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Introduction 

 

 

 

The shipbuilding industry represents a crucial industrial sector for many national economies either 

for strategical perspectives or for the direct impacts direct in terms of produced income and induced 

employment. It involves a vast and intricate network of links and exchanges within the sector itself 

and with other industries. Its supply chain has a global extension and it deals with the production of 

the raw materials (mainly steel slabs and profiles, paints and pipes), of the essential equipment 

(motors, electrical and electronic systems), of auxiliary components (furniture, accessories, special 

devices) which are purchased from numerous and specialised suppliers, worldwide located. 

Considering the (pre-Covid pandemic) growth of the demand, the increasing competition, the need to 

reduce the “time to market” within a production context typically inspired by an Engineer-To-Order 

philosophy, the management of the entire supply chain particularly complex and challenging. Among 

the many issues, one of the specific aspects concerns the co-existence along the various production 

steps, of very “traditional” labour intensive processes represented by the hull building with innovative 

productions related, for instance, to the control and telecommunication systems. However, if the 

“traditional” approach still represents, despite the attempts to innovate practices and procedures, the 

cultural mainstream that involves the organization of the information systems, whose setting is mainly 

based on not innovative hardware and software systems. 

This work has been developed in this actual context, thanks to the collaboration to relevant enterprises 

of the sector engaged in processes of re-engineering of the production and logistics procedures to be 

translated in the definition of an innovative Decision Support Systems (DSS) whose design and 

realization have absorbed a relevant part of the entire work.  

Within the DSS, actually implemented and introduced in the ordinary processes management, 

opportunities to embed optimization approaches to perform the most critical logistic processes have 

been considered. 

The first example of introduction of ad-hoc procedures oriented to a process optimization is 

represented by the inbound handling of large steel slabs that constitutes the most crucial logistic 

operation, which is specific and original of this sector.  

In practise, vessel hulls are typically built in sections (“blocks”), whose production is entrusted to 

specialised suppliers that cut, bend, shape and weld steel slabs and profiles in order to obtain a wide 

variety of subassemblies. These subassemblies are then delivered to the shipyard where the assembly 



 

2 
 

process of the whole hull is performed. During these phases, the coordination between steel mill, 

subassembly centres and shipyards is fundamental. 

The entire process starts with the delivery by the steel mill of steel slabs, from which, through 

complex cutting operations, all the components needed to produce subassemblies are provided. These 

slabs are steel plates that can weigh up to more than 13 tons and whose extension can reach 46 m2. 

Due to their physical characteristics, steel slabs are stored in stacks. The storage and retrieval of the 

steel slabs from the stacks represent one of the main issues to overcome to avoid bottlenecks in the 

production process. In the literature, the problem has been defined as the Slab Stack Shuffling (SSS) 

problem. However, due to the specificity of the problem and of the involved industrial sector, the 

state of the art is not particularly rich. Then in this work a general framework of the problem is 

proposed in order to illustrate the various aspects and determinants affecting its management. 

Therefore, the proposal of a model and of an algorithm able to tackle some variants of the problem. 

In practice, the thesis can be divided into two parts. The first part (Chapters 1 and 2) is devoted to the 

description of the main characteristics of the shipbuilding sector and of the typical production and 

logistics processing occurring in the context.  

In particular, Chapter 1 is devoted to the description of peculiarities of the shipbuilding sector and 

market, highlighting the existing (pre-Covid pandemic) trends. Then a focus on the supply chain of 

the sector is proposed. 

In Chapter 2, the attention is paid to the illustration of the industrial case study whose cooperation 

has been fundamental for the development of the work. In particular, after the description of the inputs 

(steel slabs and profiles), and of the outputs (components and subassemblies), the typical production 

and logistic problems are analysed and the issues related to the slab storage and retrieval operations 

underlined.  

Indeed, being the slabs stacked one on the other, when a slab is not on the top of its stack, to retrieve 

it, a shift of the elements above the target one is necessary. Each shift is called "shuffle", and the less 

is the number of shuffles, the faster is the retrieval process. In literature, the problem that aims at 

choosing appropriate slabs for an order or a group of orders to minimise shuffles during the retrieval 

process is known as the Slab Stack Shuffling (SSS) Problem. This problem has always been 

contextualised as part of the slab creation process and occurs between continuous casting and the hot 

rolling process. However, its study is fundamental to develop the best possible solutions to the case 

study.  

The second part of the work, (Chapters 3 and 4) illustrate the state of the art on the SSS problem and 

the proposal of new models and heuristics, related to some variants of the problem.  

In particular, in Chapter 3, we start analysing the Stacking problems, a class of problems arising in 

the container handling with some similarities with the SSS problems. Then, a literature review of the 
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main works specifically devoted to the SSS problem is conducted. Finally, as result of this analysis, 

we propose an original framework able to include all the elements that can characterise the SSS 

problem. 

In the last chapter, a first mathematical formulation is introduced able to include some of the variants 

indicated in the proposed framework. Then, one of the proposed model is solved on a set of randomly 

generated instances – whose procedure of generation is in turn presented – through the use of a 

commercially available solver (CPLEX). The significant computing times associated to the solution 

instances suggest the proposal of appropriate heuristics to solve the problem that are consequently 

tested. Finally, a brief description of the implemented DSS that should include the optimization 

procedures to be implemented, as further developments of the present work, is reported. 
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1 An introduction to the shipbuilding sector: trends, actors, and 

logistics 

 

 

 

Summary 

This chapter provides an overview of the shipbuilding sector. Specifically, we start outlining the main 

characteristics of the sector, particularly emphasizing the segment dealing with new ships production, 

namely the Shipbuilding Industry. Afterwards, we present an analysis of the shipbuilding market in 

terms of produced items, competition aspects, entry/exit barriers, and industry trends before the 

spread of the Covid-19 emergency.  

Finally, we focus on the description of the shipbuilding supply chain, detailing its most prominent 

logistics phases. 

 

1.1 The shipbuilding sector 

The shipbuilding industry is a dynamic and competitive sector that has traditionally been of crucial 

importance within the economies of many countries - such as Great Britain, France, Germany, Italy, 

USA, Japan, Korea and China - in terms of both direct and induced employment (Ferrari, 2012). It 

has an intensive network of links and exchanges with other industries in the manufacturing and 

service sector, particularly the mechanical and metallurgical industries, and those concerned with the 

provision of high value-added and high-qualification services. This sector is also characterized by 

labour-intensive processes with a high degree of complexity, thus requiring significant skill levels. 

In general, shipbuilding is defined as the set of activities relating to the construction of ships and 

pleasure crafts; however, the manufacturing processes encompass very heterogeneous practices that 

need to be specifically characterized and analysed. 

In the broad context of shipbuilding, three main segments can be identified: (i) the Shipbuilding 

Industry, dealing with the production of new ships; (ii) the Ship Repair Industry, mainly oriented at 

maintenance activities; and (iii) the Conversion Industry, aimed at the conversion of existing ships. 

Despite their similarities, each of these industries faces its own demand and presents different trends. 

This thesis explicitly focuses on the Shipbuilding Industry. 

In this segment, production processes mostly concern three types of outputs: high-tech ships, standard 

ships, and cruise ships.  High-tech ships include chemical vessels (i.e., oil tankers carrying chemicals 

in bulk), gas tankers transporting liquefied natural gas, and Roll-on/roll-off ships (RoRo). The latter 
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are designed to carry wheeled cargo in combination with containers (RoCon) or passengers (RoPax, 

e.g., ferries). Figure 1.1 provides some examples of the vessels mentioned above.  

On the other hand, standard ships are (unwheeled) cargo ships not devoted to passengers 

transportation, whose design and construction is not relatively complex, comprising container ships, 

bulkers, liquid tankers, and general cargo vessels (see Figure 1.2). 

Finally, cruise ships are those used for the transport of passengers, for which it is possible to stay 

overnight on board. Their dimensions can vary in a vast range, i.e., from a few tons up to 150-200 

thousand tons Gross Tonnage (GT, i.e., the measurement of the ship's internal volumes). Cruise ships 

can reach a length of almost 400 m, heights of 70 m and can accommodate up to 5-6 thousand 

passengers in addition to the crew. They are characterized by the high quality of the equipment, 

interior finishes and furnishings that render them actual "floating hotels" (Figure 1.3). These elements 

help to understand the complexity of this kind of ship compared to the former ones. Think, for 

instance, that standard ships may require up to 550 000 parts for a complex vessel, while 900 000 

parts are necessary for cruise ships (Gourdon et al., 2019). 

We should note that nowadays, differently from a few decades ago, the construction of a ship is only 

partly carried out by shipbuilders. Indeed, it is increasingly common for shipbuilders to buy 

significant production parts from external manufacturers and assemble them internally. Therefore, 

we can consider the shipbuilding industry an "assembly industry" that relies heavily on work-in-

progress inputs. As Gourdon et al. (2019) underline, shipbuilders' value-added lies, on average, only 

between 20% and 30% of the final production value.  

For all these outputs, construction activities are carried out in specialized factories called shipyards, 

where production/assembly is performed in a fixed-station. In other words, all the resources and 

materials are conveyed to the fixed-station, and the ship to be built remains fixed, i.e., it does not 

move within the shipyard. Note that this the only possible way, given the considerable size of the 

product (Pareschi, 2007), and renders the overall logistic production process particularly difficult to 

manage.  

Therefore, the shipbuilding industry, prominently that of the high-tech and cruise ships, is 

characterized by high complexity, mainly due to the peculiarity of combining the most varied skills 

and actors in a closely interconnected system. The latter, in turn, raises the challenge to manage a 

considerable amount of information coming from multiple and diversified sources. 
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Figure 1.1 – High Tech ships: (a) Chemical vessel; (b) Gas tanker; (c) RoRo ship; (d) Ferry 

 

Figure 1.2 – Standard ships: (a) Container ship; (b) Bulker ship; (c) Tanker; (d) General cargo ship 

 

Figure 1.3 – A cruise ship 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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Additionally, according to the classification proposed by Wortmann (1983), it can be considered as 

an Engineer-To-Order (ETO) sector since the customer's order "goes back" to the design/engineering 

phases to trigger the production process. Indeed, the level of customization, especially in high-tech 

and cruise ships, is very high. Although some may belong to the same series, they usually have 

distinctive elements that determine a broad diversification of the final products, thus requiring very 

flexible supply chains.  

In general, it is well-known (and relatively intuitive) that the demand in this sector typically depends 

on the mobility demand for transport, that is, the need to move goods or offer services. In turn, the 

demand for transport depends on the demand for final goods and services, and, hence, ultimately on 

general economic performance. Therefore, the consequence of an economic crisis may tighten the 

demand for transport itself and consequently for new commercial ships. 

In practice, these are the effects brought by the outbreak of the recent Covid-19 pandemic, which 

determined a profound crisis in the international shipping sector, leading to a significant reduction in 

the growth prospects for the year 2020 (Nautilus, 2020). In fact, it caused a collapse in demand and 

a sudden interruption of the production activities, reflected in the postponement of new ships orders 

and of the corresponding expected revenues (LBJ, 2020). 

Finally, a further characteristic of the shipbuilding sector is that the supply adapts to the demand with 

a significant delay, given the long throughput times (three years, on average) elapsing from the 

moment the order for a new ship is received and the moment of the final delivery. Notably, despite 

the great recession in 2009, global ship completions were historically high in 2010 and 2011. 

In other words, although Covid-19 exacerbated the difficulties of shipbuilding companies to meet an 

already highly volatile demand, its actual impacts on the market can only be assessed in the next 

future. As a result, business levels remained relatively stable. Moreover, according to the data 

provided by Fincantieri S.p.A., a world-leading company, especially in the cruise ship field, 

production volumes should return to pre-Covid levels in the second half of 2021, and revenues in the 

second half of 2020 should be broadly in line with those in the corresponding period of 2019 (La 

Stampa, 30 October 2020). This evidence testifies that the problem under investigation in the present 

thesis keeps being still of both practical and economic relevance in the shipbuilding industry, even in 

these uncertain times. 
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1.2 Recent trends in the shipbuilding market 

This section presents an analysis of recent trends in the shipbuilding market. We feel the need to 

highlight the data hereafter discussed refer to the period before the outbreak of the Covid-19 

pandemic. As we already underlined, these projections may be partially reshaped in the next future 

due to the pandemic's unknown economic impact.  

In general, the shipbuilding sector has been characterized by remarkable growth in the last years; in 

2018, the volume of new cruise ship orders reached 22 billion dollars, i.e., 35% of the total (ICE, 

2018). This increase has led to a growth in European shipyards compared to Asian ones, which are 

more focused on standard ships production.  

However, oil tankers and bulkers remain the most produced ships since they more easily allow 

achieving economies of scale and minimizing unitary transportation costs.   

The general increase in the business volumes has also been driven by the need to produce more fuel-

efficient ships in compliance with the latest environmental regulations. Indeed, fuel represents a 

relevant quota of the overall operating costs. Finally, growth is also expected in the construction of 

RoRo ferries, offshore market ships and gas transport ships due to the increasing energy needs (BRS 

GROUP, 2019).  

Thus, the market trend shows a global recovery in the shipbuilding sector compared to the 2016 crisis. 

This market recovery also positively impacted new construction prices that had fallen by around 25% 

in 2016 since 2009 (DSF, 2016) and increased up to 10% in 2018 (BRS GROUP, 2019). Nevertheless, 

the 2017 delivery level was still higher than the new orders' level. This evidence indicates an enduring 

situation of imbalance between supply and demand. In 2016, this oversupply caused a sharp decline 

of new ships' orders, leading the world's leading shipbuilders to reduce the number of active shipyards 

to cut costs (OECD, 2017). However, it is interesting to point out that Europe shows an opposite trend 

to the rest of the world market. In particular, the Italian shipbuilding industry (as we also detail in the 

next section) minimized these negative impacts, given its intense focus on high value-added market 

segments characterized by severe entry barriers. 

Notably, another recent phenomenon in the shipbuilding industry concerns the frequent resort to 

outsourcing of non-core activities.  Unlike a few decades ago, where shipbuilding companies were 

heavily vertically integrated as they carried out most of the ships' production processes, one can see 

a gradual shift to an "assembly shipyard" paradigm. Accordingly, many activities, especially low-

tech ones, are allocated to external partners. In contrast, core ones are still performed "in-house" as 

they can be a source of competitive advantage (Mello et al., 2010). More often than not, this has also 

been accompanied by merging strategies, through which bigger companies acquired smaller ones, 

thus creating large industrial groups (horizontal integration) to better tackle competition in an 

increasingly dynamic and global context. 
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1.3 A closer look at the shipbuilding supply side 

A sort of duopoly on the supply side characterizes the shipbuilding market, given the presence of the 

Asian shipyards, on the one hand, and the European ones, on the other. The latter are gathered in an 

umbrella organization named CESA (Community of European Shipyards Associations). According 

to the United Nations Conference on Trade and Development, the three largest economies involved 

in shipbuilding (i.e., China, Korea and Japan) contributed to 90% of the global completions of ships 

in Gross Tonnage (GT) tons in 2018 (UNCTAD, 2019). In particular, the Chinese shipbuilding 

industry stands out with a considerable expansion of its production capacity mainly driven by the 

need to have a fleet that would help support the significant import and export flows. 

The market shares held by the different players vary according to the considered segments. For 

example, cruise ship production is mainly concentrated in Europe (particularly in Germany, Italy, 

France, and Finland), while standard ships are largely manufactured in Asian countries, especially 

Japan and Korea.  As concerns the Chinese industry, although it has historically focused on producing 

standard ships, given the low labour costs and economies of scale resulting from the significant 

production volumes achieved in recent years, it is shifting its production to cruise ships. Lower labour 

costs are also the primary motivation behind the strengthening of Eastern Europe industries, i.e., 

Croatia and Romania, and new players' entry in the market, like India and Vietnam in Asia. To 

provide the reader with some recent quantitative data on the shipbuilding industry, Table 1.1 shows 

the order book, expressed in millions of gross capacity tonne (i.e., deadweight tonnage - dwt), 

referring to years 2018 and 2019. It emerges that European shipyards, having lower production 

volumes, have less capacity to exploit economies of scale than Asian shipyards. This fact depends on 

the type of production. Indeed, by looking at Table 1.2, one can note that, despite a very slight 

decrease in orders in 2019, it is quite evident that the European yards are still predominant in the field 

of cruise ships. 

 

Table 1.1 - Distribution of shipbuilding market shares (source: BRS GROUP, 2020) 

Orderbook 
 

2018 2019 

 Market share 43.0% 45.4% 

China Ships 1309 1206 

m dwt 97.1 91.4 

 Market share 27.8% 28.1% 

Korea Ships 460 483 

m dwt 62.7 56.6 

 Market share 24.2% 22.0% 

Japan Ships 741 625 

m dwt 54.9 44.1 

 Market share 1.6% 1.9% 

Europe Ships 288 285 

m dwt 3.6 3.9 

 Market share 3.3% 2.6% 

ROW Ships 226 187 

m dwt 7.4 5.2 
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Table 1.2 - Orders for new commercial ships (source: BRS GROUP, 2020) 

 

Focusing solely on the European market, Figure 1.4 shows the distribution of new ships orders (in 

Gross Tonnage) and the corresponding number of ships (in green) by country in 2019 (BRS GROUP, 

2020). We can note that Italy leads the ranking (although its number of ships is lower or at least 

comparable to other countries), mainly thanks to its 'flagship' shipbuilding group Fincantieri. This 

latter is the largest cruise shipbuilder in the world, with a total of 37 large units to be delivered before 

2027. It recently finalized the take-over of its Norwegian affiliate group Vard and started a negotiation 

to become the majority shareholder of the France leading shipyard, Chantiers de l'Atlantique. 

However, this acquisition failed because of the wide-diffused concern (expressed by various major 

cruise shipowners) of a potential monopolistic position for Fincantieri (BRS GROUP, 2020).  

Moving our attention to the Rest of the World (RoW), we note that the order book for shipyards (see 

Table 1.3) continues to crumble from 7.4 million tons deadweight in 2018 to 5.2 million tons 

deadweight in 2019. RoW market share dropped from 3.3% to 2.6%. Deliveries also decreased, from 

4.6 million tons deadweight in 2018 to 3.5 million deadweights in 2019. Consequently, the ratio 

between the current order book and yearly output shrank to 1.5 in 2019 against 1.9 in 2018. The 

collapse of the Philippines leading shipyard Hanjin Subic in 2019 had a significant impact on RoW 

performance. Indeed, it was a great contributor, representing about 30% of RoW new orders in 2017 

(although it did not secure any new order in 2018). CSBC (Taiwan), another key-player, did not 

manage to secure orders in 2019 despite accounting for 50% of RoW new orders in 2018. At the end 

of 2019, 13 RoW shipyards secured new orders, with 89% of them managed by just two shipyards: 

the Philippine group Tsuneishi Cebu and the Vietnamese Hyundai Vinashin (BRS GROUP, 2020). 
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Figure 1.4 - Allocation of orders between European countries by GT and number of ships (source: BRS GROUP, 

2020) 

 

 

Table 1.3 – Rest of world’s Orders for new commercial ships (source: BRS GROUP, 2020) 

 

We should also underline that it is customary in the shipbuilding sector to have very few major-

players (typically one per country) controlling large portions of the national market shares. The 

presence of a limited number of players can be explained by significant entry/exit barriers in the 

market.  

Entry barriers are typically high, due to the need to have the specific infrastructure, consolidated and 

complex engineering, design and high-level management skills related to many suppliers sub-

contractors involved in the shipbuilding process. High costs are incurring for equipment, buildings, 

and transport necessary for the initial production and labour costs. Indeed, shipbuilding requires a 

very diverse and skilled workforce, having much of the activities still carried out by hand. 
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Besides, it is necessary to find suppliers with certifications issued by dedicated bodies, called 

classification societies (RINA, Lloyd Register, Bureau Veritas, ABS, among others), both for the 

design, development and building of structural components for naval use. Finally, the quality of the 

produced output and companies’ reputations are also important within the shipbuilding industry.  

Consequently, the threat posed by new entrants to the market is low; this is even more relevant in 

high-tech and cruise ship segments requiring outstanding technological and organizational expertise, 

experience, and a highly qualified workforce. 

Concerning exit barriers, the considerable capital investments for installations and infrastructures 

make it challenging to reorient any economic activity linked to shipbuilding or repairing. Note that 

the resale value for shipyards is practically low or null. Moreover, political restrictions, due to the 

strategic importance of the sector, may impose further barriers. In a time of economic crisis, national 

governments typically support financial plans to avoid the closure of construction sites to keep them 

active and, thus, curbing the natural tendency for unprofitable businesses to exit the market. 

 

1.4 The shipbuilding supply chain 

As we discussed in the previous sections, the shipbuilding sector's supply chain has been significantly 

changing in the last decades. Indeed, while most of the whole production processes took place in-

house and in a single country, the recent developments in information and communication 

technologies have significantly contributed to creating and expanding such production networks, 

promoting the creation of Global Value Chains (GVCs). The increasing efficiency in information 

sharing, communication and freight transport has enabled companies to collaborate over large 

distances along the supply chain. GVCs have also shifted the shipbuilding industry towards an 

interconnected production approach that renders the efficient and effective management of an 

increasingly extensive and global network of suppliers one of the main challenges in this sector.  

Furthermore, due to the high number and complexity of the processes and the need for coordination 

between construction sites and suppliers, a strong efficiency in the site itself is essential. Many studies 

have shown how the improvement of coordination between construction sites, suppliers and 

customers is becoming increasingly crucial (Fleischer et al.,1999, Chryssolouris et al., 2004; Celik et 

al., 2009; Guneri et al., 2009). 

According to Vlachakis et al. (2016), identifying core competencies and outsourcing rationalization, 

identifying clear supplier roles and responsibilities, and creating long-term alliances are fundamental 

to achieve effective management. 

The value chain of the naval sector involves many organizations, institutions and companies. In 

addition to the final customer (i.e., the shipping company), construction sites and suppliers, it is 

possible to highlight many other players, such as research centres, insurance companies, banks, 
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temporary agencies, classification societies and official authorities (Held, 2010). Figure 1.5 depicts 

the whole variety of the actors involved in shipbuilding, thus denoting the network's inherent 

complexity. More specifically, research centres are concerned with studying new technologies and 

process innovation; insurance companies offer insurance cover to construction sites during and after 

the construction phases, while banks provide the necessary financial support. Temporary agencies 

are in charge of selecting qualified workers, whereas classification societies are responsible for 

verifying and certifying that the vessel's construction process complies with the required standards. 

Finally, official authorities are the bodies responsible for granting the necessary concessions for 

carrying out production activities. 

 

Figure 1.5 – Actors involved in the shipbuilding industry (source: Held, 2010) 

 

For the sake of completeness, we should also mention that, due to the variety of items needed, ranging 

from relatively simple and standardized parts to more complex systems, many suppliers are involved 

in the shipbuilding supply chain. We can distinguish between those that provide materials, 

components and systems and those that offer engineering and design services. Besides, a further 

subdivision into specialized and generic suppliers can be made. 

Specialized suppliers are those concerned with the supply of propellers, rudders, and navigation 

systems. The others produce general-purpose products and typically supply various industrial sectors. 

Overall, it can be said that the majority of these suppliers are small or medium-sized firms. This 

element certainly influences these suppliers' role (particularly the specialized ones), as it tends to 

exacerbate their subordination and degree of dependence on their customer, namely the shipbuilding 

company. 
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1.5 The main processes in the shipbuilding supply chain 

This section discusses the main processes characterizing the shipbuilding supply chain.  

As we highlighted in the previous sections, shipyards must have adequate systems and robust 

management/organizational competencies to share information, develop production plans, control 

materials, and achieve high-quality standards for the components to be used. Each shipyard can 

organize its production differently, depending on the type of ship to be built and the decisions 

concerning outsourced activities.  

Despite the diversity of the output and the product's complexity, shipbuilding production processes 

are generally similar. A (possibly) unified framework is depicted in Figure 1.6, which displays the 

three main phases we can distinguish within the shipbuilding supply chain, i.e., pre-production, 

production, and post-production phases. The pre-production phase includes the steps of design and 

project management. The production phase comprises the hull construction and equipment/systems 

purchasing, then assembling and system integration. Finally, post-production concerns the so-called 

In-Service Support (ISS), mainly involving customer support, repair and maintenance activities. As a 

ship reaches the end of its service life, which for commercial vessels is estimated in about 25 years, 

they are disassembled (namely, "ship breaking"), and recycling/disposal occurs. We next describe 

these phases in detail.  

 

Figure 1.6 – The shipbuilding supply chain 

 

➢  Pre-production 

This phase focuses on the product's design and involves various stakeholders. The design process 

begins with the definition of the requirements by the shipowner. Based on these indications, the 

shipbuilder, supported by its architects, can define the ship's parameters and characteristics, such as 

technical features (e.g., engines) and the hull's layout. A thorough engineering analysis then follows, 

dealing with the study of the ship's structure, noise and vibration, weight and stability. In the pre-

production phase, contracts with various suppliers are also set up. The necessary materials (mainly 

steel slabs and profiles, paints and pipes) are purchased, together with essential (motors, electrical 

and electronic systems) and auxiliary components (furniture, special equipment and devices). 
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➢ Production 

This phase concerns the processes and activities carried out for the realization of the final product.  

The main elements and systems involved in this phase are the hull, the standard and ship-specific 

systems (Brun and Frederick, 2017). Hulls are built in sections called blocks, whose primary raw 

material is steel. Steel slabs and profiles are cut, straightened, shaped, and welded together, usually 

by specialized suppliers, to fabricate the hull's subassembly.  

Standard systems include ship operation equipment, basic accommodations, electrical systems/plant 

and electronic navigation and communication systems, auxiliary systems and environmental pollution 

control. 

Ship-specific systems depend on the vessel's purpose. For example, in large commercial carriers, the 

propulsion system is the most important because it aims to move the ship as quickly and efficiently 

as possible for long distances. On the contrary, accommodations (e.g. furniture) are more critical in 

cruise ships and passenger's vessels. 

The main activities in assembly and integration can be summarized as follows: 

- Hull blocking and assembly: hull subassemblies are coated with primer and other special marine 

coatings, welded together to form large units, and welded into position to form the ship. Once 

assembled, the ship is ready for launch and outfitting. 

- Outfitting: after the launch, the ship is berthed for completion. The main pieces of machinery (piping 

systems, deck gear, lifeboats, accommodation equipment, insulation, rigging and deck coverings) are 

installed in this step.  

- Systems integration: systems integrators install the ship-specific systems and ensure subsystems' 

cross-functionality. 

 

➢ Post-production 

Post-production services involve all the In-Service Support (ISS), i.e., mainly maintenance and 

repairing activities, and technical training. ISS are generally planned in predefined time windows and 

are required by the aforementioned "classification societies" (see Section 1.4) to evaluate the ships' 

dynamic condition. The shipowner is responsible for implementing the ISS, which is typically 

performed by the original shipbuilder or specialized service providers. Technical training is needed 

to instruct and update personnel on the systems' operational functionalities and maintenance. 

 

Each of the above-described processes has a wide range of activities to be accurately coordinated, 

which have stimulated the increasing interests of research scholars in studying various logistics 

problems arising in the shipbuilding supply chain. Frequently investigated topics concern, for 
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instance, storage operations (Fechter et al., 2015), sheets and profiles' cutting (Haessler et al., 1979), 

and (sub)assembly welding process (Cho et al., 1998; Iwankowicz, 2016; Derakhshan et al., 2018). 

This work will focus on the hull's production phase, particularly on steel management and cutting and 

on the subassemblies' composition process. We will detail these aspects in the next chapters, where 

we will describe them in the context of an Italian manufacturing steel company working in the cruise 

ship sector. 

 

1.6 Conclusions 

This chapter introduced several aspects related to the shipbuilding sector. In particular, we highlighted 

the main characteristics of the so-called shipbuilding industry, i.e., the specific segment dealing with 

the process of building new ships. We emphasized the recent trends in the market, the leading players 

and actors involved and provided a more in-depth description of its most crucial supply chain 

processes. Finally, we also briefly outlined various research streams that arose analysing the complex 

shipbuilding industry's logistics. 

