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The gravity anomaly of a 2D polygonal body having density
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Abstract An analytical solution is presented for the gravity anomaly produced by a 2D
body whose geometrical shape is arbitrary and where the density contrast is a polynomial
function in both the horizontal and vertical directions. Approximating the real shape of the
body by a polygon, the solution is expressed as sum of algebraic quantities which depend
only upon the coordinates of the vertices of the polygon and upon the polynomial density
function. The solution presented in the paper, which refers to a third-order polynomial func-
tion as a maximum, exhibits an intrinsic symmetry which naturally suggests its extension to
the case of higher-order polynomials describing the density contrast. Furthermore, the grav-
ity anomaly is evaluated at an arbitrary point which does not necessarily coincides with the
origin of the reference frame in which the density function is assigned. Invoking recent re-
sults of potential theory, the solution derived in the paper is shown to be singularity-free and
numerically robust. The accuracy and effectiveness of the proposed approach is witnessed
by the numerical comparisons with examples derived from the existing literature.

Keywords Gravity anomaly · 2D bodies · polynomial density contrast · Singularity

1 Introduction

The gravity anomaly of a region represents a basic set of geophysical data for the investiga-
tion of the subsurface density both in forward modelling and inversion (Jacoby and Smilde,
2009). For this reason it is highly beneficial to dispose of analytical solutions of the gravity
anomaly associated with a body characterized by complex density distributions. Due to the
mathematical complexity of the problem, the gravity anomaly of an irregular body whose
density contrast is spatially variable has been first computed by approximating the body as
a collection of vertical rectangular parallelepipeds (prisms) in which the density is assumed
to be constant. Hence, the gravity anomaly for the whole body is computed as algebraic
sum of the contribution of all vertical prisms at appropriate depths and distances from the
observation point.
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Numerical computations were first carried out by Talwani et al (1959) and Bott (1960).
Closed form expressions of the gravity anomaly were subsequently derived by Nagy (1966),
Banerjee and DasGupta (1977), Cady (1980), Nagy et al (2000), Tsoulis (2000), Jiancheng
and Wenbin (2010), D’Urso (2012), see also Plouff (1975, 1976), Won and Bevis (1987),
Montana et al (1992) for computer codes. The case of spheroidal shell has been addressed
by Johnson and Litehiser (1972). Analytical expressions of the gravity anomaly for prisms
have been derived by D’Urso (2015b), for a linearly varying density, by Rao (1985, 1986,
1990), Rao et al (1994), Gallardo-Delgado et al (2003) for a quadratic density contrast, by
Garcı́a-Abdeslem (1992, 2005a), when the density varies with depth according to a cubic
law. Non-polynomial density-contrast models have been considered by Cordell (1973), Chai
and Hinze (1988), Litinsky (1989), Silva et al (2006), Chappell and Kusznir (2008),. For
more complicated forms of the density contrast, see, e.g., Cai and Wang (2005) and Mostafa
(2008).

The previous contributions are characterized by simple geometric modelling, i.e. the use
of prisms, and refined modelling of the density contrast. A different approach is based on
the use of polyhedra, to avoid the necessity of subdividing the region of interest in several
prisms, countervailed by a simple description of density contrast. Analytical formulas for
the gravimetric analysis of polyhedra having constant density have been contributed by Paul
(1974), Barnett (1976), Strakhov (1978), Waldvogel (1979), Golizdra (1981), Strakhov et al
(1986), Pohanka (1988), Kwok (1991b), Werner (1994), Holstein and Ketteridge (1996),
Petrović (1996), Werner and Scheeres (1997), Li and Chouteau (1998), Tsoulis (2012),
D’Urso (2013a). Subsequent advancements have been only concerned with a linear density
variation, (Pohanka, 1998; Hansen, 1999; Holstein, 2003; Hamayun et al, 2009; D’Urso,
2014b); actually, handling more complex density functions in conjunction with polyhedral
models considerably increases the difficulties of the treatment, especially if analytical solu-
tions are looked for.

As a matter of fact the interest in modelling gravity data using non-uniform density
contrast is associated with the geological and economic relevance of sedimentary basins.
Actually, the sediment thickness and bedrock topography are important parameters in mod-
elling groundwater flow, petroleum exploration, geotectonic investigations and ground mo-
tion amplification during an earthquake (Jacoby and Smilde, 2009; Aydemir et al, 2014).
The geologic evaluation of sedimentary basins can be quite complex so that the kind of
function describing the density contrast significantly differs from case to case. For instance,
if simple differential compaction is assumed to be the main diagenetic process in the eval-
uation of a sedimentary basin, geologically meaningful results are obtained by using an
exponentially increasing density with depth. However, if more complex geological process
come into play, such as nonuniform stratigraphic layering, facies changes etc., more general
variations of density need to be taken into account.

Independently from the kind of function assumed to define the density contrast, density
can be assumed to vary, separately or jointly, along the vertical and horizontal directions.
For instance, variations of density can be either arbitrary in the horizontal direction and of
polynomial type in the vertical one, or with an interchanged functional dependence. This
last case does occur in dipping layered intrusions or sedimentary beds in which an arbitrary
density function is assumed along depth and a polynomial function is considered in the
horizontal direction. Furthermore, complicated density functions can be associated with 3D
modelling based on prisms, (Murthy and Rao, 1979; Rao et al, 1990; Chakravarthi et al,
2002; Chakravarthi and Sundararajan, 2007; Zhou, 2009b), or with 2D geometrical shapes,
(Gendzwill, 1970; Murthy and Rao, 1979; Pan, 1989; Guspı́, 1990; Ruotoistenmäki, 1992;
Martı́n-Atienza and Garcı́a-Abdeslem, 1999; Zhang et al, 2001; Zhou, 2008, 2009a, 2010).
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Actually, this last geometrical assumption, which characterizes domains having a cylindrical
shape, significantly simplifies the mathematical treatment of the problem.

The derivation of analytical expressions for the gravity anomaly has not yet been achieved,
even in presence of two-dimensional domains, for bodies characterized by a complicated
density contrast, so that numerical methods have been resorted to. Specifically, starting from
the first researches on the subject (Hubbert, 1948), all authors have systematically trans-
formed the original domain integrals into integrals of lower dimension in order to simplify
the adoption of quadrature rules for the numerical evaluation of the gravity anomaly.

For 2D bodies, which are the object of the present paper, Zhou (2008) converted the
original domain integral for gravity anomaly to a Line Integral (LI) by using Stokes theo-
rem. In particular he derived two types of LIs for computing the gravity anomaly of bodies
having density contrast depending only on depth. In a subsequent paper (Zhou, 2009a) the
author extended his method to account for density contrast functions which depended not
only on depth but also on horizontal or, jointly, on horizontal and vertical directions. The
original approach by Zhou has been further improved in Zhou (2010) to evaluate the gravity
anomaly at observation points different from the origin since, historically, gravity anomaly
was computed only at the origin of the reference frame. Furthermore, Zhou dealt with the
singularity of the gravity anomaly arising where the observation point is coincident with the
vertices of the integration domain, an issue already discussed in Kwok (1991a), for prism-
based modelling, and Tsoulis and Petrović (2001) for polyhedra.

Aim of this paper is to derive an analytical expression of the gravity anomaly for polyg-
onal bodies whose density contrast is expressed as a polynomial function of arbitrary degree
in both the horizontal and vertical directions. The result is obtained by reducing the original
domain integral to a boundary integral by virtue of the generalized Gauss theorem first pre-
sented in D’Urso (2012, 2013a), and subsequently applied to several problems ranging from
geodesy, (D’Urso, 2014a,b, 2015b; D’Urso and Trotta, 2015c), to geomechanics, (Sessa
and D’Urso, 2013; D’Urso and Marmo, 2015a; Marmo and Rosati, 2015), to geophysics
(D’Urso and Marmo, 2013b) and to heat transfer (Rosati and Marmo, 2014). The general-
ized Gauss theorem referred to above does allow one not only to derive an expression of the
gravity anomaly which is expressed in terms of a boundary integral but also to prove that
the singularity of the gravity anomaly, arising when the observation point does belong to the
integration domain, is eliminable.

For a polygonal domain Ω of n sides the expression of the gravity anomaly in terms
of boundary integral is further specialized to the sum of n 1D integrals. Differently from
previous contributions on the subject, such 1D integrals are not numerically evaluated but
expressed analytically as a function of the position vectors defining the vertices of the in-
tegration domain and of scalar quantities Iki defined on each side. In turn the quantities Iki,
pertaining to i-th edge of the boundary of Ω, are analytically computed by evaluating an
integral of real variable which can exhibit a singularity when the edge does belong to a line
containing the observation point. However, it is proved that such a singularity produces a
null contribution of the i-th edge to the general expression of gravity anomaly; hence, one
can conclude that the derived expression is singularity-free.

By exploiting a suitable change of variables, we also derive an enhanced algebraic for-
mula which expresses the gravity anomaly at an arbitrary point P and specializes to the
ordinary one when P = O. Remarkably, the enhanced expression of the gravity anomaly
has been derived without any modification of the density contrast function since this is still
defined in the original reference frame. The enhanced formula has been implemented in a
Matlab code and its accuracy and robustness has been assessed by numerical comparisons
with examples derived from the literature.
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Fig. 1 Polygonal domain Ω and geometric quantities of the i-th edge

2 Gravity anomaly of a 2D body at the origin O of the reference frame

It is well known that the gravitation exerted by a 3D body Ω̂ on a unit mass at O is given by

g(O) = G
∫
Ω̂

∆ρ(r)r
(r · r)3/2 dV (1)

where G is the gravitational constant, r the position vector pointing from O to an arbitrary
point of Ω̂ and ∆ρ(r) the density contrast at r. Hence, ∆ρ(r)dV(r) represents the infinitesimal
difference between the mass at r and the background. We are interested to two-dimensional
problems so that we shall denote by Ω the section of Ω̂ in the vertical plane and consider the
reference frame sketched in fig. 1.

