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Abstract

This paper presents a novel nonparametric approach to the identification of nonlinear dynamical systems. The proposed
methodology exploits the potential of manifold learning on an artificially augmented dataset, obtained without running
new experiments on the plant. The additional data are employed for approximating the manifold where input regressors
lie. The knowledge of the manifold acts as a prior information on the system, that induces a proper regularization
term on the identification cost. The new regularization term, as opposite to the standard Tikhonov one, enforces local
smoothness of the function along the manifold. A graph-based algorithm tailored to dynamical systems is proposed to
generate the augmented dataset. The hyperparameters of the method, along with the order of the system, are estimated
from the available data. Numerical results on a benchmark Nonlinear Finite Impulse Response (NFIR) system show
that the proposed approach may outperform the state of the art nonparametric methods.

Keywords: System Identification; Semi-Supervised Learning.

1. Introduction

In the last decade, kernel methods [21] have shown their
potential when used to learn dynamical systems, both
in the linear and in the nonlinear framework [20, 22],
as well as in time and frequency domain [10]. Unlike
other widely used approaches, kernel methods work with
infinite dimensional models in a nonparametric fashion.
In order to avoid overfitting, they are usually equipped
with a proper regularization term [11]. One of the main
advantages of such methodologies is that they alleviate
the model complexity selection issue. To this aim,
parametric approaches like the prediction error method
(PEM) [15] are often coupled with complexity criteria such
as the Akaike Information Criterion (AIC) or the Bayesian
Information Criterion (BIC) [15]. However, the resulting
performance is usually not satisfactory, especially for short
and noisy observations [19]. Instead, regularization turned
out to be one of the most effective tools to manage the
bias-variance trade-off of statistical models and impose a
proper degree of smoothness [1].

Artificially augmented datasets can be seen as a way
to induce regularization in model estimates. As an
example, consider the problem of learning a parametric
linear model.  Ridge regression can be seen as the
estimation procedure obtained via simple linear regression
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on an augmented dataset, where all the new outputs
are set to zero [12]. Another example is the Vicinal
Risk Minimization (VRM) principle [8], where additional
virtual examples are drawn from a pre-defined vicinity
distribution of the training examples. The authors of [8]
showed how the VRM approach is an equivalent way to
derive the Ridge regression as well as the Support Vector
Machine (SVM) solutions of [12]. The enlargement of
the available dataset is nowadays a standard tool also
for training deep neural networks, in particular when
performing image classification [14]. Finally, in [1], model
constraints are obtained by adding artificial data that
satisfy them inside the training set. Differently from
previously cited methods, here the learning “hints” are
designed by relying only on the independent variables, i.e.,
the regressors.

In this work, we investigate kernel-based estimation
of nonlinear dynamical systems via regularization using
artificially augmented datasets. Such an approach seems
particularly promising in all applications where there
is some prior knowledge about the system, but only
few data are available as running new experiments
is difficult or too costly, see e.g. some biomedical
systems like glucose dynamics [9] or industrial plants like
[27, 7]. More specifically, we will consider Nonlinear
Finite Impulse Response (NFIR) systems, in that they
represent a wide range of applications [2] and, for such
models, augmented regressors can be generated without
running new experiments on the systems. The generation
of fictitious input/output data reflecting the system
dynamics is not a trivial extension and will be treated
in future works. The augmented regressors can be used
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for manifold learning, i.e., to learn the subspace where the
data lie, in order to regularize the model estimate.

Manifold learning methods have already been employed
for system identification in [17]. However, in the above
papers: (i) only the transductive learning problem is coped
with, that is, the problem of estimating new outputs and
not that of inferring the model equations is addressed;
(ii) manifold regression and system identification on
a lower-dimensional space are treated as two separate
tasks, whereas in this work the final algorithm turns
out to be a one-shot learning procedure; (iii) only
parametric modeling was considered. In light of these
acknowledgements, we extend the existing research with
the following contributions: (i) we introduce a novel
nonparametric method for inductive learning of nonlinear
dynamical systems employing an artificially augmented
dataset and relying upon manifold regularization. Since
we will show that this problem is equivalent to a
semi-supervised regression problem, we will call the overall
procedure Semi-Supervised System Identification (SBI)
from now on; (ii) usually, in semi-supervised problems,
the additional additional unsupervised data is a-priori
given: in this work, we propose a method to artificially
generate the unsupervised points for dynamical system
identification; (iii) we optimize the hyperparameters in
a rigorous way; (iv) we explicitly embed the dynamic
properties of the system into the manifold regularization
framework, thus also allowing a novel interpretation of the
manifold regularization scheme for dynamical systems.

