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Abstract 

The present paper deals with the seismic modal dynamic identification of frame structures by a 

refined Frequency Domain Decomposition (rFDD) algorithm, autonomously formulated and 

implemented within MATLAB. First, the output-only identification technique is outlined 

analytically and then employed to characterize all modal properties. Synthetic response signals 

generated prior to the dynamic identification are adopted as input channels, in view of assessing 

a necessary condition for the procedure’s efficiency. Initially, the algorithm is verified on 

canonical input from random excitation. Then, modal identification has been attempted 

successfully at given seismic input, taken as base excitation, including both strong motion data 

and single and multiple input ground motions. Rather than different attempts investigating the 

role of seismic response signals in the Time Domain, this paper considers the identification 

analysis in the Frequency Domain. Results turn-out very much consistent with the target values, 

with quite limited errors in the modal estimates, including for the damping ratios, ranging from 

values in the order of 1% to 10%. Either seismic excitation and high values of damping, 

resulting critical also in case of well-spaced modes, shall not fulfil traditional FFD assumptions: 

this shows the consistency of the developed algorithm. Through original strategies and 

arrangements, the paper shows that a comprehensive rFDD modal dynamic identification of 

frames at seismic input is feasible, also at concomitant high damping. 
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PART I: Theoretical formulation and computational implementation 

1. Introduction 
The dynamic characterization of mechanical systems and engineering structures keeps becoming 

increasingly important towards reaching several focused goals, such as dynamic response prediction, 

finite element model updating, structural health monitoring, passive and active vibration control, and 

so on [1], [2], [3], [4], [5]. 

Dynamic testing allows for a reliable evaluation of basic structural properties, e.g. natural frequencies, 

mode shapes and damping ratios. In this context, prompt and accurate estimates may be derived from 

output-only modal identification procedures [6], which belong to a specific branch of modal dynamic 

identification [7]. This group of procedures pertaining to Operational Modal Analysis (OMA) recurs 

only to structural response signals induced by undetermined ambient loads (operating loads, wind, 

turbulence, traffic), in order to determine the corresponding Power Spectral Density (PSD) functions, 

from which structural modal properties may be extracted [6]. These output-only techniques display 

two major advantages with respect to more traditional input-output identification techniques in the 

field of Experimental Modal Analysis (EMA) [8], [1], [9], [10]: no excitation devices are required; all 

(or part) of the measurements (coordinates) may be used as reference (i.e. as input for the 

identification algorithm). Thus, OMA identification algorithms belong to Multi-Input-Multi-Output 

(MIMO) procedures [11]. This allows to detect even closely-spaced or repeated modes, looking for a 

suitable characterization of real complex structures [12], [13]. 

The present paper deals with the modal dynamic identification of frame structures by an output-only 

technique in the frequency domain, i.e. a refined Frequency Domain Decomposition (rFDD) 

algorithm, implemented autonomously within MATLAB [14], [15], starting from the classical 

description in the original works by Brincker et al. [16], [17], [18]. FDD techniques allow for 

estimating natural frequencies and mode shapes of the structural system; in their EFDD (Enhanced 

FDD) formulations [18], [19], [20], also of modal damping ratios and undamped natural frequencies. 

Recently, a third generation of FDD, i.e. Frequency Spatial Domain Decomposition (FSDD), has been 

developed to eliminate some disadvantages of EFDD algorithms [13], [21], [22]. However, the 

algorithm presented in this work refines and rejuvenates classical EFDD algorithms, through specific 

computational strategies, allowing the structural identification at seismic input and concomitant heavy 

damping. In this application field, its robustness as compared to traditional EFDD algorithms has been 

effectively proven. 

According to the existing literature, FDD techniques appear to remove typical disadvantages 

associated to classical frequency domain approaches [6], e.g. they allow to detect close vibration 

modes and do not result excessively sensitive to ambient noise [19]. The method should work properly 

within crucial typical hypotheses such as: canonical force input based on stationary Gaussian white 

noise (i.e. free vibration data or weak stationary ambient excitations), very lightly-damped structures 

(damping ratios less than 1%) and geometrically orthogonal mode shapes of close modes. Within such 

assumptions, identified modal properties have been typically related to small-amplitude 

vibrations [23], [24]. Even so, it is known that dynamic properties of civil structures may result 

amplitude-dependent; hence, parameters identified from small-amplitude responses may not match 

those from earthquakes, or generally from strong excitations [25], [26], [23]. These features are 

pertinent to consistent seismic characterization of civil engineering structures. Then, classical FDD 

formulations shall not be employed, as they are, for non-stationary response signals such as seismic 
excitations and for heavy-damped structures [6]. 

Within the EMA framework, the modal dynamic identification of civil structures under seismic 

excitation has been pursued in [27], [25], [26], [24]. In the field of OMA, as opposed to different 

attempts that already investigated the role of seismic response (output) signals in the Time 

Domain [28], [29], [30], [23], the present research innovatively considers the analysis in the 

Frequency Domain, through a refined FDD algorithm, with strong motion data recordings used as 

structural input. Also, high values of damping ratios are concomitantly considered. Such research 

scenario looks quite challenging in the present dedicated literature, since FDD seems to be lacking on 

that [31]. 
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In this paper, synthetic response signals generated prior to the dynamic identification (by direct time 

integration from given input signals) are adopted as input channels for the developed FDD algorithm, 

in view of assessing a necessary condition for the procedure’s efficiency. Then, the algorithm has been 

attempted at seismic input, taken as base excitation, including for strong motion records and for both 

single and multiple input ground motions. Though this type of signals and heavy damping should not 

fit among canonical assumptions of FDD identification, the use of the rFDD algorithm leads to very 

accurate estimates. 

Innovative and key issues of the procedure are originally treated and discussed, e.g. the processing of 

PSD matrix, the use of untrended correlation functions, the accounting of data filtering. Additionally, 

frequency resolution effect, spectral bell width, singular value and peak selection, and adopted 

regression time window of the antitransformed signal have been included. In short, this paper shows 

that FDD dynamic identification of structural properties at seismic input is feasible, with quite limited 

errors in the estimates of the modal characteristics, including for (high) modal damping ratios. 

By attempting to clear the analytical theory of FDD techniques, following Section 2 outlines first basic 

steps of the theoretical formulation. Some innovative strategies and features of the refined FDD 

algorithm are described, too. Section 3 presents the dedicated iterative loop for the modal damping 

ratio estimates developed within the rFDD algorithm. Preliminary assessment results have been 

produced in Section 4 for classical white noise input, even at heavy damping. At first, Section 5 shows 

the characteristics of the strong ground motions taken as base excitation for the frame structures. 

Interpretations on the use of seismic response signals and heavy damping with the present rFDD 

algorithm are emphasized. Then, comprehensive results on modal identification at seismic input, 

including for quite high values of damping, are outlined. Comparison results among the proposed 

refined FDD algorithm and a classical FDD implementation are presented both in Sections 4 and 5. 

Further, detailed analyses concerning a realistic structure taken from the literature are produced and 

reported in Section 6, by considering multiple input earthquake recordings, ground motion data 

collected at different locations and noise addition to the time signals. Main conclusions are finally 

gathered in Section 7. 

 

2. Refined FDD technique 
The common feature of frequency domain methods is the evaluation of the spectral density functions 

from the structural system responses. The main difference, on the contrary, is the procedure through 

modal parameters are extracted from the Power Spectral Density (PSD) matrix. The FDD 

technique [18], [16] is an extension of the classical frequency domain approach, denominated BFD 

(Basic Frequency Domain) or also PP (Peak Picking) [6], [17]. 

The classical frequency approach is based on a DFT (Discrete Fourier Transform) signal processing. 

The FDD technique is able to pick up close modes with better accuracy and does not result excessively 

sensitive to ambient noise. It operates a Singular Value Decomposition (SVD) of the PSD matrix on 

each line of the frequency spectrum, which has the powerful property of separating noisy data from 

disturbances of various source. The PSD matrix is then decomposed into a set of auto-spectral density 

functions, each corresponding to a SDOF system, from which natural frequencies and mode shapes 

can be extracted [32]. Typical characteristic assumptions for the validity of the method are white noise 

input, very low structural damping ratios (below 1%) and geometrically-orthogonal mode shapes of 

closed modes. If these assumptions are not satisfied, the SVD decomposition may result approximated, 

leading to noisy plots and inaccurate results. Previous assumptions and procedures belong to classical 

FDD implementations, as stated from main literature works as [16], [18], [17], [19], [31], [13], [21]. 

Even so, the present rFDD algorithm, through its computational procedures, deals also with seismic 

input and heavy damping conditions. Thus, consistent modal identification becomes truly possible also 

with signals different from those fulfilling traditional FDD assumptions. 

Theoretical developments and implemented original strategies of the rFDD algorithm help to work 

under those conditions, leading to effective modal parameter estimates. In the current section and in 

Sections 3 and 5, the underlying theory and computational procedures are explicitly presented and 

emphasized, jointly with remarks and explanations about the present successful use for earthquake 

excitation and heavy damping. 
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2.1 Theoretical framework of FDD techniques (SHORTENED) 

In the dedicated literature, original papers have laid down the main strategy of FDD methods, starting 

from the early works of Brincker et al. [6], [16], [17], [21]. The present section gathers and re-

elaborates the fundamental concepts on the subject, with the purpose of providing a general, clear and 

unitary theoretical framework of FDD techniques, adopted here as basis for the present refined FDD 

formulation. This attempt is felt original, since this seems to be lacking in the present literature, where 

often erroneous statements and formulations are repeated in series by various authors, referring to 

others, without any direct assessment and inspection. In the present paper, all crucial steps and 

equations are consistently exposed and derived in a self-contained manner, with respect to continuous 

time and spatial scale. Whereas it is necessary for a better understanding, steps arising from the 

numerical implementation, i.e. to discrete time, have been added.  

