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Abstract

An analytical model for heating and evaporation of a single component liquid drop is developed. The model

accounts for the temperature dependence of density, diffusivity, thermal conductivity and specific heat of the gas

species. The effect of variable properties on heat and evaporation rates is analysed and a comparison with the

prediction of the classical constant property model is reported for six different species and different operating

conditions. The model allows to evaluate the effect of the choice of the gas mixture averaging parameter (the

relative weight of free stream and drop surface conditions) on the prediction of the constant property model, and

a way to optimise the choice is proposed. The results can be extended to non-spherical drop and examples are

reported.
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Nomenclature

a0,1 coefficients for the mixture thermal conductivity (eq. 16c) -

A drop surface area m2

Aαref non-dimensional parameter (eq. 35) -

B incomplete beta function -

BM mass transfer number -

c molar density kg/kmol

ch coefficient for specific heat power law (eq. 15) JK−1−b/kg

cp,v vapour specific heat at constant pressure J/kgK

d0 coefficient for diffusivity power law (eq. 12) m2K−7/4/s

D10 mass diffusion coefficient m2/s

Ec Eckert number Ec = |U|2

cp,v(T∞−Ts)
-

g0,1; h0,1 constant parameters gp = qp+1
1+b ; hp = 2+qp−m

1+b -

H logarithm of gas molar fraction: H = ln
�
y(0)

�
-

k thermal conductivity W/mK

K0 constant parameter -

LeM modified Lewis number LeM =
kref

cp,v,ref D10,refM
(1)
m cref

-

mev evaporation rate kg/s

Mm molar mass kg/kmol

n
(p)
j mass flux of species (p) kg/m2s

N
(p)
j molar flux of species (p) kmol/m2s

P pressure Pa

q heat flux W/m2

Q heat rate W

r radial distance m

r0,1 coefficient for the conductivity power law, (eq. 13) WK−1−qp/m

R universal gas constant J/kmolK

Rd drop radius m

ScM modified Schmidt number ScM =
µref

D10,ref cref M
(1)
m

-

T temperature K

Uj Stefan flow velocity m/s

y molar fraction -

Y non-dimensional parameter Y = log
�
K0−1

K0−T̂s

�
-

Wg hypergeometric function Wg (z) = 2F1 (g, 1, 1 + g, z) -

z non-dimensional variable -
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Greek symbols

αref averaging parameter -

γ ratio between evaporation rates γ =
mc
ev(αref )
mev

-

θ curvilinear coordinate (eq. 33) -

Λ non-dimensional parameter Λ =
RT∞R

2
d

M
(1)
m D2

10,ref

-

µ viscosity kg/ms

ξ curvilinear coordinate (eq. 33) -

Φ harmonic function -

ρ mass density kg/m3

χ mass fraction -

Subscripts

ev evaporation

max maximum

mix mixture

n orthogonal to drop surface

obl oblate

pl plateau

pro prolate

r radial

ref reference

s drop surface

T total

v vapour

∞ ambient conditions

Superscripts

b exponent for the specific heat power law -

c constant parameter model -

m exponent for the diffusivity power law -

q1,0 exponents for conductivity power laws -

ref at reference conditions -

T total -

ˆ ∼ non-dimensional -
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1 Introduction

The intense study on the vaporisation of liquid droplets in gaseous environments, under way since more than a

century, is motivated by the importance of this process in many industrial applications involving spray combustion,

spray drying, spray cooling, fire suppression, crystallisation, painting, medical aerosol, anti-icing, etc.

Recent general reviews (see [1] and [2]) report about the large amount of research available on the field. The

physical phenomena involved in this process, including phase change coupled with heat and mass transfer, can

be accurately accounted for only using sophisticated numerical tools (see [3] for recent reference), but their use is

limited due to the high computational costs involved. When predicting dispersed flow behaviour, simpler analytical

models of heating and evaporation of liquid droplets are necessary, and the accuracy of the results are limited by

many simplifying hypotheses commonly imposed by these models: drop sphericity, quasi-steadiness, constancy of the

thermophysical properties, ideal gas behaviour, phase equilibrium at the interface, to cite the most common ones.

The first analytical model for drop vaporisation, assuming diffusion controlled evaporation at steady-state condi-

tions dates back to 1877 [4], and the first inclusion of Stefan flow effect can be found in [5]. Since then, a variety of

theoretical models have been developed addressing the different aspects of the phenomena involved. With respect to

the assumed homogeneity of thermophysical properties, it can be noticed that in real applications like, for example,

combustion chambers, the conditions are substantially non-homogeneous and the droplets may reach very different

regions in terms of gaseous temperature and mixture composition. In 1975, Hubbard et al. [6] proposed a model

taking into account the thermal gradients in the liquid and gas phases, with a focus on the effect of non-homogeneous

thermophysical properties on the vaporisation predictions. The majority of the available analytical models of drop

vaporisation (among which the most widely used is [7]) assumes that transport properties are uniform through the

gas phase, then neglecting their dependence on the local temperature and composition. The values of the constant

properties are evaluated by an averaging procedure, and studies available in the open literature have shown that

evaporation rate predictions are quite sensitive to the choice of property values. Miller et al. [8] showed that the heat

and mass fluxes between the droplet and the gaseous mixture strongly depend on the evaluation of the transport

and thermodynamic properties of both the gas and the liquid phases. Sanjosé [9] confirmed that the thermodynamic

and transport properties have a great impact on the evaporation process and that taking into account complex

laws for them is necessary in order to perform accurate evaporation calculations, although that would increase the

computational cost, not always affordable in industrial-type simulations. Hubbard et al. [6] proposed a value of

this averaging parameter (the relative weight of free stream and drop surface conditions) equal to 1/3, which was

found to give reasonable results under high evaporation conditions [7]. Ebrahimian et al. [10] compared the results

obtained with the averaging parameter equal to 1/3 and 1/2 to experimental evaporation data, and showed that

the 1/3 rule performs significantly better at high gas temperature, while at low gas temperature there is hardly any

difference between the two rules. Attempts to relieve the hypothesis of homogeneous gaseous properties in theo-

retical models for drop evaporation appeared in the recent decades. Sirignano et al. [11] developed a generalized

theory for liquid-fuel burning in arbitrary geometrical configuration with non-unitary Lewis number, introducing a
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potential function that governs mass flux in the gas-phase. Sobac et al. [12] investigated the effect of homogeneous

gas temperature assumption on a liquid spherical drop evaporating in stagnant air. The local dependence of the

physicochemical properties on the gas temperature was considered, proposing a numerical solution for the mass and

energy conservation equations under quasi-steady conditions. The authors of the present work partially addressed

this issue, proposing an analytical solution to the energy and species conservation equations, accounting for the

local dependence of the gaseous mixture density on the temperature, for a single spherical drop [13] and for two

interacting spherical drops [14]. The model was then extended, for the case of a single spherical drop, accounting

for the dependence on temperature of both the gas density and the diffusion coefficient [15]. In [16], an analytical

model that accounts for temperature dependence of gas conductivity and diffusivity coefficients was proposed, using

the same power law dependence for both properties. As already pointed out, almost all analytical models available

in the open literature assumes a spherical shape for the evaporating drop. However, experimental observations (see