The vertical component gz of gravitation at O is given by

gz(O) = G
∫
Ω̂

∆ρ(r)r ·k
(r · r)3/2 dV (2)

where k is the unit vector directed downwards. Being Ω̂ infinite in the y-direction and as-
suming that the density contrast ∆ρ is independent from y, the previous integration can be
carried out between two symmetric ordinates ±dy, with dy→∞. Accordingly, one obtains

gz(0,0) = G
∫
Ω

[
lim

dy→∞

dy∫
−dy

∆ρ(x,z)r ·k
(r · r)3/2 dy

]
dxdz =

∫
Ω

∆ρ(x,z)z
x2 + z2 dA (3)

This the general form of the 2D integral for calculating the gravity anomaly at O produced
by a distribution of 2D masses having a density contrast ∆ρ with respect to the background.
Actually, the gravity anomaly is defined as the line integral of the components of the 2D
vector gravitation along the boundary of a mass body.
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The computation of the integral in (3) is complicated by the fact that, due to geological
and geochemical processes, the density contrast distribution within Ω can be arbitrary. A
quite general expression for ∆ρ, able to accommodate a large variety of geological forma-
tions, is given by a double polynomial in x and z, (Zhang et al, 2001; Zhou, 2008, 2009a,
2010)

∆ρ(x,z) = θ(x,z) =

Nx∑
i=0

Nz∑
j=0

ci jxiz j (4)

where Nx and Nz represent the maximum power of the polynomial density variation along x
and z respectively.

The scalars ci j represent the coefficients of the polynomial law; they can be estimated
from the known data points by a least-square approach (Jacoby and Smilde (2009)). In the
sequel we shall confine the treatment to case

Nx + Nz = 3 (5)

since this will suffice to address the majority of the numerical examples previously con-
sidered in the literature and, at the same time, to present our formulation at a degree of
generality sufficient to be generalized to the cases Nx + Nz > 3.

To simplify the ensuing developments it is convenient to introduce the two-dimensional
vectors ρ = (x,z) and κz(0,1). In this way the previous relation can be written as

gz(o) = 2G
∫
Ω

θ(ρ)(ρ ·κz)
ρ ·ρ

dA (6)

and our objective is to prove that the previous integral can be expressed as a line integral
extended to the boundary ∂Ω of Ω. Paralleling an analogous treatment developed in D’Urso
and Marmo (2013b), we first reformulate the general expression (4) of the density contrast
by writing

θ(ρ) = θo + c ·ρ+ C ·Dρρ +� ·�ρρρ (7)

where θo is a scalar, c is a vector, C and Dρρ are symmetric second-order tensors, � and
�ρρρ are third-order tensors; furthermore, it has been set

Dρρ = ρ⊗ρ �ρρρ = ρ⊗ρ⊗ρ (8)

The second-order (rank-two) tensor ρ⊗ρ has the following matrix representation

[ρ⊗ρ] =

[
x2 xz
xz z2

]
(9)

so that, being:
C · (ρ⊗ρ) = C11x2 + 2C12xz +C22z2 (10)

a quadratic distribution of density can be assigned by suitably defining the coefficients of the
symmetric tensor C. Analogously, the third-order tensors � and ρ⊗ρ⊗ρ, are represented in
matrix form as:

� =


C111 C112
C121 C122
C211 C212
C221 C222

 ρ⊗ (ρ⊗ρ) =


x
[

x2 xz
xz z2

]
z
[

x2 xz
xz z2

]
 (11)
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i.e. as vectors of rank-two tensors. Being

� · (ρ⊗ρ⊗ρ) = C111x3 + (C112 +C121 +C211)x2z+

+(C122 +C212 +C221)xz2 +C222z3
(12)

the representation (4) of the density contrast is recovered from (7) by setting

θo = c00 c1 = c10 c2 = c01

C11 = c20 C22 = c02 C12 = c11/2
(13)

and
C111 = c30 C222 = c03 (14)

C112 = C121 = C211 = c21/3 C122 = C212 = C221 = c12/3 (15)

In conclusion, we derive from (6) the following expression of the gravity anomaly

gz(o) = 2G
[
θodΩρ + c ·dΩρ + C ·DΩ

ρρ +� ·�Ω
ρρρ

]
(16)

where

dΩρ =

∫
Ω

ρ ·κz

ρ ·ρ
dA dΩρ =

∫
Ω

(ρ ·κz)ρ
ρ ·ρ

dA (17)

and

DΩ
ρρ =

∫
Ω

(ρ ·κz)ρ⊗ρ
ρ ·ρ

dA �
Ω
ρρρ =

∫
Ω

(ρ ·κz)ρ⊗ρ⊗ρ
ρ ·ρ

dA (18)

In order to transform the previous domain integrals into boundary integrals we apply Gauss
theorem in the generalized form illustrated in D’Urso (2013a, 2014a). In this way the singu-
larity at ρ = o of the four domain integrals can be correctly taken into account.

2.1 Analytical expression of the gravity anomaly at O in terms of boundary integral

Let us now illustrate a general approach to express the 2D integrals in (16) as 1D integrals
extended to the boundary of Ω. Generality lies in the fact that, owing to the symmetry of the
integrals, application of Gauss theorem can be based upon a unique formula. Actually, we
are going to prove the general formula∫

Ω

ιρ[⊗ρ,m]
ρ ·ρ

dA =
1

m + 1

∫
∂Ω

ιρ[⊗ρ,m](ρ ·ν)
ρ ·ρ

ds m = 0,1, . . . (19)

where ιρ = ρ ·κz, ν is the 2D outward unit normal to ∂Ω and [⊗ρ,m] denotes a rank-m tensor
defined by

[⊗ρ,m] =



1 if m = 0
ρ if m = 1
ρ⊗ρ if m = 2
. . . . . . . . . . . . . . . . . . . . .
ρ⊗ρ⊗ · · ·⊗ρ︸          ︷︷          ︸

m times

if m > 2

(20)
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To fix the ideas we shall prove the identity (19) for m = 2∫
Ω

ιρρ⊗ρ

ρ ·ρ
dA =

1
3

∫
∂Ω

ιρ(ρ⊗ρ)νρ
ρ ·ρ

ds (21)

since it allows us to illustrate our approach to a degree of generality sufficient to extend the
final result to all integrals in (16) and to the additional ones, not reported in (16), containing
tensors of rank superior to three, i.e. tensors of the kind [⊗ρ,m] where m> 3. In the following
we shall make use of some differential identities which are collected in Appendix A in order
to not divert the reader from the main stream of our derivation.

Let us consider the following identity involving the divergence of a rank-three tensor.

div
[
ιρ(ρ⊗ρ)⊗

ρ

ρ ·ρ

]
=

[
(ρ⊗ρ)⊗

ρ

ρ ·ρ

]
grad ιρ + ιρ

[
(gradρ)

ρ

ρ ·ρ

]
⊗ρ+

+ιρρ⊗
[
(gradρ)

ρ

ρ ·ρ

]
+ ιρ(ρ⊗ρ)div

ρ

ρ ·ρ

(22)

which stems from the identity (119) of Appendix A. Furthermore, application of the identity
(120) provides

grad ιρ = grad(ρ ·κz) = (gradρ)tκz = κz (23)

since κz is a constant vector field and gradρ = I where I is the rank-two identity tensor.
Substituting the previous relation in (22) one obtains

div
[
ιρ(ρ⊗ρ)⊗

ρ

ρ ·ρ

]
=

[
(ρ⊗ρ)⊗

ρ

ρ ·ρ

]
κz + ιρ

[ ρ

ρ ·ρ
⊗ρ+ρ⊗

ρ

ρ ·ρ

]
+

+ιρ(ρ⊗ρ)div
ρ

ρ ·ρ
=

= 3ιρ
ρ⊗ρ

ρ ·ρ
+ ιρ(ρ⊗ρ)div

ρ

ρ ·ρ

(24)

Finally, integrating the previous identity over Ω yields∫
Ω

ιρ
ρ⊗ρ

ρ ·ρ
dA =

1
3

∫
Ω

div
[
ιρ(ρ⊗ρ)⊗

ρ

ρ ·ρ

]
dA−

1
3

∫
Ω

ιρ(ρ⊗ρ)div
ρ

ρ ·ρ
dA (25)

The second integral on the right-hand side can be computed by means of the general
result (Tang, 2006) ∫

F

ϕ(ρ)div
[ ρ

ρ ·ρ

]
dA =

 0 if o < F

α(o)ϕ(o) if o ∈ F
(26)

where ϕ is a scalar function and F denotes an arbitrary 2D domain. The previous expression
can be extended to arbitrary tensors by applying it to each scalar component of the tensor.
Furthermore, the quantity α represents the angular measure, expressed in radians, of the
intersection between F and a circular neighbourhood of the singularity point ρ = o, see
D’Urso (2012, 2013a, 2014a) for additional details. Although its computation is not required
in the ensuing developments, we specify for completeness that α can be computed by means
of the general algorithm detailed in D’Urso and Russo (2002).
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On account of (26) one infers that the second integral on the right-hand side of (25) is
the null rank-two tensor O since∫

Ω

ιρ(ρ⊗ρ)div
ρ

ρ ·ρ
dA =

O if o < Ω

[ιρρ⊗ρ]ρ=oα(o) if o ∈ Ω
(27)

However, the expression [ιρ(ρ⊗ ρ)]ρ=o amounts to evaluating the quantity ιρ(ρ⊗ ρ) at the
singularity point ρ = o, what yields trivially the null tensor O. Hence, according to (27), the
last integral in (25) is always the null tensor, independently from the position of singularity
point ρ = o with respect to the domain Ω of integration. In conclusion, upon application of
Gauss theorem to the second integral in (25), we finally infer the identity (21). Remarkably,
the derivation of this identity has also allowed us to prove that the singularity at ρ = o, of the
integrand function appearing on the left-hand side of (21), can be actually ignored.

Furthermore, it is not difficult to rephrase the path of reasoning detailed in formulas
(22)-(27) so as to prove the more general formula (19). Hence, defining

d∂Ωρ =

∫
∂Ω

(ρ ·κz)(ρ ·ν)
ρ ·ρ

ds d∂Ωρ =

∫
∂Ω

(ρ ·κz)ρ (ρ ·ν)
ρ ·ρ

ds (28)

D∂Ω
ρρ =

∫
∂Ω

(ρ ·κz)ρ⊗ρ (ρ ·ν)
ρ ·ρ

ds �
∂Ω
ρρρ =

∫
∂Ω

(ρ ·κz)ρ⊗ρ⊗ρ (ρ ·ν)
ρ ·ρ

ds (29)

one has, recalling definitions (17)-(18)

dΩρ = d∂Ωρ dΩρ =
d∂Ωρ

2
DΩ
ρρ =

D∂Ω
ρρ

3
�
Ω
ρρρ =

�∂Ω
ρρρ

4
(30)

In conclusion, application of formula (19) to (16) yields

gz(o) = 2G
[
θod∂Ωρ +

c ·d∂Ωρ
2

+
C ·D∂Ω

ρρ

3
+
� ·�∂Ω

ρρρ

4

]
(31)

a formula that will be specialized to the case of polygonal domains in the next subsection.

