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Executive Summary

The use and adoption of machine learning models in assessing the risk associated with
a product and financial instruments at financial institutions are gaining importance
since traditional models in practice do not assess the risk in an efficient way.

For any commercial bank around the world, managing credit risk is an important
task for enhancing business profits, therefore a larger emphasis is given to mitigate
any kind of losses. Although the regulatory regime advocates the use of a simpler
statistical model in measuring creditworthiness, often such a model does not capture
all the abstract reality. In our opinion, an ensemble approach of different classifiers
including both parametric and non-parametric is a viable solution for credit scoring
and managing risks in a complex environment.

The structure of this thesis can be broadly categorized into different points
mainly as the following,

• Literature review

• Proposed methodological framework of model averaging and multi-objective
optimization techniques.

• Results achieved from the methodological framework to improve predictive
accuracy.

• Comparison of proposed model with existing machine learning model.

• Credit risk management as one of the possible area of application.

We have extensively covered a large number of studies mostly from the field of
economics, statistics, and machine learning and in this respect, our proposed model
is unique and novel that brings a fresh perspective to solve a wide array of problems
using data as a supporting tool for the analysis.

We studied a diverse set of parametric, non-parametric, and ensemble models to
compare with our proposed models, we found a different set of performances and
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the evidence of results suggests to us that our proposed model generates superior
or enhanced performance with compare to a few set of existing machine learning
models.

The core idea in the thesis is to develop a novel model using the knowledge of
model averaging and multi-objective techniques and see the performance of such
models on banking data to project the idea of effective credit risk management or
risk management. The evaluation of the proposed model has been done by choosing
a diverse set of performance metrics to compare performances with a few of the
popular machine learning models.

Our approach in proposing the idea in this thesis is useful in many ways specifically
if the error of any predictive model is influenced by variance and low co-variance
between models. This proposed idea helps in addressing the problem of model
uncertainty by reducing variance and enhancing the performance of the model.

The primary advantage of using any model averaging technique is that we do
not have to worry about finding the best or true model. The approach combines the
best individual model to bring the best performance by averaging out that depends
on certain criteria for estimating weights.

In addition to the idea of model averaging and ensemble model technique proposed
in this thesis, the other approach to improve the performance of the model proposes
a few different strategies that are Pareto-based multi-objective optimization. This
approach to a certain extent offers an alternative solutions to the limitation of a
single-objective optimization problem.

The novel idea proposed in this thesis on model averaging and Pareto-based
multi-objective optimization is one of the useful techniques that have the capacity
to enhance the predictive accuracy of any learning model and the same idea can be
applied to many different problems where data analysis is the core task of interest
and is not limited only to solve classification problems.



Chapter 1

Introduction

The greatest challenge to any thinker is stating the
problem in a way that will allow a solution

Bertrand Russell

While writing this thesis, we aim to provide concise detail on our proposed
approach to the topic of model averaging, ensemble learning, and multi-objective
optimization that could be useful to applied statisticians and data scientists. Our
proposed idea is novel and takes inspiration linking theory to the field of statistics,
econometrics, and machine learning that broadly covers the frequentist and Bayesian
methods. The novel idea proposed in this thesis could find its potential use in solving
many different real-world problems that rely on data for any decision making or
inferences.

All the theory that comes under the classical statistical approach relies on the
parameter estimation of a single model that is assumed to be the best model among
a set of competing models. The problem with the classical approach in selecting the
best model is that they ignore to explain factors that lead to biased and over-fitting
estimates. Due to this limitation, model averaging can be used for the crucial task
of minimizing model uncertainty, minimizing error by averaging out, and most
important providing alternatives to enhance the performance of the ensemble model.
Keeping this motivation incorporated, our work in this thesis does not consider any
model parameter that could bias or over-fit estimation of weights and is rather a
few prudent ways of enhancing the performance of the ensemble model.

The developed approach in this thesis can potentially be applied to solve classifi-
cation problems of different domains like the detection of stock prices manipulation,
predicting the financial distress just to give few examples among others. It can

9



10 CHAPTER 1. INTRODUCTION

potentially be used in other fields like medicine (to detect any neuro-cognitive
disorder), different emotion recognition through image analysis, identification of
factors for better forecasts of GDP growth, identification of factors for business
model innovation ,and so on.

Many of the studies in model averaging centers around either frequentist meth-
ods or Bayesian methods. We compute the weighted mean of the prediction or
estimates in the frequentist approach from every single model and the estimation
of weights depends on certain information criteria like Akaike Information Crite-
rion (AIC), Bayesian Information Criterion (BIC), Cross Validation (CV) just to
name few. For detailed information on different criteria, the reader can refer to
chapter 3. In many contexts, the frequentist approach sometimes is seen as a way to
trade-off bias and variance.

On the other hand, the weights are either posterior probability assuming that
the model is true or obtained based on some other predictive methodology and these
weights are often constrained to be non-negative in the Bayesian context.

Our approach in proposing the idea of model averaging is useful in many ways
specifically if the error of any predictive model is influenced by variance and low
co-variance between models. This proposed idea helps in addressing the problem
of model uncertainty by reducing variance and enhancing the performance of the
model.

The idea of model averaging is quite historical and has been talked in many
different filed of study. The approach of combining the model dates back to 200
years ago when it was exercised to combine the coefficient of regression. Laplace in
the year 1818 computed and compared the properties of estimators like least squares
and weighted median. More details on the work of Laplace can be found in [118].

The primary advantage of using any model averaging technique is that we do
not have to worry about finding the best or true model. The approach combines
the best individual model to bring the best performance by averaging out which
depends on certain criteria for estimating weights.

Beyond Bayesian and frequentist approaches to model averaging, the literature
in the last 20 years has grown significantly both in terms of new theoretical approach
and application to many different problems. Our proposed idea of model averaging in
this thesis, although useful to many relevant problems, it is more specific to ensemble
modeling from a theoretical perspective and risk management from an application
perspective.

Many ensemble learning algorithms can be said as a supervised algorithm as they
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require training before making predictions. Any ensemble model produces better
results when we have a pool of diverse models to work with for a given problem. The
law of diminishing returns is very much prevalent in ensemble model construction as
the idea of including any less or more classifier than an ideal number of component
classifiers influence directly the accuracy of combined or weighted model.

Referring to the study by [121], any ensemble method is like wisdom of crowds
that provides an alternative for superior decision making. The ensemble model in
general is diverse, independent, decentralized, and aggregation of outputs from a
pool of models.

When the ensemble model is used in the context of a classification problem, it is
usually based on a framework composed by the following:

• A labeled dataset that is used as a training set.

• The base learner is a type of algorithm that establishes a relationship between
input and response variables.

• The generator is a type of function that is responsible for generating diverse
classifiers.

• The combiner is a type of function that combines the classification of diverse
classifiers.

