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Abstract  13 

This study investigates the price elasticity of demand in the European low-cost carrier (LCC) 14 

industry by analysing Internet fares for all easyJet flights departing from the Amsterdam 15 

Schiphol airport towards 21 European destinations between March and September 2015. 16 

Results suggest that the price elasticity of demand greatly varies across different dimensions, 17 

ranging from -0.535 for the business-oriented route of Hamburg to -1.915 for the leisure-18 

oriented route of Split. Price elasticity is also found to be higher for reservations made more 19 

days in advance, for reservations and departures occurring on weekends, and for flights taking 20 

off during lunchtime and in the summer period. All results are consistent with the different 21 

behaviours of leisure and business passengers and the ongoing increase in the business 22 

component of the LCC passenger mix. 23 
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Highlights 26 

- This article analyses price elasticity of demand for leisure and business destinations 27 

- easyJet’s price elasticity of flights departing from the AMS airport is overall inelastic 28 

- During the summer, price elasticity of demand on average increases 29 

- Price elasticity is higher for weekends-reservations and -departures and lunchtime 30 

flights 31 

- Price elasticity is higher for reservations made more days in advance 32 
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Introduction 38 

 In the current arena, low-cost carriers (LCCs) have been required to continuously adjust 39 

their ticket prices in response to rapid changes in market conditions (Alderighi et al., 2015). In 40 

this regard, reducing costs in the short term, forecasting demand, and understanding demand 41 

changes according to price variations have increasingly become crucial prerequisites 42 

underpinning LCCs’ success (e.g. Alderighi et al., 2015; Malighetti et al., 2009; Narangajavana 43 

et al., 2014). Furthermore, the fact that LCCs have begun to rely on the business component, 44 

i.e. through the hybridization process1 (Klophaus et al., 2012, Morandi et al., 2015), makes it 45 

even more interesting to understand the price elasticity dynamics in this sector. Indeed, on the 46 

one hand, the low-cost strategy has been well recognised since its establishment to target 47 

passengers who are highly sensitive to price changes (leisure component), whereas on the other 48 

hand, this ongoing hybridization process mixes the types of passengers by targeting the most 49 

inelastic ones (business component). 50 

 Historically, LCCs have not implemented third-degree price discrimination by 51 

providing different travel classes, and instead, they have generally relied on intertemporal price 52 

discrimination to suit passengers’ various willingness to pay (Moreno-Izquierdo et al., 2015). 53 

However, the recent orientation towards the business component makes it more crucial to 54 

understand different LCC passengers’ price elasticities. In this study, we aim to shed light on 55 

LCC passengers’ price sensitivities by investigating how the price sensitivity changes across 56 

all of the different facets that characterise the air transport service, from the route and seasonal 57 

dimensions to the most traditional dimensions explored in the previous literature in other 58 

contexts, such as variations in flight and booking characteristics (Mumbower et al., 2014). 59 

 Notwithstanding the importance of identifying demand changes in relation to price 60 

variations, the estimation of price elasticity is largely missing in the literature, mainly due to 61 

the lack of available data on both prices and the number of booking passengers (Brons et al., 62 

2002). To date, the difficulty of collecting data has made it challenging to acquire an in-depth 63 

exploration of price elasticity, preventing an overall comprehension of its dynamics. This lack 64 

of data has made it difficult to go beyond the average value of price elasticity and understand 65 

the dimensions across which it varies (Oum et al., 1992). The few existing contributions in this 66 

regard are limited to analysis of the price elasticity of demand in the American context (Brons 67 

et al., 2002, Granados et al., 2012a; Granados et al., 2012b; Mumbower et al., 2014) and mainly 68 

                                                           
1 LCCs have increasingly begun to adopt some features of full-service network airlines (e.g. offering more than 
one class of service, providing meals and other in-flight services, starting hubbing activities, and shifting to 
primary airports). 
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focus on the pricing strategies of traditional carriers. Only Mumbower et al. (2014) provide an 69 

analysis of the pricing strategies of a US low-cost carrier (JetBlue) on solely four routes. 70 

 In order to investigate the price elasticity of demand in the European LCC air transport 71 

industry, we examine Internet fares for all flights on easyJet (the second European LCC in terms 72 

of passengers in the year 20152) that depart from the Amsterdam Schiphol airport towards 21 73 

European routes between March and September 2015. The peculiarities of the European 74 

context, such as the geographic extension of the market, the development of the hub-and-spoke 75 

model, and the number of inter-modal alternatives (Brons et al., 2002; Giaume & Guillou, 2004; 76 

Moreno-Izquierdo et al., 2015), allow us to draw new insights that complement the existing 77 

US-based evidence on passengers’ price sensitivities of demand (Granados et al., 2012b). 78 

Consistent with the former literature, we implement an instrumental variable approach to 79 

correct for price endogeneity so as to provide unbiased estimates of the price elasticity of 80 

demand across the different dimensions. 81 

 The remainder of this paper is organised as follows. Section 2 reviews the state of the 82 

art studies of the price elasticity of demand. Section 3 describes the research design and 83 

methodology. Section 4 reports the results of the preliminary and empirical analyses. Section 5 84 

summarises the conclusions and proposes directions for further research. 85 

 86 

1. Literature review 87 

Airlines’ pricing strategies have been a topic of relevant interest over time. Research scholars 88 

have attempted to understand the dynamics of fare setting, which were found to depend on 89 

factors such as advance booking (e.g. Bergantino & Capozza, 2015; Dana, 1999), the degree of 90 

market concentration (e.g. Giaume & Guillou, 2004; Malighetti et al., 2010; Malighetti et al., 91 

2015; Stavins, 2001), the demand level (e.g. Alderighi et al., 2015; Escobari, 2012), the 92 

reservation characteristics (e.g. Cattaneo et al., 2016; Mantin & Koo, 2010), or even the types 93 

of consumers (Li et al., 2014) or the routes (Salanti et al., 2012). However, the understanding 94 

of the price elasticity of demand has largely remained unexplored in the air transportation 95 

literature (Bijmolt et al., 2005), especially when considering the extent to which it varies across 96 

different dimensions, such as the routes’ and passengers’ characteristics (Granados et al., 97 