2.2 Algebraic expression of the gravity anomaly at O

In order to derive an algebraic expression suitable to be programmed we specialize formula
(31) to the case of a polygonal domain Ω. Actually, this is by far the most common case
since geological formations are either polygonal or can be approximated to polygons by
subdividing the real boundary by an arbitrary number of vertices and edges. Once again, in
order to illustrate the rationale of our derivation, we shall make reference to formula (21).
In particular, denoting by n the common number of vertices and edges belonging to ∂Ω (see
Fig. 1), formula (21) specializes to∫

Ω

ιρρ⊗ρ

ρ ·ρ
dA =

1
3

n∑
i=1

∫
∂iΩ

[ρ(si) ·κz][ρ(si)⊗ρ(si)][ρ(si) ·ν(si)]
ρ(si) ·ρ(si)

dsi (32)

where si is the curvilinear abscissa along the i-th edge ∂iΩ of the boundary of Ω.
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The edge ∂iΩ connects the vertices ρi and ρi+1, see, e.g., fig. 1, and it will be assumed
that, along each edge, the relevant curvilinear abscissa has its origin at the i-th vertex. Being
the product ρ(si) ·ν(si) constant along each side, formula (32) becomes∫

Ω

ιρDρρ

ρ ·ρ
dA =

1
3

n∑
i=1

ρi ·νi

∫
∂iΩ

[ρ(si) ·κz][ρ(si)⊗ρ(si)]
ρ(si) ·ρ(si)

dsi (33)

where νi is the outward unit normal to the i-th edge. Assuming a counter-clockwise cir-
culation sense along ∂iΩ and denoting by li = |ρi+1 − ρi| the length of the i-th edge, it
turns out νi = (ρi+1 − ρi)

⊥/li where (·)⊥ denotes a clockwise rotation of (·). In particular,
ρi ·νi = ρi ·ρ

⊥
i+1/li where ρ⊥i+1 = (zi+1,−xi+1), (D’Urso, 2013a).

Introducing in (32) the adimensional abscissa λi = si/li we finally get

∫
Ω

ιρDρρ

ρ ·ρ
dA =

1
3

n∑
i=1

ρi ·ρ
⊥
i+1

1∫
0

[ρ(λi) ·κz][ρ(λi)⊗ρ(λi)]
ρ(λi) ·ρ(λi)

dλi (34)

which represents the starting point to derive the basic formulas useful for programming.
Actually, defining

d∂iΩ
ρ =

1∫
0

ρ(λi) ·κz

ρ(λi) ·ρ(λi)
dλi d∂iΩ

ρ =

1∫
0

[ρ(λi) ·κz]ρ(λi)
ρ(λi) ·ρ(λi)

dλi (35)

D∂iΩ
ρρ =

1∫
0

[ρ(λi) ·κz]ρ(λi)⊗ρ(λi)
ρ(λi) ·ρ(λi)

dλi (36)

�
∂iΩ
ρρρ =

1∫
0

[ρ(λi) ·κz]ρ(λi)⊗ρ(λi)⊗ρ(λi)
ρ(λi) ·ρ(λi)

dλi (37)

we can express the integrals (28)-(29) as

d∂Ωρ =

n∑
i=1

(ρi ·νi)lid
∂iΩ
ρ d∂Ωρ =

n∑
i=1

(ρi ·νi)lid∂iΩ
ρ (38)

D∂Ω
ρρ =

n∑
i=1

(ρi ·νi)liD∂iΩ
ρρ �

∂Ω
ρρρ =

n∑
i=1

(ρi ·νi)li�
∂iΩ
ρρρ (39)

Accordingly, formula (31) of the gravity anomaly specializes as follows

gz(o) = 2G
n∑

i=1

(ρi ·ρ
⊥
i+1)

{
θod∂iΩ

ρ +
c ·d∂iΩ

ρ

2
+

C ·D∂iΩ
ρρ

3
+
� ·�

∂iΩ
ρρρ

4

}
(40)

The previous integrals can be evaluated analytically by introducing the following pa-
rameterization of the i-th edge

ρ(λi) = ρi +λi(ρi+1 −ρi) = ρi +λi∆ρi (41)
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In this way one has

ρ(λi) ·κz = (ρi ·κz) +λi(∆ρi ·κz) = ai + biλi (42)

and
ρ(λi) ·ρ(λi) = piλ

2
i + 2qiλi + ui (43)

where
pi = ∆ρi ·∆ρi qi = ρi ·∆ρi ui = ρi ·ρi (44)

Furthermore

ρ(λi)⊗ρ(λi) = ρi ⊗ρi +λi(ρi ⊗∆ρi +∆ρi ⊗ρi) +λ2
i ∆ρi ⊗∆ρi =

= Dρiρi +λiDρi∆ρi +λ2
i D∆ρi∆ρi

(45)

Analogously, setting

�ρiρiρi = ρi ⊗ρi ⊗ρi �ρiρi∆ρi = ρi ⊗ρi ⊗∆ρi +ρi ⊗∆ρi ⊗ρi +∆ρi ⊗ρi ⊗ρi (46)

�ρi∆ρi∆ρi = ρi ⊗∆ρi ⊗∆ρi +∆ρi ⊗ρi ⊗∆ρi +∆ρi ⊗∆ρi ⊗ρi (47)

�∆ρi∆ρi∆ρi = ∆ρi ⊗∆ρi ⊗∆ρi (48)

one has

ρ(λi)⊗ρ(λi)⊗ρ(λi) =�ρiρiρi +λi�ρiρi∆ρi +λ2
i�ρi∆ρi∆ρi +λ3

i�∆ρi∆ρi∆ρi (49)

Thus, defining

f (λi) =
ai + biλi

piλ
2
i + 2qiλi + ui

(50)

formula (40) specializes to

gz(o) = 2G
n∑

i=1

(ρi ·ρ
⊥
i+1)

{
θo

1∫
0

f (λi)dλi +
c
2
·

1∫
0

f (λi)(ρi +λi∆ρi)dλi+

+
C
3
·

1∫
0

f (λi)
[
Dρiρi +λiDρi∆ρi +λ2

i D∆ρi∆ρi

]
dλi+

+
�

4
·

1∫
0

f (λi)
[
�ρiρiρi +λi�ρiρi∆ρi +λ2

i �ρi∆ρi∆ρi +λ3
i �∆ρi∆ρi∆ρi

]
dλi

}
(51)

Grouping together the quantities multiplying the same exponent of λi and setting

θO
ρi

=
c ·ρi

2
+

C ·Dρiρi

3
+
� ·�ρiρiρi

4
(52)

θO
∆ρi

=
c ·∆ρi

2
+

C ·Dρi∆ρi

3
+
� ·�ρiρi∆ρi

4
(53)
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θO
∆ρi∆ρi

=
C ·D∆ρi∆ρi

3
+
� ·�ρi∆ρi∆ρi

4
(54)

θO
∆ρi∆ρi∆ρi

=
� ·�∆ρi∆ρi∆ρi

4
(55)

formula (40) becomes

gz(o) = 2G
n∑

i=1

(ρi ·ρ
⊥
i+1)

{
I0i

[
ai(θo + θO

ρi
)
]
+ I1i

[
aiθ

O
∆ρi

+ biθ
O
ρi

]
+

+I2i
[
aiθ

O
∆ρi∆ρi

+ biθ
O
∆ρi

]
+ I3i

[
aiθ

O
∆ρi∆ρi∆ρi

+ biθ
O
∆ρi∆ρi

]
+ I4ibiθ

O
∆ρi∆ρi∆ρi

} (56)

where

Iki =

1∫
0

λk
i

piλ
2
i + 2qiλi + ui

dλi (57)

θo is defined in (13), ai,bi in (42), θO
ρi

-θO
∆ρi

-θO
∆ρi∆ρi

- θO
∆ρi∆ρi∆ρi

in (52)-(55).
The actual computation of the integrals Iki will be detailed in section 4. In particular,

singuarities in their expression, due to the vanishing of the denominator in (57), will be
proved to be ineffective. Hence, formula (56) is singularity-free in the sense that, for edges
characterized by singularities of the integrals Iki, the whole addend of the sum is zero.

3 Gravity anomaly of a 2D body at an arbitrary point P

Gravity anomaly calculations at an observation point which does not coincide with the ori-
gin of the reference frame have been first addressed by Zhou (2010). Specifically, the author
devised two alternative formulations: the first one, named Coordinate Transformation, was
conceived so as to make the observation point as the origin of the new coordinate system
and employing the solution obtained by the author in Zhang et al (2001) and Zhou (2009a).
Clearly, this approach requires to express the density contrast as function of the new coordi-
nates. In the second formulation proposed by Zhou (2010), named Solution Transformation,
the solution at an arbitrary point is extrapolated from that obtained at the origin of the refer-
ence frame.

On the contrary, denoting by ω = (xP,zP) the position vector of an arbitrary point P, we
show that the approach illustrated in the previous section, as well as the function expressing
the density contrast, can be left unchanged provided that one introduces the vector

ρ = σ−ω (58)

defining the relative position of the generic point σ = (x,z) of Ω with respect to P, see, e.g.,
fig. 2. Hence the gravity anomaly at P is given by

gz(P) = gz(ω) = 2G
∫
Ω

θ(σ)(ρ ·κz)
ρ ·ρ

dA (59)
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Fig. 2 Representation of geometric quantities used to assign density contrast (σ) and define the position of
Ω with respect to an arbitray point P

an expression which trivially specializes to (6) whenever ω = o. On account of (7) the pre-
vious expression becomes

gz(ω) = 2G
{
θo

∫
Ω

ιρ

ρ ·ρ
dA + c ·

∫
Ω

ιρσ

ρ ·ρ
dA + C ·

∫
Ω

ιρDσσ

ρ ·ρ
dA +� ·

∫
Ω

ιρ�σσσ

ρ ·ρ
dA

}
(60)

where Dσσ and �σσσ are defined as in (8).
To exploit the results illustrated in the previous section, it is convenient to express σ as

function of ρ. For brevity this is detailed only for the rank-three tensor �σσσ since it is the
more cumbersome to handle. In particular, recalling (58), one has

�σσσ = σ⊗σ⊗σ = (ρ+ω)⊗ (ρ+ω)⊗ (ρ+ω) =

= �ρρρ +�ρρω +�ωωρ +�ωωω

(61)

where �ωωω = ω⊗ω⊗ω,

�ρρω = ρ⊗ρ⊗ω+ρ⊗ω⊗ρ+ω⊗ρ⊗ρ (62)

and
�ωωρ = ω⊗ω⊗ρ+ω⊗ρ⊗ω+ρ⊗ω⊗ω =

= Dωω ⊗ρ+ω⊗ρ⊗ω+ρ⊗Dωω

(63)

Hence, (60) becomes

gz(ω) = 2G
{
[θo + c ·ω+ C ·Dωω +� ·�ωωω]dΩρ + c ·dΩρ+

+C · [dΩρ ⊗ω+ω⊗dΩρ + DΩ
ρρ] +� · [Dωω ⊗dΩρ +ω⊗dΩρ ⊗ω+ dΩρ ⊗Dωω]+

+� · [DΩ
ρρ ⊗ω+ dΩρ ⊗ω⊗dΩρ +ω⊗DΩ

ρρ] +� ·�Ω
ρρρ

} (64)
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which represents the generalization of (16) to the case ω , o.
Special attention has to be paid to the symbol dΩρ ⊗ω⊗dΩρ which is a shorthand to denote

the third-order tensor

dΩρ ⊗ω⊗dΩρ =

∫
Ω

(ρ ·κz)ρ⊗ω⊗ρ
ρ ·ρ

dA (65)

In spite of its symbol, which has been adopted to emphasize its symmetric expression, the
tensor above cannot be obtained as triple tensor product of the vectors dΩρ and ω. Rather,
as detailed in subsection 3.3, it is conveniently computed starting from the rank-two tensor
DΩ
ρρ. For sake of clarity, and to parallel the treatment developed in the previous section, we

shall consider separately the analytical expression of the gravity attraction at an arbitrary
point P and its algebraic counterpart, i.e. the formula useful for programming.