The FDD theory is based on the input/output relationship of a stochastic process for a general n-dof 

system [33]: 

𝐆yy(𝜔) = �̅�(𝜔)𝐆xx(𝜔)𝐇 T(𝜔)                                                                                                        (2.1) 

where 𝐆xx(𝜔) and 𝐆yy(𝜔) are the (r × r) and (m × m) input and output PSD matrices, respectively, r 

the number of input channels (references) and m the number of output responses (measurements). The 

overbar denotes complex conjugate, and apex symbol T  transpose. Then, 𝐇(𝜔)  is the (m × r) 

Frequency Response Function (FRF) matrix, which may be also written in pole/residue form [1]: 

𝐇(𝜔) = ∑
𝐑k

i𝜔 − λk
+

�̅�k

i𝜔 − λ̅k

n

k=1

                                                                                                        (2.2) 

where n is the number of modes, λk = −𝜁k𝜔k + i𝜔dk = −𝜁k𝜔k + i𝜔k(1 − 𝜁k
2)

1/2
, λ̅k  are the poles 

(in complex conjugate pairs) of the FRF and 𝐑k = 𝛟k𝚪k
 T the (m × r) residue matrix [1], [16]. In these 

formulations 𝜁k is the modal damping ratio, and 𝜔k and 𝜔dk are the undamped and damped angular 

frequencies associated to the kth pole. Then, 𝛟k = [ϕ1k ϕ2k …ϕNk]
T  and 𝚪k = [Γ1k Γ2k … ΓRk]

T  are 

the kth (m × 1) mode shape vector and (r × 1) modal participation factor vector, respectively. When 

all output measurement points are taken as references (i.e. m = r), dim (𝛟k) = dim (𝚪k), so 𝐇(𝜔) 

becomes a square matrix. Then, Eq. (2.1), through Eq. (2.2), can be rewritten as [15]: 

𝐆yy(𝜔) = ∑ ∑(
�̅�kGxx

−i𝜔 − λ̅k

+
𝐑kGxx

−i𝜔 − λk
)

n

s=1

n

k=1

(
𝐑s

 T

i𝜔 − λs
+

𝐑s
 H

i𝜔 − λ̅s

)                                          (2.3) 

where Hermitian apex symbol H denotes complex conjugate and transpose. This is feasible since the 

PSD matrix 𝐆xx(𝜔)  is constant in case of stationary zero mean white noise input [33]; Then, 

remembering also the PSD computation by the Short Time Fourier Transform [33], 𝐆xx(𝜔) becomes 

real valued and non-negative, so that 𝐆xx(𝜔) ⇒ Gxx = G̅xx . Thus, by recalling the properties of 

𝐆xx(𝜔) and by applying the Heaviside partial fraction expansion theorem to Eq. (2.3), one can obtain 

the final pole/residue form of the output PSD matrix [12]: 

𝐆yy(𝜔) = ∑
𝐀k

i𝜔 − λk
+

𝐀k
 H

−i𝜔 − λ̅k

+
�̅�k

i𝜔 − λ̅k

+
𝐀k

 T

−i𝜔 − λk

n

k=1

                                                      (2.4) 

where 𝐀k is the residue matrix of the PSD output corresponding to the kth pole 𝜆k. As for the PSD 

output itself, the residue matrix is an (m × m) Hermitian matrix given by [13]: 

𝐀k = ∑(
𝐑s

−λk − λs
+

�̅�s

−λk − λ̅s

)Gxx𝐑k
 T

n

s=1

                                                                                     (2.5) 

When the structure is lightly damped (small damping ratios 𝜁𝑘 ≪ 1), the pole can be expressed as 

λk = −𝜁k𝜔k + i𝜔dk ≅ −𝜁k𝜔k + i𝜔k ; then, in the vicinity of the kth  modal frequency the residue 

matrix can be expressed by the following approximate expression [13], [15]: 



F. Pioldi, R. Ferrari, E. Rizzi - Mechanical Systems and Signal Processing 

 

5 

𝐀k = [
𝐑k

2(𝜁k𝜔k − i𝜔k)
+

�̅�k

2𝜁k𝜔k
] Gxx𝐑k

T ≃
�̅�kGxx𝐑k

T

2𝜁k𝜔k
=

�̅�k𝚪k
 HGxx𝚪k𝛟k

 T

2𝜁k𝜔k
= dk�̅�k𝛟k

 T        (2.6) 

where only the �̅�k  term survives, since the 𝜁k𝜔k  denominator is dominant with respect to the 

2(𝜁k𝜔k − i𝜔k)  one, and the term:  dk = (𝚪k
HGxx𝚪k)/(2𝜁k𝜔k)  is a real scalar. Then, with the 

formulation of Eq. (2.6), the residue matrix 𝐀k becomes proportional to a matrix based on the mode 

shape vector, i.e. 𝐀k ∝ �̅�kGxx𝐑k
T = �̅�k𝚪k

 HGxx𝚪k𝛟k
 T ∝ dk�̅�k𝛟k

 T . So, by substituting Eq. (2.6) into 

(2.4) one derives: 

𝐆yy(𝜔) = ∑
dk�̅�k𝛟k

 T

i𝜔 − λk
+

dk�̅�k𝛟k
 T

−i𝜔 − λ̅k

+
dk𝛟k𝛟k

H

i𝜔 − λ̅k

+
dk𝛟k𝛟k

H

−i𝜔 − λk

n

k=1

                                              (2.7) 

In the narrow band with spectrum lines in the vicinity of a modal frequency, only the first two terms in 

Eq. (2.8)  are dominant, since their denominators −i𝜔 − �̅�k = i𝜔 − 𝜆k ≃ 𝜁k𝜔k  are smaller with 

respect to the last two, i𝜔 − �̅�k = −i𝜔 − 𝜆k ≃ 𝜁k𝜔k + 2i𝜔k. Taking this into account, the previous 

equation can be simplified as: 

𝐆yy(𝜔) ≃ ∑
dk�̅�k𝛟k

 T

i𝜔 − λk
+

dk�̅�k𝛟k
 T

−i𝜔 − λ̅k

n

k=1

= �̅� {diag [ℜ𝔢 (
2dk

i𝜔 − λk
)]}𝚽T                                     (2.8) 

where 𝚽 = [𝛟1 𝛟2 …𝛟n] is the eigenvector matrix, gathering all the eigenvectors 𝛟i  as columns. 

Eq. (2.8) represents a modal decomposition of the spectral matrix. The contribution to the spectral 

density matrix from a single mode k can be expressed as: 

𝐆yy(𝜔k) ≃ �̅�k {diag [ℜ𝔢 (
2dk

i𝜔 − λk
)]} 𝛟k

 T = �̅�k {diag [
2dk𝜁k𝜔k

(𝜁k𝜔k)
2 + (𝜔 − 𝜔dk)

2]}𝛟k
 T       (2.9) 

This final form is then decomposed, using the SVD technique, into a set of singular values and their 

corresponding singular vectors. From the former, natural frequencies are extracted; from the latter, 

approximate mode shapes are obtained. The present unitary treatment, though largely based on 

existing FDD literature, has attempted to highlight all key steps in the formulation, achieving the 

derivation of all needed equations and operators. 

2.2 Modal identification through a refined FDD algorithm (SHORTENED) 

The time domain counterpart of the PSD in Eq. (2.4)  is the correlation function matrix 𝐑yy(𝜏) , 

starting point of the developed FDD algorithm [13]: 

𝐑yy(𝜏) = ℱ−1{𝐆yy(𝜔)} = ∑ 𝐀ke
λk𝜏 + �̅�ke

λ̅k𝜏 − 𝐀k
 Te−λk|𝜏| − 𝐀k

 He−λ̅k|𝜏|

n

k=1

                      (2.10) 

It is possible to generate the FDD representation also from time domain entries (i.e. accelerations, as 

considered here), by expressing the structural response 𝐲(𝑡) in terms of modal coordinates: 

𝐲(𝑡) = ∑ 𝛟kpk(𝑡)

n

k=1

= 𝚽𝐩(𝑡)                                                                                                         (2.11) 

where 𝐩(𝑡) is the vector of principal coordinates pk(𝑡). The response signals are correlated in order to 

obtain the matrix of auto- and cross-correlation functions, 𝐑yy(𝜏): 

𝐑yy(𝜏) = E[�̅�(𝑡 + 𝜏)𝐲(𝑡)T] = E[�̅�𝐩(𝑡 + 𝜏)𝐩(𝑡)T𝚽T] = �̅�𝐑pp(𝜏)𝚽
T                              (2.12) 

where 𝐑pp(𝜏) = E[𝐩(𝑡 + 𝜏)𝐩(𝑡)T] is the auto- and cross-correlation response matrix, in principal 

coordinates. The 𝐑yy(𝜏) matrix in Eq. (2.12) can be calculated numerically, for a finite signal length, 

with the following estimator [33]: 
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𝐑yy(𝜏) ≃
1

𝑡
∑ �̅�(𝑡 + 𝜏)𝐲(𝑡)T

𝑡−𝜏

𝑡=1

                                                                                                        (2.13) 

where instant 𝜏 spans from 0 to 𝑡, i.e. 0 ≤ 𝜏 < 𝑡. In presence of noisy or weakly-stationary data (or 

non-stationary data, as the earthquake response signals treated here), the 𝐑yy(𝜏) matrix can be further 

processed to obtain an untrended (and unbiased) well-defined version. This expedient helps in 

removing possible troubles related to weakly-stationary or non-stationary data and leads to a 

refinement of the subsequent estimates [34]. 

The formulations in Eq. (2.12) are transformed into the frequency domain by Fourier Transform, to 

obtain the PSD matrix of responses, 𝐆yy(𝜔), through the so-called Wiener-Khinchin theorem [33]: 

𝐆yy(𝜔) = ℱ[𝐑yy(𝜏)] = ℱ[�̅�𝐑pp(𝜏)𝚽
T] = �̅�𝐆pp(𝜔)𝚽T                                                     (2.14) 

where 𝐆pp(𝜔) is the PSD matrix of the input (in principal coordinates). The PSD matrix of responses 

in Eq. (2.14) can be calculated numerically, for a finite signal length, by the Fast Fourier Transform 

(FFT) algorithm, via a Cooley-Tukey procedure. Rather than steps from Eq. (2.11) to Eq. (2.14), 

which may be named as Wiener-Khinchin approach, another common way to obtain an estimate of the 

PSD matrix of responses, 𝐆yy(𝜔), is the so-called Welch Modified Periodogram method [35]. 

Differently from the Wiener-Khinchin procedure, the Welch approach implements signal sectioning, 

windowing and overlapping before the frequency domain convolution [35]. The present refined FDD 

algorithm displays the powerful feature of implementing both PSD computations. The Wiener-

Khinchin algorithm generally returns well-defined peaks, providing the best results with very short 

signals, as for earthquake records. The Welch approach, instead, thanks to averaging and to the use of 

smoothing windows, leads to slightly better estimates, especially towards treating long recordings, but 

sometimes may lead to noisier SVs [34]. According to the characteristics of the acquired structural 

responses, the joint use of these two techniques effectively helps in the estimates, by combining their 

advantages, especially at seismic input and heavy damping. 

Now, as it is common in stochastic dynamics [13], it is possible to assume that the modal coordinates 

are un-correlated; leading to 𝐑pp(𝜏) and 𝐆pp(𝜔) diagonal matrices. Then, if the mode shapes (the 

columns of matrix 𝚽) are orthogonal, Eq. (2.14) represents a spectral decomposition, achieving for 

the SVD of the transpose of the PSD matrix: 

𝐆yy
 T (𝜔) ≃ 𝚽 {diag [ℜ𝔢 (

2dk

i𝜔 − λk
)]}𝚽H = 𝐔𝐒𝐔H                                                                     (2.15) 

where 𝐔 is a unitary complex matrix (i.e. 𝐔𝐔H = 𝐔H𝐔 = 𝐈) holding the singular vectors (i.e. the 

eigenvectors) and 𝐒  is a real diagonal matrix holding the singular values (i.e. the eigenvalues), 

defining a factorization which is known as spectral theorem [1], [13]. The above mentioned SVD 

technique is performed at each single frequency line, i.e. at discrete frequencies 𝜔 = 𝜔i. 

