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Abstract We analytically evaluate the gravity anomaly associated with a polyhedral body
having an arbitrary geometrical shape and a polynomial density contrast in both the orizon-
tal and vertical directions. The gravity anomaly is evaluated at an arbitrary point that does
not necessarily coincide with the origin of the reference frame in which the density function
is assigned. Density contrast is assumed to be a third-order polynomial as a maximum but
the general approach exploited in the paper can be easily extended to higher-order polyno-
mial functions. Invoking recent results of potential theory, the solution derived in the paper
is shown to be singularity-free and is expressed as sum of algebraic quantities that only de-
pend upon the 3D coordinates of the polyhedron vertices and upon the polynomial density
function. The accuracy, robustness and effectiveness of the proposed approach is illustrated
by numerical comparisons with examples derived from the existing literature.
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1 Introduction

Gravity is an economic tool for exploring and discovering natural resources (Jacoby and
Smilde, 2009). In this respect density is one of the most diagnostic physical property of a
mineral deposit, and is also fundamental to oil and gas exploration. To date, density has been
one of the most difficult property to measure and infer.

During the last decade, there has been significant development in gravity survey, par-
ticularly with the advent of GPS and gravity gradiometry. In conventional gravity survey,
Earth’s gravity acceleration is measured using gravimeter whereas in gravity gradiometer
survey, the gravity gradient or how the gravitational acceleration changes over distance (or
in some cases time) is measured.
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Recent reviews (LaFehr, 1980; Paterson and Reeves, 1985; Hansen, 2001) document the
continuous evolution of instruments, field operations, data-processing techniques, and meth-
ods of interpretation. A steady progression in instrumentation (torsion balance, gravimeters
based on land or underwater, in boreholes or on board satellites, aircraft or marine vessels,
modern versions of absolute gravimeters, and gravity gradiometers) has enabled the acquisi-
tion of gravity data in nearly all environments, see, e.g., Nabighian (2005) for a quite recent
historical account.

Despite being eclipsed by seismology, it is impressive to realize that about 40 different
commercial gravity sensors and gravity gradiometers are available (Chapin, 2008) and about
30 different gravity sensor and gravity gradiometers designs have either been proposed or
developed. In particular, gravity gradiometry is still used in exploration (Dransfield, 2007)
and for regional gravity mapping (Jekeli, 2006).

Gravity data sets are effectively used to estimate locations and shapes of bodies, embed-
ded in Earth, exhibiting anomalous mass density with respect to a constant reference value
(Zhang et al., 2014). More refined Earth models can be obtained by inverting gravity data
(Li and Oldenburg, 1998; Zhdanov, 2002) in conjuction with seismic and electro-magnetic
induction data (Moorkamp et al., 2011; Aydemir et al., 2014; Roberts et al., 2016).

Recent improvements in gravimeter efficiency and inversion algorithms have increased
the possibility of collecting and inverting huge data sets over extended areas in order to
derive 3D density models (Kamm et al., 2015). In particular, gravity methods are extensively
used in geoid determination (Bajracharya and Sideris, 2004) and mineral exploration (Beiki
and Pedersen, 2010; Martinez et al., 2013; Abtahi et al., 2016).

In conclusion it is of paramount importance to efficiently evaluate the gravity anomaly
associated with a body characterized by complex density distributions since this represents
an important task in forward modelling and inversion.

Due to the mathematical complexity of the problem, the gravity anomaly of an irregular
body whose density contrast is spatially variable has been first computed by approximating
the body as a collection of vertical rectangular parallelepipeds (prisms) in which the density
is assumed to be constant.

Numerical computations were first carried out by Talwani et al. (1959) and Bott (1960).
Closed form expressions of the gravity anomaly were subsequently derived by Nagy (1966),
Banerjee and Das Gupta (1977), Cady (1980), Nagy et al. (2000), Tsoulis (2000), Jiancheng
and Wenbin (2010), D’Urso (2012), see also Plouff (1975, 1976), Won and Bevis (1987),
Montana et al. (1992) for computer codes. The case of spheroidal shell has been addressed
by Johnson and Litehiser (1972). Analytical expressions of the gravity anomaly for prisms
have been derived by D’Urso (2016), for a linearly varying density, by Rao (1985, 1986,
1990), Rao et al. (1994), Gallardo-Delgado et al. (2003) for a quadratic density contrast, by
Garcı́a-Abdeslem (1992, 2005), for a cubic density variation with depth. A good collection
of earlier references for 3D prisms can be found in Li and Chouteau (1998) who name,
among others, a formula contributed in Sorokin (1951).

Non-polynomial density-contrast models for 3D bodies have been considered by Cordell
(1973), Chai and Hinze (1988), Litinsky (1989), Rao et al. (1990), Chakravarthi et al. (2002),
Silva et al. (2006), Chakravarthi and Sundararajan (2007), Chappell and Kusznir (2008),
Zhou (2009b) and, for 2D bodies, by Gendzwill (1970), Murthy and Rao (1979), Pan (1989),
Guspı́ (1990), Ruotoistenmäki (1992), Martı́n-Atienza and Garcı́a-Abdeslem (1999), Zhang
et al. (2001), Zhou (2008, 2009a, 2010). For more complicated forms of the density contrast,
see, e.g., Cai and Wang (2005) and Mostafa (2008).

Alternative to the use of prisms, characterized by complicated functions describing den-
sity contrast, is the case of polyhedrons endowed with a a simple description of density
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contrast. Analytical formulas for the gravimetric analysis of polyhedra having constant den-
sity have been contributed by Paul (1974), Barnett (1976), Strakhov (1978), Okabe (1979),
Waldvogel (1979), Golizdra (1981), Strakhov et al. (1986), Götze and Lahmeyer (1988), Po-
hanka (1988), Murthy et al. (1989), Kwok (1991b), Werner (1994), Holstein and Ketteridge
(1996), Petrović (1996), Werner and Scheeres (1997), Li and Chouteau (1998), Tsoulis
(2012), D’Urso (2013a, 2014a), Conway (2015), Werner (2017). Subsequent advancements
have been only concerned with a linear density variation, (Pohanka, 1998; Hansen, 1999;
Holstein, 2003; Hamayun et al., 2009; D’Urso, 2014b); actually, handling more complex
density functions in conjunction with polyhedral models considerably increases the difficul-
ties of the treatment, especially if analytical solutions are looked for.

For 2D bodies having density contrast depending only on depth, Zhou (2008) converted
the original domain integral for gravity anomaly to a Line Integral (LI) by using Stokes theo-
rem. In particular he derived two types of LIs for computing the gravity anomaly of bodies.
In a subsequent paper (Zhou, 2009a) the author extended his method to account for den-
sity contrast functions which depended not only on depth but also on horizontal or, jointly,
on horizontal and vertical directions. The gravity anomaly at observation points different
from the origin has been evaluated in Zhou (2010) since, historically, gravity anomaly was
computed only at the origin of the reference frame. In the same paper, Zhou dealt with the
singularity of the gravity anomaly arising where the observation point is coincident with the
vertices of the integration domain, an issue already discussed in Kwok (1991a), for prism-
based modelling, and Tsoulis and Petrović (2001) for polyhedra.

The first approach for evaluating the gravity anomaly of bodies characterized by a com-
plicated density contrast, even in presence of two-dimensional domains, has been either nu-
merical or of semi-analytical nature based on the use of prisms, (Murthy and Rao, 1979; Rao
et al., 1990; Chakravarthi et al., 2002; Chakravarthi and Sundararajan, 2007; Zhou, 2009b),
or with 2D geometrical shapes, (Gendzwill, 1970; Murthy and Rao, 1979; Pan, 1989; Guspı́,
1990; Ruotoistenmäki, 1992; Martı́n-Atienza and Garcı́a-Abdeslem, 1999; Zhang et al.,
2001; Zhou, 2008, 2009a, 2010). Actually, this last geometrical assumption, which can be
used to model domains extending towards infinity in one direction, significantly simplifies
the mathematical treatment of the problem.

Nevertheless, starting from the first researches on the subject (Hubbert, 1948), all au-
thors have systematically transformed the original domain integrals into integrals of lower
dimension in order to simplify the adoption of quadrature rules for the numerical evaluation
of the gravity anomaly.

The derivation of analytical expressions for the gravity anomaly of polygonal bodies has
been achieved only recently (D’Urso, 2015c) by exploiting the generalized Gauss theorem
first presented in D’Urso (2012, 2013a), and subsequently applied to several problems rang-
ing from geodesy (D’Urso, 2014a,b; D’Urso and Trotta, 2015b; D’Urso, 2016), to geome-
chanics (D’Urso and Marmo, 2009; Sessa and D’Urso, 2013; D’Urso and Marmo, 2015a),
to geophysics (D’Urso and Marmo, 2013b), elasticity (Marmo and Rosati, 2016; Marmo et
al., 2016a,b, 2017; Trotta et al., 2016a,b) and to heat transfer (Rosati and Marmo, 2014).

The methodology outlined in D’Urso (2015c) is here generalized in order to derive an
analytical expression of the gravity anomaly for polyhedral bodies having density contrast
expressed as a polynomial function of arbitrary degree in both the horizontal and vertical
directions, an issue recently addressed in Ren et al. (2017). The result is obtained by first
reducing the original domain integral to a 2D boundary integral by virtue of the generalized
Gauss theorem. Remarkably, this also allows one to prove that the boundary integral expres-
sion of the gravity anomaly is singularity free whatever is the position of the observation
point with respect to the body.
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Being Ω polyhedral, the 2D expression of the gravity anomaly is written as finite sum
of 2D integrals extended to the faces of Ω. By a further application of the generalized Gauss
theorem each face integral is reduced to the sum of 1D integrals extended to the edges of the
face. Such 1D integrals are analytically evaluated as products between the position vectors
of the end vertices of each edge and scalar coefficients providing the analytical value of
integrals of real variable.

Although these last integrals may exhibit a singularity when the projection of the obser-
vation point onto a face belongs to an edge, it is proved that such a singularity produces a
null contribution of the i-th edge to the general expression of gravity anomaly; hence, one
infers that the derived expression is singularity-free.

By exploiting a suitable change of variables, we also derive an enhanced algebraic for-
mula which expresses the gravity anomaly at an arbitrary point P and specializes to the
ordinary one when P = O. Remarkably, the enhanced expression of the gravity anomaly
has been derived without any modification of the density contrast function since this is still
defined in the original reference frame. The enhanced formula has been implemented in a
MATLAB code, and its accuracy and robustness has been assessed by numerical compar-
isons with examples derived from the literature.

2 Gravity Anomaly of Polyhedral Bodies at the Origin O of the Reference Frame

Let us consider a Cartesian reference frame having origin at an arbitrary point O and a
polyhedral body Ω. We shall assume that the density ∆ρ of the body, usually denominated
density contrast, is a function of the generic point whose position with respect to O is defined
by the vector r. The symbol ∆ρ emphasizes the fact that the density of Ω is a variation with
respect to that of the surrounding medium.

Denoting by G the gravitational constant, we shall first evaluate the gravity anomaly at
O; it is defined by

∆g(O) = G
∫
Ω

∆ρ(r)r
(r · r)3/2 dV (1)

and the integrand function represents the magnitude of attraction on a unit mass at O arising
from the infinitesimal mass ∆ρdV .

We remark that the denomination of gravity anomaly adopted to denote equation (1),
though not strictly correct, is based on a common practice in the specialized literature. Ac-
tually, equation (1) is a formula for the gravitational attraction of a mass body and may be
approximatively seen as the formula for the influence of a mass body on the gravity anomaly
since, for small bodies, the effect on gravity is the dominant part of the effect on the gravity
anomaly.

An in-depth discussion on this topic is reported in Vanı́ček et al. (2004) where the inter-
ested reader can find an example of how the effect of a mass body on the gravity anomaly
can be formulated in a theoretically consistent manner.

The vertical component of the gravity anomaly at O is provided by

∆gz(O) = G
∫
Ω

∆ρ(r)r ·k
(r · r)3/2 dV , (2)

k being the unit vector directed along the vertical axis. The evaluation of ∆gz at an arbitrary
point P will be addressed in section 3 since a considerably more elaborate expression is
arrived at.
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It is usually of interest to dispose of a procedure to actually compute ∆gz since most
gravimeters can only measure the vertical component of the gravity field. Nevertheless the
procedure detailed in the paper can be equally applied to all components of (1) and to phys-
ical problems governed by the Poisson equation (Blakely, 2010).

The computation of the integral in (2) is a hard task since the density contrast func-
tion ∆ρ does usually have a very complicated expression for the necessity of modelling 3D
anomalies of Earth. For simplicity this can be modeled as an ensemble of 3D anomalies
in a layered medium or a sequence of strata with horizontally undulated interfaces, e.g.,
sedimentary basins and underlying bedrock. In each layer mass density typically exhibits
depth-dependent variations (Garcı́a-Abdeslem, 1992).

However geological processes of exogenetic (fluvial, coastal, glacial,...) and endogenetic
(rock diagenesis, plate tectonics, volcano eruptions, earthquakes,...) nature can induce both
horizontal and vertical variations in mass density (Martı́n-Atienza and Garcı́a-Abdeslem,
1999). Thus, a suitable expression of the density variation can allow for potentially faithful
representations of the Earth subsurface with a relatively smaller amount of computations
and parameters. Additionally, disposing of analytical expressions of the gravity anomaly
associated with complicated expressions ∆ρ can be useful for benchmarking numerical ap-
proaches.

A quite general expression for ∆ρ, able to accommodate a large variety of geological
formations, is given by a triple polynomial in x,y and z, (Garcı́a-Abdeslem, 2005; Zhou,
2009b; Ren et al., 2017)

∆ρ(r) = θ(x,y,z) =

Nx∑
i=0

Ny∑
j=0

Nz∑
k=0

ci jk xiy jzk (3)

where Nx, Ny and Nz represent the maximum power of the polynomial density variation
along x, y and z respectively. In the sequel we shall confine the treatment to the case

Nx + Ny + Nz = 3 (4)

since this will suffice to address the majority of the practical applications and, at the same
time, to present our formulation at a degree of generality sufficient to be generalized to the
cases Nx + Ny + Nz > 3.

Thus, under the assumption (4), equation (3) specializes to

θ(r) = c000 +c100x + c010y + c001z+

+c200x2 + c020y2 + c002z2 +c110xy + c011yz + c101xz+

+c300x3 + c030y3 + c003z3 +c210x2y + c021y2z + c102xz2+

+c120xy2 + c012yz2 + c201x2z + c111xyz .

(5)

The scalars ci jk represent the coefficients of the polynomial law; they can be estimated
from the known data points by a least-square approach (Jacoby and Smilde, 2009).

Paralleling the analogous treatment developed in D’Urso (2015c), we first reformulate
the general expression (3) of the density contrast by writing

θ(r) = θo + c · r + C ·Drr +� ·�rrr (6)
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where θo is a scalar denoting the density at o = (0,0,0), c is a vector, C and Drr are symmetric
second-order tensors, � and �rrr are third-order tensors; furthermore, it has been set

Drr = r⊗ r �rrr = r⊗ r⊗ r . (7)

The second-order (rank-two) tensor r⊗ r has the following matrix representation

[r⊗ r] =

 x2 xy xz
yx y2 yz
zx zy z2

 , (8)

so that, being:

C · (r⊗ r) = C11x2 + 2C12xy + 2C13xz +C22y2 + 2C23yz +C33z2 , (9)

a quadratic distribution of density can be assigned by suitably defining the coefficients of
the symmetric tensor C. Analogously, the third-order tensors � and r⊗r⊗r, are represented
in matrix form as:

� =



C111 C112 C113
C121 C122 C123
C131 C132 C133
C211 C212 C213
C221 C222 C223
C231 C232 C233
C311 C312 C313
C321 C322 C323
C331 C332 C333


r⊗ (r⊗ r) =



x

 x2 xy xz
yx y2 yz
zx zy z2


y

 x2 xy xz
yx y2 yz
zx zy z2


z

 x2 xy xz
yx y2 yz
zx zy z2




, (10)

i.e. as vectors of rank-two tensors. Being

� · (r⊗ r⊗ r) = C111x3 +C222y3 +C333z3+

+
(
C112 +C121 +C211

)
x2y +

(
C113 +C131 +C311

)
x2z+

+
(
C223 +C232 +C322

)
y2z +

(
C122 +C221 +C212

)
xy2+

+
(
C133 +C331 +C313

)
xz2 +

(
C233 +C332 +C323

)
yz2+

+
(
C123 +C132 +C213 +C231 +C312 +C321

)
xyz ,

(11)

the representation (3) of the density contrast is recovered from (6) by setting

θ0 = c000 c1 = c100 c2 = c010 c3 = c001

C11 = c200 C22 = c020 C33 = c002

C12 = c110/2 C13 = c101/2 C23 = c011/2

(12)
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and

C111 = c300 C222 = c030 C333 = c003

C112 = C121 = C211 = c210/3 C113 = C131 = C311 = c201/3

C223 = C232 = C322 = c021/3 C122 = C221 = C212 = c120/3

C133 = C331 = C313 = c102/3 C233 = C332 = C323 = c012/3

C123 = C132 = C213 = C231 = C312 = C321 = c111/6 .

(13)

In conclusion, we derive from (2) the following expression of the gravity anomaly

∆gz(o) = G
[
θodΩr + c ·dΩr + C ·DΩ

rr +� ·�Ω
rrr

]
(14)

where
dΩr =

∫
Ω

r ·k
(r · r)3/2 dV dΩr =

∫
Ω

(r ·k)r
(r · r)3/2 dV (15)

and
DΩ

rr =

∫
Ω

(r ·k)r⊗ r
(r · r)3/2 dV �

Ω
rrr =

∫
Ω

(r ·k)r⊗ r⊗ r
(r · r)3/2 dV . (16)

In order to transform the previous domain integrals into boundary integrals we apply Gauss
theorem in the generalized form illustrated in D’Urso (2013a, 2014a) so as to correctly take
into account the singularity at r = o = (0,0,0).

This will be done in the following two subsections while in the subsequent ones the
boundary integrals extended to the faces of Ω will be further reduced to 1D integrals ex-
tended to the edges of each face by means of a further application of Gauss theorem. These
last integrals will be first expressed as function of the 2D coordinates of the vertices in the
reference frame local to each face and then reformulated in terms of the 3D coordinates
representing the basic geometric data defining the polyhedron.

2.1 Analytical Expression of the Gravity Anomaly at O in Terms of 2D Integrals

Let us now illustrate a general approach to express the 3D integrals in (14) as 2D integrals
extended to the faces constituting the boundary of Ω. Generality lies in the fact that, owing
to the symmetry of the integrals, application of Gauss theorem can be based upon a unique
formula. Actually, we are going to prove the result∫

Ω

kr[⊗r,m]
(r · r)3/2 dV =

1
m + 1

∫
∂Ω

kr[⊗r,m](r ·n)
(r · r)3/2 dA m = 0,1, . . . (17)

where kr = r ·k, n is the 3D outward unit normal to the boundary ∂Ω of the polyhedral body
and [⊗r,m] denotes a rank-m tensor defined by

[⊗r,m] =



1 if m = 0
r if m = 1
r⊗ r if m = 2
. . . . . . . . . . . . . . . . . . . . .
r⊗ r⊗ · · ·⊗ r︸         ︷︷         ︸

m times

if m > 2 .

(18)
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To fix the ideas we shall prove the identity (17) for m = 2∫
Ω

krr⊗ r
(r · r)3/2 dV =

1
3

∫
∂Ω

kr(r⊗ r)(r ·n)
(r · r)3/2 dA (19)

since it allows us to illustrate our approach to a degree of generality sufficient to extend the
final result to all integrals in (14) and to the additional ones, not reported in (14), containing
tensors of rank superior to three, i.e. tensors of the kind [⊗r,m] where m > 3.

Recalling the identity proved in the appendix of D’Urso (2015c)

div[ψ(a⊗b⊗ c)] = (a⊗b⊗ c)gradψ+ψ[(grada)c]⊗b+

+ψa⊗ [(gradb)c] +ψ(a⊗b)divc
(20)

where a, b, c (ψ) are vector (scalar) differentiable fields, we have

div
[
kr(r⊗ r)⊗

r
(r · r)3/2

]
=

[
(r⊗ r)⊗

r
(r · r)3/2

]
gradkr + kr

[
(gradr)

r
(r · r)3/2

]
⊗ r+

+krr⊗
[
(gradr)

r
(r · r)3/2

]
+ kr(r⊗ r)div

r
(r · r)3/2 .

(21)

Applying the further identity proved in the appendix of D’Urso (2015c)

grad(a ·b) = [grada]T b + [gradb]T a (22)

where (·)T stands for transpose, one gets

gradkr = grad(r ·k) = (gradr)k = k (23)

since k is a constant vector field and gradr = I, being I the rank-two identity tensor. Substi-
tuting the previous relation in (21) one obtains

div
[
kr(r⊗ r)⊗

r
(r · r)3/2

]
=

[
(r⊗ r)⊗

r
(r · r)3/2

]
k + kr

[ r
(r · r)3/2 ⊗ r + r⊗

r
(r · r)3/2

]
+

+kr(r⊗ r)div
r

(r · r)3/2 =

= 3kr
r⊗ r

(r · r)3/2 + kr(r⊗ r)div
r

(r · r)3/2 .

(24)

Finally, integrating the previous identity over Ω yields∫
Ω

kr
r⊗ r

(r · r)3/2 dV =
1
3

∫
Ω

div
[
kr(r⊗ r)⊗

r
(r · r)3/2

]
dV −

1
3

∫
Ω

kr(r⊗ r)div
r

(r · r)3/2 dV . (25)

The second integral on the right-hand side can be computed by means of the general
result (Tang, 2006) ∫

Ω

ϕ(r)div
[

r
(r · r)3/2

]
dV =

 0 if o < Ω

αV (o)ϕ(o) if o ∈ Ω
(26)

where ϕ is a continuous scalar field and the quantity αV represents the angular measure,
expressed in steradians, of the intersection between Ω and a spherical neighbourhood of the
singularity point r = o, see D’Urso (2012, 2013a, 2014a) for additional details.
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The previous expression can be extended to arbitrary tensors by applying it to each scalar
component of the tensor.

On account of (26) one infers that the second integral on the right-hand side of (25) is
the null rank-two tensor O since

∫
Ω

kr(r⊗ r)div
r

(r · r)3/2 dV =

O if o < Ω

[krr⊗ r]r=oαV (o) if o ∈ Ω.
(27)

However, the expression [kr(r⊗ r)]r=o amounts to evaluating the quantity kr(r⊗ r) at the
singularity point r = o, what yields trivially the null tensor O. Hence, according to (27), the
last integral in (25) is always the null tensor, independently from the position of singularity
point r = o with respect to the domain Ω of integration.

In conclusion, upon application of Gauss theorem to the second integral in (25), we
finally infer the identity (19). Remarkably, the derivation of this identity has also allowed
us to prove that the singularity at r = o, of the integrand function appearing on the left-hand
side of (19), can be actually ignored.

Furthermore, it is not difficult to rephrase the path of reasoning detailed in formulas
(21)-(27) so as to prove the more general formula (17). Hence, defining

d∂Ωr =

∫
∂Ω

(r ·k)(r ·n)
(r · r)3/2 dA d∂Ωr =

∫
∂Ω

(r ·k)r (r ·n)
(r · r)3/2 dA (28)

D∂Ω
rr =

∫
∂Ω

(r ·k)r⊗ r (r ·n)
(r · r)3/2 dA �

∂Ω
rrr =

∫
∂Ω

(r ·k)r⊗ r⊗ r (r ·n)
(r · r)3/2 dA , (29)

one has, recalling definitions (15) and (16)

dΩr = d∂Ωr dΩr =
d∂Ωr

2
DΩ

rr =
D∂Ω

rr
3

�
Ω
rrr =

�∂Ω
rrr
4

. (30)

In conclusion, application of formula (17) allows us to rewrite formula (14) as follows

∆gz(o) = G
[
θod∂Ωr +

c ·d∂Ωr
2

+
C ·D∂Ω

rr
3

+
� ·�∂Ω

rrr
4

]
, (31)

an expression that will be further elaborated in the next subsection by transforming the 2D
integrals (28), (29) in 1D integrals.

2.2 Analytical Expression of the Gravity Anomaly at O in terms of Face Integrals

In order to derive an expression suitable for programming, we specialize formula (31) to
polyhedral domains since this is by far the most general case in the gravity inversion prob-
lems.
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Fig. 1 Polyhedral domain Ω and decomposition of the position vector of a point on a face.

For a polyhedral body characterized by NF faces, the integrals in (28)-(29) can be written
as

d∂Ωr =

NF∑
i=1

∫
Fi

(ri ·k)(ri ·ni)
(ri · ri)3/2 dAi =

NF∑
i=1

di

∫
Fi

ri ·k
(ri · ri)3/2 dAi

d∂Ωr =

NF∑
i=1

∫
Fi

(ri ·k)ri (ri ·ni)
(ri · ri)3/2 dAi =

NF∑
i=1

di

∫
Fi

(ri ·k)ri

(ri · ri)3/2 dAi

D∂Ω
rr =

NF∑
i=1

∫
Fi

(ri ·k) (ri ⊗ ri) (ri ·ni)
(ri · ri)3/2 dAi =

NF∑
i=1

di

∫
Fi

(ri ·k)ri ⊗ ri

(ri · ri)3/2 dAi

�∂Ω
rrr =

NF∑
i=1

∫
Fi

(ri ·k) (ri ⊗ ri ⊗ ri) (ri ·ni)
(ri · ri)3/2 dAi =

NF∑
i=1

di

∫
Fi

(ri ·k)ri ⊗ ri ⊗ ri

(ri · ri)3/2 dAi

(32)

where the second equality in each formula above stems from the fact that the vector ri
spanning the i-th face, see, e.g., fig. 1, can be decomposed as follows

ri = r⊥i + r‖i , (33)

i.e. as sum of a vector r⊥i orthogonal to Fi and a vector r‖i parallel to the face. Accordingly,
denoting by ni the unit vector pointing outwards Ω, one can set ri ·ni = r⊥i ·ni = di, since di
represents the signed distance between the origin and the i-th face Fi measured orthogonally
to this last one.
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The 2D integrals above can be transformed to a line integral by a further application
of Gauss theorem. To this end we denote by Oi the orthogonal projection on Fi of the
observation point O and assume Oi as origin of a 2D reference frame local to the face.

Furthermore, we express formula (33) in the alternative form

ri = r⊥i + r‖i = (ri ·ni)ni + r‖i = dini + TFiρi (34)

where the vector ρi = (ξi,ηi) represents the position vector of a generic point of the i-th face
with respect to Oi and

TFi =

ui1 vi1
ui2 vi2
ui3 vi3

 (35)

is the linear operator mapping the 2D vector ρi to the 3D one r‖i . In turn ui and vi represent
two distinct, yet arbitrary, 3D unit vectors parallel to Fi.

We emphasize the use of roman and greek letters in (34) to denote, respectively, 3D and
2D vectors. The same notational distinction will be adopted throughout the paper.

Setting
ri ·k = dini ·k + TFiρi ·k = dini3 +ρi ·TT

Fi
k = dini3 +ρi ·κi , (36)

the first two integrals in (32) become

d∂Ωr =

NF∑
i=1

di

{
dini3

∫
Fi

dAi

(ρi ·ρi + d2
i )3/2

+κi ·

∫
Fi

ρi

(ρi ·ρi + d2
i )3/2

dAi

}
(37)

d∂Ωr =

NF∑
i=1

di

{
d2

i ni3ni

∫
Fi

dAi

(ρi ·ρi + d2
i )3/2

+ dini3

∫
Fi

TFiρi

(ρi ·ρi + d2
i )3/2

dAi+

+dini

[∫
Fi

ρidAi

(ρi ·ρi + d2
i )3/2

·κi

]
+

∫
Fi

TFiρi ⊗ρidAi

(ρi ·ρi + d2
i )3/2

κi

}
.

(38)

Thus, defining

ϕFi =

∫
Fi

dAi

(ρi ·ρi + d2
i )3/2

ϕFi
=

∫
Fi

ρidAi

(ρi ·ρi + d2
i )3/2

ΦFi =

∫
Fi

ρi ⊗ρidAi

(ρi ·ρi + d2
i )3/2

, (39)

one finally has

d∂Ωr =

NF∑
i=1

di
{
dini3ϕFi +κi ·ϕFi

}
(40)

and

d∂Ωr =

NF∑
i=1

di

{
d2

i ni3ϕFi ni + dini3TFiϕFi
+ dini

(
κi ·ϕFi

)
+ TFiΦFiκi

}
. (41)

To suitably shorten the expression of the last two integrals in (32) we set

CFi =

∫
Fi

ρi ⊗ρi ⊗ρi

(ρi ·ρi + d2
i )3/2

dAi DFi =

∫
Fi

ρi ⊗ρi ⊗ρi ⊗ρi

(ρi ·ρi + d2
i )3/2

dAi (42)
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CFiκi =

∫
Fi

(ρi ·κi)ρi ⊗ρi

(ρi ·ρi + d2
i )3/2

dAi DFiκi =

∫
Fi

(ρi ·κi)ρi ⊗ρi ⊗ρidAi

(ρi ·ρi + d2
i )3/2 (43)

and introduce the formal operator�b...b
Fi

where the symbol b...b denotes an arbitrary sequence
of 0 and 1. In particular

�
11
Fi
ΦFi = �11

Fi

∫
Fi

ρi ⊗ρi

(ρi ·ρi + d2
i )3/2

dAi =

∫
Fi

TFiρi ⊗TFiρi

(ρi ·ρi + d2
i )3/2

dAi = TFiΦFi T
T
Fi
, (44)

�
111
Fi
CFi = �111

Fi

∫
Fi

ρi ⊗ρi ⊗ρi

(ρi ·ρi + d2
i )3/2

dAi =

∫
Fi

TFiρi ⊗TFiρi ⊗TFiρi

(ρi ·ρi + d2
i )3/2

dAi (45)

and

�
1010
Fi
DFi = �1010

Fi

∫
Fi

ρi ⊗ρi ⊗ρi ⊗ρi

(ρi ·ρi + d2
i )3/2

dAi =

∫
Fi

TFiρi ⊗ρi ⊗TFiρi ⊗ρi

(ρi ·ρi + d2
i )3/2

dAi (46)

since the suffix 1 (0) of �Fi indicates that the operator TFi has (not) to be applied to the
vector ρi.