We specifically deploy our proposed ensemble model in the context of credit risk
management. Many decision involved in the credit lending business makes it of the
utmost importance to rely on accurate models that can provide information about
a customer in the best possible way. For this reason, machine learning models are
getting significant attention as a way to better understand the creditworthiness of a
customer.

Model uncertainty is obvious to see in many cases, therefore it becomes difficult
to choose a single best model that can be generalized to serve different purposes.
Classification trees and the random forest do answer model uncertainty problems to
a certain extent by providing superior performance on a few problems but is not
common to a whole set of different problems. However, the empirical evidence in
our thesis supports that our proposal of weighting the model significantly improves
predictive performance as a way to enhance performance with the model combination
approach.

Model selection in statistical science is studied as a function of different criteria
to provide some answers to model uncertainty. We often look for a certain type of
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quality or measure in choosing the model and generally, there are certain trade-offs
amongst them. We have the possibility to deal with such kind of situations borrowing
the diverse knowledge from the field of optimization. However, it is not possible for
the most simple model to optimize more than one objective function. What we all
attempt to do with a single objective problem is either to minimize or maximize a
single function over its domain where the function is called the objective function.

Apart from model averaging and ensemble model technique proposed in this
thesis, the other approach to improve the performance of the model uses a few
different strategies that are Pareto-based multi-objective optimization.

The limitation of a single-objective constrained optimization problem is well-
known to solve many real-world scenarios. For instance, there are examples where
the use of optimization is used or considered as a promising field of study in machine
learning for minimization of different types of error rates but none of the studies so
far gives a handful guide in the context of a machine learning algorithm. For more
details, refer to [49]. To accurately deal with such a situation, one could extend error
or performance analysis of the machine learning problem from the perspective of
multi-objective functions and any such function with a constrained optimization
problem. Since the error and performance of any model are closely interrelated, we
always need to make sure to balance the inherent error-accuracy trade-off.

Often in practice, we come across varying performance or error reduction of
a model and we get puzzled to observe divergence or convergence among models.
Basically, it is hard to get absolute convergence from each of these models and
essentially a model is said to converge when the value of loss function moves close
to minima (local or global) with a decreasing trend.

To solve any problem through modeling, we often look for a solution that is
optimal in some sense but there arise instances where we might get a different
possible solution and so is the need of decision space that evaluate solution obtained
from different objective functions.

1.1 Objectives of the thesis

The primary aim of this thesis is to propose a few novel methods in terms of model
averaging and multi-objective optimization that provides appealing solutions to
improve the performance of the machine learning model. Although the proposed
idea in this thesis is applicable to many different problems that have something to
do with data or the use of the machine learning model, our focus of application with
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respect to the developed idea is basically attempted to predict the probability of
default.

Given the state of the art in credit risk management, our effort in this thesis is
to introduce a new weighted model of averaging approach which is more prudent
rather than the Bayesian or information-theoretic approach in reducing prediction
error. The novel idea proposed here has the capacity to enhance better performance
compare to the single best model (parametric, non-parametric, and ensemble model)
as evident in their empirical findings in chapter 6 and offers the possibility for an
effective credit lending process to decision-makers at a financial institution.

Following this effort, we studied a range of models that were parametric, non-
parametric, and ensemble models. We deployed those insights in developing a novel
idea of a weighted average approach to predict the probability of default. The
standard approach in making predictions does not identify a single best model due
to limitation in data for several plausible combinations of predictors and therefore
availability of different modeling approaches offers a solution to this problem.

Our objective in this thesis is to propose a new technique of weighted model aver-
aging that do not take into account any averaging model parameters. The weighted
model is compared based on a few key performance measure such as Hmeasure
(H), Area Under Curve (AUC), Area Under Convex Hull (AUCH), Minimum error
rate (MER) and Minimum Cost Weighted Error Rate (MWL) that helps to examine
predictive capability, discriminatory power, and stability of the results.

The primary contribution of this thesis is to enhance predictive performance
irrespective of the given number of model choice. One of the biggest advantage
of using any model averaging approach is to reduce variance and understand the
uncertainty involved in model parameterization and structure.

In this thesis, we also propose a few different strategies that is the Pareto-
based multi-objective optimization to enhance the objectives and performance of
the machine learning model, since it is well-known fact that the solution methods
equipped with a single objective function are not sufficient enough to deal with many
real-world problems in machine learning.

To tackle such challenges, the proposed approach provides a new perspective
and perhaps a better choice to use an optimization techniques to a diverse set of
machine learning problems. More specifically, our methodological approach is novel
in the sense that it incorporates theories of optimization and information science to
have a new understanding and performance comparison tool for learning algorithms.
The methodological approach developed in this thesis is useful for many real-world
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problems that seek the attention of multi-objective optimization or Pareto-based
multi-objective optimization as a solution method.

1.2 Organization of the document

The thesis is organized as follows:

• Chapter 2 presents a conscientious review of the relevant literature and state
of the art methods in support of our proposed approach. The strategy to review
articles mainly comes from the field of model averaging, ensemble learning,
and Pareto-based multi-objective optimization. Section 2.1 is dedicated to the
discussion on model averaging literature review focusing on the articles of the
past 20 years. Subsection 2.1.1 discuss the literature review on ensemble learning
starting from the historical reference as to how the idea of ensemble started
and their contextual usefulness for solving problems in Machine Learning. The
discussion on the literature review of Pareto-based multi-objective optimization
is dedicated in section 2.2 starting with an initial comment on the historical
idea of multi-objective optimization.

• Chapter 3 details the proposed models from theoretical perspective. Sec-
tion 3.1 explores background information on model averaging from Bayesian,
frequentist, and other information criteria. Section 3.2 contributes the knowl-
edge behind the model averaging that can be possibly applied to many different
problems especially in the field of machine learning and credit risk management.
Section 3.3 discuss in detail the factors that influence any estimation of weights
and proposes a different strategy for estimating weights. Section 3.4 presents an
additional discussion in support of the model averaging approach. Section 3.5
discuss possible properties in the context of the ensemble model. Section 3.6
describes our methodological knowledge behind multi-objective optimization
from the perspective of the Pareto-based approach, information science, and
machine learning as an integrated approach to enhance the performance and
accuracy of the model.

• Chapter 4 discusses the dataset in section 4.1, the nature of dataset and
strategies that were adopted to treat data for the analysis in section 4.2. The
chapter also describes, in brief, the software packages and software environment
in which the analysis was carried on the dataset in section 4.3.
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• Chapter 5 describes in brief a set of classifiers like parametric, non-parametric,
and ensemble models in section 5.1. Section 5.2 discuss in brief optimization
models that were studied in developing weighted model average and Pareto-
based multi-objective optimization strategies. The evaluation of proposed
models with respect to classifiers and optimization models were compared
using a set of diverse metrics that is briefly discussed in section 5.3.