The latter will be further investigated in the next chapter, where we will describe the case study of an 

Italian manufacturing steel company working in the cruise ship sector. Specifically, we will narrow 

our focus around the cutting and subassemblies composition processes, which will be at the core of 

the developments we discuss in the present thesis. 
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2 A case study in the shipbuilding industry: Palescandolo S.p.A.  

 

 

 

Summary  

This chapter presents the case study of a manufacturing company (Palescandolo S.p.A.) operating in 

the production of components and subassemblies for cruise ships. After introducing its history and 

mission, we outline its core processes, such as slabs and profile handling, components and 

subassemblies production. We particularly focus on describing logistic operations and their role 

within the shipbuilding sector's supply chain. Finally, we identify and analyze in-depth the critical 

issues (i.e., "hot-spots") characterizing two of its main processes (storage and retrieval). 

 

2.1 A brief introduction to Palescandolo S.p.A.  

Palescandolo S.p.A. (PLS) is a company owned by the Palescandolo family, operating in the steel 

sector since 1939. Over the years, the company has been specializing in the production of slabs, 

profiles and tubular. The group has rapidly become a leader in Italy in the production and marketing 

of welded beams for shipbuilding. Since 2018, it has actively managed a naval cutting/assembly 

centre, which offers its services mainly in the cruise shipbuilding market. This new centre represented 

the first logistics service provider in the shipbuilding sector, supporting two Italian shipyards' 

activities.  In the following, we will refer to these shipyards as Shipyard1 (SY1) and Shipard2 (SY2) 

for reasons of a confidentiality agreement. The latter belongs to a big customer, who assured 

outsourcing a significative quota of its logistics and production processes needs by stipulating some 

long-term contracts with PLS.  

In the first stages of its life, PLS mainly focused on slabs and profiles handling macro-process, thus 

working as a temporary buffer for the shipyards. In practice, it stocked slabs and profiles and then 

delivered them according to handling orders weekly released by each shipyard. The efficiency 

achieved in performing these operations led PLS to extend its activities to manufacturing beams' and 

subassemblies' components, which are fundamental parts of the ship's hull.  

Consequently, PLS enlarged its centre, whose current plant layout is depicted in Figure 2.1. The 

centre comprises seven spans: in particular, spans A and B are the slab cutting area; span C is 

dedicated to the subassembly production; span D is devoted to the profiles cutting, while spans E, F 

and G are assigned to the slabs and profile storage. Figure 2.2. displays the whole PLS production 

process, which we detail in the next sections. 



 

18 
 

 

 

Figure 2.1 – The current PLS’ centre layout 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 – The PLS production process 
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2.2 The inputs: slabs and profiles 

As we anticipated above, slabs and profiles are the primary production process's inputs, supplied to 

PLS by steel mills based on orders released by the shipbuilder.  

A slab is a plate - generally made of mild steel (i.e., with low carbon content) - of rectangular section 

characterized by a set of attributes, such as length, width, thickness, steel grade. In the "shipbuilding 

jargon", these four attributes uniquely define an item; in other words, all the slabs that belong to the 

same item present the same values of these attributes. Besides, it is also important to mention that 

slabs quality must be certified by temporary certification, released by classification societies (see 

Section 1.4).   

The attributes of the slabs can vary in dependence on the specific cruise ship to be built. Table 2.1 

indicates typical possible ranges (in mm) for length, width, thickness and weight (in tons), while 

Figure 2.3 shows an example of a steel slab. From that picture, it is possible to notice the enormous 

dimensions of these slabs, which dramatically affect the logistic operations, as we will discuss next. 

Profiles are elements made of mild steel, with length as the dominant dimension; in addition to the 

slab attributes (length, width, thickness and steel degree), each item is also characterized by a specific 

shape. Typical ranges for the profiles’ attributes and examples of their shapes are provided in Table 

2.2 and Figure 2.4, respectively. 

 

Attribute Min Max 

Length (mm) 4000 18000 

Width (mm) 1500 3000 

Thickness (mm) 4 70 

Weight (tons) 0,5 13 

Table 2.1 – Typical ranges of slabs attributes 

 

Attribute Min Max 

Length (mm) 6000 18000 

Width (mm) 15 400 

Thickness (mm) 4 30 

Weight (tons) 0,007 3 

Table 2.2 – Typical ranges of profiles attributes 
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Figure 2.3 – A steel slab 

 

 

 

 

Figure 2.4 – Examples of profiles shapes 
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2.3 The outputs: slabs and profiles, components, subassemblies 

The output of the production process can belong to four different families of items: slabs, profiles, 

components and subassemblies. 

Slabs and profiles that are already produced by steel mills (or by other suppliers) and must be only 

delivered to shipyards are usually stored at the PLS centre to reduce trips and stocks accumulation at 

the shipyards. In this case, they do not undergo any processes, and they are stored and handled when 

delivered.  

Components are parts derived from slabs and profiles as a result of cutting operations and eventual 

additional processes. Usually, from a slab, components of various dimensions and shapes are 

generated. However, each component is characterized by a given thickness and steel grade. It means 

that when a specific component has to be produced, it is necessary to use a slab belonging to a specific 

item. Components are generated according to pre-defined "cutting schemes" that the shipbuilder 

identifies during the design phase to minimize scraps (Figure 2.5). These can be further processed in 

order to reduce their length and modify their ends. 

Subassemblies are items produced through an appropriate assembly of components and represent 

parts of the ships' hull installed at the shipyards. Their dimensions are generally huge, and, 

consequently, the related assembly operations are quite challenging (Figure 2.6). 

 

 

Figure 2.5 – An example of a slab cutting scheme  
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Figure 2.6 – An example of a subassembly 

 

2.4 The cutting process  

Cutting is undoubtedly the most relevant operation within the transformation process. Cutting may 

eventually follow sand-blasting and priming operations. Sand-blasting is a mechanical procedure 

used to remove oxides, salts, rust, and other materials deposited on the metal surface. It is usually 

performed before painting or applying protective materials through sand jets oriented on the metal 

surface to clean it by scraping. Priming is instead a technique that involves applying a thin layer of 

protective paint (i.e., the primer), which preserves from the oxidizing action of wet air and other 

aggressive agents.  

Two different kinds of cutting procedures are performed, in dependence on the typology of the input 

material. The cutting of slabs is operated by an automatic machine (plasma cutter) that can be 

numerically programmed to produce items of given geometries (Figure 2.7). On the other hand, the 

cutting of the profiles is mainly performed through a small semi-automatic torch as profiles may be 

reduced in length, holding their own original geometries. This operation is more labour intensive than 

that performed by the plasma cutter (Figure 2.8). 

The obtained components may require additional processing such as shaping, chamfer, press, flange, 

raking and lowering. Then, some might be not further assembled at PLS and delivered to shipyards 

or external assembly centres. Figure 2.9 depicts the whole process; we label its main steps by a 

progressive number (i.e., from 1 to 8) and provide the corresponding description in Table 2.3. 
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Figure 2.7 – Plasma cutter  

 

 

 

 

Figure 2.8 – The cutting process through a manual torch 
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Figure 2.9 - The PLS cutting process 

 

Step Description 

1 An operator picks up the selected slabs and profiles and load them on the conveyor trolley 

to transport them to the indoor plant. 

2 From the conveyor trolley, the slabs and profiles are put in the pre-cutting area. 

3 From the pre-cutting area, slabs and profiles are loaded on plasma cutters and 

workbenches, respectively. 

4 After cutting, the produced components are stocked on pallets or new stacks, depending on 

their dimensions, and located in the components stock area. 

5 Each empty semi-trailer is weighed to measure its tara weight once entered into the centre. 

6 Semi-trailers reach the components stocking area for the delivery, where components are 

loaded.  

7 Full-loaded semi-trailers are weighted again. Then, the delivery documents are filled in. 

8 Semi-trailers leave the centre towards the assigned shipyard. 

Table 2.3 – Description of the main steps of the PLS cutting process (depicted in Figure 2.9) 
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2.5 The assembling process  

As we already underlined, part of the components produced in the cutting phase (and the subsequent 

operations) are used to produce subassemblies. Essentially, assembling consists of welding slabs' and 

profiles' components according to a given scheme, i.e., a predefined design of the subassembly 

(Figure 2.10). This phase is very labour-intensive due to the uniqueness and peculiarities of the final 

products. We should also highlight that their enormous dimensions render this operation particularly 

difficult to manage (Figure 2.11). Once produced, subassemblies are delivered to shipyards to finalize 

the ship hull production. 

In line with what we did in the previous section, Figure 2.12 depicts the process, whose main steps 

are detailed in Table 2.4. 

 

 

Figure 2.10 – Scheme of a subassembly 

   

 Figure 2.11 – An example of a subassembly 
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Figure 2.12 - The PLS assembling process 

 

Step Description 

1 Components are moved to the new stock area in the subassemblies span. 

2 All the additional operations on components, included welding, are performed in the 

subassemblies span. 

3 Once produced, subassemblies are moved to a dedicated stock area located on the exit 

side. 

4 Each empty semi-trailer is weighed to measure its tara weight once entered into the centre. 

5 Semi-trailers reach the subassemblies stocking area for the delivery, where subassemblies 

are loaded. 

6 Full-loaded semi-trailers are weighted again. Then, the delivery documents are filled in. 

7 Semi-trailers leave the centre towards the assigned shipyard.  

Table 2.4 – Description of the main steps of the PLS assembling process (depicted in Figure 2.12) 

 

 

2.6 The slabs storage and retrieval processes 

The characteristics of the considered materials (i.e., slabs, profiles, components, subassemblies) 

render the logistic operations very sector-specific and crucial. In particular, their dimensions require 

a peculiar organization of the storage areas and laborious procedures supported by specific industrial 

tools. As a result, long times are needed to perform even basic handling operations.  

In the following, we detail two main logistic processes, i.e., slabs and profiles storage and retrieval. 

 

➢ The storage process 

After a formal check-in, the inbound slabs and profiles, delivered by steel mills or suppliers through 

semi-trailers, are stored in dedicated areas divided into spans and, in turn, into pitches (Figure 2.13).  
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There, slabs grouped in “stacks” with a maximum height of about two meters. We can distinguish 

between dedicated or random stacks, whether they host one or more types of slabs, respectively. 

Considering that the thickness can vary from four to 70 mm, each stage can contain up to 300 slabs; 

an example of a stack is shown in Figure 2.14.  

Slabs are moved by industrial magnetic cranes (Figure 2.15) capable, considering their weight, of 

lifting and relocating slabs along the span. 

On the other hand, profiles are delivered in "packages", coming from the same steel casting, and are 

stored in specific "stalls" (Figure 2.16) designed according to their sizes and shapes. Profiles are 

moved using lifting beams (Figure 2.17). 

The storage process is detailed in Figure 2.18 and Table 2.5.  

 

 

Figure 2.13 – Layout of a span for slabs storage 

 

 

Figure 2.14 – An example of a slabs stack 

 

S

p

a

n 

Pitch 



 

28 
 

 

Figure 2.15 – Industrial magnetic crane 

 

 

Figure 2.16 – “Stalls” of profiles 

 

 
Figure 2.17 - Lifting beam 

 

 



 

29 
 

 

 

Figure 2.18 - The PLS assembling process 

Table 2.5 – Description of the main steps of the PLS storage process (depicted in Figure 2.18) 

 

➢ The retrieval process 

Based on production orders, materials have to be moved towards different destinations, such as the 

cutting, assembly, or exit areas. To this end, as a given output to be produced is associated with a 

specific slab item, a retrieval process requires a first step consisting of the selection, among the 

available stacks and the suitable slabs, of a slab belonging to a given item. Once identified the slab 

with a given position in a stack (target slab), in order to pick it up, all the slabs positioned over it 

should be shifted and reallocated, temporarily or permanently, on the top of other stacks (Figure 2.19). 

Each of these operations is denoted as a "shuffle". Figure 2.20 shows the retrieval sequence of a target 

Step Description 

1 Semi-trailers enter the centre. 

2 Semi-trailers are weighted, and a PLS operator collects the delivery note. 

3 Once registered, a copy of the delivery note is given to another operator who will handle 

the material's stock. Meanwhile, semi-trailers reach the pre-stock area near the stock area, 

on the entry side. 

4 Slabs and profiles are unloaded and moved by an industrial magnetic crane or a lifting 

beam, respectively. Both the machines move in a parallel direction to the spans. In the 

meantime, a PLS operator checks the information reported on the delivery note. In case of 

a negative check, the operator communicates the event, and a complaint procedure to the 

supplier is started. 

5 In case of a positive check, materials are labelled and definitively stocked in the stock area. 

6 The empty semi-trailers leave the plant. 
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slab both if the moved slabs are repositioned in the original stack or if their reallocation to another 

stack is permanent. 

These activities are very time-consuming and, therefore, to save time and reduce costs, it is essential 

to minimize their times (and cranes' shift). A not optimal selection of the slabs to be taken can cause 

significant delays and an unjustified increase in handling costs, generating further delays in the 

subsequent logistic operations. For further details on the process, readers can refer to Figure 2.21 and 

Table 2.6. 

 

Figure 2.19 – Target slab selection  

 

 

Figure 2.20 – Example of a retrieval sequence with (a) or without (b) slabs repositioning 
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Figure 2.21 - The PLS retrieval process 

 

Step Description 

1 An operator picks up slabs and profiles according to the received handling order and 

moves them to a pre-delivery area near the exit side. 

2 Each empty semi-trailer is weighed to measure its tara weight once entered into the centre. 

3 Semi-trailers reach the pre-delivery area for the delivery, where slabs or profiles are 

loaded. 

4 Full-loaded semi-trailers are weighted again. Then, the delivery documents are filled in. 

5 Semi-trailers leave the centre towards the assigned shipyard.  

Table 2.6 – Description of the main steps of the PLS retrieval process (depicted in Figure 2.21) 
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2.7 Production planning in PLS: a quantitative analysis 

Generally, the collaboration between shipbuilders and cutting/assembly suppliers is regulated by 

contracts concerning specific ship orders. Specifically, production planning is driven by the so-called 

Cruise Ship Orders (CSOs), i.e., the Bill Of Materials related to ships production. Usually, PLS 

processes CSOs related to different ships each year (three, for instance, during 2018).  

A single CSO regulates the arrival dates of input materials (slabs and profiles) and the delivery dates 

to shipyards of components and subassemblies. Suppose we assume the arrival dates as release times 

and delivery dates as due dates. In that case, the logistic processes should be adequately scheduled to 

optimize some performance indicators, satisfying logistic and technological constraints.  

In the following, we present a quantitative analysis of typical CSOs to provide the reader with an idea 

of the production planning complexity in this industry, given the variety of the outputs and production 

volumes. 

To this end, we analyze three CSOs, from June 2018 until May 2020, representative of the production 

planned for two whole years. 

Figures 2.22, 2.23, and 2.24 display the demand for inbound and outbound slabs as per the three 

CSOs. We can note that, due to the time lag between the inbound and outbound slabs, especially 

during the first phase of a CSO management process, a significant peak in the number of stored slabs 

and profiles occurs. This aspect determines various critical issues. On the one hand, a capacity 

problem emerges, which is further complicated by the overlapping of the peaks related to different 

CSOs and the considerable dimension of the material inputs. On the other, this renders the 

retrieval/storage operations strongly time-consuming.  Besides, another critical issue is that a 

significant portion of slabs and profiles requires cutting operations; this implies the use of expensive 

resources, e.g., specialized industrial machinery (see Section 2.4) and the involvement of an 

experienced and dedicated workforce.  
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Figure 2.22 - CSO-1: Inbound, Outbound and Stock Quantities 

 

Figure 2.23 - CSO-2: Inbound, Outbound and Stock Quantities 

 

Figure 2.24 - CSO-3: Inbound, Outbound and Stock Quantities 
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In Table 2.7, we report the main characteristics of the orders, for slabs, to underline the variety of the 

input materials. We recall that slabs characterized by the same values of length, width, thickness, and 

steel grade belong to the same item (see Section 2.4). 

 

 CSO-1 CSO-2 CSO-3 

Number of different items 187 257 345 

Number of slabs 4094 6389 10924 

Range of length [mm] 10000-15400 4000-16700 4000-15500 

Range of width [mm] 2250-3000 1700-3000 1500-3000 

Range of thickness [mm] 4-40 4-70 4-40 

Percentage of slabs to be cut 45% 88% 98% 

Table 2.7 – Characteristics of the slabs in the considered CSOs 

 

It is possible to notice that the number of items and slabs and the percentage of slabs to be cut increase 

over time (i.e., from CSO-1 to-CSO 3), thus increasing the deriving workload and the corresponding 

logistic costs. 

Figures 2.25, 2.26 and 2.27 show, for each CSO, the distribution of the number of slabs by length, 

width, and thickness, respectively. In those pictures, slabs are also grouped by item. In practice, if we 

focus on length (i.e., Figure 2.25), each point represents an item belonging to a specific CSO, 

comprising a given number of slabs (on the y-axis) of a given length (on the x-axis). Hence, this 

picture also informs readers of the number of items (corresponding to the number of points) with a 

given length. The same applies to width and thickness.  

To better clarify these aspects, Figures 2.28, 2.29 and 2.30 display, for each CSO, the relative 

percentages of slabs and items with a given length, width and thickness. For instance, by looking at 

Figure 2.28 and focusing on CSO-1, we note that about 30% of slabs and items have a length of 11500 

mm (the cyan and blue bars, respectively). 

Regarding the length, as one can see from Figures 2.25 and 2.28, many items are concentrated in just 

a few values (e.g., 11500 mm, 12500 mm, and 14600 mm) for all the CSOs. We also observe that 

these few "classes" of items comprise almost all the slabs required in each CSO. Moreover, we also 

note that, for some lengths, the number of slabs is very low, despite a non-negligible number of items. 

For instance, these circumstances occur in the cases of 15400 mm for CSO-1 and CSO-2 or 11500 

mm for CSO-3.  

Similar considerations can be drawn if we focus on width (see Figures 2.26 and 2.29). 

 



 

35 
 

 

 

 

 

Figure 

2.28 – Distribution of the number of items and slabs (in %) by the length (in mm) 

 

Figure 2.29 - Distribution of the number of items and slabs (in %) by the width (in mm) 
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Figure 2.26 - Distribution of the 
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 by the width (in mm) 

Figure 2.27 - Distribution of the 

number of slabs (grouped by item) 

 by the thickness (in mm) 
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If we focus on thickness, the distribution appears significantly different from the other cases. 

Specifically, we note a higher variability, i.e., the presence of more typologies of items of different 

thickness. In terms of slabs, we observe that they are mainly concentrated around some particular 

thickness values. The result is that, in practice, PLS manages many items characterized by low 

amounts of slabs. As we already emphasized, this aspect also emerged, although less evident, when 

analysing width and length.  

This variety poses severe issues, both for the storage and retrieval processes. For instance, thinner 

slabs can be accidentally picked-up together with thicker slabs if stacked consecutively, or slabs with 

higher length may tend to bend if stacked upon shorter ones. Besides, it is also intuitive that larger 

slabs occupy larger volumes/surfaces. A more in-depth discussion on these problems follows in the 

next section. 

 

 

Figure 2.30 - Distribution of the number of items and slabs (in %) by the thickness (in mm) 

 

We now focus our attention on the other input managed by PLS, i.e., profiles. We recall that, 

differently from slabs, in addition to length, width, thickness, and steel grade, profiles are also 

characterized by a given shape. Table 2.8 reports the details of the profiles included in the considered 

CSOs. Note that they are not present in CSO-1. As for slabs, we underline an increase in the number 

of items and profiles managed and in the number of profiles to be cut (in absolute terms). 

 

 

 

 

 

 

0%

5%

10%

15%

20%

25%

30%

4 5 5.5 6 6.5 7 7.5 8 9 10 11 12 13 14 15 16 17 18 20 22 24 25 27 28 30 35 40 50 70

CSO-1 %qty CSO-1 %items CSO-2 %qty CSO-2 %items CSO-3 %qty CSO-3 %items



 

37 
 

 

 CSO-2 CSO-3 

Number of different items 185 252 

Number of profiles 20990 30977 

Range of length 6000-18000 6000-16000 

Range of width 16-320 16-350 

Range of thickness ≈0-30 ≈0-30 

Types of shapes 
Flat, L1, Circular, Semi-

circular, L2, Bulb 

Flat, L1, Circular, Semi-

circular, L2, Bulb 

Percentage of profiles to be cut 46% 43% 

*L1 = “L” shape with equal sides; *L2 = “L” shape with different sides   

Table 2.8 – Characteristics of the profiles in the considered CSOs 

 

The analysis summarized next resembles that performed for slabs. Accordingly, Figures 2.31, 2.32 

and 2.33 show, for all the CSOs, the distribution of the number of profiles (grouped by item) by 

length, width, and thickness, while Figures 2.34, 2.35 and 2.36 depict the corresponding percentages.  

Briefly, we can note that, while in terms of length, there is an evident concentration of items and 

profiles around some specific values (see Figure 2.34), a more homogenous distribution is found 

when focusing on width and thickness (although with some local peaks, see Figures 2.35 and 2.36). 

These results are similar to those gained in the case of slabs.  

Therefore, we can ultimately conclude that the management of both types of inputs (i.e., slabs and 

profiles) raises problems of practical and economic relevance that are worthwhile investigating. 
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Figure 2.32 - Distribution of the 

number of profiles (grouped by item) 

 by the width (in mm) 

Figure 2.33 - Distribution of the 

number of profiles (grouped by item) 

 by the thickness (in mm) 
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Figure 2.34 – Distribution of the number of items and profiles (in %) by the length (in mm) 

 

 

Figure 2.35 - Distribution of the number of items and profiles (in %) by the width (in mm) 

 

 

Figure 2.36 - Distribution of the number of items and profiles (in %) by the thickness (in mm) 
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2.8 Hot-spots identification    

After the description and the quantitative analysis of the processes characterizing the PLS supply 

chain, it emerges that storage and retrieval operations are the most critical ones. These two processes 

precede all the others and involve managing large amounts of products simultaneously. Indeed, 

everything starts by retrieving slabs or profiles from their storage areas, whatever their subsequent 

"flow" might be. Storage areas are the "meeting points" between the continuous production of slabs 

and profiles coming from the steel mill and the batch production of cutting and assembly centres, 

driven by the shipyards' orders. Hence, storage areas of cutting/assembling centres are a long-term 

buffer from which, day by day, small portions of the stored elements are retrieved to “feed” the 

different processes. 

In the following, we try to emphasize the criticalities of these processes, in order to shed light on the 

"hot-spots" of the whole PLS supply chain. 

For the sake of clarity, we recall that both slabs and profiles, due to their dimensions, need vast spaces 

for their storage and huge machinery to be moved. 

In particular, slabs can be moved only by industrial magnetic cranes, and the only practical way to 

store them is to stack them one on top of each other. This method implies various criticalities that can 

seriously affect the retrieval process and the slabs' quality. 

When storing slabs, the first issue to consider is that slabs may tend to bend if they are stacked right 

upon shorter ones.  This phenomenon determines a substantial incompatibility between some items: 

two slabs differing more than 1,5 m in length or width must not be stacked consecutively. 

The second critical issue we mention refers to the slabs' identification procedure.  In particular, slabs 

stocked in the yard present a label reporting all their specific information (e.g., identification code, 

item, plaque and casting). This label needs to be easily accessible to the operator to identify the slab 

correctly during the retrieval process. Hence, excessive differences in the slabs' sizes would render 

impractical this control, since larger slabs will hide the smaller ones.  

A third aspect concerns thickness. Generally, significant differences in thickness would make it 

impossible to pick-up a thick slab stacked on a thinner one because of strong the magnetic interaction 

between them. Clearly, the magnetic intensity of the crane plays a role here.   

Lastly, slabs' quality certifications represent another critical issue. These certifications are issued by 

classification companies and typically last about six months after the delivery to the centre. This 

certification, in practice, works like insurance. Indeed, if a slab turns out as defective, all the slabs 

from the same cast-steel would have to be replaced.  If the defective slab has been used during the 

time window of the quality certification's validity, insurance will cover the costs.  Otherwise, they 

will be borne by the shipbuilder or the company managing the slabs (i.e., PLS, in this case). Therefore, 
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the so-called "expired slabs", i.e., slabs whose quality certification is expired, are not used to fulfil 

any order. Hence, the number of expired slabs may be intended as a proxy of the centre's quality.  

Similar considerations apply to profiles.  

All these issues have significant logistic implications. Indeed, moving the cranes [lifting beams for 

profiles] along the spans and picking slabs [profiles] from their stacks [stalls] is a time-consuming 

operation, even in the best possible conditions. Note that for "best possible conditions", we intend the 

possibility to randomly store slabs [profiles] on any stack [stall] and retrieve the slabs (profiles) in 

the best position (e.g., on top of a stack).  

Therefore, given the "incompatibility" constraints between slabs [profiles] and their expiration dates, 

it is necessary to intervene in a programmatic and preventive way on the storage and retrieval 

processes. Clearly, the increasing number of items (and their variability) exacerbates the complexity 

of these processes (see Tables 2.7 and 2.8). 

The variability of these values is not the only difficulty for the adequate storage of slabs or profiles. 

Indeed, also the frequency and the quantity with which they are retrieved play a role. We next analyze 

these aspects in more detail. 

Focusing on slabs, in Figure 2.37, each item is represented as a dot characterized by two dimensions: 

the average picking quantity (on the y-axis) and the number of retrieval days (on the x-axis). Given 

the three Cruise Ship Orders discussed in Section 2.7, for each item, the number of retrieval days is 

calculated as the number of days in which at least one slab of that item is picked. The average picking 

quantity is then obtained, for each item, as the total number of slabs picked during the time-horizon 

under consideration, divided by the actual picking days. 

In that picture, we group items in four quadrants: (i) the left-bottom quadrant (i.e., the pink one) 

comprises items that are picked in small quantities (less than five) and in a restricted number of days 

(less than 15); (ii) the right-bottom quadrant (in red), comprises items that are picked rather frequently 

(more than 15 days) but in low quantities (less than five slabs, on average); (iii) the upper-left quadrat 

(in yellow) involves items picked not very frequently (less than 15 days) in relatively high quantities 

(more than five slabs); (iv) finally, the upper-right quadrant (in blue) highlights items that are picked 

frequently (more than 15 days) in higher quantities (more than five slabs, on average).  

Similarly, Figure 2.39 provides the same information for profiles.  
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Figure 2.37 – Number of retrieval days and average picking quantities per item (slabs)  

 

 

 

Figure 2.38 - Number of retrieval days and average picking quantities per item (profiles) 

 

The above figures show a very heterogeneous distribution of items by the identified quadrants: it is a 

matter of fact that, both for slabs and profiles, PLS works with many items that are picked less 

frequently (and in low quantities). We should also note that the workload related to a minimal number 

of items (those in the blue quadrants) equals, in practice, the workload implied by the less frequent 

and scarce ones. 

In principle, it would be ideal to use dedicated stacks [stalls] for each item and then and sort slabs 

[profiles] according to their expiration dates to ease the following retrieval process. However, this is 
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impracticable due to the limited storage capacity. In practice, the main effect of the evident variability 

above discussed, together with capacity constraints, is the need to mix items in stacks [stalls].    

As we already mentioned, the retrieval process is very time-consuming due to the complexity of each 

retrieval. Therefore, the proper selection of the target slabs [profile] is crucial to reduce retrieval 

times.  

In the literature, the problem that aims at choosing appropriate slabs for an order or a group of orders 

to minimize shuffles during the retrieval process is known as the Slab Stack Shuffling (SSS) Problem. 

A thorough analysis of the problem and a comprehensive state-of-the-art will be provided in the next 

chapter.   

 

2.9 Conclusions    

This chapter described the case study of a manufacturing company operating in the shipbuilding 

industry, namely Palescandolo S.p.A. (PLS). After a brief introduction on its history and mission, we 

outlined its core processes, such as slabs and profile handling, components and subassemblies 

production. Our primary focus, however, was on the analysis of its logistics to identify the critical 

issues (i.e., "hot-spots") characterizing two of its main processes (storage and retrieval). 