Accordingly, the third integral in (32) becomes

D∂Ω
rr =

NF∑
i=1

di

{
dini3

[
d2

i ϕFi ni ⊗ni + di
(
ni ⊗TFiϕFi

+ TFiϕFi
⊗ni

)
+ TFiΦFi TT

Fi

]
+

+d2
i ni ⊗ni

(
κi ·ϕFi

)
+ di

[
ni ⊗TFi

(
ΦFiκi

)
+ TFi

(
ΦFiκi

)
⊗ni

]
+ Hi

} (47)

where

Hi = TFi

(
CFiκi

)
TT

Fi
. (48)

Furthermore, setting

ΦFi ∧ni =

∫
Fi

ρi ⊗ni ⊗ρi

(ρi ·ρi + d2
i )3/2

dAi ΦFi ∧
(
ni ⊗ni

)
=

∫
Fi

ρi ⊗ni ⊗ni ⊗ρi

(ρi ·ρi + d2
i )3/2

dAi

CFi ∧ni =

∫
Fi

ρi ⊗ni ⊗ρi ⊗ρi

(ρi ·ρi + d2
i )3/2

dAi CFi ∨ni =

∫
Fi

ρi ⊗ρi ⊗ni ⊗ρi

(ρi ·ρi + d2
i )3/2

dAi ,

(49)
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it turns out to be

�∂Ω
rrr =

NF∑
i=1

di

{
dini3

[
d3

i ϕFi ni ⊗ni ⊗ni + d2
i

(
ni ⊗ni ⊗TFiϕFi

+ ni ⊗TFiϕFi
⊗ni+

+TFiϕFi
⊗ni ⊗ni

)
+ dini ⊗�

11
Fi
ΦFi + di�

101
Fi

(
ΦFi ∧ni

)
+

+di�
11
Fi
ΦFi ⊗ni +�111

Fi
CFi

]
+ d3

i ni ⊗ni ⊗ni
(
κi ·ϕFi

)
+

+d2
i

[
ni ⊗ni ⊗TFi

(
ΦFiκi

)
+ ni ⊗�

101
Fi

(
ΦFi ∧ni

)
κi+

+�1000
Fi
ΦFi ∧

(
ni ⊗ni

)
κi

]
+di

[
ni ⊗�

110
Fi
CFiκi +�1010

Fi

(
CFi ∧ni

)
κi+

+�1100
Fi

(
CFi ∨ni

)
κi

]
+�1110

Fi
DFiκi

}

(50)

being

�
101
Fi

(
ΦFi ∧ni

)
=

∫
Fi

TFiρi ⊗ni ⊗TFiρi

(ρi ·ρi + d2
i )3/2

dAi , (51)

�
1000
Fi
ΦFi ∧

(
ni ⊗ni

)
=

∫
Fi

TFiρi ⊗ni ⊗ni ⊗ρidAi

(ρi ·ρi + d2
i )3/2

κi , (52)

�
110
Fi
CFiκi =

∫
Fi

TFiρi ⊗TFiρi ⊗ρidAi

(ρi ·ρi + d2
i )3/2

κi =

∫
Fi

(ρi ·κi)TFiρi ⊗TFiρi

(ρi ·ρi + d2
i )3/2

dAi , (53)

�
1010
Fi

(
CFi ∧ni

)
=

∫
Fi

TFiρi ⊗ni ⊗TFiρi ⊗ρidAi

(ρi ·ρi + d2
i )3/2

, (54)

�
1100
Fi

(
CFi ∨ni

)
=

∫
Fi

TFiρi ⊗TFiρi ⊗ni ⊗ρidAi

(ρi ·ρi + d2
i )3/2

, (55)

�
1110
Fi
DFiκi =

∫
Fi

TFiρi ⊗TFiρi ⊗TFiρi ⊗ρidAi

(ρi ·ρi + d2
i )3/2

κi =

∫
Fi

(ρi ·κi)TFiρi ⊗TFiρi ⊗TFiρi

(ρi ·ρi + d2
i )3/2

dAi .

(56)
Notice that the symbols in (49), as well as the ones in (50), are purely formal since they

involve the tensor product of 2D and 3D vectors. They have been deliberately introduced to
focus the reader’s attention on the main issues involved in the evaluation of the quantities
d∂Ωr , d∂Ωr , D∂Ω

rr , and �∂Ω
rrr. Actually, one first evaluates the integrals∫

Fi

[⊗ρi,m]
(ρi ·ρi + d2

i )3/2
dAi m ∈ [0,4] (57)

as tensor product of 2D vectors, see, e.g., Appendix 1 and 2. Only subsequently the resulting
formula is combined with the 2D vector κi and expressed in terms of 3D vectors, by means
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of the operator TFi , or suitably combined with the 3D vector ni to evaluate the integrals in
(50).

The simultaneous presence in (57) of the quantity di and of the exponent 3/2 in the de-
nominator makes the evaluation of the integrals in (57) by far more diffult than the analogous
ones addressed in D’Urso (2015c) for polygonal bodies. Actually the case di = 0, meaning
that the observation point O belongs to the face Fi, or equivalently that Oi ≡ O, needs to be
properly addressed since the integrals can become singular.

For the same reason we shall not consider the fact that the integrals in (57) need to be
composed with the vector κi producing

∫
Fi

[⊗ρi,m]
(ρi ·ρi + d2

i )3/2
dAi

κi =

∫
Fi

[⊗ρi,m−1](ρi ·κi)
(ρi ·ρi + d2

i )3/2
dAi m ∈ [1,4] , (58)

since this would require to consider separately these cases in the discussion of the singular-
ities of the algebraic expressions resulting from (57); instead, we shall perform the combi-
nation after the integration. Moreover, due to the presence of the exponent 3/2, the definite
integrals that need to be computed to transform the integrals (57) into their algebraic coun-
terparts do not exhibit anymore the useful recurrence property invoked in the appendix of
D’Urso (2015c) so that it is more convenient to evaluate the integrals in (57) prior to their
composition with κi.

Last, but not least, most of the integrals in (57) have been already computed in D’Urso
(2013a, 2014a,b) so that we include in the Appendix 1 only the explicit evaluation of the
new ones.

2.3 Analytical Expression of Face Integrals in terms of 1D Integrals

It has been emphasized in the previous subsection that the main burden associated with the
evaluation of the expressions (37), (38), (47) and (50) is the evaluation of the integrals (57).
Similarly to the integrals (15) and (16), they can be transformed into simpler 1D integrals
by a further application of the generalized Gauss theorem (Tang, 2006).

For some of them, namely the ones in (57) defined by m = 0, m = 1, and m = 2, this has
been done in previous papers (D’Urso, 2013a, 2014a,b); for m = 3 and m = 4 this has been
carried out in Appendix 1. For sake of clarity their expressions are collected hereafter for
increasing values of m.
• Integral (57) for m = 0

ϕFi =

∫
Fi

dAi(
ρi ·ρi + d2

i

)3/2 =
αi

|di|
−

∫
∂Fi

ρi(si) ·ν(si)[
ρi(si) ·ρi(si)

][
ρi(si) ·ρi(si) + d2

i

]1/2 dsi . (59)

where si is the curvilinear abscissa along the boundary ∂Fi of the face Fi, ν is the out-
ward unit normal to Fi and αi is a scalar, defined in Appendix 2, representing the measure,
expressed in radians, of the intersection between Fi and a circular neighbourhood of the
singularity point ρ = o when di = 0.
• Integral (57) for m = 1

ϕFi
=

∫
Fi

ρidAi(
ρi ·ρi + d2

i

)3/2 = −

∫
∂Fi

ν(si)[
ρi(si) ·ρi(si) + d2

i

]1/2 dsi . (60)
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• Integral (57) for m = 2

ΦFi =

∫
Fi

ρi ⊗ρidAi(
ρi ·ρi + d2

i

)3/2 = −

∫
∂Fi

ρi(si)⊗ν(si)[
ρi(si) ·ρi(si) + d2

i

]1/2 dsi +ψFi I2D (61)

where I2D is the rank-two two-dimensional identity tensor,

ψFi =

∫
Fi

dAi(
ρi ·ρi + d2

i

)1/2 =

∫
∂Fi

[
ρi(si) ·ρi(si) + d2

i

]1/2[
ρi(si) ·ν(si)

]
ρi(si) ·ρi(si)

dsi −αi|di| (62)

and αi has been introduced just before formula (60).
• Integral (57) for m = 3

CFi =

∫
Fi

ρi ⊗ρi ⊗ρidAi(
ρi ·ρi + d2

i

)3/2 = −

∫
∂Fi

ρi(si)⊗ρi(si)⊗ν(si)(
ρi ·ρi + d2

i

)1/2 dsi + I2D ⊗23ψFi
+ψFi

⊗ I2D (63)

where the symbol ⊗23 denotes the tensor product obtained by interchanging the second and
third index of the rank-three tensor I2D ⊗ψFi

and

ψFi
=

∫
Fi

ρidAi(
ρi ·ρi + d2

i

)1/2 =

∫
∂Fi

[
ρi(si) ·ρi(si) + d2

i

]1/2
ν(si)dsi . (64)

• Integral (57) for m = 4

DFi =

∫
Fi

ρi ⊗ρi ⊗ρi ⊗ρidAi(
ρi ·ρi + d2

i

)3/2 = −

∫
∂Fi

ρi(si)⊗ρi(si)⊗ρi(si)⊗ν(si)(
ρi ·ρi + d2

i

)1/2 dsi+

+I2D ⊗24ΨFi +ΨFi ⊗23 I2D +ΨFi ⊗ I2D

(65)

where the symbol ⊗24 denotes the tensor product obtained by interchanging the second and
fourth index of the rank-four tensor I2D ⊗ΨFi and

ΨFi =

∫
Fi

ρi ⊗ρidAi(
ρi ·ρi + d2

i

)1/2 = −

∫
∂Fi

[
ρi(si) ·ρi(si) + d2

i

]1/2
ρi(si)⊗ν(si)dsi−

−
I2D

3


∫
∂Fi

[
ρi(si) ·ρi(si) + d2

i

]1/2
ρi(si) ·ν(si)dsi −d2

i ψFi

 .
(66)

Since each face is polygonal the previous line integrals can be further expressed as
sums extended to the NEi edges that define the boundary ∂Fi. For the j-th edge a suitable
parameterization allows one to transform each 1D integral into an integral of a real variable;
this is scaled by a suitable combination of the vectors ρ j and ρ j+1 that define the position
vectors of the end vertices of the edge in the 2D reference frame local to Fi.

In particular we set

ρ̂i(λ j) = ρ j +λ j(ρ j+1 −ρ j) = ρ j +λ j∆ρ j (67)
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where the function ρ̂i associates with each value of the adimensional abscissa

λ j = s j/l j, (68)

the position vector spanning the j-th edge. The quantity s j, s j ∈ [0, l j], is the curvilinear
abscissa along the j-th edge and l j = |ρ j+1 − ρ j| is the edge length. The position vector
spanning the j-th edge of Fi can also be expressed as function of s j and a new function ρi,
fulfilling the condition ρi(si) = ρ̂i(λ j). Hence

ρi(s j) ·ρi(s j) = ρ̂i(λ j) · ρ̂i(λ j) = p jλ
2
j + 2q jλ j + u j = Pu(λ j) (69)

where, according to (67)

p j = ∆ρ j ·∆ρ j q j = ρ j ·∆ρ j u j = ρ j ·ρ j . (70)

Furthermore
ρ(s j) ·ρ(s j) + d2

i = p jλ
2
j + 2q jλ j + v j (71)

where v j = u j + d2
i . We shall also set Pv(λ j) = Pu(λ j) + d2

i .

2.4 Algebraic expression of face integrals in terms of 2D vectors

Refering to the Appendices 1 and 2 for further details we hereby report the algebraic coun-
terparts of the integrals (57) for m=0,..,4.
• Integral (57) for m = 0

ϕFi =
αi

|di|
−

NEi∑
j=1

(
ρ j ·ρ

⊥
j+1

) 1∫
0

dλ j

Pu(λ j)
[
Pv(λ j)

]1/2 =
αi

|di|
−

NEi∑
j=1

ϕ j
(
ρ j ·ρ

⊥
j+1

)
(72)

where ϕ j is defined in (221). The symbol (·)⊥ denotes a clockwise rotation of the 2D vector
(·) necessary to express the outward unit normal ν j to the j-th edge according to the formula

ν j =

(
ρ j+1 −ρ j

)⊥
l j

=
∆ρ⊥j

l j
. (73)

The clockwise rotation indicated by the symbol (·)⊥ depends on the convention adopted
to circulate along the boundary ∂Fi. In particular, we have assumed that the vertices of each
face have been numbered consecutively by circulating along ∂Fi in a counter-clockwise
sense with respect to the normal ni to the face. Thus

∆ρ j =

[
∆ξ j
∆η j

]
⇒ ∆ρ⊥j =

[
−∆η j
∆ξ j

]
=

[
0 −1
1 0

]
∆ρ j . (74)

• Integral (57) for m = 1

ϕFi
= −

NEi∑
j=1

∆ρ⊥j

1∫
0

dλ j[
Pv(λ j)

]1/2 = −

NEi∑
j=1

I0 j ∆ρ
⊥
j (75)

where the scalar I0 j is defined in (211).
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• Integral (57) for m = 2

ΦFi = −

NEi∑
j=1

1∫
0

ρ̂i(λ j)[
Pv(λ j)

]1/2 dλ j ⊗∆ρ
⊥
j +ψFi I2D =

= −

NEi∑
j=1

[
I0 j ρ j ⊗∆ρ

⊥
j + I1 j ∆ρ j ⊗∆ρ

⊥
j

]
+ψFi I2D

(76)

where I0 j is defined in (211), I1 j in (212) while ψFi is provided by

ψFi =

NEi∑
j=1

1∫
0

[
Pv(λ j)

]1/2[
Pu(λ j)

] dλ j =

NEi∑
j=1

ψi
j

(
ρ j ·ρ

⊥
j+1

)
− |di|αi (77)

and ψi
j is defined in (219).

• Integral (57) for m = 3

CFi = −

NEi∑
j=1

1∫
0

ρ̂i(λ j)⊗ ρ̂i(λ j)dλ j[
Pv(λ j)

]1/2 + I2D ⊗23ψFi
+ψFi

⊗ I2D =

= −

NEi∑
j=1

[
I0 j Eρ j ρ j + I1 j Eρ j ∆ρ j + I2 j E∆ρ j ∆ρ j

]
⊗∆ρ⊥j + I2D ⊗23ψFi

+ψFi
⊗ I2D

(78)

where I0 j, I1 j, I2 j are defined in (211), (212) and (213) respectively, Eρ j ρ j , Eρ j ∆ρ j and
E∆ρ j ∆ρ j are defined in (180) and

ψFi
=

NEi∑
j=1

l jν j

1∫
0

[
Pv(λ j)

]1/2
dλ j =

NEi∑
j=1

I4 j∆ρ
⊥
j , (79)

the scalar I4 j being defined in (215).
• Integral (57) for m = 4

DFi = −

NEi∑
j=1


1∫

0

ρ̂i(λ j)⊗ ρ̂i(λ j)⊗ ρ̂i(λ j)dλ j[
Pv(λ j)

]1/2 ⊗∆ρ⊥j

+ I2D ⊗24ΨFi +ΨFi ⊗23 I2D +ΨFi ⊗ I2D =

= −

NEi∑
j=1

[
I0 j�ρ j ρ j ρ j + I1 j�ρ j ρ j ∆ρ j +�ρ j ∆ρ j ∆ρ j + I3 j�∆ρ j ∆ρ j ∆ρ j

]
⊗∆ρ⊥j +

+ I2D ⊗24ΨFi +ΨFi ⊗23 I2D +ΨFi ⊗ I2D
(80)
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where I0 j, I1 j, I2 j, I3 j are defined in (211), (212), (213) and (214) respectively, �ρ j ρ j ρ j ,
�ρ j ρ j ∆ρ j , �ρ j ∆ρ j ∆ρ j and �∆ρ j ∆ρ j ∆ρ j are defined in (191), (192) and (193) and

ΨFi =

NEi∑
j=1

{[ 1∫
0

[
ρ̂i(λ j) · ρ̂i(λ j) + d2

i

]1/2 (
ρ j +λ j∆ρ j

)
dλ j

]
⊗∆ρ⊥j −

−
I2D

3

(
ρ j ·ρ

⊥
j+1

) 1∫
0

[
ρ̂i(λ j) · ρ̂i(λ j) + d2

i

]1/2
dλ j

}
+

d2
i

3

(
ψi − |di|αi

)
=

=

NEi∑
j=1

[(
I4 jρ j + I5 j∆ρ j

)
⊗∆ρ⊥j −

I2D

3
(ρ j ·ρ

⊥
j+1)I4 j

]
+

d2
i

3

(
ψi − |di|αi

)
,

(81)

I4 j, I5 j, and ψi being defined in (215), (216) and (219) respectively.
For future reference we also include the algebraic expressions of the integrals in formula

(43).

CFiκi = −

NEi∑
j=1

(
κi ·∆ρ

⊥
j

)(
I0 j Eρ j ρ j + I1 j Eρ j ∆ρ j + I2 j E∆ρ j ∆ρ j

)
+κi ⊗ψFi

+ψFi
⊗κi (82)

DFiκi = −

NEi∑
j=1

(
κi ·∆ρ

⊥
j

)(
I0 j�ρ j ρ j ρ j + I1 j�ρ j ρ j ∆ρ j + I2 j�ρ j ∆ρ j ∆ρ j+

+ I3 j�∆ρ j ∆ρ j ∆ρ j

)
+ΨFi ⊗κi +ΨFi ⊗23 κi +κi ⊗ΨFi .

(83)

All the previous quantities are expressed in terms of 2D vectors representing the coor-
dinates of the end vertices of each edge in the reference frame local to each face Fi. Con-
versely, all tensors appearing in (37), (38), (47) and (50) have to expressed in terms of the
3D position vectors defining the vertices of the polyhedron Ω since these represent the basic
geometric entities that define it. This task will be accomplished in the following subsection.

2.5 Algebraic expression of the integrals in terms of 3D vectors

The aim of this subsection is the show how the algebraic expressions derived in the previous
subsection can be expressed in terms of 3D vectors in order to apply formula (31), what is
fully accounted for in the next subsection. This is done by inverting (34) so as to express 2D
coordinates of each vertex as function of the relevant 3D ones. In particular, premultiplying
relation (34) by TT

Fi
, where (·)T stands for transpose, one obtains

ρ j = TT
Fi

(r j −dini) (84)

since it is easy to check that TT
Fi

TFi = I2D.
Additional quantities that need to be expressed in terms of 3D vectors are

TFi∆ρ j = r j+1 − ri = ∆r j (85)

and
TFi ∆ρ

⊥
j = TFi

[
TT

Fi
∆r j

]⊥
. (86)
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We also set

fi = TFiϕFi
= −

NEi∑
j=1

I0 jTFi ∆ρ
⊥
j (87)

according to (75) and

gi = TFiΦFiκi = −

NEi∑
j=1

(
∆ρ⊥j ·κi

)[
I0 jr j + I1 j∆r j

]
+ψFi TFi T

T
Fi

k (88)

according to (36) and (76); furthermore, we set

Gi = TFiΦFi T
T
Fi

(89)

see, e.g., formula (44).
Finally, recalling (44), (46), (48) and (49) it turns out to be

�
101
Fi

(
ΦFi ∧ni

)
=

∫
Fi

TFiρi ⊗ni ⊗TFiρi

(ρi ·ρi + d2
i )3/2

dAi = Gi ⊗23 ni , (90)

�
110
Fi
ΦFi ⊗ni =

∫
Fi

TFiρi ⊗TFiρi

(ρi ·ρi + d2
i )3/2

dAi ⊗ni = Gi ⊗ni , (91)

�i = �111
Fi
CFi =

∫
Fi

TFiρi ⊗TFiρi ⊗TFiρi

(ρi ·ρi + d2
i )3/2

dAi , (92)

�
101
Fi

(
ΦFi ∧ni

)
κi = TFi

∫
Fi

(
ρi ·κi

)
ρidAi

(ρi ·ρi + d2
i )3/2

⊗ni = TFi

∫
Fi

(
ρi ⊗ρi

)
dAi

(ρi ·ρi + d2
i )3/2

κi ⊗ni =

= TFiΦFiκi ⊗ni = gi ⊗ni ,

(93)

�
100
Fi
ΦFi ∧

(
ni ⊗ni

)
κi =

∫
Fi

TFiρi ⊗ni ⊗ni ⊗ρi

(ρi ·ρi + d2
i )3/2

dAiκi = TFi

∫
Fi

(
ρi ·κi

)
ρidAi

(ρi ·ρi + d2
i )3/2

⊗ni ⊗ni =

= TFiΦFiκi ⊗ni ⊗ni = gi ⊗ni ⊗ni ,
(94)

�
110
Fi
CFiκi =

∫
Fi

TFiρi ⊗TFiρi ⊗ρi

(ρi ·ρi + d2
i )3/2

dAiκi =

∫
Fi

(
ρi ·κi

)(
TFiρi ⊗TFiρi

)
(ρi ·ρi + d2

i )3/2
dAi =

= TFi

∫
Fi

(
ρi ·κi

)(
ρi ⊗ρi

)
(ρi ·ρi + d2

i )3/2
dAiTT

Fi
= TFi


∫
Fi

(
ρi ⊗ρi ⊗ρi

)
dAi

(ρi ·ρi + d2
i )3/2

κi

TT
Fi

=

= TFi

(
CFiκi

)
TT

Fi
= Hi ,

(95)
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�
1010
Fi

(
CFi ∧ni

)
κi =

∫
Fi

TFiρi ⊗ni ⊗TFiρi ⊗ρi

(ρi ·ρi + d2
i )3/2

dAiκi =

∫
Fi

(
ρi ·κi

)
TFiρi ⊗ni ⊗TFiρi

(ρi ·ρi + d2
i )3/2

dAi =

=

∫
Fi

(
ρi ·κi

)
TFiρi ⊗TFiρi

(ρi ·ρi + d2
i )3/2

dAi ⊗23 ni = Hi ⊗23 ni ,

(96)

�
1100
Fi

(
CFi ∨ni

)
=

∫
Fi

TFiρi ⊗TFiρi ⊗ni ⊗ρi

(ρi ·ρi + d2
i )3/2

dAiκi =

∫
Fi

(
ρi ·κi

)
TFiρi ⊗TFiρi ⊗ni

(ρi ·ρi + d2
i )3/2

dAi =

= TFi


∫
Fi

(
ρi ·κi

)
ρi ⊗ρi

(ρi ·ρi + d2
i )3/2

dAi

TT
Fi
⊗ni =

[
TFi

(
CFiκi

)
TT

Fi

]
⊗ni = Hi ⊗ni ,

(97)

�i = �1110
Fi
DFiκi =

∫
Fi

(TFiρi ⊗TFiρi ⊗TFiρi ⊗ρi)

(ρi ·ρi + d2
i )3/2

dAiκi =

=

∫
Fi

(κi ·ρi)TFiρi ⊗TFiρi ⊗TFiρi

(ρi ·ρi + d2
i )3/2

dAi .

(98)

The explicit evaluation of the last integral will be dealt with in the next subsection together
with further considerations on actual evaluation of all third-order tensors appearing in (50).

2.6 Algebraic expression of the gravity anomaly at O

In order to make the reader fully acquainted with the operative steps required to compute
the gravity anomaly at O, it is instructive to further comment on the formulas derived in the
previous subsections in order to apply formula (31). As a matter of fact the evaluation of
d∂iΩ

r , d∂iΩ
r , D∂iΩ

rr , provided by formulas (37), (38) and (47), respectively, is trivial since they
can be obtained by standard matrix operations.

More difficult is the evaluation of the third-order tensors appearing in (50), by taking
also into account the fact that they have to first expressed in terms of 2D vectors and only
subsequently, as specified in the previous subsection, reformulated in terms of 3D vectors.

To fix the ideas, let us start from the last addend in (50) that has been further detailed
in (98). By means of formula (83), we actually dispose of an expression that can be written
more concisely as

∫
Fi

(κi ·ρi)ρi ⊗ρi ⊗ρi

(ρi ·ρi + d2
i )3/2

dAi =

NEi∑
j=1

[
α jD( j)

ρρρ +Λρρ ⊗β+Λρρ ⊗23 β+β⊗Λρρ
]

(99)

where the right-hand side is a symbolic representation of the linear combination between
third-order tensors D( j)

ρρρ, such as Dρ j ρ j ρ j , Dρ j ρ j ∆ρ j , Dρ j ∆ρ j ∆ρ j , D∆ρ j ∆ρ j ∆ρ j , and tensor prod-
ucts between 2D vectors β and rank-two tensors Λρρ, this last one expressed as tensor prod-
uct of 2D vectors.
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Hence, to evaluate the left-hand side of (98) starting from (99) we have to transform the
rank-three tensors on the right-hand side of (99) defined in terms of 2D vectors by applying
the formal operator �111

Fi
to get,

∫
Fi

TFiρi ⊗TFiρi ⊗TFiρi ⊗ρi

(ρi ·ρi + d2
i )3/2

dAiκi = �111
Fi

NEi∑
j=1

[
α jD( j)

ρρρ +Λρρ ⊗β+Λρρ ⊗23 β+β⊗Λρρ
]
.

(100)
This is trivial for the rank-three tensor D( j)

ρρρ since it is expressed as tensor product of
three 2D vectors γ, δ, ε, so that

�
111
Fi

D( j)
ρρρ = �111

Fi
(γ⊗δ⊗ε) = TFiγ⊗TFiδ⊗TFiε = t⊗v⊗w (101)

and the last tensor product between 3D vectors can be expressed in matrix form according
to the rule which one adopts to define the matrix associated with a rank-three tensor, a rule
that usually depends upon the adopted programming language.

For istance, extending the rule defined in (10) to three arbitrary 3D vectors one has

[
t⊗ (v⊗w)

]
=

 t1

 v1w1 v1w2 v1w3
v2w1 v2w2 v2w3
v3w1 v3w2 v3w3

 t2

 v1w1 v1w2 v1w3
v2w1 v2w2 v2w3
v3w1 v3w2 v3w3

 t3

 v1w1 v1w2 v1w3
v2w1 v2w2 v2w3
v3w1 v3w2 v3w3



T

(102)
where, for typographical reasons, we have represented the matrix associated with t⊗ (v⊗w)
as a row rather than as a column.

Let us now apply the formal operator �111
Fi

, already exploited in (101), to the last three

addends in (100). Differently from D( j)
ρρρ, that is computed recursively as function of the

j-th edge of Fi, the rank-two tensor Λρρ is already available as a whole since it has been
evaluated elsewhere, e.g. in a different subroutine. Hence, we already dispose of

�
11
Fi
Λρρ = TFiΛρρTT

Fi
= Lρρ (103)

where the roman letter L has been adopted to emphasize that the matrix associated with Lρρ

is 3×3. Accordingly
�

111
Fi

(
Λρρ ⊗β

)
= Lρρ ⊗TFiβ = Lρρ ⊗b (104)

where b is a 3D vector.
Thus, we can exploit the general scheme in (102) by writing[

L⊗b
]

=

[(
L⊗b

)
1
,

(
L⊗b

)
2
,

(
L⊗b

)
3

]T
. (105)

where

[(
L⊗b

)
1

]
=


(Lρρ)11b1 (Lρρ)11b2 (Lρρ)11b3

(Lρρ)12b1 (Lρρ)12b2 (Lρρ)12b3

(Lρρ)13b1 (Lρρ)13b2 (Lρρ)13b3

 , (106)

[(
L⊗b

)
2

]
=


(Lρρ)21b1 (Lρρ)21b2 (Lρρ)21b3

(Lρρ)22b1 (Lρρ)22b2 (Lρρ)22b3

(Lρρ)23b1 (Lρρ)23b2 (Lρρ)23b3

 , (107)
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[(
L⊗b

)
3

]
=


(Lρρ)31b1 (Lρρ)31b2 (Lρρ)31b3

(Lρρ)32b1 (Lρρ)32b2 (Lρρ)32b3

(Lρρ)33b1 (Lρρ)33b2 (Lρρ)33b3

 . (108)

Analogously one has

�
111
Fi

(
β⊗Λρρ

)
= TFiβ⊗Lρρ = b⊗Lρρ (109)

so that the associated matrix is[
b⊗L

]
=

[(
b⊗L

)
1
,

(
b⊗L

)
2
,

(
b⊗L

)
3

]T
(110)

where [(
b⊗L

)
1

]
=

 b1

 (Lρρ)11 (Lρρ)12 (Lρρ)13
(Lρρ)21 (Lρρ)22 (Lρρ)23
(Lρρ)31 (Lρρ)32 (Lρρ)33


 , (111)

[(
b⊗L

)
2

]
=

 b2

 (Lρρ)11 (Lρρ)12 (Lρρ)13
(Lρρ)21 (Lρρ)22 (Lρρ)23
(Lρρ)31 (Lρρ)32 (Lρρ)33


 , (112)

[(
b⊗L

)
3

]
=

 b3

 (Lρρ)11 (Lρρ)12 (Lρρ)13
(Lρρ)21 (Lρρ)22 (Lρρ)23
(Lρρ)31 (Lρρ)32 (Lρρ)33


 . (113)

A little bit more akward is how to address the tensor product Λρρ ⊗23 β. This case has
been deliberately left at last since constructing the matrix associated with the rank-three
tensor �111

Fi

(
Λρρ ⊗23 β

)
allows us to solve the problem concerning the tensor in (90).

Actually, if we could split the tensor Λρρ as tensor product of two 2D vectors in the form
Λρρ = γ⊗δ we would trivially have

�
111
Fi

(
Λρρ ⊗β

)
= �111

Fi

(
γ⊗δ⊗23 β

)
= �111

Fi

(
γ⊗β⊗δ

)
= t⊗b⊗v (114)

and exploit the general scheme in (102) to construct the relevant matrix. Unfortunately we
directly dispose of the matrix Lρρ whose entries have to appear as first and third entries in
the previous, purely illustrative, scheme.

This does not represent a real problem since, coherently with the matrix representation
(102), we can define the matrix associated with

�
111
Fi

(
Λρρ ⊗23 β

)
= Lrbr (115)

as [
Lrbr

]
=

[(
Λρρ ⊗23 β

)
1
,

(
Λρρ ⊗23 β

)
2
,

(
Λρρ ⊗23 β

)
3

]T
(116)

where

[(
Λρρ ⊗23 β

)
1

]
=


b1(Lρρ)11 b1(Lρρ)12 b1(Lρρ)13

b2(Lρρ)11 b2(Lρρ)12 b2(Lρρ)13

b3(Lρρ)11 b3(Lρρ)12 b3(Lρρ)13

 , (117)
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Fig. 2 Representation of geometric quantities used to assign density contrast (s) and define the position of Ω
with respect to an arbitray point P.

[(
Λρρ ⊗23 β

)
2

]
=


b1(Lρρ)21 b1(Lρρ)22 b1(Lρρ)23

b2(Lρρ)21 b2(Lρρ)22 b2(Lρρ)23

b3(Lρρ)21 b3(Lρρ)22 b3(Lρρ)23

 , (118)

[(
Λρρ ⊗23 β

)
3

]
=


b1(Lρρ)31 b1(Lρρ)32 b1(Lρρ)33

b2(Lρρ)31 b2(Lρρ)32 b2(Lρρ)33

b3(Lρρ)31 b3(Lρρ)32 b3(Lρρ)33

 , (119)

and Lρρ is obtained from (103) and b = TFiβ.
Remarkably, the same notational scheme as in the previous formula can be exploited for

the tensor in (90) since Gi can be obtained from (44) by standard matrix operations.
Furthermore, setting � = Gi ⊗23 ni, the matrix [�] can be obtained analogously to

(116). Stated equivalently, to construct the matrix associated with the rank-three tensor�,
one has to first evaluate ΦFi , transform it as in (44) to get Gi, and exploit the notational
scheme (116) by replacing Lρρ with Gi.

The notational schemes detailed in (101)-(102), (104)-(105), (109)-(110) and (115)-
(116) can be suitably exploited to evaluate the tensors in (91)-(97) and, hence, the tensor
�∂Ω

rrr in (50). Namely, the tensors Gi ⊗ ni in (91) and Hi ⊗ ni in (97) can be evaluated by
applying the scheme (105), the tensor �i in (92) by applying the scheme (101)-(102) and
the tensor Hi ⊗23 ni in (96) by applying the scheme (115)-(116). Finally, the tensors in (93)
and (95) are rank-two tensors and the tensor in (94) can be evaluated as in (102).