• Chapter 6 discuss the results achieved from the proposed model using model
averaging technique in section 6.1 and using different multi-objective strategies
in section 6.2. All other additional results is discussed in section 6.3.

• Chapter 7 concludes the work demonstrated in this thesis and provides
possible future direction that could be helpful to enhance the filed further.





Chapter 2

State of the art

Machine learning is a new programming paradigm, a
new way of communicating your wishes to a computer.

Anonymous

This chapter describes the state of the art in the referred literature on model
averaging, ensemble learning, and Pareto-based multi-objective optimization tech-
niques to enhance the performance of machine learning models in relation to our
work in this thesis.

We structure this chapter in two sections focusing on model averaging techniques
in Section 2.1 . The section discusses the relationship with our proposed approach,
which is rather prudent than any Bayesian or information criterion from the logical
point of view. Section 2.2 establishes the literature review relationship with our
proposed methodology on multi-objective optimization from an interdisciplinary
point of view. The approach to select the relevant literature in this thesis has been
mostly from the field of economics, statistics, and machine learning.

Models are selected and constructed typically for a variety of purposes that try
to search and explain patterns in the existing data concerning to some underlying
structures. In many given problems, these underlying structures often are not
known ,and this leads to prediction error among the considered models. One of the
alternatives to address the model uncertainty problem is to use model averaging
techniques for plausible models, which is widely known in the academic community
of various disciplines.

17



18 CHAPTER 2. STATE OF THE ART

2.1 Model averaging: literature review

Over the last two decades, the focus on model averaging literature concerned around
Bayesian Model Averaging (BMA), where we set prior and treat model parameters as
unknown based on a Bayesian paradigm, and Frequentist Model Averaging (FMA),
where the chosen weights are determined under repeated sampling and asymptotic
optimality.

In a situation where it is not possible to find a single best model, model averaging
proves to be a useful technique for reducing prediction error through reduced variance.
We present here relevant literature that influences our work in this thesis starting
from the earliest contribution by J. Armstrong [3], to most recent studies.

Domingos [44] used a set of rules to compare bagging and partitioning methods.
The paper concludes that the Bayesian model averaging error rates are consistently
higher concerning to other methods, and this might be due to a marked tendency to
overfit on the part of BMA . However, this is a bit contradictory in the context of our
work where we use BMA as one of the ensemble models for classification problem and
it seems that the error rate for BMA is lower as compared to other ensemble models.
It is further possible to create a separate ensemble using the posterior distribution
of the BMA results.

A review of different Bayesian procedures for model averaging like the conven-
tional approach, Bayes information criterion, intrinsic Bayes factor, and fractional
Bayes factor is reported in the study of Berger et al. [11], which illustrates many
different examples with proper reasoning as to why the Bayesian approach is the
best method for model selection to deal with model uncertainty. Our work relates
to this with the idea of disseminating prior probability between competing models
with an appropriate choice of weights. This further implies that the probability
distribution of our constructed ensemble model follows a mixture of each model
probability distribution.

The central idea always remains the same, which is to assign weights to models
based on the proportion of time a model has been used to produce results of the
highest likelihood within the set of models. This kind of approach is also known as
Bayesian model averaging using expectation maximization and looks more frequentist
than Bayesian.

Many authors like Watanabe [126] and Gelman et al. [59] suggest to use a new
information criterion called Widely Applicable Information Criterion (WAIC) that is
derived in the Bayesian framework as an alternative to AIC . This kind of criterion
is based on uninformative prior and is calculated based on two logic. One way is to
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keep the log pointwise predicted density across posterior simulations for each of the
predicted 𝑘 values as log

∏︀𝑘
𝑖=1 𝑝𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝑓𝑖). The other way is to use a bias-correction

term as
∑︀𝑘

𝑖=1 𝑣𝑎𝑟(log 𝑝(𝑓𝑖|𝜃𝑠)) where the use of var is a sample variance between all
samples of posterior distributions of parameter 𝜃. The approach is more like using
some kind of likelihood function that observes data for any posterior distribution.
There is also a penalty parameter for model complexity that is proportional to
the given variance of such likelihoods across Markov Chain Monte Carlo (MCMC)
samples, which ultimately helps in deriving model weights analogously.

To derive model weights in the context of the information-theoretic framework,
models that are closer to data as quantified by the Kullback-Leibler divergence
receive higher weight concerning to models that are far away from data. Akaike [1],
and Burnham and Anderson [86] suggest several approximations of Kullback-Leibler
divergence, and all such indices can be calculated for models with likelihood function
and known parameters as 𝐴𝐼𝐶𝑘 = −2l𝑘 + 2𝑝𝑘, where l𝑘 is the log-likelihood of
any model 𝑘. One of the few alternatives proposed by [68] and [113] is to use
Mallow’s criterion to reduce mean squared error by penalizing model complexity
to −2l𝑘 − 𝑘 + 2𝑝𝑘. In terms of penalization factor for model complexity between
AIC and BIC is that AIC uses the constant 2 while BIC uses log(𝑛). A manipulated
version of AIC where the fitness of the model is assessed concerning to focal predictor
value called. However, such an approach can never be seen as a superior approach
since there are other variants like cross-validation and model pre-selection methods
that works as a weighting procedure for enhancing the performance of the model.

A different approach of model averaging, and in particular the contrast posterior
analysis gave a sampling model, is explained by Fernandez [51]. Their work tries to
provide an automatic or benchmark prior structure that could be used in many such
cases where there is little or no subjective prior information. In relation to benchmark
prior specification in linear regression context with model uncertainty, the paper
compares the predictive performance of many different priors citing examples that
are classically discussed in Economics.

A study of model averaging by offering equal weight as a starting reasonable point
with trimmed mean if the averaging techniques resulted from five or more methods
are reported in the study of Armstrong [114]. They emphasized that different weights
can be used if one has good domain knowledge or information on which method
should be most accurate. The technique is useful if there is uncertainty in the model
selection and if one wants to avoid a larger prediction error. Getting inspiration from
their work, we followed a slightly different approaches of equal weighting which are
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not in any sense the trimmed mean but simply a probabilistic measure with a larger
set of models that are parametric, non-parametric, and ensemble models.

We can compare BMA with non-Bayes forms of model averaging such as stacking
(which is simply a way of combining multiple models as a meta-learner [127]) where
model weights are not based on posterior probabilities but rather on techniques
using cross-validation. Bertrand [29] studied a sequence of examples by choosing
model lists and Data Generating Model (DGM) to assess the risk performance of
BMA and stacking. The robustness properties suggest that non-Bayesian techniques
like stacking perform better than BMA in all possible settings.

In the context of our work in this thesis, the concept of stacking is pretty simple
as we try to get a unified approach of weighting the model by minimizing co-variance
between the models and is different from the frequent practice of stacking that relies
on minimizing leave-one-out mean squared error.