The remainder of the paper is organized as follows.
Section 2 revisits the background on semi-supervised
learning to motivate this study on dynamical systems.
Section 3 provides the problem formulation. Section
4 discusses manifold learning to exploit the augmented
dataset. Section 5 presents the overall approach, including
a technique to generate the artificial data and an
explanation of the resulting regularization rationale. A
discussion about the different regularization terms is given
in Section 6. Numerical results and a comparison with the
state of the art are illustrated in Section 7. The paper is
ended by some concluding remarks.

2. Background and motivation

Semi-supervised learning is not a new concept in
data-driven function mapping and has been widely used
both in classification [7] and regression [17] problems.
In both cases, the aim is to learn the function that
generates the output y. When, in addition to the
supervised data, other inputs are available (without the
corresponding output), their position in the regressors
space gives additional information about the values of the
unknown y’s [7]. It becomes clear that, whenever the
input points belong to a manifold in the regressors space,
their distribution provides additional information about
the function to learn. Consider a classification problem
where only some (labeled) points are known to belong to

a certain class, whereas the others (unlabeled) correspond
to an unknown class. Intuitively, if regressors lie on a
manifold, the class of unlabeled points is likely to be the
same of the nearest (along the manifold) labeled ones.
This rationale can be extended to dynamical systems. As
an example, consider the linear Finite Impulse Response
(FIR) model:

y(t) = u(t) +ut —1) +e(b), (1)

where u(t) = 0.8u(t — 1) +n(t) and e(t),n(t) ~ WN(0,1),
o(t) = [u(t),u(t —1)]" € R2*!. Figure 1 depicts a random
sampling of the regressors over a given time window for
model (1).
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Figure 1: Regressor sampling for the system in (1).

It can be noticed that, due to the intrinsic correlation
among the regressors’ components in dynamical models,
the position of the points within the regressors’ space is not
random. Instead, one may argue that the points are likely
to lie on a certain manifold. This observation is confirmed
if Principal Component Analysis (PCA) [12] is applied to
the data of Figure 1: in fact, the first principal component
can explain 91% of the data variance. This means that
one dimension can be neglected without significant loss
of information and, therefore, bias and variance can be
effectively traded off to improve the model estimate. In
this paper, the case of dynamical systems will be treated
for the first time.

3. Problem formulation

Consider the NFIR Single-Input Single-Output (SISO)
model be defined as:

S:yt+1)=g(p))+e(t), (2)

where y (t) € R denotes the system output, g is a nonlinear
function, o (t) = [u(t), -, u(t —m+1)]" € R™*! is the
regression vector and e (t) € R is an additive white noise.
From now on, m will be referred to as the model order.



The objective of this work is to identify the system (2).
An estimation of the model order m will be provided.
We suppose furthermore that two different datasets are
available: a supervised dataset Dg and an unsupervised
dataset Dy. The supervised dataset is such that:

Ds = {(us (t),ys (1))

where ug(t) and yg(t) are the measured input and output
signals at time ¢ and Ng is the number of supervised data.

The unsupervised dataset Dy has dimension of Ny and
it is defined as:

| 1<t<Ns}, (3)

Dy ={uy(t) | 1<t< Ny}, (4)

where wuy(t) is an input sequence for which the
corresponding output is not available. To obtain a more
compact representation, we will represent the observations
and the regressors in a matrix form. Concerning the
supervised dataset Dg, we define the output vector
Y € RVx1:

Y = [ ys (m+1) ys (Ng) }T, (5)

where N = Ng — m is the number of output samples that
can be employed for the identification part, given the
model order m. In the same way, it is possible to construct
the N supervised model regressors @g(t) € R™*1  for
m<t< Ng—1, as:
T

(ps(t)Z[uS(t) us(t—m—i—l)] . (6)
Analogously, N,y = Ny — m 4+ 1 wunsupervised
model regressors oy (t) € R™*! can be collected, for
m<t< Ny -1, as:

ou (t) = [ uu (t) wp (t—m+1) 7. (7)

For simplicity, we define the generic regressor ¢(t) as:

1<t<N

o gos(t—l-m—l)
Mt_{ N+1<t<N, ®)

goU(t—l-m—N—l)

where N, = N + N,y is the total number of regressors.
The t—th row of Y will be denoted as y(t).