3 Gravity anomaly of polyhedral bodies at an arbitrary point P

In the previous sections it has been assumed that the observation point P would coincide
with the origin of the reference frame in which the anomalous density of a body is assigned.
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This has allowed us to set the stage and to define the most problematic issues to address,
both from the analytical and numerical point of view.

However when gravity measures are carried out at several points and/or when multiple
bodies are taken into account it is by far more convenient to fix an arbitrary reference frame
in which both the coordinates of each observation point and the density of all bodies are
simultaneously assigned.

To suitably extend the formulas contributed in the previous section, one can exploit a
coordinate transformation (Zhou, 2010) by translating the origin of the reference frame to
the observation point and modifying in accordance the expression of the density contrast by
expressing the coefficients of the polynomial law in the new reference frame.

Alternatively, one can follow the approach outlined in D’Urso (2015c) and define the
position vector r entering the definition of the gravity anomaly as follows

r = s−p (120)

where p is the position vector of the observation point and s is the position vector of an
arbitrary point belonging to Ω, see e.g., fig. 2. In this way we can leave the expression (6)
unchanged by writing

∆ρ(s) = θ(x,y,z) = θo + c · s + C ·Dss +� ·�sss (121)

where Dss and �sss are defined as in (7) and write

∆gz(P) = G
∫
Ω

∆ρ(s)r ·k
(r · r)3/2 dV . (122)

Clearly in the case of multiple observation points Pi and/or bodies one can simply write

∆gz(Pi) = G
NB∑
j=1

∫
Ω j

∆ρ(s j)r j ·k
(r j · r j)3/2 dV (123)

where Ω j is the domain of the j-th body, NB is the number of bodies to analyze and r j =

s j−pi, pi being the position vector of Pi with respect to the assigned reference frame having
origin at an arbitrary point O. However, being mainly interested to illustrate the rationale of
our approach, we shall make reference in the sequel to the case of a single observation point
and a single body.

To exploit the results illustrated in the previous section, it is convenient to express s as
function of r by means of (120). For brevity this is detailed only for the rank-three tensor
�sss since it is the more cumbersome to handle. In particular, we infer from (120)

�sss = s⊗ s⊗ s = (r + p)⊗ (r + p)⊗ (r + p) =�rrr +�rrp +�ppr +�ppp (124)

where �ppp = p⊗p⊗p,

�rrp = r⊗ r⊗p + r⊗p⊗ r + p⊗ r⊗ r (125)

and

�ppr = p⊗p⊗ r + p⊗ r⊗p + r⊗p⊗p = Dpp ⊗ r + p⊗ r⊗p + r⊗Dpp . (126)
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Hence, the expression (122) for the gravity anomaly becomes

∆gz(p) = G
{
[θo + c ·p + C ·Dpp +� ·�ppp]dΩr + c ·dΩr +

+C · [dΩr ⊗p + p⊗dΩr + DΩ
rr] +� · [Dpp ⊗dΩr + p⊗dΩr ⊗p + dΩr ⊗Dpp]+

+� · [DΩ
rr ⊗p + dΩr ⊗p⊗dΩr + p⊗DΩ

rr] +� ·�Ω
rrr

}
,

(127)

which represents the generalization of (14) to the case p , o.
Special attention has to be paid to the symbol dΩr ⊗p⊗dΩr which is a shorthand to denote

the third-order tensor

dΩr ⊗p⊗dΩr =

∫
Ω

(r ·k)r⊗p⊗ r
(r · r)3/2 dV = DΩ

rr ⊗23 p . (128)

In spite of its symbol, which has been adopted to emphasize its symmetric expression, the
tensor above cannot be obtained as triple tensor product of the vectors dΩr and p. Rather, it
is conveniently computed starting from the rank-two tensor DΩ

rr, after having computed its
algebraic expression, as detailed in subsection 2.6.

Although r is now defined from (120) it can be shown that formula (17) holds as well.
Thus, recalling (30) and setting

θp = c ·p + C ·Dpp +� ·�ppp , (129)

formula (127) specializes to

∆gz(p) = G
{

(θo + θp)d∂Ωr +
c ·d∂Ωr

2
+ C ·

[d∂Ωr
2
⊗p + p⊗

d∂Ωr
2

+
D∂Ω

rr
3

]
+

+� ·
[1
2

(
Dpp ⊗d∂Ωr + p⊗d∂Ωr ⊗p + d∂Ωr ⊗Dpp

)
+

+
1
3

(
D∂Ω

rr ⊗p + d∂Ωr ⊗p⊗d∂Ωr + p⊗D∂Ω
rr

)
+
�∂Ω

rrr
4

]}
.

(130)

Obviously, (130) coincides with (31) when p = o.
Formula (130) can be operatively evaluated for a a polyhedral body by considering for-

mulas (37), (38), (47) and (50) for dΩr , dΩr , DΩ
rr and �Ω

rrr, respectively, and the procedures
detailed in subsection 2.3-2.6 to express them in terms of 3D vectors. In particular the third
order tensor d∂Ωr ⊗p⊗d∂Ωr is obtained by applying the notational scheme (115)-(116) and
replacing Lρρ with DΩ

rr and b with p, respectively.

4 Eliminable Singularities of the Algebraic Expressions of the Gravity Anomaly

It has already been shown that the analytical expression (31) of the gravity anomaly is
singularity-free in the sense that its expression holds rigorously whatever is the position
of the point O with respect to Ω. The same property holds true for the expression (130)
referred to an arbitrary point P. However their algebraic counterparts, being expressed by
means of the quantities detailed in subsection 2.4, do include further singularities.

They are associated with the expression of the line integrals provided in the Appendices
since they become singular when the generic face Fi contains the observation point, either
O or P, and this belongs to the line containing the j-th edge of the boundary ∂Fi.
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However, we are going to prove analytically that the contribution of the singular line
integral to the domain integral in which its computation is required is zero. Hence, from
the computational point of view, the singularity of the j-th line integral does not have any
practical effect and it can be simply ignored when computing the associated domain integral.

As shown in Appendix 2, some of the 2D domain integrals required in the present con-
text, have already been computed in previous papers D’Urso (2013a, 2014a,b) so that the
discussion on their singularity-free nature can be found in the quoted reference. Neverthe-
less we shall systematically prove this property also for these last integrals, namely the ones

having
(
ρi ·ρi + d2

i

)1/2
in the denominator, since we are going to use new and simpler ar-

guments; the same arguments will be exploited to prove the singularity-free nature of the

integrals having
(
ρi ·ρi + d2

i

)3/2
in the denominator.

4.1 Eliminable singularity of the integral ψFi

We know from formulas (218) and (219) that

ψFi =

∫
Fi

dAi

(ρi ·ρi + d2
i )1/2

=

NEi∑
j=1

(
ρ j ·ρ

⊥
j+1

) 1∫
0

[
ρ̂i(λ j) · ρ̂i(λ j) + d2

i

]1/2

ρ̂i(λ j) · ρ̂i(λ j)
dλ j −αi|di| =

=

NEi∑
j=1

(
ρ j ·ρ

⊥
j+1

) 1∫
0

(
p jλ

2
j + 2q jλ j + v j

)1/2

p jλ
2
j + 2q jλ j + u j

dλ j −αi|di| =

NEi∑
j=1

(
ρ j ·ρ

⊥
j+1

)
I6 j −αi|di|

(131)

where, see also (70), we have set

p j = ∆ρ j ·∆ρ j = l2j q j = ρ j ·∆ρ j u j = ρ j ·ρ j v j = u j + d2
i = |r j|

2 . (132)

Useful in the sequel are also the quantities (D’Urso, 2013a, 2014a,b)

p j + q j = ρ j+1 ·∆ρ j p j + 2q j + v j = ρ j+1 ·ρ j+1 + d2
i = |r j+1|

2 (133)

and the discriminant ∆ j = q2
j − p ju j of the denominator in (131). In particular, it turns out to

be

−∆ j = p ju j −q2
j =

(
ρ j+1 ·ρ j+1

)
·
(
ρ j ·ρ j

)
−

(
ρ j ·ρ j+1

)2
≥ 0 (134)

by virtue of the Cauchy-Schwartz inequality (Tang, 2006).
Clearly, our main concern is when ∆ j = 0. In particular, setting o = (0,0), it is apparent

from the previous expression that the denominator of the j-th integral on the right-hand
side of (131) can become singular if ρ j = o, ρ j+1 = o or ρ j and ρ j+1 are parallel and point
in opposite directions, i.e. if the projection of the observation point onto Fi belongs to the
segment

[
ρ j, ρ j+1

]
. In turn this may happen independently from the value of di, i.e. whether

or not the i-th face of the polyhedron Ω does contain the observation point.
In both cases, di , 0 or di = 0, we are going to prove by mathematical arguments that

the contribution of such an edge to ψFi is zero so that its computation can be skipped. Let us
first consider the case di , 0.
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As shown in D’Urso (2013a, 2014a) the evaluation of the line integral on the right-hand
side of (131) is carried out by setting t = λ j + q j/p j; this yields

I6 j =

1∫
0

(
p jλ

2
j + 2q jλ j + v j

)1/2

p jλ
2
j + 2q jλ j + u j

dλ j =
1
√p j

1+q j/p j∫
q j/p j

√
t2 + B j

t2 + A j
dt (135)

where

A j = −
∆ j

p2
j

=
p ju j −q2

j

p2
j

B j =
p jv j −q2

j

p2
j

= A j +
d2

i

p j
= A j +

d2
i

l2j
. (136)

Notice that the denominator in (135) is positive if −∆ j = p2
j A j > 0. In this case the

primitive of the integrand on the right-hand side of (135) becomes

I6 j =
1
√p j


√

B j −A j

A j
arctan

√
B j −A j√

A j

√
B j + t2

+ ln
(
t +

√
B j + t2

)
1+q j/p j

q j/p j

(137)

or equivalently

I6 j =


|di|√
−∆ j

arctan
|di|√

−∆ j

√
B j + t2

+

ln
(
t +

√
B j + t2

)
√p j


1+q j/p j

q j/p j

. (138)

Conversely, should it be ∆ j = 0, and hence A j = 0, the integrand on the right-hand side
of (135) becomes singular at one point belonging to the interval

[
q j/p j, 1+q j/p j

]
. Actually,

we infer from (134) and the properties of the Cauchy-Schwartz inequality that ∆ j = 0 if and
only if ρ j = o, ρ j+1 = o or the segment [ρ j, ρ j+1] contains the null vector in its interior.

Actually if ρ j = o
(
ρ j+1 = o

)
, it turns out to be q j/p j = 0

(
1 + q j/p j = 0

)
; hence the

denominator in (135) becomes singular since t2 + A j = ρ j ·ρ j/p j
(
ρ j+1 ·ρ j+1/p j

)
= 0 at the

left (right) extreme of the integration integral.
Furthermore, should the projection of the observation point fall within the segment

[ρ j, ρ j+1], one has ρ j+1 = β jρ j (β j < 0) where q j/p j = (β j−1)ρ j ·ρ j/p j < 0 and 1+q j/p j =

β j(β j − 1)ρ j · ρ j/p j > 0. Accordingly, the integration interval in (135) splits in two inter-
vals having 0 as right (left) extreme. At that point, however, t = 0 and A j = −∆ j/p2

j = 0 by
assumption so that the integrand in (135) becomes singular.

However, we are going to prove that, in the previous three cases, the singularity is elim-
inable and that the integral attains a finite value. Let us discuss separately the three cases,
namely ρ j = o, ρ j+1 = o and ρ j+1 = β jρ j (β j < 0).

In this first case, ρ j = o, the integration interval is [0, 1] and we have singularity of the
integrand in (135) at the left extreme while the argument of the logarithm is positive. Thus,
recalling (131) and (138), the contribution of the integral I6 j to ψFi is provided by

(
ρ j ·ρ

⊥
j+1

)
I6 j = ρ j ·ρ

⊥
j+1

 |di|√
−∆ j

arctan
|di|√

−∆ j

√
B j + t2

+

ln
(
t +

√
B j + t2

)
√p j


1

0

. (139)
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Setting ρ j = |ρ j|e = εe and observing that, on account of (134),

−∆ j =
(
ρ j+1 ·ρ j+1

)
|ρ j|

2 −
(
|ρ j|e ·ρ j+1

)2
= ε2

[
ρ j+1 ·ρ j+1 −

(
e ·ρ j+1

)2]
, (140)

we infer that
√
−∆ j is infinitesimal of the same order as ε = |ρ j| when ε→ 0, a property we

state by writing
√
−∆ j = O(ε). Hence (139) becomes

(
ρ j ·ρ

⊥
j+1

)
I6 j = lim

ε→0
ε


[
|di|√
−∆ j(ε)

arctan
|di|√

−∆ j(ε)
√

B j + t2

]1

ε

+
1
√p j

[
ln

(
t +

√
B j + t2

) ]1

0


(141)

since the ρ j ·ρ
⊥
j+1 = O(ε) if ε→ 0.

Since the arctan function is finite at t = 1 and the same does occur for the ln function at
t = 0 and t = 1, we finally have(

ρ j ·ρ
⊥
j+1

)
I6 j = −|di| lim

ε→0

ε√
−∆ j(ε)

arctan
|di|√

−∆ j(ε)
√

B j +ε2
= −

π

2
|di| . (142)

However if ρ j = o for the j-th edge, it will turn out to be ρ j+1 = o for the ( j−1)-th edge.
Hence the arctan function in (138) will be evaluated in the interval [−1, ε], with ε→ 0, and
one has

(
ρ j ·ρ

⊥
j+1

)
I6 j = π |di|/2.

To conclude the total contribution provided to ϕFi by the two edges for which it simul-
taneously happen that ρ j = o for the j-th edge and ρ j+1 = o for the ( j−1)-th edge is zero.

A null contribution to ϕFi is also provided by edges for which the projection of the
observation point is internal to the edge. In this case ρ j and ρ j+1 are parallel so that the
product ρ j ·ρ

⊥
j+1 is zero. Accordingly, both ρ j ·ρ

⊥
j+1 and

√
−∆ j are O(ε), that is both of them

are infinitesimal of order ε as ε→ 0. In conclusion (139) yields

(
ρ j ·ρ

⊥
j+1

)
I6 j = |di| limε→0


ε√
−∆ j(ε)

arctan
|di|√

−∆ j(ε)
√

B j + t2


0

−1

+

+
ε√
−∆ j(ε)

arctan
|di|√

−∆ j(ε)
√

B j + t2


1

0

+
ε
√p j

[
ln

(
t +

√
B j + t2

) ]1

0

 = 0 .

(143)
Actually, the ln function is finite both at t = 0 and t = 1. Furthermore, by repeating the

arguments exploited in (142), the arctan function attains finite and opposite values both at
t = 0 and t±1.

In conclusion we have proved that, when di , 0 and the projection of the observation
point does belong to the closed interval having ρ j and ρ j+1 as extremes, the contribution of
the relevant edge can be skipped since the overall contribution to ϕFi associated with such a
singular case is lumped within the addend αi|di|.

Let us now prove that the same result is obtained if |di|= 0, i.e. if the face Fi does contain
the observation point. In this case the integral in (131) can be expressed as follows

ψFi =

NEi∑
j=1

(
ρ j ·ρ

⊥
j+1

)
I6 j =

NEi∑
j=1

(
ρ j ·ρ

⊥
j+1

) 1∫
0

dλ j[
ρ̂i(λ j) · ρ̂i(λ j)

]1/2 −αi|di| . (144)
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Also in this case, the j-th edge characterized by ρ j = o or ρ j+1 = o or ρ j+1 = β jρ j (β j < 0)
does not give any contribution to ϕFi . Let us examine separately the three cases
• ρ j = o

In this case the parameterization (67) yields ρ̂i(λ j) = λ jρ j+1 so that the j-th integral in
(144) becomes

I6 j =

1∫
0

dλ j

λ j
(
ρ j+1 ·ρ j+1

)1/2 =
1
√p j

1∫
0

dλ j

λ j
. (145)

Setting ε = |ρ j| and being ρ j ·ρ
⊥
j+1 infinitesimal of order ε, it turns out to be(

ρ j ·ρ
⊥
j+1

)
I6 j =

1
√p j

lim
ε→0

ε
[
lnλ j

]1

ε
= 0 (146)

since the logarithm tends to infinite with an arbitrarily low degree.
• ρ j+1 = o

Setting ρ̂i(λ j) = (1−λ j)ρ j the integral in (144) can be written

I6 j =
1
√u j

1∫
0

dλ j

1−λ j
= −

1
√u j

0∫
1

dη j

η j
(147)

where η j = 1−λ j. Hence, setting ε = |ρ j+1|, one has(
ρ j ·ρ

⊥
j+1

)
I6 j = −

1
√u j

lim
ε→0

ε
[
lnη j

]ε
1

= 0 (148)

due to the behavior of the logarithm at infinity.
• ρ j+1 parallel to ρ j

We are considering the case in which the observation point is projected onto the face Fi

inside the j-th edge
[
ρ j, ρ j+1

]
. Hence we can set ρ j+1 = β jρ j, β j < 0, since ρ j and ρ j+1 point

in opposite directions. Setting

ρ j(λ j) =
[
1 +λ j(β j −1)

]
ρ j = τ jρ j , (149)

the integral in (144) becomes

I6 j =
1
√u j

1∫
0

dλ j

|1 +λ j(β j −1)|
=

1
(β j −1)√u j

β j∫
1

dτ j

|τ j|
=

1
(1−β j)

√u j

1∫
β j

dτ j

|τ j|
=

=
1

(1−β j)
√u j


0∫

β j

dτ j

|τ j|
+

1∫
0

dτ j

|τ j|

 =

=
1

(1−β j)
√u j

{[
lnτ j

]|β j |

0
+

[
lnτ j

]1

0

}
.

(150)

Being ρ j and ρ j+1 parallel, ρ j ·ρ
⊥
j+1 = 0. Hence, setting ε = |ρ j ·ρ

⊥
j+1|(

ρ j ·ρ
⊥
j+1

)
I6 j =

1
(1−β j)

√u j
lim
ε→0

ε
[
ln |β j| −2lnε

]
= 0 (151)

similarly to (146).
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4.2 Eliminable singularity of the integral ψFi

The expression (220) of the integral

ψFi
=

∫
Fi

ρidAi

(ρi ·ρi + d2
i )1/2

=

NEi∑
j=1

I4 j∆ρ
⊥
j =

=

NEi∑
j=1

1
2√p j

 p jv j −q2
j

p j
LN j +

1
√p j

[(
p j + q j

)√
p j + 2q j + v j −q j

√
v j

]∆ρ⊥j
(152)

is composed of two addends. The second one is well-defined, according to (132) and (133),
whatever is the value of di and the position of j-th edge with respect to the observation point.

The first addend in (152) is well defined for di , 0 since

LN j = lnk j = ln
ρ j+1 ·

(
ρ j+1 −ρ j

)
+ l j|r j+1|

ρ j ·
(
ρ j+1 −ρ j

)
+ l j|r j|

(153)

on the basis of formula (73) in D’Urso (2014b).
Conversely, should it be di = 0 and ρi = o or ρ j = o or ρ j+1 = β jρ j (β j < 0), one has

p jv j −q2
j

p j
LN j =

−∆ j

p j
LN j = lim

ε→0

−∆ j(ε2)LN j(ε)
2p j

= 0 (154)

since −∆ j tends to zero quadratically and LN j tends to infinite with an arbitrary low degree.
In conclusion edges characterized by singularities of the relevant integral I4 j give no

contribution to ψFi
.

4.3 Eliminable singularity of the integral ΨFi

The expression (208) of the integral

ΨFi =

NEi∑
j=1

[(
I4 jρ j + I5 j∆ρ j

)
⊗∆ρ⊥j −

I2D

3
(ρ j ·ρ

⊥
j+1)I4 j

]
+

d2
i

3

(
ψi − |di|αi

)
(155)

depends upon the integrals ψi, I4 j and I5 j. The discussion on the well-posedness on ψi has
already been detailed in subsection 4.1.

Conversely, the integrals I4 j and I5 j are composed, according to their expressions (215)
and (216), of the quantities

√
v j

√
p j + 2q j + v j (156)

and of the additional integral I0 j. On the basis of the definition (132) and (134) the radicals
in (156) are well-defined whater is value of di and the position of the j-th edge with respect
to the observation point.

The dependence of the integrals I4 j and I5 j upon I0 j does not give any problem since its
expression, according to (211), depends upon LN j. Differently form (152) the quantity LN j
is not scaled by p jv j − q2

j , so that we can not invoke the result (154). However the integral
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ΨFi , and hence LN j, is required for computing the integrals CFi andDFi in (42) that, in turn,
are scaled by di in the expressions (47) and (50).

Hence, when di is zero, what makes LN j undefined, we can invoke a result similar to
(154) by writing

diLN j = lim
ε→0

di(ε)LN j(ε) = 0 . (157)

Stated equivalently, when di = 0 the contribution to the integral ΨFi provided by the face Fi
can be skipped.

4.4 Eliminable singularity of the integral ϕFi

The expression provided in (221) for the integral

ϕFi =

∫
Fi

dAi

(ρi ·ρi + d2
i )3/2

=
αi

|di|
−

NEi∑
j=1

 ρ j ·ρ
⊥
j+1

|di|
√

p ju j −q2
j

(AT N1 j −AT2N j)

 (158)

is well-defined whatever is the value of di and the position of the j-th edge with respect to
the observation point.

Also the case di = 0 does not represent a problem since ϕFi is premultiplied by di in
the formulas (37), (38) (47) and (50) for dΩr , dΩr , DΩ

rr and �Ω
rrr respectively. Furhermore the

discussion on the well-posedness of the quantity

ρ j ·ρ
⊥
j+1√

p jv j −q2
j

(
AT N1 j −AT N2 j

)
(159)

when di = 0 and the projection of the observation point lies within the segment
[
ρ j, ρ j+1

]
is

completely similar to that reported in subsection 4.1

4.5 Eliminable singularity of the integral ϕFi

We know from formula (222) that

ϕFi
=

∫
Fi

ρidAi

(ρi ·ρi + d2
i )3/2

= −

NEi∑
j=1

I0 j ∆ρ
⊥
j (160)

where I0 j is provided by (211). Hence, the discussion on its well-posedness can be carried
out similarly to (157) when di = 0 and the j-th edge does contain the observation point in its
interior.

Actually the integral ϕFi
in the expression (37), (38) (47) and (50) for dΩr , dΩr , DΩ

rr and
�Ω

rrr is always scaled by di.
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4.6 Eliminable singularity of the integral ΦFi

Recalling the expression (223)

ΦFi =

∫
Fi

ρi ⊗ρi

(ρi ·ρi + d2
i )3/2

= −

NEi∑
j=1

[
LN jρ j ⊗∆ρ

⊥
j + I1 j∆ρ j ⊗∆ρ

⊥
j

]
+ψFi I2D , (161)

we infer thatΦFi is well defined whatever is the value of di and the position of the observa-
tion point with respect to the j-th edge of the face Fi. This is trivial if di , 0 since LN j, I1 j
and ψFi in the previous expression are well defined.

To discuss the well-posedness of ΦFi in the case di = 0 and when the projection of the
observation point onto Fi does belong to the segment

[
ρ j, ρ j+1

]
we remind thatΦFi , as well

as ϕFi and ϕFi
, is scaled by di in the expressions (47) and (50) for DΩ

rr and �Ω
rrr. Hence

the well-posedness of diLN j can be assessed as in (157), while that of ψFi has been already
proved in subsection 4.1.

Finally, according to formula (212), the well-posedness of I1 j depends upon that of I0 j;
in turn this last one depends upon the product diLN j discussed above.

In conclusion we have proved that the gravity anomaly at an arbitrary point P can be
computed effectively whatever is its position with respect to the polyhedron Ω. Actually the
potential singularity of the integrals involved in the formulas (37), (38), (47) and (50) for
dΩr , dΩr , DΩ

rr and �Ω
rrr gives no contribution to the gravity anomaly.

5 Numerical examples

The formulas developed in the previous sections have been coded in a Matlab program in or-
der to check their correctness and robustness. They have been applied to model tests and case
studies derived from the specialized literature by assuming the density contrast to vary sepa-
rately along the horizontal and the vertical directions or along both of them. In all examples
the density contrast is expressed in units kilograms per cubic meter while distances are ex-
pressed in kilometers; the value of the gravitational constant G is 6,6725910−11m3kg−1s−2.

Results obtained by the proposed approach have been carefully checked by comparing
them whith those resulting from a numerical integration of the integrals involved in the
computation of the gravity anomaly. They can be useful to allow for a comparison with
computations carried out by using different methods or with more complex modellings,
e.g. those reqired to evaluate the gravitational effects of an arbitrary volumetric mass layer
in which a laterally varying radial density change has been assumed (Kingdon et al., 2009;
Tenzer et al., 2012). To give an idea of the computational burden required in both approaches
we have included the computing time (CT) obtained by running the Matlab code on a INTEL
CORE2 PC with 16Gb of RAM and a i7-4700HQ CPU having clock speed of 2,40 GHz.

The first test has been taken from (Garcı́a-Abdeslem, 2005) and refers to a prism ex-
tending along x and y between 10 and 20 km and delimited by the planes z=0 and z=8 km.
Density contrast is expressed by the function

∆ρ(z) = −747.7 + 203.435z−26.764z2 + 1.4247z3 = p + qz + rz2 + sz3 (162)

where the density is expressed in kg/m3 and z in kilometers.
In order to compare our results with those reported in (Garcı́a-Abdeslem, 2005), the

gravity anomaly has been computed at points P having y=15 km, z=-0.15 m and x ranging
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from 0 to 30 km . In particular the observer location was taken by Garcı́a-Abdeslem (2005)
-15 cm of the top of the prism to avoid a singularity in the analytic solution occurring when
the observation and the source coordinates coincide.

Although our approach is singularity-free, as proved in section 4, we have deliberately
repeated the computations made by Garcı́a-Abdeslem (2005) to draw the reader’s attention
on the uncorrect values reported in fig. 3 of the quoted paper.

As a matter of fact all mathematical formulas in (Garcı́a-Abdeslem, 2005) are correct
but, for some reasons, the values of the gravity anomaly plotted in fig. 3 have been calculated
by assuming wrong integration limits in formula (8) of his paper, namely x1, y1, z1, x2, y2,
z2 (lowercase letters) instead of the correct X1, Y1, Z1, X2, Y2, Z2 (capital letters).

In other words formula (8) in (Garcı́a-Abdeslem, 2005), reported herewith for complete-
ness

Ik =

X2∫
X1

dX

Y2∫
Y1

dY

Z2∫
Z1

dZ
{
ρk

Zk

R3

}
k = 1,2,3,4 (163)

is correct but the result plotted in fig. 3 of the quoted paper have been obtained by consid-
ering x1 instead X1, y1 instead Y1 ... and so on. Please notice that, apart ρk, the notation
in (163) is taken from the original paper so that the observation point is defined by the
coordinates P=(x0, y0, z0) and (x,y,z) denote the source coordinates. According to Garcı́a-
Abdeslem (2005) the prism is bounded by the planes x=x1, y=y1, z=z1, x=x2, y=y2, z=z2
and it has been set X=x-x0, Y=y-y0, Z=z-z0.

In conclusion, the correct values of the gravity anomaly at x0 ∈ [0, 30] km, y0 = 15 km
and z0 =−15 cm, where we have used the notation of (Garcı́a-Abdeslem, 2005), are reported
in figs. 3a, 3b, 3c and 3d respectively for the separate cases of ∆ρ = p = ρ1, ∆ρ = qz = ρ2,
∆ρ = rz2 = ρ3, ∆ρ = sz3 = ρ4,
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(c) Quadratic term in (162)
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Fig. 3 Gravitational attraction at P=[0,30]×15×(-0.00015) associated with the prismΩ≡ [10, 20]× [10, 20]×
[0, 8] (dimensions in kilometers) and density contrast given by (162).
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Fig. 4 Differences ∆ between the analytical and numerical values plotted in fig. 3

The correctness of the values reported in fig. 3 has been checked by numerically integrat-
ing formula (162) with the aid of the adaptive quadrature procedure implemented in Matlab
and by setting X1=10-x0, Y1=10-y0, Z1=0.00015, X2=20-x0, Y2=20-y0, Z2=8-0.00015.
For completeness the differences between the analytical and numerical values reported in
fig. 3 are plotted in fig. 4.

To fully test the correctness of the proposed formulation and the robustness of the rele-
vant implementation, we have systematically carried out a comparison of the results associ-
ated with the analytical and the numerical evaluation of the integrals involved in the compu-
tation of the gravity anomaly. To emphasize the singularity-free nature of our solution, this
has been done by considering the example in (Garcı́a-Abdeslem, 2005) and evaluating the
anomaly at z=0 and for several values of y, namely y=10, y=11 km, y=12.5 km and y=15
km.

The gravity anomaly has been evaluated for values of x ranging in the interval [0, 30]
km and the relevant values are plotted in fig. 5. For completeness the analytical results
are reported in table 1 together with those obtained by numerically evaluating the integrals
in formula (163); for the reader’s convenience the differences between the analytical and
numerical values are plotted in fig. 6. The symbol NaN in table 1 for x=15 km, is due
to the fact that the numerical procedure, adopted by Matlab to numerically evaluate the
integrals in (163), failed to converge. Notice as well that the numerical procedure, besides
being computationally more expensive, gives less precise results when the observation point
belongs to Ω, i.e. y=10 km and y=15 km, and x moves towards the center of Ω; actually the
numerical solution has only three significant digits at x=10 km and x=20 km.

To give a quick overlook of the symmetric nature of the solution with respect to the
planes x=15 km and y=15 km we have reported in fig. 7a the contour plot of the gravity
anomaly at z=0. The surface distribution of the gravity anomaly becomes unsymmetric, as
shown in fig. 7b, by considering a density contrast depending upon an a horizontal direction
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Fig. 5 Gravitational attraction at P=[0,30]×yk×[0] (k=1,2,3,4) associated with the prism Ω ≡ [10, 20] ×
[10, 20]× [0, 8] (dimensions in kilometers) and density contrast given by (162).
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Fig. 6 Differences ∆ between the analytical and numerical values plotted in fig. 5.

such as the expression considered in Zhou (2009b)

∆ρ(z) = −747.7 + 203.435z−26.764z2 + 1.4247z3 −23.205x . (164)

To emphasize the dependence of the solution upon the monomials appearing in the ex-
pression of the density contrast we have plotted in fig. 8a and 8b the surface distribution of
the gravity anomaly for the density contrast

∆ρ(z) = −747.7 + 203.435z−26.764z2 + 1.4247z3 −23.205y , (165)
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∆ρ(z) = −747.7 + 203.435z−26.764z2 + 1.4247z3 −23.205x−23.205y . (166)
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Fig. 7 Gravity anomaly distribution at z=0 associated with the prism Ω ≡ [10, 20]× [10, 20]× [0, 8] (dimen-
sions in kilometers) and density contrast given by (162) (on the left) and (164) (on the right).