A new criterion of model averaging was introduced by Claeskens et al. [77] and is
called Focused Information Criterion (FIC). The authors present the shortcomings
of other criteria like AIC, BIC, and Deviance Information Criterion (DIC). They
explain a perspective that focuses on a single parameter of interest rather than
multiple parameters of interest, which is a better estimate for the precision of the
sub-model estimator. Following this idea, our parameter of interest is to choose few
prudent ways of information criterion that allows selecting weights in an optimal
way to be able to enhance predictive performance.

A slightly different approach in contrast to famous approaches was suggested
by Barbieri et al. [7] for model averaging under the Bayesian framework, where
they select the optimal predictive model that is often the median probability model
defined as a model consisting of those co-variates that have a posterior probability
greater than or equal to 1/2 of being in a model.

A concept of thick modeling for model averaging is discussed in the study of
Granger et al. [62] that is based on many specifications in contrast to the usual
technique to choose the best criterion by testing and then use them as an output.
Basically, their approach is a portfolio selection and forecast combination that
suggests using bootstrap techniques as a sub-optimal solution.

The study proposed in [21] states that model averaging literature is being poorly
reflected in understanding the foundations of AIC and their comparison with BIC .
They further extend these arguments saying that AIC and BIC for model selection
should not be seen from Bayes versus a frequentist perspective. The choice of using
AIC or BIC is basically an intent-based model inference that produces useful results



2.1. MODEL AVERAGING: LITERATURE REVIEW 21

of model averaging. Following their work, Our intent-based model inference is a
different strategy of estimating weights that are based on the criterion which gives a
diverse choice of constructing ensemble model and enhances the performance of the
model.

The study of Nicole Augustin [4] proposed two approaches to account for model
selection uncertainty based on survival data. The first approach uses BMA for the
proportional hazard model where the averaging technique on a set of possible models
is done using weights estimated from bootstrap resampling. The other approach is
simply based on prognostic models. The paper shows that there is a lack of formal
justification and requires an additional analysis that might give better explanatory
power to the considered model.

A general technique of optimal model assessment was discussed in [116] using
data perturbation, which ultimately helps in model selection and model combination.
Using a frequentist perspective and model combination approach, the authors develop
a procedure for determining a few optimal parameters, like weights, that is used in
model combination to achieve better predictive accuracy by controlling the bias and
reducing the variance. Following their work, our approach for determining optimal
parameters like weights is based on the solution of different optimization algorithms
considered and in this respect, we have approximated value as the optimal weight
for constructing the ensemble model.

In many situations, we observe that a simple combination of models that do
not take into account the correlation between forecast errors is often the best
approach to estimate and obtain optimal weights. In [122], Timmermann further
discusses the advantages of this approach in model combination under asymmetric
loss, point, interval, and probability forecast. However, the very underlying solid
reasoning behind the simple combination of models is not well stated. Following
their work, Our approach for model combination is primarily based on co-variance
and contradicts the idea that correlation is the best approach for estimating weights.
In fact, the estimated weights using correlation discussed in the empirical work in
chapter 6 proves that achieving a weighted model through co-variance is a superior
technique against correlation.

A different method was suggested in [34], where posterior probabilities are
estimated and the model parameter averaging is done using MCMC under the
Bayesian framework. There is a pool of models that is updated at each iteration
where posterior probabilities are obtained by averaging continuous weights for each
model and using these weights the sample average parameters are obtained from each
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iteration, helping in achieving posterior densities for parameter difference between
models in the context of parallel sampling.

An extension to the standard approach of Bayesian model averaging is discussed
in detail by Eklund et al. (2007) [48], where the weights for the formed averaged model
come from the predictive likelihood instead of the standard marginal likelihood.

Such use of predictive measure often protects from the overfitting problem of in-
sample and enhances the predictive performance. This is largely due to the idea that
combined weights have good large and small sample properties. Following their idea,
our combination of weights does not have anything to do with sample properties
and in fact, the weights are constrained accordingly to suit the construction of
optimization problem stated in chapter 3 .

A new strategy was suggested by Hansen, B.(2007) [68] for selecting weights
that are called Mallow’s criterion and are simply an estimate of the average square
error from the model average fit. The paper discusses that Mallows Model Estimator
(MMA) achieves the lowest possible squared error in a class of discrete model average
estimators that are asymptotically optimal.

An integrated approach of all available literature on information criterion was
carried out in the study of GerdaClaeskens et al. [27] for model averaging to
investigate the idea of choosing the best model among candidate models to avoid
any real danger of overfitting. This work is the first of its kind to synthesize research
and practice from this active field to choose model selection criteria like AIC, BIC,
DIC and FIC to better understand uncertainties involved in the model selection.
Following their idea, our approach for understanding uncertainty does not necessarily
have to follow certain information criteria but can be done through other methods
like Kullback-Leibler divergence to be precise here.

The study of Garthwaite et al. [58] presents a slightly different discussion where
prior weights are chosen for the task of model averaging. In this method, models
that are similar are given smaller weights with respect to models that are distinct
among each other. Such an approach helps in offsetting those feature of the model
that are exaggerated due to correlation value for model averaging, and predictive
variance of all models are investigated using the empirical Bayes method to achieve
smaller variance. Our work slightly supports this idea to choose prior weights when
we use equal weight as one of the strategies for constructing a weighted model while
all other weighting strategy is not necessarily a process of choosing prior weights.

A new approach was introduced by Hansen [69] for model averaging called
Jackknife Model Averaging (JMA). This approach selects the weights by minimizing
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a cross-validation criterion. This criterion helps in obtaining appropriate weights that
come from the simple application of quadratic programming and is asymptotically
optimal. This method helps in achieving the lowest possible expected squared
error. The authors claim the efficiency of JMA through Monte Carlo simulations,
comparing their proposed method with existing averaging methods in presence of
heteroskedasticity. Following their idea, our approach is slightly similar to extract
appropriate weights but with a different approaches like minimizing co-variance in
the set up of quadratic programming.

The study carried out by Hoogerheide et al. [79] introduces a novel approach for
the model combination using Bayesian schemes that allow for parameter uncertainty,
model uncertainty, and robust time-varying model weights. The method is tested
against financial and macroeconomic data to compare predictive accuracy and
economic gains, and this result outperforms all other combination schemes based
on time-varying model weights. Our approach in following this idea is to choose a
model combination process based on fixed and random weights that do not vary
with time and is a very data specific approach.

A new method of model averaging called Bayesian adaptive sampling algorithm
was proposed by Clyde [31]. It works by sampling models without replacement from
the space of models. This method orders a model in a number of iterations with
potential variables under consideration and is tested against both simulated and
real data. The Bayesian adaptive sampling algorithm claims to outperform Markov
Chain Monte Carlo methods.

