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Wormholes or Gravastars?
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Università degli Studi di Bergamo, Facoltà di Ingegneria,
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The one loop effective action in a Schwarzschild background is here used to compute the Zero
Point Energy (ZPE) which is compared to the same one generated by a gravastar. We find that only
when we set up a difference between ZPE in these different background we can have an indication on
which configuration is favored. Such a ZPE difference represents the Casimir energy. It is shown that
the expression of the ZPE is equivalent to the one computed by means of a variational approach. To
handle with ZPE divergences, we use the zeta function regularization. A renormalization procedure
to remove the infinities together with a renormalization group equation is introduced. We find that
the final configuration is dependent on the ratio between the radius of the wormhole augmented by
the ”brick wall” and the radius of the gravastar.

I. INTRODUCTION

Black holes are well accepted astrophysical objects by scientific community. The simplest example of a black hole
is the spherically symmetric vacuum solution of the Einstein field equations,

ds2 = −
(

1− 2MG

r

)

dt2 +
dr2

1− 2MG
r

+ r2
(

dθ2 + sin2 θdφ2
)

, (1)

known as the Schwarzschild solution. Despite of many theoretical and observational successes, a number of paradoxical
problems connected to black holes also exist[1], which frequently motivate authors to look for other alternatives, in
which the endpoints of gravitational collapse are massive stars without horizons. In 2001, Mazur and Mottola[2]
proposed an alternative model to black hole as a different final state of a gravitational collapse. In this model, the
strong gravitational forces induce a vacuum rearrangement in such a way to avoid a classical event horizon. A phase
transition is associated to the quantum gravitational vacuum together with a topology change. Such a model has
been termed gravastar (grav itational vacuum star) and it consists of three different regions with three different Eqs.
of state

I. Interior : 0 ≤ r < r1 ρ = −p,
II. Thin Shell : r1 < r < r2 ρ = +p,
III. Exterior : r2 < r ρ = p = 0.

(2)

At the interfaces r = r1 and r = r2, we require the metric coefficients to be continuous, although the associated first
derivatives must be discontinuous. Globally the metric can be cast into a form very close to the Schwarzschild line
element (1)

ds2 = −N2 (r) dt2 +
dr2

1− b(r)
r

+ r2
(

dθ2 + sin2 θdφ2
)

, (3)

where

N2 (r) = 1− ΛdS
3
r2 and b (r) =

ΛdS
3
r3 (4)

for the interior region of a static de Sitter metric, while

N2 (r) = 1− 2MG

r
and b (r) = 2MG (5)

∗Electronic address: Remo.Garattini@unibg.it

http://arxiv.org/abs/1001.3831v1
mailto:Remo.Garattini@unibg.it


2

for the exterior region described by a Schwarzschild spacetime. The intermediate region is represented by a thin shell
endowed with a Minkowski metric. However, the thin shell is by no means necessary to obtain a gravastar. Indeed,
DeBenedictis et al. [3] proved that the shell region can be eliminated and the de Sitter spacetime can be directly
joined to the Schwarzschild metric. This picture was also considered by Dymnikova[4] without invoking the term
“gravastar”. From the asymptotic point of view, a gravastar and a black hole share the same Arnowitt-Deser-Misner
(ADM) mass[5], therefore at very large distances they appear the same object to an observer. One may wonder how
can we distinguish a black hole from a gravastar. Different proposal have been considered. Harko et al.[6] suggested
to compare the thermodynamical and electromagnetic properties of the accretion disk around slowly rotating black
holes and gravastars. Another proposal comes from Chirenti and Rezzolla[7], where the use of axial perturbations
and the analysis of Quasi Normal Modes seems to show how to distinguish a black hole from a gravastar. Cardoso et
al.[8] discussed the ergoregion instability produced by rapidly spinning compact objects such as gravastars and boson
stars with the results that ultra-compact objects with large rotation are black holes. On the other side, Chirenti
and Rezzolla[9] found that stable models can be constructed also with J/M2 ∼ 1, where J and M are the angular
momentum and mass of the gravastar, respectively. Note that the comparison between a gravastar and a black hole is
at the classical level, without any quantum contribution which should also be the source of the desired phase transition
to make a gravastar. Note also that, in principle there exists another source of ambiguity: indeed besides a gravastar
and a black hole, the exterior metric can be associated to a wormhole. In this paper, we would like to compare a
gravastar to a wormhole. From the asymptotic point of view even the wormhole shares the same ADM mass. Hence,
it should be very important the comparison of such objects invoking the Zero Point Energy (ZPE) contribution.
However, it is well known that every form of ZPE also contributes to an induced cosmological constant. If we indicate
with EGS0 the gravastar ZPE and with EW0 , the wormhole ZPE, in principle one can discuss the following inequalities

(

EW0 − EGS0

)

R 0 (6)

establishing which geometry is energetically favored compared to the other one. Essentially, this is a Casimir-like
calculation and lower the ZPE, the more stable is the final configuration. This inequality is also related to the decay
probability per unit volume and time Γ, which is defined as

Γ = A exp (−Icl) = exp (−Ig [ḡµν ])
∫

Dhµν exp
(

−I(2)g [hµν ]
)

, (7)

for an Euclidean time. Indeed, at least a tree level, we find that

Γ ≃ exp (−Icl) = exp
(

−
(

EGS0 − EW0
)

∆τ
)

, (8)

where ∆τ is the Euclidean time interval. Basically, the first step is the evaluation of the following expectation value

〈Tµν〉 =
2√−g

δΓg
δgµν

, (9)

provided one can compute the effective action related to Sg. To do calculations in practice, we fix our attention to
the standard Einstein action without matter fields and with a cosmological term

S = Sg + SC.C. (10)

where

Sg =
1

16πG

∫

d4x
√−gR, SC.C. = − Λ

8πG

∫

d4x
√−g. (11)

The least action principle leads to the Einstein’s fields equations with a cosmological term. Nevertheless, never forbids
to consider the cosmological term as the desired induced quantity by ZPE. Therefore, Eq.(9) must be modified into

〈

TC.C.µν

〉

= − 2√−g
δΓg
δgµν

. (12)

If we define the path integral

Z =

∫

D [gµν ] exp iSg [gµν ] (13)

and we consider a gravitational field of the form

gµν = ḡµν + hµν , (14)