As we noted, storage capacity, the high variability of the items and their expirations dates are three 

main problems causing the need to mix items in stacks [stalls], thus rendering the retrieval process 

very tough and time-consuming. Therefore, the proper selection of target slabs [profiles] to pick-up 

to fulfil ship orders seeking to minimize the overall retrieval time emerges as a crucial problem in 

PLS. This problem, known in the literature as the Slab Stack Shuffling (SSS) Problem, will be 

analysed in details in the chapter. In particular, we will provide a comprehensive overview of the 

state-of-the-art in the field, propose a novel and unified framework to systematize it and highlight 

some gaps we aim at filling. 

  



 

43 
 

3 Literature review  

 

 

 

Summary 

The analysis shown in the previous chapters reveals that the slab handling process represents a critical 

issue in the shipbuilding industry. Indeed, the hull manufacturing process requires the interim storage 

of slabs at different stages: after their production, at the steel mills; before and after their cutting and 

intermediate processes; before the final assembly at the shipyards. The huge size of managed items 

and the need to stacking them in limited storage areas, pose critical challenges, both from a tactical 

and an operational perspective. Consequently, the proposal of methods and tools to support decisions 

in this context could be beneficial and could produce significant impacts on the efficiency of the 

production processes and the whole supply chain.  

In the Operations Research and Management Science literature, the stacking problems have been 

widely studied in the context of port logistics, with reference to containers. Instead, much more 

limited attention has been devoted to the handling of slabs in the shipbuilding industry.  

In this chapter, we first introduce a formal description of the so-called Slab Stuck Shuffling (SSS) 

problem. Secondly, we propose a general framework, which consists of a set of elements and 

properties that may characterize the problem. Finally, we review the existing contributions devoted 

to the SSS problem’s investigation. This way, we intend to (i) systematize the sparse literature on the 

topic; (ii) define different variants of the problem; (iii) identify the existing gaps in the reference 

literature.  

 

3.1 Stacking problems 

The Stacking Problems involve a vast group of problems where the storage area is organized in stacks, 

and single items are put on top of each other in these stacks (Lehnfeld & Knust, 2014). Such peculiar 

storage method makes the related warehouse management problems different from the classic ones, 

which consider bin shelving, modular storage drawers, pallet racks, gravity flow racks, or mobile 

storage racks (Van den Berg and Zijm, 1999). 

Indeed, in this case, all operations to move and get items are executed by cranes located above the 

stacks, so that direct access is possible only to the topmost item of any stack. This implies that if an 

item stacked below has to be retrieved, so-called reshuffling (or relocation) is necessary. Since 

reshuffling operations are usually very time-consuming, they should be avoided as often as possible. 
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Hence, the objective usually consists of maximizing the efficiency of such operations, in terms of 

time and costs. 

These problems have been widely studied in the context of port logistics, to tackle issues related to 

containers' handling (Containers Stacking – CS problem). Other variants have been investigated with 

reference to the management of the various type of steel elements, such as slabs and coils (Steel 

Stacking – SS problem). Apart from the application context, the item’s stacking leads to different 

kinds of optimization problems. On the one hand, if incoming items arrive at a storage area, they need 

to be assigned to positions, which causes loading problems. On the other hand, unloading problems 

arise if outgoing items need to be retrieved from the storage area and one has to decide which items 

will leave the storage in which order and which relocations are performed. Premarshalling occurs if 

items have to be sorted inside the storage area such that all items can be retrieved without any further 

reshuffle. If incoming items need to be stored while outgoing items need to be retrieved, combined 

loading/unloading problems appear. In Table 3.1, an overview of the different optimization problems 

above introduced in the two introduced contexts is provided. 

 

 

 

 

 

 

* according to specific criteria   

Table 3.1 Classification of Stacking problems 

 

3.1.1 The Container Stacking problems 

In the context of containers management, the stacking problems may arise with reference to different 

processes: 

• the loading and/or unloading of container vessels; 

• the assignment of storage locations to incoming containers in a terminal;  

• the reassignment of positions to already stacked containers within the terminal (pre-marshalling 

versions); 

• the retrieving of containers from a terminal. 

An example of a container terminal is reported in Figure 3.1. 
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Figure 3.1 – Container terminal 

 

The CS loading problem aims at selecting the best locations for the containers, once these reach a 

pre-stocking area. Locations are chosen according to many different criteria, among which: minimise 

the handling effort of cranes and ensuring a vessel's stability (Kim et al., 2000); minimise the vessel 

space occupied by the containers that need to reach different destinations (Wilson & Roach, 2000) or 

the number of shuffles (Avriel & Penn, 1993).  

In the premarshalling versions, containers are already stacked and re-shuffled to minimise future 

handlings for the retrievals, exploiting the eventual remaining space in the terminal (Kim & Bae, 

1998; Meisel & Wichmann, 2010).  

In the unloading problems, containers need to be retrieved from a stocking area to satisfy delivery 

requests, in order to minimise an objective function often related to the number of shuffles (Malucelli 

et al., 2008).  

3.1.2 The Steel Stacking problems  

The reference items of the Steel Sacking problems can be classified into two main categories: (i) flat 

rectangular items, such as slabs and plates, and (ii) round items, such as hot rolling and cold rolling 

coils. In Figure 3.2, different layouts are shown, depending on whether the yard is devoted to the 

stacking of slabs or coils. It is possible to notice that while the slabs are vertically stacked, the coils 

form inclined stacks, in which each coil is positioned between two coils of the lower level.  

As in the case of CS problems, different optimization problems can be defined to deal with 

the loading, unloading and pre-marshalling of the stacked elements.   
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In the loading problems, the slabs arrive in a pre-storage area in a certain order, and their future 

retrieval sequence is already known. Hence, the problem consists of defining a storage plan (i.e., 

assigning the optimal positions in the stacks), in order to minimise the total number of shuffles that 

will be necessary for the future retrievals (Ko, 2007; Ko et al., 2007; Kim et al., 2011). 

In Figure 3.3, a set of slabs is represented, with the indication of their arrival time x and their leaving 

time y. In Figure 3.3(a), slabs are stacked in the pre-storage area according to their arrival time. In 

contrast, Figures 3.3 (b) and (c) show two different possible assignments of the slabs in the storage 

area, that will respectively generate 7 and 4 shuffles during the future retrieval process. Hence the 

last configuration represents a better storage plan to minimise the total number of shuffles. 

In the Coil Shuffling problem, the coils are stacked in the so-called "inclined stack" (Figure 3.4) and 

the objective is to minimise the number of shuffles necessary for the retrievals (Tang et al.,2012).  

 

Figure 3.2 - (a) Layout of a slab yard (b) Layout of a coil yard (Tang et al.,2012) 

 

 

Figure 3.3 – An example of slab stacking problem: (a) arrival slabs, (b) stacking causing 7 shuffles 

 and (c) stacking causing 4 shuffles (Kim et al, 2011) 
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Figure 3.4 – Coils inclined stacks 

3.2 The Slab Stack Shuffling problem 

3.2.1 Problem introduction 

The Slab Stack Shuffling (SSS) problem belongs to the category of Stacking problems and, 

specifically, to the sub-class of Steel Stacking unloading problems.  

To introduce this problem, let consider a storage area containing a set of slabs, with different 

characteristics, in terms of size (i.e., length, width, and thickness), steel degree, etc. An item identifies 

univocally a typology of slabs, i.e., a combination of given characteristics. 

Such slabs are stored in a yard, divided into spans and pitches, as shown in Figure 3.5. Each pitch is 

devoted to hosting a stack. Different layouts can be selected to organize the slabs in stacks: for 

example, the slabs belonging to the same item typology can be stacked all together or in different 

stacks, mixed with other slab typologies. In Figure 3.6, we show a first case (Figure 3.6(a)), in which 

the slabs are organized in dedicated stacks, and a second case (Figure 3.6(b)), in which they are 

randomly mixed.  

An order lists the items and the related quantities, requested by a customer or by a 

production/assembly workstation, in the case of a distribution centre or a production warehouse, 

respectively. The order picking is the process of retrieving the slabs from the yard to satisfy the 

requests contained in the order. As each stack can be accessed only from its topmost slab, it is easy 

to understand that, if a slab below has to be retrieved, it is needed to shift all the slabs above the target 

slab to satisfy the order. With the term, shuffle is intended the temporary or permanent shift of the 

single element stacked above the target slab. 
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Figure 3.5 – An example of slab yard: spans and pitches 

 

 
(a) 

 
(b) 

Figure 3.6 – Dedicated Stacks (a), Random Stacks (b)  

 

These operations are very time-consuming and may significantly impact the efficiency of the whole 

process. Once a target slab is identified, the crane, necessary to retrieve the slabs, must be moved 

along the span and placed precisely on the stack where the target slab is located (Figure 3.7). Once 

the crane approaches the stack, an operator adjusts the retractable magnets according to the slabs' 

length and activates them, by regulating their intensity according to the weight to lift and his own 

experience (Figure 3.8). Then, the top-most slab is lifted and shifted, temporary or permanently, on 

another stack (Figure 3.9). This operation repeats as many times as the number of slabs above the 

target one. Once reached, this latter is lifted and transported to the delivery point, usually located at 

the far end of the span.  
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Figure 3.7 – Crane approaching the stack 

 

 
Figure 3.8 – Magnets positioning and activation 

 

 
Figure 3.9 – Slab lifting 
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All these operations are very time-consuming and strongly influenced by the adopted stacking 

method. Indeed, if the slabs of different items are stored in dedicated stacks, the picking times tend 

to be minimized; but, at the same time, such a layout requires a high number of pitches and a vast 

storage area. On the contrary, mixing slabs of different item typologies in the same stacks would 

allow minimizing the occupied storage area but, at the same time, it implies higher retrieval times.  

In this case, an unwarranted choice of the slabs to retrieve may produce significant delays in the 

subsequent process; hence, the retrieval process needs to be optimized. 

The Slab Stack Shuffling (SSS) problem is defined in literature as the problem of choosing 

appropriate slabs to retrieve from a stack to satisfy an order or a group of orders to minimise shuffles 

during the retrieval process.  

 

3.2.2 The SSS problem and the other Stacking problems 

The SSS problem presents many similarities and differences with the other Stacking problems 

above introduced.  

First of all, it is necessary to highlight that it belongs to the class of the unloading problems; 

hence, it assumes that the stored products have been stacked, with no indication on the future 

picking orders. This assumption represents the main difference with the loading problems, 

where the positioning of the incoming products is optimized based on the a priori knowledge 

of the future retrieval orders. 

Also, within the same class of unloading problems, significant differences emerge between the 

SSS and the other problems. In the case of CS problems, the first difference regards the number 

of elements in the same stack. In the container problems, generally, almost four tiers are reached 

(Kim et al., 2000), while in the SSS context, the number of slabs stored in the same stack can 

exceed the hundreds (see Figure 3.10). Moreover, the characteristics of the retrieval orders are 

completely different. In the unloading CS problems, an order is composed of a list of specific 

containers to be picked-up; hence, only the optimal sequence in which they have to be retrieved 

has to be defined. Instead, in the SSS problems, the order lists the items typologies to be 

retrieved with the associated quantities (Lehnfeld & Knust, 2014). Thus, for each retrieval, it 

needs also to select the best slabs among those belonging to the same required item. 

In the case of SS, the coil unloading problems present peculiar characteristics due to the 

managed elements. Indeed, the coils can be stored only in inclined stacks, made up of two levels 

(Figure 3.11). Specifically, each element on the upper level has to be placed among two coils 

of the lower level (triangular correlation). Due to such a storage method, in a coil shuffling 

problem, the retrieval of a target coil requires a maximum of two shuffles. Indeed, the worst 

case is represented by the retrieval of a coil positioned at the lower level; for example, the one 
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depicted in green in Figure 3.11. In this case, two shuffles are required to remove the coils 

above it; the one in the same stack and the other positioned in the adjacent one. This implies 

that the mathematical models that deal with the coil shuffling problem and their solution 

methods are not applicable to the case of SSS. 

Due to its peculiar characteristics, the contributions devoted to the SSS problem represent a 

separate body of literature and need to be deeply analysed to provide a state of the art. This 

analysis could help to understand which variants of the problem have been explored and which 

gaps exist in the reference literature. 

 

Figure 3.10 – Example of a Container Stack (a) and a Slabs Stack (b) 

 
Figure 3.11 – Coil Stack  
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3.3 The framework 

3.3.1 General notation 

To better describe the properties and the characteristics of the process above introduced and to 

formalize the SSS problem, it is useful to introduce a formal notation. 

Notation: 

Basic Elements 

𝐽 = {1, … , 𝑛} set of slabs, indexed by 𝑗; 

𝐼 = {1, … , 𝑚} set of items, indexed by  𝑖; 

𝐹 = {1, … , 𝑝} set of stacks, indexed by 𝑓; 

H = {1, … , 𝑎} set of spans, indexed by ℎ; 

𝐴𝑗 span where the stack 𝑗 is located; 

𝐽𝑖 ⊂  𝐽 subset of slabs belonging to item 𝑖 (⋃ 𝐽𝑖𝑖∈𝐼 = 𝐽; 𝐽𝑖 ∩ 𝐽𝑘 = ∅, ∀𝑖, 𝑘 ∈ 𝐼); 

Layout Characteristics 

𝐼𝑓 ⊆  𝐼 subset of items that can be hosted in a given stack 𝑓; 

𝐹𝑖 ⊆  𝐹 subset of items that may host item 𝑖; 

𝑝𝑗 stack in which the slab 𝑗 is located; 

𝑝0 fictitious stack, indicating the point where target slabs have to be delivered; 

𝐷𝑗  initial number of slabs positioned above the slab 𝑗; 

Order Characteristics 

𝑞𝑖 number of requested slabs of item 𝑖; 

𝑞̅ = ∑ 𝑞𝑖

𝑖∈ 𝐼

  number of retrievals; 

𝐽 ̅ = ⋃ 𝐽𝑖

𝑖: 𝑞𝑖>0 

⊂  𝐽 subset of candidate slabs to fulfil the order; 

Time parameters 

𝑡0 time to lift up and lower down a slab; 

𝑡𝑝 unit time to transfer the single target slab to the delivery point; 

𝑡𝑓𝑓′ unit time to transfer a slab from the top of stack 𝑓 to the top of the stack 𝑓′; 

Further parameters 

𝑑𝑗 deadline of the slab 𝑗; 

𝑙𝑖 deadline for the fulfilment of the request of item 𝑖 in the order; 
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3.3.2 Framework definition 

The Slab Stack Shuffling (SSS) problems may present different characteristics, according to the 

elements and the assumption considered in the problem setting, the application contexts, etc.  

In order to support the study of the literature and to identify the variants of the problems that have 

been neglected so far, in this section we propose a theoretical framework, that systematize all the 

possible elements, that may characterize the problem (Imenda, 2014).  

The proposed framework is based on the following elements: 

1. order typologies; 

2. shuffle definition; 

3. layout characteristics; 

4. objective function; 

5. deadline constraints. 

In the following, the single elements are deeply discussed and analysed 

1. Order typologies 

In general, an order is a list of items whose slabs need to be picked up to be sent to the next production 

process, i.e. the hot rolling, the slab cutting, the delivery to a new plant or to the shipyard, etc. 

The orders may be classified into: 

• Item or Family orders; 

• Single or Multiple orders; 

• Sorted or Not-sorted orders. 

Item or Family orders 

The order lists a set of items to be retrieved with the associated quantities. If hard constraints related 

to the characteristics of the requested item exist, we talk about item order. In this case, only the slabs 

belonging to the requested item may contribute to the order fulfilment. Instead, we refer to order 

family if a set of different items may satisfy the technical requirements of a given order (i.e., width, 

steel-grade, weight). In this case, all those items meeting such requirements are included in the same 

family, and all the associated slabs may fulfil the order. 

Single or Multiple orders 

This classification refers to the possibility for an item to be present in the order more than one time. 

In the single orders, each item can be present only one time in the list (𝑞𝑖 ≤ 1, ∀ 𝑖 ∈ 𝐼), while in the 

multiple order, it may be present more than one time (∃ 𝑖 ∈ I: 𝑞𝑖 ≥ 2). In both cases, the feasible 

condition for the problem is represented by the presence of candidate slabs at least equal to the slabs 

requested in the order (|𝐽𝑖| ≥  𝑞𝑖, ∀ 𝑖 ∈ I). 

Sorted or Not Sorted orders 
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The third classification distinguishes between the Sorted and Not sorted orders. In the first case, the 

slabs need to be retrieved according to a pre-defined sequence. For example, the sorted list {1,4,3,1} 

indicated that it is needed to retrieve first the item 1, than the items 4 and 3, and finally a slab of the 

item 1 again. This could reflect constraints related to the transportation (track loading and unloading) 

or the schedule of subsequent processes. In the case of not-sorted orders, it is possible the slabs of 

any requested item at any moment of the retrieval process. In this case, the order is represented by a 

not sorted list, in which each item is characterized by the requested quantity.  

Of course, in the case of sorted orders the SSS problem is much more constrained and solution space 

more limited.  

2. Shuffling method 

The definition of the shuffling method is fundamental to describe the SSS problem. It is worth 

recalling that the term shuffle refers to the temporary or permanent shift of the single elements stacked 

above the target slab. 

The first aspect to be defined relates to the position where the slabs may be shifted, once the target 

slab is retrieved. If they are constrained to be put onto the initial stack, the shuffling process follows 

a repositioning mechanism. Alternatively, if they can be relocated onto a different stack, we talk about 

shuffles without repositioning. 

In the first case, we need to introduce a further sub-classification, based on the moment in which the 

repositioning occurs. The shifted slabs can be repositioned after every single retrieval (not-

consecutive repositioning) or when all the retrievals from the same stack are completed (consecutive 

repositioning). 

Instead, in the second case, a different sub-classification needs to be introduced, based on the criteria 

used to select the destination stack. A first option is represented by the stacks that have no target slabs 

and, hence, will not be visited during the retrieval process. In this case, the shifted slabs play the role 

of barrier only one time during the whole retrieval process (one-time barrier). Alternatively, shifted 

slabs may be moved toward any stack. In this case, they might play more than one time the role of 

barriers and be shuffled again (multiple-times barrier). 

3. Layout characteristics 

As introduced above, the slabs can be organized in stacks according to different criteria. For example, 

the slabs belonging to the same item typology can be stacked all together or in different stacks, mixed 

with other slab typologies. In order to better describe the layout adopted in the storage area, we first 

distinguish among dedicated and random stacks. In the first case, slabs of a given item can be located 

only in correspondence of specific stacks and such stacks can host only slabs of that item. In the 

second case, slabs of a given item can be located in different stacks, mixed with other typologies. 
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In order to identify the single layouts, we introduce the following symbol:  

𝒎|𝒏 where 𝑚 indicates the number of stacks in which the slabs of the same item are stored, 

and 𝑛 the number of items typologies contained in the same stack. 

The layout 𝟏|𝟏 refers to a situation in which the slabs of each given item are hosted in a single stack 

and this stack host only the slabs associated to that item (Figure 3.12 (a)). In this case, the following 

conditions hold: 

|𝐹𝑖| = 1    ∀ 𝑖 ∈ 𝐼  

|𝐼𝑓| = 1     ∀ 𝑓 ∈ 𝐹 

The layout 𝒎|𝟏 refers to the condition in which slabs of a given item are hosted in 𝑚 different stacks, 

and these stacks host only that item (Figure 3.12 (b)). In this case, the following conditions hold: 

|𝐹𝑖| = 𝑚   ∀ 𝑖 ∈ 𝐼 

|𝐼𝑓| = 1     ∀ 𝑓 ∈ 𝐹 

The layout 𝟏|𝒏 refers to the condition in which slabs of each given item are hosted in a single stack, 

but this stack hosts 𝑛 different items (Figure 3.12 (c)):  

|𝐹𝑖| = 1    ∀ 𝑖 ∈ 𝐼 

|𝐼𝑓| = 𝑛   ∀𝑓 ∈ 𝐹 

The layout m|𝒏 refers to the condition in which slabs of each given item may be hosted in 𝒎 different 

stacks, each of which may host slabs of 𝑛 different items (Figure 3.12 (d)): 

|𝐹𝑖| = 𝑚    ∀ 𝑖 ∈ 𝐼 

|𝐼𝑓| = 𝑛   ∀𝑓 ∈ 𝐹 

The random case refers to the condition in which any slab could be hosted by any stacks and any 

stacks could host slabs of any item: 

𝐹𝑖 =  𝐹 ∀ 𝑖 ∈ 𝐼 

𝐼𝑓 = 𝐼 ∀ 𝑓 ∈  𝐹 

 

 

Figure 3.12 – Example of dedicated layout 

 

 

 

 

  

(a) Layout 1|1 (b) Layout 2|1 

  

(c) Layout 1|3 (d) Layout 2|3 

 

  

(a) Layout 1|1 (b) Layout 2|1 

  

(c) Layout 1|3 (d) Layout 2|3 

 

  

(a) Layout 1|1 (b) Layout 2|1 

  

(c) Layout 1|3 (d) Layout 2|3 

 

  

(a) Layout 1|1 (b) Layout 2|1 

  

(c) Layout 1|3 (d) Layout 2|3 
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4. Deadline constraints 

As shown in the previous chapters, the slabs may present a temporary certification quality. These 

certifications, released by classification companies, have a fixed duration; hence, they cannot be used 

beyond such deadlines. In order to take into account such aspects, constraints related to the 

impossibility of using slabs with expired certifications could be integrated in the problem (slab 

deadline). Moreover, the deadline may also refer to the picking operations and it may indicates a term 

within which the retrieval to satisfy the request of a given item has to be completed (order deadline). 

5. Objective Function 

In the SSS, the main elements that could be considered in the objective function are: 

• the number of shuffles; 

• the retrieval time; 

• the expired slabs; 

• the spans’ workload balance; 

 

Number of shuffles 

In each different version of the shuffle, the number of shuffles often plays a central role, being the 

most time-consuming operation in the whole retrieval process. The SSS models have been developed 

around the different ways to consider the shuffles, according to the different cases of study proposed 

in the literature. This term, often, is the only term that is considered to evaluate the process, and it is 

always present in each proposed model, even with other objectives pursued at the same time.  

Retrieval time 

The retrieval time is usually composed of three terms:  

• the lifting time, representing the time required to lifting up and lowering down a slab. It can 

be considered as the product between the number of shuffles and a parameter 𝒕∗, representing 

the unit time needed for each operation. 

• the shuffle time, representing the time needed to move the slabs between different stacks. It 

depends on the stack from which the slabs depart (origin) and the one to which they are moved 

(destination). For each couple of stacks 𝒇and 𝒇′, such time parameters 𝒕𝒇𝒇′ can be considered 

proportional to the distance between the two stacks and the average crane speed. 

• the delivery time, representing the time to move any target slab from the its departing stack 

𝒇to the delivery point. 

Expired slabs 

If the slabs are characterized by given deadlines, the decision maker could also aim to reduce the total 

number of expired slabs at the end of the retrieval process, as a proxy of the quality of the warehouse. 

Spans’ workload balance 
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In some contexts, it could be necessary to balance the workload assigned to each span and, hence, to 

each crane. Usually, this balance is obtained by regulating the relative number of slabs retrieved from 

each span.  

The elements of the framework above introduce are summarized in Table 3.2. 

Order typologies 

Item order Family order 

Single order Multiple order 

Sorted order Not-sorted 

Shuffling method With Repositioning Without repositioning 

Consecutive Not-consecutive One-time barrier Multiple barrier 

Layout characteristics 
Dedicated Random 

1|1 1|𝑛 𝑚|1 𝑚|𝑛  

Deadline constraints Slab deadline 
Order deadline 

Objective function 

Number of shuffles (to be minimized) 

Retrieval time (to be minimized) 

Expired slabs (to be minimized) 

Span workload (to be balanced) 

Table 3.2 – The framework  

 

 3.4 The state of the art  

Most of the contributions devoted to the SSS problem refer to the steel industry. In this context, a 

slab yard functions as a storage buffer between the continuous casting and the steel rolling.. Slabs 

need to be picked up from the slab yard according to a so-called rolling schedule, that represents the 

retrieval order. 

The seminal paper on the SSS problem is by Tang et al. (2001), that has then inspired the works by 

Tang et al. (2002) and Singh et al. (2004). All these works analysed the SSS problem by referring to 

the hot rolling mill at the Baoshan steel plant in Shanghai.  

In order to formulate a mathematical model, the authors adopted the same assumptions: 

• slabs must be retrieved from the yard one by one following the sequence expressed in the rolling 

order (sorted order);  

• for each item of the work order, there is a single type of slab that meets its requirements (item 

order);  

• the set of slabs that meets the 𝒊-th request of the order is different from the one that meets the 

requirements for the 𝒌-th request (for any 𝒊 ≠ 𝒌). Therefore, the possibility that the same item is 

required twice or more in a work order is excluded (single order);  

• if the target slab is not on the top of a stack, the slabs above it must be temporarily moved to allow 

the target slab to be retrieved and then repositioned in their original order (repositioning 

mechanism); 
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• a shuffle is intended as the shift and consequent repositioning of a given slab. 

In order to formulate the model, we may refer to the above notation and to the following groups of 

decision variables: 

𝑥𝑖𝑗 binary variable equal to 1 if and only if slab 𝑗 ∈ 𝐽 is retrieved to satisfy the 

request of item 𝑖 ∈ 𝐼; 

𝑆𝑖𝑗   positive integer variable, representing the number of shuffles necessary 

to retrieve the slab 𝑗 for the request i; 

Hence, the model can be formulated as follows:  

∑ ∑ 𝑆𝑖𝑗𝑥𝑖𝑗𝑗∈𝐽𝑖

𝑚
𝑖=1             𝑀𝑖𝑛!  (1) 

subject to   

𝑆𝑖𝑗 = 𝐷𝑗 −  ∑ ∑ min (1, max(𝐷𝑗 −  𝐷𝑘 , 0))𝑟∈{ℎ|𝑝ℎ= 𝑝𝑗}
𝑖−1
𝑘=1 𝑥𝑠𝑟 ∀ 𝑗 ∈ 𝐽𝑖 , 𝑖 ∈ [1, 𝑚] (2) 

∑ 𝑥𝑖𝑗 =𝑗∈ 𝐽𝑖
1                                                                                                 ∀ 𝑖 ∈ 𝐼   (3) 

𝑥𝑖𝑗 = 0/1 ∀ 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼  (4) 

The objective function (1) aims at minimizing the sum of the shuffles needed to retrieve the slabs 𝑗 ∈

𝐽 for the requests of the items 𝑖 ∈ 𝐼 included in the order. The constraint (2) evaluates the shuffles to 

retrieve the slab 𝑗 ∈ 𝐽 in order to assign it to the 𝑖-th item, as the difference between the initial number 

of slabs above j (𝐷𝑗) and the slabs initially positioned above 𝑗 that have been retrieved to satisfy any 

item k before the item i (∑ ∑ min (1, max(𝐷𝑗 −  𝐷𝑘, 0))𝑟∈{ℎ|𝑝ℎ= 𝑝𝑗}
𝑖−1
𝑘=1 𝑥𝑠𝑟). The group of constraint 

(3) ensure that each slab j can be assigned at most to one item. Finally, the constraints (4) define the 

binary nature of the decision variable 𝑥𝑖𝑗. 

The developed model is in a non-linear model; for this reason, the three works proposed an heuristics 

approach to solve it. Even if the assumptions behind the models are the same, the proposed solution 

approaches are different. Tang et al. (2001) proposed a two-step heuristic algorithm, in which an 

initial solution is generated and, then, improved through a local search. Tang et al. (2002) proposed 

a modified genetic algorithm, in which the population and genetic operators are designed ad hoc to 

solve the problem. In particular, a change was made in the crossover operation, and a local search 

operation was added in some iterations. A comparison of the two approaches, applied to the same 

instances of the problem, showed that the modified genetic algorithm always produces better 

solutions. Singh et al. (2004) developed an improved parallel genetic algorithm to overcome the 

problem of a premature convergence of the conventional genetic algorithm. By solving the same test 

instances, it emerged that the parallel genetic algorithm produces an improvement of the solutions, 

almost equal to 6%. 
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Fernandes et al. (2012) studied the SSS problem, by modifying the assumptions made by Tang et al. 