4. Manifold regularization

This section shows how unsupervised data can be
effectively employed in a learning framework. In
particular, the use of additional data is helpful for
approximating the manifold where the regressors evolve.
The discussion of the manifold regularization concepts will
use the notation introduced in Section 3.

Section 2 gave intuitive motivations of how the geometry
of the inputs space acts as an additional information that
can be employed for learning. In order to embed this
notion into a learning framework, we can resort to the

following rationale. In the classical literature on learning
from examples [25], the aim is to estimate the conditional
distribution p(y|p) describing possible outputs values,
given the corresponding input regressor ¢. To do this,
some samples (pg,ys) are drawn from p(p,y) and used
to build Dg. Unsupervised examples ¢y can also be
extracted according to the marginal distribution p(y) and
used to build Dy. The knowledge of p(¢) can be useful
if a specific assumption is made about the connection
between the marginal and the conditional distributions
[4]. For example, one may assume that, if two points
©1,¢2 are close according to some metrics in p(y),
then the conditional distributions p(y|e1) and p(y|p2)
are similar. In other words, the conditional probability
distribution p(y|p) varies smoothly along the geodesics
in the intrinsic geometry of p(y). The aforementioned
assumption can be stated as follows [4]:

Assumption 1 (Semi-supervised smoothness). If two
regressors ¢ (i) and ¢ (§) in a high-density region are close,
then so should be their corresponding outputs y(i) and y(j).

Note that, if Assumption 1 holds, the solution is
constrained to be locally smooth, i.e., smooth over the
manifold where the regressors lie. Therefore, it can be
formulated as a constraint (or an equivalent regularization
term) for the learning algorithm. An effective way to write
a regularization term enforcing Assumption 1 has been
first proposed in [5]. In detail, if the support of p(y) is
a compact manifold G C R™, a common indicator of the
degree of smoothness over the manifold is:

Sg_/g'vmi dp(ga)‘/gg-A-gdp(w), (9)

where V and A are the gradient and the Laplace-Beltrami
operators along the manifold G, respectively. The integral
is taken with respect to the marginal distribution p(y)
[4]. The main idea behind such a manifold regularization
is that, if Assumption 1 holds, the gradient of g (along
G), and so Sy, must be small. Then, minimizing S, is a
way to leverage Assumption 1. From (9), we see that the
Laplacian is related to the squared norm of the gradient.

Unfortunately, p(¢) and G are usually unknown and the
smoothness index S, in (9) cannot be computed. One way
to model the manifold is by employing a regressor graph
[4]. The model is a weighted and completely connected
graph, with the (supervised and unsupervised) regressors
as its vertices. The intrinsic structure of the regressors
space is thus revealed by both supervised and unsupervised
points. The weight of each edge, where o, € R is a tuning
parameter, is defined as

L <_”%0<’>—<%’(J)“2>
w; j = exp ! )

20,

A high value of w;; indicates that two regressors are



similar. Notice that the concept of “smoothness over
a manifold” expressed through (9) may be seamlessly
translated into a discrete graph domain.

Consider the Laplacian graph matrix L =D — W,
where D € RV-*Nr is the diagonal matrix with elements
D;; = Z;vﬂ w;j, and W € RN~>Nr is the matrix
composed by the weights w; ;. It can be shown that using
exponential weights leads to the convergence of L to A [3].
By considering graph derivatives [24], the rhs of (9) can
be represented by the Laplacian quadratic form [4, 24]:

Sy~F'.L.F, (10)

~ T
where ' = [g(gp(l)),n- ,g(gp(N,.))} € RV*1 depends

only upon the unknown g and the input regressors?. It
follows that both supervised and unsupervised datasets can
be employed for weighting S, within a learning task for
regularizing the manifold. We will refer to (10) as the
manifold reqularization term.