3

then Eq.(13) becomes
∫

Dgµν exp iSg [gµν ] = exp iSg [ḡµν ]Z2 = exp iSg [ḡµν ]

∫

Dhµν exp iS(2)
g [hµν ] , (15)

where we have assumed that the background ḡµν is a solution of the Einstein field equations and

S(2)
g [hµν ] =

1

2κ

∫

M

d4x
√−ghµρOµρσνhσν (16)

with κ = 8πG. Oµρσν is a symmetric tensor operator with

Oµρσν =
δ2S [ḡµν ]

δhµρδhσν
(17)

and hσν is the quantum fluctuation with respect to the background ḡσν . After some integration by parts, Eq.(16)
becomes

S(2) =
1

2κ

∫

M

d4x
√−g

[

−1

4
hµν (△Lh)µν +

1

4
h△h+ hµρRρνh

ν
µ − 1

2
hµνhαµ;α;ν

−1

2
hRαβh

αβ +
1

2
hhµν;µ;ν +R

(

−1

4
hµνhµν +

1

8
h2
)]

. (18)

△Lstands for the Lichnerowicz operator defined by

(△Lh)µν = −∇a∇ahµν − 2Rµανβh
αβ +Rµαh

α
ν +Rναh

α
µ = △hµν − 2Rµανβh

αβ +Rµαh
α
ν +Rναh

α
µ, (19)

where we have introduced the positive definite differential operator

△ = −∇a∇a. (20)

S(2) simplifies considerably when we are on shell, namely Rαβ = 0. Nevertheless, for future purposes, it is convenient
keeping such terms in the expression of the Lichnerowicz operator and in Eq.(18). To extract physical informations
from expression (15), we need an orthogonal decomposition which is equivalent to the Faddeev-Popov procedure, at
least to one loop. From Appendix A, we obtain[10, 11]

Γ1−loop =
i

2

[

Tr ln△⊥
L− Tr ln△V ⊥

]

=
i

2

∫

M

d4x
√−g

[

∫

d4k

(2π)
4 lnλ2TT −

∫

d4k

(2π)
4 lnλ2V ⊥

]

, (21)

where λ2TT and λ2
V ⊥ are the eigenvalues of the Lichnerowicz operator for TT tensors and the transverse vector operator

respectively. With the help of Eq.(21), Eq.(12) simply becomes

〈

TC.C.µν

〉

= − i

2
gµν

[

∫

d4k

(2π)4
lnλ2TT −

∫

d4k

(2π)4
lnλ2V ⊥

]

(22)

and if we identify

Λ

8πG
= − i

2

[

∫

d4k

(2π)
4 lnλ2TT −

∫

d4k

(2π)
4 lnλ2V ⊥

]

, (23)

we can interpret the cosmological constant as induced by quantum fluctuations of the gravitation field itself. Therefore,
it is clear that inequality (6) can be directly measured by the induced cosmological quantity of Eq.(23). Moreover this
identification will be useful for the removal of divergences. A first observation about Eq.(21) is in order. Note that
nothing has been said regarding the famous conformal factor problem. From this point of view, we adopt the approach
of Mazur and Mottola[12] in decomposing the gravitational perturbation. The super-metric free parameter “C” of
Eq.(A5) leaves us the freedom to select the correct range in such a way the functional integration be convergent.
Coming back to the Lichnerowicz operator (19), one immediately recognize that finding the eigenvalues is not a trivial
task in general. It is therefore necessary to adopt a convenient choice to manage Eq.(22). In a previous work we
approached the cosmological constant problem with the help of the Wheeler-DeWitt Equation cast in the form of
a Sturm-Liouville problem[13]. Essentially the cosmological constant is reinterpreted as an eigenvalue, calculated in
a Hamiltonian formalism breaking the covariance of space-time. In the next section, we adopt the same strategy
provided one looks at the true degrees of freedom. The paper is organized as follows: in section II, we reduce the
effective action by restricting the modes of the perturbation, in section III, we evaluate the functional determinants by
means of a W.K.B. method, in section IV we compute the ZPE energy for the gravastar and the wormhole respectively
and we compare them. Finally, in section V we conclude.
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II. REDUCING THE ONE LOOP EFFECTIVE ACTION IN 3+1 DIMENSIONS

How the Lichnerowicz operator decomposes in 3+1 dimensions it depends on the way one separates space from
time. The ADM variables offer a valid example of such a decomposition. In terms of these variables, the metric
background written in Eq.(3) becomes

ds2 = −N2dt2 + gij
(

N idt+ dxi
) (

N jdt+ dxj
)

. (24)

We recognize that the lapse function N is invariant and the shift function Ni is absent. To have an effective reduction
of the modes, we consider perturbations of the gravitational field on the hypersurface Σ ⊂ M. This means that we
are “freezing” the perturbation of the lapse and the shift functions respectively. In summary,







gij −→ ḡij + hij
N −→ N
Ni −→ 0

(25)

corresponding to a restriction of the modes we are looking at. Choice (25) is equivalent to set

h0µ = 0 (µ = 0, . . . , 3) (26)

in Eq.(18), which can be reduced to

S(2) =
1

2κ

∫

M

d4x
√
−g
[

−1

4
h⊥ ij (△Lh)

⊥
ij +

3

32
σ△σ

]

. (27)

Note that the modes we have eliminated satisfy the transverse traceless condition. The remaining modes are described
only by spatial indices which are raised and lowered using ḡij and ḡij . Christoffel symbols and Riemann tensor are
entirely constructed with the help of the three dimensional background metric. It is clear that even decomposition
(A1) is affected by the reduction (26) which induces a rearrangement of the Eq.(27). After a lengthy algebraic
manipulation we arrive at

S(2) = − 1

8κ

∫

dt

∫

d3xN
√
g

[

(

h⊥
)ij
(

△̃Lh
⊥
)

ij
− 2

3
σ△̃σ − 2

3
σRjl

(

h⊥
)jl
]

, (28)

where

(

△̃Lh
⊥
)

ij
=
(

△Lh
⊥
)

ij
− 4Rkih

⊥
kj +Rh⊥ij +

1

N2

∂2

∂t2
h⊥ij (29)

and

△̃σ = △σ − 1

12
Rσ − 1

2N2

∂2

∂t2
σ. (30)