3.1 Analytical expression of the gravity anomaly at an arbitrary point P in terms of
boundary integral

Although ρ is now defined from (58) it can be shown that formula (19) holds as well. Thus,
recalling (30) and setting

θω = c ·ω+ C ·Dωω +� ·�ωωω (66)

formula (64) specializes to

gz(ω) = 2G
{
(θo + θω)d∂Ωρ +

c ·d∂Ωρ
2

+ C · [
d∂Ωρ

2
⊗ω+ω⊗

d∂Ωρ
2

+
D∂Ω
ρρ

3
]+

+� ·
[1
2

(
Dωω ⊗d∂Ωρ +ω⊗d∂Ωρ ⊗ω+ d∂Ωρ ⊗Dωω

)
+

+
1
3

(
D∂Ω
ρρ ⊗ω+ d∂Ωρ ⊗ω⊗d∂Ωρ +ω⊗D∂Ω

ρρ

)
+
�∂Ω
ρρρ

4

]}
(67)

Obviously, (67) coincides with (31) when ω = o. We are now in the position to specialize
(67) to the case of a polygonal boundary.

3.2 Algebraic expression of the gravity anomaly at an arbitrary point P

On account of (38) and (39), formula (67) becomes

gz(ω) = 2G
n∑

i=1

ρi ·ρ
⊥
i+1

{
[θo + θω]d∂iΩ

ρ +
c ·d∂iΩ

ρ

2
+ C ·

[d∂iΩ
ρ

2
⊗ω+ω⊗

d∂iΩ
ρ

2
+

D∂iΩ
ρρ

3

]
+

+� ·
[1
2

(
Dωω ⊗d∂iΩ

ρ +ω⊗d∂iΩ
ρ ⊗ω+ d∂iΩ

ρ ⊗Dωω

)
+

1
3

(
D∂iΩ
ρρ ⊗ω+

+ d∂iΩ
ρ ⊗ω⊗d∂iΩ

ρ +ω⊗D∂iΩ
ρρ

)
+
�
∂iΩ
ρρρ

4

]}
(68)

Furthermore, recalling the definitions (41)-(43), (45), (49) and (57) one can express
(35)-(37)

d∂iΩ
ρ = aiI0i + biI1i (69)
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d∂iΩ
ρ = (aiI0i + biI1i)ρi + (aiI1i + biI2i)∆ρi (70)

D∂iΩ
ρρ = (aiI0i + biI1i)Dρiρi + (aiI1i + biI2i)Dρi∆ρi + (aiI2i + biI3i)D∆ρi∆ρi (71)

�
∂iΩ
ρρρ = (aiI0i + biI1i)�ρiρiρi + (aiI1i + biI2i)�ρiρi∆ρi+

+(aiI2i + biI3i)�ρi∆ρi∆ρi + (aiI3i + biI4i)�∆ρi∆ρi∆ρi

(72)

In order to shorten the subsequent formulas to the maximum extent, it is convenient to
introduce the following additional notation

Dρiω = ρi ⊗ω+ω⊗ρi D∆ρiω = ∆ρi ⊗ω+ω⊗∆ρi (73)

and
�ρiρiω = ρi ⊗ρi ⊗ω+(((((ρi ⊗ω⊗ρi +ω⊗ρi ⊗ρi = Dρiρi ⊗ω+ω⊗Dρiρi (74)

�ρi∆ρiω = ρi ⊗∆ρi ⊗ω+∆ρi ⊗ρi ⊗ω+ω⊗ρi ⊗∆ρi +ω⊗∆ρi ⊗ρi+

+(((((ρi ⊗ω⊗∆ρi +(((((∆ρi ⊗ω⊗ρi =

= Dρi∆ρi ⊗ω+ω⊗Dρi∆ρi

(75)

�∆ρi∆ρiω = ∆ρi ⊗∆ρi ⊗ω+ω⊗∆ρi ⊗∆ρi +((((((∆ρi ⊗ω⊗∆ρi =

= D∆ρi∆ρi ⊗ω+ω⊗D∆ρi∆ρi

(76)

�ωωρi = ω⊗ω⊗ρi +ω⊗ρi ⊗ω+ρi ⊗ω⊗ω =

= Dωω ⊗ρi +ω⊗ρi ⊗ω+ρi ⊗Dωω

(77)

�ωω∆ρi = ω⊗ω⊗∆ρi +ω⊗∆ρi ⊗ω+∆ρi ⊗ω⊗ω =

= Dωω ⊗∆ρi +ω⊗∆ρi ⊗ω+∆ρi ⊗Dωω

(78)

The symbols (((((ρi ⊗ω⊗ρi , (((((ρi ⊗ω⊗∆ρi , (((((∆ρi ⊗ω⊗ρi and ((((((∆ρi ⊗ω⊗∆ρi denote quantities
which have been formally introduced in the previous expression simply to preserve its sym-
metry of representation and to facilitate the reader in checking the correctness of formula
(81). As a matter of fact they do not have to be computed since they are associated with the
integral (65) and its discrete counterpart d∂iΩ

ρ ⊗ω⊗d∂iΩ
ρ in (68). The computation of this last

quantity is addressed in subsection 3.3.
Substituting the previous expressions in (68) and defining

θP
ρi

=
C ·Dρiω

2
+
�

3
·
(
�ωωρi +�ρiρiω

)
(79)

θP
∆ρi

=
C ·D∆ρiω

2
+
�

3
·
(
�ωω∆ρi +�ρi∆ρiω

)
θP
∆ρi∆ρi

=
� ·�∆ρi∆ρiω

3
(80)

we get

gz(o) = 2G
n∑

i=1

(ρi ·ρ
⊥
i+1)

{
I0i

[
ai(θo + θO

ρi
+ θω + θP

ρi
)
]
+

+ I1i
[
ai(θO

∆ρi
+ θP

∆ρi
) + bi(θo + θO

ρi
+ θω + θP

ρi
)
]
+

+ I2i
[
ai(θO

∆ρi∆ρi
+ θP

∆ρi∆ρi
) + bi(θO

∆ρi
+ θP

∆ρi
)
]
+

+ I3i
[
aiθ

O
∆ρi∆ρi∆ρi

+ bi(θO
∆ρi∆ρi

+ θP
∆ρi∆ρi

)
]
+ I4ibiθ

O
∆ρi∆ρi∆ρi

}
(81)
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where θo is defined in (13), ai,bi in (42), Iki (k = 0,1,2,3) in (57), θO
ρi

-θO
∆ρi

-θO
∆ρi∆ρi

- θO
∆ρi∆ρi∆ρi

in (52)-(55), θω in (66), θP
ρi

-θP
∆ρi

-θP
∆ρi∆ρi

in (79)-(80).

By eliminating all terms depending explicitly byω, i.e. θω, θP
ρi

, θP
∆ρi

and θP
∆ρi∆ρi

, it can be
easily checked that the previous expression does specialize to (56) whenω = o, i.e. when the
gravity anomaly is evaluated at the origin of the reference frame. The previous expression is
particularly useful for programming since I2i, I3i and I4i can be expressed as function of I0i
and I1i by means of formulas (130), (131) and (132) detailed in Appendix B. The resulting
formula is not reported explicitly since it amounts to performing straightforward algebraic
manipulations.

To derive an alternative expression of the gravity anomaly which can be conveniently
used to check the correct implementation of the more efficient one reported in (81), one can
set

ιki = aiIki + biI(k+1)i k = 0, . . . ,3 (82)

and replace formulas (69)-(72) with

d∂iΩ
ρ = ι0i d∂iΩ

ρ = ι0iρi + ι1i∆ρi (83)

D∂iΩ
ρρ = ι0iDρiρi + ι1iDρi∆ρi + ι2iD∆ρi∆ρi (84)

�
∂iΩ
ρρρ = ι0i�ρiρiρi + ι1i�ρiρi∆ρi + ι2i�ρi∆ρi∆ρi + ι3i�∆ρi∆ρi∆ρi (85)

Hence, formula (68) becomes

gz(ω) = 2G
n∑

i=1

ρi ·ρ
⊥
i+1

{
[θo + θω]ι0i +

c
2
· (ι0iρi + ι1i∆ρi)+

+C ·
[
ι0i(

Dρiω

2
+

Dρiρi

3
) + ι1i(

D∆ρiω

2
+

Dρi∆ρi

3
) + ι2i

D∆ρi∆ρi

3

]
+

+� ·
[
ι0i

(�ωωρi

2
+
�ρiρiω

3
+
�ρiρiρi

4

)
+ ι1i

(�ωω∆ρi

2
+
�ρi∆ρiω

3
+
�ρiρi∆ρi

4

)
+

+ ι2i
(�∆ρi∆ρiω

3
+
�ρi∆ρi∆ρi

4

)
+ ι3i
�∆ρi∆ρi∆ρi

4

]}
(86)

a formula which can be further elaborated upon by expressing I2i, I3i and I4i as function of
I0i and I1i in the formulas for ι2i, ι3i and ι4i.