Remark. From the above discussion, it comes out that,
if Assumption 1 is not satisfied, the use of an additional
unsupervised dataset is not beneficial. However, in all
cases where Assumption 1 holds, the proposed approach
may take advantage of such prior information to more
accurately identify the unknown system.

5. Identification with data augmentation

This section presents the proposed learning
methodology, highlighting each stated contributions.

5.1. A manifold-reqularized identification approach

Suppose now that g belongs to a RKHS H defined
using a kernel K. The kernel can depend by some
hyperparameters n. The typical variational formulation
consists into finding the best function g according to the
criterion [23]:

g=asmin (50— 0)) +Ar- ok (1)

where the summation spans the available N supervised
regressors, ||g||3, is the Tikhonov regularization term and
Ar > 0 € R controls the regularization strength. The
solution to (11) can be found by referring to the representer
theorem [13]:

N
G(e(®) =D cK(p(t),0(s)), (12)

2The structure of the regularization term in (10) is shared by
many manifold learning methods, where L is substituted by other
symmetric matrices [6]. The reason is that such algorithms are
still based on Assumption 1, but they formalize it from different
perspectives.

for a N-tuple ¢ = [c1,co,...,cn]7 € RV Making
use of (12), the Tikhonov regularization term of (11)
can be restated as |g||3, = ¢'Ke, where K € RVXN
is a semidefinite positive and symmetric matrix (also
called Gram matrix or kernel matrix) such that
Kij = K(¢(i),¢(j)). The matrix K is formed by using
only the supervised regressors. Using (12), we can write
the minimization problem (11) in such a way that it
depends only on the unknown vector ¢ € RV*1:

¢ = arg min ||Y—ICc||§+)\T~cT~IC~c. (13)
ceRN

It is then possible to find the estimate of the vector ¢ by
solving the system:

[+ 1y] 2=, (14)

where 1 includes the hyperparameters, that - in the case
of (11) - are ¢ = [Ar, 7).

In order to include information about the local
smoothness of the function (using the unsupervised data
points), it is meaningful to add the manifold regularization
term (10) to (11), leading to [4]:

G=argmin > (5(0) 9o ()’ (15)

geM

+AT'||9||3.L+>\M-ﬁT~L~ﬁ,

where Ap; > 0 € R plays the same weighting role as Ar.

It is possible to show that the representer theorem still
holds for the cost function (15) and the solution can be
written by considering all N,, = N + N,y regressors [4]:

G(e(t) =D &K(p(t).o(s)), (16)

for a N,-tuple ¢ = [¢1,éa,. .. 7ENT]T € RN-x1 The vector
F introduced in (10) can now the be rewritten as F =Ké,
where K € RN*Nr is the kernel matrix constructed
considering both supervised and unsupervised regressors.
Notice that I depends on the kernel hyperparameters n
and may depend also on some hyperparameters § used to
generate the augmented dataset. Now, by means of (16),
it is possible to write the minimization problem (15) in

such a way that it depends only on the unknown vector
¢ € RN-x1:

~ ~ 2
¢ = arg min Hy— P~ICEH2 (17)

ceERNr

FAr- - K-é4 Ay - -KLK - ¢,

where Y (YT 0%, 1" e RN with



On,, € RNVvX1 4 column vector of zeros. The matrix

[Iy O
SR

that is such that P € RN-*Nr permits to select only the
elements of K explaining the N supervised data points.
Since (17) is now quadratic in ¢, its minimization can
be carried out analytically and the minimizer is found by
solving the linear system:

P-/€+/\T~INT+>\M-L~/€}~g:y, (18)

where 1 includes the hyperparameters, which - in the case
of (15) - are ¥ = [Ar, Aar, 1, 9].

The role of additional data can be clearly seen in (18). In
fact, the unsupervised points contribute here to the overall
estimated function via the matrix K.

5.2. A criterion for data augmentation

In dynamical system identification, unlike many static
semi-supervised learning applications, the unsupervised
data set Dy should better be seen as a design parameter,
rather than an input of the problem. In some cases,
Dy may contain some input time series which are
likely to excite the system dynamics in future operating
conditions (when the model will be used). Alternatively,
Dy could be chosen to enforce Assumption 1 to be
true. Since Assumption 1 requires only that, inside
the same high density region, the regressors have a
similar corresponding output (namely their difference
must be “small”), a reasonable method is to generate
the unsupervised regressors in the neighborhood of the
supervised ones, where, if the system is smooth enough,
they should have a similar corresponding output. This
approach will generate a regressors’ set looking as the
one exemplified in Figure 2, where it is possible to list
Ng regions, containing a supervised regressor and some
unsupervised ones.