It is immediate to recognize that for Einstein background Rij = Agij , cross terms vanish. Unfortunately, the
Schwarzschild metric in three dimensions does not fall in this case. Nevertheless, the linearized action can be repre-
sented in a short way on a suitable tensor space

S(2) = − 1

8κ

∫

dt

∫

Σ

d3xN
√
g

[

[

(

h⊥
)ij

, σ
]

O[(ij,m)(kl,n)]
[

(

h⊥
)kl

, σ
]T
]

, (31)

with O[(ij,m)(kl,n)] a [(3× 3) + 1] × [(3× 3) + 1]-matrix differential operator whose first (3× 3) block matrix act on
transverse traceless spin two field h⊥ij and whose last columns acts on the spin zero field σ. The corresponding matrix
can be read off from (28)

O(i,j) =

[

△̃L − 2
3Rjl

0 2
3△̃

]

. (32)

To write the corresponding functional determinant, we observe that the following relations are valid for arbitrary
triangular matrix operator[14]:

ln det

(

A C
0 B

)

= Tr ln

(

A C
0 B

)

= Tr

(

lnA C
0 lnB

)
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= lnA+ lnB = ln det

(

A 0
0 B

)

. (33)

Thus, the mixing term does not come into play and we get

(

deth⊥,σ

[

O(i,j)
])− 1

2

=
(

det⊥ △̃L

)− 1

2

(

detσ △̃
)− 1

2

. (34)

The same problem appears for the Jacobian. In Appendix A1, we show that Eq.(21) reduces to

Γ1−loop =
i

2

∫

M

d4xN
√
g

∫

d4k

(2π)
4 lnλ2TT − i

2

∫

±

d3x
√
g

∫

d3k

(2π)
3 lnλ2V ⊥ (35)

and Eq.(22) changes into

〈

TC.C.µν

〉

= − i

2
gµν

∫

d4k

(2π)
4 lnλ2TT +

i

2
(gµν + uµuν)

∫

d3k

(2π)
3 lnλ2V ⊥ , (36)

where uµ is a time-like unit vector. This means that the energy density in 3+1 dimensions is not affected by the
vector part which contributes only on the pressure terms1. Eq.(36).

III. W.K.B. APPROXIMATION OF THE FUNCTIONAL DETERMINANTS

To evaluate ρGS and ρW , we extract the energy density from Eq.(36) and we get

Λ

8πG
= − i

2

[

∫

d4k

(2π)
4 lnλ2TT

]

= − i

2

2
∑

i=1

∫

d3k

(2π)
3

∫ +∞

−∞

dω

2π
ln

(

− ω2
i

N2
+ λ2i

(
∣

∣

∣

~k
∣

∣

∣

)

)

, (37)

where λ2i

(
∣

∣

∣

~k
∣

∣

∣

)

are the spatial eigenvalues of the operator △̃L. We use the following formal representation to eliminate

the logarithm2

ln b = − lim
ε→0

∫ +∞

0

dt

t
eit(b+iε). (39)

Eq.(37) can be cast into the form

i

2

∫

d3k

(2π)3

∫ +∞

−∞

dω

2π

2
∑

i=1

lim
ε→0

∫ +∞

0

dt

t
e
−it

(

ω
2
i

N2
−λ2

i (|~k|)+iε
)

=
i

2

∫

d3k

(2π)3

∫ +∞

0

dt

t

2
∑

i=1

lim
ε→0

∫ +∞

−∞

dω

2π
e
−it

(

ω
2
i

N2
−λ2

i (|~k|)+iε
)

=
iN

4
√
iπ

∫

d3k

(2π)3

2
∑

i=1

lim
ε→0

∫ +∞

0

dt√
t3
eit(λ

2

i (|~k|)+iε) = −N
2

2
∑

i=1

∫

d3k

(2π)3

√

λ2i

(∣

∣

∣

~k
∣

∣

∣

)

=
Λ

8πG
, (40)

where we have used the following representations

∫ +∞

−∞

dω

2π
e−it

ω
2

i

N2 =
N

2
√
πit

and

∫ +∞

0

eixttz−1dt = (−ix)−z Γ (z) , (41)

with Im (x) > 0 and z = − 1
2 . Note the presence of the redshift function in Eq.(40). This is a remnant of the

original time component. In order to evaluate the integral over momenta in Eq.(40), we use the WKB approximation.

1 This result is in agreement with the result of Ref.[15], where only the graviton contribution contributes to the evaluation of the effective
action.

2

ln
b

a
= lim

ε→0

∫ +∞

0

dt

t
eit(a+iε)

− eit(b+iε), (38)
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With the help of Eqs.(B19), we define two r-dependent radial wave numbers k1 (r, l, λ1,nl) and k2 (r, l, λ2,nl) for the
Lichnerowicz operator (TT tensor)











k21 (r, l, λ1,nl) = λ21,nl −
l(l+1)
r2

−m2
1 (r)

k22 (r, l, λ2,nl) = λ22,nl −
l(l+1)
r2

−m2
2 (r)

(42)

and we separate the effective masses in two pieces






m2
1 (r) = m2

L (r) +m2
1,S (r)

m2
2 (r) = m2

L (r) +m2
2,S (r)

, (43)

with

m2
L (r) =

6

r2

(

1− b (r)

r

)

(44)

and
{

m2
1,S (r) =

3
2r2 b

′ (r)− 3
2r3 b (r)

m2
2,S (r) =

1
2r2 b

′ (r) + 3
2r3 b (r)

. (45)

The WKB approximation we will use is equivalent to the scattering phase shift method and to the entropy computation
in the brick wall model. We begin by counting the number of modes with frequency less than λi, i = 1, 2. This is
given approximately by

g̃ (λi) =

∫ lmax

0

νi (l, λi) (2l + 1)dl, (46)

where νi (l, λi) is the number of nodes in the mode with (l, λi), such that (i = 1, 2)

νi (l, λi) =
1

π

∫ +∞

−∞

dx
√

k2i (r, l, λi). (r ≡ r (x)) (47)

In Eq.(47) is understood that the integration with respect to x and l is taken over those values which satisfy
k2i (r, l, λi) ≥ 0, i = 1, 2. With the help of Eqs.(46, 47), the total energy associated to the energy density in Eq.(40)
becomes (r ≡ r (x))

N

2
∑

i=1

[
∫ +∞

0

λi
dg̃ (λi)

dλi
dλi

]

=
1

4π2

2
∑

i=1

∫ +∞

−∞

dxN (r) r2
∫ +∞

√
m2

i
(r)

λ2i

√

λ2i −m2
i (r)dλi. (48)

By extracting the energy density, we obtain

Λ

8πG
= −1

2

2
∑

i=1

∫

d3k

(2π)
3

√

λ2i

(
∣

∣

∣

~k
∣

∣

∣

)

= − 1

4π2

2
∑

i=1

∫ +∞

√
m2

i
(r)

λ2i

√

λ2i −m2
i (r)dλi, (49)

where we have included an additional 4π coming from the angular integration and where we have included in the
volume term the redshift function. Of course, Eq.(49) is divergent and must be regularized.