It is apparent from the last two plots that gravity anomaly vanishes less rapidly than in
fig. 7a.
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Fig. 8 Gravity anomaly distribution at z=0 associated with the prism Ω ≡ [10, 20]× [10, 20]× [0, 8] (dimen-
sions in kilometers) and density contrast given by (165) (on the left) and (166) (on the right).
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6 Conclusions

The gravity anomaly at arbitrary points induced by a polyhedral body of arbitrary shape
body whose shape is an arbitrary and characterized by polynomial density contrast has been
obtained in closed form. It is expressed as sum of quantities that depend only upon the 3D
coordinates of the vertices of the polyhedron and upon the parameters defining the density
contrast. The solution procedure, based upon a generalized application of Gauss theorem,
takes consistently into account the singularity intrinsic to the integrals to evaluate. In par-
ticular, by means of rigorous mathematical arguments, singularities are proved to give no
contribution both to the analytical expression of the gravity anomaly and to its algebraic
counterpart.

The formulation presented in the paper has been limited to polynomial density contrast
varying with a cubic law as a maximum but it can be easily extended to polynomials of
higher degree. The effectiveness of the proposed approach has been intensively tested by
numerical comparisons, carried out by means of a Matlab code, with several example de-
rived from the specialized literature. Future contributions will concern the cases of density
contrast variable with exponential law for 2D and 3D domains.

7 Appendix 1 - Algebraic expression of integrals

We are going to show that the 2D integrals∫
Fi

[⊗ρi,m]
(ρi ·ρi + d2

i )3/2
dAi m ∈ [0,4] (167)

can be evaluated analytically. As a matter of fact we only need to evaluate the integrals for
m = 3 and m = 4

CFi =

∫
Fi

ρi ⊗ρi ⊗ρi

(ρi ·ρi + d2
i )3/2

dAi DFi =

∫
Fi

ρi ⊗ρi ⊗ρi ⊗ρi

(ρi ·ρi + d2
i )3/2

dAi , (168)

since the additional ones in (167) have been already computed in D’Urso (2013a, 2014a,b).
For completeness these last ones are reported in Appendix 2.

A further integral, namely

ΨFi =

∫
Fi

ρi ⊗ρi

(ρi ·ρi + d2
i )1/2

dAi , (169)

required for the computation of the integrals (168), will be dealt with at the end of this
Appendix.

The rationale for evaluating the integrals (168) is to first apply the generalized Gauss
theorem D’Urso (2013a, 2014a) to transform them into 1D integrals and, subsequently, to
compute such integrals by means of algebraic expressions depending upon the 2D coordi-
nates of the vertices that define the face Fi.

In order to apply the Gauss theorem to the integrals in (168) let us first prove the identity

grad
[
ϕ (a⊗b)

]
= (a⊗b)⊗gradϕ+ϕgrada⊗b +ϕa⊗gradb , (170)

holding for scalar ϕ and vector (a,b) differentiable fields.
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It can be easily verified by applying the chain rule to the i jk component of the third-order
tensor on the left-hand side{

grad
[
ϕ (a⊗b)

]}
jkq

=
(
ϕa jbk

)
/q

= ϕ/q a j bk +ϕa j/q bk +ϕa j bk/q . (171)

In a similar fashion one can prove the further differential identity involving fourt-order
tensors

grad
[
ϕ (a⊗b⊗ c)

]
= (a⊗b⊗ c)gradϕ+ϕgrada⊗b⊗ c +ϕa⊗gradb⊗ c +ϕa⊗b⊗gradc .

(172)
Let us now apply the identity (171) as followsgrad

(
ρi ⊗ρi

(ρi ·ρi + d2
i )1/2

)
jkq

= −

 ρi ⊗ρi ⊗ρi

(ρi ·ρi + d2
i )3/2


jkq

+
(ρi) j/q(ρi)k

(ρi ·ρi + d2
i )1/2

+
(ρi) j(ρi)k/q

(ρi ·ρi + d2
i )1/2

(173)
since

grad

 1
(ρi ·ρi + d2

i )1/2

 = −
ρi

(ρi ·ρi + d2
i )3/2

. (174)

Thus, being (ρi) j/q = δ jq we infer from (173)

grad

 ρi ⊗ρi

(ρi ·ρi + d2
i )1/2

 = −
ρi ⊗ρi ⊗ρi

(ρi ·ρi + d2
i )3/2

+
I2D ⊗23 ρi

(ρi ·ρi + d2
i )1/2

+
ρi ⊗ I2D

(ρi ·ρi + d2
i )1/2

(175)

where I2D is the 2D identity tensor and ⊗23 denotes the tensor product obtained by inter-
changing the second and third index of the rank-three tensor I2D ⊗ρi.

The integral over Fi of the first addend in the formula above can be transformed into a
boundary integral by exploiting the differential identity (Bowen and Wang, 2006)∫

Ω
gradSdV =

∫
∂Ω

S⊗ndA (176)

where S is a continuous tensor field.
Thus, integrating over Fi the previous relation and recalling the definition (64) one has∫
Fi

ρi ⊗ρi ⊗ρi

(ρi ·ρi + d2
i )3/2

dAi = −

∫
∂Fi

ρi(si)⊗ρi(si)⊗ν(si)
(ρi ·ρi + d2

i )1/2
dsi + I2D ⊗23ψFi

+ψFi
⊗ I2D (177)

where ν is the unit normal pointing outwards the boundary ∂Fi of the i-th face Fi of the
polyhedron.

Hence the first integral on the right-hand side of (177) becomes

∫
∂Fi

ρi(si)⊗ρi(si)⊗ν(si)
(ρi ·ρi + d2

i )1/2
dsi =

NEi∑
j=1

l j∫
0

ρi(si)⊗ρi(si)dsi

(ρi ·ρi + d2
i )1/2

⊗ν j (178)

since ν is constant on each of the NEi edges belonging to ∂Fi.
Recalling (68) and (73), formula (178) becomes

∫
∂Fi

ρi(si)⊗ρi(si)⊗ν(si)
(ρi ·ρi + d2

i )1/2
dsi =

NEi∑
j=1

1∫
0

ρ̂i(λ j)⊗ ρ̂i(λ j)dλ j[
ρ̂i(λ j) · ρ̂i(λ j) + d2

i

]1/2 ⊗∆ρ
⊥
j (179)
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and the integral on the right-hand side can be further transformed by defining

Eρ j ρ j = ρ j ⊗ρ j Eρ j ∆ρ j = ρ j ⊗∆ρ j +∆ρ j ⊗ρ j E∆ρ j ∆ρ j = ∆ρ j ⊗∆ρ j . (180)

Actually, recalling the parametrization (67) one has

ρ̂i(λ j)⊗ ρ̂i(λ j) = Eρ j ρ j +λ jEρ j ∆ρ j +λ2
jE∆ρ j ∆ρ j , (181)

1∫
0

ρ̂i(λ j)⊗ ρ̂i(λ j)dλ j[
ρ̂i(λ j) · ρ̂i(λ j) + d2

i

]1/2 = I0 j Eρ j ρ j + I1 j Eρ j ∆ρ j + I2 j E∆ρ j ∆ρ j (182)

where the explicit expression of the integrals

I0 j =

1∫
0

dλ j[
ρ̂i(λ j) · ρ̂i(λ j) + d2

i

]1/2 I1 j =

1∫
0

λ jdλ j[
ρ̂i(λ j) · ρ̂i(λ j) + d2

i

]1/2

I2 j =

1∫
0

λ2
jdλ j[

ρ̂i(λ j) · ρ̂i(λ j) + d2
i

]1/2

(183)

is provided in Appendix 2.
In conclusion it turns out be∫
∂F

ρi(si)⊗ρi(si)⊗ν(si)
(ρi ·ρi + d2

i )1/2
dsi =

NEi∑
j=1

[
I0 j Eρ j ρ j + I1 j Eρ j ∆ρ j + I2 j E∆ρ j ∆ρ j

]
⊗∆ρ⊥j , (184)

so that the integral of interest can be computed as fallows on account of (177)

CFi =

∫
Fi

ρi ⊗ρi ⊗ρi

(ρi ·ρi + d2
i )3/2

dAi = −

NEi∑
j=1

[
I0 j Eρ j ρ j + I1 j Eρ j ∆ρ j + I2 j E∆ρ j ∆ρ j

]
⊗∆ρ⊥j +

+ I2D ⊗23ψFi
+ψFi

⊗ I2D

(185)

where the expression of ψFi
as explicit function of the position vectors defining the boundary

of Fi is provided at the end of this Appendix.
Of interest is also the composition of the third-order tensor above with the vector κi

since it appears in the expressions (47), (50) and (49). For this end let us first notice that[(
I2D ⊗23ψFi

)
κi
]

jk
=

(
I2D ⊗23ψFi

)
jkp

(
κi
)

p
= I jp

(
ψFi

)
k

(
κi
)

p
=

= δ jp
(
κi
)

p

(
ψFi

)
k

=
(
κi
)

j

(
ψFi

)
k

=
(
κi ⊗ψFi

)
jk
.

(186)

Hence

CFiκi =

∫
Fi

(ρi ·κi)(ρi ⊗ρi)
(ρi ·ρi + d2

i )3/2
dAi = −

NEi∑
j=1

(
κi ·∆ρ

⊥
j

)(
I0 j Eρ j ρ j + I1 j Eρ j ∆ρ j + I2 j E∆ρ j ∆ρ j

)
+

+κi ⊗ψFi
+ψFi

⊗κi
(187)
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so that the right-hand side fulfills the symmetry of the tensor on the left-hand side of the
previous expression.

To evaluate analytically the second integral in (168) we exploit the identity (172) to getgrad
(
ρi ⊗ρi ⊗ρi

(ρi ·ρi + d2
i )1/2

)
jkpq

= −

ρi ⊗ρi ⊗ρi ⊗ρi

(ρi ·ρi + d2
i )3/2


jkpq

+
δ jq(ρi ⊗ρi)kp

(ρi ·ρi + d2
i )1/2

+

+
δkq(ρi ⊗ρi) jp

(ρi ·ρi + d2
i )1/2

+
δpq(ρi ⊗ρi) jk

(ρi ·ρi + d2
i )1/2

,

(188)

or equivalently

grad

 ρi ⊗ρi ⊗ρi

(ρi ·ρi + d2
i )1/2

 = −
ρi ⊗ρi ⊗ρi ⊗ρi

(ρi ·ρi + d2
i )3/2

+
I2D ⊗24 (ρi ⊗ρi)
(ρi ·ρi + d2

i )1/2
+

+
(ρi ⊗ρi)⊗23 I2D

(ρi ·ρi + d2
i )1/2

+
(ρi ⊗ρi)⊗ I2D

(ρi ·ρi + d2
i )1/2

(189)

where ⊗24 denotes the tensor product obtained by interchanging the second and fourth index
of the rank-four tensor I2D ⊗ (ρi ⊗ρi).

Integrating the previous relation over Fi and applying Gauss theorem yields

DFi =

∫
Fi

ρi ⊗ρi ⊗ρi ⊗ρi

(ρi ·ρi + d2
i )3/2

dAi = −

∫
∂Fi

ρi(si)⊗ρi(si)⊗ρi(si)⊗ν(si)
(ρi ·ρi + d2

i )1/2
dsi+

+ I2D ⊗24ΨFi +ΨFi ⊗23 I2D +ΨFi ⊗ I2D

(190)

where ΨFi is analytically evaluated in formula (208) of Appendix 2.
In view of the ensuing developments we further set

�ρ j ρ j ρ j = ρ j ⊗ρ j ⊗ρ j �ρ j ρ j ∆ρ j = ρ j ⊗ρ j ⊗∆ρ j +ρ j ⊗∆ρ j ⊗ρ j +∆ρ j ⊗ρ j ⊗ρ j (191)

�ρ j ∆ρ j ∆ρ j = ρ j ⊗∆ρ j ⊗∆ρ j +∆ρ j ⊗ρ j ⊗∆ρ j +∆ρ j ⊗∆ρ j ⊗ρ j (192)

�∆ρ j ∆ρ j ∆ρ j = ∆ρ j ⊗∆ρ j ⊗∆ρ j (193)

yielding

ρ̂i(λ j)⊗ ρ̂i(λ j)⊗ ρ̂i(λ j) = �ρ j ρ j ρ j +λ j�ρ j ρ j ∆ρ j +λ2
j�ρ j ∆ρ j ∆ρ j +λ3

j�∆ρ j ∆ρ j ∆ρ j . (194)

Accordingly, the integral on the right-hand side in (190) becomes

∫
∂Fi

ρi(si)⊗ρi(si)⊗ρi(si)⊗ν(si)
(ρi ·ρi + d2

i )1/2
dsi =

NEi∑
j=1

1∫
0

 ρ̂i(λ j)⊗ ρ̂i(λ j)⊗ ρ̂i(λ j)dλ j[
ρ̂i(λ j) · ρ̂i(λ j) + d2

i

]1/2 ⊗∆ρ⊥j

 =

= −

NEi∑
j=1

[
I0 j�ρ j ρ j ρ j + I1 j�ρ j ρ j ∆ρ j+

+ I2 j�ρ j ∆ρ j ∆ρ j + I3 j�∆ρ j ∆ρ j ∆ρ j

]
⊗∆ρ⊥j

(195)

where the integrals I0 j, I1 j, I2 j and I3 j are explicitly evaluated in the Appendix 2.
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In conclusion one has∫
∂Fi

ρi(si)⊗ρi(si)⊗ρi(si)⊗ν(si)
(ρi ·ρi + d2

i )1/2
dsi =

NEi∑
j=1

[
I0 j�ρ j ρ j ρ j + I1 j�ρ j ρ j ∆ρ j+

+ I2 j�ρ j ∆ρ j ∆ρ j + I3 j�∆ρ j ∆ρ j ∆ρ j

]
⊗∆ρ⊥j +

+ I2D ⊗24ΨFi +ΨFi ⊗23 I2D +ΨFi ⊗ I2D .

(196)

The composition of the previous integral with κi, a quantity that is needed in (175) and (to be
displayed), yields a third-order tensor. The contribution to the jkp component of this tensor
provided by the tensor product ΨFi ⊗23 I2D is given by[(

ΨFi ⊗23 I2D
)
κi
]

jkp
=

(
ΨFi ⊗23 I2D

)
jkpq

(
κi
)
q

=
(
ΨFi

)
jp

(
δkq

)(
κi
)
q

=

=
(
ΨFi

)
jp

(
κi
)
k

=
(
ΨFi ⊗23 κi

)
jkp
.

(197)

Analogously[(
I2D ⊗24ΨFi

)
κi
]

jkp
=

(
I2D ⊗24ΨFi

)
jkpq

(
κi
)
q

=
(
δ jq

)(
ΨFi

)
pk

(
κi
)
q

=

=
(
κi
)

j

(
ΨFi

)
pk

=
(
κi
)

j

(
ΨFi

)
kp

=
(
κi ⊗ΨFi

)
jkp

(198)

where the identity
(
ΨFi

)
pk

=
(
ΨFi

)
kp

stems from the symmetry of ΨFi . Accordingly, we
infer from (190) and (196)

DFiκi =

∫
Fi

ρi ⊗ρi ⊗ρi ⊗ρidAi

(ρi ·ρi + d2
i )3/2

κi = −

NEi∑
j=1

(
κi ·∆ρ

⊥
j

)(
I0 j�ρ j ρ j ρ j + I1 j�ρ j ρ j ∆ρ j+

+ I2 j�ρ j ∆ρ j ∆ρ j + I3 j�∆ρ j ∆ρ j ∆ρ j

)
+

+ΨFi ⊗κi +ΨFi ⊗23 κi +κi ⊗ΨFi .

(199)

The expression (185) for CFi and (190) for DFi require the computation of the integral
ΨFi defined in formula (169); it is evaluated analytically by invoking the differential identity

grad
[
ϕa

]
= a⊗gradϕ+ϕgrada (200)

holding for differentiable scalar (ϕ) and vector (a) fields. Actually, applying the previous
identity as follows

grad
[
(ρi ·ρi + d2

i )1/2ρi

]
=

ρi ⊗ρi

(ρi ·ρi + d2
i )1/2

+ (ρi ·ρi + d2
i )1/2I2D , (201)

integrating over Fi and setting

ιFi =

∫
Fi

(
ρi ·ρi + d2

i

)1/2
dAi (202)
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one has
ΨFi =

∫
∂Fi

[
ρi(si) ·ρi(si) + d2

i

]1/2
ρi(si)⊗νi(si)dsi − ιFi I2D . (203)

To compute the domain integral (202), we apply the differential identity

div
[
ϕa

]
= gradϕ ·a +ϕdiva (204)

to the vector field
(
ρi ·ρi + d2

i

)1/2
ρi to get

div
[(
ρi ·ρi + d2

i

)1/2
ρi

]
=

ρi ·ρi(
ρi ·ρi + d2

i

)1/2 + 2
(
ρi ·ρi + d2

i

)1/2
. (205)

Adding and subtracting d2
i to the numerator yields

div
[(
ρi ·ρi + d2

i

)1/2
ρi

]
= 3

(
ρi ·ρi + d2

i

)1/2
−

d2
i(

ρi ·ρi + d2
i

)1/2 , (206)

so that, upon integrating over Fi and applying Gauss theorem, one has

ιFi =
1
3

∫
∂Fi

[
ρi(si) ·ρi(si) + d2

i

]1/2
ρi(si) ·ν(si)dsi −

d2
i

3
ψFi , (207)

by recalling definition (62). In conclusion, we infer from (203) and the previous expression

ΨFi =

∫
∂Fi

[
ρi(si) ·ρi(si) + d2

i

]1/2
ρi(si)⊗ν(si)dsi−

−
I2D

3

{∫
∂Fi

[
ρi(si) ·ρi(si) + d2

i

]1/2
ρi(si) ·ν(si)dsi −d2

i ψFi

}

=

NEi∑
j=1

{[ l j∫
0

(
ρi ·ρi + d2

i

)1/2
ρids j

]
⊗ν j−

−
I2D

3

[(
ρ j ·ν j

) l j∫
0

(
ρi ·ρi + d2

i

)1/2
ds j

]}
+

d2
i

3
ψFi =

=

NEi∑
j=1

{[ 1∫
0

[
ρ̂i(λ j) · ρ̂i(λ j) + d2

i

]1/2 (
ρ j +λ j∆ρ j

)
dλ j

]
⊗∆ρ⊥j −

−
I2D

3

(
ρ j ·ρ

⊥
j+1

) 1∫
0

[
ρ̂i(λ j) · ρ̂i(λ j) + d2

i

]1/2
dλ j

}
+

d2
i

3

(
ψi − |di|αi

)
=

=

NEi∑
j=1

[(
I4 jρ j + I5 j∆ρ j

)
⊗∆ρ⊥j −

I2D

3
(ρ j ·ρ

⊥
j+1)I4 j

]
+

d2
i

3

(
ψi − |di|αi

)

(208)

where ψi is defined in (219).
We have numerically verified that the sum over the NEi edges of the first addend on the

right-hand side returns a symmetric rank-two tensor as the one the left-hand side.
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8 Appendix 2 - Available expressions of integrals

We hereby collect some known formulas in order to allow the reader to implement the ex-
pression of the gravity anomaly contributed in the main body of the paper.

We first report the algebraic expression of some definite integrals that will be repeat-
edly referred to in the sequel; they have been computed elsewhere D’Urso (2013a, 2014a,b)
though with a different denomination. Making reference to the quantities p j, q j, u j, v j intro-
duced in formula (71), we set

AT N1 j = arctan
|di|(p j + q j)√

p ju j −q2
j

√
p j + 2q j + v j

, (209)

AT N2 j = arctan
|di|q j√

p ju j −q2
j
√v j

(210)

where the suffix (·) j has been added to remind that they all refer to the j-th edge of the
generic face Fi.

Of interest are also the following integrals

I0 j =

1∫
0

dλ j[
p jλ2 + 2q jλ j + v j

]1/2 = lnk j = ln
p j + q j +

√p j
√

p j + 2q j + v j

q j +
√p jv j

= LN j , (211)

I1 j =

1∫
0

λ jdλ j[
p jλ2 + 2q jλ j + v j

]1/2 =
1
p j

{√
p j + 2q j + v j −

√
v j −

q j
√p j

I0 j

}
, (212)

I2 j =

1∫
0

λ2
jdλ j[

p jλ2 + 2q jλ j + v j
]1/2 =

1
2p2

j

[
(p j −3q j)

√
p j + 2q j + v j + 3q j

√
v j

]
+

+
3q2

j − p jv j

2p5/2
j

I0 j ,

(213)

I3 j =

1∫
0

λ3
jdλ j[

p jλ2 + 2q jλ j + v j
]1/2 =

1
6p3

j

[
(2p2

j −5p jq j −4p jv j + 15q2
j )

√
p j + 2q j + v j+

+ (4p jv j −15q2
j )
√

v j

]
+

3p jq jv j −5q3
j

2p7/2
j

I0 j ,

(214)

I4 j =

1∫
0

[
p jλ

2 + 2q jλ j + v j
]1/2

dλ j =
(p j + q j)

√
p j + 2q j + v j −q j

√v j

2p j
+

p jv j −q2
j

2p3/2
j

I0 j ,

(215)

I5 j =

1∫
0

λ j
[
p jλ

2 + 2q jλ j + v j
]1/2

dλ j =
1

6p2
j

[
(2p2

j + p jq j + 2p jv j −3q2
j )

√
p j + 2q j + v j−

− (2p jv j −3q2
j )
√

v j

]
+

q3
j − p jq jv j

2p5/2
j

I0 j ,

(216)
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I6 j =

1∫
0

[
p jλ

2 + 2q jλ j + v j
]1/2

p jλ2 + 2q jλ j + u j
dλ j =

|di|√
p ju j −q2

j

[
AT N1 j −AT N2 j

]
+

1
√p j

LN j . (217)

Let us now consider the evaluation of 2D integrals having either (ρi ·ρi + d2
i )1/2 or (ρi ·

ρi + d2
i )3/2 in the denominator. The first domain integral to consider is

ψFi =

∫
Fi

dAi

(ρi ·ρi + d2
i )1/2

= ψi − |di|αi (218)

where

ψi =

NEi∑
j=1

(
ρ j ·ν j

) l j∫
0

(ρi ·ρi + d2
i )1/2

ρi ·ρi
ds j =

NEi∑
j=1

(
ρ j ·ρ

⊥
j+1

) 1∫
0

(p jλ
2
j + 2q jλ j + v j)1/2

p jλ
2
j + 2q jλ j + u j

dλ j =

=

NEi∑
j=1

(
ρ j ·ρ

⊥
j+1

) |di|√
p ju j −q2

j

[
AT N1 j −AT N2 j

]
+

1
√p j

LN j

 =

NEi∑
j=1

ψi
j

(
ρ j ·ρ

⊥
j+1

)
.

(219)
The derivation of the previous expression can be found, e.g., in formula (19) of D’Urso
(2013a) and (23) of D’Urso (2014a).

The scalar αi in (218) is the two-dimensional counterpart of the quantity αV in (26)
and accounts for the singularity of ψFi when di = 0 and ρ = o where o = (0, 0). Thus αi
represents the angular measure, expressed in radians, of the intersection between Fi and
a circular neighbourhood of the singularity point ρ = o, see D’Urso (2013a, 2014a,b) for
additional details. Although its computation is not required in the ensuing developments,
we specify for completeness that αi can be computed by means of the general algorithm
detailed in D’Urso and Russo (2002).

Analogously formulas (19), (77) and (79) of D’Urso (2014b) yield

ψFi
=

∫
Fi

ρidAi

(ρi ·ρi + d2
i )1/2

=

NEi∑
j=1

ν j

l j∫
0

(ρi ·ρi + d2
i )1/2dsi =

=

NEi∑
j=1

l jν j

1∫
0

[
p jλ

2
j + 2q jλ j + v j

]1/2
dλ j =

NEi∑
j=1

I4 j∆ρ
⊥
j

(220)

while formulas (37) and (81) of D’Urso (2014b)

ϕFi =

∫
Fi

dAi

(ρi ·ρi + d2
i )3/2

=
αi

|di|
−

NEi∑
j=1

(ρ j ·ν j
) l j∫

0

ds j

(ρi ·ρi)(ρi ·ρi + d2
i )1/2

 =

=
αi

|di|
−

NEi∑
j=1

(
ρ j ·ρ

⊥
j+1

) 1∫
0

λ j

(p jλ
2
j + 2q jλ j + u j)(p jλ

2
j + 2q jλ j + v j)1/2

=

=
αi

|di|
−

NEi∑
j=1

 ρ j ·ρ
⊥
j+1

|di|
√

p ju j −q2
j

(AT N1 j −AT N2 j)

 =
αi

|di|
−

NEi∑
j=1

ϕ j
(
ρ j ·ρ

⊥
j+1

)
.

(221)
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Furthermore, on account of formulas (38) and (82) of D’Urso (2014b) it turns out to be

ϕFi
=

∫
Fi

ρidAi

(ρi ·ρi + d2
i )3/2

=−

NEi∑
j=1

ν j

l j∫
0

ds j

(ρi ·ρi + d2
i )1/2

 =

= −

NEi∑
j=1

∆ρ⊥j

1∫
0

dλ j

(p jλ
2
j + 2q jλ j + v j)1/2

= −

NEi∑
j=1

I0 j ∆ρ
⊥
j

(222)

while one infers from formulas (40) and (83) of D’Urso (2014b)

ΦFi =

∫
Fi

ρi ⊗ρi

(ρi ·ρi + d2
i )3/2

dAi =

= −

NEi∑
j=1

l j∫
0

ρi

(ρi ·ρi + d2
i )1/2

dsi ⊗ν j +ψFi I2D =

= −

NEi∑
j=1

1∫
0

ρ j +λ j∆ρ j

(p jλ
2
j + 2q jλ j + v j)1/2

dλ j ⊗∆ρ
⊥
j +ψFi I2D

= −

NEi∑
j=1

[
LN j ρ j ⊗∆ρ

⊥
j + I1 j ∆ρ j ⊗∆ρ

⊥
j

]
+ψFi I2D

(223)

where I2D is the rank-two two-dimensional identity tensor.
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The authors wish to thank the reviewer for careful review of the manuscript. Ac-

cording to the comments pointed out by the reviewer, the revised manuscript has been

improved as follows:

– P1,first paragraph “most diagnostic” and “most difficult property”. I do not think

that the superlative formulations are correct and in my opinion would require

proof. I recommend to relativize the statements by writing, e.g, “one of the most

diagnostic”.

– Your suggestion has been followed by writing “one of the most diagnostic” and

“one of the most difficult”.

– P2, first paragraph, spelling “historical”.

– It has been corrected. Thank you.

– P2, second paragraph, “still used in exploriation” is sufficient, i.e., I suggest to

omit “methods”.

– The word “method” has been deleted.

– P2, third paragraph, spelling “electro-magnetic”.

– It has been corrected. Thank you.

– P2, fourth paragraph, “improvements in gravimeter efficiency” (remove “s” from

“gravimeters”)..

– It has been corrected. Thank you.

– P2, fifth paragraph: I suggest to rephrase this, by clearly separating what is mea-

sured (anomaly, i.e., geophysical data, from real earth structures that can poten-

tially be complex in their density distribution) and what is simulated/modelled

(anomaly associated with a body with a known density distribution). The simu-

lation is then an element of geophysical modelling inversion, but I would only

call it basic if the bodies had particularly simple density distributions.

– We modified the sentence so as to (hopefully) explain that we were making

reference to simulation, i.e. evaluation of gravity anomaly.

– P3, first paragraph. I recently saw a paper by Ren et al. (2016): Gravity Ano-

malies of Arbitrary 3D Polyhedral Bodies with Horizontal and Vertical Mass

Contrasts, Surveys in Geophysics, which potentially has some overlap with the

presented work. I personally did not study it, but I recommend to have a look. It

might be worth citing after this paragraph.

– It has been quoted at the end of pag. 3.

– P4, below eq. 1: “represents the magnitude [...] from the infinitesimal mass” is

strictly not correct as eq. 1 is the integral over the collection of all infinitesimal

masses in Ω.
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– We have modified the original sentence by writing: and the integrand function

represents...

– P4, second last paragraph “governed by the Poisson equation” (i.e., add “the”).

– It has been corrected. Thank you.

– P5, below eq. 3: “confine the treatment to the case” (i.e., add “the”).

– It has been corrected. Thank you.

– P9, below eq. 30: spelling “as follows”.

– It has been corrected. Thank you.

– P13, around eq. 58: “For the same rason we shall not consider [...] since this

would require us to consider separately the cases [...] of the algebraic expressions

resulting from (57)”. Please consider adding for clarification e.g. “but instead

perform the combination after the integration”.

– We have added the sentence: instead we shall perform the combination after the

integration.

– P13, below eq. 58: “ ... do not exhibit anymore the useful recurrence property

...”. Does this present a limitation or an additional difficulty for the extension

of the presented approach to density contrasts of higher polynomial order than

Nx+Ny+Nz ≤ 3? If so, I recommend to mention it here.

– We have added a sentence to better explain our objective. It is not related to

the generalization of the methods to the case Nx+Ny +Nz > 3 since this can be

exploited provided that some further analytical and algebraic manipulations are

carried out.

– P15, below eq. 66: “integral of a real variable” (i.e., add “a”).

– It has been corrected. Thank you.

– P16, below eq. 76: I believe that “where LN j is defined ...” should be “where I0 j

is defined ...”.

– It has been corrected. Thank you.

– P17, last paragraph, first sentence, please correct (e.g., “The aim of this subsec-

tion is to show how...”).

– It has been corrected. Thank you.

– P18, below eq. 98: “will be dealt with” (i.e., add “with”).

– It has been corrected. Thank you.

– P25, fourth paragraph, two times “at the denominator”, change to “in the deno-

minator”.
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– It has been corrected. Thank you.

– P28, below eq. 148: Replace “at infinite” with “at infinity”.

– It has been corrected. Thank you.

– The punctuation of equations is not always correct. Examples are eqs. 2,8, 10,

31, 33, 127 (comma missing), 5, 7, 13, 16, 18, 21, 24, 25, 27, 41, 56, 60, 64,

66, 73, 83, 100, 108, 113, 122, 126, 128, 130, 132, 136 (full-stop missing) and

more.

– A comma has been added to equations 2, 8, 9, 10, 11, 29, 31, 32, 33, 36, 39, 44,

49, 51, 52, 53, 54, 55, 58, 79, 81, 90, 91, 92, 93, 94, 95, 96, 97, 106, 107, 111,

112, 117, 118, 119, 127, 140, 149, 161, 165, 168, 169, 170, 181, 184, 188, 201,

206, 207, 209, 211, 212, 213, 214, 215, 216.

A full-stop has been added to equations 5, 7, 13, 16, 18, 21, 24, 25, 27, 30, 38,

41, 48, 55, 60, 66, 70, 73, 74, 83, 86, 98, 100, 105, 108, 122, 126, 128, 130, 132,

136, 138, 139, 142, 143, 144, 145, 150, 157, 164, 166, 171, 173, 174, 180, 186,

194, 196, 197, 199, 203, 204, 219, 221.

– There are possibly a few more of the minor grammatical mistakes like the ones

pointed out above. I would recommend the authors to recheck carefully, or better

yet, find a further pair of eyes to spot remaining mistakes in the language.