(2001), Tang et al. (2002), Singh et al. (2004). Indeed, the authors allowed the same item to be 

requested several times in each order (multiple orders). 

With reference to the above notation, the model by Ferandes et al. (2012) can be formulated as 

follows: 

𝑅 − 𝑇            𝑀𝑖𝑛!  (5) 

subject to   

∑ 𝑥𝑖𝑗 ≤𝑖∈ 𝐼 1                                                                                                 ∀ 𝑗 ∈ 𝐽𝑖   (6) 

𝑥𝑖𝑗 = 0/1 ∀ 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼  (7) 

where the two terms of the objective function can be expressed as reported below: 

𝑅 =   ∑ ∑ 𝐷𝑗∈𝐽𝑖

𝑚
𝑖=1 𝑗

𝑥𝑖𝑗  (8) 

𝑇 =  ∑ ∑ ∑ ∑ 𝑥𝑖𝑗𝑥𝑘𝑟𝑟∈{𝑠:|𝐷𝑗≥ 𝐷𝑠 and 𝑝𝑗= 𝑝𝑠

𝑖−1
𝑘=1𝑗∈𝐽𝑖

𝑚
𝑖=2    ∀ 𝑖 ∈ 𝐼   (9) 

The objective function (5) aims at minimizing the number of shuffles during the retrieval process, 

given by the difference between the dependent variables 𝑅 and 𝑇, defined by the relation (8) and (9), 

respectively. Specifically, the equation (8) represents the sum of slabs initially above each slab j 

chosen to satisfy the request of item 𝑖. On the contrary the equation (9) represents the sum of the slabs 

initially stacked above each retrieved slab 𝑗, but previously retrieved to satisfy an item k < i. The 

group of constraints (6) ensures that a slab j can be unused or retrieved to satisfy one and only one 

item i. In the end the constraints (7) define the binary nature of the variable 𝑥𝑖𝑗. 

The non-linear model (5-9) is than linearized considering the following group of decision variables: 

𝑤𝑖𝑗𝑘𝑚   binary variable equal to one if and only if the slab 𝑗 and 𝑚 ∈ 𝐽 are selected 

for the retrieval of item 𝑖 and 𝑘 ∈ 𝐼, respectively; 

and adding the following groups of constraints: 

𝑤𝑖𝑗𝑘𝑚 ≤   𝑥𝑖𝑗 ∀ 𝑗, 𝑚 ∈ 𝐽 ∀ 𝑖, 𝑘 ∈ 𝐼   (10) 

𝑤𝑖𝑗𝑘𝑚 ≤   𝑥𝑘𝑚 ∀ 𝑗, 𝑚 ∈ 𝐽 ∀ 𝑖, 𝑘 ∈ 𝐼    (11) 

𝑤𝑖𝑗𝑘𝑚 ≤   𝑥𝑖𝑗 +  𝑥𝑘𝑚 − 1 ∀ 𝑗, 𝑚 ∈ 𝐽 ∀ 𝑖, 𝑘 ∈ 𝐼   (12) 

These constraints ensure that the variable 𝑤𝑖𝑗𝑘𝑚 is equal to 1 only when both the variables 𝑥𝑖𝑗 and   

 𝑥𝑘𝑚 are equal to 1. 

The authors compared the model results with a constructive heuristic, showing that as the problem's 

complexity increases, the model's results are always better in terms of the number of slabs shuffled 

and performed in good computing time.  

Later, Tang and Ren (2010) reformulated the SSS problem considering several new features, that are 

summarized in the following: 
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• the concept of order family is introduced, indicating a set of slabs belonging to items with similar 

characteristics, suitable to meet the same requests of an order; 

• the types of slabs required in succession have similar characteristics in terms of thickness, width 

and steel grade to minimise the number of required rollers’ changes;  

• the slabs above the target ones have not to be repositioned in the initial positions. They should be 

placed as close as possible to their original stack to reduce the distance covered by the magnetic 

crane. The authors assume that there are always enough places to put the shuffled slabs in the 

adjacent stacks; 

• once moved to a nearby stack, a shuffled slab will always remain on top so that it can be retrieved 

in subsequent periods without further shifts; 

• multiple spans are considered with dedicate cranes; 

• the objective function is defined as the total retrieval time and it is given by the sum of three 

contributes: the shuffling time, the lifting time and the time to deliver the target slabs from their 

original stacks to a fictitious stack, representing the delivery point of each span. 

• a deadline is introduced to indicate that an item has to be retrieved within a given time to satisfy 

the order. This condition takes into account the limited capacity of the cranes and tends to balance 

the workload among them. Indeed, a solution that minimizes the shuffles could produce an 

unbalanced workload, concentrated in a single span. Deadline constraints avoid that such 

congestion produces significant delays in the retrieval process. 

In order to introduce the model, the following additional decision variables have to be introduced: 

𝑦𝑖 positive integer variable, representing the span of the slab j 

assigned to item 𝑖; 

𝑇𝑖𝑗   positive integer variable, representing the retrieval time to 

assign slab 𝑗 to the 𝑖-th item of the sequence; 

𝑆𝑖𝑗
′  positive integer variable, representing the number of shuffles 

necessary to assign the slab 𝑗 to the item 𝑖, requested in the 

order. 

Considering the above notation, the model can be formulated as follows: 

∑ ∑ 𝑇𝑖𝑗𝑥𝑖𝑗𝑗∈𝐽𝑖

𝑚
𝑖=1             𝑀𝑖𝑛!  (13) 

s.t.   

∑ 𝑥𝑖𝑗 =𝑗∈ 𝐽𝑖
1                                                                                                 ∀ 𝑖 ∈ 𝐼   (14) 

∑ 𝑥𝑖𝑗 ≤𝑖∈ 𝐼 1                                                                                                 ∀ 𝑗 ∈ 𝐽𝑖   (15) 

𝑆𝑖𝑗
′ = max (𝐷𝑗 − max (𝑥𝑘𝑟(𝑆𝑘𝑟

′ + 1)|𝑟 ∈ {𝑠: |𝑝𝑗 =  𝑝𝑠}, 𝑘 ∈ [1, 𝑖]; 0) ∀ 𝑗 ∈ 𝐽𝑖 , 𝑖 ∈ [1, 𝑚] (16) 
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where: 

 

As mentioned, the objective function (13) aims at minimizing the whole retrieval time, given by the 

sum of three contributes (20). The first regards the above introduced delivery time , i.e. the time to 

move the crane from the delivery point 𝑝0 to the stack of the slab j and back to the delivery point 

(2𝑡𝑝(𝑝𝑗 −  𝑝0)); the second term represents a simplified version of the shuffle time, in which the stack 

of origin (f) and of destination (𝑓′) are not considered and a fixed time 𝑡𝑠 is considered for each 

shuffle; finally, the third term 𝑡0 considers the lifting time, i.e. the time required to lifting up and 

lowering down a slab, only related to the retrieved slab. The groups of constraint (14) and (15) ensure 

that each slab 𝑗 can be assigned at most to one item 𝑖 and that a slab 𝑗 can be retrieved to satisfy one 

and only one item i respectively. Constraints (16) evaluate the shuffle to retrieve a slab j in order to 

satisfy the 𝑖-th item of the order. According to the proposed equation, this value is null if any slab 

positioned above the slab j has been retrieved to satisfy the request of any item k before i. Otherwise, 

it is equal to the difference between the number of slabs initially above the slab j (𝐷𝑗) and those that 

have been already retrieved to satisfy the request of any item 𝑘 before 𝑖 (max (𝑥𝑘𝑟(𝑆𝑘𝑟
′ + 1)|𝑟 ∈

{𝑠: |𝑝𝑗 =  𝑝𝑠}). Constraints (17) evaluate, for each item 𝑖, the span from which the target slab is  

retrieved (𝑦𝑖). This evaluation is performed to allow the group of constraints (18) to impose that each 

item’s delivery deadline 𝑙𝑖 is respected. Indeed, the first term of these constraints 

(∑ ∑ 𝑇𝑘𝑟𝑥𝑘𝑟𝑗∈𝐽𝑖, 𝐴𝑗=𝑦𝑖 
𝑖
𝑘=1 ) correspond to the retrieval time spent in the span 𝑦𝑖to satisfy all the items 

before i. 

The proposed model is non-linear and very complex to solve; hence, the authors proposed a heuristics 

algorithm based on segmented dynamic programming. This algorithm consists of dividing the 

original problem into several consecutive segments to form a series of subproblems that can be solved 

with a dynamic programming approach. The union of the solutions of the individual segments returns 

a solution to the starting problem. Since the partitioning strategy may cause the overall optimal to be 

lost, two improvement strategies are proposed. The application to real-scale instances has shown that 

the heuristic is very effective and efficient. It reduces the overall workload of a crane by about 11% 

on average. 

𝑦𝑖 =  ∑ 𝐴𝑗𝑥𝑖𝑗𝑗∈ 𝐽𝑖
  ∀ 𝑖 ∈ 𝐼 (17) 

∑ ∑ 𝑇𝑘𝑟𝑥𝑘𝑟𝑗∈𝐽𝑖, 𝐴𝑗=𝑦𝑖 
𝑖
𝑘=1 ≤  𝑙𝑖            ∀ 𝑖 ∈ 𝐼   (18) 

𝑥𝑖𝑗 = 0/1 ∀ 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼  (19) 

𝑇𝑖𝑗 = 2𝑡𝑝(𝑝𝑗 −  𝑝0) + 𝑡𝑠𝑆𝑖𝑗
′ +  𝑡0  (20) 
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A last contribute to mention is Cheng and Tang (2010). The authors studied an original version of the 

SSS: 

• the concept of work order with the concept of order sequence. Each order sequence has an 

associated weight, and it is necessary to choose a slab from the yard that meet its technological 

requirements (thickness, steel grade and weight) to fulfil each order; 

• target slabs belonging to the same stack are always retrieved in a descending order to minimise 

the shifts; 

• the concept of slab family is replaced by the concept of order family, intended as a set of slabs 

belonging to a larger group of items that meets the technological requirements (thickness, degree 

of steel and weight) of the same order. Since generally, the elements of an order family are more 

numerous than those of a slab family, there is a wider choice of slabs to select to satisfy an order, 

leading to a greater chance of reaching solutions with fewer shuffles; 

• after each retrieval, the shuffled slabs do not have to be repositioned in the previous position; the 

authors assume that there are enough stacks to allow the shuffled slabs to be placed where there 

are no other potential target slabs. Therefore, each slab is moved only once during the entire 

retrieval process (no repositioning mechanism, single barrier slabs).  

• the yard is split into two sub-yards and the workload balance between them is optimized.  

In order to introduce the model, further parameters need to be introduced: 

𝑊𝑖 total weight of the ith order 

𝑤𝑗 weight of the slab j; 

The model is formulated as follow: 

𝑘1 ∑ ∑ 𝑆𝑖𝑗𝑥𝑖𝑗  
𝑛

𝑗=1

𝑚

𝑖=1
+ 𝑘2

∑ ∑ 𝑆𝑖𝑗𝑥𝑖𝑗  𝑛
𝑗=1

𝑚
𝑖=1

∑ ∑ 𝑥𝑖𝑗𝑤𝑗
𝑛
𝑗=1

𝑚
𝑖=1

+ 𝑘3  
|𝑁1 − 𝑁2|

𝑁1 + 𝑁2 + 1

+ 𝑘4 ∑ ( 𝑊𝑖 − ∑ 𝑥𝑖𝑗𝑤𝑗  )
𝑛

𝑗=1

𝑚

𝑖=1
  𝑀𝑖𝑛!   

 (21) 

subject to   

𝑆𝑖𝑗  = 𝐷𝑗 − max (𝑥𝑘𝑟(𝐷𝑟 + 1)|𝑟 ∈ {𝑠: |𝑝𝑗 =  𝑝𝑠, 𝐷𝑠 < 𝐷𝑗   }, 𝑘 ∈ 𝐼);  ∀ 𝑗 ∈ 𝐽𝑖 , 𝑖 ∈ 𝐼 (22) 

 𝑁ℎ =  ∑ ∑ 𝑆𝑖𝑗𝑥𝑖𝑗  𝑎
𝑗∈{𝑟|𝐴𝑟=ℎ}

𝑚
𝑖=1  ∀ ℎ ∈ H = {1,2} (23) 

∑ 𝑥𝑖𝑗 =𝑗∈ 𝐽𝑖
1                                                                                                 ∀ 𝑖 ∈ 𝐼   (24) 

∑ 𝑥𝑖𝑗𝑤𝑗 ≤𝑖∈ 𝐼 𝑊𝑖                                                                                                 ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (25) 

𝑥𝑖𝑗 = 0 ∀ 𝑗 ∈ {𝑟 ∩ 𝐽𝑖 = ∅, 𝑖 ∈ 𝐼} (26) 

𝑥𝑖𝑗 = 0/1 ∀ 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼  (27) 
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The objective function (21) aims at the minimizing the sum of four terms, weighted according to the 

parameters (𝑘1, 𝑘2, 𝑘3, 𝑘4) . The first represents the sum of the shuffles necessary to retrieve each slab 

j assigned to the ith order (𝑘1 ∑ ∑ 𝑆𝑖𝑗𝑥𝑖𝑗  𝑛
𝑗=1

𝑚
𝑖=1 ). The second one denotes the average shuffles per unit 

weight, and it is given by the ratio between the sum of the shuffles necessary to retrieve the slabs to 

satisfy any order (∑ ∑ 𝑆𝑖𝑗𝑥𝑖𝑗  𝑛
𝑗=1

𝑚
𝑖=1 ) and the sum of the weights of all the retrieved slabs 

(∑ ∑ 𝑥𝑖𝑗𝑤𝑗
𝑛
𝑗=1

𝑚
𝑖=1 ). The third term (𝑘3  

|𝑁1−𝑁2|

𝑁1+𝑁2+1
) measures the differences of shuffles between two 

spans, being 𝑁ℎ the number of shuffles occurred in each span h. Finally, the last term 

(𝑘4 ∑ ( 𝑊𝑖 − ∑ 𝑥𝑖𝑗𝑤𝑗  )𝑛
𝑗=1

𝑚
𝑖=1 ) considers the differences between the total weight of each order and 

the total weight of the slab assigned to it. In this model the number of shuffles necessary to retrieve a 

slab j for the order i is evaluated by the equation (22). According to this latter, the number of shuffles 

to retrieve a slab j to satisfy the order i is given by the difference between the initial number of slabs 

above j and the initial number of slabs (plus 1) of the lowest slab k retrieved that initially was 

positioned above the slab j. Constraints (24) ensure that to each order i is assigned one and only one 

slab j. On the contrary the group of constraints (25) ensures that the slab j retrieved for each order i 

won’t exceed the weight associated to this order. The constraints (26) control that a slab that do not 

verifies the technological requirements of the order i, are not assigned to this latter. In the end the 

constraints (27) regulate the binary nature of the variables. 

Due to the complexity of the model, the authors proposed a scatter search algorithm to solve the 

problem, and the results show that the shifts decrease by 36.9% compared to the manual program. 

As shown, even if the context of development of all the analysed works is the same, many different 

models adapt with their specific goal to address and characteristics have been proposed in literature. 

Hence, it is necessary to highlight the elements that distinguish the various problems through the 

definition of a framework that systemises all the possible characteristics of the problem to bring out 

the literature gaps and give a contribute to the extension of the SSS problem’s field. 

 

3.5 Classification of existing contributions and research gaps 

The Slab Stack Shuffling (SSS) aims at choosing appropriate slabs to retrieve from a set of stacks, to 

satisfy an order or a set of orders and to optimize given objectives. 

The analysis of the literature revealed that different variants of the SSS problem have been 

investigated but, also, that some of the possible declinations have been neglected. To give a clear 

picture of what relevant studies have been found and identify which elements have been neglected, 

we refer to the framework introduced in section 3.3. We recall that it is based on five different 

characteristics: order typologies, shuffling method, layout characteristics; objective function; 

deadline constraints. 
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In Table 3.3, we classify the papers analysed in the previous section, by referring to the introduced 

framework. Such classification provides interesting indications for scholars that intend to investigate 

the topic. It is possible to notice that all the analysed papers consider random stacks. This is probably 

due to the fact that they focus on the case of steel production plants, where slabs, from continuous 

casting, need to be stored, waiting to undergo the next rolling phase. At this level of the supply chain, 

the number of items is not particularly high. Hence there is no need to create dedicated stacks. 

Dedicated layouts make much more sense within yards that serve cutting/assembly centres, where a 

wider range of slabs typologies are available. The fact that the SSS problem with dedicated stacks 

has never been addressed in the literature is the first gap we intend to fill.  

Another interesting feature concerns the shuffling method. When the repositioning method is adopted, 

only the not-consecutive approach has been considered.  In this case, any shuffled slab is repositioned 

on the previous stack after each retrieval. In the real case, it is much more realistic to consider that 

the shuffled slabs are repositioned only after that all the retrievals from the same stack are completed. 

This assumption certainly adds further complexity to the problem but is very important because of 

two reasons. First, it could allow obtaining better solutions and, then, it better reflects realistic 

management of this kind of operations. 

As concerns the shuffling method without repositioning, the only contributions assume to position 

the shuffled slabs on stacks that do not contain target slabs (one-time barrier). However, this 

assumption seems to be quite restrictive, as enough space has to be available in the yard.  

As concerns the order typology, most of the extant studies consider sorted orders. Once again, this 

feature is much frequent because of the application context analysed in the considered papers. In the 

steel mill, the retrieval sequence is mandatory because the production is not by batches as in the 

cutting/assembly centres. It means that the elements of an order are not linked together. Hence, each 

request cannot be overtaken by any other as in a cutting/assembly centre. In this latter, the elements 

of a work order, usually belonging to the same batch, do not present any relative sorting because the 

outputs that have to be produced should be ready all together.  

A further feature on which the literature has not paid attention is the constraints on the slabs’ deadline. 

Unlike in the steel industry, in the assembly phase, there is the problem of associating slabs with a 

certification of quality and relative usability, that has a certain duration and therefore a deadline.
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Tang et al. 

(2001), 

Tang et al. 

(2002), 

Singh et al. 

(2004). 

Tang and 

Ren (2010) 

Cheng and 

Tang (2010) 

Ferandes et 

al. (2012) 

Order 

 Item order X X  X 

 Family order   X  

 Single order X X  X 

 Multiple order   X  

 Sorted order X X  X 

 Not-sorted   X  

Shuffling  

method 

With Repositioning 
Consecutive     

Not-consecutive X   X 

Without repositioning 
One-time barrier  X X  

Multiple barrier     

Layout 

characteristics 

Dedicated 

1|1     

1|𝑛     

𝑚|1     

𝑚|𝑛     

Random Random X X X X 

Deadline constraints 
Slab deadline     

Order deadline  X   

Objective function 

Number of shuffles (to be minimized) X  X X 

Retrieval time (to be minimized)  X   

Expired slabs (to be minimized)     

Span workload (to be balanced)   X  

 

Table 3.3 – Papers classification
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3.6 Conclusions 

In this chapter, we introduced the Stacking problems and, in particular, the Slab Stack Shuffling 

(SSS) problem, which consists of selecting the appropriate slabs to retrieve from a set of stacks, to 

satisfy an order or a group of orders and minimize the shuffles during the retrieval process. 

The main differences between this problem and the other Stacking problems are first analysed. Then, 

a literature review is conducted to deepen the models and methods proposed to tackle the problem. 

Moreover, a theoretical framework has been proposed, with the aim of classifying the existing 

contributions, and highlighting the main research gaps in the literature. The framework is based on 

five main characteristics: order typologies, shuffling method, layout characteristics, objective 

functions, deadline constraints. By positioning the analysed paper within the proposed framework, 

we were able to identify new versions of the problem that could be investigated. In the next chapter, 

some new models and relative heuristic approaches – able to fill a portion of the identified gaps– 

will be discussed. 
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4 Models and heuristics for the Slab Stack Shuffling problem 

 

 

 

Summary 

In the previous chapter, we released a general framework able to describe various variants of the 

SSS problem. In this chapter we describe and solve the version of the problem defined as dedicated 

item-stack relation in which slabs and profiles are characterized by a deadline affecting priorities 

about the retrieval process. 

In particular, we illustrate a mathematical model able to describe some variants of the problem. 

Then we show a tailored heuristic proposed to solve the problem whose performances are test on 

a large set of generated instances. Finally, we briefly describe the structure of a system able to 

assume the role of a Decision Support System (DSS) and embed the models and methods presented 

as optimization tools.  

 

4.1 The problem description  

We assume the presence of a set of slabs, stored in preassigned stacks. Each slab is characterized 

by a deadline which represents the time within which the slab has to be retrieved and used in the 

production process.  

We assume a fixed time horizon divided in periods. For each period an order is defined as a set of 

requests, i.e. pair of information (item, quantity). Each request can be satisfied only selecting slabs 

belonging to the specific requested item (item order) and each item can be requested more times 

along the time horizon (multiple order). In each period requests can be selected and retrieved in 

any order (not sorted order). In general, in order to retrieve a given slab, shuffle operations have 

to be performed: in practice some slabs have to be removed and repositioned (shuffle with 

repositioning). We also assume that if two or more requests are satisfied by selecting slabs of the 

same stack, the shuffled slabs are relocated at the end of all the retrievals of the period (non-

consecutive repositioning).  

We also assume that slabs of an item can be allocated to a set m given stacks (1:m) each of which 

can host slab belonging to n preassigned items (1:n). 

The objective function includes two terms to be minimized: the number of shuffles and the number 

of expired slabs, i.e. slabs not retrieved before their own deadlines. 
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In the following, we illustrate some mathematical models able to describe different variants of the 

mentioned problem. In particular we introduce a general model for the case m|n then we underline 

how the model can be adapted in order to describe other versions of the problem. 

 

4.1.1 A mathematical model for the SSS problem for the general case m|n (1:m;1:n) 

In order to describe the mathematical model, we introduce the following notation: 

 

𝐽 = {1, … , 𝑛} set of slabs, indexed by 𝑗 ; 

𝐼 = {1, … , 𝑚} set of items, indexed by  𝑖 ; 

𝐹 = {1, … , 𝑝} set of stacks, indexed by 𝑓; 

𝑇 = { 1, … , 𝑇̅} set of order periods, indexed by 𝑡 ; 

𝑞𝑖
𝑡 number of slabs of the item 𝑖 to retrieve in period 𝑡 ; 

𝐽𝑖 ⊂  𝐽 subset of slabs belonging to item 𝑖 (|𝐽𝑖| ≥  𝑞𝑖) ; 

𝐽′ subset of slabs with 𝑑𝑗 ≤  𝑇̅ ;  

𝑝𝑗 stack of the slab 𝑗; 

𝐷𝑗
0 initial position of the slab j (positions are indicated from 

the top (position 1) to the bottom of the stack) 

 

𝑑𝑗 deadline of the slab 𝑗; 

and the following decision variables 

𝑥𝑗
𝑡 Binary variable equal to 1 if slab j is retrieved at period t,  

0 otherwise; 

𝑆𝑓
𝑡   Positive integer variable, representing the number of 

shuffles associated to the stack f needed to satisfy requests 

at period t; 

 

The model can be then formulated as follows:  

∑ ∑ 𝑆𝑓
𝑡

𝑓∈𝐹𝑡∈𝑇  + P ∑ (1 − ∑ 𝑥𝑗
𝑡𝑑𝑗

𝑡=1𝑗∈𝐽′  )            𝑀𝑖𝑛! (1) 

 

Subject to 
 

𝑆𝑓
𝑡 ≥   𝐷𝑗

0𝑥𝑗
𝑡 −  ∑ ∑ 𝑥𝑘

𝑠
𝑘∈𝐽:𝐷𝑗

0≥ 𝐷𝑘
0 and 𝑝𝑗= 𝑝𝑘

𝑡
𝑠=1    ∀ 𝑗 ∈ 𝐽: 𝑝𝑗 = 𝑓, ∀ 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇  

(2) 

∑ 𝑥𝑗
𝑡 =𝑗∈ 𝐽𝑖

𝑞𝑖
𝑡  ∀ 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇   

(3) 

∑ 𝑥𝑗
𝑡 ≤ 1𝑡∈ 𝑇    ∀ 𝑗 ∈ 𝐽  (4) 
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𝑥𝑗
𝑡 = 0 ∀ 𝑗 ∈ 𝐽, 𝑡 = 𝑑𝑗 … 𝑇̅ 

(5) 

𝑥𝑗
𝑡 = 0/1 ∀ 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇  (6) 

𝑆𝑓
𝑡 ≥  0 ∀ 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇 

(7) 

 

The objective function (1) includes two terms to be minimized: the first one represents number of 

shuffles of each stack f in each period of the time horizon ( ∑ ∑ 𝑆𝑓
𝑡

𝑓∈𝐹𝑡∈𝑇  ), while the second one 

is the number of expired slabs, i.e. number of slabs that are not retrieved ( ∑ 𝑥𝑗
𝑡𝑑𝑗

𝑡=1 = 0 ) before 

their own deadline within the time horizon ( 𝑗 ∈ 𝐽′). The second term is weighted by a penalty 

coefficient (P) that represents the relative importance of the second term in comparison with the 

first one. In practice, when P is equal to 0, the objective function focuses only on minimizing 

shuffles, while when P is equal to 1 each shuffle as the same importance of an extra expired slab. 

When P is high enough, e.g. |T|x|J|, the target function tends to minimize the number of expired 

slabs because a single extra expired slab would result in an increment of the objective function 

equivalent to |T|x|J| shuffles. Clearly, with appropriate P calibrations it is possible to obtain trade-

off solutions between the two objectives.  

Constraints (2) ensure that for each period t, the number of shuffles in each stack is equal to the 

shuffles needed to retrieve the slab in the lowest position. Therefore, this value is equal to the 

initial position of the slab j in the lowest position, retrieved in t ( 𝐷𝑗
0𝑥𝑗

𝑡  ), minus the total number 

of the slabs over the slab j, already retrieved till the period t (∑ ∑ 𝑥𝑘
𝑠

𝑘∈𝐽:𝐷𝑗
0≥ 𝐷𝑘

0 & 𝑝𝑗= 𝑝𝑘

𝑡
𝑠=1  ). 

Constrains (3) ensure that, at each period t, the number of slabs retrieved 

for each item 𝑖 (∑ 𝑥𝑗
𝑡)𝑗∈ 𝐽𝑖

  is equal to the amount quantity 𝑞𝑖
𝑡  associated to the request of item i 

at period t (request satisfaction). 

Constraints (4) assures that any slab j can be picked at least at one period t (∑ 𝑥𝑗
𝑡 ≤ 1𝑡∈ 𝑇 ). 

Constraints (5) guarantee that a slab j is retrieved at period t within its own deadline 𝑑𝑗. 

Finally, constraints (6) and (7) regulate the nature of the variables. 

 

4.1.2 Adaptation of the model  

The model (17) describes the SSS in the case m|n, i.e., when a stack can host slabs belonging to 

n preassigned items (1:n) each of which can be allocated to a set of m given stacks (1:m).  