2012b). Since the 1990s, scholars have suggested that the price elasticity might vary according 98 

                                                           
2 This finding comes from The European Low Fares Airline Association (June 2015). 
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to the nature of the travel (Brons et al., 2002; Oum et al., 1992) and the presence of substitute 99 

modes (Brons et al., 2002).  100 

Based on the few existing empirical studies dealing with the price elasticity of demand, 101 

the elasticity is indeed found to vary according to the different dimensions considered. On 102 

average, investigating economy class reservations made through the global distribution system 103 

across 47 city pairs during the period September 2003–August 2004, Granados et al. (2012a) 104 

find a price elasticity of demand of -1.03. They show, however, that the price elasticity varies 105 

across different sale channels (online vs. traditional) and different market segments (business 106 

vs. leisure). Their results highlight that the elasticity is higher for leisure passengers who reserve 107 

tickets online compared to business travellers who book through traditional channels. 108 

Specifically, they find an offline (online) elasticity ranging from -0.34 (-0.89) for business 109 

passengers to -1.33 (-1.56) for leisure travellers. Granados et al. (2012b) conduct a similar study 110 

focusing on the booking records of a large traditional airline for the periods of February–March 111 

2009 and February–April 2010 across 40 city pairs. They point out that passengers are always 112 

non-price sensitive (average value of -0.64) but still highlight that, on average, leisure travellers 113 

are more price elastic. The only previous study focusing on LCCs (Mumbower et al., 2014) 114 

shows that, although passengers are price elastic overall (-1.97 at the mean price), the demand 115 

is still inelastic for reservations made one to two days before departure. Interestingly, elasticity 116 

values are often greater than unity at different levels of the same dimension, thus changing the 117 

dynamics of demand variations in price changes. 118 

This study therefore aims to contribute to the former literature by investigating price 119 

elasticity in the European LCC industry, adding to the past contributions on the exploration of 120 

price elasticity variation across the route and seasonal dimensions. The importance of this 121 

analysis lies in the existing differences between the European and US air transportation markets. 122 

On the one hand, routes are on average shorter in Europe, thus implying more competition from 123 

alternative transport modes and more moderate use of airports as hubs (Brons et al., 2002; 124 

Giaume & Guillou, 2004). On the other hand, Europe is characterised by more seasonal airline 125 

demand than is the US because of both its geographic structure and the role that LCCs have 126 

played over time. In particular, compared to the US, a large part of Europe (e.g. the Southern 127 

countries) has been characterised by the typical high seasonality of tourists during the summer 128 

(Garrigos-Simon et al., 2010; Graham & Dennis, 2010; Papatheodorou, 2002). In addition, the 129 

European LCCs’ schedules have partially integrated the traditional periodicity of charter flights 130 

after a decline in the frequency of the latter (Martinez-Garcia & Royo-Vela, 2010; Williams, 131 

2001). 132 
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 133 

3. Research Design   134 

3.1. Sample and data 135 

In order to measure the price elasticity of demand across different dimensions, we first 136 

implement a linear regression model analysing the factors that influence the number of tickets 137 

sold, which represents our proxy for demand (Granados et al., 2012b). For this purpose, we 138 

develop a unique dataset including all daily web fares for easyJet flights on 21 European routes3 139 

(Figure 1) departing from the Amsterdam Schiphol airport during the period 8 March–23 140 

September 2015 for bookings made 1–45 days before departure. Overall, the data includes daily 141 

web fares for 7,211 scheduled flights.  142 

There are several reasons to consider easyJet for a multi-dimensional analysis of the 143 

price elasticity of demand. Anticipating the strategy of Ryanair, its major competitor, easyJet 144 

began to target passengers with a higher propensity to fly, i.e. business passengers, by 145 

establishing in primary airports and serving primary routes (easyJet Annual Report, 2016). 146 

Indeed, in 2015, easyJet tried to increase its European market share by both reinforcing its 147 

strong position in already served airports, like London Gatwick and Milan Malpensa, and 148 

opening important new bases, like Amsterdam Schiphol airport4 (easyJet Annual Report, 2016). 149 

This airport, the fourth largest European airport in terms of offered seats in 2015 (OAG, 2015), 150 

creates major opportunities for the low-cost carrier as it is located in one of the most important 151 

European capital cities and is of great interest to both leisure and business travellers. According 152 

to easyJet (easyJet Annual Report, 2016), the combination of using primary airports and 153 

offering highly frequent and attractively timed flights helps the company to serve not only 154 

leisure passengers, who would choose a low-cost carrier, but also business consumers, who 155 

represent a high source of revenue for the company. To better fulfil this purpose, easyJet offers 156 

different fares across different distribution channels, selling flight tickets directly from its own 157 

website and even through online travel agencies and GDS systems (easyJet Annual Report, 158 

2016). Hence, the choice to focus the empirical analysis on the easyJet-Amsterdam pair also 159 

                                                           
3 The 21 European destinations are as follows: Split (SPU) in Croatia; Prague (PRG) in the Czech Republic; 
Bordeaux (BOD) in France; Hamburg (HAM) and Berlin (SXF) in Germany; Rome (FCO) and Milan (MXP) in 
Italy; Lisbon (LIS) in Portugal; Basel (BSL) and Genève (GVA) in Switzerland; and Belfast (BFS), Bristol (BRS), 
Edinburgh (EDI), Glasgow (GLA), London (LGW, LTN, and STN), Liverpool (LPL), Manchester (MAN), 
Newcastle (NCL), and Southend (SEN) in the United Kingdom. 
4 easyJet is the major low-cost carrier operating at the AMS airport, where it does not suffer from the presence of 
its major competitor, Ryanair. 
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allows us to identify the different price elasticities of demand for business and leisure 160 

passengers. 161 

 162 

 163 

Figure 1. easyJet’s routes during the period March–September 2015 164 

Note: The thickness of the flows represents the intensity of the flights offered by easyJet on 165 

that route 166 

 167 

3.2. Methodology and variables’ definitions 168 

When investigating the relationship between price and demand, the problem of reverse 169 