Starting from the SVD of Eq. (2.15), modal identification can be made around a modal peak in the 

frequency domain, which can be located by a peak-picking procedure on the SV plot, as it is shown in 

Fig. 1a. The peak-picking can also be performed on the SV product plot, as originally treated in [15], 

according to a procedure that supports the identification in case of heavy damping or noisy data and 

improves the results. Then, when only the kth principal value is dominant, i.e. it reaches the maximum 

near the modal frequency 𝜔k, the PSD can be approximated by a unitary rank matrix [6], [16]: 

𝐆yy
 T (𝜔i = 𝜔k) ≃ sk𝐮k1𝐮k1

H                                                                                                               (2.16) 

where the first singular value at the kth  resonance frequency provides an estimate, with unitary 

normalization, of the related mode shape, i.e. �̂�k = 𝐮k1. The identified mode shape is then compared 

to the others in its proximity [36], in terms of MAC (Modal Assurance Criterion) index [37], which 

represents the square of the correlation between two modal vectors 𝛟r, 𝛟s  This allows to nearby 

investigate the dominant mode: in fact, if the mode is effectively dominant, the mode shape for that 

interval does not vary, locating a subset of SV that belongs to the SDOF density function [13]. 
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3. Refined FDD algorithm in MATLAB environment 
Pseudo-experimental synthetic response signals generated prior to the dynamic identification are 

adopted as numerical input for the FDD algorithm. Random noise or seismic excitation are assumed as 

loading at the base of the structures, which are taken as multi-storey shear type frames (Appendix A). 

This is done in view of assessing a first necessary condition for the procedure’s efficiency. The 

structural response of the frame systems is solved by direct integration with Newmark’s (average 

acceleration) method. Then, the adopted modal identification procedure implemented within MATLAB 

consists of two fundamental phases: 

1. The simulated responses (storey accelerations) are used as input channels for the rFDD algorithm: 

the estimates of natural damped frequencies and mode shapes are evaluated (first part of the rFDD 

algorithm, see Section 2.2). 

2. The rFDD algorithm is further extended, achieving modal damping ratios and undamped natural 

frequencies estimates through an iterative optimization procedure. This part is treated next. 

3.1 Classical Enhanced FDD algorithm 

With the EFDD algorithm [18], [17], further development of the FDD technique, modal damping 

ratios and undamped frequencies can be evaluated. The singular value of the estimated mode shape 

represents the PSD function of the corresponding SDOF system [16]. Thus, a classical EFDD 

algorithm is implemented according to the main phases below. Instead, the present rFDD develops an 

iterative loop of advanced optimization to improve modal damping ratio estimates. This is presented 

later in Section 3.2. 

The PSD function is identified around the resonance peak, comparing the associated mode shape 

estimate with those at nearby frequency lines, in terms of MAC filtering [17], [19]. This phase is 

usually referred to as spectral bell identification. A sample of the procedure is shown in Fig. 1b. 

 

 
Figures 1a, 1b: Peak-picking and spectral bell identification of the first mode shape; first singular 

value, three-storey frame, random input. 

 

The located subset of singular values in the spectral bell is taken back to the time domain by Inverse 

Discrete Fourier Transform (IDFT), by obtaining an estimate of the Auto-Correlation Function (ACF) 

of the antitransformed signal, i.e. the ACF of the SDOF system related to the resonance peak. In this 

process, the remaining parts of the PSD function laying outside the spectral bell frequency window are 

set to zero [18]. 

The antitransformed signal is normalized, dividing by its maximum value. All extrema, i.e. peaks and 

valleys, representing the free decay of a damped SDOF system, are identified within an appropriate 

time window, as it can be seen in a sample in Fig. 2a. The first two peaks and valleys must be 

excluded. Indeed, they may induce errors in subsequent operations [6], [21], [14]. Through peak- and 

valley-picking in the selected time window, it is possible to assess the logarithmic decrement δ: 

δ =
2

k
ln (

r0

|rk|
)                                                                                                                                      (3.1) 
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where k is an integer index counter of the kth extreme of the auto-correlation function, k = 1,2,3, …, 

while r0 and rk are the initial and the kth extreme value of the auto-correlation function, respectively. 

Then, it is possible to obtain a linear relation in terms of index k [20], [14]: 

2 ln(|rk|) = 2 ln(r0) − δ k                                                                                                                (3.2) 

which can be plotted and fitted with a straight line (see a sample in Fig. 2b). The logarithmic 

decrement δ is then estimated as the slope of this straight line through linear regression on k and 

2 ln (|rk|). Finally, from the estimated logarithmic decrement δq of the qth mode the corresponding 

modal damping ratio can be classically evaluated as: 

𝜁q =
δq

√4π2 + δq
2

                                                                                                                                   (3.3) 

Knowing the estimated damping ratio and the estimated damped frequencies, also the undamped 

natural frequency can be obtained [18]. Summarizing, the standard EFDD algorithm sets fixed values 

for the MAC index (for example 0.6) used to perform the spectral bell ID and the peaks of the auto-

correlation within 90% to 20% of the maximum amplitude were selected to perform subsequent 

regression operations. More details on the standard procedure may be found in [18], [38], [20]. 

 

 
Figures 2a, 2b: Representation of the selected time window over the normalized IDFT and of the 

linear regression over k and 2 ln (rk); first singular value, three-storey frame, random input. 

3.2 Iterative loop and optimization algorithm for the modal damping ratio estimates  

The following procedure is fundamental in order to achieve reliable computational estimates of the 

modal damping ratios in case of earthquake response input and heavy damping, which adversely 

affects the correct working of traditional EFDD algorithms. Especially, the use of preselected fixed 

parameters [34] (i.e. MAC value for the bell ID and selected range of amplitudes for the auto-

correlation function, as explained in the previous section) as usually done in standard EFDD 

techniques is not adequate for such challenging conditions [38], [20]. Also, the use of seismic input 

makes it harder for the correct detection of the SDOF system associated to the identified mode. 

Besides, the use of the following procedure automates the estimation of the modal damping ratios and 

does not require the interaction with an expert operator. 

The selection of the correct time window on the SDOF Auto-Correlation Function (ACF) represents 

the most difficult part of the algorithm. Jointly with the spectral bell identification, these operations 

derive from truncated data and might introduce bias errors in the damping estimates. This 

disadvantage must be taken into account especially with closely spaced modes [21]. An inspection 

about contents, decimation and frequency resolution must be necessary to achieve clear time window 

representations [14], as treated in Section 5. 

Besides, the correct outcome of the linear regression operation in Eq. (3.2) is directly connected to the 

adequacy of the time window selection. These two steps, jointly with the choice of the spectral bell, 

shall be performed by an iterative operation of advanced optimization, as outlined below: 
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1. The identification of the spectral bell related to the qth  mode of vibration is set first with a 

0.9 MAC confidence level, by defining the related subset of SVs, 𝐒Q, directly from Eq. (2.14): 

MAC(𝛟r, 𝛟q) ≥ 0.90  ⇒   𝐒Q(𝜔) = 𝐒(𝜔i = 𝜔q)[m×1]
= [𝟎  sl   ⋯  sq   ⋯  su  𝟎]

T
          (3.4) 

where sl and su are the lower and upper values of the spectral bell. 

2. According to the standard EFDD formulation, the identified set of the SV is antitransformed back 

to the time domain and then normalized, by obtaining the related SDOF ACF, 𝐑yy,Q(𝜏): 

𝐑yy,Q(𝜏) = ℱ−1{𝐒Q(𝜔)} =
1

m
∑ 𝐒Q(𝜔)𝑒−

2𝜋i
m jl

m−1

j=0

= [r1   ⋯  rm]T,     l = 1,… ,m − 1         (3.5) 

3. On the graph of the obtained normalized SDOF ACF, two exponential decays are fitted (by the use 

of MATLAB command fit), both on peaks and valleys of the ACF. The exponential fitting model is 

calculated for both peaks and valleys, �̂�p and �̂�v, respectively: 

�̂�p = Apexp(Bp𝐱p),     �̂�v = Avexp(Bv𝐱v)                                                                                     (3.6) 

where 𝐱i represent the vector of peak and valley time instants and Ai and Bi are the parameters to 

be fitted. They can be calculated by the minimization of the R function as follows: 

R2(a, b) = ∑yj[ln(yj) − (a + bxj)]
2

m

j=1

  ⇒   J =
∂(R2)

∂ai
= 0                                                      (3.7) 

with coefficients a = ln (A) and b = B. Solving for a and b, it is possible to obtain the estimates of 

the exponential decays, �̂�p and �̂�v, as in Eq. (3.6). 

4. All extrema, i.e. peaks and valleys of the ACF, ranging from r0  = 90% to rn  = 30% of the 

maximum amplitude are selected within a time window, by achieving the subset 𝐑yy,Q(𝜏sub) from 

the normalized ACF: 

rn = 0.3 ≤ 𝐑yy,Q(𝜏) ≤ r0 = 0.9  ⇒   𝐑yy,Q(𝜏sub) = [r0   ⋯  rn]
T ⊆ 𝐑yy,Q(𝜏)                   (3.8) 

5. Subsequent operations of regression, according to Eq. (3.2), are performed and the modal damping 

ratio 𝜁q is estimated. 

6. The exponential decays of Eq. (3.6) included in the time window of the ACF are compared with 

the classical damping trends: 

𝐲p = exp(−𝜁q𝜔q𝐱p) = exp [−𝜁q

𝜔dq

(1 − 𝜁q
2)1/2 𝐱p]        

𝐲v = −exp(−𝜁q𝜔q𝐱v) = − exp [−𝜁q

𝜔dq

(1 − 𝜁q
2)1/2 𝐱v]

                                                              (3.9) 

where the maximum amplitude of the motion is set equal to 1 for the normalized ACF, 𝜁q is the 

estimated modal damping ratio (Step 5) and 𝜔dq is the estimated damped frequency. 

7. Eqs. (3.9) derive from the exponential decay of the free damped vibrations of a SDOF system, and 

are used to compare these calculated decays with the fitted decays of Step 3, by computing the 

residuals 𝜺i between them: 

𝜺p = 𝐲p − �̂�p,     𝜺v = 𝐲v − �̂�v                                                                                                        (3.10) 

8. The optimization algorithm works in order to minimize these residuals, by recalibrating the time 

window parameters (i.e. the ACF amplitudes  r0 and rn) and the MAC confidence level with an 

iterative loop from Step 1 to Step 7, until a reliable estimate of δq, i.e. of 𝜁q, is obtained. Then, the 

residuals must be less than a fixed parameter 𝜀,̅ for example 𝜺i < �̅� = 0.01: 

𝜺p = 𝑓(MAC, r0, rn) ≤ �̅�,     𝜺v = 𝑓(MAC, r0, rn) ≤ �̅�                                                               (3.11) 
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The MAC index is the first value that is recalibrated by the algorithm, ranging from 0.70 to 0.99, 

while secondarily r0 and rn shall assume values between 0.7 ≤ r0 ≤ 1.0 and 0.1 ≤ rn ≤ 0.4, until 

the residuals have been minimized. 