[17]) show that in dispersed phase scenarios, liquid drops are far from being spherical. A droplet moving in a gas

medium is prone to dynamic stresses on the droplet surface [18]; while the gas dynamic stress forces the droplet to

deform, the surface tension tends to minimise the interface area, which leads to a spherical shape [19]. At a Weber

number much higher than unity, droplet shape deviates from sphericity [20], furthermore time-dependent drop/gas

interaction might induce the droplet shape to oscillate [21], and spheroidal shapes are found to be good approximation

of non-spherical particles [22]. Recently [23] proposed a theoretical and experimental study for the evaporation of an

acoustically levitated oblate liquid droplet. The evaporation rate of the liquid droplet was measured experimentally,

revealing that evaporation of spheroidal droplets follows the well-known d2-law [24]. To take into account the effect

of non-spherical shapes of evaporating drops, a universal scaling law was recently proposed, for sessile drops, by

[25], to correlate the evaporation flux with local drop curvatures. Analytical models of the heat and mass transfer

from spheroidal [26], [27] and triaxial drops [28] were proposed for single component drops, recently extended to

multi-component ellipsoidal drops in [29]. All the above discussed analytical models assume constant properties of

the gaseous phase.

The present work reports a fully analytical solution of the species and energy conservation equations for sin-

gle component drops evaporating in stagnant environment, accounting for the temperature dependence of density,

diffusion coefficient, specific heat and thermal conductivity of the gaseous species and extending the solution to

non-spherical shapes.

The next sections describe the mathematical model, followed by the analysis on the effect of temperature de-

pendence of thermophysical properties on heat and mass transfer, suggesting simple correlation for the averaging

coefficient that could be implemented in CFD codes for dispersed phase applications.

2 Mathematical model

The analytical model reported below describes the heat and mass transfer from a single component evaporating drop

to a quiescent gaseous environment, under quasi-steady conditions. The dependence on the temperature of density,
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thermal conductivity, diffusion coefficient and specific heat capacity of the gaseous species will be taken into account

by assuming simplified dependences (namely, power laws), which will be justified in the next section against available

data. The steady-state energy, momentum and species conservation equations will be written for general shapes of

the evaporating drop, and analytical solutions will be reported.

The species conservation equations, under quasi-steady assumption, are:

∇jN
(p)
j = 0 p = (0, 1) (1)

where

N
(p)
j = N

(T )
j y(p) − cD10∇jy

(p) (2)

are the molar fluxes. The index p = (0, 1) stands for the gas (which can be a mixture of gases) and the evaporating

species, respectively. y(p) is the molar fraction of the species p, N
(T )
j = N

(1)
j +N

(0)
j and c is the molar gas density.

Assuming ideal gas behaviour, the molar gas density is:

c =
PT
RT

(3)

The molar form of the species conservation equations (1, 2) will be used here since it was shown [30] that, for single

component drops, it is equivalent to the more often used mass form [5], [7], and mass fluxes can be obtained from

molar fluxes by n
(p)
j = N

(p)
j Mm(p). The simplification in using the molar form is mainly related to the observation

that the mass density depends also on gas composition; for an ideal binary mixture:

ρ =
PTMm(0)

RT

�
1 +

Mm(1) −Mm(0)

Mm(0)
y(1)

�
(4)

and this yields less simpler form of the analytical solutions when compared to those obtained from the molar approach

(see [30] for more details).

Assuming that the diffusion of the component p = 0 into the liquid drop is neglectful (i.e. pure liquid) and a

stationary liquid-gas interface, the flux of this component is zero everywhere, and the first of equations (2) yields:

NT
j = cD10∇jH (5)

where H = lny(0). Mass conservation equation is obtained summing equations (1):

∇j (ρUj) = 0 (6)

and, since under the mentioned assumptions: ρUj = nTj = n
(1)
j = M

(1)
m NT

j , equations (6) and (5) yield:

∇j

�
M (1)
m cD10∇jH

�
= 0 (7)

To notice that, since equations (1), (2) and (6) are not independent, one of the species conservation equation can

be disregarded.

The heat transfer from the evaporating drop is described by the following simplified form of the energy equation:

cp,vρUj∇jT = ∇j (k∇jT ) (8)
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where inter-diffusional terms are considered as in [31], while dissipation by viscous stress is neglected since the Eckert

number Ec = |U|2

cp,v(T∞−Ts)
is very small for large temperature differences and further minor terms (refer to [32] p.

465, or [33] p. 589, for a more complete form of the equation) are neglected. Thermal conductivity k and specific

heat capacity cp,v are assumed to depend on temperature. Substituting (5) into (8) yields:

cp,vMm(1)cD10∇jH∇jT = ∇j (k∇jT ) (9)

The momentum conservation equation can be written, under the same simplifying hypotheses and assuming

constant shear viscosity and neglectful bulk viscosity, as [13]:

ρUj∇jUk = −∇kPT + µ∇2Uk (10)

2.1 Dependence of gas thermophysical properties on temperature

When analytical solutions of the above reported conservation equations are searched, a typical assumption is that

of constant properties. All the relevant properties of the gaseous species and the mixture are then assumed to

maintain the value calculated at a reference temperature (and composition). It has been often noticed [8], [10] that

the prediction of such models show an important dependence on the reference conditions, which are defined as:

Tref = αrefT∞ + (1− αref )Ts (11a)

χ
(p)
ref = αrefχ

(p)
∞ + (1− αref )χ(p)s (11b)

where αref is the averaging parameter. The correct choice of αref has been matter of debate and it is usually

assumed to be equal to 1/2 or to 1/3 [10].