A possible algorithm to select Dy as discussed above is
as follows. Let Dy be composed of p unsupervised datasets
Dy, i = 1,...,p as D = {u;(t) | 1<t< Ng},
where u}; (t) = ug (t) + v*(t), v'(t) is a random variable
and p is a free parameter of the method. Each one of
the p new (unsupervised) datasets contains exactly Ng
unsupervised input regressors, see again Figure 2. From
such p datasets, it is possible to determine the quantities
defined in Section 3. Since the unsupervised points are
generated in correspondence of the supervised ones, we
have N employable unsupervised regressors for each of
the p datasets. This leads to N,y = p - N unsupervised
regressors i (t) € R™*! i =1,... p. Each one of them
is such that, according to (7), for m <t < Ng — 1:

i (1) = [ uly (¢) wly (t—m+1) 7. (19)

The value of v’(t) determines the distance of the p

u(t—1)
@)
&
©)

0%
u(t)

Figure 2: An example of unsupervised regressors’ selection, for a
system with m = 2 using p = 10. The plot represents the supervised
regressors (red crosses) and the unsupervised regressors (blue circles)

unsupervised points from the supervised one. Therefore,
v(t) has to be small enough to guarantee that the system
output does not vary significantly inside these regions. A
reasonable criterion for its selection is to consider that the
regions should not mix with each other, since this might
lead to non-smooth functions. A possible way is to use a
uniform distribution:

vi(t)NU(fhah)a 1§t§N57 i=1,...,p (20)
where h > 0 determines the area of the unsupervised
points regions. To impose distinct regions, the following
inequalities must hold:

m<t<Ng—1,

1=1,....p (21)

i d

et (8) = s ()], < 5

where d denotes the Euclidean distance between the two

closest supervised regressors. After some computations, it
can be shown that (21) can be written as:

g(v%t—ju)fs(j)

Since |v" (t — j + 1)| < h (it is generated from the random
variable (20)), the inequalities (22) hold if Z;nzl h? <
2 . .

(4)". Recalling that i > 0, this corresponds to h < %.
This condition imposes a constraint for A to maintain Ng
distinct regions. To make such a constraint more or less
conservative, a tuning parameter o € R can be introduced,
allowing to regulate the region maximum area, as , e.g., as
follows:

m<t<Ng—1 (22)

i=1,

d
h= g (23)

In the above criterion, @ = 1 corresponds to the threshold



between mixed regions (achieved using o« < 1) and
completely distinct regions (« > 1).

Remark. The regressors % (t) may improve the
quality of the supervised estimate only if they lie on the
same manifold spanned by the ¢g(t). This is indeed
not difficult to obtain. Suppose that the input signal
ug(t) is a zero-mean white noise with variance of 2
ie. ug(t) ~ WN(0,7%). We have that the regressors
ps(t) are composed by lagged version of the white noise
ug(t). Now, assume that u}; (t) = ug (t) + v'(t), with
ug(t) L v'(s) Vt,s,i, and v'(t) L v'(s) Vt # s. Then, it
follows that 'L;éj(t) ~ WN(0,7%), with 7% = % + 4/12/12.
Therefore, ¢;(t) will span the same manifold of ¢%(t),
but, since the underlying process has greater variance,
the additional regressors will cover a greater area of the
regressors’ manifold. Thus, the use of additional regressors
is useful to better approximate the manifold. The same
reasoning applies when ug(t) is a stationary zero-mean
stochastic process and the independence assumptions hold.