Specifically, the optimization algorithm used for the minimization of the residuals adopts two sources 

of information, i.e. the classical damping trends 𝐲p, 𝐲v and the exponential fitted decays �̂�p, �̂�v. These 

data depend on the MAC index and ACF time window parameters selected for the analyses. Then, the 

minimization of the residuals is measured through the following objective function P(𝐳): 

P(𝐳) = [𝛼 (
𝜺p,i

𝐲p,i
)

2

, (1 − 𝛼) (
𝜺v,i

𝐲v,i
)

2

]

T

,     i = 1, … , n                                                                (3.12) 

where 𝐳 is the (3 × 1) vector including the parameters to be optimized, n being the number of ACF 

points, and 𝛼 𝜖 [0,1] is a weigh coefficient, which has been set equal to 0.5 for the result derived in the 

present work. The residual minimization in the objective function is performed by using the lsqnonlin 

command within MATLAB, which implements non-linear least-squares. 

This iterative procedure conceptually derives from classical EFDD algorithms [16], [18], but considers 

a computationally efficient procedure with integrated double loop, which is implemented originally 

here in the present refined FDD algorithm. This procedure reduces errors in the achieved estimates, 

with respect to classical EFDD procedures in the literature [18], [38], leading to accurate evaluations 

of the modal damping ratios, especially for the challenging case of seismic input and heavy damping. 

Examples of these fitting procedures over the ACF at heavy damping are reported in Figs. 4b and 18b, 

with random and seismic input, respectively. A flow chart of the proposed rFDD algorithm is finally 

sketched in Fig. 3. 

 

 

Figure 3: Flow chart of the proposed refined FDD algorithm. 
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4. Validation with random excitation 
A series of multi-storey shear-type frames with different structural features has been analyzed 

first [39], [14], [15]. Results are reported for two-, three- and six-storey frames (Appendix A), which 

present well-separated modes. The realistic structural model analyzed later in Section 6 is instead 

characterized by very close modes, and it has been successfully analyzed at random input, too. Using 

these models, trials with canonical white noise and seismic input have been performed as well to 

verify the robustness of the developed algorithm. The dynamic parameters are determined before 

identification via direct modal analysis, taking damping ratios from 1% to 5% and up (until 10% in 

some cases). Notice that high values of damping are critical not only for closely-spaced modes, but 

also for well-separated modes, due to the peak flattening and the appearance of extremely noisy SVs. 

In the FDD literature, whatever the examined structural features, only modal damping ratios below 2% 

are generally treated [18], [16], [17], [19], [38], [20]. A theoretical demonstration of the rFDD 

application at heavy damping is suggested in Section 5.1, emphasizing the value of the present 

approach in such a challenging framework. 

Input is taken as a stationary random force at the base, characterized by a uniform frequency spectra. 

This excites all the structural modes, which can be identified all, through their resonance peaks, into 

the first singular value of the SVD. The modal information is also included in subsequent SVs, but 

these are not generally employed to prevent noise occurrence in the results. This phase is required in 

view of assessing a first necessary condition for the efficiency of the developed algorithm. High values 

of damping have been already adopted at this step. Following Fig. 4 shows the SVD and the ACF 

curve-fitting procedure of a three-storey frame with 𝜁k = 10%. Dealing with heavy damping, for the 

iterative procedure the MAC confidence level is set first to 0.8, and the extrema of the ACF ranging 

from 95% to 15% of its maximum amplitude are selected within the regression time window, allowing 

to speeding up the convergence of the iterative algorithm. At lower damping it is necessary to adopt a 

fine frequency resolution in the PSD evaluation, to score correctly the very sharp peaks. To reduce the 

frequency resolution, it is possible to increase the total length of the acquisitions, operation that 

however increases the number of computations. In the literature, it is generally said that time 

recordings lasting about 1000-2000 times the first natural period of the structure often results to be 

appropriate [8]. In [14] some case studies related record lengths to damping ratio estimates. Results for 

random input turn-out very much consistent. Some examples with high values of damping are shown 

in Tables 1a, 1b. Comprehensive results on random input can be found in [15], [34]. 

 

 
Figures 4a, 4b: Display of the SVD and of the normalized ACF curve fitting procedure for the third 

mode of vibration (target damping ratio 𝜁k= 10%), three-storey frame, random input. 

 

The adopted parameters in the processing are the following: 

- Two-storey frame: Length of time series t = 400 s , Sampling frequency 𝑓s = 200 Hz , Adopted 

Frequency resolution ∆𝑓 = 0.0025 Hz; 

- Three-storey frame: Length of time series t = 600 s, Sampling frequency 𝑓s = 200 Hz, Adopted 

Frequency resolution ∆𝑓 = 0.00167 Hz; 
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- Six-storey frame: Length of time series  t = 1000 s , Sampling frequency 𝑓s = 200 Hz , Adopted 

Frequency resolution ∆𝑓 = 0.001 Hz. 

The efficiency of the developed algorithm is verified, with effective estimates of all the structural 

modal parameters. The mode shape estimates are remarkable, with MAC indexes always greater than 

0.95. The use of the SV product plot may further improve the estimates, especially for the mode 

shapes [15]. The deviations of the natural frequency estimates are always less than 5%. Similarly, for 

the damping ratios the average deviation is less than 10%. At variable damping, estimates are 

obviously better at lower damping, but also appropriate for higher damping. The estimates arising 

from the developed algorithm are appreciably better, as compared to traditional EFDD algorithms, 

formulated according to the classical literature [18], [19], [17]. However, for the latter the MAC index 

is often lower than 0.90 and the deviation of the natural frequency estimates runs sometimes over 5%. 

Further, especially for the heavy-damped cases, the modal damping ratios estimates display deviations 

up to 30% for the first modes, while often fail for the higher modes. Thus, for the examined cases, the 

developed algorithm returns noticeable results without any data filtering before the identification 

procedure. 

 

Two-storey frame – Random input (ζ k = 10%) 𝜟% - 𝑴𝑨𝑪 

I mode Target frequency 4.210 Hz Estimated frequency 4.114 Hz 2.28% 

II mode Target frequency 10.92 Hz Estimated frequency 10.58 Hz 3.11% 

I mode Target mode shape 
0.5176 

0.8557 
Estimated mode shape 

0.5317 

0.8469 
1.000 

II mode Target mode shape 
-0.8557 

0.5176 
Estimated mode shape 

-0.8597 

0.5107 
1.000 

I mode Target damping ratio 10.00% Estimated damping ratio 11.28% 12.77% 

II mode Target damping ratio 10.00% Estimated damping ratio 8.92% 10.79% 

Table 1a: Example of estimated mode shapes, frequencies and damping ratios for a two-storey frame, 

random input (targeted damping ratio 10%). 

 

Three-storey frame – Random input (ζ k = 10%) 𝜟% - 𝑴𝑨𝑪 

I mode Target frequency 2.650 Hz Estimated frequency 2.658 Hz 0.30% 

II mode Target frequency 7.450 Hz Estimated frequency 7.363 Hz 1.17% 

III mode Target frequency 10.76 Hz Estimated frequency 10.44 Hz 2.97% 

I mode Target mode shape 

0.3280 

0.5910 

0.7370 

Estimated mode shape 

0.3343 

0.5890 

0.7357 

1.000 

II mode Target mode shape 

-0.7370  

-0.3280 

0.5910 

Estimated mode shape 

-0.7323 

-0.2804 

0.6205 

0.998 

III mode Target mode shape 

0.5910  

-0.7370 

0.3280 

Estimated mode shape 

0.6345 

-0.6999 

0.3291 

0.997 

I mode Target damping  ratio 10.00% Estimated damping ratio 10.76% 7.62% 

II mode Target damping  ratio 10.00% Estimated damping ratio 10.33% 3.28% 

III mode Target damping  ratio 10.00% Estimated damping ratio 10.48% 4.84% 

Table 1b: Example of estimated mode shapes, frequencies and damping ratios for a three-storey 

frame, random input (targeted damping ratio 10%). 
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PART II: Modal identification with seismic response signals 

5. Modal identification at seismic input on ideal frames 
The algorithm’s efficiency is further assessed by trials with seismic input, a type of signal that shall 

not fit among those strictly eligible for FDD identification. At this stage, high values of modal 

damping ratio have been also considered. Analyses have been performed through the developed 

refined FDD algorithm. Frames are subjected to three seismic excitations, applied at the base of the 

structures as SDOF ground acceleration: 

- El Centro Earthquake (Imperial Valley, California, 18 May 1940): Magnitude M = 7.1,  USGS-

NSMP Station 0117 - NS component, PGA = 306.5 cm2/s = 0.312 g , Length of registration 

t = 40 s, Sampling frequency 𝑓s = 100 Hz; 

- L’Aquila Earthquake (Abruzzo, Italy, 6 April 2009): Magnitude M = 5.8,  AQV Station - WE 

component, PGA = 646.1 cm2/s = 0.659 g, Length of registration t = 100 s, Sampling frequency 

𝑓s = 200 Hz; 

- Tohoku Earthquake (Miyagi, Japan, 11 March 2011): Magnitude M = 9.0, MYG004 Station - NS 

component, PGA = 2647.8 cm2/s = 2.699 g, Length of registration t = 300 s, Sampling frequency 

𝑓s = 100 Hz. 

These seismic excitations are characterized by narrow frequency spectra and high energy content. 

Also, they are characterized by short and strictly non-stationary records. Following Fig. 5 represents 

the frequency content of the adopted earthquakes by the Fourier amplitude spectrum. Strong motion 

data are considered since they may affect the modal response and may bring to difficult modal 

parameter estimates [25], [26], [23], [14], [15]. Anyway, the developed algorithm, with its refined 

computational strategies, leads to effective estimates. 

 

 
Figure 5: Fourier amplitude spectra of the three adopted seismic excitations. 

5.1 FDD technique for seismic response signals and heavy damping 

This paragraph presents some original theoretical considerations and explanations about the current 

use of strong ground motions with the implemented refined FDD technique. It explains why this rFDD 

algorithm works fairly well also at seismic input and concomitant heavy damping. 

Unlike the PSD of white noise input (that runs-out approximately constant at every frequency instance 

of the spectrum), the PSD of an earthquake excitation changes with time and frequency [23]. 

Otherwise, in most cases it changes slowly over the frequency range, especially for an interval that is 

adequately wide to include the structural modal frequencies. In these cases the spectrum can be 
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considered sufficiently flat to approximate the trend of a white noise excitation with good accuracy, as 

it occurs for the set of adopted seismic excitations. These changes may be gradual enough to not 

significantly affect any individual modal peak of the structure. So, the ground motion would still 

generally be adopted as the broad-banded white noise input characteristic of OMA. This assertion may 

be illustrated in following Fig. 6, where, over the frequency range between 0 Hz and 15 Hz, interval 

containing all the examined structural modal frequencies, a linear interpolation is represented, proving 

through its slight angular coefficient the fairness of the present assumption. 