3.3 Evaluation of the third-order tensor d∂iΩ
ρ ⊗ω⊗d∂iΩ

ρ

We have denoted by the symbol d∂iΩ
ρ ⊗ω⊗d∂iΩ

ρ in (68) the third-order tensor

d∂iΩ
ρ ⊗ω⊗d∂iΩ

ρ =

1∫
0

[ρ(λi) ·κz]ρ(λi)⊗ω⊗ρ(λi)
ρ(λi) ·ρ(λi)

dλi (87)

As a matter of fact the tensor to evaluate is the rank-two tensor D∂iΩ
ρρ since its components

have to be suitably combined with those of ω in order to compute (87). In turn this depends
upon the rule which is adopted to define the matrix associated with a third-order tensor, a rule
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which usually depends upon the adopted programming language. For instance, extending the
rule defined in (11) to three arbitrary vectors t, v and w one obtains

t⊗ (v⊗w) =


t1v1w1 t1v1w2
t1v2w1 t1v2w2
t2v1w1 t2v1w2
t2v2w1 t2v2w2

 (88)

The products t1w1, t1w2 etc. are the components of the tensor t⊗w which plays the role of
the tensor D∂iΩ

ρρ , i.e. the one to be actually computed.
Accordingly, we can define the matrix associated with d∂iΩ

ρ ⊗ω⊗d∂iΩ
ρ as

[d∂iΩ
ρ ⊗ω⊗d∂iΩ

ρ ] =



ω1[D∂iΩ
ρρ ]11 ω1[D∂iΩ

ρρ ]12

ω2[D∂iΩ
ρρ ]11 ω2[D∂iΩ

ρρ ]12

ω1[D∂iΩ
ρρ ]21 ω1[D∂iΩ

ρρ ]22

ω2[D∂iΩ
ρρ ]21 ω2[D∂iΩ

ρρ ]22


(89)

where [D∂iΩ
ρρ ]i j denotes the i j entry of the matrix associated with D∂iΩ

ρρ .

4 Ineffective singularities of the algebraic expressions of the gravity anomaly

It has already been shown that the analytical expression (31) of the gravity anomaly is
singularity-free in the sense that its expression holds rigorously whatever is the position
of the point O with respect to Ω. The same property holds true for the expression (67) re-
ferred to an arbitrary point P. However, the algebraic counterparts of (31) and (67), which
are provided by formulas (56) and (81), respectively, still hide some singularities.

They are associated with the expression of the integrals Iki, provided in (57), since some
special positions of the generic edge of ∂Ω with respect to the observation point can make
the denominator of (57) vanish. However, we are going to prove that such singularities are
ineffective from the computational point of view since they can be actually ignored when
evaluating the i-th addend of the sums (56) and (81).

To fully understand this point let us first notice that the opposite of the discriminant ∆i
of the quadratic function at the denominator in (57) is always non-negative, being

∆i = piui −q2
i = (ρi+1 ·ρi+1)(ρi ·ρi)− (ρi ·ρi+1)2 ≥ 0 (90)

by virtue of the Cauchy-Schwarz inequality (Tang, 2006). The quantity ∆i can vanish, mak-
ing undefined the integral Iki in (57), if and only if either ρi(ρi+1) = o or ρi and ρi+1 are
parallel. In turn this happens when the observation point does belong to the line containing
the i-th edge. Accordingly, if ∆i > 0, formulas (124) and (125) specialize to

I0i =
1
√
∆i

[
arctan

ρi+1 ·∆ρi
√
∆i

− arctan
ρi ·∆ρi
√
∆i

]
(91)

and

I1i =
1

∆ρi ·∆ρi

[1
2

log
ρi+1 ·ρi+1

ρi ·ρi
− (ρi ·∆ρi)I0i

]
(92)
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respectively. Furthermore, formulas (130), (131) and (132) can be used to evaluate I2i, I3i
and I4i.

Clearly, the previous expressions become singular if ∆i = 0, i.e. when the i-th edge does
belong to a line containing the observation point. Nevertheless, we shall prove that the con-
tribution of the i-th edge to the gravity anomaly is zero. Hence, from the computational point
of view, it is possible to skip the evaluation of the i-th addend in formula (56) whenever the
i-th edge does belong to a line containing O. The same property can be invoked for formulas
(81) and (86) whenever the i-th edge does belong to a line containing the arbitrary point P at
which the gravity anomaly is required. The conditions stated above do hold when ρi = o or
ρi+1 = o or ρi is parallel to ρi+1. These three cases will be addressed separately in the sequel.

4.1 Specialization of the line integrals (35)-(37) to the case ρi = o

Recalling (41) the parameterization of the i-th edge becomes

ρ(λi) = λiρi+1 (93)

so that

ρ(λi) ·κz = λiρi+1 ·κz = biλi (94)

and

ρ(λi) ·ρ(λi) = λ2
i ρi+1 ·ρi+1 = piλ

2
i (95)

Accordingly, we get from (35)-(37)

d∂iΩ
ρ =

bi

pi

1∫
0

dλi

λi
=

bi

pi
lim
ε→0

[logλi]1
ε (96)

which is singular at λi = 0, and

d∂iΩ
ρ =

bi

pi
ρi+1 D∂iΩ

ρρ =
1
2

bi

pi
ρi+1 ⊗ρi+1 �

∂iΩ
ρρρ =

1
3

bi

pi
ρi+1 ⊗ρi+1 ⊗ρi+1 (97)

However, d∂iΩ
ρ in formulas (40) and (68), and hence the logarithm in (96), is scaled by

ρi ·ρ
⊥
i+1. Setting ε = |ρi|, we infer that

lim
ε→0

(ρi ·ρ
⊥
i+1)I0i = lim

ε→0
ε

bi

pi
logε = 0 (98)

since the logarithm tends to infinite with an arbitrarily low degree. In addition, being d∂iΩ
ρ ,

D∂iΩ
ρρ and�∂iΩ

ρρρ finite, we ultimately infer that the contribution of the i-th edge to the expres-
sions (56), (81) and (86) of the gravity anomaly is zero.
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4.2 Specialization of the line integrals (35)-(37) to the case ρi+1 = o

In this case the i-th edge is parameterized in the form

ρ(λi) = ηiρi = (1−λi)ρi 0 ≤ η ≤ 1 (99)

Hence
ρ(λi) ·κz = ηiρi ·κz = aiηi (100)

and
ρ(λi) ·ρ(λi) = η2

i ρi ·ρi = uiη
2
i (101)

Being dλi = −dηi one has

d∂iΩ
ρ = −

ai

ui

0∫
1

dηi

ηi
=

ai

ui
lim
ε→0

[logλi]1
ε (102)

d∂iΩ
ρ =

ai

ui
ρi D∂iΩ

ρρ =
1
2

ai

ui
ρi ⊗ρi �

∂iΩ
ρρρ =

1
3

ai

ui
ρi ⊗ρi ⊗ρi (103)

Hence, we can repeat the considerations developed in the previous subsection, by exchang-
ing the role of ρi and ρi+1, and conclude that the contribution of the i-th edge to the expres-
sions (56), (81) and (86) of the gravity anomaly vanishes.

4.3 Specialization of the line integrals (35)-(37) to the case ρi‖ρi+1

In this case we can set ρi+1 = βiρi with 0 < βi = |ρi+1|/|ρi| and parameterize the i-th edge as

ρ[λi(ξi)] = ξiρi (104)

where
ξi = 1 +λi(βi −1) 1 ≤ ξi ≤ βi (105)

and it has been assumed βi > 1. As it will be apparent in the sequel, the case βi < 1 does not
modify the final result. Being also

ρ(λi) ·κz = ξiρi ·κz = aiξi (106)

and
ρ(λi) ·ρ(λi) = piξ

2
i (107)

and dξi = dλi(βi −1) we now have

d∂iΩ
ρ =

ai

pi(βi −1)

βi∫
1

dξi

ξi
=

ai

pi

logβi

βi −1
(108)

d∂iΩ
ρ =

ai

pi
ρi D∂iΩ

ρρ =
1
2

ai

pi
(βi + 1)ρi ⊗ρi �

∂iΩ
ρρρ =

1
3

ai

pi

β3
i −1
βi −1

ρi ⊗ρi ⊗ρi (109)

The four integrals above are well defined but are scaled by the quantity ρi ·ρ
⊥
i+1 which

is zero by hypothesis. Hence, recalling formulas (40) and (68), the i-th edge does not give
any contribution to the sum in (56), (81) and (86). In conclusion, it has been proved that,
whenever ρi ·ρ

⊥
i+1 = 0, which is equivalent to state ρi = 0 or ρi+1 = 0 or ρi‖ρi+1, the compu-

tation of the i-th addend of the sum in (56), (81) and (86) can be skipped. Clearly, from the
numerical point of view, the analytical condition ρi ·ρ

⊥
i+1 = 0 is replaced by ‖ρi ·ρ

⊥
i+1‖ ≤ tol

where tol is a machine-dependent numerical tolerance.
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Fig. 3 2-D rectangular domain, derived from Rao (1986), with density contrast given by (110)
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Zhang et al.(2001), fig.2

present approach

Fig. 4 Comparison between the results of the present approach and those in Zhang et al (2001) for the domain
in Fig. 3

5 Numerical examples

The formulas illustrated in the previous sections have been coded in a Matlab program in
order to check their correctness and robustness. They have been applied to model tests and
case studies derived from the specialized literature. In particular the density contrast has
been assumed to vary separately along the horizontal and the vertical directions or along both
of them. In all examples the density contrast is expressed in units grams per cubic centimeter
while distances are expressed in kilometers; the value of the gravitational constant G is
6,6725910−11m3kg−1s−2.

For all the examples we include a graphycal and a tabular comparison between our re-
sults and those alrady published in the literature, although these last ones have been inferred,
to the best of the author’s expertise, from the diagrams in which they have been originally
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Table 1 Numerical values of the gravity anomaly (mGal) in fig. 4: a) computed in this paper (CT=0,07923s);
b) derived from the diagram in Zhang et al (2001)

x(km) 0,0 0,33 0,53 0,80 1,04 1,27 1,46 1,70 1,91 2,10 2,25

a) 7,206 8,215 8,954 10,092 11,255 12,622 13,912 15,823 17,797 19,831 21,578

b) 7,280 7,649 8,606 9,784 11,036 12,434 13,759 15,010 16,924 18,836 20,529

x(km) 2,42 2,59 2,71 2,84 2,97 3,07 3,22 3,35 3,52 3,67 3,84

a) 23,885 26,295 28,179 30,241 32,218 33,843 36,118 38,081 40,525 42,384 44,308

b) 22,441 24,722 27,002 29,062 31,268 33,916 36,270 38,182 40,536 42,743 44,362

x(km) 4,01 4,25 4,47 4,62 4,89 5,13 5,39 5,65 5,94 6,16 6,44

a) 46,073 48,065 49,638 50,528 51,761 52,606 53,256 53,643 53,809 53,741 53,420

b) 46,495 47,820 49,807 50,911 52,089 52,899 53,415 53,858 53,860 53,861 53,937

x(km) 6,68 6,94 7,18 7,46 7,65 7,86 8,10 8,24 8,35 8,56 8,68

a) 52,918 52,109 51,134 49,612 48,255 46,572 44,105 42,511 41,142 38,233 36,500

b) 53,276 52,616 51,588 50,340 48,870 47,033 45,344 43,359 41,669 39,317 37,186

x(km) 8,88 8,97 9,14 9,25 9,43 9,57 9,70 9,91 10,06 10,28 10,50

a) 33,431 31,919 29,254 27,554 24,851 22,939 21,255 18,815 17,323 15,355 13,672

b) 34,907 32,996 30,497 28,218 25,867 23,882 21,751 19,693 17,929 15,725 14,329

x(km) 10,71 10,94 11,15 11,39 11,63 12,00

a) 12,278 11,001 9,973 8,938 8,103 6,996

b) 12,933 11,832 10,436 9,482 8,821 8,088

reported. We also include the computing time (CT) obtained by running the Matlab code
on a INTEL CORE2 PC with 16Gb of RAM and a i7-4700HQ CPU having clock speed of
2,40 GHz. They can be useful to allow for a comparison with computations carried out by
using different methods or with more complex modellings, e.g. those reqired to evaluate the
gravitational effects of an arbitrary volumetric mass layer in which a laterally varying radial
density change has been assumed (Tenzer et al, 2012a,b,c).

