
School of Doctoral Studies

Doctoral Degree in TECHNOLOGY INNOVATION AND MANAGEMENT

XXXIII Cycle

PHD THESIS

Models and methods for the Slab Stack Shuffling problem

MANUEL CAVOLA

Director:

Prof Giuseppe Bruno

Univeristà Degli Studi Di Napoli Federico II

Academic year 2019/2020

Università Degli Studi di Bergamo

Contents

INTRODUCTION ..1

1 AN INTRODUCTION TO THE SHIPBUILDING SECTOR: TRENDS, ACTORS, AND

LOGISTICS ..4

Summary .. 4

1.1 The shipbuilding sector ... 4

1.2 Recent trends in the shipbuilding market .. 8

1.3 A closer look at the shipbuilding supply side ... 9

1.4 The shipbuilding supply chain ... 12

1.5 The main processes in the shipbuilding supply chain ... 14

1.6 Conclusions ... 16

2 A CASE STUDY IN THE SHIPBUILDING INDUSTRY: PALESCANDOLO S.P.A.17

Summary .. 17

2.1 A brief introduction to Palescandolo S.p.A. ... 17

2.2 The inputs: slabs and profiles ... 19

2.3 The outputs: slabs and profiles, components, subassemblies .. 21

2.4 The cutting process ... 22

2.5 The assembling process... 25

2.6 The slabs storage and retrieval processes .. 26

2.7 Production planning in PLS: a quantitative analysis .. 32

2.8 Hot-spots identification ... 39

2.9 Conclusions ... 42

3 LITERATURE REVIEW...43

Summary .. 43

3.1 Stacking problems ... 43

3.1.1 The Container Stacking problems ... 44

3.1.2 The Steel Stacking problems ... 45

3.2 The Slab Stack Shuffling problem ... 47

3.2.1 Problem introduction... 47

3.2.2 The SSS problem and the other Stacking problems .. 50

3.3 The framework .. 52

3.3.1 General notation .. 52

3.3.2 Framework definition .. 53

3.4 The state of the art... 57

3.5 Classification of existing contributions and research gaps ... 63

3.6 Conclusions ... 66

4 MODELS AND HEURISTICS FOR THE SLAB STACK SHUFFLING PROBLEM67

Summary .. 67

4.1 The problem description ... 67

4.1.1 A mathematical model for the SSS problem for the general case m|n (1:m;1:n) 68

4.1.2 Adaptation of the model .. 69

4.1.3 The Model 1|1 ... 71

4.1.4 An illustrative example of the case 1|1 ... 72

4.2 Computational experiences for the model 1|1 .. 75

4.3 Analysis of the results ... 77

4.4 A Heuristic approach for the solution of the (1|1) SSS problem ... 80

4,4,1 Individuation of an initial solution.. 82

4.4.2 The local search phase .. 83

4.5 Computational experiences ... 84

4.6 Characteristics of an implemented software system .. 85

4.7 Conclusions ... 91

GENERAL CONCLUSIONS ...93

APPENDICES ..102

Appendix A .. 102

Appendix B .. 105

Appendix C .. 106

Appendix D .. 123

Appendix E .. 125

Appendix F ... 127

Appendix G .. 129

Appendix H .. 132

List of Tables

1.1 Distribution of shipbuilding market shares 9

1.2 Orders for new commercial ships 10

1.3 Rest of World’s Orders for new commercial ships 11

2.1 Typical ranges of slabs attributes 19

2.2 Typical ranges of profiles attributes 19

2.3 The main steps of the PLS cutting process 23

2.4 The main steps of the PLS assembling process 25

2.5 The main steps of the PLS storage process 28

2.6 The main steps of the PLS retrieval process 30

2.7 Characteristics of the slabs in the considered CSOs 33

2.8 Characteristics of the profiles in the considered CSOs 36

3.1 Classification of Stacking problems 43

3.2 The framework 56

3.3 Papers classification 65

4.1 Computing times (min, max, and average) for (|T|,|J|) = {(5, 20); (10, 40); (15, 60)} 79

4.2 Computing times for “difficult” instances for (|T|,|J|) = {(15, 60)} and P= Pm 79

4.3 Computing times (min, max, range and average) for (|T|,|J|) = {(20, 80); (25, 100)} 79

4.4 Average, standard deviation, minimum and maximum value of the percentage error on

50 randomly generated instances
84

4.5 Average, standard deviation, minimum and maximum value of the percentage error on

50 randomly generated instances
85

4.6 Average, Minimum and Maximum value of the heuristic computing time 85

.1 Computational results in terms of objective function for (|T|, |J|) = {(5, 20); (10, 40);

 (15, 60)} and P = {|𝑇|x|𝐽|, 𝑃m, 𝑃m 2⁄ , 𝑃m 4⁄ , 0}
108

.2 Computational results in terms of computing time (s) for (|T|, |J|) = {(5, 20); (10, 40);

(15, 60)} and P = {|𝑇|x|𝐽|, 𝑃m, 𝑃m 2⁄ , 𝑃m 4⁄ , 0}
113

.3 Computational results in terms of objective function for (|T|, |J|) = {(20,80); (25, 100)}

and P = {|𝑇|x|𝐽|, 0}
118

.4 Computational results in terms of computing time(s) for (|T|, |J|) = {(20,80); (25, 100)}

and P = {|𝑇|x|𝐽|, 0}
121

.5 Computational results in terms of objective function and computing time(s) for

(|T|, |J|) = {(20,80); (25, 100)} and P = |T|x|J|
137

.6 Computational results in terms of objective function and computing time(s) for

(|T|, |J|) = {(20,80); (25, 100)} and P = 0
140

List of Figures

1.1 High Tech ships: (a) Chemical vessel; (b) Gas tanker; (c) RoRo ship; (d) Ferry 6

1.2 Standard ships: (a) Container ship; (b) Bulker ship; (c) Tanker; (d) General cargo ship 6

1.3 A cruise ship 6

1.4 Allocation of orders between European countries by GT and number of ships 11

1.5 Actors involved in the shipbuilding industry (source: Held, 2010) 13

1.6 The shipbuilding supply chain 14

2.1 The current PLS’ centre layout 18

2.2 The PLS production process 18

2.3 A steel slab 19

2.4 Examples of profiles shapes 20

2.5 An example of a slab cutting scheme 21

2.6 An example of a subassembly 21

2.7 Plasma cutter 22

2.8 The cutting process through a manual torch 23

2.9 The PLS cutting process 23

2.10 Scheme of a subassembly 24

2.11 An example of a subassembly 24

2.12 The PLS assembling process 25

2.13 Description of the main steps of the PLS assembling process 26

2.14 An example of a slabs stack 26

2.15 Industrial magnetic crane 27

2.16 “Stalls” of profiles 27

2.17 Lifting beam 28

2.18 The PLS assembling process 28

2.19 Target slab selection 29

2.20 Example of a retrieval sequence with (a) or without (b) slabs repositioning 30

2.21 The PLS retrieval process 30

2.22 CSO-1: Inbound, Outbound and Stock Quantities 32

2.23 CSO-2: Inbound, Outbound and Stock Quantities 32

2.24 CSO-3: Inbound, Outbound and Stock Quantities 32

2.25 Distribution of the number of slabs (grouped by item) by the length (in mm) 34

2.26 Distribution of the number of slabs (grouped by item) by the width (in mm) 34

2.27 Distribution of the number of slabs (grouped by item) by the thickness (in mm) 34

2.28 Distribution of the number of items and slabs (in %) by the length (in mm) 34

2.29 Distribution of the number of items and slabs (in %) by the width (in mm) 34

2.30 Distribution of the number of items and slabs (in %) by the thickness (in mm) 35

2.31 Distribution of the number of profiles (grouped by item) by the length (in mm) 36

2.32 Distribution of the number of profiles (grouped by item) by the width (in mm) 36

2.33 Distribution of the number of profiles (grouped by item) by the thickness (in mm) 36

2.34 Distribution of the number of items and profiles (in %) by the length (in mm) 37

2.35 Distribution of the number of items and profiles (in %) by the width (in mm) 37

2.36 Distribution of the number of items and profiles (in %) by the thickness (in mm) 37

2.37 Number of retrieval days and average picking quantities per item (slabs) 40

2.38 Number of retrieval days and average picking quantities per item (profiles) 40

3.1 Container terminal 44

3.2 (a) Layout of a slab yard (b) Layout of a coil yard (Tang et al.,2012) 45

3.3 An example of slab stacking problem 45

3.4 Coils inclined stacks 46

3.5 An example of slab yard: spans and pitches 47

3.6 Dedicated Stacks (a), Random Stacks (b) 47

3.7 Crane approaching the stack 48

3.8 Magnets positioning and activation 48

3.9 Slab lifting 48

3.10 Example of a Container Stack (a) and a Slabs Stack (b) 50

3.11 Coil Stack 50

3.12 Example of dedicated layout 55

4.1 Example of stack representation with deadlines 73

4.2 Solution obtained with P = 0 73

4.3 Solution obtained with P = 100 74

4.4 Comparison between solutions with P = 0 and P= 100 74

4.5 Example of not trivial deadline assignment 76

4.6 Model solutions for two instances (10, 40) with P=0 and P=400 76

4.7 Pareto frontiers for the illustrative examples 77

4.8 Flowchart of the proposed heuristic 81

4.9 Decision Support System Dashboard 86

4.10 Screenshots of the implemented Inbound procedures 87

4.11 Screenshots of the implemented Outbound procedures 88

4.12 Screenshots of the main implemented Production management procedures 89

4.13 Screenshots of the main implemented handling management procedures 90

.1 Stack representation with deadlines 126

1

Introduction

The shipbuilding industry represents a crucial industrial sector for many national economies either

for strategical perspectives or for the direct impacts direct in terms of produced income and induced

employment. It involves a vast and intricate network of links and exchanges within the sector itself

and with other industries. Its supply chain has a global extension and it deals with the production of

the raw materials (mainly steel slabs and profiles, paints and pipes), of the essential equipment

(motors, electrical and electronic systems), of auxiliary components (furniture, accessories, special

devices) which are purchased from numerous and specialised suppliers, worldwide located.

Considering the (pre-Covid pandemic) growth of the demand, the increasing competition, the need to

reduce the “time to market” within a production context typically inspired by an Engineer-To-Order

philosophy, the management of the entire supply chain particularly complex and challenging. Among

the many issues, one of the specific aspects concerns the co-existence along the various production

steps, of very “traditional” labour intensive processes represented by the hull building with innovative

productions related, for instance, to the control and telecommunication systems. However, if the

“traditional” approach still represents, despite the attempts to innovate practices and procedures, the

cultural mainstream that involves the organization of the information systems, whose setting is mainly

based on not innovative hardware and software systems.

This work has been developed in this actual context, thanks to the collaboration to relevant enterprises

of the sector engaged in processes of re-engineering of the production and logistics procedures to be

translated in the definition of an innovative Decision Support Systems (DSS) whose design and

realization have absorbed a relevant part of the entire work.

Within the DSS, actually implemented and introduced in the ordinary processes management,

opportunities to embed optimization approaches to perform the most critical logistic processes have

been considered.

The first example of introduction of ad-hoc procedures oriented to a process optimization is

represented by the inbound handling of large steel slabs that constitutes the most crucial logistic

operation, which is specific and original of this sector.

In practise, vessel hulls are typically built in sections (“blocks”), whose production is entrusted to

specialised suppliers that cut, bend, shape and weld steel slabs and profiles in order to obtain a wide

variety of subassemblies. These subassemblies are then delivered to the shipyard where the assembly

2

process of the whole hull is performed. During these phases, the coordination between steel mill,

subassembly centres and shipyards is fundamental.

The entire process starts with the delivery by the steel mill of steel slabs, from which, through

complex cutting operations, all the components needed to produce subassemblies are provided. These

slabs are steel plates that can weigh up to more than 13 tons and whose extension can reach 46 m2.

Due to their physical characteristics, steel slabs are stored in stacks. The storage and retrieval of the

steel slabs from the stacks represent one of the main issues to overcome to avoid bottlenecks in the

production process. In the literature, the problem has been defined as the Slab Stack Shuffling (SSS)

problem. However, due to the specificity of the problem and of the involved industrial sector, the

state of the art is not particularly rich. Then in this work a general framework of the problem is

proposed in order to illustrate the various aspects and determinants affecting its management.

Therefore, the proposal of a model and of an algorithm able to tackle some variants of the problem.

In practice, the thesis can be divided into two parts. The first part (Chapters 1 and 2) is devoted to the

description of the main characteristics of the shipbuilding sector and of the typical production and

logistics processing occurring in the context.

In particular, Chapter 1 is devoted to the description of peculiarities of the shipbuilding sector and

market, highlighting the existing (pre-Covid pandemic) trends. Then a focus on the supply chain of

the sector is proposed.

In Chapter 2, the attention is paid to the illustration of the industrial case study whose cooperation

has been fundamental for the development of the work. In particular, after the description of the inputs

(steel slabs and profiles), and of the outputs (components and subassemblies), the typical production

and logistic problems are analysed and the issues related to the slab storage and retrieval operations

underlined.

Indeed, being the slabs stacked one on the other, when a slab is not on the top of its stack, to retrieve

it, a shift of the elements above the target one is necessary. Each shift is called "shuffle", and the less

is the number of shuffles, the faster is the retrieval process. In literature, the problem that aims at

choosing appropriate slabs for an order or a group of orders to minimise shuffles during the retrieval

process is known as the Slab Stack Shuffling (SSS) Problem. This problem has always been

contextualised as part of the slab creation process and occurs between continuous casting and the hot

rolling process. However, its study is fundamental to develop the best possible solutions to the case

study.

The second part of the work, (Chapters 3 and 4) illustrate the state of the art on the SSS problem and

the proposal of new models and heuristics, related to some variants of the problem.

In particular, in Chapter 3, we start analysing the Stacking problems, a class of problems arising in

the container handling with some similarities with the SSS problems. Then, a literature review of the

3

main works specifically devoted to the SSS problem is conducted. Finally, as result of this analysis,

we propose an original framework able to include all the elements that can characterise the SSS

problem.

In the last chapter, a first mathematical formulation is introduced able to include some of the variants

indicated in the proposed framework. Then, one of the proposed model is solved on a set of randomly

generated instances – whose procedure of generation is in turn presented – through the use of a

commercially available solver (CPLEX). The significant computing times associated to the solution

instances suggest the proposal of appropriate heuristics to solve the problem that are consequently

tested. Finally, a brief description of the implemented DSS that should include the optimization

procedures to be implemented, as further developments of the present work, is reported.

4

1 An introduction to the shipbuilding sector: trends, actors, and

logistics

Summary

This chapter provides an overview of the shipbuilding sector. Specifically, we start outlining the main

characteristics of the sector, particularly emphasizing the segment dealing with new ships production,

namely the Shipbuilding Industry. Afterwards, we present an analysis of the shipbuilding market in

terms of produced items, competition aspects, entry/exit barriers, and industry trends before the

spread of the Covid-19 emergency.

Finally, we focus on the description of the shipbuilding supply chain, detailing its most prominent

logistics phases.

1.1 The shipbuilding sector

The shipbuilding industry is a dynamic and competitive sector that has traditionally been of crucial

importance within the economies of many countries - such as Great Britain, France, Germany, Italy,

USA, Japan, Korea and China - in terms of both direct and induced employment (Ferrari, 2012). It

has an intensive network of links and exchanges with other industries in the manufacturing and

service sector, particularly the mechanical and metallurgical industries, and those concerned with the

provision of high value-added and high-qualification services. This sector is also characterized by

labour-intensive processes with a high degree of complexity, thus requiring significant skill levels.

In general, shipbuilding is defined as the set of activities relating to the construction of ships and

pleasure crafts; however, the manufacturing processes encompass very heterogeneous practices that

need to be specifically characterized and analysed.

In the broad context of shipbuilding, three main segments can be identified: (i) the Shipbuilding

Industry, dealing with the production of new ships; (ii) the Ship Repair Industry, mainly oriented at

maintenance activities; and (iii) the Conversion Industry, aimed at the conversion of existing ships.

Despite their similarities, each of these industries faces its own demand and presents different trends.

This thesis explicitly focuses on the Shipbuilding Industry.

In this segment, production processes mostly concern three types of outputs: high-tech ships, standard

ships, and cruise ships. High-tech ships include chemical vessels (i.e., oil tankers carrying chemicals

in bulk), gas tankers transporting liquefied natural gas, and Roll-on/roll-off ships (RoRo). The latter

5

are designed to carry wheeled cargo in combination with containers (RoCon) or passengers (RoPax,

e.g., ferries). Figure 1.1 provides some examples of the vessels mentioned above.

On the other hand, standard ships are (unwheeled) cargo ships not devoted to passengers

transportation, whose design and construction is not relatively complex, comprising container ships,

bulkers, liquid tankers, and general cargo vessels (see Figure 1.2).

Finally, cruise ships are those used for the transport of passengers, for which it is possible to stay

overnight on board. Their dimensions can vary in a vast range, i.e., from a few tons up to 150-200

thousand tons Gross Tonnage (GT, i.e., the measurement of the ship's internal volumes). Cruise ships

can reach a length of almost 400 m, heights of 70 m and can accommodate up to 5-6 thousand

passengers in addition to the crew. They are characterized by the high quality of the equipment,

interior finishes and furnishings that render them actual "floating hotels" (Figure 1.3). These elements

help to understand the complexity of this kind of ship compared to the former ones. Think, for

instance, that standard ships may require up to 550 000 parts for a complex vessel, while 900 000

parts are necessary for cruise ships (Gourdon et al., 2019).

We should note that nowadays, differently from a few decades ago, the construction of a ship is only

partly carried out by shipbuilders. Indeed, it is increasingly common for shipbuilders to buy

significant production parts from external manufacturers and assemble them internally. Therefore,

we can consider the shipbuilding industry an "assembly industry" that relies heavily on work-in-

progress inputs. As Gourdon et al. (2019) underline, shipbuilders' value-added lies, on average, only

between 20% and 30% of the final production value.

For all these outputs, construction activities are carried out in specialized factories called shipyards,

where production/assembly is performed in a fixed-station. In other words, all the resources and

materials are conveyed to the fixed-station, and the ship to be built remains fixed, i.e., it does not

move within the shipyard. Note that this the only possible way, given the considerable size of the

product (Pareschi, 2007), and renders the overall logistic production process particularly difficult to

manage.

Therefore, the shipbuilding industry, prominently that of the high-tech and cruise ships, is

characterized by high complexity, mainly due to the peculiarity of combining the most varied skills

and actors in a closely interconnected system. The latter, in turn, raises the challenge to manage a

considerable amount of information coming from multiple and diversified sources.

6

Figure 1.1 – High Tech ships: (a) Chemical vessel; (b) Gas tanker; (c) RoRo ship; (d) Ferry

Figure 1.2 – Standard ships: (a) Container ship; (b) Bulker ship; (c) Tanker; (d) General cargo ship

Figure 1.3 – A cruise ship

(a) (b)

(c) (d)

(a) (b)

(c) (d)

7

Additionally, according to the classification proposed by Wortmann (1983), it can be considered as

an Engineer-To-Order (ETO) sector since the customer's order "goes back" to the design/engineering

phases to trigger the production process. Indeed, the level of customization, especially in high-tech

and cruise ships, is very high. Although some may belong to the same series, they usually have

distinctive elements that determine a broad diversification of the final products, thus requiring very

flexible supply chains.

In general, it is well-known (and relatively intuitive) that the demand in this sector typically depends

on the mobility demand for transport, that is, the need to move goods or offer services. In turn, the

demand for transport depends on the demand for final goods and services, and, hence, ultimately on

general economic performance. Therefore, the consequence of an economic crisis may tighten the

demand for transport itself and consequently for new commercial ships.

In practice, these are the effects brought by the outbreak of the recent Covid-19 pandemic, which

determined a profound crisis in the international shipping sector, leading to a significant reduction in

the growth prospects for the year 2020 (Nautilus, 2020). In fact, it caused a collapse in demand and

a sudden interruption of the production activities, reflected in the postponement of new ships orders

and of the corresponding expected revenues (LBJ, 2020).

Finally, a further characteristic of the shipbuilding sector is that the supply adapts to the demand with

a significant delay, given the long throughput times (three years, on average) elapsing from the

moment the order for a new ship is received and the moment of the final delivery. Notably, despite

the great recession in 2009, global ship completions were historically high in 2010 and 2011.

In other words, although Covid-19 exacerbated the difficulties of shipbuilding companies to meet an

already highly volatile demand, its actual impacts on the market can only be assessed in the next

future. As a result, business levels remained relatively stable. Moreover, according to the data

provided by Fincantieri S.p.A., a world-leading company, especially in the cruise ship field,

production volumes should return to pre-Covid levels in the second half of 2021, and revenues in the

second half of 2020 should be broadly in line with those in the corresponding period of 2019 (La

Stampa, 30 October 2020). This evidence testifies that the problem under investigation in the present

thesis keeps being still of both practical and economic relevance in the shipbuilding industry, even in

these uncertain times.

8

1.2 Recent trends in the shipbuilding market

This section presents an analysis of recent trends in the shipbuilding market. We feel the need to

highlight the data hereafter discussed refer to the period before the outbreak of the Covid-19

pandemic. As we already underlined, these projections may be partially reshaped in the next future

due to the pandemic's unknown economic impact.

In general, the shipbuilding sector has been characterized by remarkable growth in the last years; in

2018, the volume of new cruise ship orders reached 22 billion dollars, i.e., 35% of the total (ICE,

2018). This increase has led to a growth in European shipyards compared to Asian ones, which are

more focused on standard ships production.

However, oil tankers and bulkers remain the most produced ships since they more easily allow

achieving economies of scale and minimizing unitary transportation costs.

The general increase in the business volumes has also been driven by the need to produce more fuel-

efficient ships in compliance with the latest environmental regulations. Indeed, fuel represents a

relevant quota of the overall operating costs. Finally, growth is also expected in the construction of

RoRo ferries, offshore market ships and gas transport ships due to the increasing energy needs (BRS

GROUP, 2019).

Thus, the market trend shows a global recovery in the shipbuilding sector compared to the 2016 crisis.

This market recovery also positively impacted new construction prices that had fallen by around 25%

in 2016 since 2009 (DSF, 2016) and increased up to 10% in 2018 (BRS GROUP, 2019). Nevertheless,

the 2017 delivery level was still higher than the new orders' level. This evidence indicates an enduring

situation of imbalance between supply and demand. In 2016, this oversupply caused a sharp decline

of new ships' orders, leading the world's leading shipbuilders to reduce the number of active shipyards

to cut costs (OECD, 2017). However, it is interesting to point out that Europe shows an opposite trend

to the rest of the world market. In particular, the Italian shipbuilding industry (as we also detail in the

next section) minimized these negative impacts, given its intense focus on high value-added market

segments characterized by severe entry barriers.

Notably, another recent phenomenon in the shipbuilding industry concerns the frequent resort to

outsourcing of non-core activities. Unlike a few decades ago, where shipbuilding companies were

heavily vertically integrated as they carried out most of the ships' production processes, one can see

a gradual shift to an "assembly shipyard" paradigm. Accordingly, many activities, especially low-

tech ones, are allocated to external partners. In contrast, core ones are still performed "in-house" as

they can be a source of competitive advantage (Mello et al., 2010). More often than not, this has also

been accompanied by merging strategies, through which bigger companies acquired smaller ones,

thus creating large industrial groups (horizontal integration) to better tackle competition in an

increasingly dynamic and global context.

9

1.3 A closer look at the shipbuilding supply side

A sort of duopoly on the supply side characterizes the shipbuilding market, given the presence of the

Asian shipyards, on the one hand, and the European ones, on the other. The latter are gathered in an

umbrella organization named CESA (Community of European Shipyards Associations). According

to the United Nations Conference on Trade and Development, the three largest economies involved

in shipbuilding (i.e., China, Korea and Japan) contributed to 90% of the global completions of ships

in Gross Tonnage (GT) tons in 2018 (UNCTAD, 2019). In particular, the Chinese shipbuilding

industry stands out with a considerable expansion of its production capacity mainly driven by the

need to have a fleet that would help support the significant import and export flows.

The market shares held by the different players vary according to the considered segments. For

example, cruise ship production is mainly concentrated in Europe (particularly in Germany, Italy,

France, and Finland), while standard ships are largely manufactured in Asian countries, especially

Japan and Korea. As concerns the Chinese industry, although it has historically focused on producing

standard ships, given the low labour costs and economies of scale resulting from the significant

production volumes achieved in recent years, it is shifting its production to cruise ships. Lower labour

costs are also the primary motivation behind the strengthening of Eastern Europe industries, i.e.,

Croatia and Romania, and new players' entry in the market, like India and Vietnam in Asia. To

provide the reader with some recent quantitative data on the shipbuilding industry, Table 1.1 shows

the order book, expressed in millions of gross capacity tonne (i.e., deadweight tonnage - dwt),

referring to years 2018 and 2019. It emerges that European shipyards, having lower production

volumes, have less capacity to exploit economies of scale than Asian shipyards. This fact depends on

the type of production. Indeed, by looking at Table 1.2, one can note that, despite a very slight

decrease in orders in 2019, it is quite evident that the European yards are still predominant in the field

of cruise ships.

Table 1.1 - Distribution of shipbuilding market shares (source: BRS GROUP, 2020)

Orderbook

2018 2019

 Market share 43.0% 45.4%

China Ships 1309 1206

m dwt 97.1 91.4

 Market share 27.8% 28.1%

Korea Ships 460 483

m dwt 62.7 56.6

 Market share 24.2% 22.0%

Japan Ships 741 625

m dwt 54.9 44.1

 Market share 1.6% 1.9%

Europe Ships 288 285

m dwt 3.6 3.9

 Market share 3.3% 2.6%

ROW Ships 226 187

m dwt 7.4 5.2

10

Table 1.2 - Orders for new commercial ships (source: BRS GROUP, 2020)

Focusing solely on the European market, Figure 1.4 shows the distribution of new ships orders (in

Gross Tonnage) and the corresponding number of ships (in green) by country in 2019 (BRS GROUP,

2020). We can note that Italy leads the ranking (although its number of ships is lower or at least

comparable to other countries), mainly thanks to its 'flagship' shipbuilding group Fincantieri. This

latter is the largest cruise shipbuilder in the world, with a total of 37 large units to be delivered before

2027. It recently finalized the take-over of its Norwegian affiliate group Vard and started a negotiation

to become the majority shareholder of the France leading shipyard, Chantiers de l'Atlantique.

However, this acquisition failed because of the wide-diffused concern (expressed by various major

cruise shipowners) of a potential monopolistic position for Fincantieri (BRS GROUP, 2020).

Moving our attention to the Rest of the World (RoW), we note that the order book for shipyards (see

Table 1.3) continues to crumble from 7.4 million tons deadweight in 2018 to 5.2 million tons

deadweight in 2019. RoW market share dropped from 3.3% to 2.6%. Deliveries also decreased, from

4.6 million tons deadweight in 2018 to 3.5 million deadweights in 2019. Consequently, the ratio

between the current order book and yearly output shrank to 1.5 in 2019 against 1.9 in 2018. The

collapse of the Philippines leading shipyard Hanjin Subic in 2019 had a significant impact on RoW

performance. Indeed, it was a great contributor, representing about 30% of RoW new orders in 2017

(although it did not secure any new order in 2018). CSBC (Taiwan), another key-player, did not

manage to secure orders in 2019 despite accounting for 50% of RoW new orders in 2018. At the end

of 2019, 13 RoW shipyards secured new orders, with 89% of them managed by just two shipyards:

the Philippine group Tsuneishi Cebu and the Vietnamese Hyundai Vinashin (BRS GROUP, 2020).

11

Figure 1.4 - Allocation of orders between European countries by GT and number of ships (source: BRS GROUP,

2020)

Table 1.3 – Rest of world’s Orders for new commercial ships (source: BRS GROUP, 2020)

We should also underline that it is customary in the shipbuilding sector to have very few major-

players (typically one per country) controlling large portions of the national market shares. The

presence of a limited number of players can be explained by significant entry/exit barriers in the

market.

Entry barriers are typically high, due to the need to have the specific infrastructure, consolidated and

complex engineering, design and high-level management skills related to many suppliers sub-

contractors involved in the shipbuilding process. High costs are incurring for equipment, buildings,

and transport necessary for the initial production and labour costs. Indeed, shipbuilding requires a

very diverse and skilled workforce, having much of the activities still carried out by hand.

12

Besides, it is necessary to find suppliers with certifications issued by dedicated bodies, called

classification societies (RINA, Lloyd Register, Bureau Veritas, ABS, among others), both for the

design, development and building of structural components for naval use. Finally, the quality of the

produced output and companies’ reputations are also important within the shipbuilding industry.

Consequently, the threat posed by new entrants to the market is low; this is even more relevant in

high-tech and cruise ship segments requiring outstanding technological and organizational expertise,

experience, and a highly qualified workforce.

Concerning exit barriers, the considerable capital investments for installations and infrastructures

make it challenging to reorient any economic activity linked to shipbuilding or repairing. Note that

the resale value for shipyards is practically low or null. Moreover, political restrictions, due to the

strategic importance of the sector, may impose further barriers. In a time of economic crisis, national

governments typically support financial plans to avoid the closure of construction sites to keep them

active and, thus, curbing the natural tendency for unprofitable businesses to exit the market.

1.4 The shipbuilding supply chain

As we discussed in the previous sections, the shipbuilding sector's supply chain has been significantly

changing in the last decades. Indeed, while most of the whole production processes took place in-

house and in a single country, the recent developments in information and communication

technologies have significantly contributed to creating and expanding such production networks,

promoting the creation of Global Value Chains (GVCs). The increasing efficiency in information

sharing, communication and freight transport has enabled companies to collaborate over large

distances along the supply chain. GVCs have also shifted the shipbuilding industry towards an

interconnected production approach that renders the efficient and effective management of an

increasingly extensive and global network of suppliers one of the main challenges in this sector.

Furthermore, due to the high number and complexity of the processes and the need for coordination

between construction sites and suppliers, a strong efficiency in the site itself is essential. Many studies

have shown how the improvement of coordination between construction sites, suppliers and

customers is becoming increasingly crucial (Fleischer et al.,1999, Chryssolouris et al., 2004; Celik et

al., 2009; Guneri et al., 2009).