The novelty of the present analytical approach relies on the fact that analytical solutions of the conservation

equations will be presented accounting for temperature dependence of gas molar density (c), binary mass diffusion

coefficient (D10), mixture thermal conductivity (kmix) and vapour specific heat capacity (cp,v), with the aim of

mitigating this problem. As above stated, the temperature and pressure dependence of molar gas density is that

found for an ideal gas (equation 3). The binary diffusion coefficient D10 is assumed to depend on temperature

following the general rule:

D10 = d0
Tm

PT
(12)

where d0 is a constant. Classical statistical thermodynamics suggests a temperature dependence of the proposed

form where m = 3/2 [34], while m = 7/4 is the value assumed in the widely used Fuller-Schettler-Giddings (FSG)

correlation [35].

The thermal conductivity of a pure gaseous substance p is also approximated by a power law:

k(p) = rpT
qp (13)

and this is consistent with the results of Chapman-Enskog treatment for monoatomic gases at low density [36], where

qp = 1/2. For polyatomic gases the temperature dependence modifies, the Eucken formula [37] can be used, but the

temperature correlation (13) is still usable, with different values of qp (see section 3.1.1).
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The conductivity of the gas vapour mixture (kmix) can be evaluated from the conductivities of the pure substances
�
k(p)

�
by different methods, here the Wassiljewa [38] relation, which is commonly used to predict the thermal con-

ductivity values of gas mixtures for low pressure, was chosen due to the simple linear dependence of the gas mixture

conductivity on the values of the pure species:

kmix =
k(0)y

(0)
ref

y
(0)
ref +A01y

(1)
ref

+
k(1)y

(1)
ref

y
(1)
ref +A10y

(0)
ref

(14)

and the coefficients Ajk are obtained from the Lindsay and Bromley relationship [39], neglecting their temperature

dependence.

The temperature dependence of vapour heat capacity on temperature at low pressure is often described by

polynomials or power series [40]. For the purpose of the following analytical approach the assumed dependence will

be

cp,v = chT
b (15)

where the constants ch and b are found by data fitting. A deeper analysis of the error introduced by this assumption

is reported in the following section.

2.1.1 Accuracy of power law assumption

The temperature dependence of specific heat at constant pressure and thermal conductivity of pure vapours are

approximated by power laws (see equations 15, 14) and the coefficients rj , qj , ch, b were evaluated by fitting available

databases [41], with the exception of the acetone thermal conductivity, where the power law was fitted to the data

calculated using Misic and Thodos method [42].

Low pressure values have been used for this fitting, consistently with the assumed ideal gas behaviour and table

1 reports the values of the coefficients for the species used in the present study. The average difference between the

fitted curve and the data is, for the chosen species, lower than 1.5% for the specific heat values and lower than 3.2%

for the thermal conductivity.

While the assumption of low vapour pressure may be acceptable far from the drop surface, where vapour concentra-

tions are low, some inconsistencies can be expected when using these correlations to approximate the thermophysical

properties close to the surface of the evaporating drops, particularly under high evaporation conditions, since in that

cases the vapour pressure may be relatively high. When evaporating in a quiescent hot environment, a drop heats

up to what is often called the "plateau" temperature, which depends on the species and the gas temperature, and

remains at that temperature for almost the whole drop lifetime (see [2]). To assess the accuracy of the proposed

correlations, the values predicted by equations (14) and (15) using the coefficients of table 1 were compared with data

at vapour pressures equal to the saturation pressure of each species at plateau temperature (Tpl reported in table

2), estimated for spherical drops evaporating in quiescent atmosphere. The results reported in table 2, as percentage

difference with respect to the value at saturation conditions, show that for all the chosen species the discrepancies for

the estimation of the thermal conductivity remain below 2%, with the exception of acetone for which the discrepancy
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reaches a maximum of 5.3% at the highest temperature. The same happens for the discrepancies between the values

of the specific heat for ethanol, n-hexane, n-octane and n-dodecane. For water and acetone, specific heat discrepan-

cies may get close to 5% and 8%, respectively (at high gas temperature). It should be remarked that the maximum

differences may be reached only in a relatively small region close to the drop surface, where vapour concentration is

higher, but they become negligible in all the remaining space.

Table 1.

Coefficients for the evaluation of thermophysical properties (vapour heat capacity, thermal conductivity

and binary diffusion coefficient) for different species.

ch [J Kg−1K−1−s] b
�
W m−1K−1−p1

�
rp [WK−1−qp/m] qp [−] d0 [m2s−1K−1.75]

Species eq. (15) eq. (15) eq. (13) eq. (13) eq. (12)

water 822.34 0.14135 6.96× 10−6 1.3767 1.20× 10−9

acetone 29.024 0.66874 1.36× 10−6 1.5965 5.13× 10−10

ethanol 57.325 0.58516 1.04× 10−6 1.6963 6.03× 10−10

n-hexane 24.504 0.74308 5.46× 10−7 1.7765 3.59× 10−10

n-octane 24.96 0.73904 2.71× 10−7 1.869 3.07× 10−10

n-dodecane 25.756 0.73309 1.74× 10−7 1.9047 2.48× 10−10

air − − 2.99× 10−4 0.7871 −

Table 2

Liquid plateau temperature, Tpl, as function of gas temperature for different species and corresponding percentage

difference of vapour heat capacity, ∆cp,vap%, and thermal conductivity, ∆k(1)%, predicted by equations (15)

and (14) with respect to the value at saturation conditions.

T∞ = 500K T∞ = 1000K

species Tpl ∆cp,vap% ∆k(1)% Tpl ∆cp,vap% ∆k(1)%

water 317.1 −2.98 −0.85 339.5 −4.82 −1.99

acetone 291.8 −4.62 −2.79 308.5 −7.77 −5.32

ethanol 311.4 −0.11 −0.17 329.0 −0.79 −0.43

n-hexane 305.4 −1.06 −0.36 322.0 −1.74 −0.67

n-octane 351.4 −0.87 −0.54 372.7 −1.40 −0.96

n-dodecane 418.7 −0.46 −0.84 452.5 −0.92 −1.92
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2.2 Boundary conditions

The conservation equations (7), (9) and (10) are rather general and independent of shape and position of the

evaporating surfaces, which are described by proper forms of the boundary conditions.

