velocity from position and accel-

eration data for active vibration control of high speed high precision processes.

As seen, The proposed Wavelet Complementary velocity Estimator has the best
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stability with lowest delay results with respect to butterworth filtering methods255

and kalman filter estimation, which is achieved by considering just one param-

eter of filter, the moving horizon window’s length. This low delay comes from

its low total group delay 0.5[sample] with respect to butterworth filter. But

the MSE analysis results in table.1 show that the ordinary complementary es-

timator (OCE) with traditional butterworth kernel has almost similar but with260

much delay, which provides another scheme for designing whether if such delay

is acceptable. Because of its low delay and integration stability, it is much more

suitable for using in the online control feedback applications. The main problem

for WCE, is the noise in numerical differentiation part. As the noise goes up for

finding the low resolution of the filter we have to take more samples as moving265

windows horizon, which causes more deviation of results from real velocity. This

problem can be resolved with considering better numerical differentiator instead

of our crude step type. As its nature, the algorithm is suitable for parallelism

and can be implemented on an FPGA. The MATLAB simulation and data can

be downloaded from:270

https://www.mathworks.com/matlabcentral/

fileexchange/62831-real-time-

wavelet-complementary-velocity-estimator

This simulation reconstruct the online situation in which the algorithm has

been established.275

Appendix A. Wavelet Transform

Consider a sampled signal f(x) and generate the following sequence of ap-

proximations [58]:

fm(x) =
∞∑

n=−∞

fm,nφ(2
mx− n)m=0,1,2,...

f(x) =
∑

m

fm(x)
(A.1)

Each approximation is expressed as the weighted sum of the shifted versions of

the same function φ(x) , which is called the scaling function. If the (m + 1)th
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approximation is required to be a refinement of themth approximation, then the

function φ(2mx) should be a linear combination of the basis functions spanning

the space of the (m+ 1)th approximation, i.e.,

φ(2mx) =
∑

k

h(k)φ(2m+1x− k) (A.2)

If Vm+1 represents the space of all functions spanned by the orthogonal set

{φ(2m+1x − k); k ∈ Z, the set of integers} and V m the space of the coarser

functions spanned by the orthogonal set {φ(2mt−p); p ∈ Z} , then V m ⊂ V m+1

. Let:

V m+1 = V m ⊗Wm (A.3)

Then Wn is the space that contains the information added upon moving from

the coarser fm(x) to the finer f (m+1)(x) representation of the original function

f(t) . [58] shows that Wm ’s are spaces that are spanned by the orthogonal

translates of a single function ψ(2mx) , thus leading to the following equation:

f (m+1)(x) = fm(x) +

∞∑

n=−∞

fm,nψ(2
mx− n) (A.4)

The function ψ(x) is called a wavelet and is related to the scaling function φ(x)

, through the following relationship:

ψ(2mx) =
∑

k

g(k)φ(2m+1x− k) (A.5)

h(k) and g(k) form a conjugate complementary mirror filter pair. Concluding

the discussion, a mixed-form N -level discrete wavelet series representation of

the signal is given by:

f(x) =
∑

k

cN,kφN,k(x) +
N∑

m=1

∑

k

dm,kψm,k(x)

cN,k =
∑

k

f(x)φN,k(x)

dm,k =
∑

k

f(x)ψm,k(x)

(A.6)

where φ(x) and ψ(x) are the conjugate functions respectively. Interestingly, the

multiresolution concept, besides being intuitive and useful in practice, forms the

basis of a mathematical framework for wavelets. One can decompose a function

into a coarse version plus a residual and then iterate this to infinity. If properly
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done, this can be used to analyze wavelet schemes and derive the wavelet basis.

It can be seen from (6) that a wavelet transform decomposes a signal f(x) into

trend c and detail d coefficients . An efficient approach in computing the discrete

wavelet transform (DWT) is to use the sub-band coding scheme which uses only

the filters h(k) and g(k) , which are found to be:

h(k) =
√
2
∑

x

φ(x)φ(2x− k)

g(k) =
√
2
∑

x

ψ(x)ψ(2x− k)

g(k) = (−1)kh(−k + 1)

(A.7)

Equations (6) and (7) provide a hierarchical and fast scheme for the computation

of the wavelet coefficients of a given function.

The DWT of a signal f(x) results in trend (c) and detail coefficients (d) as

given by (6). The first step in signal decomposition consists of computing these

trend and detail coefficients. Thereafter, the trend coefficients combined with

the scaling function as a basis is used to generate the trend signal [left-hand side

of the summation in (6)] and the detail coefficients using the wavelets as a basis

are used to generate the detail signals [right-hand side of the summation in (6)].

The trend signal captures the high-scale (low-frequency) information and the

detail signal captures the low-scale (high-frequency) information contained in

the signal f(x). Depending upon the number of decomposition levels, the end

product of a multiresolution decomposition is a set of these signals at different

scales (frequencies), as shown in (8), where fH is the high-scale signal, fL is the

low-scale signal, and fMi
, i = 1, ..., N−1, are the medium-scale signals where N

is the number of decomposition levels. For example, if a three-level decompo-

sition of error signal is done, it results in one trend signal (low frequency) and

three detail signals (high and intermediate frequency). There is redundancy

in the trend signal; hence, only one obtained at the last level is chosen. The

frequency information of these decomposed signals is approximate since the de-

composition process does not use a precise frequency-characterized basis vector

such as sines and cosines which are used in Fourier analysis:

f(x) = fH(x) + fM1
(x) + ...+ fMN−1

(x) + fL(x) (A.8)
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