According to Vlachakis et al. (2016), identifying core competencies and outsourcing rationalization,

identifying clear supplier roles and responsibilities, and creating long-term alliances are fundamental

to achieve effective management.

The value chain of the naval sector involves many organizations, institutions and companies. In

addition to the final customer (i.e., the shipping company), construction sites and suppliers, it is

possible to highlight many other players, such as research centres, insurance companies, banks,

13

temporary agencies, classification societies and official authorities (Held, 2010). Figure 1.5 depicts

the whole variety of the actors involved in shipbuilding, thus denoting the network's inherent

complexity. More specifically, research centres are concerned with studying new technologies and

process innovation; insurance companies offer insurance cover to construction sites during and after

the construction phases, while banks provide the necessary financial support. Temporary agencies

are in charge of selecting qualified workers, whereas classification societies are responsible for

verifying and certifying that the vessel's construction process complies with the required standards.

Finally, official authorities are the bodies responsible for granting the necessary concessions for

carrying out production activities.

Figure 1.5 – Actors involved in the shipbuilding industry (source: Held, 2010)

For the sake of completeness, we should also mention that, due to the variety of items needed, ranging

from relatively simple and standardized parts to more complex systems, many suppliers are involved

in the shipbuilding supply chain. We can distinguish between those that provide materials,

components and systems and those that offer engineering and design services. Besides, a further

subdivision into specialized and generic suppliers can be made.

Specialized suppliers are those concerned with the supply of propellers, rudders, and navigation

systems. The others produce general-purpose products and typically supply various industrial sectors.

Overall, it can be said that the majority of these suppliers are small or medium-sized firms. This

element certainly influences these suppliers' role (particularly the specialized ones), as it tends to

exacerbate their subordination and degree of dependence on their customer, namely the shipbuilding

company.

14

1.5 The main processes in the shipbuilding supply chain

This section discusses the main processes characterizing the shipbuilding supply chain.

As we highlighted in the previous sections, shipyards must have adequate systems and robust

management/organizational competencies to share information, develop production plans, control

materials, and achieve high-quality standards for the components to be used. Each shipyard can

organize its production differently, depending on the type of ship to be built and the decisions

concerning outsourced activities.

Despite the diversity of the output and the product's complexity, shipbuilding production processes

are generally similar. A (possibly) unified framework is depicted in Figure 1.6, which displays the

three main phases we can distinguish within the shipbuilding supply chain, i.e., pre-production,

production, and post-production phases. The pre-production phase includes the steps of design and

project management. The production phase comprises the hull construction and equipment/systems

purchasing, then assembling and system integration. Finally, post-production concerns the so-called

In-Service Support (ISS), mainly involving customer support, repair and maintenance activities. As a

ship reaches the end of its service life, which for commercial vessels is estimated in about 25 years,

they are disassembled (namely, "ship breaking"), and recycling/disposal occurs. We next describe

these phases in detail.

Figure 1.6 – The shipbuilding supply chain

➢ Pre-production

This phase focuses on the product's design and involves various stakeholders. The design process

begins with the definition of the requirements by the shipowner. Based on these indications, the

shipbuilder, supported by its architects, can define the ship's parameters and characteristics, such as

technical features (e.g., engines) and the hull's layout. A thorough engineering analysis then follows,

dealing with the study of the ship's structure, noise and vibration, weight and stability. In the pre-

production phase, contracts with various suppliers are also set up. The necessary materials (mainly

steel slabs and profiles, paints and pipes) are purchased, together with essential (motors, electrical

and electronic systems) and auxiliary components (furniture, special equipment and devices).

15

➢ Production

This phase concerns the processes and activities carried out for the realization of the final product.

The main elements and systems involved in this phase are the hull, the standard and ship-specific

systems (Brun and Frederick, 2017). Hulls are built in sections called blocks, whose primary raw

material is steel. Steel slabs and profiles are cut, straightened, shaped, and welded together, usually

by specialized suppliers, to fabricate the hull's subassembly.

Standard systems include ship operation equipment, basic accommodations, electrical systems/plant

and electronic navigation and communication systems, auxiliary systems and environmental pollution

control.

Ship-specific systems depend on the vessel's purpose. For example, in large commercial carriers, the

propulsion system is the most important because it aims to move the ship as quickly and efficiently

as possible for long distances. On the contrary, accommodations (e.g. furniture) are more critical in

cruise ships and passenger's vessels.

The main activities in assembly and integration can be summarized as follows:

- Hull blocking and assembly: hull subassemblies are coated with primer and other special marine

coatings, welded together to form large units, and welded into position to form the ship. Once

assembled, the ship is ready for launch and outfitting.

- Outfitting: after the launch, the ship is berthed for completion. The main pieces of machinery (piping

systems, deck gear, lifeboats, accommodation equipment, insulation, rigging and deck coverings) are

installed in this step.

- Systems integration: systems integrators install the ship-specific systems and ensure subsystems'

cross-functionality.

➢ Post-production

Post-production services involve all the In-Service Support (ISS), i.e., mainly maintenance and

repairing activities, and technical training. ISS are generally planned in predefined time windows and

are required by the aforementioned "classification societies" (see Section 1.4) to evaluate the ships'

dynamic condition. The shipowner is responsible for implementing the ISS, which is typically

performed by the original shipbuilder or specialized service providers. Technical training is needed

to instruct and update personnel on the systems' operational functionalities and maintenance.

Each of the above-described processes has a wide range of activities to be accurately coordinated,

which have stimulated the increasing interests of research scholars in studying various logistics

problems arising in the shipbuilding supply chain. Frequently investigated topics concern, for

16

instance, storage operations (Fechter et al., 2015), sheets and profiles' cutting (Haessler et al., 1979),

and (sub)assembly welding process (Cho et al., 1998; Iwankowicz, 2016; Derakhshan et al., 2018).

This work will focus on the hull's production phase, particularly on steel management and cutting and

on the subassemblies' composition process. We will detail these aspects in the next chapters, where

we will describe them in the context of an Italian manufacturing steel company working in the cruise

ship sector.

1.6 Conclusions

This chapter introduced several aspects related to the shipbuilding sector. In particular, we highlighted

the main characteristics of the so-called shipbuilding industry, i.e., the specific segment dealing with

the process of building new ships. We emphasized the recent trends in the market, the leading players

and actors involved and provided a more in-depth description of its most crucial supply chain

processes. Finally, we also briefly outlined various research streams that arose analysing the complex

shipbuilding industry's logistics.

The latter will be further investigated in the next chapter, where we will describe the case study of an

Italian manufacturing steel company working in the cruise ship sector. Specifically, we will narrow

our focus around the cutting and subassemblies composition processes, which will be at the core of

the developments we discuss in the present thesis.

17

2 A case study in the shipbuilding industry: Palescandolo S.p.A.

Summary

This chapter presents the case study of a manufacturing company (Palescandolo S.p.A.) operating in

the production of components and subassemblies for cruise ships. After introducing its history and

mission, we outline its core processes, such as slabs and profile handling, components and

subassemblies production. We particularly focus on describing logistic operations and their role

within the shipbuilding sector's supply chain. Finally, we identify and analyze in-depth the critical

issues (i.e., "hot-spots") characterizing two of its main processes (storage and retrieval).

2.1 A brief introduction to Palescandolo S.p.A.

Palescandolo S.p.A. (PLS) is a company owned by the Palescandolo family, operating in the steel

sector since 1939. Over the years, the company has been specializing in the production of slabs,

profiles and tubular. The group has rapidly become a leader in Italy in the production and marketing

of welded beams for shipbuilding. Since 2018, it has actively managed a naval cutting/assembly

centre, which offers its services mainly in the cruise shipbuilding market. This new centre represented

the first logistics service provider in the shipbuilding sector, supporting two Italian shipyards'

activities. In the following, we will refer to these shipyards as Shipyard1 (SY1) and Shipard2 (SY2)

for reasons of a confidentiality agreement. The latter belongs to a big customer, who assured

outsourcing a significative quota of its logistics and production processes needs by stipulating some

long-term contracts with PLS.

In the first stages of its life, PLS mainly focused on slabs and profiles handling macro-process, thus

working as a temporary buffer for the shipyards. In practice, it stocked slabs and profiles and then

delivered them according to handling orders weekly released by each shipyard. The efficiency

achieved in performing these operations led PLS to extend its activities to manufacturing beams' and

subassemblies' components, which are fundamental parts of the ship's hull.

Consequently, PLS enlarged its centre, whose current plant layout is depicted in Figure 2.1. The

centre comprises seven spans: in particular, spans A and B are the slab cutting area; span C is

dedicated to the subassembly production; span D is devoted to the profiles cutting, while spans E, F

and G are assigned to the slabs and profile storage. Figure 2.2. displays the whole PLS production

process, which we detail in the next sections.

18

Figure 2.1 – The current PLS’ centre layout

Figure 2.2 – The PLS production process

Conveyor trolley

19

2.2 The inputs: slabs and profiles

As we anticipated above, slabs and profiles are the primary production process's inputs, supplied to

PLS by steel mills based on orders released by the shipbuilder.

A slab is a plate - generally made of mild steel (i.e., with low carbon content) - of rectangular section

characterized by a set of attributes, such as length, width, thickness, steel grade. In the "shipbuilding

jargon", these four attributes uniquely define an item; in other words, all the slabs that belong to the

same item present the same values of these attributes. Besides, it is also important to mention that

slabs quality must be certified by temporary certification, released by classification societies (see

Section 1.4).

The attributes of the slabs can vary in dependence on the specific cruise ship to be built. Table 2.1

indicates typical possible ranges (in mm) for length, width, thickness and weight (in tons), while

Figure 2.3 shows an example of a steel slab. From that picture, it is possible to notice the enormous

dimensions of these slabs, which dramatically affect the logistic operations, as we will discuss next.

Profiles are elements made of mild steel, with length as the dominant dimension; in addition to the

slab attributes (length, width, thickness and steel degree), each item is also characterized by a specific

shape. Typical ranges for the profiles’ attributes and examples of their shapes are provided in Table

2.2 and Figure 2.4, respectively.

Attribute Min Max

Length (mm) 4000 18000

Width (mm) 1500 3000

Thickness (mm) 4 70

Weight (tons) 0,5 13

Table 2.1 – Typical ranges of slabs attributes

Attribute Min Max

Length (mm) 6000 18000

Width (mm) 15 400

Thickness (mm) 4 30

Weight (tons) 0,007 3

Table 2.2 – Typical ranges of profiles attributes

20

Figure 2.3 – A steel slab

Figure 2.4 – Examples of profiles shapes

21

2.3 The outputs: slabs and profiles, components, subassemblies

The output of the production process can belong to four different families of items: slabs, profiles,

components and subassemblies.

Slabs and profiles that are already produced by steel mills (or by other suppliers) and must be only

delivered to shipyards are usually stored at the PLS centre to reduce trips and stocks accumulation at

the shipyards. In this case, they do not undergo any processes, and they are stored and handled when

delivered.

Components are parts derived from slabs and profiles as a result of cutting operations and eventual

additional processes. Usually, from a slab, components of various dimensions and shapes are

generated. However, each component is characterized by a given thickness and steel grade. It means

that when a specific component has to be produced, it is necessary to use a slab belonging to a specific

item. Components are generated according to pre-defined "cutting schemes" that the shipbuilder

identifies during the design phase to minimize scraps (Figure 2.5). These can be further processed in

order to reduce their length and modify their ends.

Subassemblies are items produced through an appropriate assembly of components and represent

parts of the ships' hull installed at the shipyards. Their dimensions are generally huge, and,

consequently, the related assembly operations are quite challenging (Figure 2.6).

Figure 2.5 – An example of a slab cutting scheme

22

Figure 2.6 – An example of a subassembly

2.4 The cutting process

Cutting is undoubtedly the most relevant operation within the transformation process. Cutting may

eventually follow sand-blasting and priming operations. Sand-blasting is a mechanical procedure

used to remove oxides, salts, rust, and other materials deposited on the metal surface. It is usually

performed before painting or applying protective materials through sand jets oriented on the metal

surface to clean it by scraping. Priming is instead a technique that involves applying a thin layer of

protective paint (i.e., the primer), which preserves from the oxidizing action of wet air and other

aggressive agents.

Two different kinds of cutting procedures are performed, in dependence on the typology of the input

material. The cutting of slabs is operated by an automatic machine (plasma cutter) that can be

numerically programmed to produce items of given geometries (Figure 2.7). On the other hand, the

cutting of the profiles is mainly performed through a small semi-automatic torch as profiles may be

reduced in length, holding their own original geometries. This operation is more labour intensive than

that performed by the plasma cutter (Figure 2.8).

The obtained components may require additional processing such as shaping, chamfer, press, flange,

raking and lowering. Then, some might be not further assembled at PLS and delivered to shipyards

or external assembly centres. Figure 2.9 depicts the whole process; we label its main steps by a

progressive number (i.e., from 1 to 8) and provide the corresponding description in Table 2.3.

23

Figure 2.7 – Plasma cutter

Figure 2.8 – The cutting process through a manual torch

24

Figure 2.9 - The PLS cutting process

Step Description

1 An operator picks up the selected slabs and profiles and load them on the conveyor trolley

to transport them to the indoor plant.

2 From the conveyor trolley, the slabs and profiles are put in the pre-cutting area.

3 From the pre-cutting area, slabs and profiles are loaded on plasma cutters and

workbenches, respectively.

4 After cutting, the produced components are stocked on pallets or new stacks, depending on

their dimensions, and located in the components stock area.

5 Each empty semi-trailer is weighed to measure its tara weight once entered into the centre.

6 Semi-trailers reach the components stocking area for the delivery, where components are

loaded.

7 Full-loaded semi-trailers are weighted again. Then, the delivery documents are filled in.

8 Semi-trailers leave the centre towards the assigned shipyard.

Table 2.3 – Description of the main steps of the PLS cutting process (depicted in Figure 2.9)

25

2.5 The assembling process

As we already underlined, part of the components produced in the cutting phase (and the subsequent

operations) are used to produce subassemblies. Essentially, assembling consists of welding slabs' and

profiles' components according to a given scheme, i.e., a predefined design of the subassembly

(Figure 2.10). This phase is very labour-intensive due to the uniqueness and peculiarities of the final

products. We should also highlight that their enormous dimensions render this operation particularly

difficult to manage (Figure 2.11). Once produced, subassemblies are delivered to shipyards to finalize

the ship hull production.

In line with what we did in the previous section, Figure 2.12 depicts the process, whose main steps

are detailed in Table 2.4.

Figure 2.10 – Scheme of a subassembly

 Figure 2.11 – An example of a subassembly

26

Figure 2.12 - The PLS assembling process

Step Description

1 Components are moved to the new stock area in the subassemblies span.

2 All the additional operations on components, included welding, are performed in the

subassemblies span.

3 Once produced, subassemblies are moved to a dedicated stock area located on the exit

side.

4 Each empty semi-trailer is weighed to measure its tara weight once entered into the centre.

5 Semi-trailers reach the subassemblies stocking area for the delivery, where subassemblies

are loaded.

6 Full-loaded semi-trailers are weighted again. Then, the delivery documents are filled in.

7 Semi-trailers leave the centre towards the assigned shipyard.

Table 2.4 – Description of the main steps of the PLS assembling process (depicted in Figure 2.12)

2.6 The slabs storage and retrieval processes

The characteristics of the considered materials (i.e., slabs, profiles, components, subassemblies)

render the logistic operations very sector-specific and crucial. In particular, their dimensions require

a peculiar organization of the storage areas and laborious procedures supported by specific industrial

tools. As a result, long times are needed to perform even basic handling operations.

In the following, we detail two main logistic processes, i.e., slabs and profiles storage and retrieval.

➢ The storage process

After a formal check-in, the inbound slabs and profiles, delivered by steel mills or suppliers through

semi-trailers, are stored in dedicated areas divided into spans and, in turn, into pitches (Figure 2.13).

27

There, slabs grouped in “stacks” with a maximum height of about two meters. We can distinguish

between dedicated or random stacks, whether they host one or more types of slabs, respectively.

Considering that the thickness can vary from four to 70 mm, each stage can contain up to 300 slabs;

an example of a stack is shown in Figure 2.14.

Slabs are moved by industrial magnetic cranes (Figure 2.15) capable, considering their weight, of

lifting and relocating slabs along the span.

On the other hand, profiles are delivered in "packages", coming from the same steel casting, and are

stored in specific "stalls" (Figure 2.16) designed according to their sizes and shapes. Profiles are

moved using lifting beams (Figure 2.17).

The storage process is detailed in Figure 2.18 and Table 2.5.

Figure 2.13 – Layout of a span for slabs storage

Figure 2.14 – An example of a slabs stack

S

p

a

n

Pitch

28

Figure 2.15 – Industrial magnetic crane

Figure 2.16 – “Stalls” of profiles

Figure 2.17 - Lifting beam

29

Figure 2.18 - The PLS assembling process

Table 2.5 – Description of the main steps of the PLS storage process (depicted in Figure 2.18)

➢ The retrieval process

Based on production orders, materials have to be moved towards different destinations, such as the

cutting, assembly, or exit areas. To this end, as a given output to be produced is associated with a

specific slab item, a retrieval process requires a first step consisting of the selection, among the

available stacks and the suitable slabs, of a slab belonging to a given item. Once identified the slab

with a given position in a stack (target slab), in order to pick it up, all the slabs positioned over it

should be shifted and reallocated, temporarily or permanently, on the top of other stacks (Figure 2.19).

Each of these operations is denoted as a "shuffle". Figure 2.20 shows the retrieval sequence of a target

Step Description

1 Semi-trailers enter the centre.

2 Semi-trailers are weighted, and a PLS operator collects the delivery note.

3 Once registered, a copy of the delivery note is given to another operator who will handle

the material's stock. Meanwhile, semi-trailers reach the pre-stock area near the stock area,

on the entry side.

4 Slabs and profiles are unloaded and moved by an industrial magnetic crane or a lifting

beam, respectively. Both the machines move in a parallel direction to the spans. In the

meantime, a PLS operator checks the information reported on the delivery note. In case of

a negative check, the operator communicates the event, and a complaint procedure to the

supplier is started.

5 In case of a positive check, materials are labelled and definitively stocked in the stock area.

6 The empty semi-trailers leave the plant.

30

slab both if the moved slabs are repositioned in the original stack or if their reallocation to another

stack is permanent.

These activities are very time-consuming and, therefore, to save time and reduce costs, it is essential

to minimize their times (and cranes' shift). A not optimal selection of the slabs to be taken can cause

significant delays and an unjustified increase in handling costs, generating further delays in the

subsequent logistic operations. For further details on the process, readers can refer to Figure 2.21 and

Table 2.6.

Figure 2.19 – Target slab selection

Figure 2.20 – Example of a retrieval sequence with (a) or without (b) slabs repositioning

31

Figure 2.21 - The PLS retrieval process

Step Description

1 An operator picks up slabs and profiles according to the received handling order and

moves them to a pre-delivery area near the exit side.

2 Each empty semi-trailer is weighed to measure its tara weight once entered into the centre.

3 Semi-trailers reach the pre-delivery area for the delivery, where slabs or profiles are

loaded.

4 Full-loaded semi-trailers are weighted again. Then, the delivery documents are filled in.

5 Semi-trailers leave the centre towards the assigned shipyard.

Table 2.6 – Description of the main steps of the PLS retrieval process (depicted in Figure 2.21)

32

2.7 Production planning in PLS: a quantitative analysis

Generally, the collaboration between shipbuilders and cutting/assembly suppliers is regulated by

contracts concerning specific ship orders. Specifically, production planning is driven by the so-called

Cruise Ship Orders (CSOs), i.e., the Bill Of Materials related to ships production. Usually, PLS

processes CSOs related to different ships each year (three, for instance, during 2018).

A single CSO regulates the arrival dates of input materials (slabs and profiles) and the delivery dates

to shipyards of components and subassemblies. Suppose we assume the arrival dates as release times

and delivery dates as due dates. In that case, the logistic processes should be adequately scheduled to

optimize some performance indicators, satisfying logistic and technological constraints.

In the following, we present a quantitative analysis of typical CSOs to provide the reader with an idea

of the production planning complexity in this industry, given the variety of the outputs and production

volumes.

To this end, we analyze three CSOs, from June 2018 until May 2020, representative of the production

planned for two whole years.

Figures 2.22, 2.23, and 2.24 display the demand for inbound and outbound slabs as per the three

CSOs. We can note that, due to the time lag between the inbound and outbound slabs, especially

during the first phase of a CSO management process, a significant peak in the number of stored slabs

and profiles occurs. This aspect determines various critical issues. On the one hand, a capacity

problem emerges, which is further complicated by the overlapping of the peaks related to different

CSOs and the considerable dimension of the material inputs. On the other, this renders the

retrieval/storage operations strongly time-consuming. Besides, another critical issue is that a

significant portion of slabs and profiles requires cutting operations; this implies the use of expensive

resources, e.g., specialized industrial machinery (see Section 2.4) and the involvement of an

experienced and dedicated workforce.

33

Figure 2.22 - CSO-1: Inbound, Outbound and Stock Quantities

Figure 2.23 - CSO-2: Inbound, Outbound and Stock Quantities

Figure 2.24 - CSO-3: Inbound, Outbound and Stock Quantities

0
200
400
600
800

1000
1200
1400
1600
1800

Q
u
n
ti

ty

Jun-

18

Jul-

18

Aug-

18

Sep-

18

Oct-

18

Nov-

18

Dec-

18

Jan-

19

Feb-

19

Mar-

19

Apr-

19

May-

19

Jun-

19

Jul-

19

Aug-

19

Sep-

19

Oct-

19

Nov-

19

Dec-

19

Jan-

20

Feb-

20

Mar-

20

Apr-

20

May-

20

Inbound CSO-1 638 701 146 503 649 265 450 613 47 4 0 7 0 16 0 0 10 3 28 4 2 8 0

Outbound CSO-1 1 21 192 246 524 455 456 446 386 919 181 152 15 0 21 15 5 17 0 30 0 5 7 0

Stock CSO-1 637 1317 1271 1528 1653 1463 1457 1624 1285 370 189 44 29 45 24 9 14 0 28 2 4 7 0 0

CSO-1: Inbound - Outbound - Stock

0

2000

4000

6000

8000

10000

12000

Q
u

an
ti

ty

Jun-

18

Jul-

18

Aug-

18

Sep-

18

Oct-

18

Nov-

18

Dec-

18

Jan-

19

Feb-

19

Mar-

19

Apr-

19

May-

19

Jun-

19

Jul-

19

Aug-

19

Sep-

19

Oct-

19

Nov-

19

Dec-

19

Jan-

20

Feb-

20

Mar-

20

May-

20

Inbound CSO-2 0 0 0 0 0 0 0 394 3395 3383 3065 3402 2816 3204 1687 2252 1007 1056 1007 603 25 18 3

Outbound CSO-2 0 0 0 0 0 0 0 0 9 191 1037 2117 3124 2583 4773 2878 4818 3485 1439 695 97 59 3

Stock CSO-2 0 0 0 0 0 0 0 394 3780 6972 9000102859977105987512 6886 3075 646 214 122 50 9 9

CSO-2: Inbound - Outbound - Stock

0

5000

10000

15000

20000

25000

Q
u

n
ti

ty

Jun-

18

Jul-

18

Aug-

18

Sep-

18

Oct-

18

Nov-

18

Dec-

18

Jan-

19

Feb-

19

Mar-

19

Apr-

19

May-

19

Jun-

19

Jul-

19

Aug-

19

Sep-

19

Oct-

19

Nov-

19

Dec-

19

Jan-

20

Feb-

20

Mar-

20

May-

20

Inbound CSO-3 7 3 4 2 3 28 257 281 212 224 66 538 161 509 677 754 487 1924 3984 2141 983 8882 8053

Outbound CSO-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 402 231 1318 1763 829 1369 1192 1660

Stock CSO-3 7 10 14 16 19 47 304 585 797 1021 1087 1625 1786 2295 2948 3300 3556 4162 6383 7695 73091499921392

CSO-3: Inbound - Outbound - Stock

34

In Table 2.7, we report the main characteristics of the orders, for slabs, to underline the variety of the

input materials. We recall that slabs characterized by the same values of length, width, thickness, and

steel grade belong to the same item (see Section 2.4).

 CSO-1 CSO-2 CSO-3

Number of different items 187 257 345

Number of slabs 4094 6389 10924

Range of length [mm] 10000-15400 4000-16700 4000-15500

Range of width [mm] 2250-3000 1700-3000 1500-3000

Range of thickness [mm] 4-40 4-70 4-40

Percentage of slabs to be cut 45% 88% 98%

Table 2.7 – Characteristics of the slabs in the considered CSOs

It is possible to notice that the number of items and slabs and the percentage of slabs to be cut increase

over time (i.e., from CSO-1 to-CSO 3), thus increasing the deriving workload and the corresponding

logistic costs.

Figures 2.25, 2.26 and 2.27 show, for each CSO, the distribution of the number of slabs by length,

width, and thickness, respectively. In those pictures, slabs are also grouped by item. In practice, if we

focus on length (i.e., Figure 2.25), each point represents an item belonging to a specific CSO,

comprising a given number of slabs (on the y-axis) of a given length (on the x-axis). Hence, this

picture also informs readers of the number of items (corresponding to the number of points) with a

given length. The same applies to width and thickness.

To better clarify these aspects, Figures 2.28, 2.29 and 2.30 display, for each CSO, the relative

percentages of slabs and items with a given length, width and thickness. For instance, by looking at

Figure 2.28 and focusing on CSO-1, we note that about 30% of slabs and items have a length of 11500

mm (the cyan and blue bars, respectively).

Regarding the length, as one can see from Figures 2.25 and 2.28, many items are concentrated in just

a few values (e.g., 11500 mm, 12500 mm, and 14600 mm) for all the CSOs. We also observe that

these few "classes" of items comprise almost all the slabs required in each CSO. Moreover, we also

note that, for some lengths, the number of slabs is very low, despite a non-negligible number of items.

For instance, these circumstances occur in the cases of 15400 mm for CSO-1 and CSO-2 or 11500

mm for CSO-3.

Similar considerations can be drawn if we focus on width (see Figures 2.26 and 2.29).

35

Figure

2.28 – Distribution of the number of items and slabs (in %) by the length (in mm)

Figure 2.29 - Distribution of the number of items and slabs (in %) by the width (in mm)

0

50

100

150

200

250

300

350

400

450

Length

CSO-1 CSO-2 CSO-3

0

50

100

150

200

250

300

350

400

450

Width

CSO-1 CSO-2 CSO-3

0

50

100

150

200

250

300

350

400

450

Thickness

CSO-1 CSO-2 CSO-3

0%

10%

20%

30%

40%

50%

60%

CSO-1 %qty CSO-1 %items CSO-2 %qty CSO-2 %items CSO-3 %qty CSO-3 %items

0%

10%

20%

30%

40%

50%

60%

CSO-1 %qty CSO-1 %items CSO-2 %qty CSO-2 %items CSO-3 %qty CSO-3 %items

Figure 2.25 – Distribution of the

number of slabs (grouped by item)

 by the length (in mm)

Figure 2.26 - Distribution of the

number of slabs (grouped by item)

 by the width (in mm)

Figure 2.27 - Distribution of the

number of slabs (grouped by item)

 by the thickness (in mm)

36

If we focus on thickness, the distribution appears significantly different from the other cases.

Specifically, we note a higher variability, i.e., the presence of more typologies of items of different

thickness. In terms of slabs, we observe that they are mainly concentrated around some particular

thickness values. The result is that, in practice, PLS manages many items characterized by low

amounts of slabs. As we already emphasized, this aspect also emerged, although less evident, when

analysing width and length.

This variety poses severe issues, both for the storage and retrieval processes. For instance, thinner

slabs can be accidentally picked-up together with thicker slabs if stacked consecutively, or slabs with

higher length may tend to bend if stacked upon shorter ones. Besides, it is also intuitive that larger

slabs occupy larger volumes/surfaces. A more in-depth discussion on these problems follows in the

next section.

Figure 2.30 - Distribution of the number of items and slabs (in %) by the thickness (in mm)

We now focus our attention on the other input managed by PLS, i.e., profiles. We recall that,

differently from slabs, in addition to length, width, thickness, and steel grade, profiles are also

characterized by a given shape. Table 2.8 reports the details of the profiles included in the considered

CSOs. Note that they are not present in CSO-1. As for slabs, we underline an increase in the number

of items and profiles managed and in the number of profiles to be cut (in absolute terms).

0%

5%

10%

15%

20%

25%

30%

4 5 5.5 6 6.5 7 7.5 8 9 10 11 12 13 14 15 16 17 18 20 22 24 25 27 28 30 35 40 50 70

CSO-1 %qty CSO-1 %items CSO-2 %qty CSO-2 %items CSO-3 %qty CSO-3 %items

37

 CSO-2 CSO-3

Number of different items 185 252

Number of profiles 20990 30977

Range of length 6000-18000 6000-16000

Range of width 16-320 16-350

Range of thickness ≈0-30 ≈0-30

Types of shapes
Flat, L1, Circular, Semi-

circular, L2, Bulb

Flat, L1, Circular, Semi-

circular, L2, Bulb

Percentage of profiles to be cut 46% 43%

*L1 = “L” shape with equal sides; *L2 = “L” shape with different sides

Table 2.8 – Characteristics of the profiles in the considered CSOs

The analysis summarized next resembles that performed for slabs. Accordingly, Figures 2.31, 2.32

and 2.33 show, for all the CSOs, the distribution of the number of profiles (grouped by item) by

length, width, and thickness, while Figures 2.34, 2.35 and 2.36 depict the corresponding percentages.

Briefly, we can note that, while in terms of length, there is an evident concentration of items and

profiles around some specific values (see Figure 2.34), a more homogenous distribution is found

when focusing on width and thickness (although with some local peaks, see Figures 2.35 and 2.36).

These results are similar to those gained in the case of slabs.

Therefore, we can ultimately conclude that the management of both types of inputs (i.e., slabs and

profiles) raises problems of practical and economic relevance that are worthwhile investigating.