The temperature boundary condition at infinite distance from the drop is assumed uniform and equal to the

constant value T∞ while on the drop surface it is assumed uniform and equal to Ts. The species boundary conditions

are defined by the value of the molar fraction at infinity (y
(p)
∞ ) which may be chosen arbitrarily, and that on the

surface, which is defined by the surface temperature since equilibrium conditions are assumed.

2.3 Non-dimensional form of the conservation equations

The conservation equations, the boundary conditions and the temperature dependence of the thermophysical prop-

erties can be conveniently non-dimensionalised. A general reference temperature Tref will be used here to evaluate

the main nondimensional constants but it will be shown that such a choice does not influence the prediction of the

model. The following non-dimensional quantities will be used: the non-dimensional temperature (T̂ = T
T∞

), velocity

(Ũ = U Rd
D10

) and pressure ( P̃T = PT
cref R̄T∞

), the modified Schmidt number (ScM =
µref

D10,ref cref M
(1)
m

) and modified

Lewis number (LeM = kref

cp,v,ref D10,refM
(1)
m cref

) and the parameter Λ = R̄T∞R
2
d

M
(1)
m D2

10,ref

, where Rd is the equivalent drop

radius, i.e. the radius of a spherical drop having the same volume of the actual drop. In this paragraph, the non-

dimensional "nabla" operator is defined as ∇̂j = Rd∇j . The reference temperature Tref is assumed to evaluate the

constants in equations (12),(13) and (15), yielding the following relationships:

D10 = DrefT
−m
ref T

m = Dref T̂
−m
ref T̂

m (16a)

c = crefTrefT
−1 = cref T̂ref T̂

−1 (16b)

kmix = kref
a0T̂ q0 + a1T̂ q1

a0T̂
q0
ref + a1T̂

q1
ref

(16c)

cp,v = cp,v,refT
−b
refT

b = cp,v,ref T̂
−b
ref T̂

b (16d)

It is worth to stress again that the choice of Tref is completely arbitrary, then the averaging parameter αref , used

to evaluate the reference conditions, does not influence the values of these properties. But the mixture conductivity

is influenced also by composition, and this dependence is accounted for by using the reference composition (equation

11b). Then the choice of the averaging parameter αref is expected to slightly influence the predictions of the model,

and this will be shown in a following section.

The energy equation (9) becomes:

�
T̂m−1+b∇jĤ

�
∇̂jT = ∇̂j

	�
a0T̂

q0 + a1T̂
q1
�
∇̂jT



(17)

where Ĥ = H
(a0T̂q0ref+a1T̂

q1
ref)T̂

1−m−b
ref

LeM , while equation (7) becomes:

∇̂j

�
T̂m−1j ∇̂jĤ

�
= 0 (18)
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The momentum conservation equation (10) can also be written in non-dimensional form as:

∇̂kP̃T =
1

Λ

	
ScM∇̂

2
Ũk − P̃T T̃

−1∇̂jH∇̂jŨk



(19)

and it has been shown, [13] and [43], that the non-dimensional parameter Λ becomes quite large for a large variety

of conditions of interest for applications. This observation justifies the use of an asymptotic form (for Λ →∞), that

in the present case yields: ∇̂kP̃T = 0 and then P̃T = const. The constancy of PT allows to disregard the dependence

of the thermophysical properties on the pressure, although, when calculations are performed, the correct values of

the constants in equations (12),(13) and (15) at the given pressure can be used.

2.4 Analytic solution of the conservation equations

The analytic solution of the non-linear partial differential equation (PDE) system (17) and (18) can be found

introducing an auxiliary harmonic function Φ (i.e. ∇2Φ = 0) equal to 1 over the drop surface and zero at infinity.

This approach was introduced by Laboswky [44] and later used by many authors to solve similar problems [45], [11].

The details of the solution procedure can be found in the Appendix, where it is shown that defining:

Wg (x) = 2F1 (g, 1, 1 + g, x) (20)

where 2F1 (a, b, c, x) is the hypergeometric function (see [46] for the properties) the function Ĥ and T̂ can be written

in implicit form as (see equations A.6 and A.8):

Ĥ = −
1

K0

�
a0T̂

q0−m+2

h0
Wh0

�
T̂ 1+b

K0



+
a1T̂

q1−m+2

h1
Wh1

�
T̂ 1+b

K0

�

+ Ĥ0 (21a)

Φ = Φ1



a0
T̂ q0+1 Wg0

�
T̂1+b

K0

�

K0 (q0 + 1)
+ a1

T̂ q1+1 Wg1

�
T̂1+b

K0

�

K0 (q1 + 1)



+ Φ0 (21b)

The constant K0 appearing in these equations can be calculated by solving the trascendental equation:

Ĥ∞ − Ĥs = a0X0 + a1X1 (22)

obtained by taking the difference of equations (A.7a) and (A.7b), and defining:

Xj =
T̂ q0−m+2s

K0hj
Whj

�
T̂ 1+bs

K0



−
1

K0hj
Whj

�
1

K0

�
(23)

Once K0 is known, the other constants Ĥ0, Φ0, Φ1 can be found solving the linear system (A.7a, A.7b, A.9a,

A.9b), satisfying all the boundary conditions.

2.5 Heat and evaporation rates

The vapour mass flux component normal to the drop surface can be evaluated from equations (2), (21a) and (A.13)

as:

n(1)s,n = M (1)
m cD10∇nH = −

kref T̂
s
ref (1 + b)

cp,v,ref
�
a0T̂

q0
ref + a1T̂

q1
ref

�
Φ1
∇nΦ (24)
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while the heat flux normal to the drop surface is:

qs,n = −kmix (Ts)∇nT = −T∞
kref

�
K0 − T̂ 1+bs

�

Φ1
�
a0T̂

q0
ref + a1T̂

q1
ref

�∇nΦ (25)

where equation (A.12b) was used.

It is interesting to notice that the effect of drop geometry on heat and mass fluxes is given by the gradient ∇nΦ,

which is independent of the thermophysical properties, while the effect of the properties and operating conditions is

contained into the multipliers of ∇nΦ in equations (24) and (25), and they do not depend on the geometry of the

problem.