IV. REGULARIZATION AND RENORMALIZATION OF ONE LOOP CONTRIBUTION TO THE

COSMOLOGICAL CONSTANT

We adopt the zeta function regularization scheme and by introducing the additional mass parameter µ in order to
restore the correct dimension for the regularized quantities, we define

ρi (ε, µ) = − 1

4π2
µ2ε

∫ +∞

√
m2

i
(r)

dλi
λ2i

(λ2i −m2
i (r))

ε− 1

2

; i = 1, 2. (50)



7

The integration has to be meant in the range where λ2i −m2
i (r) ≥ 0. Following the same steps as in Ref.[13], one gets

ρi (ε, µ) =
m4
i (r)

64π2

[

1

ε
+ ln

(

4µ2

m2
i (r)

√
e

)]

, i = 1, 2. (51)

In order to renormalize the divergent ZPE, we write

Λ

8πG
→ Λ0

8πG
+

Λdiv

8πG
=

Λ0

8πG
+
m4

1 (r) +m4
i (r)

64π2ε
. (52)

Thus, the renormalization is performed via the absorption of the divergent part into the re-definition of the bare
classical constant Λ. The remaining finite value for the cosmological constant reads

Λ0 (µ)

8πG
=

2
∑

i=1

ρi (µ) =
1

64π2

2
∑

i=1

m4
i (r) ln

(

4µ2

m2
i (r)

√
e

)

= ρTTeff (µ, r) . (53)

To avoid the dependence on the arbitrary mass scale µ in Eq.(53), we adopt the renormalization group equation and
we impose that[16]

1

8πG
µ
∂Λ0 (µ)

∂µ
= µ

d

dµ
ρTTeff (µ, r) . (54)

Solving it we find that the renormalized constant Λ0 should be treated as a running one in the sense that it varies
provided that the scale µ is changing

Λ0 (µ, r)

8πG
=

Λ0 (µ0, r)

8πG
+
m4

1 (r) +m4
2 (r)

32π2
ln

µ

µ0
. (55)

Substituting Eq.(55) into Eq.(53) we find

Λ0 (µ0, r)

8πG
= − 1

64π2

2
∑

i=1

m4
i (r) ln

(

m2
i (r)

√
e

4µ2
0

)

. (56)

Potentially, we have three cases: 1) m2
L (r) ≫ m2

S (r), 2) m
2
L (r) = m2

S (r) and 3) m2
L (r) ≪ m2

S (r). Case 2) reduces
to a single point and therefore will be discarded in this analysis. In case 1) essentially we consider a long range
contribution of the graviton which will be vanishing for r → ∞. Finally, case 3) is a short range case and it leads to

Λ0 (µ0, r)

8πG
= − 1

64π2

2
∑

i=1

[

m4
i,S (r) ln

(

m2
i,S (r)

4µ2
0

√
e

)]

. (57)

The above expression works for a background described by Eq.(3) which must satisfy the Einstein’s field equations.
We specialize the result to the case of interest, namely the Schwarzschild and the de Sitter metrics. However, since
the exterior part of the gravastar is of the Schwarzschild form, we begin with this background which is in common
with a wormhole model. In the short range approximation we find

m2
1,S (r) = −m2

2,S (r) = m2
S (r) =

3MG

r3
(58)

and the range of validity is when r ∈ [2MG, 5MG/2] which can be determined by case 2). In this range,
Λ0 (µ0, r) / (8πG) has the following properties:

i) For r = 2MG, Λ0 (µ0, 2MG) → ∞ when M → 0.

ii) For r > 2MG, Λ0 (µ0, r) → 0 when M → 0.

This can be summarized in the following double limit

lim
M→0

lim
r→2MG

Λ0 (µ0, r) 6= lim
r→2MG

lim
M→0

Λ0 (µ0, r) (59)

which appears to be a sort of non-commutativity appearing in proximity of the throat. A similar behavior was
conjectured by Ahluwalia[17] in connection with the black hole entropy where a relation of the type

[lP,lS ] = iλ2P (60)

was introduced. The “Schwarzschild” lS and the “Planck” lP lengths are no more simply lengths, but operators. An
analogy can also be found for Yang-Mills theory in a constant chromomagnetic background[18], even if the situation
interests the infrared region instead of the ultraviolet region. This non-commutative effect of Eq.(59) could be
interpreted as a signal of a phase transition.
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A. Persisting of the wormhole

With the help of relations (58) and from Eq.(57), setting r = rt = 2MG, we find that Eq.(57) becomes

Λ0 (µ0, rt)

8πG
= − 9

128π2r4t
ln

(

3
√
e

8r2tµ
2
0

)

, (61)

namely the throat does not manifest quantum fluctuations. Eq.(61) satisfies the following inequality

Λ0 (µ0, rt)

8πG
≤ Λ0 (µ0, r̄t)

8πG
=

9

256π2r̄4t
when

√

3e

8µ2
0

= r̄t, (62)

We recognize that the expression of the upper bound is of the Casimir form, in the sense that we have a computation
procedure mimicking the Casimir device whose plates are located at the throat and at infinity. As in a Casimir device
whose energy density is proportional to the inverse fourth power distance of the plates, also this case manifests the
same behavior. From this it is evident that the gravitational field of the wormhole can never be switched off. However
as M becomes smaller and smaller, one cannot avoid to enter in the quantum phase of the throat. Therefore, at a
certain distance rb from the throat, a “brick wall”[19] can be formed due to quantum fluctuations. This forbids the
throat to be reached. In some sense, it is the Casimir energy that changes the structure of the throat. If this is the
case, Eq.(61) becomes

Λ0 (µ0,M, rb)

8πG
= − 1

32π2

(

3MG

r3b

)2

ln

(

3MG
√
e

4r3bµ
2
0

)

, (63)

where rb is of the form rb = rt + h with h representing the “brick wall”. The ZPE is now regular when the throat
vanishes.