5.8. Estimating hyperparameters and model order
In [4], no explicit guidelines for hyperparameters tuning
is given. In this work, the hyperparameters vector 1 is
estimated via Generalized Cross Validation (GCV) [12], by
relying on the available data. This formulation computes
an approximation of the Leave One Out Cross-Validation
(LOOCV) score in the following way. Recall that, in
Tikhonov-regularized estimation, the model prediction
Y € RV*! can be computed by referring to (12) and (14)
asY =K-e= Sy-Y, where Sy, is given from the expression
of ¢. In the case of the semi-supervised approach, the
prediction Y € R¥*! can be cast by referring to (16) and
(18) as Y = PK - ¢ = gw .Y, where P = [Iy 0] € RNXN»
is used to select only the supervised components, and §¢
comes from the expression of ¢. Following [12], the number
of effective degrees of freedom of a linear smoother, as in
our case, can be found as:
W) =Te(Sy),  Se={Sw5}. (9
The quantity in (24) can be used to efficiently compute
the GCV score. The hyperparameters estimate is then
computed as:

N A OO S
@Z)m—argqumNZ(l_y(w)/N) ) (25)

t=

1
= arg min J,,,(¢),
P

where y and § are the observed output and prediction
at a specific time instant ¢t. The subscript m on J,,(¥)
and @m is used to highlight the dependency on the model
order m. Since the model order is a discrete variable,
the optimization becomes hybrid. For this reason, it is
estimated as described in [22]. Specifically, the estimated

order m is obtained by computing J,,(v) for a grid of
chosen order values, such that:

M = arg min Jy, (). (26)

In light of the same rationale, we fixed the value of p (the
number of additional datasets) in our simulations.

5.4. Graph topology selection

The method presented in Section 5.1 is strongly related
to the well-known approach for manifold regularization in
[4]. In such a paper, it was implicitly assumed that all the
regressors are connected. In this work, instead, the role
of the dynamic dependency among the regressors can be
explicitly taken into consideration to determine the most
suitable structure of the graph describing the manifold®.

To this end, firstly we need to distinguish between?:

1. Spatial connections: among different regressors in the
regressor space, they are used to constrain the outputs
corresponding to close regressors to be similar;

2. Temporal connections: among different time samples
of g(¢(t)), they are used to constrain the time
trajectories to be smooth.

Following the above distinction, we connect each
additional regressor ¢} (t) to its “parent” ¢g(t), and
each i (t) to its “brothers” cp{](t), j # 1, for every
time instant t. The output that corresponds to the
unsupervised regressors ¢t (t) is forced to be “close” to
the output of the supervised regressor ¢g(t) from which
they are generated. Consider now the time dimension
and assume that the input ug(t) of the considered NFIR
system is a zero-mean white noise signal. Then, each
regressor pg(t) is correlated to the m —1 regressors
ps(t+1),...,05(t+m —1), as well as to the m —1
regressors pg(t —1),...,05(t —m+1). Thus, we also
need to connect the supervised regressors at different time
instants according to the system memory (i.e. model
order).

Figure 3 shows an example of how regressors can
be connected according to the proposed approach
(considering both spatial and temporal connections).

Remark. It is worth to point out that the proposed
rationale is only one possible scheme for connecting
the regressors. One may also connect the unsupervised
regressors at different time instants, e.g. ¢} (t) with
@i (t — 1) and ¢} (t + 1) in Figure 3. However, these
additional links in the regressors graph may impose a
too strong condition on the set of possible functions to

3Recall that (10) penalizes the variations of the unknown function
among the connected nodes (i.e., the regressors), thus the choice of
the graph topology plays a key role to enforce smoothness.

4In the case of static systems, only spatial connections are
meaningful, in that there is no time shift (nor correlation) among
the regressors and the outputs.
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Figure 3: Example of connections in the regressor space setting the
structure of the graph, with m = 2, p = 3 and Ng = 3: temporal
connections (dashed red), spatial connections (solid blue).

be learnt. In fact, consider Figure 4, where the solid
line represents the true output, while the measurements
are denoted by y(t). Since each unsupervised regressor
o4 (t) is connected to its supervised “parent” ¢g(t), their
outputs are constrained to be similar, ie. g(ps(t)) =~
g (¢}(t)). Temporal connections between ¢g(t), ps(t—1)
and @g(t + 1) can also be imposed to constrain the
output of the function g to be smooth in time. However,
since the unsupervised regressors ¢}, (t) are generated by
randomly perturbing the input sequence ug(t) (see again
Section 5.2), temporal dependence may be partially lost,
e.g., an admissible output behaviour could turn out to
be the dotted blue curve of Figure 4 (which varies more
rapidly than the observed one). Therefore, the output
at g (¢};(1)) and g (¢} (2)) should not be required to be
smooth in time, but only to be similar to g (ps(1)) and
g (s5(2)), respectively. Connecting ¢¢;(¢) at different time
instants may instead lead to the dash-dotted green curve of
Figure 4, which could be not acceptable, unless additional
prior knowledge on the output dynamics is available.