The evaporation rate and the heat rate can be calculated by integrating the local fluxes over the drop surface:

mev =

�

A

n(1)s,ndA = −
kref T̂

s
ref (1 + b)

cp,v,ref
�
a0T̂

q0
ref + a1T̂

q1
ref

�
Φ1

�

A

∇nΦdA (26a)

Q =

�

A

qs,ndA = −T∞
kref

�
K0 − T̂ 1+bs

�

Φ1
�
a0T̂

q0
ref + a1T̂

q1
ref

�
�

A

∇nΦdA (26b)

It is worth to notice that the results obtained in this section can be used to model heating and evaporation for

any drop shapes as far as the function Φ is known. Example for non-spherical drops will be reported in the following

section.

3 Results and discussion

Previous attempts to relieve the condition of constant properties can be seen as a special case of the present model,

since each of them can be obtained by a proper choice of the coefficientsm, b, qj . The constant properties model can be

obtained by setting [m, b, q0, q1] = [1, 0, 0, 0] although in this case the version with constant molar density (instead of

constant mass density) is obtained, see [30] for a discussion about the two versions. Choosing [m, b, q0, q1] = [0, 0, 0, 0]

the variable density model, proposed in [13] and [30] for spherical drops and in [14] for pair of drops, is obtained. In

this case, since gp = 1 and hp = 2, the functions Wg become (see [46]):

W1 (z) = 2F1 (1, 1, 2, z) = −
1

z
log (1− z) (27a)

W2 (z) = 2F1 (2, 1, 3, z) = −
2 (z + log (1− z))

z2
(27b)

Equation (21b) and the boundary conditions (A.7b, A.7a) yield the following explicit form of the temperature

field:

T̂ = K0 − e−ΦY (K0 − 1) (28)

where Y = log
�
K0−1

K0−T̂s

�
. For the case of a spherical boundary, the harmonic function Φ is:

Φ =
R0
r

(29)
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and then �

A

∇nΦdA = −4πR0 (30)

Equation (26a) yields the evaporation rate:

mev = 4πR0
kref
cp,v,ref

Y (31)

and equation (28) is then equivalent, for the spherical case (K0 = T̂s−e
−Y

1−e−Y ), to equation (8) in [13] and equation (4) in

[15], while in [30] the same equation (equation 9) is reported with the coefficient of the exponential term erroneously

exchanged with the constant term. The actual value of the constant K0 can be calculated from equations (A.13)

that, using (27b), reduces to:

ln

�
1− yv,∞
1− yv,s

�
T̂ref
LeM

=

�
1− T̂s +K0 log

�
K0 − 1

K0 − T̂s

��
(32)

which is equivalent to equations (18,19) in [30].

For pair of drops the function Φ assumes a more complex form, (see for example [44] or equation (22) in [14]),

but the same procedure above reported can be used to re-obtain all the results.

Choosingm �= 0 and [b, q0, q1] = [0, 0, 0] the model proposed in [15] for spherical drops is obtained, where both gas

density and diffusion coefficient were assumed to depend on temperature. The two cases considered there, namely

m = 3
2 as suggested by classical statistical physics [34] and m = 1.75 given by the widely used FSG correlation [35],

can then be obtained following a procedure similar to that above shown.

Extension of these results to non-spherical drops is now straightforward. For example, considering spheroidal

drops, the surface can be defined in spheroidal coordinates (see [27] for more details):

x = a sinh (ξ) sin (θ) cosϕ x = a cosh (ξ) sin (θ) cosϕ

y = a sinh (ξ) sin (θ) sinϕ y = a cosh (ξ) sin (θ) sinϕ

z = a cosh (ξ) cos (θ) z = a sinh (ξ) cos (θ)

(33)

Prolate Oblate

as ξ = ξ0 where ξ0 is a constant. The corresponding form of the harmonic function Φ in such coordinates is given

by (see also [47]):

Φpro =
ln
�
eξ−1

eξ+1

�

ln
�
eξ0−1

eξ0+1

� Φobl = 2 arctan(sinh ξ)−π
2 arctan(sinh ξ0)−π

(34)

Prolate Oblate

For the case of constant properties, an explicit form for the temperature and vapour molar fraction fields can be

obtained from equations (21b) and (A.6), following the same procedure as for the spherical case. For example, the

temperature field is again given by equation (28), which is exactly the results reported in [27], page 239. For the

variable properties case the explicit form for temperature and vapour fields may not exist, since it depend on the

reversibility of the functions Wg (z), however the heat and evaporation fluxes can still be explicitly calculated from

equations (25) and (24), and the heat and the evaporation rates from equations (26b) and (26a).

13



4 Effect of reference conditions

This section reports the analysis of the effect of reference conditions on the evaporation characteristics, as predicted

by the analytical model described in the previous paragraph and by the "classical" model, which imposes constant

physical properties at reference mixture temperature and vapour mass fraction using the averaging parameter αref

(see equation 11b). In the present investigation the gaseous mixture is assumed to be an ideal mixture of air and the

evaporating species. According to the literature, the drop vaporisation rate is "extremely sensitive to the method

used for the evaluation of the physical properties" [7]. As an example of such sensitivity, Figure 1 reports the ratio

between the evaporation rate calculated by the constant property model using αref = 1/3 (as proposed in [48])
and the corresponding evaporation rate using the "classical" value αref = 1/2. The ratio is reported as function

of the drop temperature and two gas temperatures at free stream conditions, equal to 500 K and 1000 K, for water

and n-dodecane drops. The results show that, for water drops (Figure 1a), the evaporation rate predicted using

αref = 1/3 is about 7% and 15% lower than the one predicted using αref = 1/2 at gas temperature equal to 500

K and 1000 K, respectively. The differences are even more evident for n-dodecane drops, particularly at high liquid

temperature, where the evaporation rate predicted using αref equal to 1/3 is about 25% and 15% higher than the

one predicted using αref equal to 1/2 at gas temperature equal to 500 K and 1000 K, respectively. Interestingly,

the results for n-dodecane (Figure 1b) evidence that at liquid temperature around 390 K (T∞ = 500K) and 430

K (T∞ = 1000K) the ratio approaches 1, suggesting that under these conditions the evaporation rate may become

independent on the choice of the averaging parameter. These results reflect the behaviour of the averaging parameter

αref as function of the temperature for the two selected species, which varies from 1/2 down to about 1/3 for water

increasing the temperature from 280 K up to the boiling temperature, while for n-dodecane αref spans within a larger

interval from 1/2 down to about 0.15 as the temperature varies from 280 K up to the species boiling value.