B. Wormhole turning to a gravastar

In this case, the Casimir energy not only creates a “brick wall”, but changes completely the structure of the
wormhole by a topology change3. The effect of the vacuum reorganization induces a redefinition of the function b (r)
in (3)

b (r) =

{

2MG
(

r
r0

)3

0 < r < r0

2MG r > r0
. (64)

The “inner cosmological constant” is of course

Λinner =
6MG

r30
(65)

and regulates the small de Sitter universe inside the wormhole. Of course the new shape function is continuous in r0,
but it leads to a completely new scenario, because it converts a wormhole throat in a “cosmological throat”, even if
of very reduced size. The metric is now regular at the origin and even if b (r) is continuous at r0, the energy density
is not. This is in agreement with the initial setting of Eq.(2), but without the thin shell. The same discontinuity
reappears to one loop level for in the inner region, Eq.(57) becomes

Λ0 (µ0, r0)|in

8πG
= − 1

32π2

(

6MG

r30

)2

ln

(

6MG
√
e

4r30µ
2
0

)

, (66)

while in the outer region one gets

Λ0 (µ0, r0)|out

8πG
= − 1

32π2

(

3MG

r30

)2

ln

(

3MG
√
e

4r30µ
2
0

)

. (67)

3 See also Ref.[20] where a discussion on the possible topology change induced by Casimir energy between dark stars and wormholes is
faced.
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However, if we try to insist and impose continuity on the boundary

Λ0 (µ0, r0)|in = Λ0 (µ0, r0)|out , (68)

we find a solution provided one fixes the renormalization point to

3MG
√
e

3
√
4r30

= µ2
0. (69)

C. Comparing the gravastar to the wormhole

We are now ready to compare the gravastar with the wormhole model. As discussed in the introduction, we know
that both models share the same ADM mass. Essentially, the ADM energy is defined as

EADM =
1

16πG

∫

S

(

Dihij −Djh
)

rj , (70)

where the indices i, j run over the three spatial dimensions and

hij = gij − ḡij , (71)

where ḡij is the background three-metric. Dj is the background covariant derivative and rj is the unit normal to the
large sphere S. However, Hawking and Horowitz[21] have shown that the definition (70) is equivalent to

EADM =
1

8πG

∫

S∞

d2x
√
σ
(

k − k0
)

, (72)

where σ is the determinant of the unit 2-sphere. k0 represents the trace of the extrinsic curvature corresponding to
embedding in the two-dimensional boundary 2S in three-dimensional Euclidean space at infinity. In Eq.(72), it is well
represented the subtraction procedure between two metrics having the same asymptotic behavior. Therefore with
a natural extension we define the subtraction procedure in such a way that we can include quantum effects: this is
the Casimir energy or in other terms, the vacuum energy. One can in general formally define the Casimir energy as
follows

ECasimir [∂M] = E0 [∂M]− E0 [0] , (73)

where E0 is the zero-point energy and ∂M is a boundary. For zero temperature, the idea underlying the Casimir
effect is to compare vacuum energies in two physical distinct configurations. The extension to quantum effects is
straightforward

ECasimir [∂M] = (E0 [∂M]− E0 [0])classical + (E0 [∂M]− E0 [0])1−loop + . . . . (74)

In our picture, the classical part represented by the ADM-like energy is vanishing, because the asymptotic behavior
is the same for both the wormhole and the gravastar. This means that

ECasimir [∂M] = (E0 [∂M]− E0 [0])1−loop + . . . ., (75)

namely ECasimir is governed by purely quantum fluctuations. Here with ECasimir we mean that the energy is an
energy density. Thus, the Casimir energy can be regarded as a measure of the topology change, in the sense that
if ECasimir is positive then the topology change will be suppressed, while if it is negative, it will be favored. It is
important to remark that in most physical situations, the Casimir energy is negative. Consider now the one loop term
and suppose to compare a gravastar and a wormhole with the same mass M and the same renormalization point µ0.
If we take flat space as a reference space, we can write

(

EW0 [∂M]− EGS0 [∂M]
)

1−loop
=
(

EW0 [∂M]− E0 [0]
)

1−loop
+
(

E0 [0]− EGS0 [∂M]
)

1−loop
, (76)

where E0 [0]1−loop represents the ZPE contribution of flat space to one loop, which is absorbed into the regularization
procedure. Since outside the gravastar radius r0

EW0 [∂M] = EGS0 [∂M] , (77)
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we consider the region in proximity of r0. There remains to be evaluated the density energy difference

(

EW0 [∂M]− EGS0 [∂M]
)

1−loop
= − 1

8πG

(

Λ0 (µ0, rb)
W − Λ0 (µ0, r0)

GS
)

|in
, (78)

where Λ0 (µ0, rb)
W

means that we are evaluating the one loop term due to the wormhole background in proximity of
the brick wall, where we expect to receive the largest energy density contribution. The minus sign appears because
of a consequence of the definition of the induced cosmological constant of Eq.(12) and the definition of the energy
density of Eq.(9). We have to discuss when

(

EW0 [∂M]− EGS0 [∂M]
)

1−loop
R 0. (79)

After algebraic manipulation, we find that this happens when

x6 ln

(

x3

3
√
16

)

+
4

3
ln 2







> 0
= 0
< 0

0 < x < 1; x > 1.26
x = 1; x = 1.26

1 < x < 1.26
, (80)

where we have used Eq.(69) and we have defined

x =
r0
rb
. (81)

FIG. 1: Plot of
(

EW
0 [∂M]−EGS

0 [∂M]
)

1−loop
as a function of x = r0/rb.