– We have done it and corrected a couple a further mistakes.
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The authors wish to thank the reviewer for careful review of the manuscript. Ac-

cording to the comments pointed out by the reviewer, the revised manuscript has been

improved as follows:

1. Most of the authors’ responses to previous comments are satisfactory, but the

response to the first comment, dealing with the definition of the gravity anomaly,

is not. The relevant formula, Eq. (1), is simply not a formula for a gravity ano-

maly, and to say otherwise is a factual error. It is the formula for the gravitational

attraction of a mass body. It may be seen approximately as the formula for the

influence of a mass body on the gravity anomaly, since for small bodies the effect

on gravity is the dominant part of the effect on the gravity anomaly. Or it may be

seen exactly as the formula for the influence of a small mass body on the gravity

disturbance, which is defined in such a way that effect of the body on gravity

potential is irrelevant. Perhaps to address the two concerns cited by the authors

to justify retaining the term, i.e. that the term is also misapplied elsewhere, it

can simply be stated that the term “gravity anomaly” in this paper is not being

used in the most correct sense, but is rather being used throughout to indicate

the effect of a mass body on gravity. This indeed (for small bodies) corresponds

to the largest part of the body’s effect on the gravity anomaly. In this way, the

issue can be addressed painlessly but without loss of consistency with the other

publications referenced (on inversion, or the 2-d paper), while acknowledging

that the terminology is problematic. The citation of the Vanı́ček et al. (2004)

paper is not necessary if the above change is made–that paper was cited by me

only as an example of a discussion of the complete effect of mass-density on the

gravity anomaly, to clarify the issue for the authors. However, they may retain

it if they wish as an example of how the effect of a mass body on the gravity

anomaly may be formulated in a more theoretically consistent manner. I also

note a minor issue in the wording of the additional paragraph near the bottom

of p. 4, regarding gravimetry. The word “compute” in this paragraph should be

changed to “measure”, as that is the task of the gravimeter. Any computation

done when using digital meters is ancillary to their primary task. Also, strictly

speaking, the vertical direction at the gravimeter is not the normal to the geoid,

unless the gravimeter is located at the geoid. Rather, the vertical is a direction

perpendicular to the local horizontal, or more analogously to the wording used,

normal to an equipotential surface passing through the instrument. I believe “the

vertical component of the gravity field” is sufficient to indicate this direction,

leaving aside any reference to the geoid or equipotential surfaces.

Thanks again for your detailed and illuminating comment. We have included

two new paragraphs after formula (1) in order to (hopefully) properly address

the points raised by you.

In the first paragraph after formula (2) we have changed “compute” to measure

and deleted the expression “i.e. the component normal to the geoid”.
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Abstract We analytically evaluate the gravity anomaly associated with a polyhedral body

having an arbitrary geometrical shape and a polynomial density contrast in both the orizon-

tal and vertical directions. The gravity anomaly is evaluated at an arbitrary point that does

not necessarily coincide with the origin of the reference frame in which the density function

is assigned. Density contrast is assumed to be a third-order polynomial as a maximum but

the general approach exploited in the paper can be easily extended to higher-order polyno-

mial functions. Invoking recent results of potential theory, the solution derived in the paper

is shown to be singularity-free and is expressed as sum of algebraic quantities that only de-

pend upon the 3D coordinates of the polyhedron vertices and upon the polynomial density

function. The accuracy, robustness and effectiveness of the proposed approach is illustrated

by numerical comparisons with examples derived from the existing literature.

Keywords Gravity anomaly · Polyhedral bodies · Polynomial density contrast · Singularity

1 Introduction

Gravity is an economic tool for exploring and discovering natural resources (Jacoby and

Smilde, 2009). In this respect density is one of the most diagnostic physical property of a

mineral deposit, and is also fundamental to oil and gas exploration. To date, density has been

one of the most difficult property to measure and infer.

During the last decade, there has been significant development in gravity survey, par-

ticularly with the advent of GPS and gravity gradiometry. In conventional gravity survey,

Earth’s gravity acceleration is measured using gravimeter whereas in gravity gradiometer

survey, the gravity gradient or how the gravitational acceleration changes over distance (or

in some cases time) is measured.
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Recent reviews (LaFehr, 1980; Paterson and Reeves, 1985; Hansen, 2001) document the

continuous evolution of instruments, field operations, data-processing techniques, and meth-

ods of interpretation. A steady progression in instrumentation (torsion balance, gravimeters

based on land or underwater, in boreholes or on board satellites, aircraft or marine vessels,

modern versions of absolute gravimeters, and gravity gradiometers) has enabled the acquisi-

tion of gravity data in nearly all environments, see, e.g., Nabighian (2005) for a quite recent

historical account.

Despite being eclipsed by seismology, it is impressive to realize that about 40 different

commercial gravity sensors and gravity gradiometers are available (Chapin, 2008) and about

30 different gravity sensor and gravity gradiometers designs have either been proposed or

developed. In particular, gravity gradiometry is still used in exploration (Dransfield, 2007)

and for regional gravity mapping (Jekeli, 2006).

Gravity data sets are effectively used to estimate locations and shapes of bodies, embed-

ded in Earth, exhibiting anomalous mass density with respect to a constant reference value

(Zhang et al., 2014). More refined Earth models can be obtained by inverting gravity data

(Li and Oldenburg, 1998; Zhdanov, 2002) in conjuction with seismic and electro-magnetic

induction data (Moorkamp et al., 2011; Aydemir et al., 2014; Roberts et al., 2016).

Recent improvements in gravimeter efficiency and inversion algorithms have increased

the possibility of collecting and inverting huge data sets over extended areas in order to

derive 3D density models (Kamm et al., 2015). In particular, gravity methods are extensively

used in geoid determination (Bajracharya and Sideris, 2004) and mineral exploration (Beiki

and Pedersen, 2010; Martinez et al., 2013; Abtahi et al., 2016).

In conclusion it is of paramount importance to efficiently evaluate the gravity anomaly

associated with a body characterized by complex density distributions since this represents

an important task in forward modelling and inversion.

Due to the mathematical complexity of the problem, the gravity anomaly of an irregular

body whose density contrast is spatially variable has been first computed by approximating

the body as a collection of vertical rectangular parallelepipeds (prisms) in which the density

is assumed to be constant.

Numerical computations were first carried out by Talwani et al. (1959) and Bott (1960).

Closed form expressions of the gravity anomaly were subsequently derived by Nagy (1966),

Banerjee and Das Gupta (1977), Cady (1980), Nagy et al. (2000), Tsoulis (2000), Jiancheng

and Wenbin (2010), D’Urso (2012), see also Plouff (1975, 1976), Won and Bevis (1987),

Montana et al. (1992) for computer codes. The case of spheroidal shell has been addressed

by Johnson and Litehiser (1972). Analytical expressions of the gravity anomaly for prisms

have been derived by D’Urso (2016), for a linearly varying density, by Rao (1985, 1986,

1990), Rao et al. (1994), Gallardo-Delgado et al. (2003) for a quadratic density contrast, by

Garcı́a-Abdeslem (1992, 2005), for a cubic density variation with depth. A good collection

of earlier references for 3D prisms can be found in Li and Chouteau (1998) who name,

among others, a formula contributed in Sorokin (1951).

Non-polynomial density-contrast models for 3D bodies have been considered by Cordell

(1973), Chai and Hinze (1988), Litinsky (1989), Rao et al. (1990), Chakravarthi et al. (2002),

Silva et al. (2006), Chakravarthi and Sundararajan (2007), Chappell and Kusznir (2008),

Zhou (2009b) and, for 2D bodies, by Gendzwill (1970), Murthy and Rao (1979), Pan (1989),

Guspı́ (1990), Ruotoistenmäki (1992), Martı́n-Atienza and Garcı́a-Abdeslem (1999), Zhang

et al. (2001), Zhou (2008, 2009a, 2010). For more complicated forms of the density contrast,

see, e.g., Cai and Wang (2005) and Mostafa (2008).

Alternative to the use of prisms, characterized by complicated functions describing den-

sity contrast, is the case of polyhedrons endowed with a a simple description of density
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contrast. Analytical formulas for the gravimetric analysis of polyhedra having constant den-

sity have been contributed by Paul (1974), Barnett (1976), Strakhov (1978), Okabe (1979),

Waldvogel (1979), Golizdra (1981), Strakhov et al. (1986), Götze and Lahmeyer (1988), Po-

hanka (1988), Murthy et al. (1989), Kwok (1991b), Werner (1994), Holstein and Ketteridge

(1996), Petrović (1996), Werner and Scheeres (1997), Li and Chouteau (1998), Tsoulis

(2012), D’Urso (2013a, 2014a), Conway (2015), Werner (2017). Subsequent advancements

have been only concerned with a linear density variation, (Pohanka, 1998; Hansen, 1999;

Holstein, 2003; Hamayun et al., 2009; D’Urso, 2014b); actually, handling more complex

density functions in conjunction with polyhedral models considerably increases the difficul-

ties of the treatment, especially if analytical solutions are looked for.

For 2D bodies having density contrast depending only on depth, Zhou (2008) converted

the original domain integral for gravity anomaly to a Line Integral (LI) by using Stokes theo-

rem. In particular he derived two types of LIs for computing the gravity anomaly of bodies.

In a subsequent paper (Zhou, 2009a) the author extended his method to account for den-

sity contrast functions which depended not only on depth but also on horizontal or, jointly,

on horizontal and vertical directions. The gravity anomaly at observation points different

from the origin has been evaluated in Zhou (2010) since, historically, gravity anomaly was

computed only at the origin of the reference frame. In the same paper, Zhou dealt with the

singularity of the gravity anomaly arising where the observation point is coincident with the

vertices of the integration domain, an issue already discussed in Kwok (1991a), for prism-

based modelling, and Tsoulis and Petrović (2001) for polyhedra.

The first approach for evaluating the gravity anomaly of bodies characterized by a com-

plicated density contrast, even in presence of two-dimensional domains, has been either nu-

merical or of semi-analytical nature based on the use of prisms, (Murthy and Rao, 1979; Rao

et al., 1990; Chakravarthi et al., 2002; Chakravarthi and Sundararajan, 2007; Zhou, 2009b),

or with 2D geometrical shapes, (Gendzwill, 1970; Murthy and Rao, 1979; Pan, 1989; Guspı́,

1990; Ruotoistenmäki, 1992; Martı́n-Atienza and Garcı́a-Abdeslem, 1999; Zhang et al.,

2001; Zhou, 2008, 2009a, 2010). Actually, this last geometrical assumption, which can be

used to model domains extending towards infinity in one direction, significantly simplifies

the mathematical treatment of the problem.

Nevertheless, starting from the first researches on the subject (Hubbert, 1948), all au-

thors have systematically transformed the original domain integrals into integrals of lower

dimension in order to simplify the adoption of quadrature rules for the numerical evaluation

of the gravity anomaly.

The derivation of analytical expressions for the gravity anomaly of polygonal bodies has

been achieved only recently (D’Urso, 2015c) by exploiting the generalized Gauss theorem

first presented in D’Urso (2012, 2013a), and subsequently applied to several problems rang-

ing from geodesy (D’Urso, 2014a,b; D’Urso and Trotta, 2015b; D’Urso, 2016), to geome-

chanics (D’Urso and Marmo, 2009; Sessa and D’Urso, 2013; D’Urso and Marmo, 2015a),

to geophysics (D’Urso and Marmo, 2013b), elasticity (Marmo and Rosati, 2016; Marmo et

al., 2016a,b, 2017; Trotta et al., 2016a,b) and to heat transfer (Rosati and Marmo, 2014).

The methodology outlined in D’Urso (2015c) is here generalized in order to derive an

analytical expression of the gravity anomaly for polyhedral bodies having density contrast

expressed as a polynomial function of arbitrary degree in both the horizontal and vertical

directions, an issue recently addressed in Ren et al. (2017). The result is obtained by first

reducing the original domain integral to a 2D boundary integral by virtue of the generalized

Gauss theorem. Remarkably, this also allows one to prove that the boundary integral expres-

sion of the gravity anomaly is singularity free whatever is the position of the observation

point with respect to the body.
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Being Ω polyhedral, the 2D expression of the gravity anomaly is written as finite sum

of 2D integrals extended to the faces of Ω. By a further application of the generalized Gauss

theorem each face integral is reduced to the sum of 1D integrals extended to the edges of the

face. Such 1D integrals are analytically evaluated as products between the position vectors

of the end vertices of each edge and scalar coefficients providing the analytical value of

integrals of real variable.

Although these last integrals may exhibit a singularity when the projection of the obser-

vation point onto a face belongs to an edge, it is proved that such a singularity produces a

null contribution of the i-th edge to the general expression of gravity anomaly; hence, one

infers that the derived expression is singularity-free.

By exploiting a suitable change of variables, we also derive an enhanced algebraic for-

mula which expresses the gravity anomaly at an arbitrary point P and specializes to the

ordinary one when P = O. Remarkably, the enhanced expression of the gravity anomaly

has been derived without any modification of the density contrast function since this is still

defined in the original reference frame. The enhanced formula has been implemented in a

MATLAB code, and its accuracy and robustness has been assessed by numerical compar-

isons with examples derived from the literature.

2 Gravity Anomaly of Polyhedral Bodies at the Origin O of the Reference Frame

Let us consider a Cartesian reference frame having origin at an arbitrary point O and a

polyhedral body Ω. We shall assume that the density ∆ρ of the body, usually denominated

density contrast, is a function of the generic point whose position with respect to O is defined

by the vector r. The symbol ∆ρ emphasizes the fact that the density of Ω is a variation with

respect to that of the surrounding medium.

Denoting by G the gravitational constant, we shall first evaluate the gravity anomaly at

O; it is defined by

∆g(O) =G

∫

Ω

∆ρ(r)r

(r ·r)3/2
dV (1)

and the integrand function represents the magnitude of attraction on a unit mass at O arising

from the infinitesimal mass ∆ρdV.

We remark that the denomination of gravity anomaly adopted to denote equation (1),

though not strictly correct, is based on a common practice in the specialized literature. Ac-

tually, equation (1) is a formula for the gravitational attraction of a mass body and may be

approximatively seen as the formula for the influence of a mass body on the gravity anomaly

since, for small bodies, the effect on gravity is the dominant part of the effect on the gravity

anomaly.

An in-depth discussion on this topic is reported in Vanı́ček et al. (2004) where the inter-

ested reader can find an example of how the effect of a mass body on the gravity anomaly

can be formulated in a theoretically consistent manner.

The vertical component of the gravity anomaly at O is provided by

∆gz(O) =G

∫

Ω

∆ρ(r)r ·k
(r ·r)3/2

dV , (2)

k being the unit vector directed along the vertical axis. The evaluation of ∆gz at an arbitrary

point P will be addressed in section 3 since a considerably more elaborate expression is

arrived at.
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It is usually of interest to dispose of a procedure to actually compute ∆gz since most

gravimeters can only measure the vertical component of the gravity field. Nevertheless the

procedure detailed in the paper can be equally applied to all components of (1) and to phys-

ical problems governed by the Poisson equation (Blakely, 2010).

The computation of the integral in (2) is a hard task since the density contrast func-

tion ∆ρ does usually have a very complicated expression for the necessity of modelling 3D

anomalies of Earth. For simplicity this can be modeled as an ensemble of 3D anomalies

in a layered medium or a sequence of strata with horizontally undulated interfaces, e.g.,

sedimentary basins and underlying bedrock. In each layer mass density typically exhibits

depth-dependent variations (Garcı́a-Abdeslem, 1992).

However geological processes of exogenetic (fluvial, coastal, glacial,...) and endogenetic

(rock diagenesis, plate tectonics, volcano eruptions, earthquakes,...) nature can induce both

horizontal and vertical variations in mass density (Martı́n-Atienza and Garcı́a-Abdeslem,

1999). Thus, a suitable expression of the density variation can allow for potentially faithful

representations of the Earth subsurface with a relatively smaller amount of computations

and parameters. Additionally, disposing of analytical expressions of the gravity anomaly

associated with complicated expressions ∆ρ can be useful for benchmarking numerical ap-

proaches.

A quite general expression for ∆ρ, able to accommodate a large variety of geological

formations, is given by a triple polynomial in x,y and z, (Garcı́a-Abdeslem, 2005; Zhou,

2009b; Ren et al., 2017)

∆ρ(r) = θ(x,y,z) =

Nx∑

i=0

Ny∑

j=0

Nz∑

k=0

ci jk xiy jzk (3)

where Nx , Ny and Nz represent the maximum power of the polynomial density variation

along x, y and z respectively. In the sequel we shall confine the treatment to the case

Nx +Ny +Nz = 3 (4)

since this will suffice to address the majority of the practical applications and, at the same

time, to present our formulation at a degree of generality sufficient to be generalized to the

cases Nx +Ny +Nz > 3.

Thus, under the assumption (4), equation (3) specializes to

θ(r) = c000 +c100x+c010y+c001z+

+c200x2+c020y2+c002z2 +c110xy+c011yz+c101xz+

+c300x3+c030y3+c003z3 +c210x2y+c021y2z+c102 xz2+

+c120xy2+c012yz2+c201x2z+c111 xyz .

(5)

The scalars ci jk represent the coefficients of the polynomial law; they can be estimated

from the known data points by a least-square approach (Jacoby and Smilde, 2009).

Paralleling the analogous treatment developed in D’Urso (2015c), we first reformulate

the general expression (3) of the density contrast by writing

θ(r) = θo +c ·r+C ·Drr +� ·�rrr (6)
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where θo is a scalar denoting the density at o= (0,0,0), c is a vector, C and Drr are symmetric

second-order tensors, � and�rrr are third-order tensors; furthermore, it has been set

Drr = r⊗r �rrr = r⊗r⊗r . (7)

The second-order (rank-two) tensor r⊗r has the following matrix representation

[r⊗r] =





x2 xy xz

yx y2 yz

zx zy z2




, (8)

so that, being:

C · (r⊗r) = C11 x2+2C12 xy+2C13 xz+C22 y2+2C23yz+C33 z2 , (9)

a quadratic distribution of density can be assigned by suitably defining the coefficients of

the symmetric tensor C. Analogously, the third-order tensors� and r⊗r⊗r, are represented

in matrix form as:

� =





C111 C112 C113

C121 C122 C123

C131 C132 C133

C211 C212 C213

C221 C222 C223

C231 C232 C233

C311 C312 C313

C321 C322 C323

C331 C332 C333





r⊗ (r⊗r) =





x





x2 xy xz

yx y2 yz

zx zy z2





y





x2 xy xz

yx y2 yz

zx zy z2





z





x2 xy xz

yx y2 yz

zx zy z2









, (10)

i.e. as vectors of rank-two tensors. Being

� · (r⊗r⊗r) = C111 x3+C222y3+C333z3+

+
(

C112+C121 +C211

)

x2y+
(

C113+C131 +C311

)

x2z+

+
(

C223+C232 +C322

)

y2z+
(

C122+C221+C212

)

xy2
+

+
(

C133+C331 +C313

)

xz2 +
(

C233+C332+C323

)

yz2+

+
(

C123+C132 +C213+C231+C312 +C321

)

xyz,

(11)

the representation (3) of the density contrast is recovered from (6) by setting

θ0 = c000 c1 = c100 c2 = c010 c3 = c001

C11 = c200 C22 = c020 C33 = c002

C12 = c110/2 C13 = c101/2 C23 = c011/2

(12)
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and

C111 = c300 C222 = c030 C333 = c003

C112 = C121 = C211 = c210/3 C113 = C131 = C311 = c201/3

C223 = C232 = C322 = c021/3 C122 = C221 = C212 = c120/3

C133 = C331 = C313 = c102/3 C233 = C332 = C323 = c012/3

C123 = C132 = C213 = C231 = C312 = C321 = c111/6 .

(13)

In conclusion, we derive from (2) the following expression of the gravity anomaly

∆gz(o) =G
[

θodΩr +c ·dΩr +C ·DΩ
rr +� ·�Ωrrr

]

(14)

where

dΩr =

∫

Ω

r ·k
(r ·r)3/2

dV dΩr =

∫

Ω

(r ·k)r

(r ·r)3/2
dV (15)

and

DΩ
rr =

∫

Ω

(r ·k)r⊗r

(r ·r)3/2
dV �

Ω
rrr =

∫

Ω

(r ·k)r⊗r⊗r

(r ·r)3/2
dV . (16)

In order to transform the previous domain integrals into boundary integrals we apply Gauss

theorem in the generalized form illustrated in D’Urso (2013a, 2014a) so as to correctly take

into account the singularity at r = o = (0,0,0).

This will be done in the following two subsections while in the subsequent ones the

boundary integrals extended to the faces of Ω will be further reduced to 1D integrals ex-

tended to the edges of each face by means of a further application of Gauss theorem. These

last integrals will be first expressed as function of the 2D coordinates of the vertices in the

reference frame local to each face and then reformulated in terms of the 3D coordinates

representing the basic geometric data defining the polyhedron.

2.1 Analytical Expression of the Gravity Anomaly at O in Terms of 2D Integrals

Let us now illustrate a general approach to express the 3D integrals in (14) as 2D integrals

extended to the faces constituting the boundary of Ω. Generality lies in the fact that, owing

to the symmetry of the integrals, application of Gauss theorem can be based upon a unique

formula. Actually, we are going to prove the result
∫

Ω

kr[⊗r,m]

(r ·r)3/2
dV =

1

m+1

∫

∂Ω

kr[⊗r,m](r ·n)

(r ·r)3/2
dA m = 0,1, . . . (17)

where kr = r ·k, n is the 3D outward unit normal to the boundary ∂Ω of the polyhedral body

and [⊗r,m] denotes a rank-m tensor defined by

[⊗r,m] =






1 if m = 0

r if m = 1

r⊗r if m = 2

. . . . . . . . . . . . . . . . . . . . .

r⊗r⊗· · · ⊗r
︸         ︷︷         ︸

m times

if m > 2 .

(18)
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To fix the ideas we shall prove the identity (17) for m = 2

∫

Ω

krr⊗r

(r ·r)3/2
dV =

1

3

∫

∂Ω

kr(r⊗r)(r ·n)

(r ·r)3/2
dA (19)

since it allows us to illustrate our approach to a degree of generality sufficient to extend the

final result to all integrals in (14) and to the additional ones, not reported in (14), containing

tensors of rank superior to three, i.e. tensors of the kind [⊗r,m] where m > 3.

Recalling the identity proved in the appendix of D’Urso (2015c)

div[ψ(a⊗b⊗c)] = (a⊗b⊗c)gradψ+ψ[(grad a)c]⊗b+

+ψa⊗ [(grad b)c]+ψ(a⊗b)div c
(20)

where a, b, c (ψ) are vector (scalar) differentiable fields, we have

div
[

kr(r⊗r)⊗ r

(r ·r)3/2

]

=
[

(r⊗r)⊗ r

(r ·r)3/2

]

gradkr+kr

[

(gradr)
r

(r ·r)3/2

]

⊗r+

+krr⊗
[

(gradr)
r

(r ·r)3/2

]

+kr(r⊗r)div
r

(r ·r)3/2
.

(21)

Applying the further identity proved in the appendix of D’Urso (2015c)

grad(a ·b) = [grada]T b+ [grad b]T a (22)

where (·)T stands for transpose, one gets

gradkr = grad(r ·k) = (gradr)k = k (23)

since k is a constant vector field and gradr = I, being I the rank-two identity tensor. Substi-

tuting the previous relation in (21) one obtains

div
[

kr(r⊗r)⊗ r

(r ·r)3/2

]

=
[

(r⊗r)⊗ r

(r ·r)3/2

]

k+kr

[ r

(r ·r)3/2
⊗r+r⊗ r

(r ·r)3/2

]

+

+kr(r⊗r)div
r

(r ·r)3/2
=

= 3kr
r⊗r

(r ·r)3/2
+kr(r⊗r)div

r

(r ·r)3/2
.

(24)

Finally, integrating the previous identity over Ω yields

∫

Ω

kr

r⊗r

(r ·r)3/2
dV =

1

3

∫

Ω

div
[

kr(r⊗r)⊗ r

(r ·r)3/2

]

dV − 1

3

∫

Ω

kr(r⊗r)div
r

(r ·r)3/2
dV . (25)

The second integral on the right-hand side can be computed by means of the general

result (Tang, 2006)

∫

Ω

ϕ(r)div

[

r

(r ·r)3/2

]

dV =






0 if o <Ω

αV (o)ϕ(o) if o ∈Ω
(26)

where ϕ is a continuous scalar field and the quantity αV represents the angular measure,

expressed in steradians, of the intersection betweenΩ and a spherical neighbourhood of the

singularity point r = o, see D’Urso (2012, 2013a, 2014a) for additional details.
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The previous expression can be extended to arbitrary tensors by applying it to each scalar

component of the tensor.

On account of (26) one infers that the second integral on the right-hand side of (25) is

the null rank-two tensor O since

∫

Ω

kr(r⊗r)div
r

(r ·r)3/2
dV =






O if o < Ω

[krr⊗r]r=oαV (o) if o ∈ Ω.
(27)

However, the expression [kr(r⊗ r)]r=o amounts to evaluating the quantity kr(r⊗ r) at the

singularity point r = o, what yields trivially the null tensor O. Hence, according to (27), the

last integral in (25) is always the null tensor, independently from the position of singularity

point r = o with respect to the domainΩ of integration.

In conclusion, upon application of Gauss theorem to the second integral in (25), we

finally infer the identity (19). Remarkably, the derivation of this identity has also allowed

us to prove that the singularity at r = o, of the integrand function appearing on the left-hand

side of (19), can be actually ignored.

Furthermore, it is not difficult to rephrase the path of reasoning detailed in formulas

(21)-(27) so as to prove the more general formula (17). Hence, defining

d∂Ωr =

∫

∂Ω

(r ·k)(r ·n)

(r ·r)3/2
dA d∂Ωr =

∫

∂Ω

(r ·k)r (r ·n)

(r ·r)3/2
dA (28)

D∂Ω
rr =

∫

∂Ω

(r ·k)r⊗r (r ·n)

(r ·r)3/2
dA �

∂Ω
rrr =

∫

∂Ω

(r ·k)r⊗r⊗r (r ·n)

(r ·r)3/2
dA , (29)

one has, recalling definitions (15) and (16)

dΩr = d∂Ωr dΩr =
d∂Ωr

2
DΩ

rr =
D∂Ω

rr

3
�
Ω
rrr =

�
∂Ω
rrr

4
. (30)

In conclusion, application of formula (17) allows us to rewrite formula (14) as follows

∆gz(o) =G
[

θod∂Ωr +
c ·d∂Ωr

2
+

C ·D∂Ω
rr

3
+
� ·�∂Ωrrr

4

]

, (31)

an expression that will be further elaborated in the next subsection by transforming the 2D

integrals (28), (29) in 1D integrals.

2.2 Analytical Expression of the Gravity Anomaly at O in terms of Face Integrals

In order to derive an expression suitable for programming, we specialize formula (31) to

polyhedral domains since this is by far the most general case in the gravity inversion prob-

lems.
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x

z

y

πi

ri

ni

Fi

N

N −1

1

2

O

Oi

r⊥
i

r
‖
i

ξi

ηi

Fig. 1 Polyhedral domain Ω and decomposition of the position vector of a point on a face.

For a polyhedral body characterizedby NF faces, the integrals in (28)-(29) can be written

as

d∂Ωr =

NF∑

i=1

∫

Fi

(ri ·k)(ri ·ni)

(ri ·ri)3/2
dAi =

NF∑

i=1

di

∫

Fi

ri ·k
(ri ·ri)3/2

dAi

d∂Ωr =

NF∑

i=1

∫

Fi

(ri ·k)ri (ri ·ni)

(ri ·ri)
3/2

dAi =

NF∑

i=1

di

∫

Fi

(ri ·k)ri

(ri ·ri)
3/2

dAi

D∂Ω
rr =

NF∑

i=1

∫

Fi

(ri ·k)(ri ⊗ri)(ri ·ni)

(ri ·ri)
3/2

dAi =

NF∑

i=1

di

∫

Fi

(ri ·k)ri ⊗ri

(ri ·ri)
3/2

dAi

�
∂Ω
rrr =

NF∑

i=1

∫

Fi

(ri ·k)(ri ⊗ri ⊗ri)(ri ·ni)

(ri ·ri)3/2
dAi =

NF∑

i=1

di

∫

Fi

(ri ·k)ri⊗ri ⊗ri

(ri ·ri)3/2
dAi

(32)

where the second equality in each formula above stems from the fact that the vector ri

spanning the i-th face, see, e.g., fig. 1, can be decomposed as follows

ri = r⊥i +r
‖
i
, (33)

i.e. as sum of a vector r⊥
i

orthogonal to Fi and a vector r
‖
i

parallel to the face. Accordingly,

denoting by ni the unit vector pointing outwards Ω, one can set ri ·ni = r⊥i ·ni = di, since di

represents the signed distance between the origin and the i-th face Fi measured orthogonally

to this last one.
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The 2D integrals above can be transformed to a line integral by a further application

of Gauss theorem. To this end we denote by Oi the orthogonal projection on Fi of the

observation point O and assume Oi as origin of a 2D reference frame local to the face.

Furthermore, we express formula (33) in the alternative form

ri = r⊥i +r
‖
i
= (ri ·ni)ni+r

‖
i
= dini+TFi

ρi (34)

where the vector ρi = (ξi,ηi) represents the position vector of a generic point of the i-th face

with respect to Oi and

TFi
=





ui1 vi1

ui2 vi2

ui3 vi3




(35)

is the linear operator mapping the 2D vector ρi to the 3D one r
‖
i
. In turn ui and vi represent

two distinct, yet arbitrary, 3D unit vectors parallel to Fi.

We emphasize the use of roman and greek letters in (34) to denote, respectively, 3D and

2D vectors. The same notational distinction will be adopted throughout the paper.

Setting

ri ·k = dini ·k+TFi
ρi ·k = dini3+ρi ·TT

Fi
k = dini3+ρi ·κi , (36)

the first two integrals in (32) become

d∂Ωr =

NF∑

i=1

di

{

dini3

∫

Fi

dAi

(ρi ·ρi+d2
i
)3/2
+κi ·

∫

Fi

ρi

(ρi ·ρi +d2
i
)3/2

dAi

}

(37)

d∂Ωr =

NF∑

i=1

di

{

d2
i ni3ni

∫

Fi

dAi

(ρi ·ρi +d2
i
)3/2
+dini3

∫

Fi

TFi
ρi

(ρi ·ρi +d2
i
)3/2

dAi+

+dini

[∫

Fi

ρidAi

(ρi ·ρi +d2
i
)3/2
·κi

]

+

∫

Fi

TFi
ρi ⊗ρidAi

(ρi ·ρi +d2
i
)3/2

κi

}

.