Figure 1. Effect of averaging parameter αref on the evaporation rate ratio predicted by the constant property

model, as function of drop temperature at two gas temperatures, for (a) water and (b) n-dodecane drop.
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A substantial different behaviour is obtained with the present model, which solves the species and energy con-

servation equations accounting for the explicit dependence on temperature of density, diffusivity, conductivity and

specific heat of the gas species, while the mixture composition is taken into account when calculating the gas mixture

thermal conductivity by imposing a reference composition with a constant valued of the averaging parameter αref .

The effect of changing this constant value for the averaging parameter αref in the predictions from the present

model is shown in figure 2, which reports, as above, the ratio between the evaporation rate using αref = 1/3 and

the evaporation rate using αref = 1/2. The results are again reported as function of the drop temperature and for

two gas temperatures at free stream conditions (namely 500 K and 1000 K) for water and n-dodecane drops. As

expected, the dependence on αref is weak; almost negligible at lower drop temperature, it slightly increases reaching

the maximum value when the drop approaches the boiling condition, but the differences remain below 2% for water

(Figure 2a) and 4.5% for n-dodecane (Figure 2b) for gas temperature equal to 500 K. This effect is even reduced

for higher gas temperature. A similar trend can be detected for other selected species vaporising in air (not shown

here), with the largest effect detected for acetone and n-octane drops for drop temperature close to boiling and gas

temperature equal to 500 K (discrepancies about 6%, which is of the same order of the results shown here).

Figure 2. Effect of averaging parameter αref on the evaporation rate ratio predicted by the present variable property

model, as function of drop temperature at two gas temperatures, for (a) water and (b) n-dodecane drop.

This analysis shows that the present model is, as expected, weakly dependent on the effect of reference conditions

and for the following study the value of 1/2 has been chosen. A similar investigation was performed considering

the heat rate (see equation 26b) instead of the evaporation rate, and the results (not reported here) show the same

findings.

The effect of the averaging parameter αref on the prediction of the evaporation rate from the classical constant

property model is further investigated. The ratio γ between the evaporation rate predicted by the constant property

model (mc
ev (αref )), using a selected αref , and the evaporation rate predicted by the present model (mev), which
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is almost independent on the choice of αref (see above), i.e. γ =
mc
ev(αref )
mev

, is evaluated as a function of drop

temperature and for two values of gas temperature (500 K and 1000 K). It is worth to stress again that this ratio

(see equation 26a) is independent of the drop shape, which is accounted for only by the function Φ.

Figure 3a,b reports the profiles of γ as function of the drop temperature, with six values of the averaging parameter,

between 0.1 and 0.6, for water drops evaporating in air at 500 K (figure 3a) and 1000 K (figure 3b). The results

show that, for drop temperature lower than 340K (T∞ = 500K) and 304K (T∞ = 1000K), the value of γ approaches

1 when αref is around 1/2 (the difference is lower then 1%), while at larger drop temperatures γ becomes closer to

one for lower values of αref : for drop temperature close to the boiling point the value αref = 0.4 is giving the best

agreement.

However, these findings cannot be extended to other species. Figure 3c,d reports an analysis for n-dodecane drops

similar to the previous one. Again, there is a drop temperature interval where the constant property model (with

αref = 1/2) predicts results close to those given by the new model (with discrepancies lower than 1%): Ts < 390K

for T∞ =500K and Ts < 415K for T∞ = 1000K. However, the figure shows that, when the drop temperature is

around 390 K (T∞ = 500K) and 430 K (T∞ = 1000K), none of the selected values for αref allow to reach γ = 1,

i.e. the two models cannot yield the same prediction, whatever the averaging parameter is, but the same value of

γ (0.997 at T∞ = 500K and 0.97 at T∞ = 1000K) is obtained, almost independently of αref . A similar behaviour

can be detected with other selected species (acetone, ethanol, n-hexane, n-octane), although the interval of drop

temperatures corresponding to the cases where no value of αref predicts γ to be equal to 1 varies according to the
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gas temperature and the species.

Figure 3. Evaporation rate ratio γ as function of liquid temperature, for different averaging parameter αref

in the constant gas density model, for water drops at (a) 500 K and (b) 1000 K gas temperature and for

n-dodecane drops at (c) 500 K and (d) 1000 K gas temperature.

4.1 Optimal value of the averaging coefficient

The analysis reported in the previous section hints the following consideration: assuming that the model accounting

for the full dependence on temperature of the thermophysiscal properties yields a more reliable prediction, the

constant properties model can yield similar prediction if a proper averaging parameter is chosen for each evaporating

condition. In other words, there may exist an optimal value of the averaging parameter, for each evaporating

condition, that allows consistent predictions by the constant parameter model, which is undoubtedly simpler to

use than the one proposed here. Evaporating conditions are summarised by the Spalding mass transfer number

BM =
χ(1)s −χ(1)

∞

1−χ
(1)
s

, then a function αref (BM), which can be used to calculate the thermophysical properties in the

constant properties model, may exist to minimise the difference between the prediction of the two models.

A similar approach was already proposed in [30], when comparing the variable density model with the classical

one, and the following similar expression for αref (BM):
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αref =
Aαref

log (1 +BM)
+

1

1− (1 +BM)
1

Aαref

(35)

will be used here. The coefficient Aαref may depend on the drop species and the gas temperature, and it will be

calculated minimising the overall discrepancies between the two models, i.e. by finding Aαref that minimises the

following integral:

� BM,max

0

��γ
�
BM , Aαref

�
− 1
��2 dBM (36)

Figure 4(a,b) reports the value of the evaporation ratio γ as a function of the Spalding mass transfer number

BM for three cases: αref = 1/2, αref = 1/3 and αref given by equation (35), for water drop vaporising in air at

500 K and 1000 K. The results confirm that at low/moderate evaporating conditions the use of αref = 1/2 in the

constant properties model yields good agreement with the model accounting for temperature dependence of the gas

properties, while the use of αref = 1/3 should be preferred for high evaporation conditions. However, increasing the

gas temperature from 500K to 1000K increases the discrepancies that can be as large as 20%. The use of αref given

by equation (35) (see again Figure 4a,b) with Aαref = 0.752, as reported in Table 1, yields a much better agreement

over all the range of evaporating conditions, with a maximum discrepancy of about 3%.