The situation is better illustrated in Fig.(1), where we immediately recognize that a tiny region exists where the
ZPE is negative. This means that, in this range, the permanence of a wormhole is energetically favored with respect
to a gravastar of the same mass M . The situation changes significantly if we avoid to fix the renormalization point
with the choice of Eq.(69) This means that we are abandoning the continuity between the external and the internal
region of the gravastar to one loop. In this case, Eq.(79) becomes

ln y R
4 ln 2− 3x6 lnx

x6 − 4
, (82)

where x is given again by Eq.(81) and

y =
3MG

√
e

4r30µ
2
0

. (83)

The behavior of the ZPE difference is shown in Fig.(2), where the equality of expression (79) is reached when
ȳ = x̄ = 0.4948. It appears that below ȳ and x̄, the ZPE becomes negative denoting that the “ground state” between
a wormhole and a gravastar is represented by a wormhole whose radius has to be smaller than the gravastar radius.
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FIG. 2: Plot of
(

EW
0 [∂M]− EGS

0 [∂M]
)

1−loop
as a function of x = r0/rb and y.

V. CONCLUSIONS

In this paper we have considered one loop corrections to the ADM mass of a wormhole and a gravastar respectively.
The motivation comes from the fact that a gravastar can represent an alternative to a black hole or a wormhole as
regards the gravitational collapse. Nevertheless various problems of comparison arise because outside the gravastar
radius, the metric is of the Schwarzschild type. If we adopt the energy point of view we find that, asymptotically,
these configurations share the same ADM mass and therefore even in this case they are indistinguishable. However,
since the gravastar has a different core with respect to the wormhole, a difference between them can emerge from a
ZPE contribution. To this purpose we have computed an effective action to one loop, by looking at perturbations
on the space-like hypersurface Σ. Since the perturbation involves only the spatial part of the metric, ghosts do not
come into play for the energy contribution. Therefore, only the graviton is important to establish what happens to
the ZPE. Note that every form of ZPE can be interpreted as an induced cosmological constant. In our case, this
interpretation is very useful to apply standard regularization and renormalization procedures. In a sense, we can
think that the ZPE induced by a wormhole or a gravastar contributes to a cosmological constant. On the other
hand, we can think that the induced cosmological constant could be used to give a sorting to ZPE. It is interesting
to note that, it is the double limit (59) that denotes that something different appears in the throat proximity. This
difference is principally caused by ZPE or Casimir energy which becomes so intense to create a thick barrier (“brick
wall”) or a topology change (“gravastar”). Therefore, it is important to discover under what condition a wormhole
persists or change into a gravastar or vice versa. It appears that a fundamental element to understand in which
direction the geometry becomes relevant is in the radii ratio (81). Note that the comparison between the gravastar
and the wormhole is done with the same mass M , as it should be. The other important parameter seems to be the
renormalization point which, in this example, translates the presence or the absence of an energy gap between the
external and the internal region of the gravastar. If one imposes the continuity of the ZPE through the gravastar
radius, one meets a constraint on µ0 leading to the plot of Fig.(1) showing that the region of permanence of the
wormhole is very subtle. Indeed, from inequality (80), outside the range 1 < x < 1.26, the wormhole appears as an
“excited state” with respect to the gravastar. In particular, one should note that the minimum for the ZPE difference
appears for x = 1.152 with a minimum value of −0.244. On the other hand, if one abandons the continuity condition
of the gravastar ZPE and treats µ0 as a free parameter, one finds from Fig.(2) that the region of permanence of the
wormhole is larger. Therefore we arrive at the conclusion that the permanence of a wormhole or a gravastar in their
reciprocal comparison is strictly related to their size.
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Appendix A: Disentangling the gauge modes

To explicitly make calculations, we need an orthogonal decomposition for hµν to disentangle gauge modes from
physical deformations. To this purpose it is convenient to decompose hµν into a trace, longitudinal and transverse-
traceless part in D dimensions[12, 22, 23]:

hµν =
1

D
hgµν + (Lξ)µν + h⊥µν , (A1)

where the operator L maps ξµ into symmetric tracefree tensors

(Lξ)µν = ∇µξν +∇νξµ − 2

D
gµν (∇ · ξ) (A2)

and

gµνh⊥µν = 0, ∇µh⊥µν = 0. (A3)

The decomposition (A1) is orthogonal with respect to the following inner product

〈h, k〉 :=
∫

M

dDx
√−gGµνρσhµν (x) kρσ (x) , (A4)

where

Gµνρσ =
1

2
(gµρgνσ + gµσgνρ + Cgµνgρσ) (A5)

and C is a constant. For the positivity of Gµνρσ C > −1/2. The inverse metric is defined on cotangent space and it
assumes the form

〈p, q〉 :=
∫

M

dDx
√−gGµνρσpµν (x) qρσ (x) , (A6)

so that

GµναβGαβρσ =
1

2

(

δµρ δ
ν
σ + δµσδ

ν
ρ

)

. (A7)

Following Ref.[22], we observe that under the action of infinitesimal diffeomorphism generated by a vector field ǫµ,
the components of (A1) transform as follows

ξµ −→ ξµ + ǫµ, h −→ h+ 2∇µǫµ, h⊥µν −→ h⊥µν . (A8)

We can fix the gauge freedom (A8), by fixing

ξµ = 0. (A9)

If the manifold admits conformal Killing vectors, namely vectors annihilated by the operator L, one additional gauge
condition involving the trace is necessary. Assume that such vectors are absent form the manifold. The Jacobian
factor induced by the change of variable, namely hµν →

(

h, ξµ, h
⊥
µν

)

is

J = det
V

(

L†L
)

1

2 , (A10)
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where the determinant is calculated in the space of vector fields excluding conformal Killing vectors. Using the
definition (20), the operator acting on vector fields is

(

L†L
)ν

µ
= −2

(

−△ δνµ +

(

1− 2

D

)

∇µ∇ν +Rνµ

)

. (A11)

We can write decomposition (A1) in the following way

hµν = (σ + 2∇ · ξ) gµν
D

+ (Lξ)µν + h⊥µν , (A12)

The change of variables h → σ does not introduce any additional Jacobian factor, then the path integral measure
separates into

Dhµν = det
V

(

L†L
)

1

2 Dh⊥DξDσ (A13)

and the quadratic part of the action (18) becomes

S(2) =
1

2κ

∫

M

d4x
√−g

[

−1

4
h⊥,µν (△Lh)