0

1000

2000

3000

4000

5000

6000

Length

CSO-2 CSO-3

0

1000

2000

3000

4000

5000

6000

Width

CSO-2 CSO-3

0

1000

2000

3000

4000

5000

6000

Thickness

CSO-2 CSO-3

Figure 2.31 - Distribution of the

number of profiles (grouped by item)

 by the length (in mm)

Figure 2.32 - Distribution of the

number of profiles (grouped by item)

 by the width (in mm)

Figure 2.33 - Distribution of the

number of profiles (grouped by item)

 by the thickness (in mm)

38

Figure 2.34 – Distribution of the number of items and profiles (in %) by the length (in mm)

Figure 2.35 - Distribution of the number of items and profiles (in %) by the width (in mm)

Figure 2.36 - Distribution of the number of items and profiles (in %) by the thickness (in mm)

0%

10%

20%

30%

40%

50%

60%

CSO-2 %qty CSO-2 %items CSO-3 %qty CSO-3 %items

0%

5%

10%

15%

20%

25%

30%

35%

40%

CSO-2 %qty CSO-2 %items CSO-3 %qty CSO-3 %items

0%

10%

20%

30%

40%

50%

60%

0 5 6 7 8 9 10 11 12 14 15 16 20 25 30

CSO-2 %qty CSO-2 %items CSO-3 %qty CSO-3 %items

39

2.8 Hot-spots identification

After the description and the quantitative analysis of the processes characterizing the PLS supply

chain, it emerges that storage and retrieval operations are the most critical ones. These two processes

precede all the others and involve managing large amounts of products simultaneously. Indeed,

everything starts by retrieving slabs or profiles from their storage areas, whatever their subsequent

"flow" might be. Storage areas are the "meeting points" between the continuous production of slabs

and profiles coming from the steel mill and the batch production of cutting and assembly centres,

driven by the shipyards' orders. Hence, storage areas of cutting/assembling centres are a long-term

buffer from which, day by day, small portions of the stored elements are retrieved to “feed” the

different processes.

In the following, we try to emphasize the criticalities of these processes, in order to shed light on the

"hot-spots" of the whole PLS supply chain.

For the sake of clarity, we recall that both slabs and profiles, due to their dimensions, need vast spaces

for their storage and huge machinery to be moved.

In particular, slabs can be moved only by industrial magnetic cranes, and the only practical way to

store them is to stack them one on top of each other. This method implies various criticalities that can

seriously affect the retrieval process and the slabs' quality.

When storing slabs, the first issue to consider is that slabs may tend to bend if they are stacked right

upon shorter ones. This phenomenon determines a substantial incompatibility between some items:

two slabs differing more than 1,5 m in length or width must not be stacked consecutively.

The second critical issue we mention refers to the slabs' identification procedure. In particular, slabs

stocked in the yard present a label reporting all their specific information (e.g., identification code,

item, plaque and casting). This label needs to be easily accessible to the operator to identify the slab

correctly during the retrieval process. Hence, excessive differences in the slabs' sizes would render

impractical this control, since larger slabs will hide the smaller ones.

A third aspect concerns thickness. Generally, significant differences in thickness would make it

impossible to pick-up a thick slab stacked on a thinner one because of strong the magnetic interaction

between them. Clearly, the magnetic intensity of the crane plays a role here.

Lastly, slabs' quality certifications represent another critical issue. These certifications are issued by

classification companies and typically last about six months after the delivery to the centre. This

certification, in practice, works like insurance. Indeed, if a slab turns out as defective, all the slabs

from the same cast-steel would have to be replaced. If the defective slab has been used during the

time window of the quality certification's validity, insurance will cover the costs. Otherwise, they

will be borne by the shipbuilder or the company managing the slabs (i.e., PLS, in this case). Therefore,

40

the so-called "expired slabs", i.e., slabs whose quality certification is expired, are not used to fulfil

any order. Hence, the number of expired slabs may be intended as a proxy of the centre's quality.

Similar considerations apply to profiles.

All these issues have significant logistic implications. Indeed, moving the cranes [lifting beams for

profiles] along the spans and picking slabs [profiles] from their stacks [stalls] is a time-consuming

operation, even in the best possible conditions. Note that for "best possible conditions", we intend the

possibility to randomly store slabs [profiles] on any stack [stall] and retrieve the slabs (profiles) in

the best position (e.g., on top of a stack).

Therefore, given the "incompatibility" constraints between slabs [profiles] and their expiration dates,

it is necessary to intervene in a programmatic and preventive way on the storage and retrieval

processes. Clearly, the increasing number of items (and their variability) exacerbates the complexity

of these processes (see Tables 2.7 and 2.8).

The variability of these values is not the only difficulty for the adequate storage of slabs or profiles.

Indeed, also the frequency and the quantity with which they are retrieved play a role. We next analyze

these aspects in more detail.

Focusing on slabs, in Figure 2.37, each item is represented as a dot characterized by two dimensions:

the average picking quantity (on the y-axis) and the number of retrieval days (on the x-axis). Given

the three Cruise Ship Orders discussed in Section 2.7, for each item, the number of retrieval days is

calculated as the number of days in which at least one slab of that item is picked. The average picking

quantity is then obtained, for each item, as the total number of slabs picked during the time-horizon

under consideration, divided by the actual picking days.

In that picture, we group items in four quadrants: (i) the left-bottom quadrant (i.e., the pink one)

comprises items that are picked in small quantities (less than five) and in a restricted number of days

(less than 15); (ii) the right-bottom quadrant (in red), comprises items that are picked rather frequently

(more than 15 days) but in low quantities (less than five slabs, on average); (iii) the upper-left quadrat

(in yellow) involves items picked not very frequently (less than 15 days) in relatively high quantities

(more than five slabs); (iv) finally, the upper-right quadrant (in blue) highlights items that are picked

frequently (more than 15 days) in higher quantities (more than five slabs, on average).

Similarly, Figure 2.39 provides the same information for profiles.

41

Figure 2.37 – Number of retrieval days and average picking quantities per item (slabs)

Figure 2.38 - Number of retrieval days and average picking quantities per item (profiles)

The above figures show a very heterogeneous distribution of items by the identified quadrants: it is a

matter of fact that, both for slabs and profiles, PLS works with many items that are picked less

frequently (and in low quantities). We should also note that the workload related to a minimal number

of items (those in the blue quadrants) equals, in practice, the workload implied by the less frequent

and scarce ones.

In principle, it would be ideal to use dedicated stacks [stalls] for each item and then and sort slabs

[profiles] according to their expiration dates to ease the following retrieval process. However, this is

42

impracticable due to the limited storage capacity. In practice, the main effect of the evident variability

above discussed, together with capacity constraints, is the need to mix items in stacks [stalls].

As we already mentioned, the retrieval process is very time-consuming due to the complexity of each

retrieval. Therefore, the proper selection of the target slabs [profile] is crucial to reduce retrieval

times.

In the literature, the problem that aims at choosing appropriate slabs for an order or a group of orders

to minimize shuffles during the retrieval process is known as the Slab Stack Shuffling (SSS) Problem.

A thorough analysis of the problem and a comprehensive state-of-the-art will be provided in the next

chapter.

2.9 Conclusions

This chapter described the case study of a manufacturing company operating in the shipbuilding

industry, namely Palescandolo S.p.A. (PLS). After a brief introduction on its history and mission, we

outlined its core processes, such as slabs and profile handling, components and subassemblies

production. Our primary focus, however, was on the analysis of its logistics to identify the critical

issues (i.e., "hot-spots") characterizing two of its main processes (storage and retrieval).

As we noted, storage capacity, the high variability of the items and their expirations dates are three

main problems causing the need to mix items in stacks [stalls], thus rendering the retrieval process

very tough and time-consuming. Therefore, the proper selection of target slabs [profiles] to pick-up

to fulfil ship orders seeking to minimize the overall retrieval time emerges as a crucial problem in

PLS. This problem, known in the literature as the Slab Stack Shuffling (SSS) Problem, will be

analysed in details in the chapter. In particular, we will provide a comprehensive overview of the

state-of-the-art in the field, propose a novel and unified framework to systematize it and highlight

some gaps we aim at filling.

43

3 Literature review

Summary

The analysis shown in the previous chapters reveals that the slab handling process represents a critical

issue in the shipbuilding industry. Indeed, the hull manufacturing process requires the interim storage

of slabs at different stages: after their production, at the steel mills; before and after their cutting and

intermediate processes; before the final assembly at the shipyards. The huge size of managed items

and the need to stacking them in limited storage areas, pose critical challenges, both from a tactical

and an operational perspective. Consequently, the proposal of methods and tools to support decisions

in this context could be beneficial and could produce significant impacts on the efficiency of the

production processes and the whole supply chain.

In the Operations Research and Management Science literature, the stacking problems have been

widely studied in the context of port logistics, with reference to containers. Instead, much more

limited attention has been devoted to the handling of slabs in the shipbuilding industry.

In this chapter, we first introduce a formal description of the so-called Slab Stuck Shuffling (SSS)

problem. Secondly, we propose a general framework, which consists of a set of elements and

properties that may characterize the problem. Finally, we review the existing contributions devoted

to the SSS problem’s investigation. This way, we intend to (i) systematize the sparse literature on the

topic; (ii) define different variants of the problem; (iii) identify the existing gaps in the reference

literature.

3.1 Stacking problems

The Stacking Problems involve a vast group of problems where the storage area is organized in stacks,

and single items are put on top of each other in these stacks (Lehnfeld & Knust, 2014). Such peculiar

storage method makes the related warehouse management problems different from the classic ones,

which consider bin shelving, modular storage drawers, pallet racks, gravity flow racks, or mobile

storage racks (Van den Berg and Zijm, 1999).

Indeed, in this case, all operations to move and get items are executed by cranes located above the

stacks, so that direct access is possible only to the topmost item of any stack. This implies that if an

item stacked below has to be retrieved, so-called reshuffling (or relocation) is necessary. Since

reshuffling operations are usually very time-consuming, they should be avoided as often as possible.

44

Hence, the objective usually consists of maximizing the efficiency of such operations, in terms of

time and costs.

These problems have been widely studied in the context of port logistics, to tackle issues related to

containers' handling (Containers Stacking – CS problem). Other variants have been investigated with

reference to the management of the various type of steel elements, such as slabs and coils (Steel

Stacking – SS problem). Apart from the application context, the item’s stacking leads to different

kinds of optimization problems. On the one hand, if incoming items arrive at a storage area, they need

to be assigned to positions, which causes loading problems. On the other hand, unloading problems

arise if outgoing items need to be retrieved from the storage area and one has to decide which items

will leave the storage in which order and which relocations are performed. Premarshalling occurs if

items have to be sorted inside the storage area such that all items can be retrieved without any further

reshuffle. If incoming items need to be stored while outgoing items need to be retrieved, combined

loading/unloading problems appear. In Table 3.1, an overview of the different optimization problems

above introduced in the two introduced contexts is provided.

* according to specific criteria

Table 3.1 Classification of Stacking problems

3.1.1 The Container Stacking problems

In the context of containers management, the stacking problems may arise with reference to different

processes:

• the loading and/or unloading of container vessels;

• the assignment of storage locations to incoming containers in a terminal;

• the reassignment of positions to already stacked containers within the terminal (pre-marshalling

versions);

• the retrieving of containers from a terminal.

An example of a container terminal is reported in Figure 3.1.

 APPLICATION CONTEXT

Containers Stacking

Problem

(CSP)

Steel Stacking

Problem

(SSP)

O
P

T
IM

IZ
A

T
IO

N

P
R

O
B

L
E

M

Loading
Selecting the best* locations

of incoming containers

Selecting the best* locations

of incoming slabs/coils

Unloading
Selecting the best* retrieval

sequence for outgoing

containers

Selecting the best* outgoing

slabs/coils and the best*

retrieval sequence for

outgoing items

Pre-marshalling
Reshuffle in the best* way

containers in the storage area
Reshuffle in the best* way

slabs/coils in the storage area

45

Figure 3.1 – Container terminal

The CS loading problem aims at selecting the best locations for the containers, once these reach a

pre-stocking area. Locations are chosen according to many different criteria, among which: minimise

the handling effort of cranes and ensuring a vessel's stability (Kim et al., 2000); minimise the vessel

space occupied by the containers that need to reach different destinations (Wilson & Roach, 2000) or

the number of shuffles (Avriel & Penn, 1993).

In the premarshalling versions, containers are already stacked and re-shuffled to minimise future

handlings for the retrievals, exploiting the eventual remaining space in the terminal (Kim & Bae,

1998; Meisel & Wichmann, 2010).

In the unloading problems, containers need to be retrieved from a stocking area to satisfy delivery

requests, in order to minimise an objective function often related to the number of shuffles (Malucelli

et al., 2008).

3.1.2 The Steel Stacking problems

The reference items of the Steel Sacking problems can be classified into two main categories: (i) flat

rectangular items, such as slabs and plates, and (ii) round items, such as hot rolling and cold rolling

coils. In Figure 3.2, different layouts are shown, depending on whether the yard is devoted to the

stacking of slabs or coils. It is possible to notice that while the slabs are vertically stacked, the coils

form inclined stacks, in which each coil is positioned between two coils of the lower level.

As in the case of CS problems, different optimization problems can be defined to deal with

the loading, unloading and pre-marshalling of the stacked elements.

46

In the loading problems, the slabs arrive in a pre-storage area in a certain order, and their future

retrieval sequence is already known. Hence, the problem consists of defining a storage plan (i.e.,

assigning the optimal positions in the stacks), in order to minimise the total number of shuffles that

will be necessary for the future retrievals (Ko, 2007; Ko et al., 2007; Kim et al., 2011).

In Figure 3.3, a set of slabs is represented, with the indication of their arrival time x and their leaving

time y. In Figure 3.3(a), slabs are stacked in the pre-storage area according to their arrival time. In

contrast, Figures 3.3 (b) and (c) show two different possible assignments of the slabs in the storage

area, that will respectively generate 7 and 4 shuffles during the future retrieval process. Hence the

last configuration represents a better storage plan to minimise the total number of shuffles.

In the Coil Shuffling problem, the coils are stacked in the so-called "inclined stack" (Figure 3.4) and

the objective is to minimise the number of shuffles necessary for the retrievals (Tang et al.,2012).

Figure 3.2 - (a) Layout of a slab yard (b) Layout of a coil yard (Tang et al.,2012)

Figure 3.3 – An example of slab stacking problem: (a) arrival slabs, (b) stacking causing 7 shuffles

 and (c) stacking causing 4 shuffles (Kim et al, 2011)

47

Figure 3.4 – Coils inclined stacks

3.2 The Slab Stack Shuffling problem

3.2.1 Problem introduction

The Slab Stack Shuffling (SSS) problem belongs to the category of Stacking problems and,

specifically, to the sub-class of Steel Stacking unloading problems.

To introduce this problem, let consider a storage area containing a set of slabs, with different

characteristics, in terms of size (i.e., length, width, and thickness), steel degree, etc. An item identifies

univocally a typology of slabs, i.e., a combination of given characteristics.

Such slabs are stored in a yard, divided into spans and pitches, as shown in Figure 3.5. Each pitch is

devoted to hosting a stack. Different layouts can be selected to organize the slabs in stacks: for

example, the slabs belonging to the same item typology can be stacked all together or in different

stacks, mixed with other slab typologies. In Figure 3.6, we show a first case (Figure 3.6(a)), in which

the slabs are organized in dedicated stacks, and a second case (Figure 3.6(b)), in which they are

randomly mixed.

An order lists the items and the related quantities, requested by a customer or by a

production/assembly workstation, in the case of a distribution centre or a production warehouse,

respectively. The order picking is the process of retrieving the slabs from the yard to satisfy the

requests contained in the order. As each stack can be accessed only from its topmost slab, it is easy

to understand that, if a slab below has to be retrieved, it is needed to shift all the slabs above the target

slab to satisfy the order. With the term, shuffle is intended the temporary or permanent shift of the

single element stacked above the target slab.

48

Figure 3.5 – An example of slab yard: spans and pitches

(a)

(b)

Figure 3.6 – Dedicated Stacks (a), Random Stacks (b)

These operations are very time-consuming and may significantly impact the efficiency of the whole

process. Once a target slab is identified, the crane, necessary to retrieve the slabs, must be moved

along the span and placed precisely on the stack where the target slab is located (Figure 3.7). Once

the crane approaches the stack, an operator adjusts the retractable magnets according to the slabs'

length and activates them, by regulating their intensity according to the weight to lift and his own

experience (Figure 3.8). Then, the top-most slab is lifted and shifted, temporary or permanently, on

another stack (Figure 3.9). This operation repeats as many times as the number of slabs above the

target one. Once reached, this latter is lifted and transported to the delivery point, usually located at

the far end of the span.

49

Figure 3.7 – Crane approaching the stack

Figure 3.8 – Magnets positioning and activation

Figure 3.9 – Slab lifting

50

All these operations are very time-consuming and strongly influenced by the adopted stacking

method. Indeed, if the slabs of different items are stored in dedicated stacks, the picking times tend

to be minimized; but, at the same time, such a layout requires a high number of pitches and a vast

storage area. On the contrary, mixing slabs of different item typologies in the same stacks would

allow minimizing the occupied storage area but, at the same time, it implies higher retrieval times.

In this case, an unwarranted choice of the slabs to retrieve may produce significant delays in the

subsequent process; hence, the retrieval process needs to be optimized.

The Slab Stack Shuffling (SSS) problem is defined in literature as the problem of choosing

appropriate slabs to retrieve from a stack to satisfy an order or a group of orders to minimise shuffles

during the retrieval process.

3.2.2 The SSS problem and the other Stacking problems

The SSS problem presents many similarities and differences with the other Stacking problems

above introduced.

First of all, it is necessary to highlight that it belongs to the class of the unloading problems;

hence, it assumes that the stored products have been stacked, with no indication on the future

picking orders. This assumption represents the main difference with the loading problems,

where the positioning of the incoming products is optimized based on the a priori knowledge

of the future retrieval orders.

Also, within the same class of unloading problems, significant differences emerge between the

SSS and the other problems. In the case of CS problems, the first difference regards the number

of elements in the same stack. In the container problems, generally, almost four tiers are reached

(Kim et al., 2000), while in the SSS context, the number of slabs stored in the same stack can

exceed the hundreds (see Figure 3.10). Moreover, the characteristics of the retrieval orders are

completely different. In the unloading CS problems, an order is composed of a list of specific

containers to be picked-up; hence, only the optimal sequence in which they have to be retrieved

has to be defined. Instead, in the SSS problems, the order lists the items typologies to be

retrieved with the associated quantities (Lehnfeld & Knust, 2014). Thus, for each retrieval, it

needs also to select the best slabs among those belonging to the same required item.

In the case of SS, the coil unloading problems present peculiar characteristics due to the

managed elements. Indeed, the coils can be stored only in inclined stacks, made up of two levels

(Figure 3.11). Specifically, each element on the upper level has to be placed among two coils

of the lower level (triangular correlation). Due to such a storage method, in a coil shuffling

problem, the retrieval of a target coil requires a maximum of two shuffles. Indeed, the worst

case is represented by the retrieval of a coil positioned at the lower level; for example, the one

51

depicted in green in Figure 3.11. In this case, two shuffles are required to remove the coils

above it; the one in the same stack and the other positioned in the adjacent one. This implies

that the mathematical models that deal with the coil shuffling problem and their solution

methods are not applicable to the case of SSS.

Due to its peculiar characteristics, the contributions devoted to the SSS problem represent a

separate body of literature and need to be deeply analysed to provide a state of the art. This

analysis could help to understand which variants of the problem have been explored and which

gaps exist in the reference literature.

Figure 3.10 – Example of a Container Stack (a) and a Slabs Stack (b)

Figure 3.11 – Coil Stack

52

3.3 The framework

3.3.1 General notation

To better describe the properties and the characteristics of the process above introduced and to

formalize the SSS problem, it is useful to introduce a formal notation.

Notation:

Basic Elements

𝐽 = {1, … , 𝑛} set of slabs, indexed by 𝑗;

𝐼 = {1, … , 𝑚} set of items, indexed by 𝑖;

𝐹 = {1, … , 𝑝} set of stacks, indexed by 𝑓;

H = {1, … , 𝑎} set of spans, indexed by ℎ;

𝐴𝑗 span where the stack 𝑗 is located;

𝐽𝑖 ⊂ 𝐽 subset of slabs belonging to item 𝑖 (⋃ 𝐽𝑖𝑖∈𝐼 = 𝐽; 𝐽𝑖 ∩ 𝐽𝑘 = ∅, ∀𝑖, 𝑘 ∈ 𝐼);

Layout Characteristics

𝐼𝑓 ⊆ 𝐼 subset of items that can be hosted in a given stack 𝑓;

𝐹𝑖 ⊆ 𝐹 subset of items that may host item 𝑖;

𝑝𝑗 stack in which the slab 𝑗 is located;

𝑝0 fictitious stack, indicating the point where target slabs have to be delivered;

𝐷𝑗 initial number of slabs positioned above the slab 𝑗;

Order Characteristics

𝑞𝑖 number of requested slabs of item 𝑖;

𝑞̅ = ∑ 𝑞𝑖

𝑖∈ 𝐼

 number of retrievals;

𝐽 ̅ = ⋃ 𝐽𝑖

𝑖: 𝑞𝑖>0

⊂ 𝐽 subset of candidate slabs to fulfil the order;

Time parameters

𝑡0 time to lift up and lower down a slab;

𝑡𝑝 unit time to transfer the single target slab to the delivery point;

𝑡𝑓𝑓′ unit time to transfer a slab from the top of stack 𝑓 to the top of the stack 𝑓′;

Further parameters

𝑑𝑗 deadline of the slab 𝑗;

𝑙𝑖 deadline for the fulfilment of the request of item 𝑖 in the order;

53

3.3.2 Framework definition

The Slab Stack Shuffling (SSS) problems may present different characteristics, according to the

elements and the assumption considered in the problem setting, the application contexts, etc.

In order to support the study of the literature and to identify the variants of the problems that have

been neglected so far, in this section we propose a theoretical framework, that systematize all the

possible elements, that may characterize the problem (Imenda, 2014).

The proposed framework is based on the following elements:

1. order typologies;

2. shuffle definition;

3. layout characteristics;

4. objective function;

5. deadline constraints.

In the following, the single elements are deeply discussed and analysed

1. Order typologies

In general, an order is a list of items whose slabs need to be picked up to be sent to the next production

process, i.e. the hot rolling, the slab cutting, the delivery to a new plant or to the shipyard, etc.

The orders may be classified into:

• Item or Family orders;

• Single or Multiple orders;

• Sorted or Not-sorted orders.

Item or Family orders

The order lists a set of items to be retrieved with the associated quantities. If hard constraints related

to the characteristics of the requested item exist, we talk about item order. In this case, only the slabs

belonging to the requested item may contribute to the order fulfilment. Instead, we refer to order

family if a set of different items may satisfy the technical requirements of a given order (i.e., width,

steel-grade, weight). In this case, all those items meeting such requirements are included in the same

family, and all the associated slabs may fulfil the order.

Single or Multiple orders

This classification refers to the possibility for an item to be present in the order more than one time.

In the single orders, each item can be present only one time in the list (𝑞𝑖 ≤ 1, ∀ 𝑖 ∈ 𝐼), while in the

multiple order, it may be present more than one time (∃ 𝑖 ∈ I: 𝑞𝑖 ≥ 2). In both cases, the feasible

condition for the problem is represented by the presence of candidate slabs at least equal to the slabs

requested in the order (|𝐽𝑖| ≥ 𝑞𝑖, ∀ 𝑖 ∈ I).

Sorted or Not Sorted orders

54

The third classification distinguishes between the Sorted and Not sorted orders. In the first case, the

slabs need to be retrieved according to a pre-defined sequence. For example, the sorted list {1,4,3,1}

indicated that it is needed to retrieve first the item 1, than the items 4 and 3, and finally a slab of the

item 1 again. This could reflect constraints related to the transportation (track loading and unloading)

or the schedule of subsequent processes. In the case of not-sorted orders, it is possible the slabs of

any requested item at any moment of the retrieval process. In this case, the order is represented by a

not sorted list, in which each item is characterized by the requested quantity.

Of course, in the case of sorted orders the SSS problem is much more constrained and solution space

more limited.

2. Shuffling method

The definition of the shuffling method is fundamental to describe the SSS problem. It is worth

recalling that the term shuffle refers to the temporary or permanent shift of the single elements stacked

above the target slab.

The first aspect to be defined relates to the position where the slabs may be shifted, once the target

slab is retrieved. If they are constrained to be put onto the initial stack, the shuffling process follows

a repositioning mechanism. Alternatively, if they can be relocated onto a different stack, we talk about

shuffles without repositioning.

In the first case, we need to introduce a further sub-classification, based on the moment in which the

repositioning occurs. The shifted slabs can be repositioned after every single retrieval (not-

consecutive repositioning) or when all the retrievals from the same stack are completed (consecutive

repositioning).

Instead, in the second case, a different sub-classification needs to be introduced, based on the criteria

used to select the destination stack. A first option is represented by the stacks that have no target slabs

and, hence, will not be visited during the retrieval process. In this case, the shifted slabs play the role

of barrier only one time during the whole retrieval process (one-time barrier). Alternatively, shifted

slabs may be moved toward any stack. In this case, they might play more than one time the role of

barriers and be shuffled again (multiple-times barrier).

3. Layout characteristics

As introduced above, the slabs can be organized in stacks according to different criteria. For example,

the slabs belonging to the same item typology can be stacked all together or in different stacks, mixed

with other slab typologies. In order to better describe the layout adopted in the storage area, we first

distinguish among dedicated and random stacks. In the first case, slabs of a given item can be located

only in correspondence of specific stacks and such stacks can host only slabs of that item. In the

second case, slabs of a given item can be located in different stacks, mixed with other typologies.

55

In order to identify the single layouts, we introduce the following symbol:

𝒎|𝒏 where 𝑚 indicates the number of stacks in which the slabs of the same item are stored,

and 𝑛 the number of items typologies contained in the same stack.

The layout 𝟏|𝟏 refers to a situation in which the slabs of each given item are hosted in a single stack

and this stack host only the slabs associated to that item (Figure 3.12 (a)). In this case, the following

conditions hold:

|𝐹𝑖| = 1 ∀ 𝑖 ∈ 𝐼

|𝐼𝑓| = 1 ∀ 𝑓 ∈ 𝐹

The layout 𝒎|𝟏 refers to the condition in which slabs of a given item are hosted in 𝑚 different stacks,

and these stacks host only that item (Figure 3.12 (b)). In this case, the following conditions hold:

|𝐹𝑖| = 𝑚 ∀ 𝑖 ∈ 𝐼

|𝐼𝑓| = 1 ∀ 𝑓 ∈ 𝐹

The layout 𝟏|𝒏 refers to the condition in which slabs of each given item are hosted in a single stack,

but this stack hosts 𝑛 different items (Figure 3.12 (c)):

|𝐹𝑖| = 1 ∀ 𝑖 ∈ 𝐼

|𝐼𝑓| = 𝑛 ∀𝑓 ∈ 𝐹

The layout m|𝒏 refers to the condition in which slabs of each given item may be hosted in 𝒎 different

stacks, each of which may host slabs of 𝑛 different items (Figure 3.12 (d)):

|𝐹𝑖| = 𝑚 ∀ 𝑖 ∈ 𝐼

|𝐼𝑓| = 𝑛 ∀𝑓 ∈ 𝐹

The random case refers to the condition in which any slab could be hosted by any stacks and any

stacks could host slabs of any item:

𝐹𝑖 = 𝐹 ∀ 𝑖 ∈ 𝐼

𝐼𝑓 = 𝐼 ∀ 𝑓 ∈ 𝐹

Figure 3.12 – Example of dedicated layout

(a) Layout 1|1 (b) Layout 2|1

(c) Layout 1|3 (d) Layout 2|3

(a) Layout 1|1 (b) Layout 2|1

(c) Layout 1|3 (d) Layout 2|3

(a) Layout 1|1 (b) Layout 2|1

(c) Layout 1|3 (d) Layout 2|3

(a) Layout 1|1 (b) Layout 2|1

(c) Layout 1|3 (d) Layout 2|3

56

4. Deadline constraints

As shown in the previous chapters, the slabs may present a temporary certification quality. These

certifications, released by classification companies, have a fixed duration; hence, they cannot be used

beyond such deadlines. In order to take into account such aspects, constraints related to the

impossibility of using slabs with expired certifications could be integrated in the problem (slab

deadline). Moreover, the deadline may also refer to the picking operations and it may indicates a term

within which the retrieval to satisfy the request of a given item has to be completed (order deadline).

5. Objective Function

In the SSS, the main elements that could be considered in the objective function are:

• the number of shuffles;

• the retrieval time;

• the expired slabs;

• the spans’ workload balance;

Number of shuffles

In each different version of the shuffle, the number of shuffles often plays a central role, being the

most time-consuming operation in the whole retrieval process. The SSS models have been developed

around the different ways to consider the shuffles, according to the different cases of study proposed

in the literature. This term, often, is the only term that is considered to evaluate the process, and it is

always present in each proposed model, even with other objectives pursued at the same time.

Retrieval time

The retrieval time is usually composed of three terms:

• the lifting time, representing the time required to lifting up and lowering down a slab. It can

be considered as the product between the number of shuffles and a parameter 𝒕∗, representing

the unit time needed for each operation.

• the shuffle time, representing the time needed to move the slabs between different stacks. It

depends on the stack from which the slabs depart (origin) and the one to which they are moved

(destination). For each couple of stacks 𝒇and 𝒇′, such time parameters 𝒕𝒇𝒇′ can be considered

proportional to the distance between the two stacks and the average crane speed.

• the delivery time, representing the time to move any target slab from the its departing stack

𝒇to the delivery point.

Expired slabs

If the slabs are characterized by given deadlines, the decision maker could also aim to reduce the total

number of expired slabs at the end of the retrieval process, as a proxy of the quality of the warehouse.

Spans’ workload balance

57

In some contexts, it could be necessary to balance the workload assigned to each span and, hence, to

each crane. Usually, this balance is obtained by regulating the relative number of slabs retrieved from

each span.

The elements of the framework above introduce are summarized in Table 3.2.