Figure 4(c,d) shows the corresponding graphs for n-dodecane. The use of a constant averaging parameter αref =

1/2 leads to discrepancies of the order of 50% at 500 K and 1000 K, and similarly for the use of αref = 1/3, which

yields differences of the order of 35%. Again, when αref is calculated from the equation (35), using Aαref equal to

0.545 and 0.54 for gas temperature equal to 500 K and 1000 K, respectively, the maximum difference between the
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two models is about 4%.

Figure 4. Evaporation rate ratio γ as function of the Spalding mass transfer number, calculated using αref

from equation (35) (solid line), αref equal to 1/2 (dashed line) and αref equal to 1/3 (dotted line),

water drop in air at (a) 500K and (b) 1000 K, and for n-dodecane drop in air at (c) 500 K and (d) 1000 K.

The bottom graphs report equation (35).

The same analysis was repeated for some selected species (acetone, ethanol, n-hexane, n-octane) and the values of

the constant Aαref found by the above described minimisation procedure are reported in table 3 for all the selected

species and the two gas temperatures.
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Table 3.

Values of the averaging constant Aαref (eq.35), for the six species and two operating conditions.

species T∞ = 500K T∞ = 1000K

water 0.752 0.752

acetone 0.753 1.24

ethanol 0.85 0.68

n-hexane 0.66 0.75

n-octane 0.6 0.65

n-dodecane 0.545 0.54

In these cases the maximum differences obtained using the variable average coefficient can be appreciated in figure

5. For all the selected species, the maximum discrepancy is lower than 4%.

Figure 5. Evaporation rate ratio γ, as function of the Spalding mass transfer number, calculated using αref

from equation (35), for different drop species evaporating in air at (a) 500 K and (b) 1000 K.

The extension of the reported model to convective conditions can be done by applying the film theory approach

[2]. A diffusional region (film) is defined around the evaporating surface and a matching between the diffusional

solution in the film with the free flow conditions is obtained by imposing the conditions on the region boundaries

instead that at infinity. Although this extension is not reported here, preliminary analysis suggests that the ratio

between the evaporation rates evaluated by the present model and by the constant properties model is only weakly

affected and the results above reported may be extendable to convective conditions.
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5 Conclusions

The developed model, capable to account for the temperature dependence of density, diffusivity, specific heat and

thermal conductivity of the gas species, allows an analytical definition of the gas temperature and vapour distribution,

in implicit form, and the direct evaluation of evaporation and heat rates as well as local fluxes in case of deformed

drops.

The results can be extended, in analytic form, to any drop shape for which an analytical solution of the Laplace

equation with uniform Dirichlet boundary conditions is available, and an example for the case of spheroidal drops is

shown.

The present model is virtually independent of reference temperature and the comparison with the predictions of

the classical constant property model evidences, as already pointed out by other researchers, the important effect of

the reference temperature on the latter.

An analysis performed using the developed model on different evaporating species (water, ethanol, acetone, n-

hexane, n-octane, n-dodecane) shows that a proper choice of the reference temperature as a function of the operating

conditions may greatly improve the predictions of the classical model, and a way to evaluate an optimal value for

the averaging parameter is reported.

A Appendix

The solution of the non-linear PDE system set by equations (21a, 21b) with uniform boundary conditions at infinity

and on the drop surface can be found by introducing an auxiliary harmonic function Φ (i.e. ∇2Φ = 0), zero at

infinity and equal to 1 on the drop surface. This function depends only on the geometry of the drop surface while it

is independent of the thermophysical properties and operating conditions.

To simplify the notation, define:

Wg (z) = 2F1 (g, 1, 1 + g, z) (A.1)

where 2F1 (a, b, c, z) is the hypergeometric function [46]. The function Wg is the solution to the hypergeometric

differential equation:

z (1− z)W ′′
g + [1 + g − (g + 2) z]W ′

g − gWg = 0 (A.2)

and satisfies the identity:

zW ′
g + gWg =

g

1− z
(A.3)

In fact, setting A (z) = zW ′
g + gWg, equation (A.2) can be written as:

(1− z)A′ (z) = A (z) (A.4)

and the general solution is:

A (z) =
C

1− z
(A.5)
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From the properties of the hypergeometric function Wg (0) = 1, then A (0) = g, yielding C = g and (A.3) is proven.

The function Ĥ is explicitly defined as a function of temperature as:

Ĥ = −
1

K0

�
a0T̂ q0−m+2

h0
Wh0

�
T̂ 1+b

K0



+
a1T̂ q1−m+2

h1
Wh1

�
T̂ 1+b

K0

�

+ Ĥ0 (A.6)

where hp =
2+qp−m
1+b , while K0 and Ĥ0 are defined by the boundary conditions on the surface (T̂ = T̂s and Ĥ = Ĥs)

and at infinity (T̂ = 1 and Ĥ = Ĥ∞):

Ĥ∞ = −
1

K0

�
a0
h0

Wh0

�
1

K0

�
+
a1
h1

Wh1

�
1

K0

��
+ Ĥ0 (A.7a)

Ĥs = −
1

K0

�
a0T̂

q0−m+2
s

h0
Wh0

�
T̂ 1+bs

K0



+
a1T̂

q1−m+2
s

h1
Wh1

�
T̂ 1+bs

K0

�

+ Ĥ0 (A.7b)

The function T̂ is implicitly defined by the relationship with Φ as:

Φ = Φ1



a0
T̂ q0+1 Wg0

�
T̂1+b

K0

�

K0 (q0 + 1)
+ a1

T̂ q1+1 Wg1

�
T̂1+b

K0

�

K0 (qp1 + 1)



+ Φ0 (A.8)

where gp = 1+qp
1+b , while Φ1 and Φ0 are defined by the boundary conditions on the surface (T̂ = T̂s and Φ = 1) and

at infinity (T̂ = 1 and Φ = 0):

1 = Φ1



a0
T̂ q0+1s Wg0

�
T̂1+bs

K0

�

K0 (q0 + 1)
+ a1

T̂ q1+1s Wg1

�
T̂1+bs

K0

�

K0 (q1 + 1)