In the following we describe how the models for the cases 1|n (each item is assigned to only one 

stack and each stack can host n items) and m|1 (each item may be assigned to a predefined set on 

m stacks, but each stack can host only one item) can be derived from the general model m|n. 
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In the case 1|n, assuming the presence of a set F of stacks, the SSS problem can be tackled 

considering |F| separated problems each of them associated to a single stack, f. The problem is not 

trivial for the presence of the deadline constraints that may drive choices, at each period different 

from the obvious approach LIFO (Last In-First Out) corresponding to the pick-up of the slabs 

currently positioned at the top of the assigned stack. Consequently, in presence of a single stack, 

the corresponding model becomes: 

∑ 𝑆𝑡
𝑡∈𝑇 + P ∑ (1 − ∑ 𝑥𝑗

𝑡𝑑𝑗

𝑡=1𝑗∈𝐽′  )            𝑀𝑖𝑛!          (1𝑎) 

subject to 

𝑆𝑡 ≥   𝐷𝑗
0𝑥𝑗

𝑡 −  ∑ ∑ 𝑥𝑘
𝑠

𝑘∈𝐽∶̅𝐷𝑗
0≥ 𝐷𝑘

0 
𝑡
𝑠=1   ∀ 𝑗 ∈ 𝐽 ̅, 𝑡 ∈ 𝑇 (2a) 

∑ 𝑥𝑗
𝑡 =𝑗∈ 𝐽𝑖

𝑞𝑖
𝑡                                                                                                   ∀ 𝑖 ∈ 𝐼,̅ 𝑡 ∈ 𝑇   (3a) 

∑ 𝑥𝑗
𝑡 ≤ 1𝑡∈ 𝑇    ∀ 𝑗 ∈  𝐽  ̅  (4a) 

𝑥𝑗
𝑡 = 0 ∀ 𝑗 ∈  𝐽,̅ 𝑡 = 𝑑𝑗 … 𝑇̅  (5a) 

𝑥𝑗
𝑡 = 0/1 ∀ 𝑗 ∈  𝐽,̅ 𝑡 ∈ 𝑇  (6a) 

𝑆𝑡 ≥  0 ∀ 𝑡 ∈ 𝑇  (7a) 

In practise the objective function is reformulated such as 𝑆𝑡represents the shuffles at each period, 

and the subset 𝐽′ is intended as the subset of slabs with a deadline lower than 𝑇̅ belonging to the 

set of items hosted in the stack f under consideration 𝐼 ̅( 𝐼 ̅= 𝐼𝑓 and 𝐽′ ={j ∈ 𝐽:̅ 𝑑𝑗 ≤  𝑇̅ } where 𝐽 ̅= 

⋃ 𝐽𝑖𝑖∈𝐼 ̅   ).  

In constraints (2a) 𝑆𝑓
𝑡 has been replaced by 𝑆𝑡, and J by is subset 𝐽.̅ 

In constraints (3a) the set of items I is replaced by the subset 𝐼 ̅; similar substitutions have been 

realized for constrains (4a), (5a) and (6a) where J is replaced by 𝐽.̅ Finally, constraint (7a) is related 

to 𝑆𝑡. 

In the version m|1 we assume the presence of a set F of stacks dedicated to a single item. So, the 

corresponding problem as many problems as the number of different items. Therefore, considering 

the single item distributed on F stacks, it is possible to formulate the problem in the following 

way: 

∑ ∑ 𝑆𝑓
𝑡

𝑓∈𝐹𝑡∈𝑇  + P ∑ (1 − ∑ 𝑥𝑗
𝑡𝑑𝑗

𝑡=1𝑗∈𝐽′  )        𝑀𝑖𝑛!     (1𝑏) 

subject to 

 𝑆𝑓
𝑡 ≥   𝐷𝑗

0𝑥𝑗
𝑡 −  ∑ ∑ 𝑥𝑘

𝑠
𝑘∈𝐽:𝐷𝑗

0≥ 𝐷𝑘
0 and 𝑝𝑗= 𝑝𝑘

𝑡
𝑠=1    ∀ 𝑗 ∈ 𝐽:̅ 𝑝𝑗 = 𝑓, ∀ 𝑓 ∈ 𝐹̅, 𝑡 ∈ 𝑇  (2b) 

∑ 𝑥𝑗
𝑡 =𝑗∈ 𝐽̅ 𝑞𝑡   ∀𝑡 ∈ 𝑇 (3b) 
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∑ 𝑥𝑗
𝑡 ≤ 1𝑡∈ 𝑇    ∀ 𝑗 ∈ 𝐽 ̅ (4b) 

𝑥𝑗
𝑡 = 0 ∀ 𝑗 ∈ 𝐽,̅ 𝑡 = 𝑑𝑗 … 𝑇̅  (5b) 

𝑥𝑗
𝑡 = 0/1 ∀ 𝑗 ∈ 𝐽,̅ 𝑡 ∈ 𝑇  (6b) 

𝑆𝑓
𝑡 ≥  0 ∀ 𝑓 ∈ 𝐹̅, 𝑡 ∈ 𝑇  (7b) 

The objective function is reformulated such as 𝑆𝑓 
𝑡 represents the shuffles at each period and in each 

stack that hosts the item i under consideration (𝐹̅), and the subset 𝐽′ is intended as the subset of 

slabs with a deadline lower than 𝑇̅ belonging to the item i under consideration ( 𝐹̅ = 𝐹𝑖  and  𝐽′ =

 j ∈  𝐽 ̅ ∶ 𝑑𝑗 ≤  𝑇̅} where 𝐽 ̅ =  𝐽𝑖 . 

In constraints (2b) 𝐹 has been replaced by 𝐹̅ and J has been replaced is subset 𝐽;̅ 

Constraints (3c) regard only the only item i under consideration, and similar substitutions have 

been realized for constrains (4a), (5a) and (6a) where J is replaced by 𝐽.̅ Finally, in constraints 

(7a), related to 𝑆𝑓 
𝑡 , F has been replaced by 𝐹̅. 

 

4.1.3 The Model 1|1  

A particular version of the model is the one related to the case 1|1, i.e., when each stack can host 

only one item and each item is assigned to only one stack. This model, as the previous, can be 

derived from the general model m|n. 

In the case 1|1, the number of stacks |F| is equal to the number of items |I|, hence the SSS problem 

can be tackled both considering |F| or |I| separated problems each of them associated to a single 

couple (stack,item),(f,i). Consequently, in presence of a single item hosted in a single stack, the 

corresponding model becomes: 

∑ 𝑆𝑡
𝑡∈𝑇  + P ∑ (1 − ∑ 𝑥𝑗

𝑡𝑑𝑗

𝑡=1𝑗∈𝐽′  )       𝑀𝑖𝑛     (1𝑐) 

Subject to 
 

 

𝑆𝑡 ≥   𝐷𝑗
0𝑥𝑗

𝑡 −  ∑ ∑ 𝑥𝑘
𝑠

𝑘∈𝐽∶̅𝐷𝑗
0≥ 𝐷𝑘

0
𝑡
𝑠=1   ∀ 𝑗 ∈ 𝐽 ̅, 𝑡 ∈ 𝑇  (2𝑐) 

∑ 𝑥𝑗
𝑡 =𝑗∈ 𝐽 ̅ 𝑞𝑡                                                                                                   𝑡 ∈ 𝑇  (3𝑐) 

∑ 𝑥𝑗
𝑡 ≤ 1𝑡∈ 𝑇    ∀ 𝑗 ∈ 𝐽 ̅   (4𝑐) 

𝑥𝑗
𝑡 = 0 ∀ 𝑗 ∈ 𝐽 ̅, 𝑡 = 𝑑𝑗 + 1 … |𝑇| (5𝑐) 

𝑥𝑗
𝑡 = 0/1 ∀ 𝑗 ∈ 𝐽 ̅, 𝑡 ∈ 𝑇 (6𝑐) 

𝑆𝑡 ≥  0 𝑡 ∈ 𝑇 (7𝑐) 
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In practise the objective function is reformulated such as 𝑆𝑡represents the shuffles at each period 

in the only stack f that hosts all the slabs of the item i, and, indeed, the subset 𝐽′ is intended as the 

subset of slabs with a deadline lower than 𝑇̅ belonging to the item i hosted in the stack f under 

consideration ( 𝐽′ ={j ∈ 𝐽:̅ 𝑑𝑗 ≤  𝑇̅} where 𝐽 ̅= 𝐽𝑖  ). In constraints (2c) 𝑆𝑓
𝑡 has been replaced by 𝑆𝑡, 

and J by is subset 𝐽.̅ 

Constraints (3c) regards only the only item i under consideration; and similar substitutions have 

been realized for constrains (4a), (5a) and (6a) where J is replaced by 𝐽.̅ Finally, constraint (7a) is 

related to 𝑆𝑡. 

 

The next subparagraph gives an example of application, relating to the 1|1 case, in order to 

understand how the solution provided by the model changes as the penalty coefficient P changes, 

before of showing the instances generation and relative experimentation. 

 

4.1.4 An illustrative example of the case 1|1  

Consider a horizon time of 5 periods (T={1,2,3,4,5}) and the presence of only one stack with n=20 

slabs of the same item; at each slab is associated a deadline whose value is between 1 and 6. 

Suppose a set of requests for each period 𝑞1 = 3; 𝑞2 = 2; 𝑞3 = 3; 𝑞4 = 4; 𝑞5 = 3. Figure 4.1 

illustrates the elements of this example where nuances of increasing intensity are used for different 

values of deadlines. 

Figures 4.1, 4.2 and 4.3 show the optimal solution for the problem, obtained by solving the model 

(1c)(7c) for three different values of the penalty coefficient, P, using the software CPLEX. The 

model script for the CPLEX is listed in Appendix A. 

In the first case, with P=0, the objective is the minimization of shuffles. The obtained solution 

satisfies the request with only 4 shuffles while the number of expired slabs that remain in the stack 

at the end of the time horizon is equal to 7. Information about the number of expired slabs 

represented can be visually obtained by looking, in the left side of Figure 4.2, at the slabs obscured 

in each period. 

In the second case, the value of the penalty coefficient, P, was fixed to |T|x|J| = 100, to minimize 

primarily the number of expired slabs in stock at the end of the time horizon and in secondarily 

the number of shuffles in the whole retrieval process. In this case, the solution provided by the 

model is shown in Figure 4.3 following the same representation logic described in previous 

example. 
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In this case, it is possible to notice that the number of expired slabs present in stock, at the end of 

the reference time horizon, has significantly decreased, from 7 to 0 expired slabs, while the number 

of shuffles has increased, from 4 to 47. 

Figure 4.4 compares the choices made by the model for the slabs to be retrieve in the event that P 

= 0 and P = 100. As can be seen in this figure, for each period t, the model selects different target 

slabs depending on the value of the penalty parameter P.  

 

 

Figure 4.1 – Example of stack representation with deadlines 

 

 

Figure 4.2 - Solution obtained with P = 0 

 

LEGEND 
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Figure 4.3 - Solution obtained with P = 100 

 

 

Figure 4.4 – Comparison between solutions with P = 0 and P= 100  

  

Slabs retrieved at each period 
Total Shuffles 47
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4.2 Computational experiences for the model 1|1 

In this section we illustrate the computational experiences related to the model in the version 1|1. 

To this aim appropriate test instances have been generated according to the procedure described 

below. 

Instances of the problem have been generated through the creation of a dedicated script in Matlab 

(see Appendix B). Once the input parameters are set, the script automatically provides random 

instances that can be used to conduct an extensive experimentation of the introduced model. The 

key input parameter is the number of periods of the time horizon, |𝑇|, while the other parameters 

(number of slabs |𝐽|, requests vector (𝑞𝑡, 𝑡 ∈ 𝑇), deadlines (𝑑𝑗 , 𝑗 ∈ 𝐽),  and initial slabs’ position in 

the stack (𝐷𝑗
0, 𝑗 ∈ 𝐽)) are defined according to the procedures described below. Instances are 

generated, fixing |𝑇| = 5,10,15,20,25. 

The number of requests for each period (𝑞𝑡  ∀ 𝑡 ∈ 𝑇) are randomly generated, according to a 

uniform integer distribution within the range [𝑞𝑚𝑖𝑛 = 0, 𝑞𝑚𝑎𝑥 = 4]. The number of slabs |J| is 

fixed to ensure that there are always enough slabs in stock to meet total demand ∑ 𝑞𝑡
𝑡∈𝑇  so it is set 

|𝐽| = 𝑞𝑚𝑎𝑥 ∗ |𝑇|. Hence, as |𝑇| = 5, 10, 15, 20 and 25 |J| assumes values equal to 20, 40, 60, 80 

and 100. 

The slabs' deadlines and positions within the stack are the two key elements in the generation of 

instances. Indeed, an appropriate selection of these parameters allows for generating non-trivial 

instances. Trivial instances could be considered cases in which a LIFO (Last-In, First-Out) 

retrieval rule is able to obtain the optimal solution. In the following, the procedure to assign the 

initial positions and the deadlines to get feasible and non-trivial instances is described.  

Obviously, at each period t, in case of a request of 𝑞𝑡 slabs, it is necessary the presence in the stack 

of at least 𝑞𝑡 slabs with a deadline higher or equal to t. Consequently, iteratively, at each period t, 

the 𝑞𝑡 deadlines' values are fixed by randomly choosing a value between t and t+ 2. About each of 

the other slabs, a random deadline is assigned in such a way that the 30% of them expires within the 

reference time horizon, while the residual ones beyond it.  

The initial positions of the slabs in the stack are defined in order to reproduce conditions typical 

of real cases. In practice, in an actual management, slabs with lower deadlines are expected to be 

located in the lower positions of stacks since they have been allegedly delivered earlier. Therefore, 

we opt for positioning a consistent percentage of slabs (60%) with lower deadline in the lowest 

half of the stack. Figure 4.5 shows an example of initial assignment of deadlines, respecting this 

requirement. Considering that the problem is bi-objective, through the assignment of values to the 

penalty P, it is possible to produce different solutions of the Pareto frontier, i.e. the set of not 
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dominated solutions, in the sense that, for each solution, there are no better solution for both the 

considered objectives. 

As illustrative example, Figure 4.6 shows the solutions obtained on two different instances with 

|T|=10 and |J|=40, in the case of P=0 and 𝑃 = |𝑇| ∙ |𝐽| = 10 ∙ 40 = 400. 

As it can be expected for high penalty values, the total number of shuffles required for the retrieval 

operations is much higher than in the case where P = 0. In particular, considering the objective of 

the number of shuffles, its lower bound (𝐿𝐵𝑆) and its upper bound (𝑈𝐵𝑆) are the values of shuffles 

obtained with P =0 and P = |T|x|J| respectively. On the other hand, lower bound (𝐿𝐵𝐸𝑆) and upper 

bound (𝑈𝐵𝐸𝑆) for the number of expired slabs are provided when P = |T|x|J| and P =0 respectively. 

It is important to note that the minimum value of slabs expired at the end of the retrievals (𝐿𝐵𝐸𝑆) 

is not necessarily zero, as it depends on deadlines assigned to the initial positioning of the slabs.  

 

Figure 4.5 – 1.1 Example of non trivial deadline assignament 

 

 

Figure 4.6 – Model solutions for two instances (10, 40) with P=0 and P=400 
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The tuning of P is crucial to explore the Pareto frontier and drive the decision maker toward regions 

characterized by a lower number of shuffles or a lower number of expired slabs. This can be shown 

applying the so-called “ε-constraint method” to represent the Pareto frontier. In practice, starting 

from the number of expired slabs associated with the solution obtained with P = 0, iteratively, we 

add to the model (1c)-(7c), a further constraint  

∑ (1 − ∑ 𝑥𝑗
𝑡

𝑡∈𝑇:𝑡≤𝑑𝑗
) ≤ 𝑌𝑘𝑗∈𝐽𝑠

                 (8) 

that fix an upper bound to the total number of slabs that can expire at iteration k. Therefore, the 

value of upper bound is iteratively updated by setting 𝑌𝑘+1 = 𝑌𝑘 − 1, until the minimum number 

of expired slabs (𝐿𝐵𝐸𝑆) is reached.  

The obtained Pareto solutions for the two illustrative examples are depicted in Figure 4.7. 

 

Figure 4.7 – Pareto frontiers for the illustrative examples 

 

4.3 Analysis of the results  

In order to test the model, computational experiences have been carried out on random instances 

assuming the combination of values (|T|, |J|) = {(5, 20); (10, 40); (15, 60)}. For each combination 

of values 50 random instances are considered. As previously illustrated, in order to represent the 

Pareto frontier for a single instance, it is necessary to set the value of the penalty P. To this aim, 

lower and upper bounds for each objective are evaluated. In particular, for a given instance, the 

upper bound for the number of shuffles (𝑈𝐵𝑆) and the lower bounds for the number of  expired 

slabs (𝐿𝐵𝐸𝑆) are determined by solving the model with P = |T|x|J|; on the other hand, the lower 

bound for the number of shuffles (𝐿𝐵𝑆) and the upper bounds for the number of  expired slabs 

(𝑈𝐵𝐸𝑆) are calculated setting P = 0. Therefore 𝑃𝑚 =  ⌈
 𝑈𝐵𝑆− 𝐿𝐵𝑆

 𝑈𝐵𝐸𝑆− 𝐿𝐵𝐸𝑆
⌉  represents the slope of the line 

passing through the extreme points of the Pareto’s frontier of coordinates (𝐿𝐵𝐸𝑆, 𝑈𝐵𝑆), 
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(𝑈𝐵𝐸𝑆, 𝐿𝐵𝑆). In order to get an approximation of the Pareto’s frontier, the model has been solved 

for 𝑃 = {𝑃𝑚, 𝑃𝑚 2⁄ , 𝑃𝑚 4⁄  } using IBM ILOG CPLEX Optimization Studio 12.9 software. Then, a 

text file that summarizes the results obtained in terms of the total number of shuffles, the number 

of expired slabs at the end of the reference time horizon and computing time spent resolving the 

model is obtained as output. Tables indicating the results obtained for each test instance in terms 

of objective functions are reported in Appendix C. 

.  

Table 4.1 shows the minimum, the maximum and the average computing times for each 

combination (|T|,|J|) = {(5, 20); (10, 40); (15, 60)}, in correspondence of the different adopted 

penalty values. In evaluating the computing time, a time limit of one hour has been assumed. As 

it can be noted, computing times present significant variations for the same combinations but 

generally tend to dramatically increase with the dimension of the instances. In particular with 

(|T|,|J|) = (15, 60) and P =Pm, 14 instances exceeded the time limit of one hour. In order to show 

the actual computing times, these instances have been solved to optimality with no computing time 

limits. Table 4.2, reporting the computing times (in hours) for these “difficult” instances, show 

how in the case of instance no. 50, the computing time reaches 11,46 hours. Tables indicating the 

results obtained for each test instance in terms of objective functions are reported in Appendix C. 

In order to underline the extensive required computing times, the model has also been tested for 

larger instances with (|T|,|J|) = {(20, 80); (25, 100)}, only in the case of the extreme points of the 

Pareto’s frontier with P=0 and P=|T|x|J|. Assuming a time limit of one hour, Table 4.3 shows the 

number of instances solved to optimality (over 50) and minimum, maximum and average 

computing times related to these instances. Tables indicating the results obtained for each test 

instance in terms of objective functions and computing times are reported in Appendix C. 
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Table 4.1 – Computing times (min, max, and average) for (|T|,|J|) = {(5, 20); (10, 40); (15, 60)} 

Instance number |T| |J| Computing times (h) 

4 15 60 1.09 

16 15 60 2.19 

18 15 60 5.70 

19 15 60 1.03 

26 15 60 3.88 

27 15 60 1.46 

31 15 60 10.03 

39 15 60 1.54 

40 15 60 2.91 

41 15 60 5.48 

44 15 60 1.05 

45 15 60 4.96 

47 15 60 6.03 

50 15 60 11.46 
Table 4,2 – Computing times for “difficult” instances for (|T|,|J|) = {(15, 60)} and P=Pm 

Table 4,3 - Computing times (min, max, range and average) for (|T|,|J|) = {(20, 80); (25, 100)} 

|T| |J| P 
Minimum computing times 

(s) 

Maximum computing times 

(s) 

Average computing times 

(s) 

5 20 |T|x|J| 0.16 0.86 0.35 

5 20 𝑃𝑚 0.17 1.46 0.42 

5 20 𝑃𝑚 2⁄  0.18 1.11 0.35 

5 20 𝑃𝑚 4⁄  0.17 0.74 0.32 

5 20 0 0.16 0.83 0.30 

10 40 |T|x|J| 0.26 23.28 2.82 

10 40 𝑃𝑚 3.55 678.19 41.66 

10 40 𝑃𝑚 2⁄  2.74 55.88 12.58 

10 40 𝑃𝑚 4⁄  1.64 46.02 8.44 

10 40 0 0.22 9.95 2.59 

15 60 |T|x|J| 1.88 225.49 841.81 

15 60 𝑃𝑚 27.98 ∞ ∞ 

15 60 𝑃𝑚 2⁄  11.86 1077.70 180.00 

15 60 𝑃𝑚 4⁄  8.16 2369.13 194.93 

15 60 0 4.08 362.09 39.72 

|T| |J| P Optimal solutions 
Minimum 

computing time (s) 

Maximum 

computing time (s) 

Average 

computing time(s) 

20 80 |T|x|J| 50/50 4.91 3607.61 832.95 

20 80 0 44/50 0.76 ∞ 636.81 

25 100 |T|x|J| 12/50 5.85 ∞ 394.86 

25 100 0 7/50 25.98 ∞ 890.45 
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4.4 A Heuristic approach for the solution of the (1|1) SSS problem 

The obtained computing times to optimally solve instances of the (1|1) SSS problem highlights the 

need of heuristic approaches to reduce computing times and to extend the dimension of solvable 

instances. Therefore, we illustrate the proposal of an improvement algorithm based on a local 

search procedure. A local search procedure does not guarantee an optimal solution, but it usually 

attempts to find a solution that is better than the current one in its neighbourhood. Two solutions 

are “neighbours”, if one can be obtained through a well-defined modification of the other. At each 

iteration, a local search procedure performs a search within the neighbourhood and evaluates the 

various neighbouring solutions. The procedure either accepts or reject the best solution in the 

neighbourhood, based on a given acceptance-rejection criterion. Usually, the adopted criterion is 

the objective function. Then the procedure accepts the best solution in the neighbourhood if its 

objective function value is better than the current one; otherwise, it rejects it and the algorithm 

stops. 

As typical of local search approaches, the proposed procedure is characterized by three steps: the 

individuation of an initial solution, the local search phase and the stopping criterion. In particular, 

two different constructive procedures have been defined to provide the initial solution. The first 

one is able to produce random solutions, while the second one to the minimization of the expired 

slabs. Since both the heuristics can generate solutions in a very short time, it can be chosen the 

best provided solution, as initial solution for the successive improvement phase (see Figure 8).  
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Figure 4,8 – Flowchart of the proposed heuristic 

  



 

82 
 

4,4,1 Individuation of an initial solution  

In building an initial feasible solution, it is essential to consider the bi-objective nature of the 

problem. As shown, by tuning the penalty coefficient, it is possible to obtain different solutions in 

terms of number of shuffles and number of expired slabs. As highlighted in the flowchart of Figure 

x, two different constructive procedures have been developed. The first one is oriented to the 

minimization of the number of shuffles, while the second one to the minimization of the expired 

slabs.  

Both the procedures are based on an iterative assignment of the slabs present in the initial stack to 

the period of retrieving in order to satisfy the amount of slabs requested at each period. In practices 

at generic iteration k, the algorithm assigns a given slab j to a period t at which it is retrieved. 

However, they differ according the adopted criterium for the assignment. 

In order to describe the heuristics, at iteration k, we say that a slab j with its own deadline 𝑑𝑗 can 

be preliminary assigned to one of the “feasible” period t where a period is considered feasible if 

(a) it allows to satisfy the expiration constraint (𝑑𝑗 ≥ 𝑡) and (b) the slabs already assigned to that 

period t till the iteration k does not exceed the request associated to t (𝑞𝑡). On the other hand, at 

each period t it is possible to associate the set of “feasible” slabs Jt, i.e the set of slabs with (𝑑𝑗 ≥

𝑡) still not assigned to any other period. Then the slab j can be definitively assigned to the period 

t if it is possible to satisfy the requests of the periods successive to t with feasible slabs not still 

assigned. This can be done with a backward procedure from the last period T to the period t+1: at 

generic period 𝑠: 𝑡 + 1 ≤ 𝑠 ≤ 𝑇, it is sufficient to verify that the sum between the feasible slabs at 

s (|Js|) and the eventual difference between the sum of feasible slabs for the successive periods and 

the sum of the requests for these periods is at least equal to the request at s.  

If there are no feasible periods for the slab j at iteration k, it is removed from the stack and it is 

counted as “expired”. To represent this circumstance, we introduce a binary variable 𝑒𝑗 equal to 1, 

if the slab j is expired, 0 otherwise. 

We illustrate this aspect through an example reported in Appendix D 

 

➢ Constructive heuristic to generate random feasible solutions 

In this procedure, at each iteration, a slab is randomly selected from the slack and it is temporary 

assigned to one of its feasible periods, randomly chosen. This assignment is definitive if it is 

possible to satisfy the requests of the periods successive to t with feasible slabs not still assigned, 

excluding the selected slab. If there are no feasible periods for the slab j at iteration k, it is removed 

from the stack and it is counted as “expired” (𝑒𝑗 = 1). The procedure needs a number of iterations 

equal to the sum between the total number of requested slacks in the horizon time T (∑ 𝑞𝑡
𝑡≤𝑇 ) and 
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the total number of expired slabs (∑ 𝑒𝑗)𝑗∈𝐽 .  The procedure is described, using a pseudocode, in 

Appendix E. 

 

➢ Constructive heuristic oriented to the minimization of the expired slabs 

This heuristic individuates the optimal solution in terms of minimization of expired slabs. Denote 

with 𝐸𝑡 the set of slabs with deadlines equal to t (𝐸𝑡 = {𝑗: 𝑑𝑗 = 𝑡}). If the cardinal of this set is not 

higher than the request for that period (|𝐸𝑡| ≤ 𝑞𝑡), the set 𝐸𝑡 is definitively assigned to t. In case 

|𝐸𝑡| < 𝑞𝑡, for this period there is a residual request 𝑞𝑟𝑒𝑠
𝑡 = 𝑞𝑡 − |𝐸𝑡| to be satisfied. Otherwise, 

(|𝐸𝑡| > 𝑞𝑡), we randomly extract, from 𝐸𝑡 , 𝑞𝑡 slabs that are definitively assigned to t. The total set 

of not assigned slabs, are then used to satisfy the residual requests. In particular, starting from t=1, 

we satisfy the residual requests assigning the remaining slabs according to their deadlines. In case 

there are more slabs with the same deadlines than residual request, the assignment is randomly 

performed. The procedure is described, using a pseudocode, in Appendix F.  

 

4.4.2 The local search phase 

The local search phase is realized through a modification of the current solution performing a 

pairwise interchange between two slabs k and j (swap (k, j)). However, it is necessary to verify that 

the swap(k, j) is not trivial and feasible. Denote with 𝑑𝑘, 𝑑𝑗 and 𝑡𝑘, 𝑡𝑗 the deadlines and the assigned 

periods respectively of the slabs k and j in the current solution, and assume that 𝑡𝑘 ≥ 𝑡𝑗  and, 

conventionally, that 𝑡𝑘 = 0 if the slab k is not used, in the current solution, to satisfy any request. 

A swap(k, j) is trivial if 𝑡𝑘 = 𝑡𝑗  : this means either that the two slabs have been assigned to the 

same period, or that the two slabs are not been used to satisfy any request  

A not trivial swap(k, j) is feasible if it leads to a feasible solution of the problem. Indeed, while a 

swap between k and j does not affect the constraints about the request satisfaction, it can violate 

the deadlines constraints. It is easy to verify that a not trivial swap(k,j)) is feasible if 𝑑𝑗 ≥  𝑡𝑘.  