(38)

Thus, defining

ϕFi
=

∫

Fi

dAi

(ρi ·ρi+d2
i
)3/2

ϕFi
=

∫

Fi

ρidAi

(ρi ·ρi +d2
i
)3/2

ΦFi
=

∫

Fi

ρi ⊗ρidAi

(ρi ·ρi+d2
i
)3/2

, (39)

one finally has

d∂Ωr =

NF∑

i=1

di

{

dini3ϕFi
+κi ·ϕFi

}

(40)

and

d∂Ωr =

NF∑

i=1

di

{

d2
i ni3ϕFi

ni+dini3TFi
ϕFi
+dini

(

κi ·ϕFi

)

+TFi
ΦFi

κi

}

. (41)

To suitably shorten the expression of the last two integrals in (32) we set

CFi
=

∫

Fi

ρi⊗ρi ⊗ρi

(ρi ·ρi +d2
i
)3/2

dAi DFi
=

∫

Fi

ρi ⊗ρi ⊗ρi⊗ρi

(ρi ·ρi +d2
i
)3/2

dAi (42)
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CFi
κi =

∫

Fi

(ρi ·κi)ρi ⊗ρi

(ρi ·ρi +d2
i
)3/2

dAi DFi
κi =

∫

Fi

(ρi ·κi)ρi ⊗ρi ⊗ρidAi

(ρi ·ρi +d2
i
)3/2 (43)

and introduce the formal operator�b...b
Fi

where the symbol b...b denotes an arbitrary sequence

of 0 and 1. In particular

�
11
Fi
ΦFi
= �11

Fi

∫

Fi

ρi⊗ρi

(ρi ·ρi +d2
i
)3/2

dAi =

∫

Fi

TFi
ρi ⊗TFi

ρi

(ρi ·ρi +d2
i
)3/2

dAi = TFi
ΦFi

TT
Fi
, (44)

�
111
Fi

CFi
=�111

Fi

∫

Fi

ρi ⊗ρi⊗ρi

(ρi ·ρi +d2
i
)3/2

dAi =

∫

Fi

TFi
ρi ⊗TFi

ρi ⊗TFi
ρi

(ρi ·ρi+d2
i
)3/2

dAi (45)

and

�
1010
Fi

DFi
=�

1010
Fi

∫

Fi

ρi ⊗ρi ⊗ρi ⊗ρi

(ρi ·ρi +d2
i
)3/2

dAi =

∫

Fi

TFi
ρi⊗ρi⊗TFi

ρi ⊗ρi

(ρi ·ρi +d2
i
)3/2

dAi (46)

since the suffix 1 (0) of �Fi
indicates that the operator TFi

has (not) to be applied to the

vector ρi.

Accordingly, the third integral in (32) becomes

D∂Ω
rr =

NF∑

i=1

di

{

dini3

[

d2
i ϕFi

ni ⊗ni +di

(

ni ⊗TFi
ϕFi
+TFi

ϕFi
⊗ni

)

+TFi
ΦFi

TT
Fi

]

+

+d2
i ni⊗ni

(

κi ·ϕFi

)

+di

[

ni ⊗TFi

(

ΦFi
κi

)

+TFi

(

ΦFi
κi

)

⊗ni

]

+Hi

}
(47)

where

Hi = TFi

(

CFi
κi

)

TT
Fi
. (48)

Furthermore, setting

ΦFi
∧ni =

∫

Fi

ρi⊗ni ⊗ρi

(ρi ·ρi +d2
i
)3/2

dAi ΦFi
∧

(

ni⊗ni

)

=

∫

Fi

ρi ⊗ni ⊗ni ⊗ρi

(ρi ·ρi +d2
i
)3/2

dAi

CFi
∧ni =

∫

Fi

ρi ⊗ni ⊗ρi ⊗ρi

(ρi ·ρi +d2
i
)3/2

dAi CFi
∨ni =

∫

Fi

ρi ⊗ρi ⊗ni ⊗ρi

(ρi ·ρi +d2
i
)3/2

dAi ,

(49)



Gravity Anomaly of Polyhedral Bodies Having a Polynomial Density Contrast 13

it turns out to be

�
∂Ω
rrr =

NF∑

i=1

di

{

dini3

[

d3
i ϕFi

ni ⊗ni ⊗ni +d2
i

(

ni ⊗ni ⊗TFi
ϕFi
+ni ⊗TFi

ϕFi
⊗ni+

+TFi
ϕFi
⊗ni ⊗ni

)

+dini ⊗�11
Fi
ΦFi
+di�

101
Fi

(

ΦFi
∧ni

)

+

+di�
11
Fi
ΦFi
⊗ni +�

111
Fi

CFi

]

+d3
i ni ⊗ni ⊗ni

(

κi ·ϕFi

)

+

+d2
i

[

ni ⊗ni ⊗TFi

(

ΦFi
κi

)

+ni ⊗�101
Fi

(

ΦFi
∧ni

)

κi+

+�1000
Fi
ΦFi
∧

(

ni ⊗ni

)

κi

]

+di

[

ni ⊗�110
Fi

CFi
κi+�

1010
Fi

(

CFi
∧ni

)

κi+

+�1100
Fi

(

CFi
∨ni

)

κi

]

+�1110
Fi

DFi
κi

}

(50)

being

�
101
Fi

(

ΦFi
∧ni

)

=

∫

Fi

TFi
ρi⊗ni ⊗TFi

ρi

(ρi ·ρi +d2
i
)3/2

dAi , (51)

�
1000
Fi
ΦFi
∧

(

ni ⊗ni

)

=

∫

Fi

TFi
ρi ⊗ni ⊗ni ⊗ρidAi

(ρi ·ρi +d2
i
)3/2

κi , (52)

�
110
Fi

CFi
κi =

∫

Fi

TFi
ρi⊗TFi

ρi ⊗ρidAi

(ρi ·ρi +d2
i
)3/2

κi =

∫

Fi

(ρi ·κi)TFi
ρi ⊗TFi

ρi

(ρi ·ρi +d2
i
)3/2

dAi , (53)

�
1010
Fi

(

CFi
∧ni

)

=

∫

Fi

TFi
ρi⊗ni ⊗TFi

ρi ⊗ρidAi

(ρi ·ρi +d2
i
)3/2

, (54)

�
1100
Fi

(

CFi
∨ni

)

=

∫

Fi

TFi
ρi⊗TFi

ρi⊗ni ⊗ρidAi

(ρi ·ρi +d2
i
)3/2

, (55)

�
1110
Fi

DFi
κi =

∫

Fi

TFi
ρi ⊗TFi

ρi ⊗TFi
ρi⊗ρidAi

(ρi ·ρi+d2
i
)3/2

κi =

∫

Fi

(ρi ·κi)TFi
ρi⊗TFi

ρi⊗TFi
ρi

(ρi ·ρi +d2
i
)3/2

dAi .

(56)

Notice that the symbols in (49), as well as the ones in (50), are purely formal since they

involve the tensor product of 2D and 3D vectors. They have been deliberately introduced to

focus the reader’s attention on the main issues involved in the evaluation of the quantities

d∂Ωr , d∂Ωr , D∂Ω
rr , and�∂Ωrrr. Actually, one first evaluates the integrals

∫

Fi

[⊗ρi,m]

(ρi ·ρi+d2
i
)3/2

dAi m ∈ [0,4] (57)

as tensor product of 2D vectors, see, e.g., Appendix 1 and 2. Only subsequently the resulting

formula is combined with the 2D vector κi and expressed in terms of 3D vectors, by means
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of the operator TFi
, or suitably combined with the 3D vector ni to evaluate the integrals in

(50).

The simultaneous presence in (57) of the quantity di and of the exponent 3/2 in the de-

nominator makes the evaluation of the integrals in (57) by far more diffult than the analogous

ones addressed in D’Urso (2015c) for polygonal bodies. Actually the case di = 0, meaning

that the observation point O belongs to the face Fi , or equivalently that Oi ≡ O, needs to be

properly addressed since the integrals can become singular.

For the same reason we shall not consider the fact that the integrals in (57) need to be

composed with the vector κi producing





∫

Fi

[⊗ρi,m]

(ρi ·ρi +d2
i
)3/2

dAi





κi =

∫

Fi

[⊗ρi,m−1](ρi ·κi)

(ρi ·ρi+d2
i
)3/2

dAi m ∈ [1,4] , (58)

since this would require to consider separately these cases in the discussion of the singular-

ities of the algebraic expressions resulting from (57); instead, we shall perform the combi-

nation after the integration. Moreover, due to the presence of the exponent 3/2, the definite

integrals that need to be computed to transform the integrals (57) into their algebraic coun-

terparts do not exhibit anymore the useful recurrence property invoked in the appendix of

D’Urso (2015c) so that it is more convenient to evaluate the integrals in (57) prior to their

composition with κi.

Last, but not least, most of the integrals in (57) have been already computed in D’Urso

(2013a, 2014a,b) so that we include in the Appendix 1 only the explicit evaluation of the

new ones.

2.3 Analytical Expression of Face Integrals in terms of 1D Integrals

It has been emphasized in the previous subsection that the main burden associated with the

evaluation of the expressions (37), (38), (47) and (50) is the evaluation of the integrals (57).

Similarly to the integrals (15) and (16), they can be transformed into simpler 1D integrals

by a further application of the generalized Gauss theorem (Tang, 2006).

For some of them, namely the ones in (57) defined by m = 0, m = 1, and m = 2, this has

been done in previous papers (D’Urso, 2013a, 2014a,b); for m = 3 and m = 4 this has been

carried out in Appendix 1. For sake of clarity their expressions are collected hereafter for

increasing values of m.

• Integral (57) for m = 0

ϕFi
=

∫

Fi

dAi
(

ρi ·ρi +d2
i

)3/2
=
αi

|di|
−
∫

∂Fi

ρi(si) ·ν(si)
[

ρi(si) ·ρi(si)
][

ρi(si) ·ρi(si)+d2
i

]1/2
dsi . (59)

where si is the curvilinear abscissa along the boundary ∂Fi of the face Fi , ν is the out-

ward unit normal to Fi and αi is a scalar, defined in Appendix 2, representing the measure,

expressed in radians, of the intersection between Fi and a circular neighbourhood of the

singularity point ρ = o when di = 0.

• Integral (57) for m = 1

ϕFi
=

∫

Fi

ρidAi
(

ρi ·ρi +d2
i

)3/2
= −

∫

∂Fi

ν(si)
[

ρi(si) ·ρi(si)+d2
i

]1/2
dsi . (60)
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• Integral (57) for m = 2

ΦFi
=

∫

Fi

ρi ⊗ρidAi
(

ρi ·ρi+d2
i

)3/2
= −

∫

∂Fi

ρi(si)⊗ν(si)
[

ρi(si) ·ρi(si)+d2
i

]1/2
dsi +ψFi

I2D (61)

where I2D is the rank-two two-dimensional identity tensor,

ψFi
=

∫

Fi

dAi
(

ρi ·ρi+d2
i

)1/2
=

∫

∂Fi

[

ρi(si) ·ρi(si)+d2
i

]1/2[

ρi(si) ·ν(si)
]

ρi(si) ·ρi(si)
dsi −αi |di| (62)

and αi has been introduced just before formula (60).

• Integral (57) for m = 3

CFi
=

∫

Fi

ρi ⊗ρi ⊗ρidAi
(

ρi ·ρi +d2
i

)3/2
= −

∫

∂Fi

ρi(si)⊗ρi(si)⊗ν(si)
(

ρi ·ρi +d2
i

)1/2
dsi + I2D⊗23ψFi

+ψFi
⊗ I2D (63)

where the symbol ⊗23 denotes the tensor product obtained by interchanging the second and

third index of the rank-three tensor I2D⊗ψFi
and

ψFi
=

∫

Fi

ρidAi
(

ρi ·ρi +d2
i

)1/2
=

∫

∂Fi

[

ρi(si) ·ρi(si)+d2
i

]1/2
ν(si)dsi . (64)

• Integral (57) for m = 4

DFi
=

∫

Fi

ρi⊗ρi⊗ρi⊗ρidAi
(

ρi ·ρi +d2
i

)3/2
= −

∫

∂Fi

ρi(si)⊗ρi(si)⊗ρi(si)⊗ν(si)
(

ρi ·ρi+d2
i

)1/2
dsi+

+I2D⊗24ΨFi
+Ψ Fi

⊗23 I2D+Ψ Fi
⊗ I2D

(65)

where the symbol ⊗24 denotes the tensor product obtained by interchanging the second and

fourth index of the rank-four tensor I2D⊗Ψ Fi
and

ΨFi
=

∫

Fi

ρi ⊗ρidAi
(

ρi ·ρi+d2
i

)1/2
= −

∫

∂Fi

[

ρi(si) ·ρi(si)+d2
i

]1/2
ρi(si)⊗ν(si)dsi−

− I2D

3






∫

∂Fi

[

ρi(si) ·ρi(si)+d2
i

]1/2
ρi(si) ·ν(si)dsi −d2

i ψFi






.

(66)

Since each face is polygonal the previous line integrals can be further expressed as

sums extended to the NEi
edges that define the boundary ∂Fi . For the j-th edge a suitable

parameterization allows one to transform each 1D integral into an integral of a real variable;

this is scaled by a suitable combination of the vectors ρ j and ρ j+1 that define the position

vectors of the end vertices of the edge in the 2D reference frame local to Fi.

In particular we set

ρ̂i(λ j) = ρ j +λ j(ρ j+1−ρ j) = ρ j +λ j∆ρ j (67)



16 M.G. D’Urso, S. Trotta

where the function ρ̂i associates with each value of the adimensional abscissa

λ j = s j/l j, (68)

the position vector spanning the j-th edge. The quantity s j, s j ∈ [0, l j], is the curvilinear

abscissa along the j-th edge and l j = |ρ j+1 − ρ j| is the edge length. The position vector

spanning the j-th edge of Fi can also be expressed as function of s j and a new function ρi,

fulfilling the condition ρi(si) = ρ̂i(λ j). Hence

ρi(s j) ·ρi(s j) = ρ̂i(λ j) · ρ̂i(λ j) = p jλ
2
j +2q jλ j +u j = Pu(λ j) (69)

where, according to (67)

p j = ∆ρ j ·∆ρ j q j = ρ j ·∆ρ j u j = ρ j ·ρ j . (70)

Furthermore

ρ(s j) ·ρ(s j)+d2
i = p jλ

2
j +2q jλ j +v j (71)

where v j = u j +d2
i
. We shall also set Pv(λ j) = Pu(λ j)+d2

i
.

2.4 Algebraic expression of face integrals in terms of 2D vectors

Refering to the Appendices 1 and 2 for further details we hereby report the algebraic coun-

terparts of the integrals (57) for m=0,..,4.

• Integral (57) for m = 0

ϕFi
=
αi

|di|
−

NEi∑

j=1

(

ρ j ·ρ⊥j+1

)
1∫

0

dλ j

Pu(λ j)
[

Pv(λ j)
]1/2
=
αi

|di|
−

NEi∑

j=1

ϕ j

(

ρ j ·ρ⊥j+1

)

(72)

where ϕ j is defined in (221). The symbol (·)⊥ denotes a clockwise rotation of the 2D vector

(·) necessary to express the outward unit normal ν j to the j-th edge according to the formula

ν j =

(

ρ j+1 −ρ j

)⊥

l j

=
∆ρ⊥j

l j

. (73)

The clockwise rotation indicated by the symbol (·)⊥ depends on the convention adopted

to circulate along the boundary ∂Fi . In particular, we have assumed that the vertices of each

face have been numbered consecutively by circulating along ∂Fi in a counter-clockwise

sense with respect to the normal ni to the face. Thus

∆ρ j =

[

∆ξ j

∆η j

]

⇒ ∆ρ⊥j =

[

−∆η j

∆ξ j

]

=

[

0 −1

1 0

]

∆ρ j . (74)

• Integral (57) for m = 1

ϕFi
= −

NEi∑

j=1

∆ρ⊥j

1∫

0

dλ j

[

Pv(λ j)
]1/2
= −

NEi∑

j=1

I0 j ∆ρ
⊥
j (75)

where the scalar I0 j is defined in (211).
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• Integral (57) for m = 2

ΦFi
= −

NEi∑

j=1

1∫

0

ρ̂i(λ j)
[

Pv(λ j)
]1/2

dλ j ⊗∆ρ⊥j +ψFi
I2D =

= −
NEi∑

j=1

[

I0 j ρ j ⊗∆ρ⊥j + I1 j ∆ρ j ⊗∆ρ⊥j
]

+ψFi
I2D

(76)

where I0 j is defined in (211), I1 j in (212) while ψFi
is provided by

ψFi
=

NEi∑

j=1

1∫

0

[

Pv(λ j)
]1/2

[

Pu(λ j)
] dλ j =

NEi∑

j=1

ψi
j

(

ρ j ·ρ⊥j+1

)

−|di|αi (77)

and ψi
j is defined in (219).

• Integral (57) for m = 3

CFi
= −

NEi∑

j=1

1∫

0

ρ̂i(λ j)⊗ ρ̂i(λ j)dλ j

[

Pv(λ j)
]1/2

+ I2D ⊗23ψFi
+ψFi

⊗ I2D =

= −
NEi∑

j=1

[

I0 j Eρ j ρ j
+ I1 j Eρ j∆ρ j

+ I2 j E∆ρ j∆ρ j

]

⊗∆ρ⊥j + I2D⊗23ψFi
+ψFi

⊗ I2D

(78)

where I0 j, I1 j, I2 j are defined in (211), (212) and (213) respectively, Eρ j ρ j
, Eρ j∆ρ j

and

E∆ρ j ∆ρ j
are defined in (180) and

ψFi
=

NEi∑

j=1

l jν j

1∫

0

[

Pv(λ j)
]1/2

dλ j =

NEi∑

j=1

I4 j∆ρ
⊥
j , (79)

the scalar I4 j being defined in (215).

• Integral (57) for m = 4

DFi
= −

NEi∑

j=1






1∫

0

ρ̂i(λ j)⊗ ρ̂i(λ j)⊗ ρ̂i(λ j)dλ j

[

Pv(λ j)
]1/2

⊗∆ρ⊥j






+ I2D ⊗24ΨFi
+Ψ Fi

⊗23 I2D+Ψ Fi
⊗ I2D =

= −
NEi∑

j=1

[

I0 j�ρ jρ j ρ j
+ I1 j�ρ jρ j ∆ρ j

+�ρ j ∆ρ j∆ρ j
+ I3 j�∆ρ j∆ρ j ∆ρ j

]

⊗∆ρ⊥j +

+ I2D ⊗24ΨFi
+Ψ Fi

⊗23 I2D+Ψ Fi
⊗ I2D

(80)
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where I0 j, I1 j, I2 j, I3 j are defined in (211), (212), (213) and (214) respectively, �ρ j ρ jρ j
,

�ρ j ρ j∆ρ j
, �ρ j ∆ρ j∆ρ j

and�∆ρ j∆ρ j ∆ρ j
are defined in (191), (192) and (193) and

Ψ Fi
=

NEi∑

j=1

{[ 1∫

0

[

ρ̂i(λ j) · ρ̂i(λ j)+d2
i

]1/2 (

ρ j +λ j∆ρ j

)

dλ j

]

⊗∆ρ⊥j −

− I2D

3

(

ρ j ·ρ⊥j+1

)
1∫

0

[

ρ̂i(λ j) · ρ̂i(λ j)+d2
i

]1/2
dλ j

}

+
d2

i

3

(

ψi −|di|αi

)

=

=

NEi∑

j=1

[
(

I4 jρ j + I5 j∆ρ j

)

⊗∆ρ⊥j −
I2D

3
(ρ j ·ρ⊥j+1)I4 j

]

+
d2

i

3

(

ψi −|di|αi

)

,

(81)

I4 j, I5 j, and ψi being defined in (215), (216) and (219) respectively.

For future reference we also include the algebraic expressions of the integrals in formula

(43).

CFi
κi = −

NEi∑

j=1

(

κi ·∆ρ⊥j
)(

I0 j Eρ jρ j
+ I1 j Eρ j ∆ρ j

+ I2 j E∆ρ j ∆ρ j

)

+κi ⊗ψFi
+ψFi

⊗κi (82)

DFi
κi = −

NEi∑

j=1

(

κi ·∆ρ⊥j
)(

I0 j�ρ jρ j ρ j
+ I1 j�ρ jρ j ∆ρ j

+ I2 j�ρ j∆ρ j ∆ρ j
+

+ I3 j�∆ρ j∆ρ j∆ρ j

)

+Ψ Fi
⊗κi+Ψ Fi

⊗23 κi +κi ⊗Ψ Fi
.

(83)

All the previous quantities are expressed in terms of 2D vectors representing the coor-

dinates of the end vertices of each edge in the reference frame local to each face Fi. Con-

versely, all tensors appearing in (37), (38), (47) and (50) have to expressed in terms of the

3D position vectors defining the vertices of the polyhedronΩ since these represent the basic

geometric entities that define it. This task will be accomplished in the following subsection.

2.5 Algebraic expression of the integrals in terms of 3D vectors

The aim of this subsection is the show how the algebraic expressions derived in the previous

subsection can be expressed in terms of 3D vectors in order to apply formula (31), what is

fully accounted for in the next subsection. This is done by inverting (34) so as to express 2D

coordinates of each vertex as function of the relevant 3D ones. In particular, premultiplying

relation (34) by TT
Fi

, where (·)T stands for transpose, one obtains

ρ j = TT
Fi

(r j−dini) (84)

since it is easy to check that TT
Fi

TFi
= I2D.

Additional quantities that need to be expressed in terms of 3D vectors are

TFi
∆ρ j = r j+1−ri = ∆r j (85)

and

TFi
∆ρ⊥j = TFi

[

TT
Fi
∆r j

]⊥
. (86)
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We also set

fi = TFi
ϕFi
= −

NEi∑

j=1

I0 jTFi
∆ρ⊥j (87)

according to (75) and

gi = TFi
ΦFi

κi = −
NEi∑

j=1

(

∆ρ⊥j ·κi

)[

I0 jr j + I1 j∆r j

]

+ψFi
TFi

TT
Fi

k (88)

according to (36) and (76); furthermore, we set

Gi = TFi
ΦFi

TT
Fi

(89)

see, e.g., formula (44).

Finally, recalling (44), (46), (48) and (49) it turns out to be

�
101
Fi

(

ΦFi
∧ni

)

=

∫

Fi

TFi
ρi ⊗ni ⊗TFi

ρi

(ρi ·ρi+d2
i
)3/2

dAi =Gi ⊗23 ni , (90)

�
110
Fi
ΦFi
⊗ni =

∫

Fi

TFi
ρi ⊗TFi

ρi

(ρi ·ρi+d2
i
)3/2

dAi⊗ni =Gi ⊗ni , (91)

�i =�
111
Fi

CFi
=

∫

Fi

TFi
ρi ⊗TFi

ρi⊗TFi
ρi

(ρi ·ρi +d2
i
)3/2

dAi , (92)

�
101
Fi

(

ΦFi
∧ni

)

κi = TFi

∫

Fi

(

ρi ·κi

)

ρidAi

(ρi ·ρi +d2
i
)3/2
⊗ni = TFi

∫

Fi

(

ρi ⊗ρi

)

dAi

(ρi ·ρi +d2
i
)3/2

κi⊗ni =

= TFi
ΦFi

κi⊗ni = gi⊗ni ,

(93)

�
100
Fi
ΦFi
∧

(

ni ⊗ni

)

κi =

∫

Fi

TFi
ρi ⊗ni ⊗ni ⊗ρi

(ρi ·ρi+d2
i
)3/2

dAiκi = TFi

∫

Fi

(

ρi ·κi

)

ρidAi

(ρi ·ρi+d2
i
)3/2
⊗ni ⊗ni =

= TFi
ΦFi

κi ⊗ni ⊗ni = gi⊗ni ⊗ni ,

(94)

�
110
Fi

CFi
κi =

∫

Fi

TFi
ρi ⊗TFi

ρi ⊗ρi

(ρi ·ρi+d2
i )3/2

dAiκi =

∫

Fi

(

ρi ·κi

)(

TFi
ρi ⊗TFi

ρi

)

(ρi ·ρi+d2
i )3/2

dAi =

= TFi

∫

Fi

(

ρi ·κi

)(

ρi ⊗ρi

)

(ρi ·ρi +d2
i
)3/2

dAiT
T
Fi
= TFi





∫

Fi

(

ρi ⊗ρi ⊗ρi

)

dAi

(ρi ·ρi+d2
i
)3/2

κi





TT
Fi
=

= TFi

(

CFi
κi

)

TT
Fi
=Hi ,

(95)



20 M.G. D’Urso, S. Trotta

�
1010
Fi

(

CFi
∧ni

)

κi =

∫

Fi

TFi
ρi⊗ni ⊗TFi

ρi ⊗ρi

(ρi ·ρi +d2
i
)3/2

dAiκi =

∫

Fi

(

ρi ·κi

)

TFi
ρi⊗ni ⊗TFi

ρi

(ρi ·ρi +d2
i
)3/2

dAi =

=

∫

Fi

(

ρi ·κi

)

TFi
ρi ⊗TFi

ρi

(ρi ·ρi +d2
i
)3/2

dAi⊗23 ni =Hi⊗23 ni ,

(96)

�
1100
Fi

(

CFi
∨ni

)

=

∫

Fi

TFi
ρi ⊗TFi

ρi ⊗ni ⊗ρi

(ρi ·ρi +d2
i
)3/2

dAiκi =

∫

Fi

(

ρi ·κi

)

TFi
ρi ⊗TFi

ρi ⊗ni

(ρi ·ρi+d2
i
)3/2

dAi =

= TFi





∫

Fi

(

ρi ·κi

)

ρi⊗ρi

(ρi ·ρi +d2
i
)3/2

dAi





TT
Fi
⊗ni =

[

TFi

(

CFi
κi

)

TT
Fi

]

⊗ni =Hi ⊗ni ,

(97)

�i = �
1110
Fi

DFi
κi =

∫

Fi

(TFi
ρi ⊗TFi

ρi ⊗TFi
ρi ⊗ρi)

(ρi ·ρi+d2
i
)3/2

dAiκi =

=

∫

Fi

(κi ·ρi)TFi
ρi ⊗TFi

ρi ⊗TFi
ρi

(ρi ·ρi +d2
i
)3/2

dAi .

(98)

The explicit evaluation of the last integral will be dealt with in the next subsection together

with further considerations on actual evaluation of all third-order tensors appearing in (50).

2.6 Algebraic expression of the gravity anomaly at O

In order to make the reader fully acquainted with the operative steps required to compute

the gravity anomaly at O, it is instructive to further comment on the formulas derived in the

previous subsections in order to apply formula (31). As a matter of fact the evaluation of

d
∂iΩ
r , d

∂iΩ
r , D

∂iΩ
rr , provided by formulas (37), (38) and (47), respectively, is trivial since they

can be obtained by standard matrix operations.

More difficult is the evaluation of the third-order tensors appearing in (50), by taking

also into account the fact that they have to first expressed in terms of 2D vectors and only

subsequently, as specified in the previous subsection, reformulated in terms of 3D vectors.

To fix the ideas, let us start from the last addend in (50) that has been further detailed

in (98). By means of formula (83), we actually dispose of an expression that can be written

more concisely as

∫

Fi

(κi ·ρi)ρi⊗ρi⊗ρi

(ρi ·ρi +d2
i
)3/2

dAi =

NEi∑

j=1

[

α jD
( j)
ρρρ +Λρρ ⊗β+Λρρ⊗23 β+β⊗Λρρ

]

(99)

where the right-hand side is a symbolic representation of the linear combination between

third-order tensors D
( j)
ρρρ, such as Dρ jρ jρ j

, Dρ jρ j ∆ρ j
, Dρ j∆ρ j ∆ρ j

, D∆ρ j∆ρ j ∆ρ j
, and tensor prod-

ucts between 2D vectors β and rank-two tensors Λρρ, this last one expressed as tensor prod-

uct of 2D vectors.
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Hence, to evaluate the left-hand side of (98) starting from (99) we have to transform the

rank-three tensors on the right-hand side of (99) defined in terms of 2D vectors by applying

the formal operator�111
Fi

to get,

∫

Fi

TFi
ρi ⊗TFi

ρi ⊗TFi
ρi ⊗ρi

(ρi ·ρi +d2
i
)3/2

dAiκi = �
111
Fi

NEi∑

j=1

[

α jD
( j)
ρρρ +Λρρ ⊗β+Λρρ⊗23 β+β⊗Λρρ

]

.

(100)

This is trivial for the rank-three tensor D
( j)
ρρρ since it is expressed as tensor product of

three 2D vectors γ, δ, ε, so that

�
111
Fi

D
( j)
ρρρ = �

111
Fi

(γ⊗δ⊗ε) = TFi
γ⊗TFi

δ⊗TFi
ε = t⊗v⊗w (101)

and the last tensor product between 3D vectors can be expressed in matrix form according

to the rule which one adopts to define the matrix associated with a rank-three tensor, a rule

that usually depends upon the adopted programming language.

For istance, extending the rule defined in (10) to three arbitrary 3D vectors one has

[

t⊗ (v⊗w)
]

=




t1





v1w1 v1w2 v1w3

v2w1 v2w2 v2w3

v3w1 v3w2 v3w3




t2





v1w1 v1w2 v1w3

v2w1 v2w2 v2w3

v3w1 v3w2 v3w3




t3





v1w1 v1w2 v1w3

v2w1 v2w2 v2w3

v3w1 v3w2 v3w3









T

(102)

where, for typographical reasons, we have represented the matrix associated with t⊗ (v⊗w)

as a row rather than as a column.

Let us now apply the formal operator �111
Fi

, already exploited in (101), to the last three

addends in (100). Differently from D
( j)
ρρρ, that is computed recursively as function of the

j-th edge of Fi, the rank-two tensor Λρρ is already available as a whole since it has been

evaluated elsewhere, e.g. in a different subroutine. Hence, we already dispose of

�
11
Fi
Λρρ = TFi

ΛρρTT
Fi
= Lρρ (103)

where the roman letter L has been adopted to emphasize that the matrix associated with Lρρ
is 3×3. Accordingly

�
111
Fi

(

Λρρ ⊗β
)

= Lρρ ⊗TFi
β = Lρρ⊗b (104)

where b is a 3D vector.

Thus, we can exploit the general scheme in (102) by writing

[

L⊗b
]

=

[(

L⊗b
)

1
,

(

L⊗b
)

2
,

(

L⊗b
)

3

]T

. (105)

where

[(

L⊗b
)

1

]

=





(Lρρ)11b1 (Lρρ)11b2 (Lρρ)11b3

(Lρρ)12b1 (Lρρ)12b2 (Lρρ)12b3

(Lρρ)13b1 (Lρρ)13b2 (Lρρ)13b3





, (106)

[(

L⊗b
)

2

]

=





(Lρρ)21b1 (Lρρ)21b2 (Lρρ)21b3

(Lρρ)22b1 (Lρρ)22b2 (Lρρ)22b3

(Lρρ)23b1 (Lρρ)23b2 (Lρρ)23b3





, (107)



22 M.G. D’Urso, S. Trotta

[(

L⊗b
)

3

]

=





(Lρρ)31b1 (Lρρ)31b2 (Lρρ)31b3

(Lρρ)32b1 (Lρρ)32b2 (Lρρ)32b3

(Lρρ)33b1 (Lρρ)33b2 (Lρρ)33b3





. (108)

Analogously one has

�
111
Fi

(

β⊗Λρρ
)

= TFi
β⊗Lρρ = b⊗Lρρ (109)

so that the associated matrix is

[

b⊗L
]

=

[(

b⊗L
)

1
,

(

b⊗L
)

2
,

(

b⊗L
)

3

]T

(110)

where

[(

b⊗L
)

1

]

=




b1





(Lρρ)11 (Lρρ)12 (Lρρ)13

(Lρρ)21 (Lρρ)22 (Lρρ)23

(Lρρ)31 (Lρρ)32 (Lρρ)33








, (111)

[(

b⊗L
)

2

]

=




b2





(Lρρ)11 (Lρρ)12 (Lρρ)13

(Lρρ)21 (Lρρ)22 (Lρρ)23

(Lρρ)31 (Lρρ)32 (Lρρ)33








, (112)

[(

b⊗L
)

3

]

=




b3





(Lρρ)11 (Lρρ)12 (Lρρ)13

(Lρρ)21 (Lρρ)22 (Lρρ)23

(Lρρ)31 (Lρρ)32 (Lρρ)33








. (113)

A little bit more akward is how to address the tensor product Λρρ ⊗23 β. This case has

been deliberately left at last since constructing the matrix associated with the rank-three

tensor �111
Fi

(

Λρρ ⊗23β
)

allows us to solve the problem concerning the tensor in (90).