The model test in fig. 3 is a 2D rectangular cylinder at a depth of 1km, 6 km wide
and 1km high; it has been first considered by Rao (1986), and subsequently by Zhang et al
(2001), by assuming a density contrast given by

θ(z) = 1.54 + 0.24z−0.035z2 (110)

Fig. 4 shows a perfect agreement between the solid line, representing jointly the results by
Rao (1986) and Zhang et al (2001), and the dotted line which has been computed by means
of the proposed approach. Each point in the figure represents the gravity anomaly associated
with a position of the observation point having as coordinates z = 0 and an abscissa x equal
to that of the plotted point.

The second example, shown in fig. 5, has been first addressed by Garcı́a-Abdeslem et
al (2005b) and later considered in Zhou (2008). It refers to the Sebastián Vizcaı́no Basin in
Mexico for which the density contrast has been assumed in the form

θ(z) = −0.7 + 2.548∗10−4z−2.73∗10−8z2 (111)
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Fig. 5 Domain derived from Garcı́a-Abdeslem et al (2005b) with density contrast given by (111)
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Fig. 6 Comparison between the results of the present approach and those in Zhou (2008) for the domain in
Fig. 5

where z is expressed in meters. The gravity anomaly along a transect on the x-axis is shown
in fig. 6 and successfully compared with that computed in Zhou (2008) by two distinct
methodologies named Line-Integral (LI) with arctangent kernel and density integrated LI.
In both methodologies Zhou evaluated the resulting integrals by the Gauss-Legendre quadra-
ture method.

Fig. 7 illustrates an elongated segment valley first considered by Murthy and Rao (1979)
and later analyzed by Zhang et al (2001). The density contrast is given by

θ(z) = −0.55 + 2∗10−4z (112)

where z is expressed in meters. Fig. 8 shows the comparison of the gravity anomaly com-
puted by different procedures, i.e. the one presented in Zhang et al (2001), the two method-
ologies quoted above by Zhou (2008) and that contributed in the present paper.
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Table 2 Numerical values of the gravity anomaly (mGal) in fig. 6: a) computed in this paper (CT=0,07081s);
b) derived from the diagram in Zhou (2008)

x(km) -0,40 -0,30 -0,21 -0,11 -0,06 -0,05 -0,03 0,00 0,09 0,19 0,30

a) -0,150 -0,186 -0,233 -0,322 -0,382 -0,407 -0,454 -0,557 -1,743 -2,647 -3,297

b) -0,155 -0,191 -0,262 -0,310 -0,370 -0,394 -0,429 -0,584 -1,825 -2,696 -3,304

x(km) 0,40 0,50 0,60 0,69 0,79 0,90 0,99 1,10 1,20 1,30 1,40

a) -3,787 -4,195 -4,545 -4,841 -5,078 -5,260 -5,331 -5,320 -5,203 -5,002 -4,684

b) -3,769 -4,187 -4,557 -4,855 -5,082 -5,260 -5,308 -5,344 -5,201 -4,998 -4,700

x(km) 1,50 1,60 1,70 1,80 1,82 1,84 1,86 1,90 2,00 2,10 2,20

a) -4,226 -3,511 -2,432 -0,863 -0,724 -0,634 -0,568 -0,468 -0,330 -0,252 -0,199

b) -4,211 -3,459 -2,410 -0,859 -0,728 -0,632 -0,561 -0,453 -0,334 -0,239 -0,203

Table 3 Numerical values of the gravity anomaly (mGal) in fig. 8: a) computed in this paper (CT=0,04594s);
b) derived from the diagram in Zhou (2008); c) derived from the diagram in Zhang et al (2001)

x(km) 0,02 0,49 1,02 1,47 2,03 2,49 2,99 3,54 3,99 4,50 5,01

a) -0,413 -0,460 -0,524 -0,591 -0,695 -0,803 -0,959 -1,192 -1,475 -1,982 -3,356

b) -0,513 -0,512 -0,511 -0,556 -0,648 -0,787 -0,879 -1,018 -1,297 -1,669 -2,414

c) -0,373 -0,279 -0,184 -0,230 -0,228 -0,321 -0,506 -0,878 -1,203 -1,669 -2,414

x(km) 5,51 6,00 6,49 6,99 7,55 8,01 8,51 8,99 9,51 10,02 10,51

a) -8,660 -12,355 -15,284 -17,693 -19,732 -20,975 -21,988 -22,628 -23,032 -23,131 -22,950

b) -6,517 -10,014 -13,231 -16,215 -18,639 -20,410 -21,669 -22,414 -22,879 -22,971 -22,877

c) -6,517 -9,874 -13,605 -16,495 -18,127 -20,411 -21,716 -22,601 -22,879 -22,971 -22,690

x(km) 11,00 11,53 11,98 12,49 13,02 13,51 14,04 14,48 14,99 15,48 16,02

a) -22,482 -21,621 -20,505 -18,744 -16,222 -13,239 -9,781 -6,744 -2,616 -1,701 -1,287

b) -22,456 -21,522 -20,308 -18,674 -16,248 -13,122 -9,902 -6,543 -2,484 -1,643 -1,222

c) -21,989 -21,056 -19,749 -18,022 -15,502 -12,749 -9,530 -6,917 -4,118 -2,858 -2,298

x(km) 16,53 17,02 17,51 17,95 18,51 19,02 19,51 20,03

a) -1,040 -0,868 -0,739 -0,648 -0,555 -0,488 -0,434 -0,386

b) -0,941 -0,753 -0,705 -0,564 -0,517 -0,422 -0,374 -0,373

c) -1,597 -0,942 -0,568 -0,427 -0,286 -0,238 -0,376 -0,466

Fig. 9 illustrates a case analyzed by Martı́n-Atienza and Garcı́a-Abdeslem (1999), Zhou
(2009a, 2010) in which the density contrast varies only along the horizontal position

θ(z) = 0.5 + 2∗10−5x−2∗10−8x2 (113)

The gravity anomaly, calculated along a transect on the x-axis, is shown in fig 10 where
our results are compared with those obtained by Zhou (2010). These last results had been
previously compared by Zhou with those based on the LI method with logarithmic ker-
nel, previously contributed in Zhou (2009a), and the original results by Martı́n-Atienza and
Garcı́a-Abdeslem (1999).

The last numerical example, shown in fig. 11, refers to a case first studied by Martı́n-
Atienza and Garcı́a-Abdeslem (1999) and later re-examined in Zhou (2009a). The geometry
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Fig. 7 Domain derived from Murthy and Rao (1979) with density contrast given by (112)
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Fig. 8 Comparison between the results of the present approach and those in Zhang et al (2001) and Zhou
(2008) for the domain in Fig. 7

in fig. 11 refers to folded and overturned strata in a sedimentary basin in which the density
contrast varies simultaneously along the horizontal and vertical directions

θ(x,z) = −0.7−5∗10−8xz + 4∗10−8x2 + 6∗10−8z2 (114)

The boundary of the body has been approximated by a 26-sided polygon and the gravity
anomaly has been computed at 41 stations. The high number of polygon vertices and the
more complex density contrast function exlain the computing time of 0,32681s which is
considerably higher than those experienced in previous examples. Figure 12 superimposes
our results with those obtained by Martı́n-Atienza and Garcı́a-Abdeslem (1999), the seminu-
merical LI method by Zhou (2009a) and the analytical method in Zhou (2010).
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Fig. 9 Domain derived from Martı́n-Atienza and Garcı́a-Abdeslem (1999) with density contrast given by
(113)
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Fig. 10 Comparison between the results of the present approach and those in Zhou (2010) for the domain in
Fig. 9

5.1 Error analysis

It is interesting to consider the susceptibility of the formulas derived in the paper to numer-
ical rounding error. As shown in Holstein and Ketteridge (1996) this depends on the target
aspect ratio γ = α/δ where α is the typical linear dimension of the target and δ its typical
distance from the observation point. For 2D bodies the anomaly calculation (6) is governed
by an area integral weighted by the density contrast, the vertical component of the position
vector, proportional to δ, and the inverse square law factor, proportional to 1/δ2.