Therefore, the procedure, at the first step, consider all the possible feasible swaps between the slab 

with highest position, s, in the stack and any other slab below it. If the best solution in the 

neighbourhood obtained by the swap(s,j*) is better than the current one in terms of objective 

function (∑ 𝑆𝑡
𝑡∈𝑇  + P ∑ (1 − ∑ 𝑥𝑗

𝑡𝑑𝑗

𝑡=1𝑗∈𝐽′  )), the swap(s,j*) is performed, and algorithm continues 

considering the neighbourhood defined by swap(s,j), with 𝑠 ≡ 𝑗∗; otherwise the procedure 

considers the swaps involving the slab successive to the slab s, and so on. The procedure, described 

using a pseudocode in Appendix G, stops when a maximum number of iterations is reached. 
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4.5 Computational experiences 

In order to test the heuristic, computational experiences have been carried out on the same 50 

instances randomly generated with (|T|,|J|) = {(20, 80); (25, 100)} to test the effectiveness of the 

proposed heuristic, in the case P=0 and P=|T|x|J|. For a given instance, the quality of the solution 

produced by the heuristic is evaluated in terms of percentage error over the solution individuated by 

CPLEX after one hour of computing times. About the computational times, the comparison is done 

fixing the stopping criterion equal to 100 iterations; in the case of the solution provided by CPLEX, 

when the optimal solution is not reached, and the time limit of 3600 seconds is indicated. 

Tables 4.4 summarize the obtained results in terms of average, the standard deviation, maximum 

and the minimum value of the percentage error. The detailed results for each instance are reported 

in Appendix H. 

The performances of the heuristic appear quite interesting. In particular in the case of P = |𝑇|x|𝐽|, 

even if the algorithm only in few cases reaches the optimal solution, is characterized by very limited 

percentage errors (0,09% and 0,05%) with very low values of the maximum error. Relatively worst 

seems to be the results in the case of P= 0. Indeed, in this case the average percentage error is of 

6,18% and 4,22 % for (|T|,|J|) = (20, 80)  and (|T|,|J|) = (25, 100) respectively, with a maximum 

percentage error around the 20% in both the cases. However, this difference is mainly due to the 

term of expired slabs. If we analyse the differences in terms of shuffles between the solution of the 

model and the solution provided by the heuristic (Table 4.5) is very low. 

Table 4.6 shows the comparison of the performances in terms of minimum, maximum and average 

computing time that highlights how the computing times of the heuristic are in the order of few 

minutes.  

 

J T P 
Objective Function: Percentage error 

Average Dev.std Minimum Maximum 

80 20 |T|x|J| 0.09% 0.07% 0.00% 0.30% 

100 25 |T|x|J| 0.05% 0.05% -0.01% 0.25% 

80 20 0 6.18% 6.35% -4.44% 22.22% 

100 25 0 4.22% 9.51% -17.27% 23.08% 

Table 4.4– Average, standard deviation, minimum and maximum value of the percentage error on 50 

randomly generated instances 
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J T P 
Number of shufflesr 

Average Dev.std Minimum Maximum 

80 20 0 2.78 3.63 -4 19 

100 25 0 2.12 9.02 -24 17 

Table 4.5– Average, standard deviation, minimum and maximum value of the percentage error on 50 

randomly generated instances 

 

Table 4.6 – Average, Minimum and Maximum value of the heuristic computing time 

 

4.6 Characteristics of an implemented software system 

The main objective of the collaboration within the partnership with the firm was the overall re-

engineering of the processes with the aim of improving the production and logistic performances. 

Once the analysis of the processes has been performed, the achievement of this goal has required 

the digitalization of the procedures. A first attempt performed in this direction has been oriented 

to the innovation of the information systems organization, still based on an outmoded midrange 

computer platform referred to generically by the umbrella term AS/400. Then it has defined a 

project to define a new architecture system ad-hoc designed to efficiently represent and manage 

the peculiarities of the context, with the objective of creating a complete Enterprise Resource 

Planning (ERP). The whole architecture has been based on a PostgreSQL relational database, 

implemented in a complex web-based Management and Decision Support System (DSS). 

A brief illustrative overview of the main features and tools embedded in the System is provided in 

the following. 

Starting from the dashboard of the DSS (Figure 4.) it is possible to notice the numerous options 

and offered tools provided that can be distinguished in In-bound, Out-bound, Production and 

Storage & Retrieval Managing menus. 

 

 

 

 

 

 

J T P 
Computing times: Model solution Computing times: Heuristic 

Minimum (sec) Maximum (sec) Average (sec) Minimum (sec) Maximum (sec) Average (sec) 

80 20 |T|x|J| 10.38 3607.61 1322.35 114.99 245.6 190.75 

100 25 |T|x|J| 40.19 30608.23 3034.40 371.66 673.02 522.99 

80 20 0 0.76 3605.16 932.37 160.63 564.56 263.72 

100 25 0 25.98 3618.01 3223.73 346.63 833.41 562.85 
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Figure 4.9 – Decision Support System Dashboard 

Within the In-bound menu, different procedures has been implemented such as Figure 4.10: 

• Managing of the delivery notes 

• Uploading and downloading of the quality certifications 

• Semi-trailer check-in 

Concerning the Out-bound operations, the main implemented procedures have been (Figure 4.11): 

• Semitrailer loading 

• Listing of deliveries 

About the Production Management procedures, peculiarities procedures have been implemented 

to support decision for cutting slab optimization in order to reduce processing scraps. A not 

exhaustive list of implemented procedures are provided in the following. Some of the screenshots 

related to these procedures are depicted in Figure 4.12.  

• Order management 

• Cutting scheduling 

• Digitalization of the cutting schemes 

Finally, handling procedures have been implemented in relation to the Storage and Retrieval 

management. As above explained, these two fundamental logistic processes are very peculiar in the 

context and require appropriate optimization tools that may support the decision makers from the 

definition of the layout for the slabs and profiles stacking to the retrieval sequencing.  

Figure 4.13 show Some of the screenshots related to these procedures: 

• Real-time stock level monitoring for each stack and stall 

• Slab database management 

• Logistic flow description 
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Delivery notes 

 

 

Quality certifications database 

 

 

Semi-trailers check-in registration 

 

Figure 4.10 – Screenshots of the implemented Inbound procedures 
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Semitrailer loading 

 

 

 

Listing of deliveries 

 

Figure 4.11 – Screenshots of the implemented Outbound procedures 
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Order management 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cutting scheduling  

 

 

 

 

 

 

 

 

 

 

 

Digitalized cutting scheme 

Figure 4.12 – Screenshots of the main implemented Production management procedures 
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Real-time stock level monitoring for each stack and stall 

 

 

Slab database management 

 

 

Logistic flow management 

Figure 4.13– Screenshots of the main implemented handling management procedures 
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4.7 Conclusions 

In this chapter we have introduced some new mathematical formulations for the Slab Stack 

Shuffling able to describe some of the variants individuated for the problem. In particular we have 

focused on the version with the presence of deadline constraints in different cases of item-stack 

relation. All the models assume the presence of a fixed time horizon divided in periods at which a 

certain quantity of slabs belonging to specific items is requested. The problems has been formulated 

as a bi-objective optimization model including, in the objective function, two terms to be minimized: 

the number of shuffles and the number of expired slabs, i.e. slabs not retrieved before their own 

deadlines.  

As in bi-objective problems, the tuning of the weight (penalty) method can be exploit to generate 

solutions of the Pareto frontier. 

Then the model related to the case in which an item is hosted only in one stack and each stack hosts 

only one item has been tested by solving the model through CPLEX on instances randomly 

generated according to an appropriate instance generation procedure. As the solution of the model 

generally requires, in case of significant dimension of the instances, relevant computing times, we 

have proposed a heuristic based on a local search procedure. 

The comparative performances of the heuristic are quite promising, as it generally obtains good 

solutions in quite short computing times.  

However further efforts are needed to verify and to improve the performance of the proposed 

algorithm. A first aspect could require the development of more extensive computational 

experiences with the objective of exploring the possibility of reproducing the Pareto frontier. Then 

improvements of the heuristics can be performed for instance embedding the local search scheme 

within a meta-heuristic framework. 

Nevertheless, as we have shown how the problem can be characterized by numerous variants in 

dependence on the combination of the ingredients of the problem, further analysis about the proposal 

of new formulations should be performed. 
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General conclusions 

 

 

 

This work has been developed in the context of a collaboration with a firm of the shipbuilding sector 

(described in Chapter 1) interested to introduce innovative practises and procedures, in order to 

improve the production processes and the operations management. The firm is a first-tier actor in 

the sector supply chain as it provides subassemblies directly to the shipyard where the ships are 

assembled and launched. 

After an analysis of all the production and logistic processes peculiar of the context (illustrated in 

Chapter 2) the focus has been devoted to one of the critical logistic main issue in the inbound 

operation, represented by the handling management of steel slabs, i.e., steel plates that can weigh 

up to more than 13 tons and whose extension can reach some tens of square meters. Due to their 

physical characteristics, steel slabs are stored in stacks. Then their storage and retrieval represent 

one of the main issues to overcome to avoid bottlenecks in the production process.  

In the literature, the problem has been defined as the Slab Stack Shuffling (SSS) problem. However, 

due to the specificity of the problem and of the involved industrial sector, the state of the art is not 

particularly rich.  

A first result of the work is represented by the formulation of a general framework able to describe 

the variety of the factors and of the conditions that can occur in the practical application. The 

framework suggests many opportunities to develop future research lines oriented to the proposals 

of models and methods to solve variants of the problem. 

Among the problems individuated within the framework, we have focused on some basic versions 

of the problem including slabs deadline constraints. The problem has been formulated in terms of 

bi-objective mathematical programming model in which the minimization of the number of shuffles 

and the minimization of the number of expired slabs are combined through a penalty coefficient. As 

the solution of the model with the commercial solver CPLEX, performed on a set of randomly 

generated instances, has required significant computing times, especially in correspondence of some 

values of the penalty coefficient, a heuristic based on a local search procedure has been proposed 

and implemented. The algorithm has been tested on the same instances and a comparison of the 

performances with those provided by CPLEX has highlighted promising results. 

As the objective of the collaboration was the re-engineering of the production and logistic processes 

through an integrated digitalization of the operations, finally, the general characteristics of a 

software system specifically designed and implemented has been described. The system, actually 
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introduced and used in substitution of that previously adopted, has been designed in order to host 

optimization procedures able to solve logistic and operations management. 

The obtained results of this work, then, should represent a first important step on the path leading 

to the definition and of the implementation of a software system able to assume the role of a Decision 

Support System that may support the production and logistics management. 

As highlighted through the proposal of a general framework for the SSS problem, there is a vast 

field to develop models and methods to solve the various variants of the problem that, once tested 

and verified, should be embedded within the developed DSS. 
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Appendices 

 

 

 

In this Appendix we show the scripts and pseudocodes developed to implement the proposed model 

and heuristic of the Slab Stack Shuffling problem in the case 1|1 and the detailed results for each 

instance in terms of objective function and computing time. In particular it is provided: 

in Appendix A, the Model 1|1 write in OPL language used on the software “CPLEX”.  

In Appendix B, the “Matlab” code for the instance generation procedure.  

In Appendix C, the tables of results obtained by the model tested on the generated instances. 

In Appendix D, an example of the relation between slabs’ feasible periods and periods’ feasible 

slabs. 

In Appendix E, the pseudocode for the constructive heuristic to generate random feasible solutions. 

In Appendix F, the pseudocode for constructive heuristic oriented to the minimization of the expired 

slabs. 

In Appendix G, the pseudocode for the heuristic’s local search phase. 

In Appendix H, the compared results in terms of objective function and computing time between 

the solution of the Model 1|1 and of the heuristic.  

 

Appendix A 

Here we report the whole script related to the model (1c7c) presented in Chapter 4, developed in 

OPL language according to the following notation: 

 

𝐽 = {1, … , 𝑛} set of slabs, indexed by 𝑗 ; 

𝑇 = { 1, … , 𝑇̅} set of order periods, indexed by 𝑡 ; 

𝑞𝑡 number of slabs to retrieve in period 𝑡 ; 

𝐷𝑗
0 initial position of the slab j (positions are indicated from the 

top (position 1) to the bottom of the stack) 

 

𝑑𝑗 deadline of the slab 𝑗; 

 

and the following decision variables 

   𝑥𝑗
𝑡 Binary variable equal to 1 if slab j is retrieved at period t,  

0 otherwise; 
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𝑆𝑡 Positive integer variable, representing the number of 

shuffles associated to the stack f needed to satisfy requests 

at period t; 

 

Input Files  

string filename_input ="input_data.txt";  

Inizialization  

int m = 0; 

int n = 0; 

int P  = 0; 

execute{ 

var f = new IloOplInputFile(filename_input); 

f.readline(); 

m = f.readline();  

f.readline(); 

n = f.readline(); 

f.readline(); 

P = f.readline(); 

f.readline(); 

   } 

 

Set  𝑇 

Set  𝐽 

Parameter 𝑃 

 

 

 

 𝑇 size 

 

 𝐽 size 

 

𝑃 value   

Sets Definition  

{int} T = {};                                                                      

{int} J = {};                                                                       

Set 𝑇 

Set 𝐽 

Sets Composition  

execute{ 

for(var i = 1; i <= m; i++){ 

T.add(i);} 

for(var j = 1; j <= n ; j++){ 

J.add(j);} 

             } 

 

Set 𝑇 

 

 

Set 𝐽 

 

Parameters Definition  

int q[t in T];  

int d[j in J] ;         

int D0[J] ;                                                                                             

Requests in period t: 𝑞𝑡 

Slabs’ deadline: 𝑑𝑗 

Slabs’ initial position: 𝐷𝑗
0 

Parameters Setting  

execute{ 

var f = new IloOplInputFile(filename_input); 

for(var i = 1; i <= 9 ; i++){ 

f.readline();} 

var str = f.readline(); 
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var ar = str.split("\t"); 

for(var t = 1; t <= M; t++){ 

q[t] = ar[t-1];} 

f.readline(); 

var str1 = f.readline(); 

var ar1 = str1.split("\t"); 

for(var j = 1; j <= N; j++){ 

d[j] = ar1[j-1];} 

f.readline(); 

var str1 = f.readline(); 

var ar1 = str1.split("\t"); 

for(var j = 1; j <= N; j++){ 

D0[j] = ar1[j-1] ;} 

f.close(); 

} 

 

 

Requests in each period t: 𝑞𝑡∀ 𝑡 ∈ 𝑇 

 

 

 

 

Slabs’ deadline: 𝑑𝑗 

 

 

 

 

Slabs’ initial position: 𝐷𝑗
0 

Variables Definition  

dvar boolean x [j in J][t in T];    

dvar int+ S[t in T]; 

Slabs’ assignment variable: 𝑥𝑗
𝑡 

Number of shuffles in period t: 𝑆𝑡 

Additional Definitions  

dexpr int D[j in J][t in T] = D0[j] - sum(s in T: s<= 

t-1 && t>1, k in J: D0[j]>D0[k])x[k][s] ; 

dexpr int Shuf[t in T]= S[t]; 

 

Slabs above j in period t: 𝐷𝑗
0 

 

Support element related to 𝑆𝑡 

Objective function  

dexpr float z1 = sum(t in T) Shuf[t] ; 

dexpr float z2 = P*sum( j in J: d[j] <= M)(1-sum(t 

in T: t <= d[j])x[j][t]) ; 

 

minimize z1 + z2;  

Support element  related to the shuffles 

Support element  related to the expired slabs 

 

 

(1c) 

Constraints  

subject to { 

forall (t in T: t>= 1, j in J) 

    S[t] >= D0[j]*x[j][t] - sum(s in T: s <= t , k in 

J:         

   D0[j] >= D0[k]) x[k][s]; 

 

forall (t in T) 

    sum(j in J)x[j][t] == q[t];  

 

forall (j in J) 

 

(2c) 

 

 

 

(3c) 

 

 

(4c) 
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Appendix B 

Here we report the whole script related to the instance generation procedure reported in Chapter 4 

and developed in Matlab language according to the notation reported above. 

    sum(t in T)x[j][t] <= 1 ;  

 

forall(j in J, t in T: t> d[j]) 

    x[j][t] == 0;  

                 } 

 

(5c) 

Input Files  

function [q,d,D0,cartella,namefile,Nin] = dataINPUT(T,J)  

Request Setting  

q = randi([0 4], 1,T) ; Requests in each period t: 𝑞𝑡∀ 𝑡 ∈ 𝑇 

Deadlines Setting  

d_D = zeros(J,2);  

iS = 1;  

appoggio = zeros(1,T+1); variable 

 

for iT=1:T  

     while iS<=q(iT)  

      d_D(iS+sum(appoggio),1)   = randi([iT, iT+2])    ;     

      iS  = iS+1  ;     

      end 

      iS=1;  

      appoggio(iT+1)=q(iT);  

end 

for iii= sum(q)+1:J 

 p=rand(); 

     if 0.7<=p 

     d_D(iii,1) = randi([1,T]) 

     else  

     d_D(iii,1) = T+1; 

     end 

end 

Inizialization  of matrix dD = Jx2 (first 

colum 𝑑𝑗  ; second columns 𝐷𝑗
0) 

 

Support variable 

 

Deadlines setting for the 𝑞𝑡 slabs 

 

 

 

 

 

 

 

Deadline setting for the last |J| − 𝑞𝑡 slabs 

Position Setting  

d_D(:,2)=randperm(J)'; %  

[~,ind]=sort(d_D(:,2),'descend');  

d_D=d_D(ind,:); 

 

soglia= round(T/2); %deadline limit  

Random sorting 
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Appendix C 

Here we report the results of the computational experiences of the model that have been carried out 

using IBM ILOG CPLEX Optimization Studio 12.9 software on an Intel(R) Core(TM) i7-8550U  

with 1.80 GHz and 16 GB of RAM.  

These regards the 50 random instances generated for each (|T|, |J|) = {(5, 20); (10, 40); (15, 60); 

(20, 80); (25,100)}. In particular, in Table .1 and Table .2 are reported the results in terms of 

objective function and computing time respectively, for each combination of (|T|, |J|) = {(5, 20); 

(10, 40); (15, 60) } and P = {|𝑇|𝑥|𝐽|, 𝑃𝑚, 𝑃𝑚 2⁄ , 𝑃𝑚 4⁄ , 0}. While, in Table .3 and Table .4 are 

reported the results in terms of objective function and computing time respectively, for each 

combination of (|T|, |J|) = {(20, 80); (25, 100)}. 

 

  

N=sum(d_D(:,1)<=soglia); 

[irup,~]=find(d_D(1:round(size(d_D,1)/2),1)<=soglia); 

[irdow,~]=find(d_D((round(size(d_D,1)/2)+1):end,1)>soglia); 

irdow=irdow+round(size(d_D,1)/2); 

cond = sum(d_D(end:-

1:(round(size(d_D,1)/2)+1),1)<=soglia); 

ii   = 1; 

 

while(cond<=round(0.6*N)&&(isempty(irup)==0) 

&&(cond<=round(0.6*N)&&(isempty(irdow)==0)) 

 

appo2= d_D(irdow(ii),1); 

d_D(irdow(ii),1)=d_D(irup(ii),1) ; 

d_D(irup(ii),1) = appo2 ; 

[irup,~]=find(d_D(1:round(size(d_D,1)/2),1)<=soglia); 

[irdow,~]=find(d_D((round(size(d_D,1)/2)+1):end,1)>soglia); 

irdow=irdow+round(size(d_D,1)/2); 

cond=sum(d_D(end:-1:(round(size(d_D,1)/2)+1),1)<=soglia);  

end 

 

 

Evaluation of the number of slabs with 

lower deadline to assign in the lower 

positions 

 

 

 

 

 

 

 

Position swapping according to the 

conditions set above 
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Table .1 Computational results in terms of objective function for (|T|, |J|) = {(5, 20); (10, 40); (15, 

60) } and P = {|𝑇|x|𝐽|, 𝑃m, 𝑃m 2⁄ , 𝑃m 4⁄ , 0} 

 

Instance T J 

P 

|T|x|J| 𝑃𝑚 𝑃𝑚 2⁄  𝑃𝑚 4⁄  |T|x|J| 

Computing time (s) 

1 5 20 31 27 18 13 3 

2 5 20 132 32 23 17 5 

3 5 20 411 31 19 13 1 

4 5 20 127 27 21 16 4 

5 5 20 33 31 18 13 3 

6 5 20 26 22 17 14 6 

7 5 20 37 33 26 21 9 

8 5 20 121 18 13 10 5 

9 5 20 32 24 20 15 4 

10 5 20 38 30 21 15 8 

11 5 20 226 32 25 19 5 

12 5 20 227 31 21 15 8 

13 5 20 316 27 15 8 1 

14 5 20 134 34 26 19 5 

15 5 20 47 37 27 17 4 

16 5 20 224 28 20 15 1 

17 5 20 310 22 12 6 0 

18 5 20 322 34 22 16 10 

19 5 20 33 29 17 11 3 

20 5 20 30 20 16 14 6 

21 5 20 710 38 20 10 0 

22 5 20 219 31 19 13 2 

23 5 20 39 33 27 23 14 

24 5 20 317 32 21 14 0 

25 5 20 24 16 13 10 7 

26 5 20 131 30 21 11 0 

27 5 20 413 32 20 14 0 

28 5 20 426 46 25 18 2 

29 5 20 55 48 30 18 0 

30 5 20 135 38 23 17 4 

31 5 20 121 21 17 12 2 

32 5 20 136 36 24 18 4 

Continued on next page 
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Table .1 – Continued from previous page 

Instance T J 

P 

|T|x|J| 𝑃𝑚 𝑃𝑚 2⁄  𝑃𝑚 4⁄  |T|x|J| 

Computing time (s) 

33 5 20 136 29 21 17 2 

34 5 20 225 31 23 16 0 

35 5 20 226 38 25 13 1 

36 5 20 131 38 24 12 0 

37 5 20 133 32 22 17 6 

38 5 20 614 44 27 18 0 

39 5 20 22 22 12 8 0 

40 5 20 127 31 20 15 5 

41 5 20 224 34 21 14 0 

42 5 20 128 34 22 12 2 

43 5 20 227 33 21 15 1 

44 5 20 115 19 12 8 0 

45 5 20 19 19 14 11 5 

46 5 20 513 28 22 14 6 

47 5 20 40 32 25 13 1 

48 5 20 26 26 16 10 4 

49 5 20 126 26 18 13 1 

50 5 20 39 32 22 18 10 

1 10 40 2.42 1675 100 63 40 

2 10 40 1.44 918 118 76 51 

3 10 40 3.09 1367 184 112 56 

4 10 40 1.44 2084 109 64 40 

5 10 40 3.16 1685 94 67 48 

6 10 40 9.95 2887 134 87 61 

7 10 40 1.04 2891 139 88 59 

8 10 40 6.86 1308 113 77 57 

9 10 40 5.10 2119 144 103 77 

10 10 40 0.37 2073 101 61 35 

11 10 40 1.11 2108 140 90 60 

12 10 40 0.60 2862 104 63 35 

13 10 40 1.50 2105 118 79 52 

14 10 40 0.53 1674 87 52 39 

15 10 40 0.58 903 103 68 45 

16 10 40 0.67 1684 116 71 41 

Continued on next page 
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Table .1 – Continued from previous page 

Instance T J 

P 

|T|x|J| 𝑃𝑚 𝑃𝑚 2⁄  𝑃𝑚 4⁄  |T|x|J| 

Computing time (s) 

17 10 40 1707 140 84 56 14 

18 10 40 2084 106 70 45 15 

19 10 40 533 118 83 53 20 

20 10 40 2099 115 81 49 15 

21 10 40 911 120 82 58 33 

22 10 40 2102 133 80 53 11 

23 10 40 2495 144 87 45 2 

24 10 40 508 110 71 38 5 

25 10 40 3662 104 62 46 11 

26 10 40 3279 142 93 64 19 

27 10 40 529 130 90 69 36 

28 10 40 1703 120 83 56 14 

29 10 40 506 95 66 46 12 

30 10 40 1699 122 83 54 9 

31 10 40 2490 120 72 42 10 

32 10 40 2474 129 82 61 28 

33 10 40 3279 135 79 47 15 

34 10 40 924 117 78 61 28 

35 10 40 2506 153 96 68 26 

36 10 40 2110 142 83 57 17 

37 10 40 1315 125 86 64 30 

38 10 40 2079 108 67 41 15 

39 10 40 1703 114 75 51 26 

40 10 40 1331 147 101 64 25 

41 10 40 2493 125 76 48 18 

42 10 40 915 113 76 43 10 

43 10 40 128 100 67 39 7 

44 10 40 1399 166 118 71 13 

45 10 40 2870 106 70 41 9 

46 10 40 2051 84 49 29 7 

47 10 40 141 117 85 61 34 

48 10 40 1273 81 54 33 11 

49 10 40 1678 100 69 46 20 

50 10 40 1677 108 65 43 10 

Continued on next page 
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Table .1 – Continued from previous page 

Instance T J 

P 

|T|x|J| 𝑃𝑚 𝑃𝑚 2⁄  𝑃𝑚 4⁄  |T|x|J| 

Computing time (s) 

1 15 60 5618 267 161 99 15 

2 15 60 9186 275 164 102 31 

3 15 60 5601 231 141 80 14 

4 15 60 6468 228 156 104 47 

5 15 60 9169 243 158 101 38 

6 15 60 9149 217 139 95 24 

7 15 60 9144 225 135 95 31 

8 15 60 13623 268 160 90 12 

9 15 60 10015 208 121 75 28 

10 15 60 5614 260 159 98 31 

11 15 60 4725 251 173 124 69 

12 15 60 10959 274 174 100 25 

13 15 60 10052 255 162 93 24 

14 15 60 3866 276 185 61 49 

15 15 60 3849 244 148 91 12 

16 15 60 1077 191 122 87 32 

17 15 60 9164 252 159 87 12 

18 15 60 3808 232 145 95 40 

19 15 60 10065 260 176 94 19 

20 15 60 5621 254 144 78 10 

21 15 60 7342 215 131 72 12 

22 15 60 13634 287 171 92 11 

23 15 60 6502 264 167 109 25 

24 15 60 12726 285 169 106 14 

25 15 60 8292 256 153 90 19 

26 15 60 9211 364 179 100 19 

27 15 60 7420 257 173 110 45 

28 15 60 3011 279 191 119 18 

29 15 60 10050 251 162 90 18 

30 15 60 6461 201 131 100 46 

31 15 60 3824 217 156 105 49 

32 15 60 10103 356 209 125 37 

33 15 60 12709 228 127 82 8 

34 15 60 7389 266 170 108 24 

35 15 60 9205 280 171 106 13 

Continued on next page 
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Table .1 – Continued from previous page 

Instance T J 

P 

|T|x|J| 𝑃𝑚 𝑃𝑚 2⁄  𝑃𝑚 4⁄  |T|x|J| 

Computing time (s) 

36 15 60 8313 278 177 110 13 

37 15 60 9166 255 161 98 32 

38 15 60 11847 253 146 98 23 

39 15 60 3840 245 155 101 39 

40 15 60 9181 274 175 103 31 

41 15 60 7407 269 180 119 53 

42 15 60 5572 209 136 80 17 

43 15 60 8189 153 94 61 7 

44 15 60 5582 222 148 94 39 

45 15 60 6521 266 175 115 48 

46 15 60 10072 262 163 96 24 

47 15 60 10070 269 166 94 16 

48 15 60 5626 260 156 94 25 

49 15 60 9159 224 150 106 38 

50 15 60 8281 268 166 105 42 
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Table .2 Computational results in terms of computing time (s) for (|T|, |J|) = {(5, 20); (10, 40); (15, 

60)} and P = {|𝑇|x|𝐽|, 𝑃m, 𝑃m 2⁄ , 𝑃m 4⁄ , 0} 

 

Instance T J 

P 

|T|x|J| 𝑃𝑚 𝑃𝑚 2⁄  𝑃𝑚 4⁄  |T|x|J| 

Computing time (s) 