Order typologies

Item order Family order

Single order Multiple order

Sorted order Not-sorted

Shuffling method With Repositioning Without repositioning

Consecutive Not-consecutive One-time barrier Multiple barrier

Layout characteristics
Dedicated Random

1|1 1|𝑛 𝑚|1 𝑚|𝑛

Deadline constraints Slab deadline
Order deadline

Objective function

Number of shuffles (to be minimized)

Retrieval time (to be minimized)

Expired slabs (to be minimized)

Span workload (to be balanced)

Table 3.2 – The framework

 3.4 The state of the art

Most of the contributions devoted to the SSS problem refer to the steel industry. In this context, a

slab yard functions as a storage buffer between the continuous casting and the steel rolling.. Slabs

need to be picked up from the slab yard according to a so-called rolling schedule, that represents the

retrieval order.

The seminal paper on the SSS problem is by Tang et al. (2001), that has then inspired the works by

Tang et al. (2002) and Singh et al. (2004). All these works analysed the SSS problem by referring to

the hot rolling mill at the Baoshan steel plant in Shanghai.

In order to formulate a mathematical model, the authors adopted the same assumptions:

• slabs must be retrieved from the yard one by one following the sequence expressed in the rolling

order (sorted order);

• for each item of the work order, there is a single type of slab that meets its requirements (item

order);

• the set of slabs that meets the 𝒊-th request of the order is different from the one that meets the

requirements for the 𝒌-th request (for any 𝒊 ≠ 𝒌). Therefore, the possibility that the same item is

required twice or more in a work order is excluded (single order);

• if the target slab is not on the top of a stack, the slabs above it must be temporarily moved to allow

the target slab to be retrieved and then repositioned in their original order (repositioning

mechanism);

58

• a shuffle is intended as the shift and consequent repositioning of a given slab.

In order to formulate the model, we may refer to the above notation and to the following groups of

decision variables:

𝑥𝑖𝑗 binary variable equal to 1 if and only if slab 𝑗 ∈ 𝐽 is retrieved to satisfy the

request of item 𝑖 ∈ 𝐼;

𝑆𝑖𝑗 positive integer variable, representing the number of shuffles necessary

to retrieve the slab 𝑗 for the request i;

Hence, the model can be formulated as follows:

∑ ∑ 𝑆𝑖𝑗𝑥𝑖𝑗𝑗∈𝐽𝑖

𝑚
𝑖=1 𝑀𝑖𝑛! (1)

subject to

𝑆𝑖𝑗 = 𝐷𝑗 − ∑ ∑ min (1, max(𝐷𝑗 − 𝐷𝑘 , 0))𝑟∈{ℎ|𝑝ℎ= 𝑝𝑗}
𝑖−1
𝑘=1 𝑥𝑠𝑟 ∀ 𝑗 ∈ 𝐽𝑖 , 𝑖 ∈ [1, 𝑚] (2)

∑ 𝑥𝑖𝑗 =𝑗∈ 𝐽𝑖
1 ∀ 𝑖 ∈ 𝐼 (3)

𝑥𝑖𝑗 = 0/1 ∀ 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼 (4)

The objective function (1) aims at minimizing the sum of the shuffles needed to retrieve the slabs 𝑗 ∈

𝐽 for the requests of the items 𝑖 ∈ 𝐼 included in the order. The constraint (2) evaluates the shuffles to

retrieve the slab 𝑗 ∈ 𝐽 in order to assign it to the 𝑖-th item, as the difference between the initial number

of slabs above j (𝐷𝑗) and the slabs initially positioned above 𝑗 that have been retrieved to satisfy any

item k before the item i (∑ ∑ min (1, max(𝐷𝑗 − 𝐷𝑘, 0))𝑟∈{ℎ|𝑝ℎ= 𝑝𝑗}
𝑖−1
𝑘=1 𝑥𝑠𝑟). The group of constraint

(3) ensure that each slab j can be assigned at most to one item. Finally, the constraints (4) define the

binary nature of the decision variable 𝑥𝑖𝑗.

The developed model is in a non-linear model; for this reason, the three works proposed an heuristics

approach to solve it. Even if the assumptions behind the models are the same, the proposed solution

approaches are different. Tang et al. (2001) proposed a two-step heuristic algorithm, in which an

initial solution is generated and, then, improved through a local search. Tang et al. (2002) proposed

a modified genetic algorithm, in which the population and genetic operators are designed ad hoc to

solve the problem. In particular, a change was made in the crossover operation, and a local search

operation was added in some iterations. A comparison of the two approaches, applied to the same

instances of the problem, showed that the modified genetic algorithm always produces better

solutions. Singh et al. (2004) developed an improved parallel genetic algorithm to overcome the

problem of a premature convergence of the conventional genetic algorithm. By solving the same test

instances, it emerged that the parallel genetic algorithm produces an improvement of the solutions,

almost equal to 6%.

59

Fernandes et al. (2012) studied the SSS problem, by modifying the assumptions made by Tang et al.

(2001), Tang et al. (2002), Singh et al. (2004). Indeed, the authors allowed the same item to be

requested several times in each order (multiple orders).

With reference to the above notation, the model by Ferandes et al. (2012) can be formulated as

follows:

𝑅 − 𝑇 𝑀𝑖𝑛! (5)

subject to

∑ 𝑥𝑖𝑗 ≤𝑖∈ 𝐼 1 ∀ 𝑗 ∈ 𝐽𝑖 (6)

𝑥𝑖𝑗 = 0/1 ∀ 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼 (7)

where the two terms of the objective function can be expressed as reported below:

𝑅 = ∑ ∑ 𝐷𝑗∈𝐽𝑖

𝑚
𝑖=1 𝑗

𝑥𝑖𝑗 (8)

𝑇 = ∑ ∑ ∑ ∑ 𝑥𝑖𝑗𝑥𝑘𝑟𝑟∈{𝑠:|𝐷𝑗≥ 𝐷𝑠 and 𝑝𝑗= 𝑝𝑠

𝑖−1
𝑘=1𝑗∈𝐽𝑖

𝑚
𝑖=2 ∀ 𝑖 ∈ 𝐼 (9)

The objective function (5) aims at minimizing the number of shuffles during the retrieval process,

given by the difference between the dependent variables 𝑅 and 𝑇, defined by the relation (8) and (9),

respectively. Specifically, the equation (8) represents the sum of slabs initially above each slab j

chosen to satisfy the request of item 𝑖. On the contrary the equation (9) represents the sum of the slabs

initially stacked above each retrieved slab 𝑗, but previously retrieved to satisfy an item k < i. The

group of constraints (6) ensures that a slab j can be unused or retrieved to satisfy one and only one

item i. In the end the constraints (7) define the binary nature of the variable 𝑥𝑖𝑗.

The non-linear model (5-9) is than linearized considering the following group of decision variables:

𝑤𝑖𝑗𝑘𝑚 binary variable equal to one if and only if the slab 𝑗 and 𝑚 ∈ 𝐽 are selected

for the retrieval of item 𝑖 and 𝑘 ∈ 𝐼, respectively;

and adding the following groups of constraints:

𝑤𝑖𝑗𝑘𝑚 ≤ 𝑥𝑖𝑗 ∀ 𝑗, 𝑚 ∈ 𝐽 ∀ 𝑖, 𝑘 ∈ 𝐼 (10)

𝑤𝑖𝑗𝑘𝑚 ≤ 𝑥𝑘𝑚 ∀ 𝑗, 𝑚 ∈ 𝐽 ∀ 𝑖, 𝑘 ∈ 𝐼 (11)

𝑤𝑖𝑗𝑘𝑚 ≤ 𝑥𝑖𝑗 + 𝑥𝑘𝑚 − 1 ∀ 𝑗, 𝑚 ∈ 𝐽 ∀ 𝑖, 𝑘 ∈ 𝐼 (12)

These constraints ensure that the variable 𝑤𝑖𝑗𝑘𝑚 is equal to 1 only when both the variables 𝑥𝑖𝑗 and

 𝑥𝑘𝑚 are equal to 1.

The authors compared the model results with a constructive heuristic, showing that as the problem's

complexity increases, the model's results are always better in terms of the number of slabs shuffled

and performed in good computing time.

Later, Tang and Ren (2010) reformulated the SSS problem considering several new features, that are

summarized in the following:

60

• the concept of order family is introduced, indicating a set of slabs belonging to items with similar

characteristics, suitable to meet the same requests of an order;

• the types of slabs required in succession have similar characteristics in terms of thickness, width

and steel grade to minimise the number of required rollers’ changes;

• the slabs above the target ones have not to be repositioned in the initial positions. They should be

placed as close as possible to their original stack to reduce the distance covered by the magnetic

crane. The authors assume that there are always enough places to put the shuffled slabs in the

adjacent stacks;

• once moved to a nearby stack, a shuffled slab will always remain on top so that it can be retrieved

in subsequent periods without further shifts;

• multiple spans are considered with dedicate cranes;

• the objective function is defined as the total retrieval time and it is given by the sum of three

contributes: the shuffling time, the lifting time and the time to deliver the target slabs from their

original stacks to a fictitious stack, representing the delivery point of each span.

• a deadline is introduced to indicate that an item has to be retrieved within a given time to satisfy

the order. This condition takes into account the limited capacity of the cranes and tends to balance

the workload among them. Indeed, a solution that minimizes the shuffles could produce an

unbalanced workload, concentrated in a single span. Deadline constraints avoid that such

congestion produces significant delays in the retrieval process.

In order to introduce the model, the following additional decision variables have to be introduced:

𝑦𝑖 positive integer variable, representing the span of the slab j

assigned to item 𝑖;

𝑇𝑖𝑗 positive integer variable, representing the retrieval time to

assign slab 𝑗 to the 𝑖-th item of the sequence;

𝑆𝑖𝑗
′ positive integer variable, representing the number of shuffles

necessary to assign the slab 𝑗 to the item 𝑖, requested in the

order.

Considering the above notation, the model can be formulated as follows:

∑ ∑ 𝑇𝑖𝑗𝑥𝑖𝑗𝑗∈𝐽𝑖

𝑚
𝑖=1 𝑀𝑖𝑛! (13)

s.t.

∑ 𝑥𝑖𝑗 =𝑗∈ 𝐽𝑖
1 ∀ 𝑖 ∈ 𝐼 (14)

∑ 𝑥𝑖𝑗 ≤𝑖∈ 𝐼 1 ∀ 𝑗 ∈ 𝐽𝑖 (15)

𝑆𝑖𝑗
′ = max (𝐷𝑗 − max (𝑥𝑘𝑟(𝑆𝑘𝑟

′ + 1)|𝑟 ∈ {𝑠: |𝑝𝑗 = 𝑝𝑠}, 𝑘 ∈ [1, 𝑖]; 0) ∀ 𝑗 ∈ 𝐽𝑖 , 𝑖 ∈ [1, 𝑚] (16)

61

where:

As mentioned, the objective function (13) aims at minimizing the whole retrieval time, given by the

sum of three contributes (20). The first regards the above introduced delivery time , i.e. the time to

move the crane from the delivery point 𝑝0 to the stack of the slab j and back to the delivery point

(2𝑡𝑝(𝑝𝑗 − 𝑝0)); the second term represents a simplified version of the shuffle time, in which the stack

of origin (f) and of destination (𝑓′) are not considered and a fixed time 𝑡𝑠 is considered for each

shuffle; finally, the third term 𝑡0 considers the lifting time, i.e. the time required to lifting up and

lowering down a slab, only related to the retrieved slab. The groups of constraint (14) and (15) ensure

that each slab 𝑗 can be assigned at most to one item 𝑖 and that a slab 𝑗 can be retrieved to satisfy one

and only one item i respectively. Constraints (16) evaluate the shuffle to retrieve a slab j in order to

satisfy the 𝑖-th item of the order. According to the proposed equation, this value is null if any slab

positioned above the slab j has been retrieved to satisfy the request of any item k before i. Otherwise,

it is equal to the difference between the number of slabs initially above the slab j (𝐷𝑗) and those that

have been already retrieved to satisfy the request of any item 𝑘 before 𝑖 (max (𝑥𝑘𝑟(𝑆𝑘𝑟
′ + 1)|𝑟 ∈

{𝑠: |𝑝𝑗 = 𝑝𝑠}). Constraints (17) evaluate, for each item 𝑖, the span from which the target slab is

retrieved (𝑦𝑖). This evaluation is performed to allow the group of constraints (18) to impose that each

item’s delivery deadline 𝑙𝑖 is respected. Indeed, the first term of these constraints

(∑ ∑ 𝑇𝑘𝑟𝑥𝑘𝑟𝑗∈𝐽𝑖, 𝐴𝑗=𝑦𝑖
𝑖
𝑘=1) correspond to the retrieval time spent in the span 𝑦𝑖to satisfy all the items

before i.

The proposed model is non-linear and very complex to solve; hence, the authors proposed a heuristics

algorithm based on segmented dynamic programming. This algorithm consists of dividing the

original problem into several consecutive segments to form a series of subproblems that can be solved

with a dynamic programming approach. The union of the solutions of the individual segments returns

a solution to the starting problem. Since the partitioning strategy may cause the overall optimal to be

lost, two improvement strategies are proposed. The application to real-scale instances has shown that

the heuristic is very effective and efficient. It reduces the overall workload of a crane by about 11%

on average.

𝑦𝑖 = ∑ 𝐴𝑗𝑥𝑖𝑗𝑗∈ 𝐽𝑖
 ∀ 𝑖 ∈ 𝐼 (17)

∑ ∑ 𝑇𝑘𝑟𝑥𝑘𝑟𝑗∈𝐽𝑖, 𝐴𝑗=𝑦𝑖
𝑖
𝑘=1 ≤ 𝑙𝑖 ∀ 𝑖 ∈ 𝐼 (18)

𝑥𝑖𝑗 = 0/1 ∀ 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼 (19)

𝑇𝑖𝑗 = 2𝑡𝑝(𝑝𝑗 − 𝑝0) + 𝑡𝑠𝑆𝑖𝑗
′ + 𝑡0 (20)

62

A last contribute to mention is Cheng and Tang (2010). The authors studied an original version of the

SSS:

• the concept of work order with the concept of order sequence. Each order sequence has an

associated weight, and it is necessary to choose a slab from the yard that meet its technological

requirements (thickness, steel grade and weight) to fulfil each order;

• target slabs belonging to the same stack are always retrieved in a descending order to minimise

the shifts;

• the concept of slab family is replaced by the concept of order family, intended as a set of slabs

belonging to a larger group of items that meets the technological requirements (thickness, degree

of steel and weight) of the same order. Since generally, the elements of an order family are more

numerous than those of a slab family, there is a wider choice of slabs to select to satisfy an order,

leading to a greater chance of reaching solutions with fewer shuffles;

• after each retrieval, the shuffled slabs do not have to be repositioned in the previous position; the

authors assume that there are enough stacks to allow the shuffled slabs to be placed where there

are no other potential target slabs. Therefore, each slab is moved only once during the entire

retrieval process (no repositioning mechanism, single barrier slabs).

• the yard is split into two sub-yards and the workload balance between them is optimized.

In order to introduce the model, further parameters need to be introduced:

𝑊𝑖 total weight of the ith order

𝑤𝑗 weight of the slab j;

The model is formulated as follow:

𝑘1 ∑ ∑ 𝑆𝑖𝑗𝑥𝑖𝑗
𝑛

𝑗=1

𝑚

𝑖=1
+ 𝑘2

∑ ∑ 𝑆𝑖𝑗𝑥𝑖𝑗 𝑛
𝑗=1

𝑚
𝑖=1

∑ ∑ 𝑥𝑖𝑗𝑤𝑗
𝑛
𝑗=1

𝑚
𝑖=1

+ 𝑘3
|𝑁1 − 𝑁2|

𝑁1 + 𝑁2 + 1

+ 𝑘4 ∑ (𝑊𝑖 − ∑ 𝑥𝑖𝑗𝑤𝑗)
𝑛

𝑗=1

𝑚

𝑖=1
 𝑀𝑖𝑛!

 (21)

subject to

𝑆𝑖𝑗 = 𝐷𝑗 − max (𝑥𝑘𝑟(𝐷𝑟 + 1)|𝑟 ∈ {𝑠: |𝑝𝑗 = 𝑝𝑠, 𝐷𝑠 < 𝐷𝑗 }, 𝑘 ∈ 𝐼); ∀ 𝑗 ∈ 𝐽𝑖 , 𝑖 ∈ 𝐼 (22)

 𝑁ℎ = ∑ ∑ 𝑆𝑖𝑗𝑥𝑖𝑗 𝑎
𝑗∈{𝑟|𝐴𝑟=ℎ}

𝑚
𝑖=1 ∀ ℎ ∈ H = {1,2} (23)

∑ 𝑥𝑖𝑗 =𝑗∈ 𝐽𝑖
1 ∀ 𝑖 ∈ 𝐼 (24)

∑ 𝑥𝑖𝑗𝑤𝑗 ≤𝑖∈ 𝐼 𝑊𝑖 ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (25)

𝑥𝑖𝑗 = 0 ∀ 𝑗 ∈ {𝑟 ∩ 𝐽𝑖 = ∅, 𝑖 ∈ 𝐼} (26)

𝑥𝑖𝑗 = 0/1 ∀ 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼 (27)

63

The objective function (21) aims at the minimizing the sum of four terms, weighted according to the

parameters (𝑘1, 𝑘2, 𝑘3, 𝑘4) . The first represents the sum of the shuffles necessary to retrieve each slab

j assigned to the ith order (𝑘1 ∑ ∑ 𝑆𝑖𝑗𝑥𝑖𝑗 𝑛
𝑗=1

𝑚
𝑖=1). The second one denotes the average shuffles per unit

weight, and it is given by the ratio between the sum of the shuffles necessary to retrieve the slabs to

satisfy any order (∑ ∑ 𝑆𝑖𝑗𝑥𝑖𝑗 𝑛
𝑗=1

𝑚
𝑖=1) and the sum of the weights of all the retrieved slabs

(∑ ∑ 𝑥𝑖𝑗𝑤𝑗
𝑛
𝑗=1

𝑚
𝑖=1). The third term (𝑘3

|𝑁1−𝑁2|

𝑁1+𝑁2+1
) measures the differences of shuffles between two

spans, being 𝑁ℎ the number of shuffles occurred in each span h. Finally, the last term

(𝑘4 ∑ (𝑊𝑖 − ∑ 𝑥𝑖𝑗𝑤𝑗)𝑛
𝑗=1

𝑚
𝑖=1) considers the differences between the total weight of each order and

the total weight of the slab assigned to it. In this model the number of shuffles necessary to retrieve a

slab j for the order i is evaluated by the equation (22). According to this latter, the number of shuffles

to retrieve a slab j to satisfy the order i is given by the difference between the initial number of slabs

above j and the initial number of slabs (plus 1) of the lowest slab k retrieved that initially was

positioned above the slab j. Constraints (24) ensure that to each order i is assigned one and only one

slab j. On the contrary the group of constraints (25) ensures that the slab j retrieved for each order i

won’t exceed the weight associated to this order. The constraints (26) control that a slab that do not

verifies the technological requirements of the order i, are not assigned to this latter. In the end the

constraints (27) regulate the binary nature of the variables.

Due to the complexity of the model, the authors proposed a scatter search algorithm to solve the

problem, and the results show that the shifts decrease by 36.9% compared to the manual program.

As shown, even if the context of development of all the analysed works is the same, many different

models adapt with their specific goal to address and characteristics have been proposed in literature.

Hence, it is necessary to highlight the elements that distinguish the various problems through the

definition of a framework that systemises all the possible characteristics of the problem to bring out

the literature gaps and give a contribute to the extension of the SSS problem’s field.

3.5 Classification of existing contributions and research gaps

The Slab Stack Shuffling (SSS) aims at choosing appropriate slabs to retrieve from a set of stacks, to

satisfy an order or a set of orders and to optimize given objectives.

The analysis of the literature revealed that different variants of the SSS problem have been

investigated but, also, that some of the possible declinations have been neglected. To give a clear

picture of what relevant studies have been found and identify which elements have been neglected,

we refer to the framework introduced in section 3.3. We recall that it is based on five different

characteristics: order typologies, shuffling method, layout characteristics; objective function;

deadline constraints.

64

In Table 3.3, we classify the papers analysed in the previous section, by referring to the introduced

framework. Such classification provides interesting indications for scholars that intend to investigate

the topic. It is possible to notice that all the analysed papers consider random stacks. This is probably

due to the fact that they focus on the case of steel production plants, where slabs, from continuous

casting, need to be stored, waiting to undergo the next rolling phase. At this level of the supply chain,

the number of items is not particularly high. Hence there is no need to create dedicated stacks.

Dedicated layouts make much more sense within yards that serve cutting/assembly centres, where a

wider range of slabs typologies are available. The fact that the SSS problem with dedicated stacks

has never been addressed in the literature is the first gap we intend to fill.

Another interesting feature concerns the shuffling method. When the repositioning method is adopted,

only the not-consecutive approach has been considered. In this case, any shuffled slab is repositioned

on the previous stack after each retrieval. In the real case, it is much more realistic to consider that

the shuffled slabs are repositioned only after that all the retrievals from the same stack are completed.

This assumption certainly adds further complexity to the problem but is very important because of

two reasons. First, it could allow obtaining better solutions and, then, it better reflects realistic

management of this kind of operations.

As concerns the shuffling method without repositioning, the only contributions assume to position

the shuffled slabs on stacks that do not contain target slabs (one-time barrier). However, this

assumption seems to be quite restrictive, as enough space has to be available in the yard.

As concerns the order typology, most of the extant studies consider sorted orders. Once again, this

feature is much frequent because of the application context analysed in the considered papers. In the

steel mill, the retrieval sequence is mandatory because the production is not by batches as in the

cutting/assembly centres. It means that the elements of an order are not linked together. Hence, each

request cannot be overtaken by any other as in a cutting/assembly centre. In this latter, the elements

of a work order, usually belonging to the same batch, do not present any relative sorting because the

outputs that have to be produced should be ready all together.

A further feature on which the literature has not paid attention is the constraints on the slabs’ deadline.

Unlike in the steel industry, in the assembly phase, there is the problem of associating slabs with a

certification of quality and relative usability, that has a certain duration and therefore a deadline.

65

Tang et al.

(2001),

Tang et al.

(2002),

Singh et al.

(2004).

Tang and

Ren (2010)

Cheng and

Tang (2010)

Ferandes et

al. (2012)

Order

 Item order X X X

 Family order X

 Single order X X X

 Multiple order X

 Sorted order X X X

 Not-sorted X

Shuffling

method

With Repositioning
Consecutive

Not-consecutive X X

Without repositioning
One-time barrier X X

Multiple barrier

Layout

characteristics

Dedicated

1|1

1|𝑛

𝑚|1

𝑚|𝑛

Random Random X X X X

Deadline constraints
Slab deadline

Order deadline X

Objective function

Number of shuffles (to be minimized) X X X

Retrieval time (to be minimized) X

Expired slabs (to be minimized)

Span workload (to be balanced) X

Table 3.3 – Papers classification

66

3.6 Conclusions

In this chapter, we introduced the Stacking problems and, in particular, the Slab Stack Shuffling

(SSS) problem, which consists of selecting the appropriate slabs to retrieve from a set of stacks, to

satisfy an order or a group of orders and minimize the shuffles during the retrieval process.

The main differences between this problem and the other Stacking problems are first analysed. Then,

a literature review is conducted to deepen the models and methods proposed to tackle the problem.

Moreover, a theoretical framework has been proposed, with the aim of classifying the existing

contributions, and highlighting the main research gaps in the literature. The framework is based on

five main characteristics: order typologies, shuffling method, layout characteristics, objective

functions, deadline constraints. By positioning the analysed paper within the proposed framework,

we were able to identify new versions of the problem that could be investigated. In the next chapter,

some new models and relative heuristic approaches – able to fill a portion of the identified gaps–

will be discussed.

67

4 Models and heuristics for the Slab Stack Shuffling problem

Summary

In the previous chapter, we released a general framework able to describe various variants of the

SSS problem. In this chapter we describe and solve the version of the problem defined as dedicated

item-stack relation in which slabs and profiles are characterized by a deadline affecting priorities

about the retrieval process.

In particular, we illustrate a mathematical model able to describe some variants of the problem.

Then we show a tailored heuristic proposed to solve the problem whose performances are test on

a large set of generated instances. Finally, we briefly describe the structure of a system able to

assume the role of a Decision Support System (DSS) and embed the models and methods presented

as optimization tools.

4.1 The problem description

We assume the presence of a set of slabs, stored in preassigned stacks. Each slab is characterized

by a deadline which represents the time within which the slab has to be retrieved and used in the

production process.

We assume a fixed time horizon divided in periods. For each period an order is defined as a set of

requests, i.e. pair of information (item, quantity). Each request can be satisfied only selecting slabs

belonging to the specific requested item (item order) and each item can be requested more times

along the time horizon (multiple order). In each period requests can be selected and retrieved in

any order (not sorted order). In general, in order to retrieve a given slab, shuffle operations have

to be performed: in practice some slabs have to be removed and repositioned (shuffle with

repositioning). We also assume that if two or more requests are satisfied by selecting slabs of the

same stack, the shuffled slabs are relocated at the end of all the retrievals of the period (non-

consecutive repositioning).

We also assume that slabs of an item can be allocated to a set m given stacks (1:m) each of which

can host slab belonging to n preassigned items (1:n).

The objective function includes two terms to be minimized: the number of shuffles and the number

of expired slabs, i.e. slabs not retrieved before their own deadlines.

68

In the following, we illustrate some mathematical models able to describe different variants of the

mentioned problem. In particular we introduce a general model for the case m|n then we underline

how the model can be adapted in order to describe other versions of the problem.

4.1.1 A mathematical model for the SSS problem for the general case m|n (1:m;1:n)

In order to describe the mathematical model, we introduce the following notation:

𝐽 = {1, … , 𝑛} set of slabs, indexed by 𝑗 ;

𝐼 = {1, … , 𝑚} set of items, indexed by 𝑖 ;

𝐹 = {1, … , 𝑝} set of stacks, indexed by 𝑓;

𝑇 = { 1, … , 𝑇̅} set of order periods, indexed by 𝑡 ;

𝑞𝑖
𝑡 number of slabs of the item 𝑖 to retrieve in period 𝑡 ;

𝐽𝑖 ⊂ 𝐽 subset of slabs belonging to item 𝑖 (|𝐽𝑖| ≥ 𝑞𝑖) ;

𝐽′ subset of slabs with 𝑑𝑗 ≤ 𝑇̅ ;

𝑝𝑗 stack of the slab 𝑗;

𝐷𝑗
0 initial position of the slab j (positions are indicated from

the top (position 1) to the bottom of the stack)

𝑑𝑗 deadline of the slab 𝑗;

and the following decision variables

𝑥𝑗
𝑡 Binary variable equal to 1 if slab j is retrieved at period t,

0 otherwise;

𝑆𝑓
𝑡 Positive integer variable, representing the number of

shuffles associated to the stack f needed to satisfy requests

at period t;

The model can be then formulated as follows:

∑ ∑ 𝑆𝑓
𝑡

𝑓∈𝐹𝑡∈𝑇 + P ∑ (1 − ∑ 𝑥𝑗
𝑡𝑑𝑗

𝑡=1𝑗∈𝐽′) 𝑀𝑖𝑛! (1)

Subject to

𝑆𝑓
𝑡 ≥ 𝐷𝑗

0𝑥𝑗
𝑡 − ∑ ∑ 𝑥𝑘

𝑠
𝑘∈𝐽:𝐷𝑗

0≥ 𝐷𝑘
0 and 𝑝𝑗= 𝑝𝑘

𝑡
𝑠=1 ∀ 𝑗 ∈ 𝐽: 𝑝𝑗 = 𝑓, ∀ 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇

(2)

∑ 𝑥𝑗
𝑡 =𝑗∈ 𝐽𝑖

𝑞𝑖
𝑡 ∀ 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇

(3)

∑ 𝑥𝑗
𝑡 ≤ 1𝑡∈ 𝑇 ∀ 𝑗 ∈ 𝐽 (4)

69

𝑥𝑗
𝑡 = 0 ∀ 𝑗 ∈ 𝐽, 𝑡 = 𝑑𝑗 … 𝑇̅

(5)

𝑥𝑗
𝑡 = 0/1 ∀ 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (6)

𝑆𝑓
𝑡 ≥ 0 ∀ 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇

(7)

The objective function (1) includes two terms to be minimized: the first one represents number of

shuffles of each stack f in each period of the time horizon (∑ ∑ 𝑆𝑓
𝑡

𝑓∈𝐹𝑡∈𝑇), while the second one

is the number of expired slabs, i.e. number of slabs that are not retrieved (∑ 𝑥𝑗
𝑡𝑑𝑗

𝑡=1 = 0) before

their own deadline within the time horizon (𝑗 ∈ 𝐽′). The second term is weighted by a penalty

coefficient (P) that represents the relative importance of the second term in comparison with the

first one. In practice, when P is equal to 0, the objective function focuses only on minimizing

shuffles, while when P is equal to 1 each shuffle as the same importance of an extra expired slab.

When P is high enough, e.g. |T|x|J|, the target function tends to minimize the number of expired

slabs because a single extra expired slab would result in an increment of the objective function

equivalent to |T|x|J| shuffles. Clearly, with appropriate P calibrations it is possible to obtain trade-

off solutions between the two objectives.

Constraints (2) ensure that for each period t, the number of shuffles in each stack is equal to the

shuffles needed to retrieve the slab in the lowest position. Therefore, this value is equal to the

initial position of the slab j in the lowest position, retrieved in t (𝐷𝑗
0𝑥𝑗

𝑡), minus the total number

of the slabs over the slab j, already retrieved till the period t (∑ ∑ 𝑥𝑘
𝑠

𝑘∈𝐽:𝐷𝑗
0≥ 𝐷𝑘

0 & 𝑝𝑗= 𝑝𝑘

𝑡
𝑠=1).

Constrains (3) ensure that, at each period t, the number of slabs retrieved

for each item 𝑖 (∑ 𝑥𝑗
𝑡)𝑗∈ 𝐽𝑖

 is equal to the amount quantity 𝑞𝑖
𝑡 associated to the request of item i

at period t (request satisfaction).

Constraints (4) assures that any slab j can be picked at least at one period t (∑ 𝑥𝑗
𝑡 ≤ 1𝑡∈ 𝑇).

Constraints (5) guarantee that a slab j is retrieved at period t within its own deadline 𝑑𝑗.