As stated in previous Section 2.1, the FDD method relies on the assumption of stationary zero-mean 

white noise input, which implies that the input PSD matrix 𝐆xx(𝜔) is constant, hypothesis which is 

critical in the simplifications made in Eqs. (2.3) and (2.5). For some selected non-white noise input, 

as the previously-exposed ground motions, it is possible, within a good approximation, to ignore the 

frequency dependence of the input PSD matrix for a specific frequency interval, i.e. for a subset 

𝜔Sub = Sub(𝜔) ∈ 𝜔 ⇒ 𝑓Sub = Sub(𝑓) ∈ 𝑓, as the following: 

𝜔Sub = Sub(𝜔) = 2π𝑓Sub = 2πSub(𝑓) 

          ⇒ 𝑓Sub = Sub(𝑓) = [0,  
𝑓Nyq

2m
=

𝑓s
4m

] ∈ 𝑓 = [0,  𝑓s] = [0,  2𝑓Nyq = 𝑓s]                       (5.1) 

where 𝑓Nyq = 𝑓s/2 is the Nyquist frequency, 𝑓s is the adopted sampling frequency and m is a positive 

integer which delineates the subinterval of frequencies. This work demonstrates that this assumption 

(and related simplification) leads to effective modal parameter estimates, taking also into account the 

peculiarities of the seismic excitations.  

 

 

Figure 6: Auto-Power Spectral Density of the adopted structural input excitations with related linear 

interpolation in the frequency range between 0 and 15 Hz. 

 

The developed refined FDD algorithm considers, among other strategies, the feature of defining 

𝐆xx(𝜔Sub) ⇒ Gxx = G̅xx for an interval 𝜔Sub = Sub(𝜔) ∈ 𝜔. Remembering Eq. (2.3), it is therefore 

possible to obtain: 

𝐆yy(𝜔Sub)  ≃ ∑ ∑ (
�̅�kGxx

−i𝜔 − λ̅k

+
𝐑kGxx

−i𝜔 − λk
)

n

s=1

n

k=1

(
𝐑s

 T

i𝜔 − λs
+

𝐑s
 H

i𝜔 − λ̅s

)                                   (5.2) 

Thus, all equations from (2.4) to (2.9) are still valid, recalling the approximation due to the use of the 

Sub(𝜔) interval.  
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Finally, it is possible to extract reliable estimates also at concomitant heavy damping. Especially, 

although theoretical derivations belong to the assumption of light damping, the algorithm may be 

applied to identify heavy damping. The hypothesis of lightly-damped structures has been made in 

Eq. (2.6), where the pole can be anyway expressed as λk = −𝜁k𝜔k + i𝜔dk ≅ −𝜁k𝜔k + i𝜔k even with 

heavy damping. In fact, by assuming a modal damping ratio 𝜁k = 10%, the former equation carries to 

an error of about 5 ∙ 10−3 on the 𝜔dk computation (with respect to 5 ∙ 10−5 arising from 𝜁k = 1%), an 

acceptable value in engineering terms. Accordingly, relations from Eq. (2.6)  to Eq. (2.9)  work 

properly, proving the theoretical effectiveness of the algorithm at heavy damping. With respect to the 

subsequent procedures for heavy damping estimates, theoretical derivations are still fully valid. 

Flattening of the peaks and extremely noisy SVs lead to critical conditions for classical EFDD 

procedures. The developed algorithm, with its procedures and strategies, described both in earlier 

Section 2.2 and Section 5.2 below, returns well-defined peaks and SVs, leading to effective modal 

parameter estimates, as it can be appreciated from the illustrative results provided in the paper. In 

particular, dealing with heavy damping, the iterative procedure should be adjusted in certain steps, 

namely: the MAC confidence level is set first to 0.8, and the extrema of the ACF ranging from 95% to 

15% of its maximum amplitude are selected within the regression time window, allowing to speed up 

the iterative algorithm convergence. 

5.2 Application of the refined FDD algorithm with SDOF seismic response input 

In this section, comprehensive results at seismic input and heavy damping are reported, considering 

the analyzed two-, three- and six-storey shear-type frames, which modal damping ratios are taken from 

1% to 5% and up (until 10% in some cases). Moreover, original strategies and arrangements adopted 

for the modal identification procedures are thoroughly exposed. 

As experienced previously, for random input the SVD peak individuation may be possible by working 

on the first singular value, which contains already all the necessary information for achieving 

consistent estimates. The modal information is included also in subsequent SVs. It is very common 

that resonance peaks are located in the second or even in the third SV plot, but these are not generally 

employed to prevent noise occurrence in the results. This feature no longer holds at seismic input 

(characterized by non-stationary frequency spectra): the use of subsequent SVs becomes necessary to 

capture the modal peaks, although it may bring noise in the results. The use of seismic input and heavy 

damping leads to very noisy SVs representations, which often make unsuitable subsequent SVs. 

However, the developed algorithm improves the use of lower SVs with respect to traditional FDD, 

reducing disturbances and producing less noisy SVs, as it can be appreciated in Figs. 7a, 8a. The 

estimate of modal parameters is feasible by operating on different SVs at the same time. Through the 

Wiener-Khinchin procedure, a substantial help in the location of the correct resonance peaks is 

provided [34]. All results concerning the SVs in this work are represented with this procedure. 

Otherwise, the developed algorithm can estimate the PSD matrix also by the use of the classical Welch 

Modified Periodogram [35], as opportunely set, via the integrated procedure adopted by the rFDD 

algorithm. Then, the described methods globally lead to better modal parameter estimates. Moreover, 

the use of the SV product plot is complementary [14]. 

The PSD matrix, computed at each frequency line of the spectrum, fulfills all the required properties 

for the correct working of the FDD technique, despite the characteristics of the earthquake signals. 

Then, real diagonal terms and complex conjugate off-diagonal entries are provided, correspondingly to 

a Hermitian PSD matrix. Accordingly, the related phase angles are always zero on the diagonal and 

display a 180° shift outside. Additional results and comments on that are available in [34]. 

The filtering of data before modal identification (i.e. filtering of the simulated responses adopted then 

as input channels for the refined FDD algorithm) is now necessary, with respect to the use of random 

excitation, to leave-out undesired frequency contents, that for civil structures correspond to the high 

frequency components of the spectra. This portion of the spectra may be significant with earthquakes, 

and might be reduced or removed by an adequate low-pass filtering of the acquisitions. Estimates take 

quite a significant advantage from this feature. Also, the other procedures related to the refined FDD 

algorithm reported in Sections 2.2 and 2.3 help in improving the achieved estimates of the modal 

parameters. 
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Figures 7a, 7b: Display of the SVD and of the fictitious SV related to the fourth vibration mode, six-

storey frame, L’Aquila earthquake. 

 

In case of very noisy SVs (e.g. especially with heavy damping), it is also possible to use appropriate 

computational strategies, associated to the standard SVD computation procedure. A partial 

overlapping of SVs is also possible. The individuation of spectral bells can be originally made as an 

envelope composition of different SVs portions, similarly to the common overlapping technique [40], 

by building a fictitious SDOF SV, as it is shown in Fig. 7b. In this case the spectral bell related to the 

fourth mode of vibration is composed as a fictitious SV from portions of different SVs (in this case the 

I, II, III and IV modes are adopted). Also, the peaks related to the III, V and VI modes can be found on 

the second SV curve, and the spectral bells can be similarly composed. This feature differs from the 

chance offered by classical EFDD algorithms, which allow the overlapping of SVs based upon the use 

of a modal peak positioned on the first SV. The presence of resonance peaks on different SVs may 

produce severe working conditions for traditional EFDD algorithms, which are supported here by the 

strategies of the current refined FDD procedure [14], [15]. 

 

 

Figures 8a, 8b: Display of the SVD, six-storey frame, Tohoku earthquake; comparison between 

estimated damping ratios as a function of frequency resolution, six-storey frame, L’Aquila earthquake. 

 

Another important issue concerns the frequency resolution. Seismic input signals display very limited 

registrations with respect to ambient recordings, and this may reduce the frequency resolution adopted 

for the PSD matrix evaluation. The use of a correct frequency resolution during computations affects 

directly the number of points which can be used during linear regression operations (and consequently 

the reliability of results) [15]. Also the other modal estimates are affected by the adopted frequency 

resolution [34]. Especially with short structural recordings (e.g. acquisitions derived from 

earthquakes), the frequency resolution might be enhanced by increasing the number of points used for 

the PSD matrix computations. To avoid the lacking of frequency resolution, this number of points has 

been increased by adding a zero-solicitation time window at the end of the earthquake recordings, thus 

increasing the record lengths with an operation that is known as zero-padding in classical signal 

analysis [33]. This issue is fundamental to reach effective modal parameter estimates, especially for 

the modal damping ratios [14]. Mainly, this operation must be performed for the low damping cases, 



F. Pioldi, R. Ferrari, E. Rizzi - Mechanical Systems and Signal Processing 

 

17 

as it is possible to be appreciated in Fig. 8b, where a practical example is shown. Some analyses have 

been done as well to relate frequency resolution, record lengths and consistency of the estimates. 

There, a time window of 100 s corresponds to a frequency resolution of 0.01 Hz, while a time window 

of 1000 s corresponds to a frequency resolution of 0.001 Hz. Also the estimates of the remaining 

modal parameters (i.e. natural frequencies and mode shapes) are coherently improved [34]. 

Taking into account that the sampling frequency depends on the seismic registration and that the 

length of the time series can be extended as required to enhance the frequency resolution and therefore 

the estimates, the adopted parameters of the processing are the following: 

- Two-storey frame: Length of time series t = 400 s,  Sampling frequency 𝑓s = 100 − 200 Hz 

(depending on the used earthquake), Adopted Frequency resolution ∆𝑓 = 0.0025 Hz; 

- Three-storey frame: Length of time series t = 600 s , Sampling frequency 𝑓s = 100 − 200 Hz , 

Adopted Frequency resolution ∆𝑓 = 0.00167 Hz; 

- Six-storey frame: Length of time series  t = 1000 s , Sampling frequency 𝑓s = 100 − 200 Hz , 

Adopted Frequency resolution ∆𝑓 = 0.001 Hz. 

The two-, three- and six-storey frames were newly analyzed, under seismic excitation at the base. 

Modal damping ratios varying from 1% to 10% have been considered again. Results turn-out again 

very much consistent, even with heavy damping. Samples can be seen in Figs. 9-17, where El Centro, 

L’Aquila and Tohoku seismic excitations are considered in the presentation. For the two-storey and 

the three-storey cases the estimated mode shapes are always very accurate. The six-storey cases 

present still very good results, with MAC indexes which are always higher than 0.90 for the first three 

mode shapes. Only for the last eigenvectors, i.e. the fifth and sixth, the estimates are slightly less 

accurate than for the other cases, but anyway acceptable. This fact mainly depends on the very low 

effective modal mass associated to these modes, which leads to a small energy content in the SVs. The 

estimates may become less accurate, but still acceptable, with MAC indexes that are never below 0.7. 