1 5 20 0.18 0.20 0.25 0.2 7 0.47 

2 5 20 0.19 0.61 0.19 0.21 0.20 

3 5 20 0.16 0.19 0.18 0.17 0.17 

4 5 20 0.18 0.19 0.2 1 0.24 0.16 

5 5 20 0.20 0.24 0.2 1 0.23 0.18 

6 5 20 0.17 0.30 0.23 0.18 0.31 

7 5 20 0.22 0.25 0.60 0.45 0.36 

8 5 20 0.49 0.21 0.23 0.23 0.26 

9 5 20 0.86 0.30 0.26 0.31 0.25 

10 5 20 0.20 0.22 0.25 0.23 0.41 

11 5 20 0.62 0.60 0.36 0.24 0.26 

12 5 20 0.84 0.25 0.27 0.62 0.33 

13 5 20 0.21 0.18 0.19 0.17 0.20 

14 5 20 0.77 0.40 0.37 34.00 0.25 

15 5 20 0.61 0.27 0.24 0.23 0.25 

16 5 20 0.63 0.25 0.19 0.18 31.00 

17 5 20 0.18 0.17 0.22 0.17 0.17 

18 5 20 0.27 0.23 0.29 0.25 37.00 

19 5 20 0.20 0.20 0.19 0.19 0.24 

20 5 20 0.33 0.22 0.19 0.21 0.27 

21 5 20 0.24 0.19 0.26 0.19 0.19 

22 5 20 0.31 0.20 0.18 0.17 0.23 

23 5 20 0.27 0.31 0.20 0.19 0.20 

24 5 20 0.23 0.27 0.23 0.27 0.32 

25 5 20 0.24 0.30 0.26 0.28 0.21 

26 5 20 0.32 0.53 0.19 0.33 0.29 

27 5 20 0.28 0.64 0.64 0.33 0.28 

28 5 20 0.25 0.66 0.35 0.29 0.31 

29 5 20 0.27 0.31 0.20 0.19 0.20 

30 5 20 0.28 1.07 0.92 0.44 0.34 

31 5 20 0.32 0.46 0.43 0.38 0.35 

32 5 20 0.29 0.41 0.44 0.33 0.29 

Continued on next page 
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Table .2 – Continued from previous page 

Instance T J 

P 

|T|x|J| 𝑃𝑚 𝑃𝑚 2⁄  𝑃𝑚 4⁄  |T|x|J| 

Computing time (s) 

33 5 20 0.62 0.52 0.48 0.44 0.40 

34 5 20 0.35 0.31 0.51 0.37 0.27 

35 5 20 0.35 0.37 0.29 0.43 0.30 

36 5 20 0.34 0.43 0.33 0.36 0.25 

37 5 20 0.32 0.48 0.40 0.47 0.41 

38 5 20 0.29 0.43 0.22 0.37 0.27 

39 5 20 0.26 0.35 0.27 0.33 0.27 

40 5 20 0.64 1.25 1.11 0.40 30.00 

41 5 20 0.34 0.50 0.47 0.36 0.30 

42 5 20 0.35 0.63 0.38 0.32 0.31 

43 5 20 0.70 0.40 0.42 0.30 0.30 

44 5 20 0.90 0.40 0.45 0.29 0.26 

45 5 20 0.80 0.63 0.5 1 0.41 0.46 

46 5 20 0.63 0.43 0.24 0.29 0.31 

47 5 20 0.50 0.41 0.40 0.36 0.28 

48 5 20 0.50 0.74 0.36 0.38 0.30 

49 5 20 0.80 0.44 0.31 0.35 0.30 

50 5 20 0.47 1.46 0.99 0.63 0.53 

1 10 40 2.42 208.32 8.93 6.85 2.03 

2 10 40 1.44 7.94 5.30 4.10 1.70 

3 10 40 3.09 3.83 2.74 2.99 0.62 

4 10 40 1.44 7.66 5.97 5.13 3.20 

5 10 40 3.16 7.25 8.22 7.22 6.90 

6 10 40 9.95 25.97 24.75 31.64 11.76 

7 10 40 1.04 31.47 9.95 7.02 2.49 

8 10 40 6.86 12.01 16.15 13.72 9.60 

9 10 40 5.10 11.92 14.85 10.76 8.83 

10 10 40 0.37 8.11 6.46 4.20 1.93 

11 10 40 1.11 18.13 9.93 8.97 2.15 

12 10 40 0.60 4.48 4.54 3.67 2.39 

13 10 40 1.50 17.31 11.81 9.66 4.48 

14 10 40 0.53 4.19 2.93 2.42 2.05 

15 10 40 0.58 7.20 6.28 4.95 2.42 

16 10 40 0.67 24.31 9.11 5.80 2.38 

Continued on next page 
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Table .2 – Continued from previous page 

Instance T J 

P 

|T|x|J| 𝑃𝑚 𝑃𝑚 2⁄  𝑃𝑚 4⁄  |T|x|J| 

Computing time (s) 

17 10 40 0.64 18.45 5.11 2.66 2.19 

18 10 40 0.95 11.61 7.91 5.11 2.19 

19 10 40 5.16 11.87 11.17 6.63 4.97 

20 10 40 2.43 24.10 10.48 5.62 1.74 

21 10 40 7.69 678.19 55.88 46.02 22.79 

22 10 40 1.40 4.34 4.05 4.11 2.17 

23 10 40 0.22 7.38 6.16 4.42 1.72 

24 10 40 0.72 4.54 3.74 3.91 2.36 

25 10 40 0.91 6.25 4.68 3.54 2.48 

26 10 40 2.82 15.12 12.61 10.11 2.78 

27 10 40 7.92 96.19 28.45 15.55 10.84 

28 10 40 1.03 11.98 11.51 6.94 2.16 

29 10 40 1.95 12.05 12.57 7.63 1.99 

30 10 40 0.49 18.53 7.39 6.19 1.55 

31 10 40 1.13 7.47 7.26 6.76 2.37 

32 10 40 6.27 361.61 37.04 14.59 8.18 

33 10 40 0.98 36.46 8.05 7.16 2.30 

34 10 40 4.35 11.25 15.47 8.98 9.13 

35 10 40 5.22 45.46 15.27 11.41 8.38 

36 10 40 3.01 7.58 9.59 5.39 3.60 

37 10 40 6.23 91.17 43.75 16.87 9.51 

38 10 40 0.90 12.74 10.99 5.43 1.95 

39 10 40 6.70 24.80 37.66 17.25 9.62 

40 10 40 8.28 20.52 18.51 10.39 11.41 

41 10 40 1.71 21.64 12.36 8.31 5.24 

42 10 40 1.17 6.06 6) 5 4.22 1.88 

43 10 40 0.68 9.95 7.99 2.65 1.75 

44 10 40 1.35 27.05 19.23 10.49 2.25 

45 10 40 0.58 3.55 4.58 1.64 1.66 

46 10 40 1.00 4.38 5.56 4.31 1.88 

47 10 40 4.79 40.25 15.12 9.95 9.64 

48 10 40 0.77 9.46 5.49 5.05 1.89 

49 10 40 2.51 12.56 9.91 7.57 2.37 

50 10 40 1.25 8.40 8.40 5.34 1.98 

Continued on next page 
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Table .2 – Continued from previous page 

Instance T J 

P 

|T|x|J| 𝑃𝑚 𝑃𝑚 2⁄  𝑃𝑚 4⁄  |T|x|J| 

Computing time (s) 

1 15 60 112.31 1077.07 65.95 36.45 6.45 

2 15 60 101.56 372.01 32.75 34.55 11.54 

3 15 60 3301.68 2258.94 100.00 54.19 5.77 

4 15 60 1071.62 3929.76 311.08 1077.70 141.52 

5 15 60 360.89 992.07 163.98 121.66 29.87 

6 15 60 17.50 135.19 30.96 27.52 8.72 

7 15 60 1267.97 1174.30 109.49 43.85 21.76 

8 15 60 329.89 51.67 13.21 21.04 6.50 

9 15 60 5220.24 1176.90 117.20 128.97 10.38 

10 15 60 19.44 1689.73 177.16 182.31 18.20 

11 15 60 6.76 901.18 346.10 221.36 362.09 

12 15 60 39.31 467.62 47.66 73.35 6.30 

13 15 60 505.97 3343.50 58.42 635.07 12.94 

14 15 60 10.36 1634.93 1022.25 76.41 94.65 

15 15 60 8.59 527.50 66.27 405.26 4.96 

16 15 60 1517.45 7877.27 232.35 137.17 35.80 

17 15 60 32.81 59.49 12.00 142.46 4.52 

18 15 60 794.62 20527.34 296.71 11.86 35.07 

19 15 60 451.05 3715.68 229.31 89.95 6.73 

20 15 60 102.82 1777.29 24.38 148.36 4.82 

21 15 60 25.82 40.37 31.68 25.60 7.46 

22 15 60 2 16.92 203.32 27.58 23.59 4.08 

23 15 60 18.91 842.34 122.50 45.77 11.81 

24 15 60 15.58 53.25 20.56 80.01 4.31 

25 15 60 57.83 538.29 140.36 15.46 12.80 

26 15 60 7636.44 13974.52 302.63 150.85 8.87 

27 15 60 517.92 5261.45 450.11 218.43 158.57 

28 15 60 7.96 1446.24 478.18 194.65 11.77 

29 15 60 87.42 350.16 33.50 304.40 7.50 

30 15 60 120.80 1291.17 811.34 19.90 118.05 

31 15 60 120.41 36130.07 1475.22 228.83 98.01 

32 15 60 58.18 6916.84 431.54 646.91 77.74 

33 15 60 59.78 35.35 17.78 490.09 4.59 

34 15 60 58.34 480.78 63.81 18.00 6.17 

35 15 60 5.97 117.03 44.33 66.29 5.59 

Continued on next page 
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Table .2 – Continued from previous page 

Instance T J 

P 

|T|x|J| 𝑃𝑚 𝑃𝑚 2⁄  𝑃𝑚 4⁄  |T|x|J| 

Computing time (s) 

36 15 60 36.32 1730.69 412.98 25.15 7.88 

37 15 60 10.84 94.98 33.22 168.99 30.80 

38 15 60 40.80 104.14 43.30 18.54 12.07 

39 15 60 9.29 5533.96 417.03 31.48 82.21 

40 15 60 347.60 10467.70 163.8 1 240.44 18.15 

41 15 60 232.23 19718.64 1055.92 99.70 114.19 

42 15 60 890.91 1939.93 136.17 434.72 8.25 

43 15 60 19.07 27.98 34.19 53.33 4.70 

44 15 60 638.44 3766.62 469.50 11.87 110.48 

45 15 60 7712.66 17855.53 6448.24 138.86 111.12 

46 15 60 573.10 2936.57 103.87 572.69 19.52 

47 15 60 17128.73 21717.63 180.54 55.27 8.78 

48 15 60 4441.47 3042. 15 220.67 197.35 18.04 

49 15 60 637.25 808.88 169.44 90.59 29.21 

50 15 60 1377.58 41250.87 596.92 519.68 44.71 
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Table .3 Computational results in terms of objective function for (|T|, |J|) = {(20,80); (25, 100)} and 

P = {|𝑇|x|𝐽|, 0}(in red the instances with a not optimal solution). 

Instance T J 

P 

|T|x|J| 0 

Objective function 

1 20 80 19536 65 

2 20 80 6735 37 

3 20 80 16341 45 

4 20 80 17889 41 

5 20 80 10069 104 

6 20 80 14661 27 

7 20 80 13148 13 

8 20 80 27475 25 

9 20 80 13161 119 

10 20 80 14762 197 

11 20 80 16262 3 

12 20 80 22687 40 

13 20 80 13169 90 

14 20 80 16327 18 

15 20 80 17921 27 

16 20 80 25885 31 

17 20 80 25882 40 

18 20 80 21084 38 

19 20 80 27411 54 

20 20 80 17850 24 

21 20 80 19440 32 

22 20 80 21096 45 

23 20 80 27462 37 

24 20 80 16278 22 

25 20 80 25889 21 

26 20 80 13170 69 

27 20 80 11641 56 

28 20 80 14750 52 

29 20 80 25862 35 

30 20 80 13141 48 

31 20 80 16385 101 

32 20 80 24266 25 

33 20 80 24264 18 

Continued on next page 
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Table .3 – Continued from previous page 

Instance T J 

P 

|T|x|J| 0 

Objective function 

34 20 80 13075 29 

35 20 80 19470 44 

36 20 80 14721 39 

37 20 80 21062 27 

38 20 80 27470 69 

39 20 80 13189 21 

40 20 80 13167 22 

41 20 80 19555 80 

42 20 80 19528 35 

43 20 80 16359 63 

44 20 80 19565 47 

45 20 80 25857 27 

46 20 80 13187 82 

47 20 80 14716 22 

48 20 80 17979 28 

49 20 80 18016 125 

50 20 80 22673 51 

1 25 100 47905 80 

2 25 100 33099 65 

3 25 100 40420 70 

4 25 100 28045 71 

5 25 100 33011 86 

6 25 100 33080 119 

7 25 100 23051 109 

8 25 100 30491 41 

9 25 100 35500 64 

10 25 100 25574 101 

11 25 100 47894 46 

12 25 100 45547 172 

13 25 100 23099 103 

14 25 100 37987 26 

15 25 100 47965 82 

16 25 100 18102 111 

Continued on next page 
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Table .3 – Continued from previous page 

Instance T J 

P 

|T|x|J| 0 

Objective function 

17 25 100 35479 98 

18 25 100 57915 96 

19 25 100 47894 35 

20 25 100 33161 60 

21 25 100 33103 80 

22 25 100 35533 116 

23 25 100 18113 139 

24 25 100 37986 83 

25 25 100 28193 169 

26 25 100 35468 80 

27 25 100 32921 97 

28 25 100 30634 167 

29 25 100 32946 93 

30 25 100 38057 26 

31 25 100 43021 145 

32 25 100 47890 36 

33 25 100 45486 123 

34 25 100 50440 69 

35 25 100 23066 51 

36 25 100 50506 79 

37 25 100 28031 111 

38 25 100 28043 73 

39 25 100 30439 97 

40 25 100 38050 97 

41 25 100 52950 71 

42 25 100 33017 121 

43 25 100 28086 122 

44 25 100 45409 47 

45 25 100 30546 71 

46 25 100 37929 91 

47 25 100 40377 40 

48 25 100 37939 65 

49 25 100 38028 195 

50 25 100 52950 61 
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Table .4 Computational results in terms of computing time(s) for (|T|, |J|) = {(20,80); (25, 100)} and 

P = {|𝑇|x|𝐽|, 0} 

Instance T J 

P 

|T|x|J| 0 

Computing time (s) 

1 20 80 64.56 1749.74 

2 20 80 3605.19 48.93 

3 20 80 1000.21 272.85 

4 20 80 3601.41 545.13 

5 20 80 3607.14 3599.27 

6 20 80 673.71 28.18 

7 20 80 483.42 6.31 

8 20 80 92.36 12.29 

9 20 80 3607.24 3600.21 

10 20 80 3607.61 3600.15 

11 20 80 17.59 0.76 

12 20 80 1001.73 78.89 

13 20 80 3600.20 3603.88 

14 20 80 1490.72 8.46 

15 20 80 3607.42 360.42 

16 20 80 1000.19 30.13 

17 20 80 202.10 102.13 

18 20 80 680.82 43.23 

19 20 80 1002.36 587.74 

20 20 80 30.53 10.62 

21 20 80 61.56 38.58 

22 20 80 37.16 3600.2 

23 20 80 43.25 70.69 

24 20 80 3300.42 12.31 

25 20 80 1388.00 27.67 

26 20 80 3603.82 3352.10 

27 20 80 1783.52 486.42 

28 20 80 10.38 488.54 

29 20 80 1000.23 51.97 

30 20 80 28.87 77.20 

31 20 80 3600.18 3600.44 

32 20 80 64.56 14.57 

33 20 80 3605.19 0.52 

Continued on next page 
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Table .4 – Continued from previous page 

Instance T J 

P 

|T|x|J| 0 

Objective function 

34 20 80 1545.93 19.69 

35 20 80 299.88 116.49 

36 20 80 175.42 106.33 

37 20 80 1000.65 7.82 

38 20 80 381.66 2927.66 

39 20 80 17.41 12.50 

40 20 80 12.22 22.95 

41 20 80 3602.58 3600.19 

42 20 80 1000.64 347.45 

43 20 80 1418.20 1562.61 

44 20 80 3605.36 81.92 

45 20 80 115.75 22.79 

46 20 80 3602.23 3605.16 

47 20 80 19.20 18.03 

48 20 80 12.90 35.02 

49 20 80 53.19 3604.23 

50 20 80 363.73 410.33 

1 25 100 3601.92 3601.62 

2 25 100 465.77 1704.87 

3 25 100 3601.78 3601.96 

4 25 100 3600.38 3602.07 

5 25 100 3607.97 3605.40 

6 25 100 3603.52 3602.05 

7 25 100 3601.28 3601.62 

8 25 100 3602.67 3600.54 

9 25 100 3600.51 3607.63 

10 25 100 3607.42 3602.61 

11 25 100 3600.51 3224.03 

12 25 100 3600.47 3603.84 

13 25 100 1170.85 3603.61 

14 25 100 3600.65 25.98 

15 25 100 3601.63 3618.01 

16 25 100 3604.00 3603.85 

Continued on next page 
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Table .4 – Continued from previous page 

Instance T J 

P 

|T|x|J| 0 

Objective function 

17 25 100 247.65 3607.4 

18 25 100 3603.82 3603.32 

19 25 100 3600.5 153.48 

20 25 100 40.19 3600.54 

21 25 100 706.93 3602.85 

22 25 100 288.57 3603.02 

23 25 100 3600.41 3602.71 

24 25 100 3601.51 3604.19 

25 25 100 3600.38 3603.39 

26 25 100 3601.96 3604.08 

27 25 100 3600.53 3606.18 

28 25 100 2631.33 3602.42 

29 25 100 3603.13 3602.57 

30 25 100 3603.86 100.32 

31 25 100 3600.52 3602.88 

32 25 100 3600.43 274.89 

33 25 100 3600.39 3602.73 

34 25 100 3601.2 3600.61 

35 25 100 1121.73 749.61 

36 25 100 3601.95 3603.42 

37 25 100 3600.45 3602.41 

38 25 100 3603.51 3604.78 

39 25 100 1718.09 3604.33 

40 25 100 3601.35 3603.14 

41 25 100 3605.15 3602.18 

42 25 100 2743.02 3602.33 

43 25 100 443.03 3604.61 

44 25 100 3608.23 3600.41 

45 25 100 3601.64 3600.46 

46 25 100 3601.64 3607.04 

47 25 100 3602.99 3601.28 

48 25 100 3601.95 3603.16 

49 25 100 3260.06 3603.28 

50 25 100 3600.44 3607.01 
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Appendix D 

Here we report an example to explain the relation between the set of feasible periods for a slab j (𝑇𝑗) 

and the set of feasible slabs for a period t ( 𝐽𝑡)  according to the following notation: 

𝐽 = {1, … , 𝑛} Set of slabs, indexed by 𝑗 ; 

𝑇 = { 1, … , 𝑇̅} Set of order periods, indexed by 𝑡  

𝑞𝑡 Number of slabs to retrieve in period 𝑡 ; 

𝑡𝑗 Assignment period of slab j ( 𝑡𝑗 = 0 if the slab is not assigned to any 

period) 

𝑑𝑗 Deadline of the slab 𝑗; 

𝑞𝑟𝑒𝑠
𝑡  Number of requests of the period t still not satisfied; 

𝐽𝑡 Set of slabs with a deadline equal or greater than t and with 𝑡𝑗 = 0 

𝑇𝑗 Set of periods equal or lower than the deadline of the slab j  

𝐸𝑡 Subset of slabs with 𝑑𝑗 = t 

𝐸𝑡
0 Subset of slabs with 𝑑𝑗 = t and 𝑡𝑗 = 0; 

𝐸𝑡𝑗
0  if t ≠  𝑑𝑗 𝐸𝑡𝑗

0 =  𝐸𝑡
0 ; otherwise 𝐸𝑡𝑗

0 =  𝐸𝑡
0 –{j}; 

 

Consider a horizon time of 3 periods (T={1,2,3}) and the presence of only one stack with n = 8 

slabs of the same item; at each slab is associated a deadline whose value is between 1 and 4. 

Suppose a set of requests for each period 𝑞1 = 1; 𝑞2 = 4; 𝑞3 = 1. Figure .1 illustrates the 

elements of this example where nuances of increasing intensity are used for different values of 

deadlines. Suppose we are at the first iteration of an assigning procedure aiming at associating the 

slabs to the periods in order to satisfy the requests and do not violate the deadline constraint of the 

slabs. At the first iteration any slab is assigned to any period: 𝑡𝑗 = 0 ∀ 𝑗 ∈ 𝐽 and 𝑞𝑟𝑒𝑠
𝑡  = 𝑞𝑡 ∀ 𝑗 ∈ 𝑇.  

Hence, let’s suppose we try to assign slab j = 6 with a deadline in 2 ( 𝑑6 =  2 ) to the period t = 1. 

According to the notation the set of feasible periods of the slab j = 6, i.e. the set of periods equal or 

lower than the deadline of the slab, is composed of period 1 and 2 ( 𝑇6= {1,2}); while the set of 

feasible slabs of the period t = 1, i.e. the set of slabs with a deadline equal or greater than the period, 

is composed of all the slabs in the stack  ( 𝐽1= {1,2,3,4,5,6,7,8}). According to these sets the slab j 

= 6 can be temporary assigned to the period t = 1, but a further check is necessary to definitively 

assign this slab to the period. Indeed, the slab j can be definitively assigned to the period t if it is 

possible to satisfy the requests of the periods successive to t with feasible slabs still not assigned. In 
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other words, it is necessary to check if the slab j = 6 is not necessary to satisfy any request after t = 

1. It is quite easy to verify that the slab j = 6 is necessary to satisfy one of the requests in period 2, 

since the requests from period 2 to period 3 are 5, as the slabs with a deadline equal or greater than 

t = 2. In general, to make this check it is possible to consider a backward procedure from the last 

period  𝑇̅ to the period t+1: at generic period 𝑠| 𝑡 + 1 ≤ 𝑠 ≤ 𝑇̅, it is sufficient to verify that the sum 

between the feasible slabs at s (|Js|) and the eventual difference between the sum of feasible slabs 

for the successive periods and the sum of the requests for these periods is at least equal to the request 

at s. Defined this sum as  𝐴𝑠, the condition to verify is: 

  𝐴𝑠 ≥  𝑞𝑟𝑒𝑠 
𝑠    ∀ s ∈ [ t, ..., 𝑇 ̅]      (1);          

and  𝐴𝑠  can be evaluated according to the following formula: 

       𝐴𝑠 =  |𝐸𝑠𝑗
0 | +  𝐴𝑠+1 − 𝑞𝑟𝑒𝑠

𝑠+1     ∀ s ∈ [ t, ..., 𝑇 ̅]     (2); 

where if s ≠  𝑑𝑗  |𝐸𝑠𝑗
0 |  is the number of slabs not assigned, with a deadline equal to s; otherwise ( if 

s =  𝑑𝑗) |𝐸𝑠𝑗
0 | is the number of slabs not assigned, with a deadline equal to s minus 1. This latter 

subtraction, when the period s is equal to the deadline of the slab j, represents the absence of slab j 

for the retrievals from t+1 to 𝑇̅ in the case in which j is definitively assigned to t.  

According to the formula (2), let’s check that the slabs j = 6 do not verify the condition (1) in each 

period s and cannot be definitively assigned to t = 1: 

Since t = 1, 𝑠 ∈ [ 2, 3], hence starting from s = 3 the condition (1) is verified: 

 𝐴3 =  |𝐸36
0 | +  𝐴4 = |𝐸36

0 |+ |𝐸46
0 | = 1 + 1 = 2  ;  

𝐴3 = 2 ≥  𝑞𝑟𝑒𝑠
3 = 1 ; 

When s = 2, considering the eventual absence of the slabs j = 6, the condition (1) is not verified: 

  𝐴2 =  |𝐸26
0 | +  𝐴3 −  𝑞𝑟𝑒𝑠

3 = 2 + 2 − 1 = 3  ;  

𝐴2 = 3 <  𝑞𝑟𝑒𝑠
2 = 4 ; 

Hence, as anticipated, the slab j = 6 is necessary to fulfil the requests in the second period and cannot 

be definitively assigned to t =1, since if it was, there will be not enough slabs not expired to satisfy 

further periods. 

 

Figure .1 - Stack representation with deadlin  
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Appendix E 

Here we report the pseudocode related to the heuristic to the generation of a random feasible solution 

developed according to the notation reported in Appendix D: 

➢ Constructive heuristic to generate random feasible solutions 

1: 𝑡𝑗  ← 0 for all 𝑗 ∈ 𝐽 

2: 𝑞𝑟𝑒𝑠
𝑡 ← 𝑞𝑡 ∀ 𝑡 ∈ 𝑇 

3:  𝐽𝑡 ← { 𝑗 ∈ 𝐽: 𝑑𝑗 ≥ 𝑡 and 𝑡𝑗  = 0 } 

4: while ∑ 𝑞𝑟𝑒𝑠
𝑡

𝑡∈𝑇  > 0 do 

5:    𝑡∗ ← 0 

6:    while 𝑡∗ = 0 

7:       t ← extract from a uniform distribution in the range (1,|T|) 

8:       if 𝑞𝑟𝑒𝑠
𝑡  > 0 then 

9:        𝑡∗ ← 𝑡  
10:       end if 

11:     end while 

12:    𝑗∗ ← 0 

13:    while 𝑗∗ = 0 do 

14:                    j ← extract from a uniform distribution in the range (1,| 𝐽𝑡∗|) 

15:          𝑗∗ ← 𝑗  
16:      if 𝑗∗ > 0 then 

17:         𝑠 ← 𝑇̅ + 1 

18:         while s > 𝑡∗ 

19:           if 𝑑𝑗∗ = 𝑠 then 

20:             |𝐸𝑠𝑗∗
0 | ← |𝐸𝑠

0| − 1 

21:           Else 

22:             |𝐸𝑠𝑗∗
0 | ← |𝐸𝑜

𝑠| 

23:            end if  

24:            if 𝑠 ≤ 𝑇̅ then 

25:               if 𝑠 < 𝑇̅ then 

26:                  𝐴𝑠 ← 𝐴𝑠+1 + |𝐸𝑠𝑗∗
0 | − 𝑞𝑟𝑒𝑠

𝑠+1 

27:              Else 

28:                  𝐴𝑠 ← |𝐸𝑇̅𝑗∗
0 | + |𝐸𝑠𝑗∗

0 | 

29:              end if 

30:               if 𝐴𝑠 ≥ 𝑞𝑟𝑒𝑠
𝑠  then 

31:                 if 𝑠 = 𝑡∗ then 

32:                      𝑡𝑗  ← 𝑡∗ 

33:                     𝑞𝑟𝑒𝑠
𝑡∗

 ← 𝑞𝑟𝑒𝑠
𝑡∗

− 1 

34:                      𝐽𝑡∗
𝑠

←   𝐽𝑡∗
𝑠

− { 𝑗∗} 

35:                     𝑗∗ ← 0 

36:                 else      

37:                    𝑠 ← 𝑠 − 1 

38:                 end if 

39:               Else 

40:                    𝐽𝑡∗
𝑠
 ←   𝐽𝑡∗

𝑠
− { 𝑗∗} 

41:                   𝑗∗ ← 0 

42:                 s  ← 0 

43:               end if 

44:            Else 

45:                𝑠 ← 𝑠 − 1 

46:        end while 

47:     end if 

48:  end while 

49: end while 
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Step 1-3: 

The retrieval time of each slab is initialized to 0 (𝑡𝑗 ←  0 for all 𝑗 ∈ 𝐽) and the residual orders of 

each period are initialized to the number of requests of each period (𝑞𝑟𝑒𝑠
𝑡 ← 𝑞𝑡 ∀ 𝑡 ∈ 𝑇).  

Steps 4-11: 

Until there is still a request to satisfy (while ∑ 𝑞𝑟𝑒𝑠
𝑡

𝑡∈𝑇  > 0 do), the reference period 𝑡∗ is initialized 

to zero and the set of the feasible slabs in 𝑡∗ is initialized to ⋃ 𝐸𝑡
0

𝑡∈[𝑡;𝑇̅+1}  

While (while 𝑡∗ = 0) this condition is verified, a period t is extract from a uniform distribution in 

the range (1, 𝑇̅) If the residual quantity to satisfy in t is greater than 0 ( if 𝑞𝑟𝑒𝑠
𝑡  > 0 then ), the 

reference period 𝑡∗is set equal to t (𝑡∗ ← 𝑡) the set of the slabs not assignable in 𝑡∗ is initialized to 

the empty set ( 𝐽𝑡∗  ← ∅) 

Step 12-15: 

Then, a slab j is extracted from a uniform distribution in the range (1,| 𝐽𝑡∗|) and reference slab 𝑗∗ is 

set equal to j (𝑗∗ ← 𝑗). 