⊥
µν +

3

32
σ△σ

]

. (A14)

The path integral can be written in terms of functional determinants of transverse-traceless tensor fields (indicated
by T), vector fields (indicated by V) and scalar fields (indicated by S):

Z = det
T

(△L)
− 1

2 det
V

(

L†L
)

1

2 det
S

(−△)
− 1

2 . (A15)

The determinant over vector fields is the analogue of the Faddeev-Popov determinant. We can further decompose it
by introducing a Hodge decomposition

ξ = dψ + ξH + δω = ξ|| + ξH + ξ⊥, (A16)

where ψ is a zero-form, ξH is a harmonic one-form and ω is a two-form. Excluding the presence of harmonic vectors
ξH , we find that the operator (A11) separates into

(

L†Lξ
)

µ
= 2

(

△ξ⊥µ −Rνµξ
⊥
µ

)

+ 2

(

△ξ||µ −
(

1− 2

D

)

∇µ∇νξ||ν −Rνµξ
||
ν

)

(A17)

and using the equations of motion on shell Rµν = 0, we get for the Jacobian

det
V

(

L†L
)

1

2 = det
V ⊥

(△)
1

2 det
V ||

(△)
1

2 (A18)

and the one loop effective action simplifies

Γ1−loop =
i

2

[

Tr ln△⊥
L− Tr ln△V ⊥

]

=
i

2

∫

M

d4x
√−g

[

∫

d4k

(2π)
4 lnλ2TT −

∫

d4k

(2π)
4 lnλ2V ⊥

]

, (A19)

where λ2TT and λ2
V ⊥ are the eigenvalues of the Lichnerowicz operator for TT tensors and the transverse vector operator

respectively. Before going on, we need to precise a point concerning the computation of a functional determinant.
Generally speaking the functional determinant of a given differential operator O can be represented by

detO = exp (Tr lnO) . (A20)

However within the zeta function regularization, it is no longer true that

detAB = detAdetB, (A21)

where A and B are two elliptic operators. In general, one has

detAB = expa (A,B) detAdetB. (A22)

where a (A,B) is a local functional called multiplicative anomaly. As pointed out in Ref.[24], one can assume the
multiplicative anomaly to be trivial, namely a (A,B) = 0. This is justified by the fact that to one loop approximation
a non-trivial multiplicative anomaly may be absorbed into the renormalization ambiguity.
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1. Evaluating detV
(

L†L
)

in 3 dimensions

In Eqs.(A1), (A2) and (A17), we have simply to put D = 3. In addition, we have to remind that, in this case the
Ricci tensor is not vanishing. If ξa is further decomposed into a transverse part ξTa with ∇aξTa = 0 and a longitudinal

part ξ
‖
a with ξ

‖
a = ∇aψ, then the orthogonal decomposition reduces to

〈Lξ, Lξ〉 :=
∫

M

d3x
√−g (Lξ)ij (Lξ)ij (A23)

=

∫

M

dDx
√−g

[

2ξTi △ij
V ξ

T
j − 4ξTi R

ij∇jψ − 4ψ

(

2

3
△2 +∇iR

ij∇j

)

ψ

]

, (A24)

with

△ij
V = △gij −Rij . (A25)

The decomposition (A24) is orthogonal up to the ξTj − ψ-mixed terms. If we try to compute the related Jacobian
induced by the vector-scalar part in Eq.(A24), we obtain

∫

Dξ exp
[

− i

2
〈Lξ, Lξ〉

]

=

J1

∫

DξDψ exp

[

− i

2

∫

M

dDx
√
−g
{

[

ξTi , ψ
]

M (i,j)
[

ξTj , ψ
]T
}

]

= 1. (A26)

In terms of the functional determinant

J1 =
(

detξT ,ψ

[

M (i,j)
])

1

2

, (A27)

where M (i,j) a (3 + 1)× (3 + 1)-matrix differential operator whose first 3 columns act on transverse spin one field ξTj
and whose last columns acts on the spin zero field ψ. From Eq.(A24), the corresponding matrix can be read off,

M (i,j) =

[

2△T,ij
V −4Rij∇j

0 −2
(

2
3 △2 +∇iR

ij∇j

)

]

. (A28)

Thus Eq.(A18) becomes

(

detξT ,ψ

[

M (i,j)
])

1

2

=
(

det△T
V

)
1

2

(

det

[

2

3
△2 +∇iR

ij∇j

])
1

2

. (A29)

The presence of the Ricci tensor in the scalar term of Eq.(A29) is an artifact of the foliation, because in 4 dimensions it
disappears. By means of the contracted Bianchi identities ∇iR

ij = ∇jR/2, we can simplify somewhat the expression
of the scalar term of Eq.(A29)

2

3
△2 +∇iR

ij∇j =
2

3
△2 +

1

2
∇jR∇j +Rij∇i∇j . (A30)

The determinant of the operator in Eq.(A30) can be cast into the following form

det

(

2

3
△2 +Rij∇i∇j

)
1

2

= exp
1

2
Tr ln

(

2

3
△2 +Rij∇i∇j

)

= exp
1

2
Tr ln

[

(

2

3
△2

)

(

1+

(

2

3
△2

)−1

+Rij∇i∇j

)]

= exp
1

2
Tr

[

ln

(

2

3
△2

)

+ ln

(

1+

(

2

3
△2

)−1

Rij∇i∇j

)]

. (A31)
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The second term is a correction to the principal part and will not be considered in the W.K.B. method. The main
part of the operator reduces to

det

(

2

3
△2

)
1

2

= (det△)
1

2 , (A32)

where we have absorbed the constant factor into the definition of the determinant and we have redefined the scalar
wave function in such a way to absorb the operator △. To summarize, Eq.(A18) in 3 dimensions becomes

det
V

(

L†L
)

1

2 =
(

det△T
V

)

1

2 (det△)
1

2 . (A33)

With the help of the functional determinant in Eq.(A33), the one loop effective action can be written as

Γ1−loop =
(

det△T
V

)

1

2 det (△)
1

2

(

det △̃L

)− 1

2

(

det △̃σ

)− 1

2

. (A34)

One can observe that the scalar determinants should cancel each other except for three subtleties. First the sign of
the operator △̃σ in (30) appears to be different from that in the Jacobian, second the integration leading to (A29)
excludes zero modes not included in the Jacobian, so any cancellation will not be complete. This also happens in the
full covariant computation. Last but not least, the cancellation should be done after integration over the time part
in the determinant of the operator.