An approach where predictive models are seen as a weighted combination of
linear models is evaluated in the study of Geweke et al. [60] using a log predictive
scoring rule. Their optimal approach for combining models is to include all models
that have positive weights, while the models that are inferior according to the scoring
criteria are deleted. In our approach, we do not use the log predictive score value
but a simple probability score. The constrained weights in our case is a positive
weight that falls in the line of weighted model combination method but is a different
approach in an abstract sense.

Hastie [73] discussed a novel way of selecting and averaging the model based
on Reversible Jump Markov Chain Monte Carlo (RJMCMC), highlighting the
limitations of the Bayesian approach. The analysis carried by Bayarri et al. [10]
addresses the use of a model averaging technique under the Bayesian framework for
variable selection. Their results claim a new model selection objective prior with
useful properties.
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A new criterion of model averaging called Widely Applicable Bayesian Infor-
mation Criterion (WBIC) was introduced in the study of Watanable [120], which
is a generalized version of BIC onto singular statistical models where the average
likelihood function over the posterior distribution is defined by 1/𝑙𝑜𝑔𝑛, and 𝑛 is the
number of training samples. The advantage of WBIC is that it can be numerically
computed without having to know the true distribution.

The literature review done in [59] reflects some of the well-known information
criteria like Akaike, deviance, and Watanabe-Akaike from the Bayesian perspective
where their intention is to estimate expected out-of-sample-prediction error using a
bias-corrected adjustment of within-sample error. The primary contribution of this
paper is to review all the available information criterion from the perspective of the
Bayesian predictive framework and better understand them in practice through a
few small examples.

The idea of Credal Model Averaging (CMA) as an extension of BMA for strength-
ening robustness check is available in the study of Corani et al. [35], which reveals
that the model substitutes single prior over the models by a set of priors. Unlike
BMA, CMA does not behave like a random guesser as it detects prior-dependent
instances that, in other sense, is a weakness of BMA .

The study by Moral-Benito et al. [98] presents the notion of model averaging in
the context of Economics where uncertainty in the model selection is often ignored
primarily due to biased choice of selecting a model. The biased choice is due to the
fact that possible space of models and the selected model is believed as if generated
from data. The paper brings a comprehensive review of model averaging techniques
integrating much different literatures of Economics.

The figure 2.1 presents a graph that infers information of the highly cited authors
on model averaging for considerable period of time.

Figure 2.1: Highly cited authors in research area of model averaging. Source: [117].
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The information in table 2.1 lists different model averaging technique and their
computational speed in general to execute such methodology.

Table 2.1: different model averaging approach and computational speed.[45].

model averaging technique computational
speed

RJMCMC Slow
Bayes factor Slow
BMA-EM Moderate
Fit-based weights Rapid-slow
ARMS Moderate
Bootstrapped model weights Slow
Stacking Slow
JMA Slow
Minimal variance Rapid
Cos-squared Rapid
Model-based model combinations Moderate
Equal weight Rapid

The study by Lessman et al. [92] presents a review of a 10 year study as a state-
of-the-art classification algorithm for credit scoring from the perspective of machine
learning. They provide a unified approach of the credit scoring field integrating broken
literature and updating their study based on Baesens et al. [5], which compares
many novel classifications in the field of credit score modeling. The paper provides
many independent assessments of scorecard methodologies and presents a viewpoint
as new baseline research to be helpful for decision-makers at a financial institutions.

Very similar to the previous idea, we have considered classification models for
scoring probability of default as a case-based study but our approach is actually
creating a scorecard is different and unique in the sense that we have focused on
constructing a novel ensemble model from a set of parametric, non-parametric and
ensemble models. This is possible because of the different weighting strategies that
we adopted to construct a novel ensemble model for developing a scorecard for
effective credit risk management.

The information in figure 2.2 presents progressive view of articles in numbers
that has been added on the topic of model averaging in the last 30 years.

A model averaging approach with optimal weights performs often poorly in many
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Figure 2.2: A progressive view of 30 years of model averaging articles.Source: [117] .

applications and is well described in their study by Gerda et al. [28] . The paper
explains the comparison of fixed and random weights for optimal weights derivation.
The approach confers the disadvantage of random weights over fixed ones which
makes the model average combination a little more biased, and variance will be
larger with respect to fixed weights.

In contrast to this, the story behind our approach is different and supports an
alternative view of argument. For instance, the idea of choosing optimal weight
based on a constructed optimization problem do provide better results and the same
is true for choosing fixed and random weights.

An alternative approach to Bayesian averaging called Bayesian Averaging of
Classical Estimates (BACE) to compare model reduction strategies was introduced
by Blazejowski et al. [13], which helps to obtain the most probable set of determinants
along with posterior parameter estimates that are based on averaged or combined
model space.

Desbordes et al. [114] suggest a flexible approach of Bayesian model averaging
that highlights few key insights such as not all determinants will be relevant for model
uncertainty, there is a valid assumption on a homogeneous slope, cross-sectional and
time-series relationship can diverge even in case of omitted variable bias.

Schomaker [41] attracts a few relevant literature reviews that explains when and
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when not to use optimal model averaging technique especially in the use of standard
errors and confidence intervals in dealing with model selection problem. Overall,
the paper puts some benefiting arguments contradicting some popular beliefs in the
forecasting literature.

2.1.1 Ensemble model: literature review

After knowing the latest developments in the field of model averaging over the last
20 years, we shift the attention of readers to model averaging in the context of
ensemble learning, and more specifically with machine learning which is the primary
focus of our research work. For this purpose, we describe a bit of the origin of the
ensemble method from a historical perspective.

Marquis de Condorcet in the 18th century wrote an article entitled “Essay on the
application of analysis to the probability of majority decisions”. This work introduces
Condorcet’s jury theorem that refers to a jury of voters to decide on a binary response
variable. More specifically, if every voter has a probability 𝑝 of being correct and all
majority voters have 𝐿 probability of being correct then generally two conditions
are satisfied:

1. if 𝑝 > 0.5 implies 𝐿 > 𝑝, and

2. if number of voters increases to infinite then 𝐿 converges to 1 for any 𝑝 > 0.5.

However, this theorem has certain limitations, mostly concerning the assumption
made, like voters are independent and there are only two possible outcomes. A
correct decision is made if these two preconditions are met. Therefore it is naturally
possible to combine the votes of the jury whose decision is slightly better than any
random vote.

The notion of this theorem can be applied to a supervised learning problem
where a strong learner behaves like an inducer for labeled training data set that can
produce arbitrarily accurate classifiers, whereas a weak learner produces classifiers
that are slightly better than random classifier.