The density contrast functions considered in the previous examples show that θ(ρ) is
obtained as sum of separate terms having substantially the same order of magnitude as the
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Table 4 Numerical values of the gravity anomaly (mGal) in fig. 10: a) computed in this paper (CT=0,05527s);
b) derived from the diagram in Zhou (2010)

x(km) -4,99 -4,73 -4,51 -4,25 -4,01 -3,74 -3,49 -3,27 -2,98 -2,76 -2,52

a) 6,804 7,533 8,261 9,212 10,239 11,587 13,068 14,564 16,820 18,889 21,502

b) 7,005 7,826 8,784 9,605 10,563 11,933 13,441 15,086 16,868 19,337 22,081

x(km) -2,26 -2,03 -1,79 -1,53 -1,30 -1,04 -0,77 -0,53 -0,28 0,03 0,27

a) 24,929 29,326 33,170 35,616 37,440 39,031 40,378 41,290 41,983 42,419 42,443

b) 25,237 30,042 33,610 35,941 38,136 39,506 40,601 41,697 42,243 42,651 42,648

x(km) 0,52 0,76 1,00 1,22 1,50 1,75 1,99 2,23 2,51 2,76 2,95

a) 42,109 41,351 39,618 35,642 31,930 28,880 26,295 23,931 21,488 19,396 17,950

b) 42,369 41,404 39,615 35,354 31,916 28,891 26,278 23,802 21,738 19,674 17,748

x(km) 3,26 3,50 3,75 3,98 4,23 4,52 4,74 5,01

a) 15,865 14,384 12,955 11,823 10,658 9,495 8,690 7,820

b) 16,233 14,306 13,067 11,827 10,725 9,622 8,520 8,104

Table 5 Numerical values of the gravity anomaly (mGal) in fig. 12: a) computed in this paper (CT=0,32681s);
b) derived from the diagram in Zhou (2010)

x(km) -5,00 -4,76 -4,54 -4,27 -4,00 -3,76 -3,51 -3,24 -3,03 -2,78 -2,52

a) -4,362 -4,814 -5,323 -6,136 -7,582 -9,554 -12,092 -15,103 -17,544 -20,635 -23,758

b) -4,286 -4,762 -5,714 -6,349 -7,619 -9,841 -12,222 -15,238 -17,937 -21,111 -24,286

x(km) -2,29 -2,00 -1,78 -1,54 -1,27 -1,02 -0,75 -0,52 -0,29 -0,02 0,22

a) -26,660 -30,049 -32,574 -35,140 -37,836 -40,136 -42,296 -43,835 -45,228 -46,468 -47,250

b) -26,984 -30,476 -32,857 -35,556 -38,095 -40,159 -42,222 -43,968 -45,238 -46,825 -47,302

x(km) 0,48 0,71 0,97 1,22 1,46 1,73 1,94 2,24 2,48 2,73 2,97

a) -47,750 -47,900 -47,712 -47,163 -46,320 -44,985 -43,695 -41,404 -39,269 -36,692 -34,020

b) -47,778 -47,937 -47,619 -47,302 -46,191 -44,762 -43,175 -41,111 -38,730 -36,191 -33,492

x(km) 3,19 3,46 3,70 3,97 4,19 4,48 4,73 5,00

a) -31,326 -27,840 -24,622 -20,910 -17,913 -14,528 -12,779 -11,074

b) -30,318 -26,984 -23,492 -20,000 -16,667 -13,968 -12,064 -10,476

constant term θo. Nevertheless one has to consider separately the integrals (17)-(18) and
compute their one-dimensional counterparts (28)-(29).

In particular, we have

dΩρ ≈ O(α) = O(δγ) dΩρ ≈ O(δα) = O(δ2γ) (115)

and
DΩ
ρρ ≈ O(δ2α) = O(δ3γ) �

Ω
ρρρ ≈ O(δ3α) = O(δ4γ) (116)

where ≈ means ”has order of magnitude equal to”.
Thus, when computed in a finite floating point precision ε, the rounding error O(δkγε),

k = 1, . . .4, progressively increases as the target distance δ increases relative to the target
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Fig. 11 Domain derived from Martı́n-Atienza and Garcı́a-Abdeslem (1999) with density contrast given by
(114)

−5 0 5
−50

−40

−30

−20

−10

0

Distance along a transect on x−axis [km]

G
ra

v
it
y
 a

n
o
m

a
ly

 [
m

G
a
l]

 

 

Zhou (2010), fig.6

present approach

Fig. 12 Comparison between the results of the present approach and those in Zhou (2010) for the domain in
Fig. 11

size α. However, as shown in the previous figures, this is generally beyond the region of
geophysical interest.

As a final remark, it is worth mentioning that higher-order terms in the density contrast,
though more prone to computational noise as δ increases, provide a progressively lower
contribute to gravity anomaly. This is in accordance with the significance of higher order
density polynomials in 2D modelling. As a matter of fact geological settings require mostly
3D gravity modelling: the errors caused by 2D gravity modelling with high order polyno-
mials will often be larger than the errors caused by piecewise constant densities in a relative
few number of 3D polygonal bodies.
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6 Conclusions

The gravity anomaly at arbitrary points produced by a 2D body whose shape is an arbi-
trary polygon and where density contrast varies with a polynomial law has been obtained in
closed form. It is expressed as sum of quantities which depend only upon the coordinates
of the vertices of the polygon and upon the parameters which define the density contrast.
The solution procedure, based upon a generalized application of Gauss theorem, takes con-
sistently into account the singularity intrinsic to the integrals to evaluate. Accordingly, by
means of rigorous mathematical arguments, singularities are proved to give no contribution
neither to the analytical expression of the gravity anomaly nor to its algebraic counterpart.

The formulation presented in the paper, which has been limited to polynomial density
contrast varying with a cubic law as a maximum, can be easily extended to polynomials
of higher degree. The effectiveness of the proposed approach has been intensively tested
by numerical comparisons, carried out by means of a Matlab code, with several example
derived from the specialized literature. Future contributions will concern the cases of density
contrast variable with exponential law for 2D domains and 3D polyhedral bodies endowed
with polynomial or exponential density contrasts.

7 Appendix A - Some useful differential identities

We prove hereafter some differential identities which are uesful for the derivations illustrated
in the main body of the paper; they are reported in the same order in which they are required.

Let us begin with the component expression of the divergence of the rank-three tensor

div[ψ(a⊗b⊗ c)]i j = ψ(aib jck)/k (117)

where a, b, c (ψ) are vector (scalar) differentiable fields and (·)/k means derivation with
respect to the k-th variable. Applying the chain rule to (117), Tang (2006), one obtains

ψ(aib jck)/k = ψ/kaib jck +ψai/kb jck +ψaib j/kck +ψaib jck/k =

= (a⊗b⊗ c)i jk(gradψ)k +ψ[(grada)c]ib j+

+ψai[(gradb)c] j +ψ(a⊗b)i jdivc

(118)

Thus, combining (117) and (118), one has

div[ψ(a⊗b⊗ c)] = (a⊗b⊗ c)gradψ+ψ[(grada)c]⊗b+

+ψa⊗ [(gradb)c] +ψ(a⊗b)divc
(119)

A further useful identity concerns the gradient of a scalar field expressed as scalar prod-
uct of two vector fields

grad(a ·b) = [grada]tb + [gradb]ta (120)

where (·)t stands for transpose. It stems from the relation

[grad(a ·b)]i = (a jb j)/i (121)

Actually, carrying out the derivations in the previous expression yields

(a jb j)/i = a j/ib j + a jb j/i = [(grada)t]i jb j + [(gradb)t]i ja j (122)

which represents the component form of (120).
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8 Appendix B - Recursive computation of integrals

Application of formula (56) requires the analytical computation of integrals of the kind

Ik =

1∫
0

xk

px2 + 2qx + u
dx (123)

where p > 0 and the discriminant of the denominator, i.e. ∆ = q2− pu, is assumed to be nega-
tive. Hence, the quadratic function px2 +2qx+u is always positive on the real interval [0,1].
The case of a null discriminant ∆will be directly addressed in section 4 where the evaluation
of Iki, which makes use of the formulas derived hereafter for ∆ < 0, will be detailed.

As previously shown by Zhou (2010), the generic integral (123) can be computed recur-
sively as function of two integrals, namely

I0 =

1∫
0

1
px2 + 2qx + u

dx =
1
√
−∆

[
arctan

p + q
√
−∆
− arctan

q
√
−∆

]
(124)

and

I1 =

1∫
0

x
px2 + 2qx + u

dx =
1

2p
log

p + 2q + u
u

−
q
p

I0 (125)

Both results can be obtained, after some manipulation, by setting t = x+q/p in the integrand
functions above. To make the paper self-contained we rephrase the result in Zhou (2010)

Jk =

∫
xk

px2 + 2qx + u
dx =

xk−1

p(k−1)
−

2q
p

∫
xk−1

px2 + 2qx + u
dx−

u
p

∫
xk−2

px2 + 2qx + u
dx

(126)
where k > 1 and the terminology of this paper has been adopted.

For instance, if k = 2, one has

J2 =

∫
x2

px2 + 2qx + u
dx =

1
p

∫
px2 + (2qx + u−2qx−u)

px2 + 2qx + u
dx =

=
1
p

[∫
dx−

∫
2qx + u

px2 + 2qx + u
dx

]
=

=
1
p

[∫
dx−2q

∫
x

px2 + 2qx + u
dx−u

∫
dx

px2 + 2qx + u

]
=

=
1
p

[x−2qJ1 −uJ0]

(127)

Analogously

J3 =
1
p

[ x2

2
−2qJ2 −uJ1

]
=

1
p

[ x2

2
−

2qx
p

+
4q2 − pu

p
J1 +

2qu
p

J0
]

(128)

and

J4 =
x3

3p
−

q
p2 x2 +

4q2 − pu
p3 x−

2q(4q2 −2pu)
p3 J1 −

u(4q2 − pu)
p3 J0 (129)
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Hence
I2 =

1
p

[1−2qI1 −uI0] (130)

I3 =
1
p

[1
2
−

2q
p

+
4q2 − pu

p
I1 +

2qu
p

I0
]

(131)

and

I4 =
1
p

[1
3
−

q
p

+
4q2 − pu

p2 −
2q(4q2 −2pu)

p2 I1 −
u(4q2 − pu)

p2 I0
]

(132)

Acknowledgements The author wishes to express its deep gratitude to the Editor-in-Chief, prof. M.J. Rycroft,
and to the three anonymous reviewers for careful suggestions and useful comments which resulted in an im-
proved version of the original manuscript.

References

Aydemir A, Ates A, Bilim F, Buyuksarac A, Bektas O (2014) Evaluation of gravity and
aeromagnetic anomalies for the deep structure and possibility of hydrocarbon potential of
the region surrounding Lake Van, Eastern Anatolia, Turkey. Surv Geophys 35:431-448

Banerjee B, DasGupta SP (1977) Gravitational attraction of a rectangular parallelepiped.
Geophysics 42:1053-1055

Barnett CT (1976) Theoretical modeling of the magnetic and gravitational fields of an arbi-
trarily shaped three-dimensional body. Geophysics 41:1353-1364

Bott MHP (1960) The use of rapid digital computing methods for direct gravity interpreta-
tion of sedimentary basins. Geophys J R Astr Soc 3:63-67

Cady JW (1980) Calculation of gravity and magnetic anomalies of finite length right polyg-
onal prisms. Geophysics 45:1507-1512

Cai Y, Wang CY (2005) Fast finite-element calculation of gravity anomaly in complex geo-
logical regions. Geophys J Int 162:696-708

Chai Y, Hinze WJ (1988) Gravity inversion of an interface above which the density contrast
varies exponentially with depth. Geophysics 53:837-845

Chakravarthi V, Raghuram HM, Singh SB (2002) 3-D forward gravity modeling of base-
ment interfaces above which the density contrast varies continuously with depth. Comp
& Geosc 28:53-57

Chakravarthi V, Sundararajan N (2007) 3D gravity inversion of basement relief: a depth-
dependent density approach. Geophysics 72:I23-I32

Chappell A, Kusznir N (2008) An algorithm to calculate the gravity anomaly of sedimentary
basins with exponential density-depth relationships. Geophys Prosp 56:249-258

Cordell L (1973) Gravity analysis using an exponential density depth function-San Jacinto
graben, California. Geophysics 38:684-690

D’Urso MG, Russo P (2002) A new algorithm for point-in polygon test. Surv Rev 284:410-
422

D’Urso MG (2012) New expressions of the gravitational potential and its derivates for
the prism. In Hotine-Marussi International Symposium on Mathematical Geodesy, 7rd.
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Answer to reviewer # 1 

 

The author wishes to thank the reviewer for careful reading of the original manuscript and useful 
comments which have been properly acknowledged at the end of the revised version of the 
manuscript.  