Finally, constraints (6) and (7) regulate the nature of the variables.

4.1.2 Adaptation of the model

The model (17) describes the SSS in the case m|n, i.e., when a stack can host slabs belonging to

n preassigned items (1:n) each of which can be allocated to a set of m given stacks (1:m).

In the following we describe how the models for the cases 1|n (each item is assigned to only one

stack and each stack can host n items) and m|1 (each item may be assigned to a predefined set on

m stacks, but each stack can host only one item) can be derived from the general model m|n.

70

In the case 1|n, assuming the presence of a set F of stacks, the SSS problem can be tackled

considering |F| separated problems each of them associated to a single stack, f. The problem is not

trivial for the presence of the deadline constraints that may drive choices, at each period different

from the obvious approach LIFO (Last In-First Out) corresponding to the pick-up of the slabs

currently positioned at the top of the assigned stack. Consequently, in presence of a single stack,

the corresponding model becomes:

∑ 𝑆𝑡
𝑡∈𝑇 + P ∑ (1 − ∑ 𝑥𝑗

𝑡𝑑𝑗

𝑡=1𝑗∈𝐽′) 𝑀𝑖𝑛! (1𝑎)

subject to

𝑆𝑡 ≥ 𝐷𝑗
0𝑥𝑗

𝑡 − ∑ ∑ 𝑥𝑘
𝑠

𝑘∈𝐽∶̅𝐷𝑗
0≥ 𝐷𝑘

0
𝑡
𝑠=1 ∀ 𝑗 ∈ 𝐽 ̅, 𝑡 ∈ 𝑇 (2a)

∑ 𝑥𝑗
𝑡 =𝑗∈ 𝐽𝑖

𝑞𝑖
𝑡 ∀ 𝑖 ∈ 𝐼,̅ 𝑡 ∈ 𝑇 (3a)

∑ 𝑥𝑗
𝑡 ≤ 1𝑡∈ 𝑇 ∀ 𝑗 ∈ 𝐽 ̅ (4a)

𝑥𝑗
𝑡 = 0 ∀ 𝑗 ∈ 𝐽,̅ 𝑡 = 𝑑𝑗 … 𝑇̅ (5a)

𝑥𝑗
𝑡 = 0/1 ∀ 𝑗 ∈ 𝐽,̅ 𝑡 ∈ 𝑇 (6a)

𝑆𝑡 ≥ 0 ∀ 𝑡 ∈ 𝑇 (7a)

In practise the objective function is reformulated such as 𝑆𝑡represents the shuffles at each period,

and the subset 𝐽′ is intended as the subset of slabs with a deadline lower than 𝑇̅ belonging to the

set of items hosted in the stack f under consideration 𝐼 ̅(𝐼 ̅= 𝐼𝑓 and 𝐽′ ={j ∈ 𝐽:̅ 𝑑𝑗 ≤ 𝑇̅ } where 𝐽 ̅=

⋃ 𝐽𝑖𝑖∈𝐼 ̅).

In constraints (2a) 𝑆𝑓
𝑡 has been replaced by 𝑆𝑡, and J by is subset 𝐽.̅

In constraints (3a) the set of items I is replaced by the subset 𝐼 ̅; similar substitutions have been

realized for constrains (4a), (5a) and (6a) where J is replaced by 𝐽.̅ Finally, constraint (7a) is related

to 𝑆𝑡.

In the version m|1 we assume the presence of a set F of stacks dedicated to a single item. So, the

corresponding problem as many problems as the number of different items. Therefore, considering

the single item distributed on F stacks, it is possible to formulate the problem in the following

way:

∑ ∑ 𝑆𝑓
𝑡

𝑓∈𝐹𝑡∈𝑇 + P ∑ (1 − ∑ 𝑥𝑗
𝑡𝑑𝑗

𝑡=1𝑗∈𝐽′) 𝑀𝑖𝑛! (1𝑏)

subject to

 𝑆𝑓
𝑡 ≥ 𝐷𝑗

0𝑥𝑗
𝑡 − ∑ ∑ 𝑥𝑘

𝑠
𝑘∈𝐽:𝐷𝑗

0≥ 𝐷𝑘
0 and 𝑝𝑗= 𝑝𝑘

𝑡
𝑠=1 ∀ 𝑗 ∈ 𝐽:̅ 𝑝𝑗 = 𝑓, ∀ 𝑓 ∈ 𝐹̅, 𝑡 ∈ 𝑇 (2b)

∑ 𝑥𝑗
𝑡 =𝑗∈ 𝐽̅ 𝑞𝑡 ∀𝑡 ∈ 𝑇 (3b)

71

∑ 𝑥𝑗
𝑡 ≤ 1𝑡∈ 𝑇 ∀ 𝑗 ∈ 𝐽 ̅ (4b)

𝑥𝑗
𝑡 = 0 ∀ 𝑗 ∈ 𝐽,̅ 𝑡 = 𝑑𝑗 … 𝑇̅ (5b)

𝑥𝑗
𝑡 = 0/1 ∀ 𝑗 ∈ 𝐽,̅ 𝑡 ∈ 𝑇 (6b)

𝑆𝑓
𝑡 ≥ 0 ∀ 𝑓 ∈ 𝐹̅, 𝑡 ∈ 𝑇 (7b)

The objective function is reformulated such as 𝑆𝑓
𝑡 represents the shuffles at each period and in each

stack that hosts the item i under consideration (𝐹̅), and the subset 𝐽′ is intended as the subset of

slabs with a deadline lower than 𝑇̅ belonging to the item i under consideration (𝐹̅ = 𝐹𝑖 and 𝐽′ =

 j ∈ 𝐽 ̅ ∶ 𝑑𝑗 ≤ 𝑇̅} where 𝐽 ̅ = 𝐽𝑖 .

In constraints (2b) 𝐹 has been replaced by 𝐹̅ and J has been replaced is subset 𝐽;̅

Constraints (3c) regard only the only item i under consideration, and similar substitutions have

been realized for constrains (4a), (5a) and (6a) where J is replaced by 𝐽.̅ Finally, in constraints

(7a), related to 𝑆𝑓
𝑡 , F has been replaced by 𝐹̅.

4.1.3 The Model 1|1

A particular version of the model is the one related to the case 1|1, i.e., when each stack can host

only one item and each item is assigned to only one stack. This model, as the previous, can be

derived from the general model m|n.

In the case 1|1, the number of stacks |F| is equal to the number of items |I|, hence the SSS problem

can be tackled both considering |F| or |I| separated problems each of them associated to a single

couple (stack,item),(f,i). Consequently, in presence of a single item hosted in a single stack, the

corresponding model becomes:

∑ 𝑆𝑡
𝑡∈𝑇 + P ∑ (1 − ∑ 𝑥𝑗

𝑡𝑑𝑗

𝑡=1𝑗∈𝐽′) 𝑀𝑖𝑛 (1𝑐)

Subject to

𝑆𝑡 ≥ 𝐷𝑗
0𝑥𝑗

𝑡 − ∑ ∑ 𝑥𝑘
𝑠

𝑘∈𝐽∶̅𝐷𝑗
0≥ 𝐷𝑘

0
𝑡
𝑠=1 ∀ 𝑗 ∈ 𝐽 ̅, 𝑡 ∈ 𝑇 (2𝑐)

∑ 𝑥𝑗
𝑡 =𝑗∈ 𝐽 ̅ 𝑞𝑡 𝑡 ∈ 𝑇 (3𝑐)

∑ 𝑥𝑗
𝑡 ≤ 1𝑡∈ 𝑇 ∀ 𝑗 ∈ 𝐽 ̅ (4𝑐)

𝑥𝑗
𝑡 = 0 ∀ 𝑗 ∈ 𝐽 ̅, 𝑡 = 𝑑𝑗 + 1 … |𝑇| (5𝑐)

𝑥𝑗
𝑡 = 0/1 ∀ 𝑗 ∈ 𝐽 ̅, 𝑡 ∈ 𝑇 (6𝑐)

𝑆𝑡 ≥ 0 𝑡 ∈ 𝑇 (7𝑐)

72

In practise the objective function is reformulated such as 𝑆𝑡represents the shuffles at each period

in the only stack f that hosts all the slabs of the item i, and, indeed, the subset 𝐽′ is intended as the

subset of slabs with a deadline lower than 𝑇̅ belonging to the item i hosted in the stack f under

consideration (𝐽′ ={j ∈ 𝐽:̅ 𝑑𝑗 ≤ 𝑇̅} where 𝐽 ̅= 𝐽𝑖). In constraints (2c) 𝑆𝑓
𝑡 has been replaced by 𝑆𝑡,

and J by is subset 𝐽.̅

Constraints (3c) regards only the only item i under consideration; and similar substitutions have

been realized for constrains (4a), (5a) and (6a) where J is replaced by 𝐽.̅ Finally, constraint (7a) is

related to 𝑆𝑡.

The next subparagraph gives an example of application, relating to the 1|1 case, in order to

understand how the solution provided by the model changes as the penalty coefficient P changes,

before of showing the instances generation and relative experimentation.

4.1.4 An illustrative example of the case 1|1

Consider a horizon time of 5 periods (T={1,2,3,4,5}) and the presence of only one stack with n=20

slabs of the same item; at each slab is associated a deadline whose value is between 1 and 6.

Suppose a set of requests for each period 𝑞1 = 3; 𝑞2 = 2; 𝑞3 = 3; 𝑞4 = 4; 𝑞5 = 3. Figure 4.1

illustrates the elements of this example where nuances of increasing intensity are used for different

values of deadlines.

Figures 4.1, 4.2 and 4.3 show the optimal solution for the problem, obtained by solving the model

(1c)(7c) for three different values of the penalty coefficient, P, using the software CPLEX. The

model script for the CPLEX is listed in Appendix A.

In the first case, with P=0, the objective is the minimization of shuffles. The obtained solution

satisfies the request with only 4 shuffles while the number of expired slabs that remain in the stack

at the end of the time horizon is equal to 7. Information about the number of expired slabs

represented can be visually obtained by looking, in the left side of Figure 4.2, at the slabs obscured

in each period.

In the second case, the value of the penalty coefficient, P, was fixed to |T|x|J| = 100, to minimize

primarily the number of expired slabs in stock at the end of the time horizon and in secondarily

the number of shuffles in the whole retrieval process. In this case, the solution provided by the

model is shown in Figure 4.3 following the same representation logic described in previous

example.

73

In this case, it is possible to notice that the number of expired slabs present in stock, at the end of

the reference time horizon, has significantly decreased, from 7 to 0 expired slabs, while the number

of shuffles has increased, from 4 to 47.

Figure 4.4 compares the choices made by the model for the slabs to be retrieve in the event that P

= 0 and P = 100. As can be seen in this figure, for each period t, the model selects different target

slabs depending on the value of the penalty parameter P.

Figure 4.1 – Example of stack representation with deadlines

Figure 4.2 - Solution obtained with P = 0

LEGEND

74

Figure 4.3 - Solution obtained with P = 100

Figure 4.4 – Comparison between solutions with P = 0 and P= 100

Slabs retrieved at each period
Total Shuffles 47

75

4.2 Computational experiences for the model 1|1

In this section we illustrate the computational experiences related to the model in the version 1|1.

To this aim appropriate test instances have been generated according to the procedure described

below.

Instances of the problem have been generated through the creation of a dedicated script in Matlab

(see Appendix B). Once the input parameters are set, the script automatically provides random

instances that can be used to conduct an extensive experimentation of the introduced model. The

key input parameter is the number of periods of the time horizon, |𝑇|, while the other parameters

(number of slabs |𝐽|, requests vector (𝑞𝑡, 𝑡 ∈ 𝑇), deadlines (𝑑𝑗 , 𝑗 ∈ 𝐽), and initial slabs’ position in

the stack (𝐷𝑗
0, 𝑗 ∈ 𝐽)) are defined according to the procedures described below. Instances are

generated, fixing |𝑇| = 5,10,15,20,25.

The number of requests for each period (𝑞𝑡 ∀ 𝑡 ∈ 𝑇) are randomly generated, according to a

uniform integer distribution within the range [𝑞𝑚𝑖𝑛 = 0, 𝑞𝑚𝑎𝑥 = 4]. The number of slabs |J| is

fixed to ensure that there are always enough slabs in stock to meet total demand ∑ 𝑞𝑡
𝑡∈𝑇 so it is set

|𝐽| = 𝑞𝑚𝑎𝑥 ∗ |𝑇|. Hence, as |𝑇| = 5, 10, 15, 20 and 25 |J| assumes values equal to 20, 40, 60, 80

and 100.

The slabs' deadlines and positions within the stack are the two key elements in the generation of

instances. Indeed, an appropriate selection of these parameters allows for generating non-trivial

instances. Trivial instances could be considered cases in which a LIFO (Last-In, First-Out)

retrieval rule is able to obtain the optimal solution. In the following, the procedure to assign the

initial positions and the deadlines to get feasible and non-trivial instances is described.

Obviously, at each period t, in case of a request of 𝑞𝑡 slabs, it is necessary the presence in the stack

of at least 𝑞𝑡 slabs with a deadline higher or equal to t. Consequently, iteratively, at each period t,

the 𝑞𝑡 deadlines' values are fixed by randomly choosing a value between t and t+ 2. About each of

the other slabs, a random deadline is assigned in such a way that the 30% of them expires within the

reference time horizon, while the residual ones beyond it.

The initial positions of the slabs in the stack are defined in order to reproduce conditions typical

of real cases. In practice, in an actual management, slabs with lower deadlines are expected to be

located in the lower positions of stacks since they have been allegedly delivered earlier. Therefore,

we opt for positioning a consistent percentage of slabs (60%) with lower deadline in the lowest

half of the stack. Figure 4.5 shows an example of initial assignment of deadlines, respecting this

requirement. Considering that the problem is bi-objective, through the assignment of values to the

penalty P, it is possible to produce different solutions of the Pareto frontier, i.e. the set of not

76

dominated solutions, in the sense that, for each solution, there are no better solution for both the

considered objectives.

As illustrative example, Figure 4.6 shows the solutions obtained on two different instances with

|T|=10 and |J|=40, in the case of P=0 and 𝑃 = |𝑇| ∙ |𝐽| = 10 ∙ 40 = 400.

As it can be expected for high penalty values, the total number of shuffles required for the retrieval

operations is much higher than in the case where P = 0. In particular, considering the objective of

the number of shuffles, its lower bound (𝐿𝐵𝑆) and its upper bound (𝑈𝐵𝑆) are the values of shuffles

obtained with P =0 and P = |T|x|J| respectively. On the other hand, lower bound (𝐿𝐵𝐸𝑆) and upper

bound (𝑈𝐵𝐸𝑆) for the number of expired slabs are provided when P = |T|x|J| and P =0 respectively.

It is important to note that the minimum value of slabs expired at the end of the retrievals (𝐿𝐵𝐸𝑆)

is not necessarily zero, as it depends on deadlines assigned to the initial positioning of the slabs.

Figure 4.5 – 1.1 Example of non trivial deadline assignament

Figure 4.6 – Model solutions for two instances (10, 40) with P=0 and P=400

77

The tuning of P is crucial to explore the Pareto frontier and drive the decision maker toward regions

characterized by a lower number of shuffles or a lower number of expired slabs. This can be shown

applying the so-called “ε-constraint method” to represent the Pareto frontier. In practice, starting

from the number of expired slabs associated with the solution obtained with P = 0, iteratively, we

add to the model (1c)-(7c), a further constraint

∑ (1 − ∑ 𝑥𝑗
𝑡

𝑡∈𝑇:𝑡≤𝑑𝑗
) ≤ 𝑌𝑘𝑗∈𝐽𝑠

 (8)

that fix an upper bound to the total number of slabs that can expire at iteration k. Therefore, the

value of upper bound is iteratively updated by setting 𝑌𝑘+1 = 𝑌𝑘 − 1, until the minimum number

of expired slabs (𝐿𝐵𝐸𝑆) is reached.

The obtained Pareto solutions for the two illustrative examples are depicted in Figure 4.7.

Figure 4.7 – Pareto frontiers for the illustrative examples

4.3 Analysis of the results

In order to test the model, computational experiences have been carried out on random instances

assuming the combination of values (|T|, |J|) = {(5, 20); (10, 40); (15, 60)}. For each combination

of values 50 random instances are considered. As previously illustrated, in order to represent the

Pareto frontier for a single instance, it is necessary to set the value of the penalty P. To this aim,

lower and upper bounds for each objective are evaluated. In particular, for a given instance, the

upper bound for the number of shuffles (𝑈𝐵𝑆) and the lower bounds for the number of expired

slabs (𝐿𝐵𝐸𝑆) are determined by solving the model with P = |T|x|J|; on the other hand, the lower

bound for the number of shuffles (𝐿𝐵𝑆) and the upper bounds for the number of expired slabs

(𝑈𝐵𝐸𝑆) are calculated setting P = 0. Therefore 𝑃𝑚 = ⌈
 𝑈𝐵𝑆− 𝐿𝐵𝑆

 𝑈𝐵𝐸𝑆− 𝐿𝐵𝐸𝑆
⌉ represents the slope of the line

passing through the extreme points of the Pareto’s frontier of coordinates (𝐿𝐵𝐸𝑆, 𝑈𝐵𝑆),

78

(𝑈𝐵𝐸𝑆, 𝐿𝐵𝑆). In order to get an approximation of the Pareto’s frontier, the model has been solved

for 𝑃 = {𝑃𝑚, 𝑃𝑚 2⁄ , 𝑃𝑚 4⁄ } using IBM ILOG CPLEX Optimization Studio 12.9 software. Then, a

text file that summarizes the results obtained in terms of the total number of shuffles, the number

of expired slabs at the end of the reference time horizon and computing time spent resolving the

model is obtained as output. Tables indicating the results obtained for each test instance in terms

of objective functions are reported in Appendix C.

.

Table 4.1 shows the minimum, the maximum and the average computing times for each

combination (|T|,|J|) = {(5, 20); (10, 40); (15, 60)}, in correspondence of the different adopted

penalty values. In evaluating the computing time, a time limit of one hour has been assumed. As

it can be noted, computing times present significant variations for the same combinations but

generally tend to dramatically increase with the dimension of the instances. In particular with

(|T|,|J|) = (15, 60) and P =Pm, 14 instances exceeded the time limit of one hour. In order to show

the actual computing times, these instances have been solved to optimality with no computing time

limits. Table 4.2, reporting the computing times (in hours) for these “difficult” instances, show

how in the case of instance no. 50, the computing time reaches 11,46 hours. Tables indicating the

results obtained for each test instance in terms of objective functions are reported in Appendix C.

In order to underline the extensive required computing times, the model has also been tested for

larger instances with (|T|,|J|) = {(20, 80); (25, 100)}, only in the case of the extreme points of the

Pareto’s frontier with P=0 and P=|T|x|J|. Assuming a time limit of one hour, Table 4.3 shows the

number of instances solved to optimality (over 50) and minimum, maximum and average

computing times related to these instances. Tables indicating the results obtained for each test

instance in terms of objective functions and computing times are reported in Appendix C.

79

Table 4.1 – Computing times (min, max, and average) for (|T|,|J|) = {(5, 20); (10, 40); (15, 60)}

Instance number |T| |J| Computing times (h)

4 15 60 1.09

16 15 60 2.19

18 15 60 5.70

19 15 60 1.03

26 15 60 3.88

27 15 60 1.46

31 15 60 10.03

39 15 60 1.54

40 15 60 2.91

41 15 60 5.48

44 15 60 1.05

45 15 60 4.96

47 15 60 6.03

50 15 60 11.46
Table 4,2 – Computing times for “difficult” instances for (|T|,|J|) = {(15, 60)} and P=Pm

Table 4,3 - Computing times (min, max, range and average) for (|T|,|J|) = {(20, 80); (25, 100)}

|T| |J| P
Minimum computing times

(s)

Maximum computing times

(s)

Average computing times

(s)

5 20 |T|x|J| 0.16 0.86 0.35

5 20 𝑃𝑚 0.17 1.46 0.42

5 20 𝑃𝑚 2⁄ 0.18 1.11 0.35

5 20 𝑃𝑚 4⁄ 0.17 0.74 0.32

5 20 0 0.16 0.83 0.30

10 40 |T|x|J| 0.26 23.28 2.82

10 40 𝑃𝑚 3.55 678.19 41.66

10 40 𝑃𝑚 2⁄ 2.74 55.88 12.58

10 40 𝑃𝑚 4⁄ 1.64 46.02 8.44

10 40 0 0.22 9.95 2.59

15 60 |T|x|J| 1.88 225.49 841.81

15 60 𝑃𝑚 27.98 ∞ ∞

15 60 𝑃𝑚 2⁄ 11.86 1077.70 180.00

15 60 𝑃𝑚 4⁄ 8.16 2369.13 194.93

15 60 0 4.08 362.09 39.72

|T| |J| P Optimal solutions
Minimum

computing time (s)

Maximum

computing time (s)

Average

computing time(s)

20 80 |T|x|J| 50/50 4.91 3607.61 832.95

20 80 0 44/50 0.76 ∞ 636.81

25 100 |T|x|J| 12/50 5.85 ∞ 394.86

25 100 0 7/50 25.98 ∞ 890.45

80

4.4 A Heuristic approach for the solution of the (1|1) SSS problem

The obtained computing times to optimally solve instances of the (1|1) SSS problem highlights the

need of heuristic approaches to reduce computing times and to extend the dimension of solvable

instances. Therefore, we illustrate the proposal of an improvement algorithm based on a local

search procedure. A local search procedure does not guarantee an optimal solution, but it usually

attempts to find a solution that is better than the current one in its neighbourhood. Two solutions

are “neighbours”, if one can be obtained through a well-defined modification of the other. At each

iteration, a local search procedure performs a search within the neighbourhood and evaluates the

various neighbouring solutions. The procedure either accepts or reject the best solution in the

neighbourhood, based on a given acceptance-rejection criterion. Usually, the adopted criterion is

the objective function. Then the procedure accepts the best solution in the neighbourhood if its

objective function value is better than the current one; otherwise, it rejects it and the algorithm

stops.

As typical of local search approaches, the proposed procedure is characterized by three steps: the

individuation of an initial solution, the local search phase and the stopping criterion. In particular,

two different constructive procedures have been defined to provide the initial solution. The first

one is able to produce random solutions, while the second one to the minimization of the expired

slabs. Since both the heuristics can generate solutions in a very short time, it can be chosen the

best provided solution, as initial solution for the successive improvement phase (see Figure 8).

81

Figure 4,8 – Flowchart of the proposed heuristic

82

4,4,1 Individuation of an initial solution

In building an initial feasible solution, it is essential to consider the bi-objective nature of the

problem. As shown, by tuning the penalty coefficient, it is possible to obtain different solutions in

terms of number of shuffles and number of expired slabs. As highlighted in the flowchart of Figure

x, two different constructive procedures have been developed. The first one is oriented to the

minimization of the number of shuffles, while the second one to the minimization of the expired

slabs.

Both the procedures are based on an iterative assignment of the slabs present in the initial stack to

the period of retrieving in order to satisfy the amount of slabs requested at each period. In practices

at generic iteration k, the algorithm assigns a given slab j to a period t at which it is retrieved.

However, they differ according the adopted criterium for the assignment.

In order to describe the heuristics, at iteration k, we say that a slab j with its own deadline 𝑑𝑗 can

be preliminary assigned to one of the “feasible” period t where a period is considered feasible if

(a) it allows to satisfy the expiration constraint (𝑑𝑗 ≥ 𝑡) and (b) the slabs already assigned to that

period t till the iteration k does not exceed the request associated to t (𝑞𝑡). On the other hand, at

each period t it is possible to associate the set of “feasible” slabs Jt, i.e the set of slabs with (𝑑𝑗 ≥

𝑡) still not assigned to any other period. Then the slab j can be definitively assigned to the period

t if it is possible to satisfy the requests of the periods successive to t with feasible slabs not still

assigned. This can be done with a backward procedure from the last period T to the period t+1: at

generic period 𝑠: 𝑡 + 1 ≤ 𝑠 ≤ 𝑇, it is sufficient to verify that the sum between the feasible slabs at

s (|Js|) and the eventual difference between the sum of feasible slabs for the successive periods and

the sum of the requests for these periods is at least equal to the request at s.

If there are no feasible periods for the slab j at iteration k, it is removed from the stack and it is

counted as “expired”. To represent this circumstance, we introduce a binary variable 𝑒𝑗 equal to 1,

if the slab j is expired, 0 otherwise.

We illustrate this aspect through an example reported in Appendix D

➢ Constructive heuristic to generate random feasible solutions

In this procedure, at each iteration, a slab is randomly selected from the slack and it is temporary

assigned to one of its feasible periods, randomly chosen. This assignment is definitive if it is

possible to satisfy the requests of the periods successive to t with feasible slabs not still assigned,

excluding the selected slab. If there are no feasible periods for the slab j at iteration k, it is removed

from the stack and it is counted as “expired” (𝑒𝑗 = 1). The procedure needs a number of iterations

equal to the sum between the total number of requested slacks in the horizon time T (∑ 𝑞𝑡
𝑡≤𝑇) and

83

the total number of expired slabs (∑ 𝑒𝑗)𝑗∈𝐽 . The procedure is described, using a pseudocode, in

Appendix E.

➢ Constructive heuristic oriented to the minimization of the expired slabs

This heuristic individuates the optimal solution in terms of minimization of expired slabs. Denote

with 𝐸𝑡 the set of slabs with deadlines equal to t (𝐸𝑡 = {𝑗: 𝑑𝑗 = 𝑡}). If the cardinal of this set is not

higher than the request for that period (|𝐸𝑡| ≤ 𝑞𝑡), the set 𝐸𝑡 is definitively assigned to t. In case

|𝐸𝑡| < 𝑞𝑡, for this period there is a residual request 𝑞𝑟𝑒𝑠
𝑡 = 𝑞𝑡 − |𝐸𝑡| to be satisfied. Otherwise,

(|𝐸𝑡| > 𝑞𝑡), we randomly extract, from 𝐸𝑡 , 𝑞𝑡 slabs that are definitively assigned to t. The total set

of not assigned slabs, are then used to satisfy the residual requests. In particular, starting from t=1,

we satisfy the residual requests assigning the remaining slabs according to their deadlines. In case

there are more slabs with the same deadlines than residual request, the assignment is randomly

performed. The procedure is described, using a pseudocode, in Appendix F.

4.4.2 The local search phase

The local search phase is realized through a modification of the current solution performing a

pairwise interchange between two slabs k and j (swap (k, j)). However, it is necessary to verify that

the swap(k, j) is not trivial and feasible. Denote with 𝑑𝑘, 𝑑𝑗 and 𝑡𝑘, 𝑡𝑗 the deadlines and the assigned

periods respectively of the slabs k and j in the current solution, and assume that 𝑡𝑘 ≥ 𝑡𝑗 and,

conventionally, that 𝑡𝑘 = 0 if the slab k is not used, in the current solution, to satisfy any request.

A swap(k, j) is trivial if 𝑡𝑘 = 𝑡𝑗 : this means either that the two slabs have been assigned to the

same period, or that the two slabs are not been used to satisfy any request

A not trivial swap(k, j) is feasible if it leads to a feasible solution of the problem. Indeed, while a

swap between k and j does not affect the constraints about the request satisfaction, it can violate

the deadlines constraints. It is easy to verify that a not trivial swap(k,j)) is feasible if 𝑑𝑗 ≥ 𝑡𝑘.

Therefore, the procedure, at the first step, consider all the possible feasible swaps between the slab

with highest position, s, in the stack and any other slab below it. If the best solution in the

neighbourhood obtained by the swap(s,j*) is better than the current one in terms of objective

function (∑ 𝑆𝑡
𝑡∈𝑇 + P ∑ (1 − ∑ 𝑥𝑗

𝑡𝑑𝑗

𝑡=1𝑗∈𝐽′)), the swap(s,j*) is performed, and algorithm continues

considering the neighbourhood defined by swap(s,j), with 𝑠 ≡ 𝑗∗; otherwise the procedure

considers the swaps involving the slab successive to the slab s, and so on. The procedure, described

using a pseudocode in Appendix G, stops when a maximum number of iterations is reached.

84

4.5 Computational experiences

In order to test the heuristic, computational experiences have been carried out on the same 50

instances randomly generated with (|T|,|J|) = {(20, 80); (25, 100)} to test the effectiveness of the

proposed heuristic, in the case P=0 and P=|T|x|J|. For a given instance, the quality of the solution

produced by the heuristic is evaluated in terms of percentage error over the solution individuated by

CPLEX after one hour of computing times. About the computational times, the comparison is done

fixing the stopping criterion equal to 100 iterations; in the case of the solution provided by CPLEX,

when the optimal solution is not reached, and the time limit of 3600 seconds is indicated.

Tables 4.4 summarize the obtained results in terms of average, the standard deviation, maximum

and the minimum value of the percentage error. The detailed results for each instance are reported

in Appendix H.

The performances of the heuristic appear quite interesting. In particular in the case of P = |𝑇|x|𝐽|,

even if the algorithm only in few cases reaches the optimal solution, is characterized by very limited

percentage errors (0,09% and 0,05%) with very low values of the maximum error. Relatively worst

seems to be the results in the case of P= 0. Indeed, in this case the average percentage error is of

6,18% and 4,22 % for (|T|,|J|) = (20, 80) and (|T|,|J|) = (25, 100) respectively, with a maximum

percentage error around the 20% in both the cases. However, this difference is mainly due to the

term of expired slabs. If we analyse the differences in terms of shuffles between the solution of the

model and the solution provided by the heuristic (Table 4.5) is very low.

Table 4.6 shows the comparison of the performances in terms of minimum, maximum and average

computing time that highlights how the computing times of the heuristic are in the order of few

minutes.

J T P
Objective Function: Percentage error

Average Dev.std Minimum Maximum

80 20 |T|x|J| 0.09% 0.07% 0.00% 0.30%

100 25 |T|x|J| 0.05% 0.05% -0.01% 0.25%

80 20 0 6.18% 6.35% -4.44% 22.22%

100 25 0 4.22% 9.51% -17.27% 23.08%

Table 4.4– Average, standard deviation, minimum and maximum value of the percentage error on 50

randomly generated instances

85

J T P
Number of shufflesr

Average Dev.std Minimum Maximum

80 20 0 2.78 3.63 -4 19

100 25 0 2.12 9.02 -24 17

Table 4.5– Average, standard deviation, minimum and maximum value of the percentage error on 50

randomly generated instances

Table 4.6 – Average, Minimum and Maximum value of the heuristic computing time

4.6 Characteristics of an implemented software system

The main objective of the collaboration within the partnership with the firm was the overall re-

engineering of the processes with the aim of improving the production and logistic performances.