Furthermore, the idea of weighting the model is conceived from history in the
19th century when Sir Francis Galton, while visiting a livestock fair, became curious
by a simple weight guessing contest, and during the contest, he realized the average
of all guesses from different persons is equal to the exact weight. After his visit, he
shared with the scholar community the power of averaging or combining multiple
simple models to achieve better predictive performance.
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We know very well that any ensemble technique that combines multiple expert
models keeping bagging and boosting as a base learner or commissioning model
performs significantly better than any single model, and this represents the state of
the art of learning approaches. Our research work mostly centers around the use of
multiple classifiers where the main idea is to find a few intelligent ways of weighing
the classifiers so that the combined classifier outperforms any individual classifier.

The idea of using ensemble methods to supervised learning started in the late
seventies when Tukey in 1977 suggested an approach of combining two linear
regression models where one model is fitted to the original data and the other model
is fitted on the residuals [78] . For an extensive list of materials after the seventies
that were focused on exploring the idea of ensemble methods is reflected in many
studies. For instance, Dasarathy and Sheela in 1979 [37] suggested using two or more
classifiers for partitioning the input space into units of smaller spaces to see the
performance of classifiers in individual spaces as an alternative to combining only
regression models.

The popularity of ensemble methods, however, was stronger in the nineties. For
this reason, it is good to refer to the study of Hansen and Salamon (1990) [70],
Schapire (1990) [112], Freund and Schapire (1996) [54] for any further additional
details.

Breiman [18] introduced to the world in 2001 a famous algorithm called random
forest, which is a combination of tree predictors and is dependent on the values of
random sample independent vector which has more or less the same distribution
in the forest. The algorithm is based on the random split of features that yields an
error rate comparable to Adaboost but generally is robust with respect to noise. Any
generalized error of the classifier in the forest depends on the strength of individual
classifiers and the correlation between them. Moreover, the generalized error of
the classifiers in the forest converges to almost surely to a certain limit if the tree
classifier in the forest becomes large enough. Following this work, Our approach
for generalizing the error in the collection of classifiers depends on co-variance
between models, and correlation is used simply as one of the methods for computing
alternative weights for constructing an ensemble model.

In [95], Frelicot introduced the idea of combining classifiers with two reject
options that operate in a two-steps procedure and differ in terms of managing the
ambiguity and distance rejection. The procedure is executed using a concept from
the theory of evidence and, based on some probabilistic rules, the classes are rejected
before combination. Once the combination is done a rule is established either to
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classify or reject patterns due to distance or ambiguity.

The idea of building a decision tree based on the procedure of randomized
sampling is suggested in 2001 by Kamath et al. [84] . By randomization, they mean
using random samples of training data where a conventional tree algorithm can be
run by randomizing the induction algorithm itself. The primary objective of the
paper is to introduce the novel randomized tree based on the induction method that
uses sampling criteria to determine the split at the node. Their suggested approach
proves through experimental results that it is competitive in terms of accuracy
and superior to boosting and bagging in terms of computational cost. Following
their idea, we have adopted randomized sampling for training data using q-fold
cross-validation for each model to achieve better accuracy with compare to other
tree-based algorithm.

Seewald et al. [115] suggested a meta-classification technique to identify and
correct incorrect predictions at the base level. The approach is graded predictions
as a meta-level class, which is slightly different from stacking that uses predictions
of the base classifier as a meta-level attribute. Their experimental results suggest
superior performance when using grading and stacking as meta classification schemes
with respect to voting and selection by cross-validation. Our proposed technique in
this context is to construct an ensemble model that logically can be categorized as
one of the meta-classification models. The combination process in our context works
on the idea of estimating weights in a way that is able to enhance the performance
of the model.

A new ensemble technique called Negative Correlation Learning (NC) was pro-
posed by Brown et al. [20] in 2003 borrowing the concept from evolutionary com-
putational theory where they prove this technique as a decomposition of Krogh
and Vedelsby which is nothing but a simple derivative technique. There are several
advantages of this method, among which is that we are able to find parameter
bounds, rescaling the estimation of ensemble covariance to achieve a system that
helps to have better predictive performance. This idea may or may not be directly
linked to our proposed approach as one of the weighing strategies is to allow negative
weights for constructing ensemble learning. The negative weights could be due to
higher co-variance or correlation between models.

In [29], Bryll introduced attribute bagging, an alternative approach for improving
and enhancing a classifier using a random subset of features. It is a wrapper method
for any learning algorithm that takes an attribute subset size and randomly selects
a subset of features that helps in obtaining the projections of the training set where
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ensemble classifiers are built. The paper shows with further examples that the
attribute classifier performs better than bagging both in terms of accuracy and
stability. Relating to our work, we did not restrict to use a random subset of features
for enhancing classifiers but a set of features that are ranking based features by
impurity measures like Gini impurity.

Dimitriadou et al. [42] in 2003 incorporate the idea of the ensemble from regression
and classification problem to the clustering algorithm as it helps to improve the
quality and robustness of the results. The primary idea of aggregation or averaging
relies on minimizing average dissimilarity apart from several other ideas proposed in
the paper for aggregation.

In 2003, Kuncheva et al. [91] suggested that diversity is a key point while combin-
ing classifier and measuring diversity through any formal theory is often unknown.
The paper describes ten statistics to measure diversity with an experimental set
up to see the relationship between accuracy and diversity. Following this idea, our
approach for constructing an ensemble classifier is to include diverse classifiers that
is parametric, non-parametric, and ensemble models. The measure of uncertainty
between models through statistical distance is a diversity measure in our case.

Melville et al. [96] presented a methodology of constructing diverse hypotheses
of ensembles using an additional set of artificially trained examples. The proposed
technique is general and simple in the sense that it keeps a strong learner as a base
while creating a committee of ensembles. Their experimental results using decision
tree induction as a base learner confirm to achieve higher accuracy compare to
bagging and boosting.

The study of Tumer in 2003 [104] explores the input decimation as a method
that selects feature subsets to make them able to discriminate among the classes and
then later decouple the base classifier. The paper further explains that this is only
possible if there is less correlation between classifiers, which in turn outperforms
ensemble that uses all input features in terms of performance and accuracy.

Caruana et al. [22] in 2004 suggested a new technique of creating ensembles
from libraries of thousand of models which are constructed using different learning
algorithms and parameter settings. In order to maximize performance for ensem-
ble models, the forward stepwise selection is used, which in turn also optimizes
performance metrics like ROC area, accuracy, cross-entropy and mean precision.

Many ensemble techniques come with their own limitations and few of these
limitations are addressed by Chawla et al. [25] in 2004 for two popular ensemble
techniques that are bagging and boosting mainly dealing with massive data size. To
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solve this, the authors suggest the use of voting many classifiers that are built on
subsets of large data size and is considered one of the promising approach on top of
bagging and boosting to learn from massive data sets. Experimental results suggest
that thousands of classifiers can be set up in a distributed way to achieve faster,
accurate, and scalable solutions.