 

Two-storey frame at seismic input 

Target 

parameters 

I mode, f II mode, f I mode, ϕ II mode, ϕ I mode, ζ II mode, ζ 

4.211 Hz 10.920 Hz 0.5176; 0.8557 -0.8557; 0.5176 - - 

El Centro Earthquake (targeted damping ratios ζ I = ζ II = 10%) 

Classical EFDD 

estimates 

3.886 Hz  10.254 Hz  0.5144; 0.8575 -0.9651; 0.2617 8.495% 6.244% 

=7.69% =6.09% MAC=1.000 MAC=0.924 =15.05% =37.56% 

Refined EFDD 

estimates 

4.294 Hz 11.182 Hz 0.5132; 0.8583 -0.8566; 0.5199 9.917% 10.186% 

=2.01% =2.39% MAC=1.000 MAC=1.000 =0.83% =1.86% 

L’Aquila Earthquake (targeted damping ratios ζ I = 7%, ζ II = 5%) 

Classical EFDD 

estimates 

4.346 Hz  10.614 Hz  0.5143; 0.8576 -0.9867; 0.1626 4.963% 6.381% 

=3.23% =2.80% MAC=1.000 MAC=0.862 =29.10% =27.62% 

Refined EFDD 

estimates 

4.327 Hz 10.625 Hz 0.5160; 0.8566 -0.9087; 0.4174 6.717% 4.628% 

=2.78% =2.70% MAC=1.000 MAC=0.987 =4.04% =7.45% 

Tohoku Earthquake (targeted damping ratios ζ I = ζ II = 5%) 

Classical EFDD 

estimates 

4.191 Hz  10.535 Hz  0.5171; 0.8559 -0.9545; 0.2984 2.558% 6.981% 

=0.48% =3.54% MAC=1.000 MAC=0.943 =48.85% =39.61% 

Refined EFDD 

estimates 

4.204 Hz 10.562 Hz 0.5175; 0.8557 -0.8895; 0.4569 4.745% 5.268% 

=0.15% =3.28% MAC=1.000 MAC=0.995 =5.11% =5.35% 

Table 2: Comparison of estimated mode shapes, frequencies and damping ratios among traditional 

EFDD (present implementation) and refined EFDD, two-storey frame, seismic input. 

 

Frequencies are always estimated on peaks, with visible resonance ones, and deviations which are 

always less than 5% on average. Damping ratios are also estimated appropriately for all the considered 

cases, by showing an average deviation that is reasonably contained, about 10% on average, especially 

concerning low values of the target damping ratios. 

Again, the developed algorithm noticeably provides better estimates as compared to those from a 

traditional EFDD implementation [18], [19], [17]. This classical method has been implemented as well 
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into MATLAB, as it has been made for the present rFDD procedure, in order to compare the estimates 

between the two procedures and to achieve validation. Some comparison examples at seismic input 

and heavy damping are shown in Table 2, where the two-storey cases presented in following 

Figs. 9, 10, 11 are shown. The present refined FDD algorithm, clearly provides better estimates, 

especially for the modal damping ratios. Generally, for the traditional algorithm, MAC indexes are 

lower than 0.80 and sometimes the deviations of the natural frequency estimates run over 5%. Further, 

especially for the heavy-damped cases, the modal damping ratios estimates display deviations up to 

30% for the first modes, while identification may fail for the higher modes. 

 

      
Figure 9: Example of estimated mode shapes, frequencies and damping ratios for a two-storey frame, 

El Centro earthquake. 
 

      
Figure 10: Example of estimated mode shapes, frequencies and damping ratios for a two-storey 

frame, L’Aquila earthquake. 
 

      
Figure 11: Example of estimated mode shapes, frequencies and damping ratios for a two-storey 

frame, Tohoku earthquake.  
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Figure 12: Example of estimated mode shapes, frequencies and damping ratios for a three-storey 

frame, El Centro earthquake. 

 

   
Figure 13: Example of estimated mode shapes, frequencies and damping ratios for a three-storey 

frame, L’Aquila earthquake. 

 

   
Figure 14: Example of estimated mode shapes, frequencies and damping ratios for a three-storey 

frame, Tohoku earthquake. 
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Figure 15: Example of estimated mode shapes, frequencies and damping ratios for a six-storey frame, 

El Centro earthquake. 

     

     
Figure 16: Example of estimated mode shapes, frequencies and damping ratios for a six-storey frame, 

L’Aquila earthquake.  
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Figure 17: Example of estimated mode shapes, frequencies and damping ratios for a six-storey frame, 

Tohoku earthquake. 

 

6. Modal identification of a realistic model structure with multiple seismic 

response input 
Additionally to the previous results, further analyses concerning a realistic structure from the literature 

are presented in this section. These simulations are proposed to definitively validate the theoretical 

framework, even with more realistic cases, seeking to include all possible issues arising from real 

scenarios, i.e. close modes, heavy damping, multiple input ground motions, different locations of 

earthquakes and noise addition. 

The taken testbed is a realistic ten-storey RC frame from the work of Villaverde and Koyama [41]. 

Main features of this structure may be found in Appendix B. This building is characterized by very 

close modes (the ten vibration modes are grouped into a 5 Hz frequency interval), while modal 

damping ratios are taken here according to a classical Rayleigh’s damping approach, i.e. by a linear 

combination of stiffness and mass matrices. In particular, 𝜁k for the first two modes are taken as 2% 

and 2.5%, determining consequently damping ratios up to 9%, for the last mode of vibration. Similar 

damping ratios represent very well the scenario from a real RC building, leading to very high values to 

be estimated with an OMA procedure. Furthermore, attempts with 𝜁k = 2% and with 𝜁k= 5% taken 

constant for all the modes are performed as well, confirming the goodness of the developed algorithm. 

For the present implementation only selected results are presented, see the following subsections. 

6.1 Multiple input earthquake components 

Although the methodology deals with an output-only scenario, in terms of real seismic engineering 

implications, multiple input ground motions are considered for validation too. These derive from 

different recording directions of the adopted seismic records, i.e. as combinations of the horizontal 

components of the seismic action, as suggested by Eurocode 8 (see UNI EN 1998-1:2004, 

Par. 4.3.3.5.1). Accordingly, the action effects due to the combination of the horizontal components of 

the seismic excitation may be computed using both the following two combinations, i.e. 
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EEdx " + " 0.30 EEdy  and  0.30 EEdx " + " EEdy, where " + " implies “to be combined with”, EEdx and 

EEdy represent the action effects due to the application of the earthquake motion along the x and y axis 

of the structure, respectively. In this way, four combinations of seismic actions are considered, taking 

into account their possible directions, namely: 

- Comb. 1:  ENS + 0.30 EWE;  - Comb. 3:  0.30 ENS + EWE; 

- Comb. 2:  ENS − 0.30 EWE;  - Comb. 4:  0.30 ENS − EWE. 

These combinations are taken into account and analyzed for each considered earthquake, i.e. the same 

strong ground motions as in the previous analysis, except that now both NS and WE components are 

adopted. Forthcoming Table 3 reports the characteristics of the adopted ground motions. For all the 

analyses, time series of a 400 s length and 0.0025 Hz frequency resolution have been adopted. 

 

Earthquake Date Station Duration [s] fs [Hz] M Comp. PGA [g] 

El Centro 18/05/1940 0117 40 100 7.1 
NS 0.312 

WE 0.214 

L’Aquila 06/04/2009 AQV 100 200 5.8 
NS 0.546 

WE 0.659 

Tohoku 11/03/2011 MYG004 300 100 9.0 
NS 2.699 

WE 1.268 

Table 3: Main characteristics of the adopted set of earthquakes for the multiple input analysis of the 

ten-storey frame. 

 

The following Fig. 18 represents the SVD and the normalized ACF curve fitting procedure for the fifth 

mode of vibration of the ten-storey frame subjected to L’Aquila earthquake, NS component. Then, 

subsequent Table 4 summarizes some results achieved from the use of L’Aquila earthquake (NS and 

WE components), jointly with the multiple input ground motions outlined by the previous four 
combinations. 

 

 
Figures 18a, 18b: Display of the SVD and of the normalized ACF curve fitting procedure for the fifth 

mode of vibration, ten-storey frame, L’Aquila earthquake, NS component. 

 

It is possible to appreciate that the identified natural frequencies display deviations that are less than 

5% for every case, with mean values less than 2.3% on average, while modal damping ratios display 

deviations that are less than 20%, with mean values less than 9.2% on average. Noticeable looks the 

fact that though the modal damping ratios assume high values at increasing mode number, the rFDD 

algorithm keeps working very well, proving once again its full effectiveness also in real earthquake 

applications. The identified mode shapes, finally, display MAC indexes always greater than 0.85 for 

the first three modes, while they slightly decrease for the fourth and fifth modes. Mode shapes for 

modes above the fifth, until the tenth, display poor values of the MAC index, thus these values have 

not been reported in the table. 

An explanation about the effective estimates related to natural frequencies and damping ratios for all 

the modes, while mode shapes goodness decreases after the fifth eigenvector, could be sought through 
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an investigation on the effective modal masses. In fact, the first three modes take the 96% of the 

effective modal mass associated to the frame, while the fourth and fifth modes display only the 3% of 

the total mass and the remaining 1% is distributed on the last five modes. This means that, 

equivalently, the energy content brought by the modes, and then by the signal itself, is wider relating 

to the first three modes of vibration, and rapidly decreases for the subsequent modes. Consequently, 

the information carried by the SVs suffers from a deterioration of quality, determining poor values of 

the last MAC indexes, since the mode shapes are the most difficult parameters to be estimated, 

especially at seismic input and at heavy damping (due to non-stationarity of the input, which jointly 

with heavy damping leads to very noisy SVs). Anyway, these results shall be considered excellent in 
engineering terms, proving again the effectiveness of the developed algorithm.  

Then, Figs. 19-21 underline the estimates obtained by all the performed analyses, showing the 

maximum and minimum deviations related to the natural frequencies and modal damping ratios, for 

each mode of vibration and for each adopted set of earthquakes (i.e. grouped results for El Centro, 

L’Aquila and Tohoku ground motions). Similarly, Fig. 22 represents the minimum and maximum 

deviations, for the whole adopted earthquakes. 
 