Actually, if we could split the tensor Λρρ as tensor product of two 2D vectors in the form

Λρρ = γ⊗δ we would trivially have

�
111
Fi

(

Λρρ ⊗β
)

=�111
Fi

(

γ⊗δ⊗23 β
)

= �111
Fi

(

γ⊗β⊗δ
)

= t⊗b⊗v (114)

and exploit the general scheme in (102) to construct the relevant matrix. Unfortunately we

directly dispose of the matrix Lρρ whose entries have to appear as first and third entries in

the previous, purely illustrative, scheme.

This does not represent a real problem since, coherently with the matrix representation

(102), we can define the matrix associated with

�
111
Fi

(

Λρρ⊗23 β
)

= Lrbr (115)

as
[

Lrbr

]

=

[(

Λρρ ⊗23β
)

1
,

(

Λρρ ⊗23 β
)

2
,

(

Λρρ ⊗23 β
)

3

]T

(116)

where

[(

Λρρ⊗23 β
)

1

]

=





b1(Lρρ)11 b1(Lρρ)12 b1(Lρρ)13

b2(Lρρ)11 b2(Lρρ)12 b2(Lρρ)13

b3(Lρρ)11 b3(Lρρ)12 b3(Lρρ)13





, (117)
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Fig. 2 Representation of geometric quantities used to assign density contrast (s) and define the position ofΩ

with respect to an arbitray point P.

[(

Λρρ⊗23 β
)

2

]

=





b1(Lρρ)21 b1(Lρρ)22 b1(Lρρ)23

b2(Lρρ)21 b2(Lρρ)22 b2(Lρρ)23

b3(Lρρ)21 b3(Lρρ)22 b3(Lρρ)23





, (118)

[(

Λρρ⊗23 β
)

3

]

=





b1(Lρρ)31 b1(Lρρ)32 b1(Lρρ)33

b2(Lρρ)31 b2(Lρρ)32 b2(Lρρ)33

b3(Lρρ)31 b3(Lρρ)32 b3(Lρρ)33





, (119)

and Lρρ is obtained from (103) and b = TFi
β.

Remarkably, the same notational scheme as in the previous formula can be exploited for

the tensor in (90) since Gi can be obtained from (44) by standard matrix operations.

Furthermore, setting � = Gi ⊗23 ni, the matrix [�] can be obtained analogously to

(116). Stated equivalently, to construct the matrix associated with the rank-three tensor�,

one has to first evaluate ΦFi
, transform it as in (44) to get Gi, and exploit the notational

scheme (116) by replacing Lρρ with Gi.

The notational schemes detailed in (101)-(102), (104)-(105), (109)-(110) and (115)-

(116) can be suitably exploited to evaluate the tensors in (91)-(97) and, hence, the tensor

�
∂Ω
rrr in (50). Namely, the tensors Gi ⊗ ni in (91) and Hi ⊗ ni in (97) can be evaluated by

applying the scheme (105), the tensor �i in (92) by applying the scheme (101)-(102) and

the tensor Hi ⊗23 ni in (96) by applying the scheme (115)-(116). Finally, the tensors in (93)

and (95) are rank-two tensors and the tensor in (94) can be evaluated as in (102).

3 Gravity anomaly of polyhedral bodies at an arbitrary point P

In the previous sections it has been assumed that the observation point P would coincide

with the origin of the reference frame in which the anomalous density of a body is assigned.
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This has allowed us to set the stage and to define the most problematic issues to address,

both from the analytical and numerical point of view.

However when gravity measures are carried out at several points and/or when multiple

bodies are taken into account it is by far more convenient to fix an arbitrary reference frame

in which both the coordinates of each observation point and the density of all bodies are

simultaneously assigned.

To suitably extend the formulas contributed in the previous section, one can exploit a

coordinate transformation (Zhou, 2010) by translating the origin of the reference frame to

the observation point and modifying in accordance the expression of the density contrast by

expressing the coefficients of the polynomial law in the new reference frame.

Alternatively, one can follow the approach outlined in D’Urso (2015c) and define the

position vector r entering the definition of the gravity anomaly as follows

r = s−p (120)

where p is the position vector of the observation point and s is the position vector of an

arbitrary point belonging to Ω, see e.g., fig. 2. In this way we can leave the expression (6)

unchanged by writing

∆ρ(s) = θ(x,y,z) = θo+c · s+C ·Dss +� ·�sss (121)

where Dss and�sss are defined as in (7) and write

∆gz(P) =G

∫

Ω

∆ρ(s)r ·k
(r ·r)3/2

dV . (122)

Clearly in the case of multiple observation points Pi and/or bodies one can simply write

∆gz(Pi) =G

NB∑

j=1

∫

Ω j

∆ρ(s j)r j ·k
(r j ·r j)3/2

dV (123)

where Ω j is the domain of the j-th body, NB is the number of bodies to analyze and r j =

s j−pi, pi being the position vector of Pi with respect to the assigned reference frame having

origin at an arbitrary point O. However, being mainly interested to illustrate the rationale of

our approach, we shall make reference in the sequel to the case of a single observation point

and a single body.

To exploit the results illustrated in the previous section, it is convenient to express s as

function of r by means of (120). For brevity this is detailed only for the rank-three tensor

�sss since it is the more cumbersome to handle. In particular, we infer from (120)

�sss = s⊗ s⊗ s = (r+p)⊗ (r+p)⊗ (r+p) =�rrr +�rrp +�ppr +�ppp (124)

where�ppp = p⊗p⊗p,

�rrp = r⊗r⊗p+r⊗p⊗ r+p⊗r⊗ r (125)

and

�ppr = p⊗p⊗r+p⊗r⊗p+ r⊗p⊗p = Dpp ⊗r+p⊗r⊗p+ r⊗Dpp . (126)
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Hence, the expression (122) for the gravity anomaly becomes

∆gz(p) = G
{

[θo +c ·p+C ·Dpp +� ·�ppp ]dΩr +c ·dΩr +

+C · [dΩr ⊗p+p⊗dΩr +DΩ
rr]+� · [Dpp ⊗dΩr +p⊗dΩr ⊗p+dΩr ⊗Dpp]+

+� · [DΩ
rr ⊗p+dΩr ⊗p⊗dΩr +p⊗DΩ

rr ]+� ·�Ωrrr

}

,

(127)

which represents the generalization of (14) to the case p , o.

Special attention has to be paid to the symbol dΩr ⊗p⊗dΩr which is a shorthand to denote

the third-order tensor

dΩr ⊗p⊗dΩr =

∫

Ω

(r ·k)r⊗p⊗r

(r ·r)3/2
dV =DΩ

rr ⊗23 p . (128)

In spite of its symbol, which has been adopted to emphasize its symmetric expression, the

tensor above cannot be obtained as triple tensor product of the vectors dΩr and p. Rather, it

is conveniently computed starting from the rank-two tensor DΩ
rr, after having computed its

algebraic expression, as detailed in subsection 2.6.

Although r is now defined from (120) it can be shown that formula (17) holds as well.

Thus, recalling (30) and setting

θp = c ·p+C ·Dpp +� ·�ppp , (129)

formula (127) specializes to

∆gz(p) = G

{

(θo +θp)d∂Ωr +
c ·d∂Ωr

2
+C ·

[ d∂Ωr

2
⊗p+p⊗ d∂Ωr

2
+

D∂Ω
rr

3

]

+

+� ·
[ 1

2

(

Dpp ⊗d∂Ωr +p⊗d∂Ωr ⊗p+d∂Ωr ⊗Dpp

)

+

+
1

3

(

D∂Ω
rr ⊗p+d∂Ωr ⊗p⊗d∂Ωr +p⊗D∂Ω

rr

)

+
�
∂Ω
rrr

4

]
}

.

(130)

Obviously, (130) coincides with (31) when p = o.

Formula (130) can be operatively evaluated for a a polyhedral body by considering for-

mulas (37), (38), (47) and (50) for dΩr , dΩr , DΩ
rr and �Ωrrr, respectively, and the procedures

detailed in subsection 2.3-2.6 to express them in terms of 3D vectors. In particular the third

order tensor d∂Ωr ⊗p⊗d∂Ωr is obtained by applying the notational scheme (115)-(116) and

replacing Lρρ with DΩ
rr and b with p, respectively.

4 Eliminable Singularities of the Algebraic Expressions of the Gravity Anomaly

It has already been shown that the analytical expression (31) of the gravity anomaly is

singularity-free in the sense that its expression holds rigorously whatever is the position

of the point O with respect to Ω. The same property holds true for the expression (130)

referred to an arbitrary point P. However their algebraic counterparts, being expressed by

means of the quantities detailed in subsection 2.4, do include further singularities.

They are associated with the expression of the line integrals provided in the Appendices

since they become singular when the generic face Fi contains the observation point, either

O or P, and this belongs to the line containing the j-th edge of the boundary ∂Fi .
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However, we are going to prove analytically that the contribution of the singular line

integral to the domain integral in which its computation is required is zero. Hence, from

the computational point of view, the singularity of the j-th line integral does not have any

practical effect and it can be simply ignored when computing the associated domain integral.

As shown in Appendix 2, some of the 2D domain integrals required in the present con-

text, have already been computed in previous papers D’Urso (2013a, 2014a,b) so that the

discussion on their singularity-free nature can be found in the quoted reference. Neverthe-

less we shall systematically prove this property also for these last integrals, namely the ones

having
(

ρi ·ρi +d2
i

)1/2
in the denominator, since we are going to use new and simpler ar-

guments; the same arguments will be exploited to prove the singularity-free nature of the

integrals having
(

ρi ·ρi +d2
i

)3/2
in the denominator.

4.1 Eliminable singularity of the integral ψFi

We know from formulas (218) and (219) that

ψFi
=

∫

Fi

dAi

(ρi ·ρi +d2
i
)1/2
=

NEi∑

j=1

(

ρ j ·ρ⊥j+1

)
1∫

0

[

ρ̂i(λ j) · ρ̂i(λ j)+d2
i

]1/2

ρ̂i(λ j) · ρ̂i(λ j)
dλ j−αi |di| =

=

NEi∑

j=1

(

ρ j ·ρ⊥j+1

)
1∫

0

(

p jλ
2
j +2q jλ j +v j

)1/2

p jλ
2
j
+2q jλ j +u j

dλ j−αi |di| =
NEi∑

j=1

(

ρ j ·ρ⊥j+1

)

I6 j −αi |di|

(131)

where, see also (70), we have set

p j = ∆ρ j ·∆ρ j = l2j q j = ρ j ·∆ρ j u j = ρ j ·ρ j v j = u j+d2
i = |r j|2 . (132)

Useful in the sequel are also the quantities (D’Urso, 2013a, 2014a,b)

p j +q j = ρ j+1 ·∆ρ j p j +2q j +v j = ρ j+1 ·ρ j+1+d2
i = |r j+1|2 (133)

and the discriminant ∆ j = q2
j
− p ju j of the denominator in (131). In particular, it turns out to

be

−∆ j = p ju j −q2
j =

(

ρ j+1 ·ρ j+1

)

·
(

ρ j ·ρ j

)

−
(

ρ j ·ρ j+1

)2
≥ 0 (134)

by virtue of the Cauchy-Schwartz inequality (Tang, 2006).

Clearly, our main concern is when ∆ j = 0. In particular, setting o = (0,0), it is apparent

from the previous expression that the denominator of the j-th integral on the right-hand

side of (131) can become singular if ρ j = o, ρ j+1 = o or ρ j and ρ j+1 are parallel and point

in opposite directions, i.e. if the projection of the observation point onto Fi belongs to the

segment
[

ρ j, ρ j+1

]

. In turn this may happen independently from the value of di, i.e. whether

or not the i-th face of the polyhedronΩ does contain the observation point.

In both cases, di , 0 or di = 0, we are going to prove by mathematical arguments that

the contribution of such an edge to ψFi
is zero so that its computation can be skipped. Let us

first consider the case di , 0.



Gravity Anomaly of Polyhedral Bodies Having a Polynomial Density Contrast 27

As shown in D’Urso (2013a, 2014a) the evaluation of the line integral on the right-hand

side of (131) is carried out by setting t = λ j +q j/p j; this yields

I6 j =

1∫

0

(

p jλ
2
j +2q jλ j +v j

)1/2

p jλ
2
j
+2q jλ j +u j

dλ j =
1
√

p j

1+q j/p j∫

q j/p j

√

t2+B j

t2+A j

dt (135)

where

A j = −
∆ j

p2
j

=
p ju j −q2

j

p2
j

B j =
p jv j−q2

j

p2
j

= A j +
d2

i

p j

= A j +
d2

i

l2
j

. (136)

Notice that the denominator in (135) is positive if −∆ j = p2
j A j > 0. In this case the

primitive of the integrand on the right-hand side of (135) becomes

I6 j =
1
√

p j






√

B j −A j

A j

arctan

√

B j −A j

√

A j

√

B j + t2

+ ln

(

t+

√

B j + t2

)






1+q j/p j

q j/p j

(137)

or equivalently

I6 j =






|di|
√

−∆ j

arctan
|di|

√

−∆ j

√

B j + t2

+

ln

(

t+

√

B j + t2

)

√
p j






1+q j/p j

q j/p j

. (138)

Conversely, should it be ∆ j = 0, and hence A j = 0, the integrand on the right-hand side

of (135) becomes singular at one point belonging to the interval
[

q j/p j, 1+q j/p j

]

. Actually,

we infer from (134) and the properties of the Cauchy-Schwartz inequality that ∆ j = 0 if and

only if ρ j = o, ρ j+1 = o or the segment [ρ j, ρ j+1] contains the null vector in its interior.

Actually if ρ j = o

(

ρ j+1 = o

)

, it turns out to be q j/p j = 0
(

1+ q j/p j = 0
)

; hence the

denominator in (135) becomes singular since t2+A j = ρ j ·ρ j/p j

(

ρ j+1 ·ρ j+1/p j

)

= 0 at the

left (right) extreme of the integration integral.

Furthermore, should the projection of the observation point fall within the segment

[ρ j, ρ j+1], one has ρ j+1 = β jρ j (β j < 0) where q j/p j = (β j −1)ρ j ·ρ j/p j < 0 and 1+q j/p j =

β j(β j − 1)ρ j · ρ j/p j > 0. Accordingly, the integration interval in (135) splits in two inter-

vals having 0 as right (left) extreme. At that point, however, t = 0 and A j = −∆ j/p2
j
= 0 by

assumption so that the integrand in (135) becomes singular.

However, we are going to prove that, in the previous three cases, the singularity is elim-

inable and that the integral attains a finite value. Let us discuss separately the three cases,

namely ρ j = o, ρ j+1 = o and ρ j+1 = β j ρ j (β j < 0).

In this first case, ρ j = o, the integration interval is [0, 1] and we have singularity of the

integrand in (135) at the left extreme while the argument of the logarithm is positive. Thus,

recalling (131) and (138), the contribution of the integral I6 j to ψFi
is provided by

(

ρ j ·ρ⊥j+1

)

I6 j = ρ j ·ρ⊥j+1





|di|
√

−∆ j

arctan
|di|

√

−∆ j

√

B j + t2

+

ln

(

t+

√

B j + t2

)

√
p j





1

0

. (139)
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Setting ρ j = |ρ j |e = εe and observing that, on account of (134),

−∆ j =
(

ρ j+1 ·ρ j+1

)

|ρ j|2 −
(

|ρ j|e ·ρ j+1

)2
= ε2

[

ρ j+1 ·ρ j+1−
(

e ·ρ j+1

)2]

, (140)

we infer that
√

−∆ j is infinitesimal of the same order as ε = |ρ j | when ε→ 0, a property we

state by writing
√

−∆ j = O(ε). Hence (139) becomes

(

ρ j ·ρ⊥j+1

)

I6 j = lim
ε→0

ε






[

|di|
√

−∆ j(ε)
arctan

|di|
√

−∆ j(ε)

√

B j + t2

]1

ε

+
1
√

p j

[

ln

(

t+

√

B j + t2

) ]1

0






(141)

since the ρ j ·ρ⊥j+1
= O(ε) if ε→ 0.

Since the arctan function is finite at t = 1 and the same does occur for the ln function at

t = 0 and t = 1, we finally have

(

ρ j ·ρ⊥j+1

)

I6 j = −|di| lim
ε→0

ε
√

−∆ j(ε)
arctan

|di|
√

−∆ j(ε)

√

B j +ε
2

= −π
2
|di| . (142)

However if ρ j = o for the j-th edge, it will turn out to be ρ j+1 = o for the ( j−1)-th edge.

Hence the arctan function in (138) will be evaluated in the interval [−1, ε], with ε→ 0, and

one has
(

ρ j ·ρ⊥j+1

)

I6 j = π |di|/2.

To conclude the total contribution provided to ϕFi
by the two edges for which it simul-

taneously happen that ρ j = o for the j-th edge and ρ j+1 = o for the ( j−1)-th edge is zero.

A null contribution to ϕFi
is also provided by edges for which the projection of the

observation point is internal to the edge. In this case ρ j and ρ j+1 are parallel so that the

product ρ j ·ρ⊥j+1
is zero. Accordingly, both ρ j ·ρ⊥j+1

and
√

−∆ j are O(ε), that is both of them

are infinitesimal of order ε as ε→ 0. In conclusion (139) yields

(

ρ j ·ρ⊥j+1

)

I6 j = |di| limε→0






ε
√

−∆ j(ε)





arctan
|di|

√

−∆ j(ε)

√

B j + t2





0

−1

+

+
ε

√

−∆ j(ε)





arctan
|di|

√

−∆ j(ε)

√

B j + t2





1

0

+
ε
√

p j

[

ln

(

t+

√

B j + t2

) ]1

0






= 0 .

(143)

Actually, the ln function is finite both at t = 0 and t = 1. Furthermore, by repeating the

arguments exploited in (142), the arctan function attains finite and opposite values both at

t = 0 and t±1.

In conclusion we have proved that, when di , 0 and the projection of the observation

point does belong to the closed interval having ρ j and ρ j+1 as extremes, the contribution of

the relevant edge can be skipped since the overall contribution to ϕFi
associated with such a

singular case is lumped within the addend αi |di|.
Let us now prove that the same result is obtained if |di|= 0, i.e. if the face Fi does contain

the observation point. In this case the integral in (131) can be expressed as follows

ψFi
=

NEi∑

j=1

(

ρ j ·ρ⊥j+1

)

I6 j =

NEi∑

j=1

(

ρ j ·ρ⊥j+1

)
1∫

0

dλ j

[

ρ̂i(λ j) · ρ̂i(λ j)
]1/2
−αi |di| . (144)
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Also in this case, the j-th edge characterized by ρ j = o or ρ j+1 = o or ρ j+1 = β jρ j (β j < 0)

does not give any contribution to ϕFi
. Let us examine separately the three cases

• ρ j = o

In this case the parameterization (67) yields ρ̂i(λ j) = λ jρ j+1 so that the j-th integral in

(144) becomes

I6 j =

1∫

0

dλ j

λ j

(

ρ j+1 ·ρ j+1

)1/2
=

1
√

p j

1∫

0

dλ j

λ j

. (145)

Setting ε = |ρ j | and being ρ j ·ρ⊥j+1
infinitesimal of order ε, it turns out to be

(

ρ j ·ρ⊥j+1

)

I6 j =
1
√

p j

lim
ε→0

ε
[

lnλ j

]1

ε
= 0 (146)

since the logarithm tends to infinite with an arbitrarily low degree.

• ρ j+1 = o

Setting ρ̂i(λ j) = (1−λ j)ρ j the integral in (144) can be written

I6 j =
1
√

u j

1∫

0

dλ j

1−λ j

= − 1
√

u j

0∫

1

dη j

η j

(147)

where η j = 1−λ j. Hence, setting ε = |ρ j+1 |, one has

(

ρ j ·ρ⊥j+1

)

I6 j = −
1
√

u j

lim
ε→0

ε
[

lnη j

]ε

1
= 0 (148)

due to the behavior of the logarithm at infinity.

• ρ j+1 parallel to ρ j

We are considering the case in which the observation point is projected onto the face Fi

inside the j-th edge
[

ρ j, ρ j+1

]

. Hence we can set ρ j+1 = β jρ j, β j < 0, since ρ j and ρ j+1 point

in opposite directions. Setting

ρ j(λ j) =
[

1+λ j(β j −1)
]

ρ j = τ jρ j , (149)

the integral in (144) becomes

I6 j =
1
√

u j

1∫

0

dλ j

|1+λ j(β j −1)| =
1

(β j −1)
√

u j

β j∫

1

dτ j

|τ j|
=

1

(1−β j)
√

u j

1∫

β j

dτ j

|τ j|
=

=
1

(1−β j)
√

u j





0∫

β j

dτ j

|τ j|
+

1∫

0

dτ j

|τ j|





=

=
1

(1−β j)
√

u j

{
[

lnτ j

]|β j|
0
+
[

lnτ j

]1

0

}

.

(150)

Being ρ j and ρ j+1 parallel, ρ j ·ρ⊥j+1
= 0. Hence, setting ε = |ρ j ·ρ⊥j+1

|
(

ρ j ·ρ⊥j+1

)

I6 j =
1

(1−β j)
√

u j

lim
ε→0

ε
[

ln |β j| −2lnε
]

= 0 (151)

similarly to (146).
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4.2 Eliminable singularity of the integral ψFi

The expression (220) of the integral

ψFi
=

∫

Fi

ρidAi

(ρi ·ρi +d2
i
)1/2
=

NEi∑

j=1

I4 j∆ρ
⊥
j =

=

NEi∑

j=1

1

2
√

p j






p jv j −q2
j

p j

LN j +
1
√

p j

[
(

p j +q j

)√

p j +2q j +v j −q j
√

v j

]



∆ρ⊥j

(152)

is composed of two addends. The second one is well-defined, according to (132) and (133),

whatever is the value of di and the position of j-th edge with respect to the observation point.

The first addend in (152) is well defined for di , 0 since

LN j = lnk j = ln
ρ j+1 ·

(

ρ j+1−ρ j

)

+ l j |r j+1|

ρ j ·
(

ρ j+1−ρ j

)

+ l j |r j|
(153)

on the basis of formula (73) in D’Urso (2014b).

Conversely, should it be di = 0 and ρi = o or ρ j = o or ρ j+1 = β jρ j (β j < 0), one has

p jv j−q2
j

p j

LN j =
−∆ j

p j

LN j = lim
ε→0

−∆ j(ε
2)LN j(ε)

2p j

= 0 (154)

since −∆ j tends to zero quadratically and LN j tends to infinite with an arbitrary low degree.

In conclusion edges characterized by singularities of the relevant integral I4 j give no

contribution to ψFi
.

4.3 Eliminable singularity of the integral ΨFi

The expression (208) of the integral

ΨFi
=

NEi∑

j=1

[
(

I4 jρ j + I5 j∆ρ j

)

⊗∆ρ⊥j −
I2D

3
(ρ j ·ρ⊥j+1)I4 j

]

+
d2

i

3

(

ψi −|di |αi

)

(155)

depends upon the integrals ψi, I4 j and I5 j. The discussion on the well-posedness on ψi has

already been detailed in subsection 4.1.

Conversely, the integrals I4 j and I5 j are composed, according to their expressions (215)

and (216), of the quantities
√

v j

√

p j +2q j +v j (156)

and of the additional integral I0 j. On the basis of the definition (132) and (134) the radicals

in (156) are well-defined whater is value of di and the position of the j-th edge with respect

to the observation point.

The dependence of the integrals I4 j and I5 j upon I0 j does not give any problem since its

expression, according to (211), depends upon LN j. Differently form (152) the quantity LN j

is not scaled by p jv j − q2
j
, so that we can not invoke the result (154). However the integral
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ΨFi
, and hence LN j, is required for computing the integrals CFi

and DFi
in (42) that, in

turn, are scaled by di in the expressions (47) and (50).

Hence, when di is zero, what makes LN j undefined, we can invoke a result similar to

(154) by writing

diLN j = lim
ε→0

di(ε)LN j(ε) = 0 . (157)

Stated equivalently, when di = 0 the contribution to the integralΨ Fi
provided by the face Fi

can be skipped.

4.4 Eliminable singularity of the integral ϕFi

The expression provided in (221) for the integral

ϕFi
=

∫

Fi

dAi

(ρi ·ρi +d2
i
)3/2
=
αi

|di|
−

NEi∑

j=1





ρ j ·ρ⊥j+1

|di|
√

p ju j −q2
j

(AT N1 j −AT 2N j)





(158)

is well-defined whatever is the value of di and the position of the j-th edge with respect to

the observation point.

Also the case di = 0 does not represent a problem since ϕFi
is premultiplied by di in

the formulas (37), (38) (47) and (50) for dΩr , dΩr , DΩ
rr and�Ωrrr respectively. Furhermore the

discussion on the well-posedness of the quantity

ρ j ·ρ⊥j+1
√

p jv j −q2
j

(

AT N1 j −AT N2 j

)

(159)

when di = 0 and the projection of the observation point lies within the segment
[

ρ j, ρ j+1

]

is

completely similar to that reported in subsection 4.1

4.5 Eliminable singularity of the integral ϕFi

We know from formula (222) that

ϕFi
=

∫

Fi

ρidAi

(ρi ·ρi +d2
i
)3/2
= −

NEi∑

j=1

I0 j ∆ρ
⊥
j (160)

where I0 j is provided by (211). Hence, the discussion on its well-posedness can be carried

out similarly to (157) when di = 0 and the j-th edge does contain the observation point in its

interior.

Actually the integral ϕFi
in the expression (37), (38) (47) and (50) for dΩr , dΩr , DΩ

rr and

�
Ω
rrr is always scaled by di.
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4.6 Eliminable singularity of the integralΦFi

Recalling the expression (223)

ΦFi
=

∫

Fi

ρi⊗ρi

(ρi ·ρi +d2
i
)3/2
= −

NEi∑

j=1

[

LN j ρ j ⊗∆ρ⊥j + I1 j ∆ρ j ⊗∆ρ⊥j
]

+ψFi
I2D , (161)

we infer thatΦFi
is well defined whatever is the value of di and the position of the observa-

tion point with respect to the j-th edge of the face Fi. This is trivial if di , 0 since LN j, I1 j

and ψFi
in the previous expression are well defined.

To discuss the well-posedness of ΦFi
in the case di = 0 and when the projection of the

observation point onto Fi does belong to the segment
[

ρ j, ρ j+1

]

we remind thatΦFi
, as well

as ϕFi
and ϕFi

, is scaled by di in the expressions (47) and (50) for DΩ
rr and �Ωrrr. Hence

the well-posedness of diLN j can be assessed as in (157), while that of ψFi
has been already

proved in subsection 4.1.

Finally, according to formula (212), the well-posedness of I1 j depends upon that of I0 j;

in turn this last one depends upon the product diLN j discussed above.

In conclusion we have proved that the gravity anomaly at an arbitrary point P can be

computed effectively whatever is its position with respect to the polyhedronΩ. Actually the

potential singularity of the integrals involved in the formulas (37), (38), (47) and (50) for

dΩr , dΩr , DΩ
rr and�Ωrrr gives no contribution to the gravity anomaly.

5 Numerical examples

The formulas developed in the previous sections have been coded in a Matlab program in or-

der to check their correctness and robustness. They have been applied to model tests and case

studies derived from the specialized literature by assuming the density contrast to vary sepa-

rately along the horizontal and the vertical directions or along both of them. In all examples

the density contrast is expressed in units kilograms per cubic meter while distances are ex-

pressed in kilometers; the value of the gravitational constant G is 6,6725910−11m3kg−1s−2.

Results obtained by the proposed approach have been carefully checked by comparing

them whith those resulting from a numerical integration of the integrals involved in the

computation of the gravity anomaly. They can be useful to allow for a comparison with

computations carried out by using different methods or with more complex modellings,

e.g. those reqired to evaluate the gravitational effects of an arbitrary volumetric mass layer

in which a laterally varying radial density change has been assumed (Kingdon et al., 2009;

Tenzer et al., 2012). To give an idea of the computational burden required in both approaches

we have included the computing time (CT) obtained by running the Matlab code on a INTEL

CORE2 PC with 16Gb of RAM and a i7-4700HQ CPU having clock speed of 2,40 GHz.

The first test has been taken from (Garcı́a-Abdeslem, 2005) and refers to a prism ex-

tending along x and y between 10 and 20 km and delimited by the planes z=0 and z=8 km.

Density contrast is expressed by the function

∆ρ(z) = −747.7+203.435z−26.764z2+1.4247z3 = p+qz+ rz2 + sz3 (162)

where the density is expressed in kg/m3 and z in kilometers.

In order to compare our results with those reported in (Garcı́a-Abdeslem, 2005), the

gravity anomaly has been computed at points P having y=15 km, z=-0.15 m and x ranging
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from 0 to 30 km . In particular the observer location was taken by Garcı́a-Abdeslem (2005)

-15 cm of the top of the prism to avoid a singularity in the analytic solution occurring when

the observation and the source coordinates coincide.

Although our approach is singularity-free, as proved in section 4, we have deliberately

repeated the computations made by Garcı́a-Abdeslem (2005) to draw the reader’s attention

on the uncorrect values reported in fig. 3 of the quoted paper.

As a matter of fact all mathematical formulas in (Garcı́a-Abdeslem, 2005) are correct

but, for some reasons, the values of the gravity anomaly plotted in fig. 3 have been calculated

by assuming wrong integration limits in formula (8) of his paper, namely x1, y1, z1, x2, y2,

z2 (lowercase letters) instead of the correct X1, Y1, Z1, X2, Y2, Z2 (capital letters).

In other words formula (8) in (Garcı́a-Abdeslem, 2005), reported herewith for complete-

ness

Ik =

X2∫

X1

dX

Y2∫

Y1

dY

Z2∫

Z1

dZ

{

ρk

Zk

R3

}

k = 1,2,3,4 (163)

is correct but the result plotted in fig. 3 of the quoted paper have been obtained by consid-

ering x1 instead X1, y1 instead Y1 ... and so on. Please notice that, apart ρk , the notation

in (163) is taken from the original paper so that the observation point is defined by the

coordinates P=(x0, y0, z0) and (x,y,z) denote the source coordinates. According to Garcı́a-

Abdeslem (2005) the prism is bounded by the planes x=x1, y=y1, z=z1, x=x2, y=y2, z=z2

and it has been set X=x-x0, Y=y-y0, Z=z-z0.

In conclusion, the correct values of the gravity anomaly at x0 ∈ [0, 30] km, y0 = 15 km

and z0 =−15 cm, where we have used the notation of (Garcı́a-Abdeslem, 2005), are reported

in figs. 3a, 3b, 3c and 3d respectively for the separate cases of ∆ρ = p = ρ1, ∆ρ = qz = ρ2,

∆ρ = rz2 = ρ3, ∆ρ = sz3 = ρ4,
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Fig. 3 Gravitational attraction at P=[0,30]×15×(-0.00015)associated with the prismΩ≡ [10, 20]×[10, 20]×
[0, 8] (dimensions in kilometers) and density contrast given by (162).
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Fig. 4 Differences ∆ between the analytical and numerical values plotted in fig. 3

The correctness of the values reported in fig. 3 has been checkedby numerically integrat-

ing formula (162) with the aid of the adaptive quadrature procedure implemented in Matlab

and by setting X1=10-x0, Y1=10-y0, Z1=0.00015, X2=20-x0, Y2=20-y0, Z2=8-0.00015.