6. A discussion on global and local regularization

We now discuss the different impact of the two
regularization terms in (15). Consider a static unknown
function g(z) that presents a discontinuity point at x = 0,
and let the employed kernel be the Gaussian kernel

K (¢(t), ¢(s)) = exp (Jlso(t)—so()l) |

g

where o > 0 € R regulates the Gaussian dispersion. In
this section, we will use simple examples to show that
the Tikhonov term enforces a global smooth behaviour,
while the manifold term strives for local smoothness
corresponding to the additional points. Figure 5 shows
the results of a regularization network that employs only

Temporal connections

o~
Spatial connections

ol9 (#%2)

g9 (¢h (D)

—
N
Y

Figure 4: Representation of spatial and temporal connections in
the time domain: true output (black bold line), measured output
(black squares), output at supervised regressors (red crosses), output
at unsupervised regressors (blue circles), possible output trajectory
in case of temporal connections among supervised regressors
(blue dotted line) and possible trajectory in case of temporal
connections among both supervised and unsupervised regressors
(green dash-dotted line).

the Tikhonov regularization for different values of Ay and
o. In this case, the unsupervised points are of no use, and
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Figure 5: Sensitivity to the hyperparameters Ay and o when
employing only Tikhonov regularization. The plots depict the true
unknown function (solid green line), the supervised data (red dots)
and the estimated function (dotted black line)

therefore are not depicted. When Ap = 0, the Tikhonov
term is missing, and the estimated function interpolates
each one of the supervised points. Choosing a low value
of o, we are defining a function space that admits also
non-smooth functions [26].

As o grows, the estimated function gets smoother,
fitting worse and worse the discontinuous region of
the true underlying function. 1In all of these cases,
given the global nature of the imposed regularization,
the estimated function fails to approximate well the
discontinuity region. The estimation example using only
the manifold regularization term is depicted in Figure
6, where the generated unsupervised points are equally
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Figure 6: Sensitivity to the hyperparameters Ap; and o when

employing only manifold regularization. The plots depict the true
unknown function (solid green line), the supervised data (red dots),
the unsupervised data (blue dots), and the estimated function
(dotted black line). The hyperparameter . is fixed to 0.01.

spaced. Assumption 1 is required to hold wherever there
is a regressor point. Here, we suppose that unsupervised
points are not put only along an arbitrarily small
neighbourhood of the discontinuity point. The method
should then mnot regularize the model in this region,
in order to allow non-smooth (rapid) variation of the
estimated function, if needed, and enforce smoothness
elsewhere.  Notice that the desired high-variation of
the function can be permitted by a suitable choice of
the hyperparameter o of the kernel. By choosing an
appropriate low value of o, it is possible to fit the function
even in the discontinuity region. High values of o or
Ay make the estimate smoother, like Ap controlling the
Tikhonov regularization term. Increasing Aps, in turn,
translates into making each domain point similar to the
others, and the estimated function reduces to the mean of
the supervised points when o is sufficiently high. When o
is small, a high value of Aj; makes the resulting function
similar to the mean output obtained considering the
connected regressors in a smaller region, with respect to
the whole function domain (see again the bottom-right
plot of Figure 6). Furthermore, the lower o, the less the
impact of Aj; is on the estimated function. A careful
tuning of both these hyperparameters is therefore needed
for suitably tackling a specific learning problem.