Mode 
f TARG 

ζ TARG 

AQ 

- NS comp. - 

AQ 

- WE comp. - 

AQ 

- Comb. 1 - 

AQ 

- Comb. 2 - 

AQ 

- Comb 3 - 

AQ 

- Comb. 4 - 

1 

f [Hz] 

ζ [%] 

 

0.500 
2.00 

- 

0.518 - =3.44% 

2.05 - =2.46% 

MAC=1.000 

0.508 - =1.48% 

1.96 - =2.04% 

MAC=1.000 

0.508 - =1.48% 

1.95 - =2.43% 

MAC=1.000 

0.508 - =1.48% 

2.05 - =2.29% 

MAC=1.000 

0.508 - =1.48% 

2.15 - =7.63% 

MAC=1.000 

0.508 - =1.48% 

2.05 - =2.40% 

MAC=1.000 

2 

f [Hz] 

ζ [%] 

 

1.326 
2.50 

- 

1.338 - =0.87% 

2.59 - =3.49% 

MAC=0.999 

1.338 - =0.87% 

2.59 - =3.59% 

MAC=0.999 

1.338 - =0.87% 

2.39 - =4.52% 

MAC=0.999 

1.338 - =0.87% 

2.39 - =4.32% 

MAC=0.999 

1.338 - =0.87% 

2.51 - =0.30% 

MAC=0.999 

1.328 - =0.14% 

2.66 - =6.36% 

MAC=0.998 

3 

f [Hz] 

ζ [%] 

 

2.151 
3.59 

- 

2.178- =1.23% 

3.35 - =6.60% 

MAC=0.979 

2.099 - =2.40% 

3.71 - =3.30% 

MAC=0.890 

2.148 - =0.13% 

3.68 - =2.40% 

MAC=0.987 

2.178 - =1.23% 

3.26 - =9.27% 

MAC=0.983 

2.109 - =1.94% 

3.69 - =2.76% 

MAC=0.910 

2.099 - =2.40% 

3.22 - =10.30% 

MAC=0.889 

4 

f [Hz] 

ζ [%] 

 

2.934 
4.71 

- 

3.008 - =2.52% 

4.17 - =11.49% 

MAC=0.810 

3.008 - =2.52% 

4.84 - =2.72% 

MAC=0.827 

3.008 - =2.52% 

4.07 - =13.67% 

MAC=0.827 

2.881 - =1.81% 

4.48 - =4.83% 

MAC=0.830 

3.008 - =2.52% 

3.93 - =16.38% 

MAC=0.827 

2.891 - =1.46% 

4.51 - =4.29% 

MAC=0.610 

5 

f [Hz] 

ζ [%] 

 

3.653 
5.77 

- 

3.633 - =0.56% 

5.63 - =2.51% 

MAC=0.809 

3.594 - =1.63% 

5.11 - =11.40% 

MAC=0.799 

3.633 - =0.56% 

5.55 - =3.73% 

MAC=0.109 

3.633 - =0.86% 

4.94 - =14.46% 

MAC=0.835 

3.594 - =1.63% 

5.89 - =2.05% 

MAC=0.799 

3.594 - =1.63% 

5.22 - =9.49% 

MAC=0.799 

6 

f [Hz] 

ζ [%] 

 

4.292 
6.73 

- 

4.326 - =0.80% 

5.88 - =12.66% 

- 

4.375 - =1.93% 

6.47 - =3.86% 

- 

4.326 - =0.80% 

5.85 - =13.14% 

- 

4.326 - =0.79% 

6.31 - =6.17% 

- 

4.375 - =1.93% 

6.27 - =6.84% 

- 

4.102 - =4.44% 

6.19 - =8.00% 

- 

7 

f [Hz] 

ζ [%] 

 

4.836 
7.55 

- 

4.707 - =2.66% 

7.60 - =0.73% 

- 

4.639 - =4.07% 

7.17 - =5.07% 

- 

4.756 - =1.65% 

6.62 - =12.30% 

- 

4.648 - =3.87% 

6.59 - =12.68% 

- 

4.834 - =0.03% 

7.90 - =4.63% 

- 

4.844 - =0.17% 

6.88 - =8.85% 

- 

8 

f [Hz] 

ζ [%] 

 

5.272 
8.21 

- 

5.147 - =2.37% 

8.17 - =0.43% 

- 

5.205 - =1.26% 

7.61 - =7.28% 

- 

5.156 - =2.19% 

7.62 - =7.14% 

- 

5.147 - =2.37% 

7.44 - =9.40% 

- 

5.156 - =2.19% 

7.47 - =9.06% 

- 

5.205 - =1.26% 

7.03 - =14.39% 

- 

9 

f [Hz] 

ζ [%] 

 

5.591 
8.69 

- 

5.322 - =4.80% 

8.67 - =0.20% 

- 

5.420 - =3.05% 

8.62 - =0.76% 

- 

5.322 - =4.80% 

8.18 - =5.83% 

- 

5.322 - =4.80% 

7.72 - =11.20% 

- 

5.381 - =3.75% 

7.92 - =8.84% 

- 

5.420 - =3.05% 

8.28 - =4.76% 

- 

10 

f [Hz] 

ζ [%] 

 

5.787 
8.99 

- 

5.811 - =0.41% 

8.70 - =3.18% 

- 

5.732 - =0.93% 

9.16 - =1.92% 

- 

5.820 - =0.58% 

9.70 - =7.89% 

- 

5.762 - =0.43% 

8.04 - =10.55% 

- 

5.732 - =0.93% 

8.58 - =4.56% 

- 

5.732 - =0.93% 

9.28 - =3.26% 

- 

Table 4: Example of estimated frequencies, modal damping ratios (ranging from 2% to 9%) and MAC 
indexes for the ten-storey frame, L’Aquila earthquake: NS, WE components and combinations for 
multi-component earthquakes. 

6.2 Multiple input earthquake locations 

Another issue addressed with the present analysis is the consideration of different seismic input 

coming from various seismic signals recorded around a selected location. In fact, by validating the 

methodology with seismic excitations, the ground motion data fed to the simulation is not the actual 

system input, but only highly correlated to the structural input. In real earthquake engineering 

applications, the ground motion data collected at different locations will be way different, and none of 

those could be claimed as the pure input. So, while previously only a single earthquake record leading 

to peak shaking was considered (or multiple input ground motions, as before), on a single location, 

further results are produced by considering signals that come from different accelerometer recordings 

at nearby stations. 
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For these attempts, L’Aquila earthquake from different locations (i.e. from different recording 

stations) has been considered, adopting either the NS and the WE component. Subsequent Table 5 

reports the characteristics of the adopted ground motions. All the stations with a record of at least 

0.1 g PGA are selected. Above the classical information, also epicentral distance, Vs30 (shear wave 

velocity for the top 30 m of subsurface profile), site and morphological classifications (according to 

Eurocode 8) are reported. All records display a frequency sampling of 200 Hz. For all the analyses, 

time series of 400 s length and 0.0025 Hz frequency resolution have been adopted. 
 

Station Epic. Dist. [km] Duration [s] Vs30 [m/s] Site Morph. Comp. PGA [g] 

AQA 5.2 100 552 B V, T1 
NS 0.442 

WE 0.402 

AQG 5.1 100 685 B S, T1 
NS 0.489 

WE 0.446 

AQK 1.8 100 717 B S, T1 
NS 0.353 

WE 0.330 

AQU 2.4 90 - C* -, T1 
NS 0.308 

WE 0.260 

AQV 5.1 100 474 B V, T1 
NS 0.546 

WE 0.659 

GSA 14.6 100 488 B S, T1 
NS 0.145 

WE 0.149 

Table 5: Main characteristics (according to Eurocode 8) of the adopted set of earthquakes from 
different locations, L’Aquila earthquake. 
 

Following Table 6 reports some results from the different L’Aquila seismic records, NS component. 

Again, the identified natural frequencies display deviations that are less than 5% for every case, with 

mean values that are less than 2.2% on average, while modal damping ratios display deviations that 

are less than 20%, with mean values that are less than 10.9% on average. The identified mode shapes, 

finally, display MAC indexes always greater than 0.95 for the first three modes, while they slightly 

decrease for the fourth and fifth modes. As before, mode shapes above the fifth, until the tenth, display 

poor values of the MAC index, thus are felt unreliable (see previous comments in Section 6.1 on the 

effective modal masses). 

The achieved results are still optimal in engineering terms: Figs. 23 and 24 display the maximum and 

minimum deviations pertaining to natural frequencies and damping ratios, for each mode of vibration 

and for the set of L’Aquila seismic records, gathered for NS and WE components. Then, Fig. 25 

represents the minimum and maximum deviations, for the overall earthquakes and components. 

6.3 Issues of noise and attempts in real scenarios 

Furthermore, notice that by feeding ground motion data into the Newmark method, the outcome could 

not be claimed as the pure output, since another relevant concern may be that of noise related to the 

data. This issue, i.e. the adding of noise to the recordings, looking for a closer representation of real 

conditions, has been widely explored within the present work. Especially, two conditions of noise 

addition are thoroughly studied, i.e. the addition of noise on pure earthquake records, before the 

application of the Newmark method, and on the achieved structural response, after the Newmark 

procedure. The first condition is adopted simply on the original seismic registration, while the second, 

more meaningful, is employed towards the possible presence of noise from instrumentations during 

the acquisition phases. In both cases, uncorrelated white Gaussian noise is added, in terms of 

percentage of power (in dB) of the original pure signal. 

Analyzed cases include either multiple input earthquakes or ground motion data collected at different 

locations, as adopted before, jointly with heavy damping. The first case of noise addition is not truly 

meaningful for real identification purposes, since it does not lead to significant changes in the estimate 

procedures. Considerable is instead the second possibility: in the present work, some attempts have 

been performed, varying the power of the added noise from 0.01% to 10% of the power of the 

response signal. Until 0.5% no relevant changes are affecting the estimates, since all peaks are visible 
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and identifiable. Instead, varying the noise power from 1% to 5%, parameter identification becomes 

more challenging, but all peaks may be detected, with deviations of natural frequencies lower than 5% 

and slightly less accurate modal damping ratios, which display maximum deviations of 25%. The 

mode shapes are correctly estimated until the fourth peak, while the evaluations of the fifth mode 

shape get into troubles. 

 

Mode 
f TARG 

ζ TARG 

AQA 

- NS comp. - 

AQG 

- NS comp. - 

AQK 

- NS Comp. - 

AQU 

- NS Comp. - 

AQV 

- NS Comp. - 

GSA 

- NS Comp. - 

1 

f [Hz] 

ζ [%] 

 

0.500 
2.00 

- 

0.518 - =3.44% 

1.91 - =4.58% 

MAC=1.000 

0.518 - =3.44% 

1.94 - =2.87% 

MAC=1.000 

0.498 - =0.48% 

2.10 - =5.15% 

MAC=1.000 

0.513 - =2.46% 

2.09 - =4.30% 

MAC=1.000 

0.518 - =3.44% 

2.05 - =2.46% 

MAC=1.000 

0.508 - =1.48% 

2.05 - =2.58% 

MAC=1.000 

2 

f [Hz] 

ζ [%] 

 

1.326 
2.50 

- 

1.367 - =3.08% 

2.21 - =11.43% 

MAC=0.976 

1.338 - =0.87% 

2.40 - =3.94% 

MAC=0.999 

1.338 - =0.87% 

2.64 - =5.68% 

MAC=0.999 

1.331 - =0.32% 

2.39 - =4.44% 

MAC=0.999 

1.338 - =0.87% 

2.59 - =3.49% 

MAC=0.999 

1.348 - =1.61% 

2.23 - =10.63% 

MAC=0.997 

3 

f [Hz] 

ζ [%] 

 

2.151 
3.59 

- 

2.197- =2.14% 

2.99 - =16.83% 

MAC=0.966 

2.119 - =1.49% 

3.01 - =16.04% 

MAC=0.926 

2.148 - =0.13% 

3.18 - =11.53% 

MAC=0.987 

2.185 - =1.58% 

3.54 - =1.40% 

MAC=0.991 

2.178 - =1.23% 

3.35 - =6.60% 

MAC=0.979 

2.158 - =0.33% 

3.18 - =11.43% 

MAC=0.989 

4 

f [Hz] 

ζ [%] 

 

2.934 
4.71 

- 

2.881 - =1.81% 

4.14 - =12.08% 

MAC=0.836 

2.822 - =3.80% 

4.46 - =5.31% 

MAC=0.708 

2.891 - =1.48% 

4.15 - =11.99% 

MAC=0.847 

2.930 - =0.14% 

4.50 - =4.45% 

MAC=0.775 

3.008 - =2.52% 

4.17 - =11.49% 

MAC=0.810 

2.959 - =0.86% 

4.12 - =12.44% 

MAC=0.668 

5 

f [Hz] 