causality may arise, since the level of demand is clearly affected by the price. Consistent with 170 

recent studies analysing air transport pricing strategies (Granados et al., 2012b; Mumbower et 171 

al., 2014), we attempt to solve price endogeneity by considering a two-stage least squares 172 

instrumental variable method with robust standard errors, where the selected instrumental 173 

variable is correlated with the price but is not included in the demand equation. Similar to 174 
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Mumbower et al. (2014), the airline’s average prices in all other markets with a similar length 175 

of haul are used as an instrumental variable (Gayle, 2004; Hausman, 1996)5. Specifically, we 176 

first aggregate routes according to the distance between the origin and the destination, creating 177 

three classes: between 300 km and 550 km, between 551 km and 800 km, and more than 800 178 

km. Second, for each route m, we compute the average price on routes n-m that are in the same 179 

class as route m. The validity of this instrument lies in the satisfaction of two diagnostic tests. 180 

The Hansen J test highlights that the instrument is correlated with the endogenous variable (the 181 

price) and thus shows that the equation is exactly identified, and the Kleibergen-Paap Wald 182 

statistic indicates that the instrument is not weak (the value is 128.460). 183 

 184 

The two stages of the model are as follows: 185 

Stage 1: 186 

����� = � +  
����� +  
����� +  �����  (1) 187 

 188 

Stage 2: 189 

����� = � +  ������� +  ������ +  �����  (2) 190 

 191 

In the first stage, ����� is the price for a seat purchased by a single passenger t days in 192 

advance for flight i on route r departing on day d; ����� is the instrumental variable defined as 193 

the airline’s average prices in all other markets with a similar length of haul; and εirdt is the error 194 

term. In the second stage, ����� is the number of tickets sold at time t on route i, and ������  is the 195 

predicted price from the first stage. Similar to the first stage,  ����� is the error term. In both 196 

stages,  ����� is a vector that represents a set of explanatory variables. Specifically, it is 197 

composed of: 198 

- Four dummy variables identifying the hour of departure: from 7 a.m. to 9.59 a.m. 199 

(Morning); from 10 a.m. to 1.59 p.m. (Lunchtime); from 2 p.m. to 5.59 p.m. 200 

(Afternoon); and from 6 p.m. to 9.59 p.m. (Evening), which represents the reference 201 

case.  202 

- Two sets of dummy variables for the departure and booking days consisting of one 203 

dummy variable for each day of the week (Saturday represents the reference case).  204 

                                                           
5 As highlighted by the recent literature, in air transportation economics, different types of instrument variables 
can be implemented to solve the potential endogeneity issue. However, testing the validity of different instruments 
is out of the scope of this study (see Mumbower et al., 2014 for a complete picture of different instruments).  
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- The variables LC Dominance and Eligible Alternatives, which account for direct and 205 

inter-modal competition and thus help to avoid under-estimated results (Oum et al., 206 

1992). The former is easyJet’s market share on that route compared to those of the 207 

other low-cost carriers6, and the latter represents the presence of eligible 208 

alternatives, considering both different transport modes and alternative airports at 209 

the destination, on each of the 21 routes from the Amsterdam Schiphol airport. An 210 

eligible alternative is identified by considering both the cost and the time 211 

dimensions. In particular, we first multiply the time required for each alternative 212 

(��) by its average price (��), computed to be between the minimum and the 213 

maximum offered by the Rome2rio.com website, a platform that provides 214 

information about different transport modes for each origin-destination pair. 215 

Second, we consider as eligible alternatives only those options where either the time 216 

or the cost (or both) are lower than the air route option and where the absolute value 217 

of the product of time and cost is not greater than 20% of the reference case. 218 

Specifically, we use the formula: 219 

�1 − (��∗��)
(�"∗�")� < 0.20  (3) 220 

where �� (��) and �� (��) are the average costs (times) of the alternative and the 221 

reference case, respectively. 222 

- A set of six dummy variables representing the months of departure, where 223 

September is the reference case. 224 

- The number of days in advance (1 to 45) at which a ticket is bought (Advance).  225 

- A set of 21 dummies identifying each of the 21 European destinations considered, 226 

where SXF (Berlin) represents the reference case.  227 

After the first stage of the analysis, we move forward to understanding the dynamics of 228 

the price elasticity of demand across different dimensions, which is an essential analysis to 229 

wholly comprehend the relationship between price and demand (Granados et al., 2012b). 230 

Specifically, we estimate the price elasticity of demand at mean values across each 231 

dimension starting from the common definition of elasticity (Schiff and Becken, 2011): 232 

'(,*+ = ,(
,*+ ∙ *+

( =  � ∙ *+
(   (4) 233 

                                                           

6
 The other low-cost carriers we consider are Vueling, Germanwings, Transavia, and Flybe, operating on the 

Rome-Fiumicino, Hamburg, Lisbon, and Manchester routes, respectively. 
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where � .  and � represent the predicted price and the demand, respectively, and � is the price 234 

coefficient of second stage in the two-stage least squares regression model (See Equation 2). 235 

Considering the elasticity at the means, '(,*+  becomes: 236 

'(,*+ = � ∙ * ./
( 0   (5) 237 

where �+1 is the overall average of the predicted prices and � 2  is the predicted value of demand 238 

computed as in Equation 2, where all of the independent variables are equal to their own 239 

averages. To evaluate the variation in '(,*+ over a subcategory 3 (e.g. Morning, Lunchtime, 240 

Afternoon, and Evening) of a specific dimension 4 (e.g. Departure Hour), Equation 4 becomes: 241 

'(5,*56  = � ∙ *561111
(50  , with 3 ∈ 4 (6) 242 

where �86111 and �80  are the average predicted price and the predicted value of the demand, 243 

respectively, estimated for each subcategory 3 of the dimension 4. 244 

Consistent with previous studies, we provide evidence of how the price elasticity of 245 

demand varies with respect to advance booking and the reservation day (booking dimension) 246 

and according to the different days and hours of departure (flight dimension). After this 247 

preliminary investigation, we go into more detail exploring the route and the seasonal 248 

dimensions by investigating how price elasticity varies for different destinations and seasons 249 