Dzeroski et al. [46] presented the idea of evaluating several states of the art
methods for constructing heterogeneous classifiers based on stacking methodology.
The Stacking approach with a probability distribution and multi-response linear
regression always performs best selecting the classifier from the ensemble if cross-
validation is a criterion for selection. Moreover, the paper describes two more
extensions of this methodology where one method is to extend a set of meta-level
features and the other is to use multi-response model trees to learn at the meta-level.

The information in table 2.2 lists different model categories of ensemble model
and their weighted approach as an ensemble scheme.

Table 2.2: Model categories and ensemble scheme.

Model Ensemble scheme

AdaBoost Weightining (input manipulation)
Bagging Weightning (input manipulation)
Random forest Weightning (ensemble hybridization)
Random subspace methods Weightning (ensemble hybridization)
Gradient boosting machines Weightning (output manipulation)
Error-correcting output codes Weightning (output manipulation)
Rotation forest Weightning (manipulated learning)
Extremely randomized trees Weightning (partitioning)
Stacking Meta-learning (manipulated learning)

Liu et al. [93] examined in 2004 the relationship of ensemble size with accuracy
and diversity. The paper proposes the idea of compact ensembles where it is possible
to keep small ensembles while maintaining accuracy and diversity with compare to
full ensembles. The paper strongly favors the idea that such methodology is useful
for effective learning for classification of unlabeled data.

In 2004, Rudin et al. [110] studied the convergence properties of the Adaboost
algorithm by reducing the algorithm to a non-linear iterated map and considering the
evolution of its weight vectors. They find the number of cycles due to the dynamical
system nature of Adaboost that explicitly solves Adaboost algorithm output. Their
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work is slightly related to our proposed idea that we also evaluated the possibility of
convergence of optimization problems in consideration that in turn helps in achieving
the optimal weights.

Polikar [106] relates decision making based on ensemble learning or averaging with
many real-world examples where financial, social, medical, and other implications
that really matter in order to make a decision. The primary methodology of the
paper is to explain the committee of expert models with the help of many visual-art
techniques that are easy to comprehend and intuitively grasp the underlying meaning
of a few well-known ensemble learning algorithms. With comparison to this, Our
proposed idea of the ensemble model is represented through the visual technique of
the ROC curve. All the considered classifier and their performance are visualized
through ROC curve that serves as one of the best technique for assessing the class
label of many classification problems.

The study of Banfield et al. [6] in 2007 examines bagging and many other
randomized classifiers for creating an ensemble of the classifier which were evaluated
for significance test using statistical techniques. In their approach, bagging is more
accurate statistically with respect to other methods but when comparing the average
rank of the algorithm, it is found that boosting, random forest and randomized trees
are statistically better than bagging.

Cohen et al. [33] in 2007 investigated the idea of instance space decomposition
as a decision tree framework and using this framework the instance space is divided
into multiple spaces and each distinct classifier is applied on that subspace. The
paper actually presents a novel idea of splitting a rule where it is possible to improve
the implementation of framework both in terms of accuracy and computational cost
time.

In 2007, Garcia-Pedrajas et al. [57] proposed a novel idea of enhancing accuracy
and making a pool of diverse individual classifiers where they construct an ensemble
using non-linear projections. The primary contribution of the paper is to use projec-
tions of those instances that have been difficult for any previous classifiers instead
of using random subspace. By doing this, non-linear projections are created with
the help of neural networks in a consecutive way for those instances that have been
misclassified and is comparable to boosting and bagging for performance increase.

The idea of P-Adaboost was proposed by [97] in 2007 as a novel use by the
parallelization of Adaboost that is basically built on the dynamics of Adaboost
weights and in short are an approximation of standard Adaboost which can be
efficiently distributed over computing nodes. Experimental results are conducted



2.1. MODEL AVERAGING: LITERATURE REVIEW 33

both on synthetic and benchmark data that supports the properties of P-Adaboost
as a stochastic minimizer of Adaboost cost functional.

Tsoumakas et al. [124] is a review paper about ensemble selection that discusses
the reduction of ensembles of predictive models to improve efficiency and predictive
performance. The focus of the paper is to categorize those methods that are based on
a greedy search of the space of all ensemble subsets. The paper highlights different
directions and measures that provide a general framework of the greedy selection
ensemble algorithm.

Sagi et al. [111] is a recent review article (the year 2018) on ensemble learn-
ing that provides state-of-the-art for machine learning perspective and challenges
aforementioned within this field. The unique perspective of this review study is to
integrate the intense study of ensemble learning in the context of deep neural net-
works, distributed algorithms for training ensemble models, and converting ensemble
models into their simpler models.

Breiman,L. (2001) [19] is a interesting studies that discuss different cultures of
statistical modeling for reaching conclusion from data. One culture advocates the
underlying assumptions that the data are generated by random kinds of stochastic
phenomena and other kinds of culture is the algorithmic model that treats data
strategically as unknown phenomena. The paper explains the pros and cons of both
cultures highlighting the need for the adoption of a diverse set of tools for solving
problems of different fields using data.

2.1.2 Credit risk: literature review

Of recent, the use of machine learning models is having increased adoption in many
different tasks of credit risk modelings such as identification of early warning system
for predicting financial distress, corporate default, forecasting mortgage, or any other
credit portfolio default risk.

Chakraborty et al.(2017) [83] advocates the use of the machine learning model to
detect financial distress using balance sheet information and their studies conclude
performance increase of 10 percentage points compared to logistic regression model
as a preferred classical approach of financial institutions.

Khandani et al.(2010) [87] applies state-of-the-art of non-parametric machine
learning models to predict the default of consumer credit risk by merging transactions
and credit bureau data. Their work demonstrates that prediction of risk can be better
improved using machine learning techniques in comparison to classical statistical
approaches and any subsequent loss of lenders therefore can significantly be improved.



34 CHAPTER 2. STATE OF THE ART

Albanesi et al.(2019) [2] applies deep learning approach as a combination of
neural network and gradient boosting for high dimensional data to predict default of
consumer risk. Their work shows superior performance compare to logistic regression
models and is also able to adapt to the aggregate behavior of default risk easily.

The studies of Bachman et al.(2017) [43] compares the performance of machine
learning models with industry-developed algorithms such as Moody’s proprietary
algorithm and suggests improvement of 2-3 percentage points in performance of
the machine learning model. Their approach is a bit difficult to relate with the
underlying firm characteristics in predicting default of credit risk although credit
behavior-related variables increase the discriminatory power of the considered models.

Fantazzini and Figini (2009) [50] proposes a non-parametric approach based on
random survival forests in predicting credit risk default of small-medium enterprises.
The performance comparison of the proposed model with the traditional logistic
regression model reveals a weak relationship of the performance between training
and testing sample thereby suggesting an over-fitting problem which is mainly due
to contrasting testing sample performance of logistic regression better than the
proposed random survival models.