Once the analysis of the processes has been performed, the achievement of this goal has required

the digitalization of the procedures. A first attempt performed in this direction has been oriented

to the innovation of the information systems organization, still based on an outmoded midrange

computer platform referred to generically by the umbrella term AS/400. Then it has defined a

project to define a new architecture system ad-hoc designed to efficiently represent and manage

the peculiarities of the context, with the objective of creating a complete Enterprise Resource

Planning (ERP). The whole architecture has been based on a PostgreSQL relational database,

implemented in a complex web-based Management and Decision Support System (DSS).

A brief illustrative overview of the main features and tools embedded in the System is provided in

the following.

Starting from the dashboard of the DSS (Figure 4.) it is possible to notice the numerous options

and offered tools provided that can be distinguished in In-bound, Out-bound, Production and

Storage & Retrieval Managing menus.

J T P
Computing times: Model solution Computing times: Heuristic

Minimum (sec) Maximum (sec) Average (sec) Minimum (sec) Maximum (sec) Average (sec)

80 20 |T|x|J| 10.38 3607.61 1322.35 114.99 245.6 190.75

100 25 |T|x|J| 40.19 30608.23 3034.40 371.66 673.02 522.99

80 20 0 0.76 3605.16 932.37 160.63 564.56 263.72

100 25 0 25.98 3618.01 3223.73 346.63 833.41 562.85

86

Figure 4.9 – Decision Support System Dashboard

Within the In-bound menu, different procedures has been implemented such as Figure 4.10:

• Managing of the delivery notes

• Uploading and downloading of the quality certifications

• Semi-trailer check-in

Concerning the Out-bound operations, the main implemented procedures have been (Figure 4.11):

• Semitrailer loading

• Listing of deliveries

About the Production Management procedures, peculiarities procedures have been implemented

to support decision for cutting slab optimization in order to reduce processing scraps. A not

exhaustive list of implemented procedures are provided in the following. Some of the screenshots

related to these procedures are depicted in Figure 4.12.

• Order management

• Cutting scheduling

• Digitalization of the cutting schemes

Finally, handling procedures have been implemented in relation to the Storage and Retrieval

management. As above explained, these two fundamental logistic processes are very peculiar in the

context and require appropriate optimization tools that may support the decision makers from the

definition of the layout for the slabs and profiles stacking to the retrieval sequencing.

Figure 4.13 show Some of the screenshots related to these procedures:

• Real-time stock level monitoring for each stack and stall

• Slab database management

• Logistic flow description

87

Delivery notes

Quality certifications database

Semi-trailers check-in registration

Figure 4.10 – Screenshots of the implemented Inbound procedures

88

Semitrailer loading

Listing of deliveries

Figure 4.11 – Screenshots of the implemented Outbound procedures

89

Order management

Cutting scheduling

Digitalized cutting scheme

Figure 4.12 – Screenshots of the main implemented Production management procedures

90

Real-time stock level monitoring for each stack and stall

Slab database management

Logistic flow management

Figure 4.13– Screenshots of the main implemented handling management procedures

91

4.7 Conclusions

In this chapter we have introduced some new mathematical formulations for the Slab Stack

Shuffling able to describe some of the variants individuated for the problem. In particular we have

focused on the version with the presence of deadline constraints in different cases of item-stack

relation. All the models assume the presence of a fixed time horizon divided in periods at which a

certain quantity of slabs belonging to specific items is requested. The problems has been formulated

as a bi-objective optimization model including, in the objective function, two terms to be minimized:

the number of shuffles and the number of expired slabs, i.e. slabs not retrieved before their own

deadlines.

As in bi-objective problems, the tuning of the weight (penalty) method can be exploit to generate

solutions of the Pareto frontier.

Then the model related to the case in which an item is hosted only in one stack and each stack hosts

only one item has been tested by solving the model through CPLEX on instances randomly

generated according to an appropriate instance generation procedure. As the solution of the model

generally requires, in case of significant dimension of the instances, relevant computing times, we

have proposed a heuristic based on a local search procedure.

The comparative performances of the heuristic are quite promising, as it generally obtains good

solutions in quite short computing times.

However further efforts are needed to verify and to improve the performance of the proposed

algorithm. A first aspect could require the development of more extensive computational

experiences with the objective of exploring the possibility of reproducing the Pareto frontier. Then

improvements of the heuristics can be performed for instance embedding the local search scheme

within a meta-heuristic framework.

Nevertheless, as we have shown how the problem can be characterized by numerous variants in

dependence on the combination of the ingredients of the problem, further analysis about the proposal

of new formulations should be performed.

92

93

General conclusions

This work has been developed in the context of a collaboration with a firm of the shipbuilding sector

(described in Chapter 1) interested to introduce innovative practises and procedures, in order to

improve the production processes and the operations management. The firm is a first-tier actor in

the sector supply chain as it provides subassemblies directly to the shipyard where the ships are

assembled and launched.

After an analysis of all the production and logistic processes peculiar of the context (illustrated in

Chapter 2) the focus has been devoted to one of the critical logistic main issue in the inbound

operation, represented by the handling management of steel slabs, i.e., steel plates that can weigh

up to more than 13 tons and whose extension can reach some tens of square meters. Due to their

physical characteristics, steel slabs are stored in stacks. Then their storage and retrieval represent

one of the main issues to overcome to avoid bottlenecks in the production process.

In the literature, the problem has been defined as the Slab Stack Shuffling (SSS) problem. However,

due to the specificity of the problem and of the involved industrial sector, the state of the art is not

particularly rich.

A first result of the work is represented by the formulation of a general framework able to describe

the variety of the factors and of the conditions that can occur in the practical application. The

framework suggests many opportunities to develop future research lines oriented to the proposals

of models and methods to solve variants of the problem.

Among the problems individuated within the framework, we have focused on some basic versions

of the problem including slabs deadline constraints. The problem has been formulated in terms of

bi-objective mathematical programming model in which the minimization of the number of shuffles

and the minimization of the number of expired slabs are combined through a penalty coefficient. As

the solution of the model with the commercial solver CPLEX, performed on a set of randomly

generated instances, has required significant computing times, especially in correspondence of some

values of the penalty coefficient, a heuristic based on a local search procedure has been proposed

and implemented. The algorithm has been tested on the same instances and a comparison of the

performances with those provided by CPLEX has highlighted promising results.

As the objective of the collaboration was the re-engineering of the production and logistic processes

through an integrated digitalization of the operations, finally, the general characteristics of a

software system specifically designed and implemented has been described. The system, actually

94

introduced and used in substitution of that previously adopted, has been designed in order to host

optimization procedures able to solve logistic and operations management.

The obtained results of this work, then, should represent a first important step on the path leading

to the definition and of the implementation of a software system able to assume the role of a Decision

Support System that may support the production and logistics management.

As highlighted through the proposal of a general framework for the SSS problem, there is a vast

field to develop models and methods to solve the various variants of the problem that, once tested

and verified, should be embedded within the developed DSS.

95

Bibliography

Assaf, I., Chen, M., & Katzberg, J. (1997). Steel production schedule generation. International

Journal of Production Research, 35(2), 467-477.

Avriel, M., & Penn, M. (1993). Exact and approximate solutions of the container ship stowage

problem. Computers & industrial engineering, 25(1-4), 271-274.

Avriel, M., Penn, M., & Shpirer, N. (2000). Container ship stowage problem: complexity and

connection to the coloring of circle graphs. Discrete Applied Mathematics, 103(1-3), 271-279.

BRS GROUP, (2019). Shipping and Shipbuilding Markets, Francia: s.n.

BRS GROUP, (2020). Shipping and Shipbuilding Markets, Annual Review

Brun, L., & Frederick, S. (2017). Korea and the Shipbuilding Global Value Chain. Duke GVC

Center.

Celik, M., Kahraman, C., Cebi, S., & Er, I. D. (2009). Fuzzy axiomatic design-based performance

evaluation model for docking facilities in shipbuilding industry: The case of Turkish shipyards.

Expert Systems with Applications, 36(1), 599-615.

 Cheng, X., & Tang, L. (2010, June). A scatter search algorithm for the slab stack shuffling problem.

In International Conference in Swarm Intelligence (pp. 382-389). Springer, Berlin, Heidelberg.

Cho, K. K., Oh, J. S., Ryu, K. R., & Choi, H. R. (1998). An integrated process planning and

scheduling system for block assembly in shipbuilding. CIRP Annals, 47(1), 419-422.

Chryssolouris, G., Makris, S., Xanthakis, V., & Mourtzis, D. (2004). Towards the Internet-based

supply chain management for the ship repair industry. International Journal of Computer

Integrated Manufacturing, 17(1), 45-57.

Dekker, R., Voogd, P., & Van Asperen, E. (2007). Advanced methods for container stacking.

In Container terminals and cargo systems (pp. 131-154). Springer, Berlin, Heidelberg.

Delgado, A., Jensen, R. M., Janstrup, K., Rose, T. H., & Andersen, K. H. (2012). A constraint

programming model for fast optimal stowage of container vessel bays. European Journal of

Operational Research, 220(1), 251-261.

Derakhshan, E. D., Yazdian, N., Craft, B., Smith, S., & Kovacevic, R. (2018). Numerical simulation

and experimental validation of residual stress and welding distortion induced by laser-based

welding processes of thin structural steel plates in butt joint configuration. Optics & Laser

Technology, 104, 170-182.

96

Dyer, J. H. (1996). How Chrysler created an American keiretsu. Harvard Business Review, 74(4),

42-52.

DSF, 2016. Shipping Market Review: Danish Ship Finance (DSF). pp. 106.

Available at: https://www.shipfinance.dk/media/1610/shipping-market-review-may-2016.pdf

European Economic Community - Council Regulation (EEC) No 4064/89 of 21 December 1989 on

the control of concentrations between undertakings

Fechter, J., Beham, A., Wagner, S., & Affenzeller, M. (2015, February). Modeling a Lot-Aware

Slab Stack Shuffling Problem. In International Conference on Computer Aided Systems

Theory (pp. 334-341). Springer, Cham.

Fernandes, E. F. A., Freire, L., Passos, A. C., & Street, A. (2012). Solving the non-linear slab stack

shuffling problem using linear binary integer programming. EngOpt.

Ferrari, C. (2012). “Cantieristica Navale : Caratteristiche e Tendenze Di Un Mercato Globale.”

Impresa progetto - Electronic Journal of Management 3: 1–20.

Fleischer, M., Kohler, R., & Bongiorni, H. B. (1999). Marine supply chain management. Journal of

ship production, 15(04), 233-252

Fink, A. (2019). Conducting research literature reviews: From the internet to paper. Sage

publications.

Forster, F., & Bortfeldt, A. (2012). A tree search heuristic for the container retrieval problem.

In Operations research proceedings 2011 (pp. 257-262). Springer, Berlin, Heidelberg.

Gourdon, K., & Steidl, C. (2019). “Global Value Chains and the Shipbuilding Industry.” OECD

Science, Technology and Industry Working Papers. https://dx.doi.org/10.1787/7e94709a-en.

Guneri, A. F., Cengiz, M., & Seker, S. (2009). A fuzzy ANP approach to shipyard location selection.

Expert systems with applications, 36(4), 7992-7999.

Haessler, R. W., & Vonderembse, M. A. (1979). A procedure for solving the master slab cutting

stock problem in the steel industry. AIIE Transactions, 11(2), 160-165.

Hansen, P., & Mladenović, N. (2001). Variable neighborhood search: Principles and

applications. European journal of operational research, 130(3), 449-467.

Hansen, P., & Mladenović, N. (2006). First vs. best improvement: An empirical study. Discrete

Applied Mathematics, 154(5), 802-817.

https://www.shipfinance.dk/media/1610/shipping-market-review-may-2016.pdf

97

Held, T. (2010). Supplier integration as an improvement driver–an analysis of some recent

approaches in the shipbuilding industry. In Supply Chain Network Management (pp. 369-384).

Gabler.

Hines, P., Rich, N., & Esain, A. (1999). Value stream mapping. Benchmarking: An International

Journal.

ICE - Agenzia per la promozione all’estero e l’internazionalizzazione delle imprese italiane, Ufficio

di Berlino (Agosto 2018). Nota di mercato: “l’industria della cantieristica navale in Germania”,

pp. 3-19.

Imenda, S. (2014). Is there a conceptual difference between theoretical and conceptual frameworks?.

Journal of Social Sciences, 38(2), 185-195.

Iwankowicz, R. R. (2016). An efficient evolutionary method of assembly sequence planning for

shipbuilding industry. Assembly Automation.

Kang, J., Ryu, K. R., & Kim, K. H. (2006). Deriving stacking strategies for export containers with

uncertain weight information. Journal of Intelligent Manufacturing, 17(4), 399-410.

Kim, K. H., & Bae, J. W. (1998). Re-marshaling export containers in port container

terminals. Computers & Industrial Engineering, 35(3-4), 655-658.

Kim, K. H., Park, Y. M., & Ryu, K. R. (2000). Deriving decision rules to locate export containers

in container yards. European Journal of Operational Research, 124(1), 89-101.

Kim, B. I., Koo, J., & Sambhajirao, H. P. (2011). A simplified steel plate stacking

problem. International Journal of Production Research, 49(17), 5133-5151.

Ko, S., 2007. An efficient stacking policy for the steel plate, Thesis (MS). Pohang University of

Science and Technology, Pohang, Korea (in Korean).

Ko, S., et al., (2007). A study on the piling method for the improving efficiency of the steel plate

warehouse. Proceedings of the 2007 Joint Conference of Korean Institute of Industrial Engineers

and Korean Operations Research and Management Science Society, 25–26 May 2007, Jinju,

Korea, 490–496 (in Korean).

Lamb, T. (1992). Organization theory and shipbuilding: a brief overview. Marine Technology and

SNAME News, 29(02), 71-83.

Lee, Y., & Lee, Y. J. (2010). A heuristic for retrieving containers from a yard. Computers &

Operations Research, 37(6), 1139-1147.

98

Lehnfeld, J., & Knust, S. (2014). Loading, unloading and premarshalling of stacks in storage areas:

Survey and classification. European Journal of Operational Research, 239(2), 297-312.

Malucelli, F., Pallottino, S., & Pretolani, D. (2008). The stack loading and unloading

problem. Discrete applied mathematics, 156(17), 3248-3266.

Marksberry, P. (2012). Investigating “the way” for Toyota suppliers. Benchmarking: An

International Journal.

Meisel, F., & Wichmann, M. (2010). Container sequencing for quay cranes with internal

reshuffles. OR spectrum, 32(3), 569-591.

Mello, M. H., & Strandhagen, J. O. (2010). Supply chain management in the shipbuilding industry:

challenges and perspectives. Proceedings of the Institution of Mechanical Engineers, Part M:

Journal of Engineering for the Maritime Environment, 225(3), 261-270.

OECD, 2017. Imbalances in the Shipbuilding Industry and Assessment of Policy Responses.

Available at: https://www.oecd.org/industry/ind/Imbalances_Shipbuilding_Industry.pdf

Pareschi, A. (2007). Impianti Industriali. Criteri di scelta, progettazione e realizzazione. Società

Editrice Esculapio.

Platts, K. W., Probert, D. R., & Canez, L. (2002). Make vs. buy decisions: A process incorporating

multi-attribute decision-making. International Journal of Production Economics, 77(3), 247-

257.

Porter, M. E. (1979). Harvard Business Review: Strategic Planning, How Competitive Forces Shape

Strategy. Retrieved July 7, 2016.

Ruuska, I., Ahola, T., Martinsuo, M., & Westerholm, T. (2013). Supplier capabilities in large

shipbuilding projects. International Journal of Project Management, 31(4), 542-553.

Singh, K. A., & Tiwari, M. K. (2004). Modelling the slab stack shuffling problem in developing

steel rolling schedules and its solution using improved Parallel Genetic Algorithms. International

Journal of Production Economics, 91(2), 135-147.

Stopford, M. (2003), Maritime Economics, Routledge, London and New York.

Tang, L., Liu, J., Rong, A., & Yang, Z. (2001). An effective heuristic algorithm to minimise stack

shuffles in selecting steel slabs from the slab yard for heating and rolling. Journal of the

Operational Research Society, 52(10), 1091-1097.

https://www.oecd.org/industry/ind/Imbalances_Shipbuilding_Industry.pdf

99

Tang, L., Liu, J., Rong, A., & Yang, Z. (2002). Modelling and a genetic algorithm solution for the

slab stack shuffling problem when implementing steel rolling schedules. International Journal

of Production Research, 40(7), 1583-1595.

Tang, L., & Ren, H. (2010). Modelling and a segmented dynamic programming-based heuristic

approach for the slab stack shuffling problem. Computers & Operations Research, 37(2), 368-

375.

Tang, L., Zhao, R., & Liu, J. (2012). Models and algorithms for shuffling problems in steel

plants. Naval Research Logistics (NRL), 59(7), 502-524.

Tierney, K., Pacino, D., & Jensen, R. M. (2014). On the complexity of container stowage planning

problems. Discrete Applied Mathematics, 169, 225-230.

Tsirkas, S. A., Papanikos, P., & Kermanidis, T. (2003). Numerical simulation of the laser welding

process in butt-joint specimens. Journal of materials processing technology, 134(1), 59-69.

UNCTAD, (2019). Review of Maritime Transport, Svizzera: s.n.

Available at: https://unctad.org/en/pages/PublicationWebflyer.aspx?publicationid=2563

Ünlüyurt, T., & Aydın, C. (2012). Improved rehandling strategies for the container retrieval

process. Journal of Advanced Transportation, 46(4), 378-393.

Van den Berg, J. P., & Zijm, W. H. M. (1999). Models for warehouse management: Classification

and examples. International Journal of Production Economics, 59(1), 519–528.

Vlachakis, N., Mihiotis, A., Pappis, C. P., & Lagoudis, I. N. (2016). A methodology for analyzing

shipyard supply chains and supplier selection. Benchmarking: An International Journal.

Wan, Y. W., Liu, J., & Tsai, P. C. (2009). The assignment of storage locations to containers for a

container stack. Naval Research Logistics (NRL), 56(8), 699-713.

Willoughby, K. A. (2005). Process improvement in project expediting: there must be a better

way. International Journal of Project Management, 23(3), 231-236.

Wilson, I. D., & Roach, P. A. (2000). Container stowage planning: a methodology for generating

computerised solutions. Journal of the Operational Research Society, 51(11), 1248-1255.

Wortmann, J. C. (1983). A classification scheme for master production scheduling. In Efficiency of

manufacturing systems (pp. 101-109). Springer, Boston, MA.

Zhang, C., Chen, W., Shi, L., & Zheng, L. (2010). A note on deriving decision rules to locate export

containers in container yards. European Journal of Operational Research, 205(2), 483-485.

https://unctad.org/en/pages/PublicationWebflyer.aspx?publicationid=2563

100

Sitografia

LBJ (2020). L’impatto del Covid-19 sulla cantieristica. Available at:

https://liguria.bizjournal.it/2020/06/limpatto-del-covid-sulla-cantieristica/ [Consultato il giorno

18.06.2020]

La Stampa (30 October 2020)) – Available at:

https://finanza.lastampa.it/News/2020/10/30/fincantieri-argina-la-tempesta-covid-produzione-

e-redditivita-attese-in-recupero/NjdfMjAyMC0xMC0zMF9UTEI Consulted: 13October2020

Nautilus (2020).Volano di sviluppo per l’uscita dall’emergenza Covid-19. Available at:

http://www.ilnautilus.it/porti/2020-04-07/mit-adsp-volano-di-sviluppo-per-

l%E2%80%99uscita-dall%E2%80%99emergenza-covid-19_74472/ [Consultato il giorno

18.06.2020]

https://liguria.bizjournal.it/2020/06/limpatto-del-covid-sulla-cantieristica/
https://finanza.lastampa.it/News/2020/10/30/fincantieri-argina-la-tempesta-covid-produzione-e-redditivita-attese-in-recupero/NjdfMjAyMC0xMC0zMF9UTEI
https://finanza.lastampa.it/News/2020/10/30/fincantieri-argina-la-tempesta-covid-produzione-e-redditivita-attese-in-recupero/NjdfMjAyMC0xMC0zMF9UTEI
http://www.ilnautilus.it/porti/2020-04-07/mit-adsp-volano-di-sviluppo-per-l%E2%80%99uscita-dall%E2%80%99emergenza-covid-19_74472/
http://www.ilnautilus.it/porti/2020-04-07/mit-adsp-volano-di-sviluppo-per-l%E2%80%99uscita-dall%E2%80%99emergenza-covid-19_74472/

101

102

Appendices

In this Appendix we show the scripts and pseudocodes developed to implement the proposed model

and heuristic of the Slab Stack Shuffling problem in the case 1|1 and the detailed results for each

instance in terms of objective function and computing time. In particular it is provided:

in Appendix A, the Model 1|1 write in OPL language used on the software “CPLEX”.

In Appendix B, the “Matlab” code for the instance generation procedure.

In Appendix C, the tables of results obtained by the model tested on the generated instances.

In Appendix D, an example of the relation between slabs’ feasible periods and periods’ feasible

slabs.

In Appendix E, the pseudocode for the constructive heuristic to generate random feasible solutions.

In Appendix F, the pseudocode for constructive heuristic oriented to the minimization of the expired

slabs.

In Appendix G, the pseudocode for the heuristic’s local search phase.

In Appendix H, the compared results in terms of objective function and computing time between

the solution of the Model 1|1 and of the heuristic.

Appendix A

Here we report the whole script related to the model (1c7c) presented in Chapter 4, developed in

OPL language according to the following notation:

𝐽 = {1, … , 𝑛} set of slabs, indexed by 𝑗 ;

𝑇 = { 1, … , 𝑇̅} set of order periods, indexed by 𝑡 ;

𝑞𝑡 number of slabs to retrieve in period 𝑡 ;

𝐷𝑗
0 initial position of the slab j (positions are indicated from the

top (position 1) to the bottom of the stack)

𝑑𝑗 deadline of the slab 𝑗;

and the following decision variables

 𝑥𝑗
𝑡 Binary variable equal to 1 if slab j is retrieved at period t,

0 otherwise;

103

𝑆𝑡 Positive integer variable, representing the number of

shuffles associated to the stack f needed to satisfy requests

at period t;

Input Files

string filename_input ="input_data.txt";

Inizialization

int m = 0;

int n = 0;

int P = 0;

execute{

var f = new IloOplInputFile(filename_input);

f.readline();

m = f.readline();

f.readline();

n = f.readline();

f.readline();

P = f.readline();

f.readline();

 }

Set 𝑇

Set 𝐽

Parameter 𝑃

 𝑇 size

 𝐽 size

𝑃 value

Sets Definition

{int} T = {};

{int} J = {};

Set 𝑇

Set 𝐽

Sets Composition

execute{

for(var i = 1; i <= m; i++){

T.add(i);}

for(var j = 1; j <= n ; j++){

J.add(j);}

 }

Set 𝑇

Set 𝐽

Parameters Definition

int q[t in T];

int d[j in J] ;

int D0[J] ;

Requests in period t: 𝑞𝑡

Slabs’ deadline: 𝑑𝑗

Slabs’ initial position: 𝐷𝑗
0

Parameters Setting

execute{

var f = new IloOplInputFile(filename_input);

for(var i = 1; i <= 9 ; i++){

f.readline();}

var str = f.readline();

104

var ar = str.split("\t");

for(var t = 1; t <= M; t++){

q[t] = ar[t-1];}

f.readline();

var str1 = f.readline();

var ar1 = str1.split("\t");

for(var j = 1; j <= N; j++){

d[j] = ar1[j-1];}

f.readline();

var str1 = f.readline();

var ar1 = str1.split("\t");

for(var j = 1; j <= N; j++){

D0[j] = ar1[j-1] ;}

f.close();

}

Requests in each period t: 𝑞𝑡∀ 𝑡 ∈ 𝑇

Slabs’ deadline: 𝑑𝑗

Slabs’ initial position: 𝐷𝑗
0

Variables Definition

dvar boolean x [j in J][t in T];

dvar int+ S[t in T];

Slabs’ assignment variable: 𝑥𝑗
𝑡

Number of shuffles in period t: 𝑆𝑡

Additional Definitions

dexpr int D[j in J][t in T] = D0[j] - sum(s in T: s<=

t-1 && t>1, k in J: D0[j]>D0[k])x[k][s] ;

dexpr int Shuf[t in T]= S[t];

Slabs above j in period t: 𝐷𝑗
0

Support element related to 𝑆𝑡

Objective function

dexpr float z1 = sum(t in T) Shuf[t] ;

dexpr float z2 = P*sum(j in J: d[j] <= M)(1-sum(t

in T: t <= d[j])x[j][t]) ;

minimize z1 + z2;

Support element related to the shuffles

Support element related to the expired slabs

(1c)

Constraints

subject to {

forall (t in T: t>= 1, j in J)

 S[t] >= D0[j]*x[j][t] - sum(s in T: s <= t , k in

J:

 D0[j] >= D0[k]) x[k][s];

forall (t in T)

 sum(j in J)x[j][t] == q[t];

forall (j in J)

(2c)

(3c)

(4c)

105

Appendix B

Here we report the whole script related to the instance generation procedure reported in Chapter 4

and developed in Matlab language according to the notation reported above.

 sum(t in T)x[j][t] <= 1 ;

forall(j in J, t in T: t> d[j])

 x[j][t] == 0;

 }

(5c)

Input Files

function [q,d,D0,cartella,namefile,Nin] = dataINPUT(T,J)

Request Setting

q = randi([0 4], 1,T) ; Requests in each period t: 𝑞𝑡∀ 𝑡 ∈ 𝑇

Deadlines Setting

d_D = zeros(J,2);

iS = 1;

appoggio = zeros(1,T+1); variable

for iT=1:T

 while iS<=q(iT)

 d_D(iS+sum(appoggio),1) = randi([iT, iT+2]) ;

 iS = iS+1 ;

 end

 iS=1;

 appoggio(iT+1)=q(iT);

end

for iii= sum(q)+1:J

 p=rand();

 if 0.7<=p

 d_D(iii,1) = randi([1,T])

 else

 d_D(iii,1) = T+1;

 end

end

Inizialization of matrix dD = Jx2 (first

colum 𝑑𝑗 ; second columns 𝐷𝑗
0)

Support variable

Deadlines setting for the 𝑞𝑡 slabs

Deadline setting for the last |J| − 𝑞𝑡 slabs

Position Setting

d_D(:,2)=randperm(J)'; %

[~,ind]=sort(d_D(:,2),'descend');

d_D=d_D(ind,:);

soglia= round(T/2); %deadline limit

Random sorting

106

Appendix C

Here we report the results of the computational experiences of the model that have been carried out

using IBM ILOG CPLEX Optimization Studio 12.9 software on an Intel(R) Core(TM) i7-8550U

with 1.80 GHz and 16 GB of RAM.

These regards the 50 random instances generated for each (|T|, |J|) = {(5, 20); (10, 40); (15, 60);

(20, 80); (25,100)}. In particular, in Table .1 and Table .2 are reported the results in terms of

objective function and computing time respectively, for each combination of (|T|, |J|) = {(5, 20);

(10, 40); (15, 60) } and P = {|𝑇|𝑥|𝐽|, 𝑃𝑚, 𝑃𝑚 2⁄ , 𝑃𝑚 4⁄ , 0}. While, in Table .3 and Table .4 are

reported the results in terms of objective function and computing time respectively, for each

combination of (|T|, |J|) = {(20, 80); (25, 100)}.