(spring and summer) of departure. 250 

We collect data on unit fares and tickets sold directly from easyJet’s website, whereas 251 

the identification of other carriers operating on each route and the eligible alternatives are made 252 

using the Amsterdam Schiphol website and Rome2rio.com, respectively. Specifically, to 253 

determine the number of tickets sold, we checked the maximum bookable seats daily for each 254 

flight, up to easyJet’s website threshold of 40 seats, and the difference between this value on 255 

day t and on day t+1 represents the number of tickets bought each day7. 256 

 257 

3.3. Descriptive statistics 258 

On average, the number of tickets sold is 2.4 per day, with a maximum of 39 tickets sold to 259 

Fiumicino, Rome, departing on 23 June 2015 (price: 59.99 €). In addition, 33 tickets to 260 

Malpensa, Milan were sold on 5 August 2015 (price: 85.99 €). After the destinations in Italy, 261 

                                                           
7 In detail, we first checked if 40 seats were available. If yes, we checked for lower numbers of seats that were 
multiples of 5. When the flight was sold out for a specific quantity 9 (a multiple of 5), we controlled for the fare 
offered for 9 − 1 seats up to the number of seats for which the price was available. The ultimate number of seats 
for which the price was available thus represents the number of available seats on that day. The difference between 
this value and the same value calculated the day before represents our proxy for demand, as in Granados et al. 
(2012b). 
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Prague is found to have the highest number of tickets sold in a day, with 28 tickets sold on 7 262 

May 2015 (price: 117.99 €). Overall, zero tickets per day were sold in 28.7% of the cases. 263 

The average price for easyJet’s flights departing from the Amsterdam Schiphol airport 264 

during the period 8 March–23 September, 2015 is 117.47 €. The lowest price is 29.99 € for the 265 

destination of Belfast on 31 March 2015, and the highest price is for the flight to Berlin on 5 266 

June 2015 (461.99 €). On average, for flights departing during the spring, the price is 112.38 €, 267 

and this average increases 11% (124.60 €) during the summer. 268 

The routes in our sample show easyJet as the main LCC, with an average low-cost 269 

market share of 92%. This high value is due to easyJet’s monopoly in the low-cost market on 270 

17 of the 21 routes. The Lisbon route, for which easyJet offers three flights per week, has the 271 

minimum LC Dominance value of 33%, whereas for the other three routes where easyJet does 272 

not have a monopoly, Rome-Fiumicino, Hamburg, and Manchester, the low-cost dominance 273 

variable has a value of around 50%. 274 

 Considering the number of eligible alternatives to easyJet for each route, five routes 275 

(out of 21) are attainable by choosing other flights landing in a different airport than that used 276 

by easyJet. Up to six routes are served by bus from the Amsterdam Schiphol airport, and two 277 

UK destinations (London-Luton and London-Stansted) are also reachable by ferryboat. Four 278 

destinations (London-Gatwick, London-Luton, London-Stansted, and Berlin) are reachable by 279 

rail. Overall, British destinations are well served from the Amsterdam Schiphol airport. 280 

 281 

4. Results 282 

4.1. Preliminary results 283 

First, we analyse the price and demand over time. As shown in Figure 2, the average fare 284 

increases over time, from a minimum of 82.78 € to a maximum of 124.80 € on the 21st and on 285 

the last day in advance, respectively. This result corroborates the usual intertemporal price 286 

discrimination strategy for LCCs, where higher airfares are offered as the departure day 287 

approaches (e.g. Alderighi et al., 2015; Bergantino & Capozza, 2015; Stokey, 1979). 288 

Interestingly, the average demand shows an increasing trend from a minimum of 1.10 289 

passengers booking on the 21st day of advance to a maximum of 3.07 passengers booking a 290 

week before departure. Computing the ratio between the average daily variation in fares and 291 

demand results in a steadily decreasing pattern until the 12th day in advance, after which the 292 

ratio begins to increase. The ratio ranges from 1.81 on the 17th day in advance to -0.47 on the 293 

12th day in advance. Overall, this trend has a ratio of around 1.4, implying that passengers 294 

continue to buy tickets, neglecting the increase in prices. This result suggests that passengers 295 
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booking in the last 10 days prior to departure are not as price sensitive as travellers reserving 296 

their seats further in advance, which corroborates the argument that tickets sold close to the 297 

departure date are often bought by business passengers, who are known to be price-inelastic 298 

consumers (e.g. Bergantino & Capozza, 2015; Dana, 1999; Salanti et al., 2012). 299 

  300 

 301 

Figure 2. Demand and price values by number of days in advance  302 

 303 

4.2. Empirical results  304 

Table 1 reports the results of the ordinary least squares (OLS) and the two-stage least squares 305 

(2SLS) instrumental variable regressions. As expected, in both models, demand is negatively 306 

and significantly related to the offered price, suggesting that the lower the price, the higher the 307 

number of passengers booking a ticket. Interestingly, when the value of easyJet’s market share 308 

decreases or the number of eligible alternatives increases, demand decreases. This finding 309 

seems reasonable since the greater the number of alternative modes to reach a destination, the 310 

greater the price sensitivity of the travellers (Brons et al., 2002).  311 

 The results for the two models are very similar, with a higher price coefficient (negative) 312 

in the 2SLS model than in the OLS model8. This evidence is consistent with the previous 313 

literature (e.g. Guevara & Ben-Akiva, 2006; Mumbower et al., 2014).  314 

                                                           
8 Multicollinearity tests dismissed the potential for problems since none of the mean variance inflation factors 
exceeded the typical cut-off of 10. 
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Table 1 – OLS and 2SLS regression estimates on demand 315 

 OLS 2SLSa  

Coefficient 
Robust St. 

Error 
Coefficient 

Robust St. 