+ Φ0 (A.9a)

0 = Φ1



a0
Wg0

�
1
K0

�

K0 (q0 + 1)
+ a1

Wg1

�
1
K0

�

K0 (q1 + 1)



+ Φ0 (A.9b)

To notice that only the evaluation of K0 needs the solution of a non-linear trascendental equation, obtained form

(A.7a) and (A.7b) after eliminating Ĥ0, while the other constants (Ĥ0, Φ1, Φ0) are found by solving linear algebraic

equations. That the functions Ĥ and T̂ are solutions of the non-linear PDE system (21a) and (21b) is proven as

follows. First calculate the gradients:

∇jĤ = −

�

a0∇j

�
T̂ q0−m+2

K0h0
Wh0

�
T̂ 1+b

K0

�

+ a1∇j

�
T̂ q1−m+2

K0h1
Wh1

�
T̂ 1+b

K0

��

(A.10a)

∇jΦ = Φ1



a0∇j




T̂ q0+1 Wg0

�
T̂1+b

K0

�

K0 (q0 + 1)



+ a1∇j




T̂ q1+1 Wg1

�
T̂1+b

K0

�

K0 (q1 + 1)







 (A.10b)

Using the identity (A.3):

∇j

�
T̂ q0−m+2

K0h0
Wh0

�
T̂ 1+b

K0

�

=
T̂ q0−m+1 (b+ 1)

K0h0

�

h0Wh0

�
T̂ 1+b

K0



+
T̂ 1+b

K0
W ′
h0

�
T̂ 1+b

K0

�

∇jT̂ =(A.11a)

=
T̂ q0−m+1 (1 + b)

K0 − T̂ 1+b
∇jT̂

∇j




T̂ q0+1 Wg0

�
T̂1+b

K0

�

K0 (q0 + 1)



 =
T̂ q0 (b+ 1)

K0 (q0 + 1)

�

g0 Wg0

�
T̂ 1+b

K0



+
T̂ 1+b

K0
W ′
g0

�
T̂ 1+b

K0

�

∇jT̂ = (A.11b)

=
T̂ qp0

K0 − T̂ 1+b
∇jT̂
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then:

∇jĤ = −
	
a0T̂

q0 + a1T̂
q1

 T̂ 1−m (1 + b)∇jT̂

K0 − T̂ 1+b
(A.12a)

∇jΦ = Φ1

	
a0T̂

q0 + a1T̂
q1

 ∇jT̂

K0 − T̂ 1+b
(A.12b)

and consequently:

T̂m−1∇jĤ = −
(1 + b)

Φ1
∇jΦ (A.13)

which shows that equation (21a) ∇j
�
T̂m−1∇jĤ

�
= 0 is satisfied since ∇2Φ = 0. Using equation (A.13), the LHS

of equation (21b) can be written as:

�
T̂m−1+b∇jĤ

�
∇jT = −T̂ b

(1 + b)

Φ1
∇jΦ∇jT (A.14)

whereas using equation (A.12a) the RHS becomes:

∇j

	�
a0T̂

q0 + a1T̂
q1
�
∇jT



=

1

Φ1
∇j

	�
K0 − T̂ 1+b

�
∇jΦ



= −T̂ b

(1 + b)

Φ1
∇jT̂∇jΦ (A.15)

proving that also equation (21b) is satisfied.

A.1 Some computational issues

The functionsWg

�
z
K0

�
= 2F1

�
g, 1, 1 + g, z

K0

�
are real forK0 < z (z is always positive), the limit: lim

K0→z−
Wg

�
z
K0

�
is

infinite and the function becomes complex when K0 > z. Since the value ofK0 is given by the equations (A.7b, A.7a),

the assumption that K0 must be real implies that K0 < T̂ 1+bs . The constant K0 is found by solving the trascendent

equation (22) that contains the functions: Whp

�
T̂ 1+b

K0

�
,Whp

�
1
K0

�
,and when K0 > 0, since 1

K0
> T̂1+bs

K0
> 1, the

functions become complex valued. For such conditions it was found convenient to use equation 15.8.2 of [46] to

transform the functions as:

Wh

�
z

K0

�
= F

�
h, 1, 1 + h,

z

K0

�
=






Γ (1− h) Γ (1 + h)
�
− z
K0

�−h
F (h, 0, h,K0/z)

+Γ(1−h)h
Γ(2−h)

�
z
K0

�−1
F (1− h, 1, 2− h,K0/z)





(A.16)

so that the hypergeometric functions that appear in the calculations are real valued. It is worth to notice that

function Wh can be written also in term of the incomplete Beta function [46]:

Wh (z) = 2F1 (h, 1, 1 + h, z) = z−hB (z, h, 0)h (A.17)

which can be used to write equations (21a, 21b) in simpler form. The incomplete Beta function admits the following

integral form:

B (z, h, 0) =

� z

0

th−1

1− t
dt (A.18)

which can be used to show, in a relatively straightforward way, that the solutions (21a, 21b) are finite when K0 → 0.
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B List of Figures

Figure 1: Effect of averaging parameter αref on the evaporation rate ratio predicted by the constant property model,

as function of drop temperature at two gas temperatures, for (a) water and (b) n-dodecane drop.

Figure 2: Effect of averaging parameter αref on the evaporation rate ratio predicted by the present variable

property model, as function of drop temperature at two gas temperatures, for (a) water and (b) n-dodecane drop.

Figure 3: Evaporation rate ratio γ as function of liquid temperature, for different averaging parameter αref in

the constant gas density model, for water drops at (a) 500 K and (b) 1000 K gas temperature and for n-dodecane

drops at (c) 500 K and (d) 1000 K gas temperature.

Figure 4: Evaporation rate ratio γ, as function of the Spalding mass transfer number, calculated using αref from

equation (35) (solid line), αref=1/2 (dashed line) and αref=1/3 (dotted line), for water drop in air at (a) 500 K and

(b) 1000 K, and for n-dodecane drop in air at (c) 500 K and (d) 1000 K. The bottom graphs report equation (35).

Figure 5: Evaporation rate ratio γ, as function of the Spalding mass transfer number, calculated using αref from

equation (35), for different drop species evaporating in air at (a) 500 K and (b) 1000 K.
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