N=sum(d_D(:,1)<=soglia);

[irup,~]=find(d_D(1:round(size(d_D,1)/2),1)<=soglia);

[irdow,~]=find(d_D((round(size(d_D,1)/2)+1):end,1)>soglia);

irdow=irdow+round(size(d_D,1)/2);

cond = sum(d_D(end:-

1:(round(size(d_D,1)/2)+1),1)<=soglia);

ii = 1;

while(cond<=round(0.6*N)&&(isempty(irup)==0)

&&(cond<=round(0.6*N)&&(isempty(irdow)==0))

appo2= d_D(irdow(ii),1);

d_D(irdow(ii),1)=d_D(irup(ii),1) ;

d_D(irup(ii),1) = appo2 ;

[irup,~]=find(d_D(1:round(size(d_D,1)/2),1)<=soglia);

[irdow,~]=find(d_D((round(size(d_D,1)/2)+1):end,1)>soglia);

irdow=irdow+round(size(d_D,1)/2);

cond=sum(d_D(end:-1:(round(size(d_D,1)/2)+1),1)<=soglia);

end

Evaluation of the number of slabs with

lower deadline to assign in the lower

positions

Position swapping according to the

conditions set above

107

Table .1 Computational results in terms of objective function for (|T|, |J|) = {(5, 20); (10, 40); (15,

60) } and P = {|𝑇|x|𝐽|, 𝑃m, 𝑃m 2⁄ , 𝑃m 4⁄ , 0}

Instance T J

P

|T|x|J| 𝑃𝑚 𝑃𝑚 2⁄ 𝑃𝑚 4⁄ |T|x|J|

Computing time (s)

1 5 20 31 27 18 13 3

2 5 20 132 32 23 17 5

3 5 20 411 31 19 13 1

4 5 20 127 27 21 16 4

5 5 20 33 31 18 13 3

6 5 20 26 22 17 14 6

7 5 20 37 33 26 21 9

8 5 20 121 18 13 10 5

9 5 20 32 24 20 15 4

10 5 20 38 30 21 15 8

11 5 20 226 32 25 19 5

12 5 20 227 31 21 15 8

13 5 20 316 27 15 8 1

14 5 20 134 34 26 19 5

15 5 20 47 37 27 17 4

16 5 20 224 28 20 15 1

17 5 20 310 22 12 6 0

18 5 20 322 34 22 16 10

19 5 20 33 29 17 11 3

20 5 20 30 20 16 14 6

21 5 20 710 38 20 10 0

22 5 20 219 31 19 13 2

23 5 20 39 33 27 23 14

24 5 20 317 32 21 14 0

25 5 20 24 16 13 10 7

26 5 20 131 30 21 11 0

27 5 20 413 32 20 14 0

28 5 20 426 46 25 18 2

29 5 20 55 48 30 18 0

30 5 20 135 38 23 17 4

31 5 20 121 21 17 12 2

32 5 20 136 36 24 18 4

Continued on next page

108

Table .1 – Continued from previous page

Instance T J

P

|T|x|J| 𝑃𝑚 𝑃𝑚 2⁄ 𝑃𝑚 4⁄ |T|x|J|

Computing time (s)

33 5 20 136 29 21 17 2

34 5 20 225 31 23 16 0

35 5 20 226 38 25 13 1

36 5 20 131 38 24 12 0

37 5 20 133 32 22 17 6

38 5 20 614 44 27 18 0

39 5 20 22 22 12 8 0

40 5 20 127 31 20 15 5

41 5 20 224 34 21 14 0

42 5 20 128 34 22 12 2

43 5 20 227 33 21 15 1

44 5 20 115 19 12 8 0

45 5 20 19 19 14 11 5

46 5 20 513 28 22 14 6

47 5 20 40 32 25 13 1

48 5 20 26 26 16 10 4

49 5 20 126 26 18 13 1

50 5 20 39 32 22 18 10

1 10 40 2.42 1675 100 63 40

2 10 40 1.44 918 118 76 51

3 10 40 3.09 1367 184 112 56

4 10 40 1.44 2084 109 64 40

5 10 40 3.16 1685 94 67 48

6 10 40 9.95 2887 134 87 61

7 10 40 1.04 2891 139 88 59

8 10 40 6.86 1308 113 77 57

9 10 40 5.10 2119 144 103 77

10 10 40 0.37 2073 101 61 35

11 10 40 1.11 2108 140 90 60

12 10 40 0.60 2862 104 63 35

13 10 40 1.50 2105 118 79 52

14 10 40 0.53 1674 87 52 39

15 10 40 0.58 903 103 68 45

16 10 40 0.67 1684 116 71 41

Continued on next page

109

Table .1 – Continued from previous page

Instance T J

P

|T|x|J| 𝑃𝑚 𝑃𝑚 2⁄ 𝑃𝑚 4⁄ |T|x|J|

Computing time (s)

17 10 40 1707 140 84 56 14

18 10 40 2084 106 70 45 15

19 10 40 533 118 83 53 20

20 10 40 2099 115 81 49 15

21 10 40 911 120 82 58 33

22 10 40 2102 133 80 53 11

23 10 40 2495 144 87 45 2

24 10 40 508 110 71 38 5

25 10 40 3662 104 62 46 11

26 10 40 3279 142 93 64 19

27 10 40 529 130 90 69 36

28 10 40 1703 120 83 56 14

29 10 40 506 95 66 46 12

30 10 40 1699 122 83 54 9

31 10 40 2490 120 72 42 10

32 10 40 2474 129 82 61 28

33 10 40 3279 135 79 47 15

34 10 40 924 117 78 61 28

35 10 40 2506 153 96 68 26

36 10 40 2110 142 83 57 17

37 10 40 1315 125 86 64 30

38 10 40 2079 108 67 41 15

39 10 40 1703 114 75 51 26

40 10 40 1331 147 101 64 25

41 10 40 2493 125 76 48 18

42 10 40 915 113 76 43 10

43 10 40 128 100 67 39 7

44 10 40 1399 166 118 71 13

45 10 40 2870 106 70 41 9

46 10 40 2051 84 49 29 7

47 10 40 141 117 85 61 34

48 10 40 1273 81 54 33 11

49 10 40 1678 100 69 46 20

50 10 40 1677 108 65 43 10

Continued on next page

110

Table .1 – Continued from previous page

Instance T J

P

|T|x|J| 𝑃𝑚 𝑃𝑚 2⁄ 𝑃𝑚 4⁄ |T|x|J|

Computing time (s)

1 15 60 5618 267 161 99 15

2 15 60 9186 275 164 102 31

3 15 60 5601 231 141 80 14

4 15 60 6468 228 156 104 47

5 15 60 9169 243 158 101 38

6 15 60 9149 217 139 95 24

7 15 60 9144 225 135 95 31

8 15 60 13623 268 160 90 12

9 15 60 10015 208 121 75 28

10 15 60 5614 260 159 98 31

11 15 60 4725 251 173 124 69

12 15 60 10959 274 174 100 25

13 15 60 10052 255 162 93 24

14 15 60 3866 276 185 61 49

15 15 60 3849 244 148 91 12

16 15 60 1077 191 122 87 32

17 15 60 9164 252 159 87 12

18 15 60 3808 232 145 95 40

19 15 60 10065 260 176 94 19

20 15 60 5621 254 144 78 10

21 15 60 7342 215 131 72 12

22 15 60 13634 287 171 92 11

23 15 60 6502 264 167 109 25

24 15 60 12726 285 169 106 14

25 15 60 8292 256 153 90 19

26 15 60 9211 364 179 100 19

27 15 60 7420 257 173 110 45

28 15 60 3011 279 191 119 18

29 15 60 10050 251 162 90 18

30 15 60 6461 201 131 100 46

31 15 60 3824 217 156 105 49

32 15 60 10103 356 209 125 37

33 15 60 12709 228 127 82 8

34 15 60 7389 266 170 108 24

35 15 60 9205 280 171 106 13

Continued on next page

111

Table .1 – Continued from previous page

Instance T J

P

|T|x|J| 𝑃𝑚 𝑃𝑚 2⁄ 𝑃𝑚 4⁄ |T|x|J|

Computing time (s)

36 15 60 8313 278 177 110 13

37 15 60 9166 255 161 98 32

38 15 60 11847 253 146 98 23

39 15 60 3840 245 155 101 39

40 15 60 9181 274 175 103 31

41 15 60 7407 269 180 119 53

42 15 60 5572 209 136 80 17

43 15 60 8189 153 94 61 7

44 15 60 5582 222 148 94 39

45 15 60 6521 266 175 115 48

46 15 60 10072 262 163 96 24

47 15 60 10070 269 166 94 16

48 15 60 5626 260 156 94 25

49 15 60 9159 224 150 106 38

50 15 60 8281 268 166 105 42

112

Table .2 Computational results in terms of computing time (s) for (|T|, |J|) = {(5, 20); (10, 40); (15,

60)} and P = {|𝑇|x|𝐽|, 𝑃m, 𝑃m 2⁄ , 𝑃m 4⁄ , 0}

Instance T J

P

|T|x|J| 𝑃𝑚 𝑃𝑚 2⁄ 𝑃𝑚 4⁄ |T|x|J|

Computing time (s)

1 5 20 0.18 0.20 0.25 0.2 7 0.47

2 5 20 0.19 0.61 0.19 0.21 0.20

3 5 20 0.16 0.19 0.18 0.17 0.17

4 5 20 0.18 0.19 0.2 1 0.24 0.16

5 5 20 0.20 0.24 0.2 1 0.23 0.18

6 5 20 0.17 0.30 0.23 0.18 0.31

7 5 20 0.22 0.25 0.60 0.45 0.36

8 5 20 0.49 0.21 0.23 0.23 0.26

9 5 20 0.86 0.30 0.26 0.31 0.25

10 5 20 0.20 0.22 0.25 0.23 0.41

11 5 20 0.62 0.60 0.36 0.24 0.26

12 5 20 0.84 0.25 0.27 0.62 0.33

13 5 20 0.21 0.18 0.19 0.17 0.20

14 5 20 0.77 0.40 0.37 34.00 0.25

15 5 20 0.61 0.27 0.24 0.23 0.25

16 5 20 0.63 0.25 0.19 0.18 31.00

17 5 20 0.18 0.17 0.22 0.17 0.17

18 5 20 0.27 0.23 0.29 0.25 37.00

19 5 20 0.20 0.20 0.19 0.19 0.24

20 5 20 0.33 0.22 0.19 0.21 0.27

21 5 20 0.24 0.19 0.26 0.19 0.19

22 5 20 0.31 0.20 0.18 0.17 0.23

23 5 20 0.27 0.31 0.20 0.19 0.20

24 5 20 0.23 0.27 0.23 0.27 0.32

25 5 20 0.24 0.30 0.26 0.28 0.21

26 5 20 0.32 0.53 0.19 0.33 0.29

27 5 20 0.28 0.64 0.64 0.33 0.28

28 5 20 0.25 0.66 0.35 0.29 0.31

29 5 20 0.27 0.31 0.20 0.19 0.20

30 5 20 0.28 1.07 0.92 0.44 0.34

31 5 20 0.32 0.46 0.43 0.38 0.35

32 5 20 0.29 0.41 0.44 0.33 0.29

Continued on next page

113

Table .2 – Continued from previous page

Instance T J

P

|T|x|J| 𝑃𝑚 𝑃𝑚 2⁄ 𝑃𝑚 4⁄ |T|x|J|

Computing time (s)

33 5 20 0.62 0.52 0.48 0.44 0.40

34 5 20 0.35 0.31 0.51 0.37 0.27

35 5 20 0.35 0.37 0.29 0.43 0.30

36 5 20 0.34 0.43 0.33 0.36 0.25

37 5 20 0.32 0.48 0.40 0.47 0.41

38 5 20 0.29 0.43 0.22 0.37 0.27

39 5 20 0.26 0.35 0.27 0.33 0.27

40 5 20 0.64 1.25 1.11 0.40 30.00

41 5 20 0.34 0.50 0.47 0.36 0.30

42 5 20 0.35 0.63 0.38 0.32 0.31

43 5 20 0.70 0.40 0.42 0.30 0.30

44 5 20 0.90 0.40 0.45 0.29 0.26

45 5 20 0.80 0.63 0.5 1 0.41 0.46

46 5 20 0.63 0.43 0.24 0.29 0.31

47 5 20 0.50 0.41 0.40 0.36 0.28

48 5 20 0.50 0.74 0.36 0.38 0.30

49 5 20 0.80 0.44 0.31 0.35 0.30

50 5 20 0.47 1.46 0.99 0.63 0.53

1 10 40 2.42 208.32 8.93 6.85 2.03

2 10 40 1.44 7.94 5.30 4.10 1.70

3 10 40 3.09 3.83 2.74 2.99 0.62

4 10 40 1.44 7.66 5.97 5.13 3.20

5 10 40 3.16 7.25 8.22 7.22 6.90

6 10 40 9.95 25.97 24.75 31.64 11.76

7 10 40 1.04 31.47 9.95 7.02 2.49

8 10 40 6.86 12.01 16.15 13.72 9.60

9 10 40 5.10 11.92 14.85 10.76 8.83

10 10 40 0.37 8.11 6.46 4.20 1.93

11 10 40 1.11 18.13 9.93 8.97 2.15

12 10 40 0.60 4.48 4.54 3.67 2.39

13 10 40 1.50 17.31 11.81 9.66 4.48

14 10 40 0.53 4.19 2.93 2.42 2.05

15 10 40 0.58 7.20 6.28 4.95 2.42

16 10 40 0.67 24.31 9.11 5.80 2.38

Continued on next page

114

Table .2 – Continued from previous page

Instance T J

P

|T|x|J| 𝑃𝑚 𝑃𝑚 2⁄ 𝑃𝑚 4⁄ |T|x|J|

Computing time (s)

17 10 40 0.64 18.45 5.11 2.66 2.19

18 10 40 0.95 11.61 7.91 5.11 2.19

19 10 40 5.16 11.87 11.17 6.63 4.97

20 10 40 2.43 24.10 10.48 5.62 1.74

21 10 40 7.69 678.19 55.88 46.02 22.79

22 10 40 1.40 4.34 4.05 4.11 2.17

23 10 40 0.22 7.38 6.16 4.42 1.72

24 10 40 0.72 4.54 3.74 3.91 2.36

25 10 40 0.91 6.25 4.68 3.54 2.48

26 10 40 2.82 15.12 12.61 10.11 2.78

27 10 40 7.92 96.19 28.45 15.55 10.84

28 10 40 1.03 11.98 11.51 6.94 2.16

29 10 40 1.95 12.05 12.57 7.63 1.99

30 10 40 0.49 18.53 7.39 6.19 1.55

31 10 40 1.13 7.47 7.26 6.76 2.37

32 10 40 6.27 361.61 37.04 14.59 8.18

33 10 40 0.98 36.46 8.05 7.16 2.30

34 10 40 4.35 11.25 15.47 8.98 9.13

35 10 40 5.22 45.46 15.27 11.41 8.38

36 10 40 3.01 7.58 9.59 5.39 3.60

37 10 40 6.23 91.17 43.75 16.87 9.51

38 10 40 0.90 12.74 10.99 5.43 1.95

39 10 40 6.70 24.80 37.66 17.25 9.62

40 10 40 8.28 20.52 18.51 10.39 11.41

41 10 40 1.71 21.64 12.36 8.31 5.24

42 10 40 1.17 6.06 6) 5 4.22 1.88

43 10 40 0.68 9.95 7.99 2.65 1.75

44 10 40 1.35 27.05 19.23 10.49 2.25

45 10 40 0.58 3.55 4.58 1.64 1.66

46 10 40 1.00 4.38 5.56 4.31 1.88

47 10 40 4.79 40.25 15.12 9.95 9.64

48 10 40 0.77 9.46 5.49 5.05 1.89

49 10 40 2.51 12.56 9.91 7.57 2.37

50 10 40 1.25 8.40 8.40 5.34 1.98

Continued on next page

115

Table .2 – Continued from previous page

Instance T J

P

|T|x|J| 𝑃𝑚 𝑃𝑚 2⁄ 𝑃𝑚 4⁄ |T|x|J|

Computing time (s)

1 15 60 112.31 1077.07 65.95 36.45 6.45

2 15 60 101.56 372.01 32.75 34.55 11.54

3 15 60 3301.68 2258.94 100.00 54.19 5.77

4 15 60 1071.62 3929.76 311.08 1077.70 141.52

5 15 60 360.89 992.07 163.98 121.66 29.87

6 15 60 17.50 135.19 30.96 27.52 8.72

7 15 60 1267.97 1174.30 109.49 43.85 21.76

8 15 60 329.89 51.67 13.21 21.04 6.50

9 15 60 5220.24 1176.90 117.20 128.97 10.38

10 15 60 19.44 1689.73 177.16 182.31 18.20

11 15 60 6.76 901.18 346.10 221.36 362.09

12 15 60 39.31 467.62 47.66 73.35 6.30

13 15 60 505.97 3343.50 58.42 635.07 12.94

14 15 60 10.36 1634.93 1022.25 76.41 94.65

15 15 60 8.59 527.50 66.27 405.26 4.96

16 15 60 1517.45 7877.27 232.35 137.17 35.80

17 15 60 32.81 59.49 12.00 142.46 4.52

18 15 60 794.62 20527.34 296.71 11.86 35.07

19 15 60 451.05 3715.68 229.31 89.95 6.73

20 15 60 102.82 1777.29 24.38 148.36 4.82

21 15 60 25.82 40.37 31.68 25.60 7.46

22 15 60 2 16.92 203.32 27.58 23.59 4.08

23 15 60 18.91 842.34 122.50 45.77 11.81

24 15 60 15.58 53.25 20.56 80.01 4.31

25 15 60 57.83 538.29 140.36 15.46 12.80

26 15 60 7636.44 13974.52 302.63 150.85 8.87

27 15 60 517.92 5261.45 450.11 218.43 158.57

28 15 60 7.96 1446.24 478.18 194.65 11.77

29 15 60 87.42 350.16 33.50 304.40 7.50

30 15 60 120.80 1291.17 811.34 19.90 118.05

31 15 60 120.41 36130.07 1475.22 228.83 98.01

32 15 60 58.18 6916.84 431.54 646.91 77.74

33 15 60 59.78 35.35 17.78 490.09 4.59

34 15 60 58.34 480.78 63.81 18.00 6.17

35 15 60 5.97 117.03 44.33 66.29 5.59

Continued on next page

116

Table .2 – Continued from previous page

Instance T J

P

|T|x|J| 𝑃𝑚 𝑃𝑚 2⁄ 𝑃𝑚 4⁄ |T|x|J|

Computing time (s)

36 15 60 36.32 1730.69 412.98 25.15 7.88

37 15 60 10.84 94.98 33.22 168.99 30.80

38 15 60 40.80 104.14 43.30 18.54 12.07

39 15 60 9.29 5533.96 417.03 31.48 82.21

40 15 60 347.60 10467.70 163.8 1 240.44 18.15

41 15 60 232.23 19718.64 1055.92 99.70 114.19

42 15 60 890.91 1939.93 136.17 434.72 8.25

43 15 60 19.07 27.98 34.19 53.33 4.70

44 15 60 638.44 3766.62 469.50 11.87 110.48

45 15 60 7712.66 17855.53 6448.24 138.86 111.12

46 15 60 573.10 2936.57 103.87 572.69 19.52

47 15 60 17128.73 21717.63 180.54 55.27 8.78

48 15 60 4441.47 3042. 15 220.67 197.35 18.04

49 15 60 637.25 808.88 169.44 90.59 29.21

50 15 60 1377.58 41250.87 596.92 519.68 44.71

117

Table .3 Computational results in terms of objective function for (|T|, |J|) = {(20,80); (25, 100)} and

P = {|𝑇|x|𝐽|, 0}(in red the instances with a not optimal solution).

Instance T J

P

|T|x|J| 0

Objective function

1 20 80 19536 65

2 20 80 6735 37

3 20 80 16341 45

4 20 80 17889 41

5 20 80 10069 104

6 20 80 14661 27

7 20 80 13148 13

8 20 80 27475 25

9 20 80 13161 119

10 20 80 14762 197

11 20 80 16262 3

12 20 80 22687 40

13 20 80 13169 90

14 20 80 16327 18

15 20 80 17921 27

16 20 80 25885 31

17 20 80 25882 40

18 20 80 21084 38

19 20 80 27411 54

20 20 80 17850 24

21 20 80 19440 32

22 20 80 21096 45

23 20 80 27462 37

24 20 80 16278 22

25 20 80 25889 21

26 20 80 13170 69

27 20 80 11641 56

28 20 80 14750 52

29 20 80 25862 35

30 20 80 13141 48

31 20 80 16385 101

32 20 80 24266 25

33 20 80 24264 18

Continued on next page

118

Table .3 – Continued from previous page

Instance T J

P

|T|x|J| 0

Objective function

34 20 80 13075 29

35 20 80 19470 44

36 20 80 14721 39

37 20 80 21062 27

38 20 80 27470 69

39 20 80 13189 21

40 20 80 13167 22

41 20 80 19555 80

42 20 80 19528 35

43 20 80 16359 63

44 20 80 19565 47

45 20 80 25857 27

46 20 80 13187 82

47 20 80 14716 22

48 20 80 17979 28

49 20 80 18016 125

50 20 80 22673 51

1 25 100 47905 80

2 25 100 33099 65

3 25 100 40420 70

4 25 100 28045 71

5 25 100 33011 86

6 25 100 33080 119

7 25 100 23051 109

8 25 100 30491 41

9 25 100 35500 64

10 25 100 25574 101

11 25 100 47894 46

12 25 100 45547 172

13 25 100 23099 103

14 25 100 37987 26

15 25 100 47965 82

16 25 100 18102 111

Continued on next page

119

Table .3 – Continued from previous page

Instance T J

P

|T|x|J| 0

Objective function

17 25 100 35479 98

18 25 100 57915 96

19 25 100 47894 35

20 25 100 33161 60

21 25 100 33103 80

22 25 100 35533 116

23 25 100 18113 139

24 25 100 37986 83

25 25 100 28193 169

26 25 100 35468 80

27 25 100 32921 97

28 25 100 30634 167

29 25 100 32946 93

30 25 100 38057 26

31 25 100 43021 145

32 25 100 47890 36

33 25 100 45486 123

34 25 100 50440 69

35 25 100 23066 51

36 25 100 50506 79

37 25 100 28031 111

38 25 100 28043 73

39 25 100 30439 97

40 25 100 38050 97

41 25 100 52950 71

42 25 100 33017 121

43 25 100 28086 122

44 25 100 45409 47

45 25 100 30546 71

46 25 100 37929 91

47 25 100 40377 40

48 25 100 37939 65

49 25 100 38028 195

50 25 100 52950 61

120

Table .4 Computational results in terms of computing time(s) for (|T|, |J|) = {(20,80); (25, 100)} and

P = {|𝑇|x|𝐽|, 0}

Instance T J

P

|T|x|J| 0

Computing time (s)

1 20 80 64.56 1749.74

2 20 80 3605.19 48.93

3 20 80 1000.21 272.85

4 20 80 3601.41 545.13

5 20 80 3607.14 3599.27

6 20 80 673.71 28.18

7 20 80 483.42 6.31

8 20 80 92.36 12.29

9 20 80 3607.24 3600.21

10 20 80 3607.61 3600.15

11 20 80 17.59 0.76

12 20 80 1001.73 78.89

13 20 80 3600.20 3603.88

14 20 80 1490.72 8.46

15 20 80 3607.42 360.42

16 20 80 1000.19 30.13

17 20 80 202.10 102.13

18 20 80 680.82 43.23

19 20 80 1002.36 587.74

20 20 80 30.53 10.62

21 20 80 61.56 38.58

22 20 80 37.16 3600.2

23 20 80 43.25 70.69

24 20 80 3300.42 12.31

25 20 80 1388.00 27.67

26 20 80 3603.82 3352.10

27 20 80 1783.52 486.42

28 20 80 10.38 488.54

29 20 80 1000.23 51.97

30 20 80 28.87 77.20

31 20 80 3600.18 3600.44

32 20 80 64.56 14.57

33 20 80 3605.19 0.52

Continued on next page

121

Table .4 – Continued from previous page

Instance T J

P

|T|x|J| 0

Objective function

34 20 80 1545.93 19.69

35 20 80 299.88 116.49

36 20 80 175.42 106.33

37 20 80 1000.65 7.82

38 20 80 381.66 2927.66

39 20 80 17.41 12.50

40 20 80 12.22 22.95

41 20 80 3602.58 3600.19

42 20 80 1000.64 347.45

43 20 80 1418.20 1562.61

44 20 80 3605.36 81.92

45 20 80 115.75 22.79

46 20 80 3602.23 3605.16

47 20 80 19.20 18.03

48 20 80 12.90 35.02

49 20 80 53.19 3604.23

50 20 80 363.73 410.33

1 25 100 3601.92 3601.62

2 25 100 465.77 1704.87

3 25 100 3601.78 3601.96

4 25 100 3600.38 3602.07

5 25 100 3607.97 3605.40

6 25 100 3603.52 3602.05

7 25 100 3601.28 3601.62

8 25 100 3602.67 3600.54

9 25 100 3600.51 3607.63

10 25 100 3607.42 3602.61

11 25 100 3600.51 3224.03

12 25 100 3600.47 3603.84

13 25 100 1170.85 3603.61

14 25 100 3600.65 25.98

15 25 100 3601.63 3618.01

16 25 100 3604.00 3603.85

Continued on next page

122

Table .4 – Continued from previous page

Instance T J

P

|T|x|J| 0

Objective function

17 25 100 247.65 3607.4

18 25 100 3603.82 3603.32

19 25 100 3600.5 153.48

20 25 100 40.19 3600.54

21 25 100 706.93 3602.85

22 25 100 288.57 3603.02

23 25 100 3600.41 3602.71

24 25 100 3601.51 3604.19

25 25 100 3600.38 3603.39

26 25 100 3601.96 3604.08

27 25 100 3600.53 3606.18

28 25 100 2631.33 3602.42

29 25 100 3603.13 3602.57

30 25 100 3603.86 100.32

31 25 100 3600.52 3602.88

32 25 100 3600.43 274.89

33 25 100 3600.39 3602.73

34 25 100 3601.2 3600.61

35 25 100 1121.73 749.61

36 25 100 3601.95 3603.42

37 25 100 3600.45 3602.41

38 25 100 3603.51 3604.78

39 25 100 1718.09 3604.33

40 25 100 3601.35 3603.14

41 25 100 3605.15 3602.18

42 25 100 2743.02 3602.33

43 25 100 443.03 3604.61

44 25 100 3608.23 3600.41

45 25 100 3601.64 3600.46

46 25 100 3601.64 3607.04

47 25 100 3602.99 3601.28

48 25 100 3601.95 3603.16

49 25 100 3260.06 3603.28

50 25 100 3600.44 3607.01

123

Appendix D

Here we report an example to explain the relation between the set of feasible periods for a slab j (𝑇𝑗)

and the set of feasible slabs for a period t (𝐽𝑡) according to the following notation:

𝐽 = {1, … , 𝑛} Set of slabs, indexed by 𝑗 ;

𝑇 = { 1, … , 𝑇̅} Set of order periods, indexed by 𝑡

𝑞𝑡 Number of slabs to retrieve in period 𝑡 ;

𝑡𝑗 Assignment period of slab j (𝑡𝑗 = 0 if the slab is not assigned to any

period)

𝑑𝑗 Deadline of the slab 𝑗;

𝑞𝑟𝑒𝑠
𝑡 Number of requests of the period t still not satisfied;

𝐽𝑡 Set of slabs with a deadline equal or greater than t and with 𝑡𝑗 = 0

𝑇𝑗 Set of periods equal or lower than the deadline of the slab j

𝐸𝑡 Subset of slabs with 𝑑𝑗 = t

𝐸𝑡
0 Subset of slabs with 𝑑𝑗 = t and 𝑡𝑗 = 0;

𝐸𝑡𝑗
0 if t ≠ 𝑑𝑗 𝐸𝑡𝑗

0 = 𝐸𝑡
0 ; otherwise 𝐸𝑡𝑗

0 = 𝐸𝑡
0 –{j};

Consider a horizon time of 3 periods (T={1,2,3}) and the presence of only one stack with n = 8

slabs of the same item; at each slab is associated a deadline whose value is between 1 and 4.

Suppose a set of requests for each period 𝑞1 = 1; 𝑞2 = 4; 𝑞3 = 1. Figure .1 illustrates the

elements of this example where nuances of increasing intensity are used for different values of

deadlines. Suppose we are at the first iteration of an assigning procedure aiming at associating the

slabs to the periods in order to satisfy the requests and do not violate the deadline constraint of the

slabs. At the first iteration any slab is assigned to any period: 𝑡𝑗 = 0 ∀ 𝑗 ∈ 𝐽 and 𝑞𝑟𝑒𝑠
𝑡 = 𝑞𝑡 ∀ 𝑗 ∈ 𝑇.

Hence, let’s suppose we try to assign slab j = 6 with a deadline in 2 (𝑑6 = 2) to the period t = 1.

According to the notation the set of feasible periods of the slab j = 6, i.e. the set of periods equal or

lower than the deadline of the slab, is composed of period 1 and 2 (𝑇6= {1,2}); while the set of

feasible slabs of the period t = 1, i.e. the set of slabs with a deadline equal or greater than the period,

is composed of all the slabs in the stack (𝐽1= {1,2,3,4,5,6,7,8}). According to these sets the slab j

= 6 can be temporary assigned to the period t = 1, but a further check is necessary to definitively

assign this slab to the period. Indeed, the slab j can be definitively assigned to the period t if it is

possible to satisfy the requests of the periods successive to t with feasible slabs still not assigned. In

124

other words, it is necessary to check if the slab j = 6 is not necessary to satisfy any request after t =

1. It is quite easy to verify that the slab j = 6 is necessary to satisfy one of the requests in period 2,

since the requests from period 2 to period 3 are 5, as the slabs with a deadline equal or greater than

t = 2. In general, to make this check it is possible to consider a backward procedure from the last

period 𝑇̅ to the period t+1: at generic period 𝑠| 𝑡 + 1 ≤ 𝑠 ≤ 𝑇̅, it is sufficient to verify that the sum

between the feasible slabs at s (|Js|) and the eventual difference between the sum of feasible slabs

for the successive periods and the sum of the requests for these periods is at least equal to the request

at s. Defined this sum as 𝐴𝑠, the condition to verify is:

 𝐴𝑠 ≥ 𝑞𝑟𝑒𝑠
𝑠 ∀ s ∈ [t, ..., 𝑇 ̅] (1);

and 𝐴𝑠 can be evaluated according to the following formula:

 𝐴𝑠 = |𝐸𝑠𝑗
0 | + 𝐴𝑠+1 − 𝑞𝑟𝑒𝑠

𝑠+1 ∀ s ∈ [t, ..., 𝑇 ̅] (2);

where if s ≠ 𝑑𝑗 |𝐸𝑠𝑗
0 | is the number of slabs not assigned, with a deadline equal to s; otherwise (if

s = 𝑑𝑗) |𝐸𝑠𝑗
0 | is the number of slabs not assigned, with a deadline equal to s minus 1. This latter

subtraction, when the period s is equal to the deadline of the slab j, represents the absence of slab j

for the retrievals from t+1 to 𝑇̅ in the case in which j is definitively assigned to t.

According to the formula (2), let’s check that the slabs j = 6 do not verify the condition (1) in each

period s and cannot be definitively assigned to t = 1:

Since t = 1, 𝑠 ∈ [2, 3], hence starting from s = 3 the condition (1) is verified:

 𝐴3 = |𝐸36
0 | + 𝐴4 = |𝐸36

0 |+ |𝐸46
0 | = 1 + 1 = 2 ;

𝐴3 = 2 ≥ 𝑞𝑟𝑒𝑠
3 = 1 ;

When s = 2, considering the eventual absence of the slabs j = 6, the condition (1) is not verified:

 𝐴2 = |𝐸26
0 | + 𝐴3 − 𝑞𝑟𝑒𝑠

3 = 2 + 2 − 1 = 3 ;

𝐴2 = 3 < 𝑞𝑟𝑒𝑠
2 = 4 ;

Hence, as anticipated, the slab j = 6 is necessary to fulfil the requests in the second period and cannot

be definitively assigned to t =1, since if it was, there will be not enough slabs not expired to satisfy

further periods.