Error 

Price -0.011*** 0.000 -0.015*** 0.004 
Eligible Alternatives -0.053*** 0.012 -0.056*** 0.012 
LC Dominance 0.799*** 0.130 0.722*** 0.154 
Departure Hours (Evening is the ref. case) 

Morning -0.011 0.027 -0.065 0.064 
Lunchtime -0.210*** 0.032 -0.251*** 0.054 
Afternoon -0.059** 0.029 -0.073** 0.032 

Departure Days (Saturday is the ref. case) 

Sunday 0.282*** 0.032 0.407*** 0.138 
Monday 0.545*** 0.033 0.562*** 0.039 
Tuesday 0.861*** 0.041 0.825*** 0.055 

Wednesday 0.851*** 0.041 0.810*** 0.059 
Thursday 0.906*** 0.038 0.906*** 0.038 

Friday 0.600*** 0.033 0.609*** 0.035 
Reservation Days (Saturday is the ref. case) 

Sunday 0.146*** 0.027 0.141*** 0.028 
Monday 1.541*** 0.032 1.535*** 0.033 
Tuesday 1.499*** 0.032 1.492*** 0.033 

Wednesday 1.501*** 0.033 1.492*** 0.034 
Thursday 1.403*** 0.033 1.395*** 0.034 

Friday 1.243*** 0.032 1.241*** 0.032 
Month (September is the ref. case) 

March -0.451*** 0.041 -0.539*** 0.103 
April -0.383*** 0.038 -0.386*** 0.038 
May -0.411*** 0.039 -0.436*** 0.047 
June -0.179*** 0.040 -0.222*** 0.061 
July 0.122*** 0.041 0.173** 0.069 

August -0.331*** 0.040 -0.332*** 0.04 
Advance -0.064*** 0.001 -0.064*** 0.002 
Constant 2.704*** 0.110 3.273*** 0.619  

Observations 66,716 66,716 
Adjusted R-squared 0.177 - 

F-statistic 311.39 264.35 
aEndogeneity diagnostic tests:  
Weak identification test Kleibergen-Paap rk Wald F statistic: 128.460 

Hansen J statistic overidentification test of all instruments: Equation exactly 

identified 

Notes: *** ,**, and * indicate statistical significance at the 1%, 5%, and 10% levels, 316 

respectively. Destination dummies are included in both models 317 

 318 
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After estimating using the two-stage least squares instrumental variable method, we compute 319 

the price elasticity of demand. Our results suggest that the elasticity at the mean price is below 320 

unity and is equal to -0.753, thus indicating that a 1% increase in the price generates a 0.8% 321 

decrease in the demand for air travel. Our findings highlight that in the case of a European low-322 

cost vector, easyJet, the price elasticity of demand is rigid during the period of March–323 

September 2015. Although LCCs are expected to face a more elastic demand (e.g. Mumbower 324 

et al. (2014) find an elasticity of -1.97 in the case of JetBlue,), we argue that the value below 325 

unity is for two reasons. First, easyJet more directly targets business passengers as compared 326 

to other LCCs by offering flexible fares and operating in primary airports (e.g. Mason, 2000; 327 

Papatheodorou & Lei, 2006). Second, the Amsterdam Schiphol airport is recognised to be an 328 

important hub for business affairs. 329 

Disentangling the mean value of the price elasticity across different dimensions 330 

(booking, flight, route, and season), we are able to better understand how demand changes as 331 

price changes under different conditions. Further, to better explore this phenomenon, we 332 

investigate variations across the booking, flight, and route dimensions when considering 333 

different seasons (spring and summer). 334 

 335 

4.2.1. Booking dimension 336 

We first observe how the price elasticity of demand varies according to the number of 337 

days in advance that the ticket is booked. Figure 3 depicts the elasticity values. As the departure 338 

date approaches, the price elasticity of demand ranges from -2.066 to a minimum of -0.638 four 339 

days before departure. Air travel demand dynamically changes from being elastic to being rigid 340 

between the 14th and 13th days before departure. This particular elasticity pace can be explained 341 

by considering that leisure and business passengers are likely to respond differently to price 342 

changes (Brons et al., 2002; Oum et al., 1992). It is indeed well known that business passengers 343 

are less price sensitive than leisure passengers (Alderighi et al., 2016; Granados et al., 2012a; 344 

Granados et al., 2012b) and that they are used to buying flight tickets only a few days before 345 

departure (Alderighi et al., 2016; Salanti et al., 2012). The increase in the proportion of business 346 

passengers over time is therefore one of the factors responsible for the decrease in the elasticity. 347 

This result is analogous to that of Mumbower et al. (2014): the elasticity increases as the 348 

departure day moves further away. 349 
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 350 

 351 

Figure 3. Price elasticity values by days in advance 352 

Notes: All elasticity values are significant at the <1% level 353 

The ANOVA F-statistic (43) is 26.76, significant at the <1% level 354 

 355 

Table 2 – Price elasticity values per booking day 356 

Elasticities over the Booking Dimension 

Booking Day 

Working Days -0.651 
Monday -0.613 
Tuesday -0.635 

Wednesday -0.641 
Thursday -0.666 

Friday -0.710 
Weekends -1.226 

Saturday -1.303 
Sunday -1.154 

ANOVA F-statistic (6) 126.59*** 
Notes: All elasticity values are significant at the <1% level 357 

 *** indicates statistical significance at the 1% level 358 

 359 

Similarly, we compute price elasticity changes according to the booking day of the week. As 360 

shown in Table 2, although it is below unity, the elasticity increases gradually from Mondays 361 

(-0.613) to Fridays (-0.710), whereas during weekends, passengers are significantly more price 362 

sensitive (the price elasticity of demand is -1.303 and -1.154 on Saturdays and Sundays, 363 

respectively). This result corroborates the argument that business passengers, who are known 364 
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to generally be less price sensitive, usually buy tickets during weekdays (Mantin & Koo, 2010), 365 

whereas leisure travellers, who are more price sensitive and have lower search costs, book their 366 

flights on the weekends (Mumbower et al., 2014). 367 

 368 

4.2.2. Flight dimension 369 

The price elasticity is also found to vary according to the departure day. As shown in 370 