ζ [%] 

 

3.653 
5.77 

- 

3.711 - =1.58% 

4.97 - =13.81% 

MAC=0.836 

3.682 - =0.77% 

5.48 - =4.97% 

MAC=0.845 

3.711 - =1.59% 

5.41 - =6.22% 

MAC=0.345 

3.748 - =2.58% 

5.30 - =8.07% 

MAC=0.137 

3.633 - =0.56% 

5.63 - =2.51% 

MAC=0.809 

3.516 - =3.77% 

5.48 - =4.99% 

MAC=0.685 

6 

f [Hz] 

ζ [%] 

 

4.292 
6.73 

- 

4.092 - =4.66% 

5.79 - =13.99% 

- 

4.404 - =2.62% 

6.16 - =8.40% 

- 

4.356 - =1.48% 

5.98 - =11.14% 

- 

4.138 - =3.58% 

5.77 - =14.20% 

- 

4.326 - =0.80% 

5.88 - =12.66% 

- 

4.297 - =0.11% 

5.99 - =10.89% 

- 

7 

f [Hz] 

ζ [%] 

 

4.836 
7.55 

- 

4.766 - =1.43% 

6.09 - =19.35% 

- 

4.902 - =1.38% 

6.91 - =8.42% 

- 

4.805 - =0.64% 

6.33 - =16.21% 

- 

4.871 - =0.72% 

6.57 - =12.92% 

- 

4.707 - =2.66% 

7.60 - =0.73% 

- 

4.668 - =3.47% 

6.40 - =15.19% 

- 

8 

f [Hz] 

ζ [%] 

 

5.272 
8.21 

- 

5.166 - =2.00% 

7.89 - =3.91% 

- 

5.205 - =1.26% 

7.41 - =9.79% 

- 

5.078 - =3.67% 

7.59 - =7.59% 

- 

5.273 - =0.03% 

7.47 - =8.95% 

- 

5.147 - =2.37% 

8.17 - =0.43% 

- 

5.215 - =1.08% 

7.89 - =3.85% 

- 

9 

f [Hz] 

ζ [%] 

 

5.591 
8.69 

- 

5.440 - =2.70% 

8.23 - =5.33% 

- 

5.410 - =3.23% 

8.10 - =6.79% 

- 

5.518 - =1.30% 

8.07 - =7.16% 

- 

5.554 - =0.65% 

8.10 - =6.80% 

- 

5.322 - =4.80% 

8.67 - =0.20% 

- 

5.547 - =0.78% 

8.04 - =7.46% 

- 

10 

f [Hz] 

ζ [%] 

 

5.787 
8.99 

- 

5.723 - =1.10% 

8.62 - =4.09% 

- 

6.007 - =3.80% 

8.59 - =4.45% 

- 

5.742 - =0.77% 

8.72 - =3.04% 

- 

6.018 - =4.00% 

8.73 - =2.90% 

- 

5.811 - =0.41% 

8.70 - =3.18% 

- 

5.820 - =0.58% 

9.14 - =1.68% 

- 

Table 6: Example of estimated frequencies, modal damping ratios (ranging from 2% to 9%) and MAC 
indexes for the ten-storey frame, L’Aquila earthquake: NS component from different locations. 
 

Finally, setting a very high noise value equal to 10%, the last two to three modes become 

unidentifiable. Although, the remaining modes display once again very good estimates, showing 

deviations that are less than 5% for the natural frequencies and less than 25% for the modal damping 

ratios. Mode shapes are correctly estimated for the first three peaks; rather, the fourth peaks sometimes 

return poor values of the MAC index, as for the remaining identified modes. Finally, it is possible to 

prove the effectiveness of the algorithm also in the challenging cases where noise is added to the 

original signals, approaching even more the scenario of real earthquake response signals. 

Concluding with the final validation of the algorithm at seismic input, analyses have been performed 

also by processing real earthquake response signals, i.e. real in-situ collected structural responses, as 

reported in [42]. The validation with synthetic signals produced here shall be considered as a 

necessary condition for validation with earthquake input (and also with heavy damping). Despite the 

increased difficulty in working with real data, it has been verified that the present procedure works 

well also with real earthquake response signals. This shall prove the rFDD effectiveness also for up-to-

date detection of building properties in the earthquake engineering range. 

In the case of real earthquake response input, the integrated approach for the PSD matrix evaluation 

and the iterative loop for the damping estimation become fundamental steps in order to achieve 

reliable modal estimates. A careful condition refers to the sampling frequency and the duration of the 

recordings, since the PSD matrix may be affected by slight inaccuracies. The accurate data filtering 

before identification looks also an essential step, in order to achieve effective modal parameter 

estimates at real earthquake input. 
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Figure 19: Minimum and maximum deviations for identified frequencies and modal damping ratios 

(ranging from 2% to 9%), ten-storey frame, L’Aquila earthquake: multi-component earthquakes. 
 

 
Figure 20: Minimum and maximum deviations for identified frequencies and modal damping ratios 

(ranging from 2% to 9%), ten-storey frame, Tohoku earthquake: multi-component earthquakes. 
 

 
Figure 21: Minimum and maximum deviations for identified frequencies and modal damping ratios 

(ranging from 2% to 9%), the ten-storey frame, El Centro earthquake: multi-component earthquakes. 
 

 
Figure 22: Minimum and maximum deviations for identified frequencies and modal damping ratios 

(ranging from 2% to 9%), ten-storey frame, all adopted earthquakes: multi-component earthquakes. 
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Figure 23: Minimum and maximum deviations for identified frequencies and modal damping ratios 

(ranging from 2% to 9%), ten-storey frame, L’Aquila earthquake: NS component from different 

locations. 
 

 
Figure 24: Minimum and maximum deviations for identified frequencies and modal damping ratios 

(ranging from 2% to 9%) for the ten-storey frame, L’Aquila earthquake: WE component from different 

locations. 
 

 
Figure 25: Minimum and maximum deviations for identified frequencies and modal damping ratios 

(ranging from 2% to 9%) for the ten-storey frame, L’Aquila earthquake: NS and WE components from 

different locations. 

 

7. Conclusions 
This paper has presented an independent implementation of a refined FDD algorithm towards reaching 

effective estimates of all structural modal parameters, i.e. natural frequencies, mode shapes and 

damping ratios at seismic input (and heavy damping). This method shall be able to identify the 

dynamic properties of civil structures from their recorded responses, with unknown input. Unlike the 

currently-available techniques in the Frequency Domain, especially classical FDD algorithms, which 

are strictly applicable only to stationary Gaussian white noise output data and weakly-damped 

structures, the proposed refined FDD algorithm is able to extract modal parameter estimates using 

earthquake response excitations, including for strong motion records and at concomitant heavy 

damping. 
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The algorithm has been assessed first on canonical force input based on random noise, acting on 

different ideal shear-type frame structures and from a realistic structure from the literature too. Then, 

modal identification is attempted successfully at seismic input, taken as ground excitation at the base 

of the same structures, both as SDOF and MDOF input. A set of three different strong ground motions 

with different characteristics, such as duration, frequency sampling, frequency content and power, has 

been employed. Also, attempts with multiple location earthquakes have been successfully performed. 

All cases exhibited very consistent results, in particular for the estimates of the natural frequencies, 

that are assessed with very high accuracy. Also, the other modal parameters are estimated with quite 

limited errors, and this holds true also for heavy-damped cases. The same is confirmed for the multi-

component analyses and for the cases with added noise. Additionally to the present work, analyses 

with real earthquake response signals have been separately performed with the use of the rFDD 

algorithm, confirming the effectiveness of the method also in the real earthquake engineering range. 

The achieved results will be reported elsewhere [42]. 

Investigations and original arrangements about the processing of the PSD matrix, the use of untrended 

correlation functions, the importance of frequency resolution and of the prior filtering of data are 

thoroughly inspected, to reach reliable estimates of the modal parameters at seismic input. Further, 

careful treatments of spectral bell width, singular value and peak selection (with distinct or overlapped 

SVs too), and regression time window of the antitransformed signal have been located as crucial issues 

towards reaching valuable estimates, jointly with the use of the developed iterative loops. 

Thus, the attempted simulations shall confirm the efficiency of the implemented algorithm, together 

with the possibility to perform FDD identification on earthquake response signals, also at concomitant 

heavy damping. It is shown that, in principle, FDD dynamic identification of structural modal 

properties of frames at seismic input shall be possible, with potential implications in the general realm 

of structural dynamics and, possibly, in the specific field of earthquake engineering, in view of 

characterizing the structural properties to be expected under seismic loading conditions. 
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Appendix A. Main features of ideal shear-type frames 
Mass and stiffness matrices are set fixed for every frame as reported below. Damping matrices have 

been assumed to be diagonal in modal coordinates and represented by different modal damping ratios 

in the numerical tests.  

Two-storey frame: 

-  Mass matrix [kg]: 𝐌 = 70000 [ 
1 0
0 1

 ] 

-  Stiffness matrix [N/m]: 𝐊 = 108 [ 
2.54 −1.24  

−1.24 1.24
] 

Three-storey frame: 

-  Mass matrix [kg]: 𝐌 = 144000 [
1 0 0
0 1 0
0 0 1

] 

-  Stiffness matrix [N/m]:  𝐊 = u [
2 −1 0

−1 2 −1
0 −1 1

] 

u = 12E(8J1 + J2)/h
3, E = 30 · 109 N/m2, J1 = 1.25 · 10−3 m4, J2 = 5.2 · 10−3 m4, h = 3m. 
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Six-storey frame: 

-  Mass matrix [kg]:  𝐌 = 144000

[
 
 
 
 
 
1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0

0
0
0
0
0
1]
 
 
 
 
 

 

-  Stiffness matrix [N/m]:  𝐊 = u

[
 
 
 
 
 

2.9
−1.4

0
0
0
0

−1.4
2.7

−1.3
0
0
0

0
−1.3
2.5

−1.2
0
0

0
0

−1.2
2.3

−1.1
0

0
0
0

−1.1
2.1
−1

0
0
0
0

−1
1 ]

 
 
 
 
 

 

 

Appendix B. Main features of a real structure (from Villaverde and 

Koyama, 1993) 
Floor mass and stiffness properties are set fixed as reported below, from bottom to top floor. Modal 

damping ratios are taken according to a classical Rayleigh’s damping approach, i.e. by a linear 

combination of stiffness and mass matrices, as explained at the beginning of Section 6. 

 

Floor 
Stiffness 

×10
3
[kN/m] 

Mass 

×10
3
[kg] 

  1 

  2 

  3 

  4 

  5 

  6 

  7 

  8 

  9 

10 

62.47 

59.26 

56.14 

53.02 

49.91 

46.79 

43.67 

40.55 

37.43 

34.31 

179 

170 

161 

152 

143 

134 

125 

116 

107 

  98 

Table 7: Properties of a real ten-storey frame (from Villaverde and Koyama, 1993). 

 