Figure .1 - Stack representation with deadlin

125

Appendix E

Here we report the pseudocode related to the heuristic to the generation of a random feasible solution

developed according to the notation reported in Appendix D:

➢ Constructive heuristic to generate random feasible solutions

1: 𝑡𝑗 ← 0 for all 𝑗 ∈ 𝐽

2: 𝑞𝑟𝑒𝑠
𝑡 ← 𝑞𝑡 ∀ 𝑡 ∈ 𝑇

3: 𝐽𝑡 ← { 𝑗 ∈ 𝐽: 𝑑𝑗 ≥ 𝑡 and 𝑡𝑗 = 0 }

4: while ∑ 𝑞𝑟𝑒𝑠
𝑡

𝑡∈𝑇 > 0 do

5: 𝑡∗ ← 0

6: while 𝑡∗ = 0

7: t ← extract from a uniform distribution in the range (1,|T|)

8: if 𝑞𝑟𝑒𝑠
𝑡 > 0 then

9: 𝑡∗ ← 𝑡
10: end if

11: end while

12: 𝑗∗ ← 0

13: while 𝑗∗ = 0 do

14: j ← extract from a uniform distribution in the range (1,| 𝐽𝑡∗|)

15: 𝑗∗ ← 𝑗
16: if 𝑗∗ > 0 then

17: 𝑠 ← 𝑇̅ + 1

18: while s > 𝑡∗

19: if 𝑑𝑗∗ = 𝑠 then

20: |𝐸𝑠𝑗∗
0 | ← |𝐸𝑠

0| − 1

21: Else

22: |𝐸𝑠𝑗∗
0 | ← |𝐸𝑜

𝑠|

23: end if

24: if 𝑠 ≤ 𝑇̅ then

25: if 𝑠 < 𝑇̅ then

26: 𝐴𝑠 ← 𝐴𝑠+1 + |𝐸𝑠𝑗∗
0 | − 𝑞𝑟𝑒𝑠

𝑠+1

27: Else

28: 𝐴𝑠 ← |𝐸𝑇̅𝑗∗
0 | + |𝐸𝑠𝑗∗

0 |

29: end if

30: if 𝐴𝑠 ≥ 𝑞𝑟𝑒𝑠
𝑠 then

31: if 𝑠 = 𝑡∗ then

32: 𝑡𝑗 ← 𝑡∗

33: 𝑞𝑟𝑒𝑠
𝑡∗

 ← 𝑞𝑟𝑒𝑠
𝑡∗

− 1

34: 𝐽𝑡∗
𝑠

← 𝐽𝑡∗
𝑠

− { 𝑗∗}

35: 𝑗∗ ← 0

36: else

37: 𝑠 ← 𝑠 − 1

38: end if

39: Else

40: 𝐽𝑡∗
𝑠
 ← 𝐽𝑡∗

𝑠
− { 𝑗∗}

41: 𝑗∗ ← 0

42: s ← 0

43: end if

44: Else

45: 𝑠 ← 𝑠 − 1

46: end while

47: end if

48: end while

49: end while

126

Step 1-3:

The retrieval time of each slab is initialized to 0 (𝑡𝑗 ← 0 for all 𝑗 ∈ 𝐽) and the residual orders of

each period are initialized to the number of requests of each period (𝑞𝑟𝑒𝑠
𝑡 ← 𝑞𝑡 ∀ 𝑡 ∈ 𝑇).

Steps 4-11:

Until there is still a request to satisfy (while ∑ 𝑞𝑟𝑒𝑠
𝑡

𝑡∈𝑇 > 0 do), the reference period 𝑡∗ is initialized

to zero and the set of the feasible slabs in 𝑡∗ is initialized to ⋃ 𝐸𝑡
0

𝑡∈[𝑡;𝑇̅+1}

While (while 𝑡∗ = 0) this condition is verified, a period t is extract from a uniform distribution in

the range (1, 𝑇̅) If the residual quantity to satisfy in t is greater than 0 (if 𝑞𝑟𝑒𝑠
𝑡 > 0 then), the

reference period 𝑡∗is set equal to t (𝑡∗ ← 𝑡) the set of the slabs not assignable in 𝑡∗ is initialized to

the empty set (𝐽𝑡∗ ← ∅)

Step 12-15:

Then, a slab j is extracted from a uniform distribution in the range (1,| 𝐽𝑡∗|) and reference slab 𝑗∗ is

set equal to j (𝑗∗ ← 𝑗).

Step 16-49:

If a reference slab has been selected (if 𝑗∗ > 0), it is evaluated if the 𝑗∗ is retrievable in 𝑡∗.

Hence, the period s is set equal to 𝑇̅ + 1 (𝑠 ← 𝑇̅ + 1) and until s is different from 𝑡∗ the number

of slabs with deadline in s still not assigned to any period exept for 𝑗∗ (𝐸𝑠𝑗∗
0) is evaluated.

If s ≠ 𝑑𝑗∗ , 𝑒𝑜𝑗∗
𝑠 is equal to the number of slabs with deadline in s still not assigned to any period

(|𝐸𝑠𝑗∗
0 | ← |𝐸𝑠

0|). Otherwise, |𝐸𝑠𝑗∗
0 | is the number of slabs with deadline in s subtract by one

(|𝐸𝑠𝑗∗
0 | ← |𝐸𝑠

0| − 1).

If s ≤ 𝑇̅ it is necessary to check if the slabs still available in s are greater or at least equal to the

request in s (if 𝐴𝑠 ≥ 𝑞𝑟𝑒𝑠
𝑠 then).

𝐴𝑠 is equal to the number of slabs available in s + 1 minus the requests in s + 1 plus the number

of slabs with deadline in s still not assigned (Set 𝐴𝑠 ← 𝐴𝑠+1 + |𝐸𝑠𝑗∗
0 | − 𝑞𝑟𝑒𝑠

𝑠+1).

Hence, in each period s from 𝑇̅ to 𝑡∗ + 1 (if 𝑠 ≤ 𝑇̅ then), it is check if 𝐴𝑠 ≥ 𝑞𝑟𝑒𝑠
𝑠 .

If this condition is verified for each s, the slab 𝑗∗ is assigned to 𝑡∗(𝑡𝑗∗
← 𝑡∗), the residual orders of

𝑡∗are updated (𝑞𝑟𝑒𝑠
𝑡∗

 ← 𝑞𝑟𝑒𝑠
𝑡∗

− 1) and the subtract 𝑗∗from 𝐽𝑡∗
𝑠
 (𝐽𝑡∗

𝑠
 ← 𝐽𝑡∗

𝑠
− { 𝑗∗}). Otherwise,

𝑗∗ is added to this set 𝐽𝑡∗
𝑠
 (𝐽𝑡∗

𝑎
← 𝐽𝑡∗

𝑠
− { 𝑗∗}), the reference slab 𝑗∗ is reinitialized to 0 (𝑗∗ ← 0)

and the procedure to satisfy a request in 𝑡∗ tries to select a new reference slab present in 𝐽𝑡∗
𝑠

127

Appendix F

Here we report the pseudocode related to the constructive heuristic oriented to the minimization of

the expired slabs according to the notation reported in Appendix D:

Constructive heuristic oriented to the minimization of the expired slabs

1: 𝑡 ← 1 and 𝑡𝑗 ← 0 for all 𝑗 ∈ 𝐽

2: while 𝑡 ≤ 𝑇̅ do

3: if |𝐸𝑡| < 𝑞𝑡 then

4: 𝑡𝑗 ← 𝑡 for all 𝑗 ∈ 𝐸𝑡

5: 𝑞𝑟𝑒𝑠
𝑡 ← 𝑞𝑡 − |𝐸𝑡|

6: 𝑡 ← 𝑡 + 1

7: else

8: while 𝑞𝑟𝑒𝑠
𝑡 > 0 do

9: Extract k from a uniform discrete distribution in the range ⌈1, |𝐸𝑡
0|⌉

10: where 𝑡𝐸𝑡
0(𝑘) = 0

11: 𝑡𝐸𝑡
0(𝑘) ← 𝑡 and 𝑞𝑟𝑒𝑠

𝑡 ← 𝑞𝑟𝑒𝑠
𝑡 − 1

12: end while

13: 𝑡 ← 𝑡 + 1

14: end if

15: end while

16: l ← 1

17: while l ≤ 𝑇̅ 𝐝𝐨

18: if |𝐸0
𝑙 | > 0 𝐭𝐡𝐞𝐧

19: 𝑗 ← 1

20: while ∃! s ∈ ⌈1, 𝑙⌉ where 𝑞𝑟𝑒𝑠
𝑠 > 0 do

21: while ∃! 𝑗 ∈ 𝐸𝑡: 𝑡𝑗 = 0 do

22: if 𝑑𝑗 ← 𝑙 and 𝑡𝑗 ← 0 then

23: Extract s from a uniform discrete distribution in the range ⌈1, 𝑙⌉ where 𝑞𝑟𝑒𝑠
𝑠 > 0

24: 𝑡𝑗 ← 𝑠

25: 𝑞𝑟𝑒𝑠
𝑠 ← 𝑞𝑟𝑒𝑠

𝑠 − 1

26: 𝑗 ← 𝑗 + 1

27: Else

28: 𝑗 ← 𝑗 + 1

29: end if

30: end while

31: end while

32: end while

33: 𝑡 ← 1 and 𝑗 ← 1

34: while 𝑡 ≤ 𝑇̅ do

35: if 𝑞𝑟𝑒𝑠
𝑡 > 0 then

36: while 𝑞𝑟𝑒𝑠
𝑡 > 0 do

37: if 𝑑𝑗 ≥ 𝑡 and 𝑡𝑗 = 0 then

38: 𝑡𝑗 ← 𝑡

39: 𝑞𝑟𝑒𝑠
𝑡 ← 𝑞𝑟𝑒𝑠

𝑡 − 1

40: 𝑗 ← 𝑗 + 1

41: Else

42: 𝑗 ← 𝑗 + 1

43: end if

44: end while

45: 𝑡 ← 𝑡 + 1

46: Else

47: 𝑡 ← 𝑡 + 1

48: end if

49: end while

128

Step 1:

It is considered the first period (𝑡 ←1), and the value of retrieval time of each slab is initialized to

0 (𝑡𝑗 ← 0 for all 𝑗 ∈ 𝐽).

Step 2-15:

One by one, all the periods are taken under consideration (while 𝑡 ≤ 𝑇̅ do).

For each period t, if the number of slabs that expired in t (|𝐸𝑡|) is equal or lower than the number

of slabs requested in that period (𝑞𝑡) all the slabs with deadline in t will be assigned to this period

(𝑡𝑗 ← 𝑡 for all 𝑗 ∈ 𝐸𝑡). Hence, the number of requests still not satisfied in t, 𝑞𝑟𝑒𝑠
𝑡 , will be set by

the difference between 𝑞𝑡 and |𝐸𝑡| (𝑞𝑟𝑒𝑠
𝑡 ← 𝑞𝑡 − |𝐸𝑡|).

Instead, if the number of slabs that expired in t (|𝐸𝑡|) is greater than the number of slabs requested

in that period (|𝐸𝑡| > 𝑞𝑡), until 𝑞𝑟𝑒𝑠
𝑡 becomes equal to 0 (while 𝑞𝑟𝑒𝑠

𝑡 > 0 do), a value k is extracted

from a uniform discrete distribution in the range ⌈1, |𝐸𝑡
0|⌉, Hence, the slab corresponding to the k-

th element of the set 𝑒0
𝑡 is assigned to the period t (𝑡𝐸𝑡

0(𝑘) ← 𝑡), where 𝐸𝑡
0 represents the ordered

set of slabs with deadline t still not assigned (𝐸𝑡
0 = {𝑠 ∈ 𝑒𝑡: 𝑡𝑠 = 0}).

Step 16-32:

Once that all the possible slabs have been assigned to their deadline, l is set to 1, and one by one

all the periods are taken under consideration (while l ≤ 𝑇̅ 𝐝𝐨). Hence, if there are slabs with

deadline in l still not assigned to any period (|𝐸𝑡
0| > 0), and there is at least a period s between 1

and l, in which some order need to be satisfied (while ∃! s ∈ ⌈1, 𝑙⌉ where 𝑞𝑟𝑒𝑠
𝑠 > 0 do) from the

top of the stack, in a descending order, all these slabs are considered and are assigned to a period

s (extract from a uniform distribution in the range ⌈1, 𝑙⌉ where 𝑞𝑟𝑒𝑠
𝑠 > 0).

Step 33-49:

In the end, t is set to 1, and, once again, all the period, one by one, are taken under consideration

(while 𝑡 ≤ 𝑇̅ do) and if they present still some unsatisfied order (if 𝑞𝑟𝑒𝑠
𝑡 > 0 then), until the period

t is completely satisfied (while 𝑞𝑟𝑒𝑠
𝑡 > 0 do), from the top of the stack, in a descending order, all

the slabs with a deadline greater than t and still not assigned (if 𝑑𝑗 ≥ 𝑡 and 𝑡𝑗 = 0 then) are

assigned in t (Set 𝑡𝑗 ← 𝑡).

129

Appendix G

Here we report the pseudocode related to the heuristic’s local search according to the notation

reported in Appendix E and the further notation:

Initial_solution Starting solution ;

Current_solution Current best solution (𝑡𝑗 ∀ 𝑗 ∈ 𝐽 ,

where 𝑡𝑗= 0 if j is not assigned to any

request

Current_value Objective function value of the

Current_solution ;

New_solution Solution generated by a swap between

two slabs;

New_value Objective function value of the

New_solution ;

Swapped Subset of slabs that have been swapped

during the procedure;

Best_new_solution The best solution found in any point

of the procedure;

Best_new_value Objective function value of the

Best_new_solution;

Continue Variable equal to 1 if the procedure

must be repeated, 0 otherwise

130

Improving swap procedure

1: Current_solution ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
2: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑣𝑎𝑙𝑢𝑒 ← 𝑓. 𝑜. (𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)
3: Best_new_solution ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
4: Best_new_value ← 𝑓. 𝑜. (𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)
5: Swapped ← ∅
6: Continue ← 1
7: while Continue > 0 do
8: Continue = 0
9: j ← 1
10: while 𝑗 ≤ |𝐽| do
11: k ←1
12: 𝑅𝑗 ← 𝑡𝑗
13: while 𝑘 ≤ |𝐽| do
14: 𝑅𝑘 ← 𝑡𝑘
15: if 𝑘 > 𝑗 or 𝑘 ∈ 𝑆𝑤𝑎𝑝𝑒𝑑 than
16: if 𝑡𝑗 > 0 then

17: if 𝑡𝑘 = 𝑡𝑗 then

18: k ← 𝑘 + 1
19: else
20: if 𝑑𝑗 ≥ 𝑡𝑘 and 𝑑𝑘 ≥ 𝑡𝑗 then

21: New_solution ← {𝑡𝑠 ∀ 𝑠 ∈ 𝐽: 𝑡𝑘 = 𝑅𝑗 𝑡𝑗 = 𝑅𝑘}

22: New_value ← 𝑓. 𝑜. (New_solution)
23: if New_value > Best_new_value then
24: Best_new_solution ← New_solution
25: Set Best_new_value ← New_value
26: 𝑘∗ ← 𝑘
27: else
28: k ← 𝑘 + 1
29: end if
30: else
31: k ← 𝑘 + 1
32: end if
33: end if
34: else
35: if 𝑡𝑘 > 0 and 𝑑𝑗 ≥ 𝑡𝑘
36: New_solution ← {𝑡𝑠 ∀ 𝑠 ∈ 𝐽: 𝑡𝑘 = 𝑅𝑗 𝑡𝑗 = 𝑅𝑘}

33: New_value ← 𝑓. 𝑜. (New_solution)
34: if New_value > Best_new_value then
35: Best_new_solution ← New_solution
36: Best_new_value ← New_value
37: 𝑘∗ ← 𝑘
38: else
39: 𝑘 ← 𝑘 + 1
40: end if
41: else
42: 𝑘 ← 𝑘 + 1
43: end if
44: end if
45: else
46: 𝑘 ← 𝑘 + 1
47: end if
48: end while
49: if Best_new_value > Current_value then
60: Current_solution ← Best_new_solution
51: Current_value ← Best_new_value
52: Swapped ← Swapped ∪ { j , 𝑘∗}
53: Continue ← 1
54: end if
55: 𝑗 ← 𝑗 + 1
56: end while
57: end while

131

Step 1-6:

Starting from an Initial_solution (represented by the set of assignment periods of each slab

(Initial_solution = {𝑡𝑗 ∶ 𝑗 ∈ 𝐽}), procedure sets Current_solution and Best_new_solution

equal to the Initial_solution and evaluate the relative objective function values (𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑣𝑎𝑙𝑢𝑒 ←

𝑓. 𝑜. (𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛), Best_new_value ← 𝑓. 𝑜. (𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) Then, the set of the slabs

swapped during the procedure is initialized to the empty set (Swapped ← ∅) and the variable

Continue, that indicates if the procedure must continue (Continue = 1) or not (Continue = 0) is set

equal to 1.

Step 7-9:

While the Continue variable is equal to 1, the procedure selects the first slab of the stack, j = 1,

sets the variable Continue equal to 0 and proceeds.

Step 10-13:

Until all the slabs have been considered (while 𝑗 ≤ |𝐽|), the procedure starts to consider again all

the slabs (while 𝑘 ≤ |𝐽|) starting from the first, k = 1, and records the value of 𝑡𝑗 as 𝑅𝑗.

Step 14-48:

The current retrieval time of the slab k under consideration is recorded as 𝑅𝑘 (𝑅𝑘 ← 𝑡𝑘).

if the slab k is in a lower position than j or the slab k has been already swapped (if 𝑘 > 𝑗 or 𝑘

∈ 𝑆𝑤𝑎𝑝𝑒𝑑 than) the possible swap between k and j is evaluated.

If 𝑡𝑗 = 0, this swap is evaluated only when 𝑡𝑘 ≥ 0 and 𝑑𝑗 ≥ 𝑡𝑘 Otherwise, if 𝑡𝑗 ≥ 0, the swap is

evaluated when 𝑡𝑘 ≠ 𝑡𝑗 , 𝑑𝑗 ≥ 𝑡𝑘 and 𝑑𝑘 ≥ 𝑡𝑗 If these conditions are verified, the swap between

j and k, is evaluate, creating a New_solution, where 𝑡𝑗 = 𝑅𝑘 and 𝑡𝑘 = 𝑅𝑗 , and calculating the

relative objective function value, New_value = o.f.(New_solution). If the New_value under

consideration is better than the previous Best_new_value found, the Best_new_solution and the

relative Best_new_value are updated (Step 23-24 if 𝑡𝑗 > 0 or Step 37-38 if 𝑡𝑗 = 0) (Set

Best_new_solution ← New_solution and Set Best_new_value ← New_value)

Step 49-54:

After that all the possible swaps between the slab j and the other slabs have been evaluated, if the

Best_new_value is better than the Current_value, the Current_solution and the Current_value are

updated, and the variable Continue is set to 1 (Set Current_solution ← Best_new_solution , Set

Current_value ← Best_new_value and Set Continue ← 1)

Step 54-56:

Then, j is incremented, (𝑗 ← 𝑗 + 1) until it reaches the value |J|, and if at end, at least one update

of the Current_solution has been performed, having reset to 1 the variable Continue, the procedure

will start again, otherwise, the procedure will stop

132

Appendix H

Here we report the results of the computational experiences of the h that have been carried out using

a script in Python on an Intel(R) Core(TM) i7-8550U with 1.80 GHz and 16 GB of RAM.

These regards the same 50 random instances generated for each (|T|,|J|) = {(20, 80); (25,100)} used

to test the model(1|1). In particular, in Table .5 and Table .6 are reported the comparisons of the

results obtained by the heuristic and by the model in terms of objective function and computing time

for each combination of (|T|,|J|) = {(20, 80); (25,100)} for P = |T|x|J| and P = 0 respectively. The

better value between the model and heuristic both in terms of objective function and computing time

is green coloured.

Table .5 Computational results in terms of objective function and computing time(s) for (|T|, |J|) =

{(20,80); (25, 100)} and P = |T|x|J|

Instance T J
Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐

Objective function Computing time (s)

1 20 80 19536 19551 64.56 148.54

2 20 80 6735 6748 3605.19 218.14

3 20 80 16341 16347 1000.21 225.10

4 20 80 17889 17910 3601.41 203.42

5 20 80 10069 10084 3607.14 212.81

6 20 80 14661 14688 673.71 219.33

7 20 80 13148 13165 483.42 204.03

8 20 80 27475 27478 92.36 225.14

9 20 80 13161 13167 3607.24 186.92

10 20 80 14762 14794 3607.61 131.64

11 20 80 16262 16293 17.59 114.99

12 20 80 22687 22693 1001.73 169.41

13 20 80 13169 13186 3600.2 245.60

14 20 80 16327 16336 1490.72 192.34

15 20 80 17921 17942 3607.42 231.50

16 20 80 25885 25893 1000.19 141.11

17 20 80 25882 25904 202.10 187.67

18 20 80 21084 21089 680.82 213.17

19 20 80 27411 27423 1002.36 194.54

20 20 80 17850 17861 30.53 190.32

21 20 80 19440 19441 61.56 216.40

22 20 80 21096 21103 37.16 178.88

23 20 80 27462 27468 43.25 190.40

Continued on next page.

133

Table .5 – Continued from previous page

Instance T J
Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐

Objective function Computing time (s)

24 20 80 16278 16298 3300.42 239.67

25 20 80 25889 25899 1388.00 174.70

26 20 80 13170 13210 3603.82 229.12

27 20 80 11641 11671 1783.52 190.86

28 20 80 14750 14772 10.38 141.15

29 20 80 25862 25868 1000.23 168.40

30 20 80 13141 13164 28.87 181.73

31 20 80 16385 16385 3600.18 182.63

32 20 80 24266 24266 64.56 204.04

33 20 80 24264 24285 3605.19 195.47

34 20 80 13075 13097 1545.93 221.91

35 20 80 19470 19484 299.88 200.93

36 20 80 14721 14741 175.42 169.45

37 20 80 21062 21062 1000.65 214.04

38 20 80 27470 27480 381.66 194.37

39 20 80 13189 13192 17.41 165.09

40 20 80 13167 13177 12.22 121.12

41 20 80 19555 19584 3602.58 227.72

42 20 80 19528 19533 1000.64 209.60

43 20 80 16359 16369 1418.2 134.27

44 20 80 19565 19596 3605.36 211.42

45 20 80 25857 25861 115.75 197.91

46 20 80 13187 13212 3602.23 187.32

47 20 80 14716 14731 19.20 214.00

48 20 80 17979 17997 12.90 197.23

49 20 80 18016 18019 53.19 174.82

50 20 80 22673 22684 363.73 160.29

1 25 100 47905 47925 3601.92 454.69

2 25 100 33099 33125 465.77 526.10

3 25 100 40420 40434 3601.78 598.44

4 25 100 28045 28058 3600.38 579.12

5 25 100 33011 33048 3607.97 535.29

6 25 100 33080 33102 3603.52 464.93

7 25 100 23051 23109 3601.28 492.26

8 25 100 30491 30513 3602.67 482.44

Continued on next page

134

Table .5 – Continued from previous page

Instance T J
Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐

Objective function Computing time (s)

9 25 100 35500 35510 3600.51 456.61

10 25 100 25574 25603 3607.42 515.74

11 25 100 47894 47901 3600.51 378.73

12 25 100 45547 45576 3600.47 436.75

13 25 100 23099 23112 1170.85 566.85

14 25 100 37987 38001 3600.65 407.31

15 25 100 47965 47990 3601.63 422.09

16 25 100 18102 18107 3604.00 643.54

17 25 100 35479 35484 247.65 585.20

18 25 100 57915 57925 3603.82 516.36

19 25 100 47894 47910 3600.50 521.12

20 25 100 33161 33166 40.19 593.64

21 25 100 33103 33109 706.93 594.91

22 25 100 35533 35536 288.57 538.38

23 25 100 18113 18126 3600.41 566.71

24 25 100 37986 38012 3601.51 583.98

25 25 100 28193 28202 3600.38 580.32

26 25 100 35468 35478 3601.96 639.85

27 25 100 32921 32948 3600.53 580.65

28 25 100 30634 30672 2631.33 463.76

29 25 100 32946 32976 3603.13 658.23

30 25 100 38057 38078 3603.86 408.68

31 25 100 43021 43033 3600.52 470.00

32 25 100 47890 47896 3600.43 371.66

33 25 100 45486 45510 3600.39 499.74

34 25 100 50440 50443 3601.20 549.23

35 25 100 23066 23102 1121.73 460.45

36 25 100 50506 50523 3601.95 417.32

37 25 100 28031 28043 3600.45 444.91

38 25 100 28043 28049 3603.51 532.70

39 25 100 30439 30465 1718.09 673.02

40 25 100 38050 38060 3601.35 609.50

41 25 100 52950 52952 3605.15 577.88

42 25 100 33017 33021 2743.02 599.38

43 25 100 28086 28113 443.03 485.72

Continued on next page

135

Table .5 – Continued from previous page

Instance T J
Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐

Objective function Computing time (s)

44 25 100 45409 45422 3608.23 537.44

45 25 100 30546 30562 3601.64 439.42

46 25 100 37929 37936 3601.64 541.56

47 25 100 40377 40388 3602.99 644.80

48 25 100 37939 37982 3601.95 437.83

49 25 100 38028 38041 3260.06 516.18

50 25 100 52950 25543 3600.44 548.15

Table .6 Computational results in terms of objective function and computing time(s) for (|T|, |J|) =

{(20,80); (25, 100)} and P = 0

Instance T J
Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐

Objective function Computing time (s)

1 20 80 65 68 1749.74 487.99

2 20 80 37 40 48.93 350.39

3 20 80 45 50 272.85 330.58

4 20 80 41 44 545.13 409.09

5 20 80 104 123 3599.27 533.17

6 20 80 27 32 28.18 564.56

7 20 80 13 13 6.31 563.53

8 20 80 25 26 12.29 209.98

9 20 80 119 127 3600.21 208.43

10 20 80 197 202 3600.15 186.18

11 20 80 3 3 0.76 160.63

12 20 80 40 43 78.89 188.68

13 20 80 90 86 3603.88 283.06

14 20 80 18 19 8.46 192.48

15 20 80 27 30 360.42 220.54

16 20 80 31 31 30.13 177.88

17 20 80 40 41 102.13 188.06

18 20 80 38 38 43.23 206.5

19 20 80 54 58 587.74 198.98

20 20 80 24 27 10.62 190.95

21 20 80 32 32 38.58 237.87

22 20 80 45 46 3600.2 162.95

23 20 80 37 42 70.69 175.58

Continued on next page

136

Table .6 – Continued from previous page

Instance T J
Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐

Objective function Computing time (s)

24 20 80 22 22 12.31 213.27

25 20 80 21 21 27.67 193.97

26 20 80 69 72 3352.1 262.34

27 20 80 56 56 486.42 276.19

28 20 80 52 55 488.54 200.93

29 20 80 35 36 51.97 167.3

30 20 80 48 50 77.2 253.91

31 20 80 101 112 3600.44 237.62

32 20 80 25 27 14.57 171.85

33 20 80 18 22 7.35 173.22

34 20 80 29 33 19.69 228.94

35 20 80 44 50 116.49 192.61

36 20 80 39 40 106.33 185.13

37 20 80 27 27 7.82 196.39

38 20 80 69 76 2927.66 198.26

39 20 80 21 21 12.5 195.25

40 20 80 22 22 22.95 353.66

41 20 80 80 88 3600.19 399.34

42 20 80 35 40 347.45 293.11

43 20 80 63 63 1562.61 356.14

44 20 80 47 47 81.92 411.36

45 20 80 27 33 22.79 287.11

46 20 80 82 80 3605.16 370.86

47 20 80 22 25 18.03 346.99

48 20 80 28 30 35.02 186.72

49 20 80 125 126 3604.23 200.87

50 20 80 51 54 410.33 204.8

1 25 100 80 91 3601.62 392.95

2 25 100 65 67 1704.87 734.81

3 25 100 70 75 3601.96 566.56

4 25 100 71 73 3602.07 591.66

5 25 100 86 82 3605.4 527.67

6 25 100 119 123 3602.05 550.6

7 25 100 109 117 3601.62 652.36

8 25 100 41 45 3600.54 568.88

Continued on next page

137

Table .6 – Continued from previous page

Instance T J
Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐

Objective function Computing time (s)

9 25 100 64 68 3607.63 483.04

10 25 100 101 86 3602.61 528.6

11 25 100 46 46 3224.03 417.32

12 25 100 172 172 3603.84 575.46

13 25 100 103 100 3603.61 585.66

14 25 100 26 29 25.98 459.57

15 25 100 82 93 3618.01 428.45

16 25 100 111 112 3603.85 694.49

17 25 100 98 84 3607.4 607.08

18 25 100 96 106 3603.32 531.07

19 25 100 35 39 153.48 427.75

20 25 100 60 66 3600.54 649.05

21 25 100 80 83 3602.85 620.23

22 25 100 116 121 3603.02 679.15

23 25 100 139 115 3602.71 833.41

24 25 100 83 92 3604.19 531.36

25 25 100 169 153 3603.39 756.85

26 25 100 80 68 3604.08 551.67

27 25 100 97 112 3606.18 566.73

28 25 100 167 177 3602.42 567.51

29 25 100 93 100 3602.57 655.1

30 25 100 26 32 100.32 484.69

31 25 100 145 141 3602.88 550.46

32 25 100 36 39 274.89 346.63

33 25 100 123 116 3602.73 535.52

34 25 100 69 70 3600.61 465.02

35 25 100 51 58 749.61 634.42

36 25 100 79 86 3603.42 457.26

37 25 100 111 92 3602.41 505.3

38 25 100 73 77 3604.78 591.14

39 25 100 97 110 3604.33 650.23

40 25 100 97 82 3603.14 568.8

41 25 100 71 77 3602.18 625.91

42 25 100 121 123 3602.33 638.14

43 25 100 122 139 3604.61 480.69

Continued on next page

138

Table .6 – Continued from previous page

Instance T J
Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐

Objective function Computing time (s)

44 25 100 47 50 3600.41 584.66

45 25 100 71 71 3600.46 518.31

46 25 100 91 99 3607.04 538.72

47 25 100 40 49 3601.28 540.16

48 25 100 65 73 3603.16 406.38

49 25 100 195 205 3603.28 643.51

50 25 100 61 72 3607.01 641.42

	frontespizio.pdf
	Documento di Tesi.pdf