Table 3, passengers seem to be price insensitive on weekdays, and they become more price 371 

sensitive on weekends, especially on Sundays (-1.131). This finding suggests that leisure 372 

passengers typically travel on weekends, whereas business travellers are more used to travelling 373 

on working days. The day of the week therefore represents one of the drivers used by LCCs to 374 

differentiate between business and leisure passengers and to suit their various willingness to 375 

pay (Salanti et al. 2012).  376 

 377 

Table 3 – Price elasticity values per departure day and departure hour 378 

Elasticities over the Flight Dimension 

Departure Day 

Working Days -0.642 
Monday -0.737 
Tuesday -0.553 

Wednesday -0.585 
Thursday -0.587 

Friday -0.697 
Weekends -1.054 

Saturday -0.927 
Sunday -1.131 

ANOVA F-statistic (6) 356.38*** 
Departure Hour 

Morning -0.628 
Lunchtime -0.911 
Afternoon -0.800 

Evening -0.762 
ANOVA F-statistic (3) 150.82*** 

Notes: All elasticity values are significant at the <1% level 379 

*** indicates statistical significance at the 1% level 380 

 381 

Furthermore, the price elasticity of demand changes according to the departure hour. In 382 

particular, even if the value is always below one, the demand is more elastic during lunchtime 383 

(-0.911), whereas the lowest value (-0.628) is found for morning hours (Table 3). This result 384 
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highlights that flights early in the morning are more business oriented (Alderighi et al., 2016; 385 

Borenstein & Netz, 1999). 386 

 387 

4.2.3. Route dimension 388 

Figure 4 shows how the price elasticity changes across flight destinations. This 389 

dimension is of particular interest, as demand not only changes in relation to time but also with 390 

respect to the location. Cities often have different elasticity values unless they are rarely 391 

computed (Oum et al., 1992). In fact, considering all 21 departure routes, the price elasticity 392 

varies from the most elastic value of -1.915 for Split (SPU) to the most rigid value of -0.535 for 393 

Hamburg (HAM). Understanding the price elasticity of demand on different routes may give 394 

an idea of whether they are primarily business or leisure. Routes such as Split (SPU), Lisbon 395 

(LIS), Prague (PRG), and Bristol (BRS) are more leisure passengers-oriented, as their 396 

elasticities (absolute value) are higher than one. Hamburg (HAM), Berlin (SXF), London 397 

(LGW, LTN, and STN), Milan (MXP), and Genève (GVA), on the other hand, are usually more 398 

business-oriented destinations (elasticity lower than 0.7 in absolute terms). Our results are also 399 

consistent with the findings of Salanti et al. (2012), who develop a ‘leisure index’ to disentangle 400 

business and leisure routes. This index is based on the idea that LCCs implement intertemporal 401 

price discrimination, as business travellers, who are known to have a higher willingness to pay 402 

compared to leisure travellers, generally reserve their seats later in time (Salanti et al., 2012). 403 

Routes where airlines aim to strongly implement such discrimination are found to experience 404 

an increase in fares in the last 15 days prior to departure that is more than proportional with 405 

respect to airfares over the entire booking period. On this basis, Salanti et al. (2012) introduce 406 

the ‘leisure index’ as: 407 

:� = ∑ (<=>?@,A,"B<=>=C,A,")A
D , with E ∈ � (7) 408 

where 
FBGH,� and 
FBFI,� are dynamic price indicators computed 90 and 15 days in advance, 409 

respectively, for each flight E on route J, based on the airfare formula in Malighetti et al. (2009, 410 

2010): 411 

���� = F
 KA" (FL<A"∙�) ,   (8) 412 

where ���� is the price for a seat offered t days in advance for flight i on route r and ��� is a 413 

constant parameter related to the average price level over the considered period. A low value 414 

of 
�� indicates a steady price trend over the booking period, whereas a high 
�� corresponds to 415 

a greatly significantly discounted fare on advance purchases. In detail, a highly negative leisure 416 

index :� means that, in the last days before departure, fares tend to be higher than what can be 417 
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expected given the overall trend, which suggests that during the last 15 days before departure, 418 

airlines aim to address consumers with a higher willingness to pay, i.e. business passengers 419 

(Salanti et al., 2012). Therefore, the more negative the leisure index, the more the route can be 420 

defined as a ‘business-oriented route’. 421 

Computing the same index, we find that the leisure index and the elasticity coefficient have a 422 

correlation value of 61%. As shown in Figure 4, all routes with higher elasticity values show a 423 

higher leisure index, with a few exceptions (e.g. Basel, Southend-on-Sea, and Genève). This 424 

result therefore corroborates our analysis showing that the level of the price elasticity can 425 

provide information on the different types of routes (business- or leisure- oriented). 426 

 427 

 428 

Figure 4 – Price elasticity value per route and the relative leisure index 429 

Notes: All elasticity values are significant at the <1% level 430 

 The ANOVA F-statistic (20) is 73.75, significant at the <1% level 431 

 432 

4.2.4. Seasonal dimension 433 

On a broader time scale, the price elasticity of air travel demand is found to vary by the 434 

month of departure. The price elasticity is indeed higher during the summer months (-0.770) 435 

and lower during springtime (-0.738). Deepening the focus at the month level (Table 4), the 436 

highest price elasticity occurs in the month of July (-0.809), followed by August (-0.798), May 437 

(-0.797), and April (-0.792). Despite outcomes find evidence of differences in price elasticity, 438 

there are no large variations across months. This result could be due to the fact that spring and 439 

summer are not opposite seasons, and they might both be characterized by vacation time.  440 
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Table 4– Price elasticity values per month 441 