For completeness the differences between the analytical and numerical values reported in

fig. 3 are plotted in fig. 4.

To fully test the correctness of the proposed formulation and the robustness of the rele-

vant implementation, we have systematically carried out a comparison of the results associ-

ated with the analytical and the numerical evaluation of the integrals involved in the compu-

tation of the gravity anomaly. To emphasize the singularity-free nature of our solution, this

has been done by considering the example in (Garcı́a-Abdeslem, 2005) and evaluating the

anomaly at z=0 and for several values of y, namely y=10, y=11 km, y=12.5 km and y=15

km.

The gravity anomaly has been evaluated for values of x ranging in the interval [0, 30]

km and the relevant values are plotted in fig. 5. For completeness the analytical results

are reported in table 1 together with those obtained by numerically evaluating the integrals

in formula (163); for the reader’s convenience the differences between the analytical and

numerical values are plotted in fig. 6. The symbol NaN in table 1 for x=15 km, is due

to the fact that the numerical procedure, adopted by Matlab to numerically evaluate the

integrals in (163), failed to converge. Notice as well that the numerical procedure, besides

being computationally more expensive, gives less precise results when the observation point

belongs to Ω, i.e. y=10 km and y=15 km, and x moves towards the center of Ω; actually the

numerical solution has only three significant digits at x=10 km and x=20 km.

To give a quick overlook of the symmetric nature of the solution with respect to the

planes x=15 km and y=15 km we have reported in fig. 7a the contour plot of the gravity

anomaly at z=0. The surface distribution of the gravity anomaly becomes unsymmetric, as

shown in fig. 7b, by considering a density contrast depending upon an a horizontal direction
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Fig. 5 Gravitational attraction at P=[0,30]×yk×[0] (k=1,2,3,4) associated with the prism Ω ≡ [10, 20]×
[10, 20]× [0, 8] (dimensions in kilometers) and density contrast given by (162).
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Fig. 6 Differences ∆ between the analytical and numerical values plotted in fig. 5.

such as the expression considered in Zhou (2009b)

∆ρ(z) = −747.7+203.435z−26.764z2+1.4247z3−23.205x . (164)

To emphasize the dependence of the solution upon the monomials appearing in the ex-

pression of the density contrast we have plotted in fig. 8a and 8b the surface distribution of

the gravity anomaly for the density contrast

∆ρ(z) = −747.7+203.435z−26.764z2+1.4247z3−23.205y , (165)
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∆ρ(z) = −747.7+203.435z−26.764z2+1.4247z3−23.205x−23.205y . (166)
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Fig. 7 Gravity anomaly distribution at z=0 associated with the prism Ω ≡ [10, 20]× [10,20]× [0, 8] (dimen-

sions in kilometers) and density contrast given by (162) (on the left) and (164) (on the right).

It is apparent from the last two plots that gravity anomaly vanishes less rapidly than in

fig. 7a.
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Fig. 8 Gravity anomaly distribution at z=0 associated with the prism Ω ≡ [10, 20]× [10,20]× [0, 8] (dimen-

sions in kilometers) and density contrast given by (165) (on the left) and (166) (on the right).
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Table 1 Gravity anomaly (mGal) associated with prism Ω ≡ [10, 20]× [10, 20]× [0, 8] (dimensions in kilometers and density contrast (162)) at several locations; a) Analytical

values; b) Numerical values. Computing Time (CT) in seconds

z=0 and y=10 km

x (km) 0,00 5,00 10,00 15,00 20,00 25,00 30,00 CT

a) -1,22163576397609 -3,46372618679431 -20,7412785817980 -36,2650788733413 -20,7412785817980 -3,46372618679432 -1,22163576397614 1.9813

b) -1,22163576397627 -3,46372618679431 -20,7413498102378 NaN -20,7413498102377 -3,46372618679431 -1,22163576397627 143.4464

z=0 and y=11 km

x (km) 0,00 5,00 10,00 15,00 20,00 25,00 30,00 CT

a) -1.28698607331256 -3.82357120782405 -29.72909079760424 -53.62521739346171 -29.72909079760428 -3.82357120782429 -1.28698607331263 1.8574

b) -1.28698607331254 -3.82357120782415 -29.72928645482153 NaN -29.72928645482145 -3.82357120782415 -1.28698607331254 154.6723

z=0 and y=12,5 km

x (km) 0,00 5,00 10,00 15,00 20,00 25,00 30,00 CT

a) -1.36376684444623 -4.25957137389371 -34.23229607059629 -61.88280073665107 -34.23229607059632 -4.25957137389369 -1.36376684444629 1.894

b) -1.36376684444609 -4.25957137389370 -34.23243794205016 NaN -34.23243794205009 -4.25957137389370 -1.36376684444609 142.5479

z=0 and y=15 km

x (km) 0,00 5,00 10,00 15,00 20,00 25,00 30,00 CT

a) -1,41650677516557 -4,56182411878455 -36,2650788733413 -65,4288804280923 -36,2650788733413 -4,56182411878455 -1,41650677516557 1.9127

b) -1,41650677516342 -4,56182411878455 -36,2652685757159 NaN -36,2652685757159 -4,56182411878455 -1,41650677516557 156.1096
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6 Conclusions

The gravity anomaly at arbitrary points induced by a polyhedral body of arbitrary shape

body whose shape is an arbitrary and characterized by polynomial density contrast has been

obtained in closed form. It is expressed as sum of quantities that depend only upon the 3D

coordinates of the vertices of the polyhedron and upon the parameters defining the density

contrast. The solution procedure, based upon a generalized application of Gauss theorem,

takes consistently into account the singularity intrinsic to the integrals to evaluate. In par-

ticular, by means of rigorous mathematical arguments, singularities are proved to give no

contribution both to the analytical expression of the gravity anomaly and to its algebraic

counterpart.

The formulation presented in the paper has been limited to polynomial density contrast

varying with a cubic law as a maximum but it can be easily extended to polynomials of

higher degree. The effectiveness of the proposed approach has been intensively tested by

numerical comparisons, carried out by means of a Matlab code, with several example de-

rived from the specialized literature. Future contributions will concern the cases of density

contrast variable with exponential law for 2D and 3D domains.

7 Appendix 1 - Algebraic expression of integrals

We are going to show that the 2D integrals

∫

Fi

[⊗ρi,m]

(ρi ·ρi+d2
i
)3/2

dAi m ∈ [0,4] (167)

can be evaluated analytically. As a matter of fact we only need to evaluate the integrals for

m = 3 and m = 4

CFi
=

∫

Fi

ρi ⊗ρi ⊗ρi

(ρi ·ρi+d2
i
)3/2

dAi DFi
=

∫

Fi

ρi ⊗ρi ⊗ρi⊗ρi

(ρi ·ρi +d2
i
)3/2

dAi , (168)

since the additional ones in (167) have been already computed in D’Urso (2013a, 2014a,b).

For completeness these last ones are reported in Appendix 2.

A further integral, namely

Ψ Fi
=

∫

Fi

ρi ⊗ρi

(ρi ·ρi +d2
i )1/2

dAi , (169)

required for the computation of the integrals (168), will be dealt with at the end of this

Appendix.

The rationale for evaluating the integrals (168) is to first apply the generalized Gauss

theorem D’Urso (2013a, 2014a) to transform them into 1D integrals and, subsequently, to

compute such integrals by means of algebraic expressions depending upon the 2D coordi-

nates of the vertices that define the face Fi.

In order to apply the Gauss theorem to the integrals in (168) let us first prove the identity

grad
[

ϕ(a⊗b)
]

= (a⊗b)⊗gradϕ+ϕgrada⊗b+ϕa⊗gradb , (170)

holding for scalar ϕ and vector (a,b) differentiable fields.
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It can be easily verified by applying the chain rule to the i jk component of the third-order

tensor on the left-hand side
{

grad
[

ϕ(a⊗b)
]}

jkq
=

(

ϕa jbk

)

/q
= ϕ/q a j bk +ϕa j/q bk +ϕa j bk/q . (171)

In a similar fashion one can prove the further differential identity involving fourt-order

tensors

grad
[

ϕ(a⊗b⊗c)
]

= (a⊗b⊗c)gradϕ+ϕgrada⊗b⊗c+ϕa⊗gradb⊗c+ϕa⊗b⊗ gradc .

(172)

Let us now apply the identity (171) as follows



grad

(

ρi⊗ρi

(ρi ·ρi +d2
i
)1/2

)



jkq

= −




ρi ⊗ρi ⊗ρi

(ρi ·ρi+d2
i
)3/2





jkq

+
(ρi) j/q(ρi)k

(ρi ·ρi +d2
i
)1/2
+

(ρi) j(ρi)k/q

(ρi ·ρi +d2
i
)1/2

(173)

since

grad





1

(ρi ·ρi+d2
i
)1/2



 = −
ρi

(ρi ·ρi +d2
i
)3/2

. (174)

Thus, being (ρi) j/q = δ jq we infer from (173)

grad





ρi ⊗ρi

(ρi ·ρi+d2
i
)1/2



 = −
ρi ⊗ρi ⊗ρi

(ρi ·ρi +d2
i
)3/2
+

I2D⊗23 ρi

(ρi ·ρi+d2
i
)1/2
+

ρi⊗ I2D

(ρi ·ρi +d2
i
)1/2

(175)

where I2D is the 2D identity tensor and ⊗23 denotes the tensor product obtained by inter-

changing the second and third index of the rank-three tensor I2D⊗ρi.

The integral over Fi of the first addend in the formula above can be transformed into a

boundary integral by exploiting the differential identity (Bowen and Wang, 2006)

∫

Ω

gradSdV =

∫

∂Ω

S⊗ndA (176)

where S is a continuous tensor field.

Thus, integrating over Fi the previous relation and recalling the definition (64) one has

∫

Fi

ρi ⊗ρi ⊗ρi

(ρi ·ρi+d2
i
)3/2

dAi = −
∫

∂Fi

ρi(si)⊗ρi(si)⊗ν(si)

(ρi ·ρi +d2
i
)1/2

dsi + I2D ⊗23ψFi
+ψFi

⊗ I2D (177)

where ν is the unit normal pointing outwards the boundary ∂Fi of the i-th face Fi of the

polyhedron.

Hence the first integral on the right-hand side of (177) becomes

∫

∂Fi

ρi(si)⊗ρi(si)⊗ν(si)

(ρi ·ρi +d2
i
)1/2

dsi =

NEi∑

j=1

l j∫

0

ρi(si)⊗ρi(si)dsi

(ρi ·ρi+d2
i
)1/2

⊗ν j (178)

since ν is constant on each of the NEi
edges belonging to ∂Fi .

Recalling (68) and (73), formula (178) becomes

∫

∂Fi

ρi(si)⊗ρi(si)⊗ν(si)

(ρi ·ρi+d2
i
)1/2

dsi =

NEi∑

j=1

1∫

0

ρ̂i(λ j)⊗ ρ̂i(λ j)dλ j

[

ρ̂i(λ j) · ρ̂i(λ j)+d2
i

]1/2
⊗∆ρ⊥j (179)
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and the integral on the right-hand side can be further transformed by defining

Eρ j ρ j
= ρ j ⊗ρ j Eρ j∆ρ j

= ρ j ⊗∆ρ j +∆ρ j ⊗ρ j E∆ρ j∆ρ j
= ∆ρ j ⊗∆ρ j . (180)

Actually, recalling the parametrization (67) one has

ρ̂i(λ j)⊗ ρ̂i(λ j) = Eρ jρ j
+λ jEρ j∆ρ j

+λ2
j E∆ρ j ∆ρ j

, (181)

1∫

0

ρ̂i(λ j)⊗ ρ̂i(λ j)dλ j

[

ρ̂i(λ j) · ρ̂i(λ j)+d2
i

]1/2
= I0 j Eρ j ρ j

+ I1 j Eρ j∆ρ j
+ I2 j E∆ρ j∆ρ j

(182)

where the explicit expression of the integrals

I0 j =

1∫

0

dλ j

[

ρ̂i(λ j) · ρ̂i(λ j)+d2
i

]1/2
I1 j =

1∫

0

λ jdλ j

[

ρ̂i(λ j) · ρ̂i(λ j)+d2
i

]1/2

I2 j =

1∫

0

λ2
j
dλ j

[

ρ̂i(λ j) · ρ̂i(λ j)+d2
i

]1/2

(183)

is provided in Appendix 2.

In conclusion it turns out be

∫

∂F

ρi(si)⊗ρi(si)⊗ν(si)

(ρi ·ρi +d2
i
)1/2

dsi =

NEi∑

j=1

[

I0 j Eρ j ρ j
+ I1 j Eρ j∆ρ j

+ I2 j E∆ρ j∆ρ j

]

⊗∆ρ⊥j , (184)

so that the integral of interest can be computed as fallows on account of (177)

CFi
=

∫

Fi

ρi ⊗ρi ⊗ρi

(ρi ·ρi+d2
i
)3/2

dAi = −
NEi∑

j=1

[

I0 j Eρ jρ j
+ I1 j Eρ j∆ρ j

+ I2 j E∆ρ j∆ρ j

]

⊗∆ρ⊥j +

+ I2D⊗23ψFi
+ψFi

⊗ I2D

(185)

where the expression of ψFi
as explicit function of the position vectors defining the boundary

of Fi is provided at the end of this Appendix.

Of interest is also the composition of the third-order tensor above with the vector κi

since it appears in the expressions (47), (50) and (49). For this end let us first notice that

[(

I2D⊗23ψFi

)

κi

]

jk
=

(

I2D ⊗23ψFi

)

jkp

(

κi

)

p
= I jp

(

ψFi

)

k

(

κi

)

p
=

= δ jp

(

κi

)

p

(

ψFi

)

k
=

(

κi

)

j

(

ψFi

)

k
=

(

κi ⊗ψFi

)

jk
.

(186)

Hence

CFi
κi =

∫

Fi

(ρi ·κi)(ρi ⊗ρi)

(ρi ·ρi +d2
i
)3/2

dAi = −
NEi∑

j=1

(

κi ·∆ρ⊥j
)(

I0 j Eρ jρ j
+ I1 j Eρ j ∆ρ j

+ I2 j E∆ρ j ∆ρ j

)

+

+κi ⊗ψFi
+ψFi

⊗κi

(187)



Gravity Anomaly of Polyhedral Bodies Having a Polynomial Density Contrast 41

so that the right-hand side fulfills the symmetry of the tensor on the left-hand side of the

previous expression.

To evaluate analytically the second integral in (168) we exploit the identity (172) to get



grad

(

ρi ⊗ρi ⊗ρi

(ρi ·ρi+d2
i
)1/2

)



jkpq

= −




ρi ⊗ρi ⊗ρi ⊗ρi

(ρi ·ρi +d2
i
)3/2





jkpq

+
δ jq(ρi ⊗ρi)kp

(ρi ·ρi +d2
i
)1/2
+

+
δkq(ρi⊗ρi) jp

(ρi ·ρi +d2
i
)1/2
+
δpq(ρi ⊗ρi) jk

(ρi ·ρi+d2
i
)1/2

,

(188)

or equivalently

grad





ρi⊗ρi⊗ρi

(ρi ·ρi +d2
i
)1/2



 = −
ρi ⊗ρi⊗ρi⊗ρi

(ρi ·ρi +d2
i
)3/2
+

I2D⊗24 (ρi⊗ρi)

(ρi ·ρi+d2
i
)1/2
+

+
(ρi ⊗ρi)⊗23 I2D

(ρi ·ρi +d2
i
)1/2

+
(ρi⊗ρi)⊗ I2D

(ρi ·ρi +d2
i
)1/2

(189)

where ⊗24 denotes the tensor product obtained by interchanging the second and fourth index

of the rank-four tensor I2D⊗ (ρi ⊗ρi).

Integrating the previous relation over Fi and applying Gauss theorem yields

DFi
=

∫

Fi

ρi ⊗ρi ⊗ρi⊗ρi

(ρi ·ρi +d2
i
)3/2

dAi = −
∫

∂Fi

ρi(si)⊗ρi(si)⊗ρi(si)⊗ν(si)

(ρi ·ρi+d2
i
)1/2

dsi+

+ I2D ⊗24Ψ Fi
+Ψ Fi

⊗23 I2D +ΨFi
⊗ I2D

(190)

where ΨFi
is analytically evaluated in formula (208) of Appendix 2.

In view of the ensuing developments we further set

�ρ j ρ jρ j
= ρ j ⊗ρ j ⊗ρ j �ρ jρ j ∆ρ j

= ρ j ⊗ρ j ⊗∆ρ j +ρ j ⊗∆ρ j ⊗ρ j +∆ρ j ⊗ρ j ⊗ρ j (191)

�ρ j∆ρ j ∆ρ j
= ρ j ⊗∆ρ j ⊗∆ρ j +∆ρ j ⊗ρ j ⊗∆ρ j +∆ρ j ⊗∆ρ j ⊗ρ j (192)

�∆ρ j∆ρ j ∆ρ j
= ∆ρ j ⊗∆ρ j ⊗∆ρ j (193)

yielding

ρ̂i(λ j)⊗ ρ̂i(λ j)⊗ ρ̂i(λ j) = �ρ jρ j ρ j
+λ j�ρ jρ j ∆ρ j

+λ2
j�ρ j∆ρ j ∆ρ j

+λ3
j�∆ρ j∆ρ j ∆ρ j

. (194)

Accordingly, the integral on the right-hand side in (190) becomes

∫

∂Fi

ρi(si)⊗ρi(si)⊗ρi(si)⊗ν(si)

(ρi ·ρi +d2
i
)1/2

dsi =

NEi∑

j=1

1∫

0






ρ̂i(λ j)⊗ ρ̂i(λ j)⊗ ρ̂i(λ j)dλ j

[

ρ̂i(λ j) · ρ̂i(λ j)+d2
i

]1/2
⊗∆ρ⊥j






=

= −
NEi∑

j=1

[

I0 j�ρ j ρ jρ j
+ I1 j�ρ j ρ j∆ρ j

+

+ I2 j�ρ j ∆ρ j∆ρ j
+ I3 j�∆ρ j∆ρ j ∆ρ j

]

⊗∆ρ⊥j

(195)

where the integrals I0 j, I1 j, I2 j and I3 j are explicitly evaluated in the Appendix 2.
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In conclusion one has

∫

∂Fi

ρi(si)⊗ρi(si)⊗ρi(si)⊗ν(si)

(ρi ·ρi +d2
i
)1/2

dsi =

NEi∑

j=1

[

I0 j�ρ jρ j ρ j
+ I1 j�ρ jρ j∆ρ j

+

+ I2 j�ρ j ∆ρ j∆ρ j
+ I3 j�∆ρ j∆ρ j ∆ρ j

]

⊗∆ρ⊥j +

+ I2D ⊗24ΨFi
+ΨFi

⊗23 I2D+Ψ Fi
⊗ I2D .

(196)

The composition of the previous integral with κi, a quantity that is needed in (175) and (to be

displayed), yields a third-order tensor. The contribution to the jkp component of this tensor

provided by the tensor productΨ Fi
⊗23 I2D is given by

[(

ΨFi
⊗23 I2D

)

κi

]

jkp
=

(

ΨFi
⊗23 I2D

)

jkpq

(

κi

)

q
=

(

ΨFi

)

jp

(

δkq

)(

κi

)

q
=

=
(

ΨFi

)

jp

(

κi

)

k
=

(

ΨFi
⊗23 κi

)

jkp
.

(197)

Analogously

[(

I2D⊗24ΨFi

)

κi

]

jkp
=

(

I2D⊗24ΨFi

)

jkpq

(

κi

)

q
=

(

δ jq

)(

ΨFi

)

pk

(

κi

)

q
=

=
(

κi

)

j

(

ΨFi

)

pk
=

(

κi

)

j

(

ΨFi

)

kp
=

(

κi⊗Ψ Fi

)

jkp

(198)

where the identity
(

ΨFi

)

pk
=

(

Ψ Fi

)

kp
stems from the symmetry of ΨFi

. Accordingly, we

infer from (190) and (196)

DFi
κi =

∫

Fi

ρi ⊗ρi⊗ρi⊗ρidAi

(ρi ·ρi +d2
i
)3/2

κi = −
NEi∑

j=1

(

κi ·∆ρ⊥j
)(

I0 j�ρ j ρ jρ j
+ I1 j�ρ jρ j ∆ρ j

+

+ I2 j�ρ j ∆ρ j ∆ρ j
+ I3 j�∆ρ j∆ρ j ∆ρ j

)

+

+Ψ Fi
⊗κi +ΨFi

⊗23 κi+κi⊗Ψ Fi
.

(199)

The expression (185) for CFi
and (190) for DFi

require the computation of the integral

ΨFi
defined in formula (169); it is evaluated analytically by invoking the differential identity

grad
[

ϕa
]

= a⊗gradϕ+ϕgrada (200)

holding for differentiable scalar (ϕ) and vector (a) fields. Actually, applying the previous

identity as follows

grad
[

(ρi ·ρi +d2
i )1/2ρi

]

=
ρi⊗ρi

(ρi ·ρi +d2
i
)1/2
+ (ρi ·ρi+d2

i )1/2I2D , (201)

integrating over Fi and setting

ιFi
=

∫

Fi

(

ρi ·ρi+d2
i

)1/2
dAi (202)
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one has

Ψ Fi
=

∫

∂Fi

[

ρi(si) ·ρi(si)+d2
i

]1/2
ρi(si)⊗νi(si)dsi − ιFi

I2D . (203)

To compute the domain integral (202), we apply the differential identity

div
[

ϕa
]

= gradϕ ·a+ϕdiva (204)

to the vector field
(

ρi ·ρi+d2
i

)1/2
ρi to get

div
[(

ρi ·ρi +d2
i

)1/2
ρi

]

=
ρi ·ρi

(

ρi ·ρi+d2
i

)1/2
+2

(

ρi ·ρi +d2
i

)1/2
. (205)

Adding and subtracting d2
i to the numerator yields

div
[(

ρi ·ρi +d2
i

)1/2
ρi

]

= 3
(

ρi ·ρi +d2
i

)1/2−
d2

i
(

ρi ·ρi +d2
i

)1/2
, (206)

so that, upon integrating over Fi and applying Gauss theorem, one has

ιFi
=

1

3

∫

∂Fi

[

ρi(si) ·ρi(si)+d2
i

]1/2
ρi(si) ·ν(si)dsi −

d2
i

3
ψFi

, (207)

by recalling definition (62). In conclusion, we infer from (203) and the previous expression

ΨFi
=

∫

∂Fi

[

ρi(si) ·ρi(si)+d2
i

]1/2
ρi(si)⊗ν(si)dsi−

− I2D

3

{∫

∂Fi

[

ρi(si) ·ρi(si)+d2
i

]1/2
ρi(si) ·ν(si)dsi −d2

i ψFi

}

=

NEi∑

j=1

{[
l j∫

0

(

ρi ·ρi +d2
i

)1/2
ρids j

]

⊗ν j−

− I2D

3

[
(

ρ j ·ν j

)

l j∫

0

(

ρi ·ρi+d2
i

)1/2
ds j

]}

+
d2

i

3
ψFi
=

=

NEi∑

j=1

{[ 1∫

0

[

ρ̂i(λ j) · ρ̂i(λ j)+d2
i

]1/2 (

ρ j +λ j∆ρ j

)

dλ j

]

⊗∆ρ⊥j −

− I2D

3

(

ρ j ·ρ⊥j+1

)
1∫

0

[

ρ̂i(λ j) · ρ̂i(λ j)+d2
i

]1/2
dλ j

}

+
d2

i

3

(

ψi −|di|αi

)

=

=

NEi∑

j=1

[
(

I4 jρ j + I5 j∆ρ j

)

⊗∆ρ⊥j −
I2D

3
(ρ j ·ρ⊥j+1)I4 j

]

+
d2

i

3

(

ψi −|di|αi

)

(208)

where ψi is defined in (219).

We have numerically verified that the sum over the NEi
edges of the first addend on the

right-hand side returns a symmetric rank-two tensor as the one the left-hand side.
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8 Appendix 2 - Available expressions of integrals

We hereby collect some known formulas in order to allow the reader to implement the ex-

pression of the gravity anomaly contributed in the main body of the paper.

We first report the algebraic expression of some definite integrals that will be repeat-

edly referred to in the sequel; they have been computed elsewhere D’Urso (2013a, 2014a,b)

though with a different denomination. Making reference to the quantities p j, q j, u j, v j intro-

duced in formula (71), we set

AT N1 j = arctan
|di|(p j+q j)

√

p ju j −q2
j

√

p j +2q j +v j

, (209)

AT N2 j = arctan
|di|q j

√

p ju j −q2
j

√
v j

(210)

where the suffix (·) j has been added to remind that they all refer to the j-th edge of the

generic face Fi.

Of interest are also the following integrals

I0 j =

1∫

0

dλ j

[

p jλ2+2q jλ j +v j

]1/2
= lnk j = ln

p j+q j +
√

p j

√

p j +2q j +v j

q j+
√

p jv j

= LN j , (211)

I1 j =

1∫

0

λ jdλ j

[

p jλ
2+2q jλ j +v j

]1/2
=

1

p j

{√

p j +2q j +v j −
√

v j−
q j√
p j

I0 j

}

, (212)

I2 j =

1∫

0

λ2
j dλ j

[

p jλ2+2q jλ j +v j

]1/2
=

1

2p2
j

[

(p j −3q j)

√

p j +2q j +v j +3q j
√

v j

]

+

+
3q2

j
− p jv j

2p
5/2
j

I0 j ,

(213)

I3 j =

1∫

0

λ3
j
dλ j

[

p jλ2+2q jλ j +v j

]1/2
=

1

6p3
j

[

(2p2
j −5p jq j −4p jv j +15q2

j)

√

p j +2q j +v j+

+ (4p jv j−15q2
j )
√

v j

]

+
3p jq jv j−5q3

j

2p
7/2
j

I0 j ,

(214)

I4 j =

1∫

0

[

p jλ
2+2q jλ j +v j

]1/2
dλ j =

(p j+q j)
√

p j +2q j +v j −q j
√

v j

2p j

+
p jv j −q2

j

2p
3/2
j

I0 j ,

(215)

I5 j =

1∫

0

λ j

[

p jλ
2
+2q jλ j +v j

]1/2
dλ j =

1

6p2
j

[

(2p2
j + p jq j +2p jv j −3q2

j)

√

p j+2q j +v j−

− (2p jv j −3q2
j )
√

v j

]

+
q3

j
− p jq jv j

2p
5/2
j

I0 j ,

(216)
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I6 j =

1∫

0

[

p jλ
2+2q jλ j +v j

]1/2

p jλ
2+2q jλ j +u j

dλ j =
|di|

√

p ju j−q2
j

[

AT N1 j −AT N2 j

]

+
1
√

p j

LN j . (217)

Let us now consider the evaluation of 2D integrals having either (ρi ·ρi + d2
i
)1/2 or (ρi ·

ρi+d2
i
)3/2 in the denominator. The first domain integral to consider is

ψFi
=

∫

Fi

dAi

(ρi ·ρi +d2
i
)1/2
= ψi −|di|αi (218)

where

ψi =

NEi∑

j=1

(

ρ j ·ν j

)

l j∫

0

(ρi ·ρi+d2
i
)1/2

ρi ·ρi

ds j =

NEi∑

j=1

(

ρ j ·ρ⊥j+1

)
1∫

0

(p jλ
2
j +2q jλ j +v j)

1/2

p jλ
2
j
+2q jλ j+u j

dλ j =

=

NEi∑

j=1

(

ρ j ·ρ⊥j+1

)






|di|
√

p ju j −q2
j

[

AT N1 j −AT N2 j

]

+
1
√

p j

LN j






=

NEi∑

j=1

ψi
j

(

ρ j ·ρ⊥j+1

)

.

(219)

The derivation of the previous expression can be found, e.g., in formula (19) of D’Urso

(2013a) and (23) of D’Urso (2014a).

The scalar αi in (218) is the two-dimensional counterpart of the quantity αV in (26)

and accounts for the singularity of ψFi
when di = 0 and ρ = o where o = (0, 0). Thus αi

represents the angular measure, expressed in radians, of the intersection between Fi and

a circular neighbourhood of the singularity point ρ = o, see D’Urso (2013a, 2014a,b) for

additional details. Although its computation is not required in the ensuing developments,

we specify for completeness that αi can be computed by means of the general algorithm

detailed in D’Urso and Russo (2002).

Analogously formulas (19), (77) and (79) of D’Urso (2014b) yield

ψFi
=

∫

Fi

ρidAi

(ρi ·ρi +d2
i
)1/2
=

NEi∑

j=1

ν j

l j∫

0

(ρi ·ρi +d2
i )1/2dsi =

=

NEi∑

j=1

l jν j

1∫

0

[

p jλ
2
j +2q jλ j +v j

]1/2
dλ j =

NEi∑

j=1

I4 j∆ρ
⊥
j

(220)

while formulas (37) and (81) of D’Urso (2014b)

ϕFi
=

∫

Fi

dAi

(ρi ·ρi+d2
i
)3/2
=
αi

|di|
−

NEi∑

j=1





(

ρ j ·ν j

)

l j∫

0

ds j

(ρi ·ρi)(ρi ·ρi +d2
i
)1/2





=

=
αi

|di|
−

NEi∑

j=1

(

ρ j ·ρ⊥j+1

)
1∫

0

λ j

(p jλ
2
j
+2q jλ j +u j)(p jλ

2
j
+2q jλ j +v j)

1/2
=

=
αi

|di|
−

NEi∑

j=1





ρ j ·ρ⊥j+1

|di|
√

p ju j −q2
j

(AT N1 j −AT N2 j)





=
αi

|di|
−

NEi∑

j=1

ϕ j

(

ρ j ·ρ⊥j+1

)

.

(221)
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Furthermore, on account of formulas (38) and (82) of D’Urso (2014b) it turns out to be

ϕFi
=

∫

Fi

ρidAi

(ρi ·ρi +d2
i
)3/2
=−

NEi∑

j=1





ν j

l j∫

0

ds j

(ρi ·ρi +d2
i
)1/2





=

= −
NEi∑

j=1

∆ρ⊥j

1∫

0

dλ j

(p jλ
2
j
+2q jλ j +v j)1/2

= −
NEi∑

j=1

I0 j ∆ρ
⊥
j

(222)

while one infers from formulas (40) and (83) of D’Urso (2014b)

ΦFi
=

∫

Fi

ρi ⊗ρi

(ρi ·ρi +d2
i
)3/2

dAi =

= −
NEi∑

j=1

l j∫

0

ρi

(ρi ·ρi +d2
i
)1/2

dsi ⊗ν j +ψFi
I2D =

= −
NEi∑

j=1

1∫

0

ρ j +λ j∆ρ j

(p jλ
2
j
+2q jλ j +v j)

1/2
dλ j⊗∆ρ⊥j +ψFi

I2D

= −
NEi∑

j=1

[

LN j ρ j ⊗∆ρ⊥j + I1 j ∆ρ j ⊗∆ρ⊥j
]

+ψFi
I2D

(223)

where I2D is the rank-two two-dimensional identity tensor.
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