Remark. The aim of the examples is to compare
the effects of the two regularization terms. However,
since Figure 6 implies the knowledge of the discontinuity
region, it is of interest to observe what happens when
we do not have such information. Figure 7 depicts the
case where the same number of unsupervised regressors
is generated, but now equally spaced. It is possible to
observe (upper left plot) that the manifold regularization
still well approximates the true function. When s is
high (bottom-left plot), the estimated function is no longer
the mean of the connected regions, but assumes a value

towards the mean of all the points. Figure 8 shows the
case where the regressors are sampled randomly from a
uniform distribution U (—1.5,1.5). Only the results with
low A, are reported for brevity, since with higher Aj; the
estimated function is the same of Figure 7. Even in this
case, with a proper tuning of ¢, the manifold regularization
achieves a good approximation of the true function (if the
added points form a dense region). The reason is that
local regularization generally yields more freedom (i.e., less
constraints) in the choice of the function.
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Figure 7: Manifold regularization estimates, when equally spaced
unsupervised regressors are generated. The discontinuity region is
not known by the method.
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Figure 8: Manifold regularization estimates, when unsupervised
regressors are randomly drawn from a uniform distribution. The
discontinuity region is not known by the method.

7. A numerical case study

We test the presented methodologies on the following
NFIR system taken from [22]

y(t) = u(t —1)+0.6u(t —2) +0.35u (t — 3) + 0.9u (t — 4) +
4 0.35u (t — 5) + 0.2u (t — 6) + 0.2u (t — 7) +
+0.5u% (t — 1) — 0.25u” (t — 4) + 0.75u> (t — 3) +
+025u(t—1)u(t—2)+05u(t—1) -u(t—3)+
—u(t—2)u(t—3)+05u(t—2)u(t—4) +e(t),



where e(t) ~ WGN(0,0.2) and u(t) ~ WGN(0,1). We
employ the Gaussian kernel

e(t) — e(s)|?
K(QD(Z‘:), ()0(8)) = 5 - €xXp (_H()0_2<||) )
where n = [0,€] > 0 are the kernel hyperparameters (see
[18] for a discussion about the BIBO-stability properties
induced by Gaussian kernels). In particular, the following
approaches are compared:

1. Tikhonov regression,
n= [U’ 6]7

2. The approach of [4], where the hyperparameters
are estimated via a grid search strategy using a part
of the data set for validation. The final model is
estimated using the optimal hyperparameters and all
the available data. We assume that we know the true
model order;

3. The Kernel-based approach of [22];

4. The proposed approach, as in (15),
Y =[Ar,An, 1, 0], n = [0, and § = [oe, a].

The hyperparameter p, that governs how many
unsupervised datasets to generate, is fixed to p = 3.
The SNR was set to 5dB. In order to assess the overall
performance of the estimation methods, a supervised
testing dataset Dy of Ny = 10000 points is employed,
generated analogously to Dg. Using Dy, it is possible to
evaluate the NMAE (Normalized Mean Absolute Error)
metric:

as in (11), o = [Ar,n],

where

5 |7 = yr (o)

NMAE = , (28)
Nt _
t=1 yT(t) —Yyr

where y(t) is the predicted test output in correspondence
of a test regressor, yr(t) is the true test output, and
yr is the mean value of the test outputs. A Monte
Carlo simulation is carried out to show the statistical
significance of the proposed methodology, using 1000 runs.
At each run, a different generation of the random noise
was considered. The hyperparameters of the proposed
method were estimated on the training set via GCV. The
experimental setup problem is highly challenging: in fact,
only Ng = 30 supervised data are available for training.
The hyperparameters of the first and third approach are
estimated via marginal likelihood optimization [21, 22],
according to the original formulations of the methods.
For the second approach, we used Ny = 10 data for
validation (drawn from the original dataset). Once the
hyperparameters are estimated, the model is identified on
all the available data.

Figure 9 shows the simulation results over all the
Monte Carlo runs. In this critical example, the proposed
approach statistically outperforms all the state of the art
methods, thus showing the effectiveness of the approach
in the considered setting.’

5For the sake of space, we do not discuss here in detail how the full
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Figure 9: A numerical comparison of the proposed approach with
the state of the art methods.

8. Conclusions

In this paper, we presented a method for learning
nonlinear dynamical system by employing augmented
datasets. The additional data are generated by perturbing
the measured regressors. In order to leverage such
information, manifold regularization is employed, which
uses additional information on the distribution of the input
regressors. The dynamical structure of the NFIR systems
has been taken into consideration to best select the graph
connections. Numerical results showed that the proposed
approach may outperform the state of the art methods.
Future research will be devoted to: (i) an extensive
numerical assessment of the method; (ii) the extension of
the approach to models with auto-regressive terms; (iii)
the development of a data-driven graph topology selection
policy.
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