Appendix B: The Lichnerowicz operator for TT tensors

Our starting point is the expression (16) and the metric (3). For the benefit of the reader, we recall the representation
of the operator O

Oikjl = △ikjl
L − 4Rilgkj +Rgikgjl +

∂2

∂t2
gikgjl (B1)

and we simplify the expression of the Riemann tensor in 3 dimensions

Rikjl = gijRkl − gilRkj − gkjRil + gklRij −
R

2
(gijgkl − gilgkj) . (B2)

Then, the operator Oikjl becomes

−∇a∇ag
ikgjl +

∂2

∂t2
gikgjl − 2

(

gijRkl − gilRkj − gkjRil + gklRij
)

+R
(

gijgkl − gilgkj
)

+Rikgjl +Rjkgil − 4Rilgkj +Rgikgjl = −∇a∇ag
ikgjl +

∂2

∂t2
gikgjl

− 2
(

gijRkl + gklRij
)

+R
(

gijgkl − gilgkj
)

+Rikgjl + 3Rjkgil − 2Rilgkj +Rgikgjl. (B3)

When we fix our attention on TT tensors, we obtain a further reduction

Oikjl = −∇a∇ag
ikgjl +

1

N2

∂2

∂t2
gikgjl + 2Rilgkj . (B4)

Thus the related eigenvalue equation is

−
(

△2h
TT
)j

i
+

1

N2

∂2

∂t2
hji = λ2hji (B5)

where

(

△2h
TT
)j

i
:=
(

−△Th
TT
)j

i
+ 2

(

RhTT
)j

i
(B6)



16

and

−
(

△Th
TT
)j

i
= −△S

(

hTT
)j

i
+

6

r2

(

1− b (r)

r

)

(

hTT
)j

i
. (B7)

△S is the scalar curved Laplacian computed on the background of metric (3), whose form is

△S =

(

1− b (r)

r

)

d2

dr2
+

(

4r − b′ (r) r − 3b (r)

2r2

)

d

dr
− L2

r2
(B8)

and Raj is the mixed Ricci tensor whose components are:

Rai =

{

b′ (r)

r2
− b (r)

r3
,
b′ (r)

2r2
+
b (r)

2r3
,
b′ (r)

2r2
+
b (r)

2r3

}

. (B9)

We will follow Regge and Wheeler in analyzing the equation as modes of definite frequency, angular momentum
and parity[25]. In particular, our choice for the three-dimensional gravitational perturbation is represented by its
even-parity form

hevenij (t, r, ϑ, φ) = diag

[

H (r)

(

1− b (r)

r

)−1

, r2K (r) , r2 sin2 ϑK (r)

]

Ylm (ϑ, φ)F (t) . (B10)

For a generic value of the angular momentum L representation (B10), together with Eqs.(B7,B5) leads to the following
system of PDE’s















(

−△l + 2
(

b′(r)
r2

− b(r)
r3

)

+ ∂2

∂t2

)

H (r)F (t) = λ21,lH (r)F (t)

(

−△l + 2
(

b′(r)
2r2 + b(r)

2r3

)

+ ∂2

∂t2

)

K (r)F (t) = λ22,lK (r)F (t)

, (B11)

where △l is

△l =

(

1− b (r)

r

)

d2

dr2
+

(

4r − b′ (r) r − 3b (r)

2r2

)

d

dr
− l (l + 1)

r2
− 6

r2

(

1− b (r)

r

)

. (B12)

The action of △l on the reduced fields

H (r) =
f1 (r)

r
; K (r) =

f2 (r)

r
(B13)

is

△l

(

f1,2 (r)

r

)

=
1

r

{(

1− b (r)

r

)

d2

dr2
+

1

r

[

−2

(

1− b (r)

r

)

+

(

4r − b′ (r) r − 3b (r)

2r

)]

d

dr

+
1

r2

[

2

(

1− b (r)

r

)

−
(

4r − b′ (r) r − 3b (r)

2r

)]

− l (l + 1)

r2
− 6

r2

(

1− b (r)

r

)}

f1,2 (r)

=
1

r

{(

1− b (r)

r

)

d2

dr2
+

1

r

[

−b
′ (r)

2
+
b (r)

2r

]

d

dr
+

1

r2

[

b′ (r)

2
− b (r)

2r

]

− l (l+ 1)

r2
− 6

r2

(

1− b (r)

r

)}

f1,2 (r) (B14)

and using the proper geodesic distance from the throat

dx = ± dr
√

1− b(r)
r

, (B15)
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we get

=
1

r

{

d2

dx2
+

1

r2

[

b′ (r)

2
− b (r)

2r

]

− l (l + 1)

r2
− 6

r2

(

1− b (r)

r

)}

f1,2 (r) , (B16)

where r ≡ r (x). Thus, the system (B11) becomes















[

− d2

dx2 + ∂2

∂t2
+ V1 (r)

]

f1 (x)F (t) = λ21,lf1 (x)F (t)

[

− d2

dx2 + ∂2

∂t2
+ V2 (r)

]

f2 (x)F (t) = λ22,lf2 (x)F (t)

(B17)

with






V1 (r) =
l(l+1)
r2

+ U1 (r)

V2 (r) =
l(l+1)
r2

+ U2 (r)

, (B18)

and






U1 (r) =
6
r2

(

1− b(r)
r

)

+
[

3
2r2 b

′ (r) − 3
2r3 b (r)

]

= m2
1 (r)

U2 (r) =
6
r2

(

1− b(r)
r

)

+
[

1
2r2 b

′ (r) + 3
2r3 b (r)

]

= m2
2 (r)

, (B19)

where we have defined two effective masses dependent on r. Now let us consider the following state

〈t, r, θ, φ|ω, k.l.m〉 = 1

r
fi (x)Ylm (ϑ, φ) exp (−iωt) , (B20)

then the system (B17) becomes















[

− d2

dx2 − ω2 + V1 (r)
]

f1 (x) = λ̃21,lf1 (x)

[

− d2

dx2 − ω2 + V2 (r)
]

f2 (x) = λ̃22,lf2 (x)

. (B21)
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