Elasticities over the Seasonal Dimension 

Spring -0.738 

March -0.704 

April -0.792 

May -0.797 

June -0.677 

Summera -0.770 

July -0.809 

August -0.798 

September -0.670 
ANOVA  

F-statistic (6) 
36.89*** 

Note: All elasticity values are significant at the <1% level 442 

*** indicates statistical significance at the 1% level 443 

aSummer starts on 21 June 444 

 445 

Given the existing variations in the price elasticity of demand across different 446 

dimensions (booking, flight, and route) we additionally observe the nature of these changes 447 

during Spring (from 8 March to 20 June) and Summer (from 21 June to 23 September) to better 448 

clarify which dimensions drive price elasticity. The results in Table 5 show that different 449 

seasons have different impacts on price elasticity. Specifically, during the summer months, 450 

passengers are more sensitive to prices. This result is consistent across all dimensions. The price 451 

elasticity of passengers reserving flights departing during spring more than two weeks in 452 

advance have on average a 8% lower elasticity than consumers reserving the same number of 453 

days in advance during the summer. Notwithstanding the fact that the price elasticity of demand 454 

does not overcome the unity threshold on different reservation days between the two seasons, 455 

the summer has an elasticity that is generally 6% higher than that of the spring, with the 456 

minimum difference during the weekends (+4%) and the maximum occurring specifically on 457 

Fridays (+8%). Considering the departing hour, the demand is always inelastic in the period 458 

from March to half June, whereas from 21 June to September, passengers travelling from 10 459 

a.m. to 2 p.m. (i.e. non ‘business hours’) are highly price sensitive (-1.047). Furthermore, flights 460 

departing during the weekends have a 5% higher elasticity in the summer months, whereas the 461 

largest variations occur on Fridays (+9%) and Mondays (+8%). 462 

 463 
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Table 5 – Price elasticities by days in advance, booking day, departure day, and 464 

departure hour over the spring and summer seasons 465 

Elasticities over the Seasonal,  

Booking, and Flight Dimensions  
Spring Summer 

Booking Dimension 
Days in Advance 

1-5 days -0.647 -0.669 
6-10 days -0.651 -0.681 

11-15 days -0.823 -0.865 
>15 days -1.537 -1.665 

ANOVA F-Statistic (4) 221.51*** 
Booking Day 

Working Days -0.634 -0.674 
Monday -0.592 -0.639 
Tuesday -0.619 -0.651 

Wednesday -0.622 -0.661 
Thursday -0.645 -0.696 

Friday -0.689 -0.746 
Weekends -1.207 -1.252 

Saturday -1.277 -1.341 
Sunday -1.138 -1.175 

ANOVA F-Statistic (7) 125.34*** 
Flight Dimension 

Departure Day 

Working Days -0.692 -0.657 
Monday -0.710 -0.769 
Tuesday -0.565 -0.540 

Wednesday -0.565 -0.610 
Thursday -0.599 -0.570 

Friday -0.669 -0.732 
Weekends -1.030 -1.086 

Saturday -0.897 -0.967 
Sunday -1.111 -1.157 

ANOVA F-Statistic (7) 318.90*** 
Departure Hour 

Morning -0.697 -0.677 
Lunchtime -0.680 -1.047 
Afternoon -0.774 -0.836 

Evening -0.771 -0.751 
ANOVA F-Statistic (4) 86.17*** 

Note: All elasticity values are significant at the <1% level 466 

*** indicates statistical significance at the 1% level  467 
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Table 6 – Price elasticity values, routes, and number of flights over spring and summer 468 

Elasticities over the Route and Seasonal Dimensions 

Destination Spring Summer 

No. of 

Spring 

Flights 

No. of 

Summer 

Flights 

Flight 

variationsa  

BFS -0.812 -1.082 102 111 9% 
BOD -1.047 -0.779 92 93 1% 
BRS -1.089 -1.058 164 129 -21% 
BSL -0.784 -0.690 216 157 -27% 
EDI -0.717 -1.155 144 129 -10% 
FCO -0.838 -0.744 280 211 -25% 
GLA -0.692 -1.362 60 54 -10% 
GVA -0.712 -0.637 246 121 -51% 
HAM -0.632 -0.461 44 59 34% 
LGW -0.574 -0.577 484 425 -12% 
LIS -1.307 -1.263 45 40 -11% 
LPL -0.751 -0.737 199 172 -14% 
LTN -0.573 -0.585 366 328 -10% 
MAN -0.763 -0.777 187 175 -6% 
MXP -0.689 -0.648 384 287 -25% 
NCL -0.940  52  - 
PRG -1.326 -0.998 99 76 -23% 
SEN -0.730 -0.742 213 175 -18% 
SPU -0.978 -2.659 28 53 89% 
STN -0.648 -0.671 289 271 -6% 
SXF -0.557 -0.584 264 187 -29% 

ANOVA F-Statistic (21) 73.98*** 
Notes: All elasticity values are significant at the <1% level 469 

*** indicates statistical significance at the 1% level 470 

a Flight variations is computed as the percentage difference between the number of 471 

summer and spring flights 472 

 473 

With respect to the price elasticity of demand across different routes in different seasons, the 474 

elasticity values in Table 6 help in clarifying which routes can be considered as more business 475 

or more leisure oriented throughout the seasons. In particular, from the previous Figure 4, 476 

Bristol (BRS), Lisbon (LIS), Prague (PRG), and Split (SPU) are the most leisure-oriented routes 477 

in our sample. However, by looking at Table 6, only Bristol (BRS), and Lisbon (LIS) have 478 

elasticities greater than one during both the spring and summer months. The other destinations 479 

vary according to the season. Specifically, Bordeaux (BOD) and Prague (PRG) are 480 

characterized by highly price elastic passengers only during the springtime, whereas Belfast 481 

(BFS), Edinburgh (EDI), Glasgow (GLA), and Split (SPU) are characterized that way only 482 

during the summer. On the other hand, the remaining routes, such as Basel (BSL), Rome (FCO), 483 
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Genève (GVA), Hamburg (HAM), London (LGW, LTN, and STN), Liverpool (LPL), 484 

Manchester (MAN), Milan (MXP), Southend-on-Sea (SEN), and Berlin (SXF) can be defined 485 

as business-oriented routes since their elasticities are always below one. In order to avoid biased 486 

conclusions, we also check for variations in the number of flights per route in the two different 487 

seasons. Usually, the number of flights decreases by 18% during the summer. However, this 488 

decrease is mainly due to the closure of the Amsterdam-New Castle route and to the significant 489 

decrease in the number of flights for the Genève (GVA) route. Despite these variations, the 490 

number of flights remains almost the same between the two seasons. 491 

 492 

5. Conclusion 493 

Despite the importance of understanding the dynamics underpinning the price elasticity of 494 

demand in the air transport industry (Brons et al., 2002; Mumbower et al., 2014), only a few 495 

studies attempt to investigate this phenomenon, limiting their focus to the US context (e.g. 496 