According to the comments pointed out by the reviewer, the original manuscript has been 
modified as follows: 
 

Abstract 
 
Remark 0.1: 
"The solution presented in the paper refers to a third-order polynomial function although its 
expression exhibits an intrinsic symmetry ..." 
Why "although"? 

 
The sentence has been changed as follows: The solution presented in the paper, which refers to 
a third-order polynomial function as a maximum, exhibits an intrinsic symmetry which naturally 
suggests its extension to the case of higher-order polynomials describing the density contrast. 
 
 
 

1 Introduction: 
 
Remark 1.1: 
"The gravity anomaly of a region represents a fundamental set of geophysical data..." 
"For this reason it is extremely beneficial to dispose of analytical solutions..." 
Although gravity modelling is my main interest too, I nevertheless find the words "fundamental" and 
"extremely" somewhat exaggerated. 
 

The word “fundamental” has been changed to “basic” and the word “extremely” to “highly”. 
 
 

Remark 1.2: 
"... simple geometric modelling, i.e. the use of prisms, and refined modelling of the density contrast. 
A converse approach is based on the use of polyhedra ..." 
Instead of the unsuitable binary classification "converse", I would suggest "different" or possibly 
"alternative". 
 

The word “different” has been used. 
 
 

2 Gravity anomaly of a 2D body at the origin O of the reference frame 
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Remark 2.1: 
In the gravity literature the letter rho usually designates density. In eq. 6, however, it represents 
distance. On the other hand, eq. 4 designates density by the letter delta, which is usually related to 
some type of differences, especially in integrals as they are occurring abundantly in this paper. 
Using a more common selection of variable letters would improve the readability of this paper. 
 

The whole notation has been changed. Namely the density contrast has been initially denoted as 
∆ρ and subsequently with the more concise letter θ. The coefficients of the polynomial 
expression of the density contrast have been denoted by c, C and C (I don’t have in Word the 
right symbol as in LaTeX). Analogously, the tensor products of ρ have been denoted by d, D 
and D. I have not changed the symbol ρ to designate the position vector since I have already 
used it in all my papers. On the other hand it is written in boldface so that there should not be 
any confusion with ∆ρ used only at the beginning of the paper. 

 
Remark 2.1: 
In eq. 7 the letter g, designating gravity in eq. 6, is confusingly reused for linear polynomial 
coefficients of density. 
 

The symbol c has been used in place of the misleading g. 
 
 
 
Remark 2.2: 
I assume, in eq. 15 it should read "... = 1/3 a21" and "... = 1/3 a12". 
 

You are right. Correction has been made. 
 

 

Remark 2.3: 
In eq. 17 (and later) it is difficult to discriminate (optically) between the scalar (normal face) iota 
and the vector (bold) iota. 
 

The scalar (normal face) iota has been left while the vector (bold) iota has been changed to κ. 
 
 
 
Remark 2.4: 
I would prefer a more consistent naming of the left hand sides of eq.s 17 and 18. Iota  for both (!) 
rank 0 and 1 tensors,  A for rank 2 and B for 3 tensors is slightly confusing again. 

 
I have changed the symbols to d, d, D and D. 
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4 Ineffective singularities of the algebraic expressions of the gravity anomaly 
 
Remark 4.1: 
As far as I know, Newton's gravity equation (eq. 3) is already known to be singularity-free for 
singularity-free/finite density distributions, calculated anywhere in space. So, if you show that your 
formulation is singularity-free, aren't you mainly showing that your formulation is merely behaving 
as expected? 
 

This is only partially true in the sense that, as You correctly state, Newton’s gravity equation is 
already known to be singularity-free for singularity-free/finite density distributions. The 
problem of singularity arises with the algebraic counterparts of Newton’s integral. Previous 
authors did not succeed in rigorously eliminating the singularity from their formulas if not 
artificially moving aside the observation point by an infinitesimal quantity. That’s why I named 
the section “Ineffective singularities of the ALGEBRAIC expressions of the gravity anomaly”. 

 
 
 
Remark 4.2: 
Most (good) calculations schemes for polyhedra (2D as well as 3D) that I know can be calculated 
at any position in space except at the vertices and/or at the edges. In all these cases it also suffices 
to skip the calculation at these vertices/edges. Thus, from the computational point of view, it would 
be most interesting to arrive at a formulation, where it wouldn't even be necessary to skip these 
vertices/edges. 
 

This is actually what has been made in the paper. Calculations are not skipped at vertices/edges 
since they can be made for every position of  the observation point; as shown in subsections 
4.1-4.3, I only need to suitably specialize the general formulas. 
 
 
 

5 Numerical examples: 
 
Remark 5.1: 
Are there any explanations for systematic differences between the reference results and your ones 
(fig. 4 left side yours higher, right side yours lower; fig. 8 (Zhou 2008) left side yours lower, right 
side equal, fig. 10 left side yours lower, right side equal, fig. 12 left side yours higher, right side 
yours lower). 

 
No, I could not find any reasonable explanation. In any case I am sure about the correctness of 
my results since I computed the integrals also numerically 
 
 
 

6 Conclusions: 
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Remark 6.1: 
Interesting and important would be a discussion about the accuracy of the present solution method 
in the context of distance-to-body vs. size-of-body as preformed in many papers of Holstein et al. in 
the past years. Please extend your paper. 
 

Subsection 5.1 “Error analysis” has been added to the revised version of the manuscript 
 
 
 
Remark 6.2: 
Another important fact to consider is the significance of high(er) order density polynomials in 2D 
modelling. Geological settings require mostly 3D gravity modellings; the errors caused by 2D 
gravity modelling with high order polynomials will often be larger then the errors caused by 
(piecewise) constant densities in a relative (sic!) few number of 3D polygonal bodies. 
 

Considerations on this issue has been added at pag. 26, at the end of subsection 5.1 . 
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Answer to reviewer # 2 

 

The author wishes to thank the reviewer for careful reading of the original manuscript and useful 
comments which have been properly acknowledged at the end of the revised version of the 
manuscript.  

According to the comments pointed out by the reviewer, the original manuscript has been 
modified as follows: 
 

Eq. (3) defines "gravitation"  not "gravity attraction" 
 
Correction has been made, see line before formula (1) of the revised version of the manuscript. 
 
 

 
Eq. (4) defined vertical component of gravitation 
 

Correction has been made, see line before formula (2) of the revised version of the manuscript 
 
 
I do not really know what is the "gravity anomaly" Is that the gravitation generated by the density 
contrast interface? Please explain clearly. 
 

It has been done soon after formula (3) of the revised version of the manuscript. 
 
 

 
In Eq. (31) the meaning of index n is not clear, please clarify that it represents the number of edges 
in the polygon (see Fig. 1) 
 

The meaning of n had been already specified in the line before formula (31); in any case, I have 
added reference to Fig. 1 before formula (32) of the revised version of the manuscript. 

 
 
 
It might be useful to number the equations in Appendices separately from the main text, i.e. (A.1),  
(A.2), … 
 

I agree with You but the paper has been prepared by using the LaTeX class file of the journal; 
hence, I cannot modify the original settings concerning numbering of equations. 

 
 
 
In the numerical test I am missing the comparison of the CPU which is required for the computation 
using different methods. Such a comparison would be useful for users when dealing with more 
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complex numerical tasks, taking the computational time into consideration. 
 

I have added the CPU time to the caption of the tables which have been included in the revised 
version of the paper to meet the request of another reviewer. 
 
 
 

Tenzer et al. (2012) developed spectral expressions for computing the gravitational effect of an 
arbitrary volumetric mass layers while assuming the laterally varying radial density changes; see 
Tenzer R, NovÃ¡k P, Vajda P, Gladkikh V, Hamayun (2012) Spectral harmonic analysis and 
synthesis of Earth's crust gravity field. Computational Geosciences 16(1): 193-207 
Tenzer R, Gladkikh V, Vajda P, NovÃ¡k P (2012)  Spatial and spectral analysis of refined gravity 
data for modelling the crust-mantle interface and mantle-lithosphere structure. Surv Geophys 
33(5): 817-839 
Tenzer R, NovÃ¡k P, Hamayun, Vajda P (2012) Spectral expressions for modelling the gravitational 
field of the Earth's crust density structure. Stud Geoph Geod 56(1): 141-152 
 

Reference to these more refined computations have been added at the beginning of pag. 20, 
soon after Table 1. 
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Answer to Reviewer #3 

 

The author wishes to thank the reviewer for careful reading of the original manuscript and useful 
comments which have been properly acknowledged at the end of the revised version of the 
manuscript.  
According to the comments pointed out by the reviewer, the original manuscript has been modified 
as follows: 
 

1. I believe that the reference to 2D-sources should be explicitly included in the paper's title. I 
understand that the term 'polygonal' is used from the author exactly for this purpose; however, 
there also exist polygonal lines, which express 1D distributions. In any case, I feel that the title 
could be somehow polished up in this direction. 
 
The word “2D” has been added to the title. 
 
 

 
2. Figures 4, 6, 8, 10 and 12 should be accompanied with the numerical information regarding 

the corresponding differences. The values themselves are great, but when comparing to other 
formulas it would be helpful to get an impression of the differences, which right now are not 
visible. Graphically this would probably be difficult, perhaps in terms of a subplot with 
logarithmic scale (the dots seem to almost coincide with existing approaches). Or in terms of 
table(s) with statistics of the differences, or/and finally as a detailed inline textual information. 
This addition will make more clear whether the 'present approach' produces variations that 
have only to do with the internal accuracy level of the computer or whether it defines real 
numerical differences against existing methods. 

 
Tables 1-5 have been added to the revised version of the manuscript. In the captions I have 
specified that results from other sources in the literature have been simply inferred from the 
figures in which they have been originally reported. 
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