Step 16-49: 

If a reference slab has been selected (if 𝑗∗ > 0), it is evaluated if the 𝑗∗ is retrievable in 𝑡∗.  

Hence, the period s is set equal to 𝑇̅ + 1 ( 𝑠 ← 𝑇̅ + 1)  and until s is different from 𝑡∗ the number 

of slabs with deadline in s still not assigned to any period exept for  𝑗∗ (𝐸𝑠𝑗∗
0 ) is evaluated.  

If s ≠ 𝑑𝑗∗  , 𝑒𝑜𝑗∗
𝑠  is equal to the number of slabs with deadline in s still not assigned to any period 

(|𝐸𝑠𝑗∗
0 | ← |𝐸𝑠

0|). Otherwise, |𝐸𝑠𝑗∗
0 | is the number of slabs with deadline in s subtract by one 

(|𝐸𝑠𝑗∗
0 |  ← |𝐸𝑠

0| − 1).  

If s ≤ 𝑇̅ it is necessary to check if the slabs still available in s are greater or at least equal to the 

request in s (if 𝐴𝑠 ≥ 𝑞𝑟𝑒𝑠
𝑠  then). 

𝐴𝑠  is equal to the number of slabs available in s + 1 minus the requests in s + 1 plus the number 

of slabs with deadline in s still not assigned (Set 𝐴𝑠 ← 𝐴𝑠+1 + |𝐸𝑠𝑗∗
0 |  − 𝑞𝑟𝑒𝑠

𝑠+1).  

Hence, in each period s from 𝑇̅ to  𝑡∗ + 1 (if 𝑠 ≤ 𝑇̅ then), it is check if  𝐴𝑠 ≥ 𝑞𝑟𝑒𝑠
𝑠 . 

If this condition is verified for each s, the slab 𝑗∗ is assigned to 𝑡∗(𝑡𝑗∗
← 𝑡∗), the residual orders of 

𝑡∗are updated (𝑞𝑟𝑒𝑠
𝑡∗

 ← 𝑞𝑟𝑒𝑠
𝑡∗

− 1) and the subtract  𝑗∗from  𝐽𝑡∗
𝑠
 ( 𝐽𝑡∗

𝑠
 ←  𝐽𝑡∗

𝑠
− { 𝑗∗}). Otherwise, 

𝑗∗ is added to this set  𝐽𝑡∗
𝑠
  ( 𝐽𝑡∗

𝑎
←  𝐽𝑡∗

𝑠
− { 𝑗∗}), the reference slab 𝑗∗ is reinitialized to 0 (𝑗∗ ← 0) 

and  the procedure to satisfy a request in 𝑡∗ tries to select a new reference slab present in  𝐽𝑡∗
𝑠
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Appendix F 

Here we report the pseudocode related to the constructive heuristic oriented to the minimization of 

the expired slabs according to the notation reported in Appendix D: 

 

Constructive heuristic oriented to the minimization of the expired slabs 

1: 𝑡 ←  1 and 𝑡𝑗  ←  0 for all 𝑗 ∈ 𝐽 

2: while  𝑡 ≤   𝑇̅ do 

3:    if |𝐸𝑡| < 𝑞𝑡  then 

4:  𝑡𝑗  ← 𝑡  for all 𝑗 ∈  𝐸𝑡 

5:       𝑞𝑟𝑒𝑠
𝑡  ← 𝑞𝑡 − |𝐸𝑡| 

6:       𝑡 ← 𝑡 + 1 

7:    else  

8:     while 𝑞𝑟𝑒𝑠
𝑡 > 0 do 

9:       Extract k from a uniform discrete distribution in the range ⌈1, |𝐸𝑡
0|⌉  

10: where 𝑡𝐸𝑡
0(𝑘) = 0 

11:        𝑡𝐸𝑡
0(𝑘)  ← 𝑡 and 𝑞𝑟𝑒𝑠

𝑡  ← 𝑞𝑟𝑒𝑠
𝑡 − 1 

12:      end while 

13:      𝑡 ← 𝑡 + 1 

14:     end if 

15: end while 

16: l ←  1 

17: while l ≤   𝑇̅ 𝐝𝐨 

18:   if |𝐸0
𝑙 | > 0 𝐭𝐡𝐞𝐧 

19:       𝑗 ←  1 

20:    while ∃! s ∈ ⌈1, 𝑙⌉ where 𝑞𝑟𝑒𝑠
𝑠  > 0 do 

21:      while ∃! 𝑗 ∈ 𝐸𝑡: 𝑡𝑗  = 0 do 

22:          if 𝑑𝑗 ← 𝑙 and 𝑡𝑗  ← 0 then 

23:             Extract s from a uniform discrete distribution in the range  ⌈1, 𝑙⌉ where 𝑞𝑟𝑒𝑠
𝑠  > 0 

24:             𝑡𝑗  ← 𝑠  

25:             𝑞𝑟𝑒𝑠
𝑠 ← 𝑞𝑟𝑒𝑠

𝑠 − 1 

26:             𝑗 ← 𝑗 +  1 

27:          Else 

28:             𝑗 ← 𝑗 +  1 

29:          end if 

30:        end while 

31:     end while 

32: end while 

33: 𝑡 ←  1 and 𝑗 ←  1 

34: while 𝑡 ≤  𝑇̅ do 

35:  if 𝑞𝑟𝑒𝑠
𝑡 > 0 then 

36:   while 𝑞𝑟𝑒𝑠
𝑡 > 0  do  

37:     if 𝑑𝑗 ≥ 𝑡 and 𝑡𝑗  = 0 then 

38:         𝑡𝑗  ← 𝑡 

39:         𝑞𝑟𝑒𝑠
𝑡 ← 𝑞𝑟𝑒𝑠

𝑡 − 1 

40:         𝑗 ← 𝑗 +  1 

41:     Else 

42:         𝑗 ← 𝑗 +  1 

43:     end if 

44:   end while 

45:      𝑡 ← 𝑡 +  1 

46:  Else 

47:      𝑡 ← 𝑡 +  1 

48:  end if 

49: end while 
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Step 1: 

It is considered the first period (𝑡 ←1), and the value of retrieval time of each slab is initialized to 

0 (𝑡𝑗  ←  0 for all 𝑗 ∈ 𝐽). 

Step 2-15: 

One by one, all the periods are taken under consideration (while  𝑡 ≤   𝑇̅ do).  

For each period t, if the number of slabs that expired in t (|𝐸𝑡|) is equal or lower than the number 

of slabs requested in that period (𝑞𝑡 ) all the slabs with deadline in t will be assigned to this period 

(𝑡𝑗  ← 𝑡  for all 𝑗 ∈  𝐸𝑡). Hence, the number of requests still not satisfied in t, 𝑞𝑟𝑒𝑠
𝑡 , will be set by 

the difference between 𝑞𝑡 and |𝐸𝑡| ( 𝑞𝑟𝑒𝑠
𝑡  ← 𝑞𝑡 − |𝐸𝑡|).  

Instead, if the number of slabs that expired in t (|𝐸𝑡|) is greater than the number of slabs requested 

in that period (|𝐸𝑡| >  𝑞𝑡 ), until 𝑞𝑟𝑒𝑠
𝑡  becomes equal to 0 (while 𝑞𝑟𝑒𝑠

𝑡 > 0 do), a value k is extracted 

from a uniform discrete distribution in the range ⌈1, |𝐸𝑡
0|⌉, Hence, the slab corresponding to the k-

th element of the set 𝑒0
𝑡  is assigned to the period t (𝑡𝐸𝑡

0(𝑘) ← 𝑡), where 𝐸𝑡
0 represents the ordered 

set of slabs with deadline t still not assigned (𝐸𝑡
0 = {𝑠 ∈ 𝑒𝑡: 𝑡𝑠 = 0}). 

Step 16-32: 

Once that all the possible slabs have been assigned to their deadline, l is set to 1, and one by one 

all the periods are taken under consideration (while l ≤   𝑇̅ 𝐝𝐨). Hence, if there are slabs with 

deadline in l still not assigned to any period (|𝐸𝑡
0| > 0), and there is at least a period s between 1 

and l, in which some order need to be satisfied (while ∃! s ∈ ⌈1, 𝑙⌉ where 𝑞𝑟𝑒𝑠
𝑠  > 0 do) from the 

top of the stack, in a descending order, all these slabs are considered and are assigned to a period 

s (extract from a uniform distribution in the range ⌈1, 𝑙⌉ where 𝑞𝑟𝑒𝑠
𝑠  > 0). 

Step 33-49: 

In the end, t is set to 1, and, once again, all the period, one by one, are taken under consideration 

(while 𝑡 ≤  𝑇̅ do) and if they present still some unsatisfied order (if 𝑞𝑟𝑒𝑠
𝑡 > 0 then), until the period 

t is completely satisfied (while 𝑞𝑟𝑒𝑠
𝑡 > 0  do), from the top of the stack, in a descending order, all 

the slabs with a deadline greater than t and still not assigned (if 𝑑𝑗 ≥ 𝑡 and 𝑡𝑗 = 0 then) are 

assigned in t (Set 𝑡𝑗 ← 𝑡).  
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Appendix G 

Here we report the pseudocode related to the heuristic’s local search according to the notation 

reported in Appendix E and the further notation:  

 

Initial_solution Starting solution ; 

Current_solution   Current best solution (𝑡𝑗  ∀ 𝑗 ∈ 𝐽 , 

where 𝑡𝑗= 0 if j is not assigned to any 

request 

Current_value Objective function value of the 

Current_solution ; 

New_solution Solution generated by a swap between 

two slabs; 

New_value Objective function value of the 

New_solution ; 

Swapped Subset of slabs that have been swapped 

during the procedure;  

Best_new_solution The best solution found in any point 

of the procedure; 

Best_new_value Objective function value of the 

Best_new_solution; 

Continue Variable equal to 1 if the procedure 

must be repeated, 0 otherwise 
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Improving swap procedure 

1: Current_solution ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 
2: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑣𝑎𝑙𝑢𝑒 ← 𝑓. 𝑜. (𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)   
3: Best_new_solution ←  𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛   
4: Best_new_value ← 𝑓. 𝑜. (𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 
5: Swapped ←  ∅ 
6: Continue ←  1 
7: while Continue > 0 do 
8:     Continue = 0 
9:    j ← 1 
10:    while 𝑗 ≤ |𝐽| do 
11:       k ←1   
12:        𝑅𝑗 ← 𝑡𝑗   
13:       while 𝑘 ≤ |𝐽| do        
14:             𝑅𝑘 ← 𝑡𝑘   
15:            if 𝑘 > 𝑗 or  𝑘 ∈ 𝑆𝑤𝑎𝑝𝑒𝑑 than 
16:                  if 𝑡𝑗  > 0 then    

17:                      if 𝑡𝑘  = 𝑡𝑗  then 

18:                           k ← 𝑘 + 1 
19:                      else  
20:                          if 𝑑𝑗 ≥ 𝑡𝑘  and 𝑑𝑘 ≥ 𝑡𝑗   then 

21:                              New_solution ←  {𝑡𝑠 ∀ 𝑠 ∈ 𝐽: 𝑡𝑘  = 𝑅𝑗 𝑡𝑗   = 𝑅𝑘} 

22:                              New_value ← 𝑓. 𝑜. (New_solution) 
23:                               if New_value > Best_new_value then 
24:                                  Best_new_solution ← New_solution 
25:                                  Set Best_new_value ← New_value 
26:                                  𝑘∗ ← 𝑘 
27:                               else 
28:                                   k ← 𝑘 + 1   
29:                               end if 
30:                          else 
31:                               k ← 𝑘 + 1 
32:                          end if 
33:                     end if 
34:                 else 
35:                   if 𝑡𝑘  > 0 and 𝑑𝑗 ≥ 𝑡𝑘   
36:                        New_solution ←  {𝑡𝑠 ∀ 𝑠 ∈ 𝐽: 𝑡𝑘 = 𝑅𝑗 𝑡𝑗   = 𝑅𝑘} 

33:                        New_value ← 𝑓. 𝑜. (New_solution) 
34:                        if New_value > Best_new_value then 
35:                             Best_new_solution ← New_solution 
36:                             Best_new_value ← New_value 
37:                             𝑘∗ ← 𝑘 
38:                         else 
39:                             𝑘 ← 𝑘 + 1 
40:                         end if 
41:                   else 
42:                        𝑘 ← 𝑘 + 1 
43:                   end if 
44:                end if 
45:             else   
46:                𝑘 ← 𝑘 + 1     
47:            end if 
48:      end while 
49:        if Best_new_value > Current_value then 
60:           Current_solution ← Best_new_solution 
51:           Current_value ← Best_new_value 
52:           Swapped ← Swapped ∪ { j , 𝑘∗} 
53:           Continue ← 1 
54:         end if 
55:         𝑗 ← 𝑗 + 1     
56:    end while 
57: end while 
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Step 1-6: 

Starting from an Initial_solution (represented by the set of assignment periods of each slab 

(Initial_solution = {𝑡𝑗 ∶  𝑗 ∈ 𝐽} ), procedure sets Current_solution and Best_new_solution   

equal to the Initial_solution and evaluate the relative objective function values ( 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑣𝑎𝑙𝑢𝑒 ←

𝑓. 𝑜. (𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛), Best_new_value ←  𝑓. 𝑜. (𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) Then, the set of the slabs 

swapped during the procedure is initialized to the empty set (Swapped ←  ∅) and the variable 

Continue, that indicates if the procedure must continue (Continue = 1) or not (Continue = 0) is set 

equal to 1. 

Step 7-9: 

While the Continue variable is equal to 1, the procedure selects the first slab of the stack, j = 1, 

sets the variable Continue equal to 0 and proceeds.  

Step 10-13: 

Until all the slabs have been considered (while 𝑗 ≤ |𝐽| ), the procedure starts to consider again all 

the slabs (while 𝑘 ≤ |𝐽|) starting from the first, k = 1, and records the value of 𝑡𝑗  as 𝑅𝑗. 

Step 14-48: 

The current retrieval time of the slab k under consideration is recorded as 𝑅𝑘 (𝑅𝑘 ← 𝑡𝑘). 

if the slab k is in a lower position than j or the slab k has been already swapped ( if 𝑘 > 𝑗 or  𝑘 

∈ 𝑆𝑤𝑎𝑝𝑒𝑑 than ) the possible swap between k and j is evaluated. 

If 𝑡𝑗  = 0, this swap is evaluated only when 𝑡𝑘  ≥ 0 and 𝑑𝑗 ≥ 𝑡𝑘  Otherwise, if 𝑡𝑗  ≥ 0, the swap is 

evaluated when 𝑡𝑘   ≠ 𝑡𝑗  , 𝑑𝑗 ≥ 𝑡𝑘  and 𝑑𝑘 ≥  𝑡𝑗   If these conditions are verified, the swap between 

j and k, is evaluate, creating a New_solution, where  𝑡𝑗  =  𝑅𝑘 and 𝑡𝑘  = 𝑅𝑗 , and calculating the 

relative objective function value, New_value = o.f.(New_solution). If the New_value under 

consideration is better than the previous Best_new_value found, the Best_new_solution and the 

relative Best_new_value are updated (Step 23-24 if 𝑡𝑗  > 0 or Step 37-38 if 𝑡𝑗  = 0) (Set 

Best_new_solution ← New_solution and Set Best_new_value ← New_value) 

Step 49-54: 

After that all the possible swaps between the slab j and the other slabs have been evaluated, if the 

Best_new_value is better than the Current_value, the Current_solution and the Current_value are 

updated, and the variable Continue is set to 1 ( Set Current_solution ← Best_new_solution , Set 

Current_value ← Best_new_value and Set Continue ← 1) 

Step 54-56: 

Then, j is incremented, ( 𝑗 ← 𝑗 + 1 ) until it reaches the value |J|, and if at end, at least one update 

of the Current_solution has been performed, having reset to 1 the variable Continue, the procedure 

will start again, otherwise, the procedure will stop  
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Appendix H 

Here we report the results of the computational experiences of the h that have been carried out using 

a script in Python on an Intel(R) Core(TM) i7-8550U  with 1.80 GHz and 16 GB of RAM.  

These regards the same 50 random instances generated for each (|T|,|J|) = {(20, 80); (25,100)} used 

to test the model(1|1). In particular, in Table .5 and Table .6 are reported the comparisons of the 

results obtained by the heuristic and by the model in terms of objective function and computing time 

for each combination of (|T|,|J|) = {(20, 80); (25,100)} for P = |T|x|J| and P = 0 respectively. The 

better value between the model and heuristic both in terms of objective function and computing time 

is green coloured. 

 

Table .5 Computational results in terms of objective function and computing time(s) for (|T|, |J|) = 

{(20,80); (25, 100)} and P = |T|x|J| 

Instance T J 
Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 

Objective function Computing time (s) 

1 20 80 19536 19551 64.56 148.54 

2 20 80 6735 6748 3605.19 218.14 

3 20 80 16341 16347 1000.21 225.10 

4 20 80 17889 17910 3601.41 203.42 

5 20 80 10069 10084 3607.14 212.81 

6 20 80 14661 14688 673.71 219.33 

7 20 80 13148 13165 483.42 204.03 

8 20 80 27475 27478 92.36 225.14 

9 20 80 13161 13167 3607.24 186.92 

10 20 80 14762 14794 3607.61 131.64 

11 20 80 16262 16293 17.59 114.99 

12 20 80 22687 22693 1001.73 169.41 

13 20 80 13169 13186 3600.2 245.60 

14 20 80 16327 16336 1490.72 192.34 

15 20 80 17921 17942 3607.42 231.50 

16 20 80 25885 25893 1000.19 141.11 

17 20 80 25882 25904 202.10 187.67 

18 20 80 21084 21089 680.82 213.17 

19 20 80 27411 27423 1002.36 194.54 

20 20 80 17850 17861 30.53 190.32 

21 20 80 19440 19441 61.56 216.40 

22 20 80 21096 21103 37.16 178.88 

23 20 80 27462 27468 43.25 190.40 

Continued on next page. 
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Table .5 – Continued from previous page 

Instance T J 
Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 

Objective function Computing time (s) 

24 20 80 16278 16298 3300.42 239.67 

25 20 80 25889 25899 1388.00 174.70 

26 20 80 13170 13210 3603.82 229.12 

27 20 80 11641 11671 1783.52 190.86 

28 20 80 14750 14772 10.38 141.15 

29 20 80 25862 25868 1000.23 168.40 

30 20 80 13141 13164 28.87 181.73 

31 20 80 16385 16385 3600.18 182.63 

32 20 80 24266 24266 64.56 204.04 

33 20 80 24264 24285 3605.19 195.47 

34 20 80 13075 13097 1545.93 221.91 

35 20 80 19470 19484 299.88 200.93 

36 20 80 14721 14741 175.42 169.45 

37 20 80 21062 21062 1000.65 214.04 

38 20 80 27470 27480 381.66 194.37 

39 20 80 13189 13192 17.41 165.09 

40 20 80 13167 13177 12.22 121.12 

41 20 80 19555 19584 3602.58 227.72 

42 20 80 19528 19533 1000.64 209.60 

43 20 80 16359 16369 1418.2 134.27 

44 20 80 19565 19596 3605.36 211.42 

45 20 80 25857 25861 115.75 197.91 

46 20 80 13187 13212 3602.23 187.32 

47 20 80 14716 14731 19.20 214.00 

48 20 80 17979 17997 12.90 197.23 

49 20 80 18016 18019 53.19 174.82 

50 20 80 22673 22684 363.73 160.29 

1 25 100 47905 47925 3601.92 454.69 

2 25 100 33099 33125 465.77 526.10 

3 25 100 40420 40434 3601.78 598.44 

4 25 100 28045 28058 3600.38 579.12 

5 25 100 33011 33048 3607.97 535.29 

6 25 100 33080 33102 3603.52 464.93 

7 25 100 23051 23109 3601.28 492.26 

8 25 100 30491 30513 3602.67 482.44 

Continued on next page 
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Table .5 – Continued from previous page 

Instance T J 
Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 

Objective function Computing time (s) 

9 25 100 35500 35510 3600.51 456.61 

10 25 100 25574 25603 3607.42 515.74 

11 25 100 47894 47901 3600.51 378.73 

12 25 100 45547 45576 3600.47 436.75 

13 25 100 23099 23112 1170.85 566.85 

14 25 100 37987 38001 3600.65 407.31 

15 25 100 47965 47990 3601.63 422.09 

16 25 100 18102 18107 3604.00 643.54 

17 25 100 35479 35484 247.65 585.20 

18 25 100 57915 57925 3603.82 516.36 

19 25 100 47894 47910 3600.50 521.12 

20 25 100 33161 33166 40.19 593.64 

21 25 100 33103 33109 706.93 594.91 

22 25 100 35533 35536 288.57 538.38 

23 25 100 18113 18126 3600.41 566.71 

24 25 100 37986 38012 3601.51 583.98 

25 25 100 28193 28202 3600.38 580.32 

26 25 100 35468 35478 3601.96 639.85 

27 25 100 32921 32948 3600.53 580.65 

28 25 100 30634 30672 2631.33 463.76 

29 25 100 32946 32976 3603.13 658.23 

30 25 100 38057 38078 3603.86 408.68 

31 25 100 43021 43033 3600.52 470.00 

32 25 100 47890 47896 3600.43 371.66 

33 25 100 45486 45510 3600.39 499.74 

34 25 100 50440 50443 3601.20 549.23 

35 25 100 23066 23102 1121.73 460.45 

36 25 100 50506 50523 3601.95 417.32 

37 25 100 28031 28043 3600.45 444.91 

38 25 100 28043 28049 3603.51 532.70 

39 25 100 30439 30465 1718.09 673.02 

40 25 100 38050 38060 3601.35 609.50 

41 25 100 52950 52952 3605.15 577.88 

42 25 100 33017 33021 2743.02 599.38 

43 25 100 28086 28113 443.03 485.72 

Continued on next page 
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Table .5 – Continued from previous page 

Instance T J 
Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 

Objective function Computing time (s) 

44 25 100 45409 45422 3608.23 537.44 

45 25 100 30546 30562 3601.64 439.42 

46 25 100 37929 37936 3601.64 541.56 

47 25 100 40377 40388 3602.99 644.80 

48 25 100 37939 37982 3601.95 437.83 

49 25 100 38028 38041 3260.06 516.18 

50 25 100 52950 25543 3600.44 548.15 

 

Table .6 Computational results in terms of objective function and computing time(s) for (|T|, |J|) = 

{(20,80); (25, 100)} and P = 0 

Instance T J 
Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 

Objective function Computing time (s) 

1 20 80 65 68 1749.74 487.99 

2 20 80 37 40 48.93 350.39 

3 20 80 45 50 272.85 330.58 

4 20 80 41 44 545.13 409.09 

5 20 80 104 123 3599.27 533.17 

6 20 80 27 32 28.18 564.56 

7 20 80 13 13 6.31 563.53 

8 20 80 25 26 12.29 209.98 

9 20 80 119 127 3600.21 208.43 

10 20 80 197 202 3600.15 186.18 

11 20 80 3 3 0.76 160.63 

12 20 80 40 43 78.89 188.68 

13 20 80 90 86 3603.88 283.06 

14 20 80 18 19 8.46 192.48 

15 20 80 27 30 360.42 220.54 

16 20 80 31 31 30.13 177.88 

17 20 80 40 41 102.13 188.06 

18 20 80 38 38 43.23 206.5 

19 20 80 54 58 587.74 198.98 

20 20 80 24 27 10.62 190.95 

21 20 80 32 32 38.58 237.87 

22 20 80 45 46 3600.2 162.95 

23 20 80 37 42 70.69 175.58 

Continued on next page 
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Table .6 – Continued from previous page 

Instance T J 
Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 

Objective function Computing time (s) 

24 20 80 22 22 12.31 213.27 

25 20 80 21 21 27.67 193.97 

26 20 80 69 72 3352.1 262.34 

27 20 80 56 56 486.42 276.19 

28 20 80 52 55 488.54 200.93 

29 20 80 35 36 51.97 167.3 

30 20 80 48 50 77.2 253.91 

31 20 80 101 112 3600.44 237.62 

32 20 80 25 27 14.57 171.85 

33 20 80 18 22 7.35 173.22 

34 20 80 29 33 19.69 228.94 

35 20 80 44 50 116.49 192.61 

36 20 80 39 40 106.33 185.13 

37 20 80 27 27 7.82 196.39 

38 20 80 69 76 2927.66 198.26 

39 20 80 21 21 12.5 195.25 

40 20 80 22 22 22.95 353.66 

41 20 80 80 88 3600.19 399.34 

42 20 80 35 40 347.45 293.11 

43 20 80 63 63 1562.61 356.14 

44 20 80 47 47 81.92 411.36 

45 20 80 27 33 22.79 287.11 

46 20 80 82 80 3605.16 370.86 

47 20 80 22 25 18.03 346.99 

48 20 80 28 30 35.02 186.72 

49 20 80 125 126 3604.23 200.87 

50 20 80 51 54 410.33 204.8 

1 25 100 80 91 3601.62 392.95 

2 25 100 65 67 1704.87 734.81 

3 25 100 70 75 3601.96 566.56 

4 25 100 71 73 3602.07 591.66 

5 25 100 86 82 3605.4 527.67 

6 25 100 119 123 3602.05 550.6 

7 25 100 109 117 3601.62 652.36 

8 25 100 41 45 3600.54 568.88 

Continued on next page 
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Table .6 – Continued from previous page 

Instance T J 
Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 

Objective function Computing time (s) 

9 25 100 64 68 3607.63 483.04 

10 25 100 101 86 3602.61 528.6 

11 25 100 46 46 3224.03 417.32 

12 25 100 172 172 3603.84 575.46 

13 25 100 103 100 3603.61 585.66 

14 25 100 26 29 25.98 459.57 

15 25 100 82 93 3618.01 428.45 

16 25 100 111 112 3603.85 694.49 

17 25 100 98 84 3607.4 607.08 

18 25 100 96 106 3603.32 531.07 

19 25 100 35 39 153.48 427.75 

20 25 100 60 66 3600.54 649.05 

21 25 100 80 83 3602.85 620.23 

22 25 100 116 121 3603.02 679.15 

23 25 100 139 115 3602.71 833.41 

24 25 100 83 92 3604.19 531.36 

25 25 100 169 153 3603.39 756.85 

26 25 100 80 68 3604.08 551.67 

27 25 100 97 112 3606.18 566.73 

28 25 100 167 177 3602.42 567.51 

29 25 100 93 100 3602.57 655.1 

30 25 100 26 32 100.32 484.69 

31 25 100 145 141 3602.88 550.46 

32 25 100 36 39 274.89 346.63 

33 25 100 123 116 3602.73 535.52 

34 25 100 69 70 3600.61 465.02 

35 25 100 51 58 749.61 634.42 

36 25 100 79 86 3603.42 457.26 

37 25 100 111 92 3602.41 505.3 

38 25 100 73 77 3604.78 591.14 

39 25 100 97 110 3604.33 650.23 

40 25 100 97 82 3603.14 568.8 

41 25 100 71 77 3602.18 625.91 

42 25 100 121 123 3602.33 638.14 

43 25 100 122 139 3604.61 480.69 

Continued on next page 
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Table .6 – Continued from previous page 

Instance T J 
Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 Model 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 

Objective function Computing time (s) 

44 25 100 47 50 3600.41 584.66 

45 25 100 71 71 3600.46 518.31 

46 25 100 91 99 3607.04 538.72 

47 25 100 40 49 3601.28 540.16 

48 25 100 65 73 3603.16 406.38 

49 25 100 195 205 3603.28 643.51 

50 25 100 61 72 3607.01 641.42 
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