Granados et al., 2012a; Granados et al., 2012b; Mumbower et al., 2014) and only examine a 497 

few dimensions across which the price elasticity of demand might vary (e.g. Mumbower et al., 498 

2014). This study contributes to past empirical assessments by showing how the price elasticity 499 

of demand can also vary across the route and seasonal dimensions in the low-cost carrier 500 

industry in Europe. For this purpose, we rely on an extensive dataset of reservations and fares 501 

offered online by easyJet for flights during the period 8 March–23 September 2015. 502 

Our results highlight that the overall price elasticity of demand is equal to -0.753, 503 

suggesting that easyJet targets a high proportion of business passengers. By deepening our 504 

analysis and looking at the booking, flight, route, and seasonal dimensions, we find that the 505 

response of demand to price changes is lower a few days before departure; during working 506 

days; in the morning, afternoon, and evening hours; during spring; and for certain routes (e.g. 507 

Hamburg-HAM, Berlin-SXF, London-LGW and LTN, and Milan-MXP). In contrast, the 508 

elasticity is greater than unity for the so-called ‘leisure-oriented routes’, such as Split (SPU), 509 

Lisbon (LIS), Prague (PRG), and Bristol (BRS); during weekends; and at lunchtime. Our 510 

findings are also confirmed when controlling for different seasons.  511 

These results shed light on the different price sensitivities of leisure and business 512 

passengers. In fact, demand is inelastic for reservations that occur only few days before 513 

departure and during working days. These are the typical reservation conditions for business 514 

passengers (Alderighi et al. 2016; Mantin & Koo, 2010; Salanti et al., 2012), who usually book 515 

flights departing in the morning or after lunchtime and from Mondays to Fridays, and for 516 
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specific business routes (Salanti et al., 2012). During the summer, when the number of leisure 517 

passengers increases, the price elasticity values are instead higher.  518 

To summarise, our work corroborates the general findings in the previous literature 519 

(Brons et al., 2002; Granados et al., 2012a; Granados et al., 2012b; Mumbower et al., 2014; 520 

Oum et al., 1992) by improving the analysis of the route and the seasonal dimensions and by 521 

focusing on the European context. In fact, even if the European and the US contexts have 522 

different features, the price elasticity variations in the European low-cost market are in 523 

accordance with those found in the US traditional (Brons et al., 2002; Granados et al., 2012a; 524 

Granados et al., 2012b) and low-cost (Mumbower et al., 2014) markets.  525 

Furthermore, the different price elasticity values found in our analysis have managerial 526 

policy implications for different stakeholders, namely airlines, passengers, and tourism 527 

managers. On the supply side, our results might help airlines in setting new strategies by 528 

forecasting the effect of a potential change in their flight offerings in terms of departure times, 529 

days, and also destinations. Moreover, knowing whether passengers are price sensitive on a 530 

certain reservation day, for a flight departing on a particular day, at a specific hour, or to a 531 

specific destination could be used by air carriers to better implement their price-discrimination 532 

strategies, as offering discounts or raising airfares slightly influences the number of booked 533 

seats by passengers in the case of a low price elasticity. On the demand side, elastic routes are 534 

more likely to be associated with decreasing prices as the date of flight approaches given that 535 

airlines may find it advantageous to offer temporary discounts to stimulate demand and recover 536 

their expected booked quantity. Therefore, passengers informed about the leisure-level or the 537 

elasticity characterizing a destination could act strategically by choosing the best booking 538 

timing in order to minimize the ticket price paid. Interestingly, our findings could also help 539 

tourist managers in meeting the willingness to pay of incoming travellers. Indeed, by knowing 540 

the variations in the price elasticities of tourists according to the purchasing time and origin, 541 

hotel managers and other service providers can implement dedicated price discrimination 542 

strategies, which can help in their profit maximisation under capacity constraints (e.g. 543 

Weatherford & Bodily, 1992). 544 

This study opens many avenues for future research. First, considering the plethora of 545 

easyJet flights departing from airports other than Amsterdam Schiphol, this analysis can be 546 

enriched by broadening the study to include new routes with a different business-leisure mix. 547 

Our findings indeed suggest that the price elasticity of demand changes across the different 548 

routes considered. Further, even if easyJet represents the European LCC framework well, our 549 

analysis could be corroborated by considering other European carriers. It is indeed well 550 
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recognised that each LCC has its own pricing strategy, with fares changing according to several 551 

factors, such as number of days in advance (e.g. Bergantino & Capozza, 2015; Dana, 1999; 552 

Salanti et al., 2012), flight characteristics (e.g. Alderighi et al., 2016; Salanti et al., 2012), and 553 

booking characteristics like the day of reservation (Mantin & Koo, 2010) or even the number 554 

of booked tickets (Cattaneo et al., 2016). Additionally, considering that intra-modal substitution 555 

plays an important role when analysing the price elasticity of demand (Brons et al., 2002), the 556 

work could be deepened by focusing on airports where two large LCCs operate 557 

contemporaneously. This analysis would enable the computation not only of the price elasticity 558 

of demand for a single airline but also of the cross-price elasticity, determining the 559 

consequences of price changes of LCC E on the demand variations of LCC M. Other 560 

improvements could be carried out by enlarging the sample, both in terms of time and 561 

distribution channels. As confirmed by our elasticity results (-0.738 and -0.770 during spring 562 

and summer, respectively), March-September spans two seasons that are not as different as the 563 

winter and the summer seasons are. Expanding the time period would mean analysing 564 

consumers with clearly different characteristics that can influence the price elasticities of 565 

demand over several dimensions. Further, as demonstrated by Granados et al. (2012b), 566 

passengers booking airfares through different reservation channels have different price 567 

sensitivities. In this sense, a comparative study across channels would shed light on the booking 568 

preferences of business and leisure travellers. 569 

570 
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