Several other studies like Kruppa et al.(2013) [90], Yuan(2015) [129], Barboza
et.al (2017) [8] confirms superior performance for prediction of credit risk using
machine learning compared to any other statistical approach.

2.2 Pareto-based multi-objective: literature review

The historical origin of multi-objective optimization is not known exactly. However,
it is much acknowledged that the concept was borrowed from the field of Economics
and is credited to Francis Y. Edgeworth (1845-1926) and Vilfredo Pareto (1848-1923)
for introducing the concept of non-inferiority in the context of economics. Since
then, the field of multi-objective optimization has been evolved in many diverse
fields at an increasing pace. For any further detail on the historical perspective of
multi-objective optimization, one can refer to [38] .

Belton et al. [125] provided in 2002 an integrated approach of multi-objective
optimization, known as Multicriteria Decision Analysis (MCDA), which focuses
on the development of the field in the last quarter-century from different sources.
The book is concise and comprehensive to understand the underlying theories and
philosophies of MCDA . The insights are drawn in the book help readers to implement
any approaches in an informed manner and provides a holistic view of different
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theories from broader management theory, science, and practice.

Dellnitz et al. [40] suggested in 2005 the idea of solving multi-objective optimiza-
tion problems numerically that is global in nature and allows the approximation
of the entire set of Pareto fronts or specifically global Pareto points. The paper
describes few procedures for convergence of solutions and the results achieved are
used to develop different algorithms. These algorithms are combined together for
better understanding, citing real-world examples to improve the overall performance
of the achieved Pareto solution. In contrast to this, our approach for approximating
the Pareto front solution depends on the unordered approach and does not follow
necessarily any ordered approach like a priori, posteriori, and interactive methods.
The Pareto solution obtained through our proposed multi-objective problem is a set
of local and global optimal points.

The study of [47] in 2005 considers many engineering and social science problems
where various conflicting objectives are solved through multi-objective techniques.
They provide in their explanation the mathematical reasoning to solve linear, non-
linear, and combinatorial problems with multiple criteria. Their methodology provides
Pareto-optimal solutions that are not within the capacity of traditional mathematical
models.

Konak et al. (2006) [89] bring a tutorial perspective of multi-objective opti-
mization using a genetic algorithm and are well captured in their studies. The
use of Genetic Algorithm (GA) are a meta-heuristic technique that is particularly
well suited for problems of multi-objective optimization and generally, there are
a lot of approaches like utility theory, a weighted sum of methods which weigh
selection problem to characterize decision-maker choices. The paper brings com-
prehensive understanding of many algorithm like Vector Evaluated Genetic Algo-
rithm (VEGA), Multiobjective Genetic Algorithm (MOGA), Weight Based Genetic
Algorithm (WBGA), Niched Pareto Genetic Algorithm (NPGA), Random Weighted
Genetic Algorithm (RWGA), Pareto Envelope-based Selection Algorithm (PESA),
Pareto-Archived Evolution Strategy (PAES), Nondominated Sorting Genetic Al-
gorithm (NSGA), Strength Pareto Evolutionary Algorithm (SPEA), Rank-Density
Based Genetic Algorithm (RDGA) and Dynamic Multi-objective Evolutionary Al-
gorithm (DMOEA) in unique and simple style. Following their work, our proposed
approach is a meta-heuristic in the sense that they are weighted and computationally
evolutionary.

The table 2.3 list down the few popular multi-objective algorithm and the fitness
function that is embedded in the algorithm for evolutionary computation.
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Table 2.3: Popular multi-objective algorithm.

Algorithm Fitness function

VEGA different objective is being assessed based on subpopulation.
MOGA ranking based on pareto approach.
WBGA normalized objectives as a weighted average method.
NPGA fitness function is missing and only tournament selection.
RWGA normalized objectives as a weighted average method.
PESA fitness function is not assigned.
PAES In case offspring dominates, parent is replaced by pareto dominance.
NSGA non-domination sorting way of ranking.
NSGA-II non-domination sorting way of ranking.
SPEA non-dominated solutions as a ranking based external archive.
SPEA-II dominators strength are assessed.
RDGA using solutions rank and density as objectives, problems are opti-

mized as bi-objective problem
DMOEA ranking based on cell method.

A review study in the year 2006 by [80] presents the strength and weakness
of many multi-objective algorithms in favor of which few test problem criteria are
introduced which in turn is supported by a set of definitions. Based on the motivation
that many test problems are not correctly constructed, so is the poor representation
of non-separable of multi-modal problems, and to meet this gap, the paper addresses
a flexible toolkit for constructing the problem accompanied with empirical results
that show how the proposed toolkit can be used as an optimizer in ways that
traditional toolkit does not address.

In support of this study, finding an optimal solutions of multi-objective problems
is difficult and this poses certain challenges in ordering the solution. The challenge
in solving the multi-objective problems is not very informative and lacks mature
study in many different contexts. Due to this, it can be said that such challenge
poses to be one of the main weakness of the multi-objective optimization problem at
least in our opinion.

Carlos et al. [32] describe evolutionary algorithms for solving multi-objective
problems integrating contemporary knowledge. The paper provides an overview
of many algorithms that are state-of-the-art research results available in the year
2007. They have explained many Multiobjective Evolutionary Algorithm (MOEA)
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techniques using practical examples apart from explaining MOEA test functions
and performance measures.

Tapia et al. [23] present a review study of multi-objective evolutionary algorithms
in the field of economics and finance explaining the uniqueness, strength, and weak-
ness of literature for five groups of applications like investment portfolio optimization,
financial time series, stock ranking, risk-return analysis, and economic modeling.
In contrast to this, our approach was primarily focused on using a multi-objective
optimization algorithm for effective risk and portfolio management.

Juergen et al. [14] combine knowledge from the seminar series to give different
perspectives on interactive and evolutionary approaches of multi-objective opti-
mization. Their methodology focuses on continuous problems and not on discrete
problems and introduces many basics of multi-objective optimization that can be
extended to non-linear multi-objective optimization in the context of Evolutionary
Multiobjective Optimization (EMO) and Multicriteria Decision Making (MCDM),
including both interactive and non-interactive approaches.

Deb [39] provides introductory and simple explanations of multi-objective op-
timization that involve optimizing many objective functions simultaneously. The
explanation of the approach is using an evolutionary algorithm to solve objectives
that are conflicting and differ from each other and finding a set of optimal solutions
for objective functions is often challenging. While solving such problem with or
without constraints, a set of solutions is generated that are Pareto-optimal solutions.
In this context, the basic approach is the use of population search methods known
as evolutionary multi-objective optimization. The paper also highlights the journey
of evolutionary multi-objective optimization through various actors as being an
established field in recent times.

Ehrgott [47] published and integrated many stories of multi-objective optimization
focusing on the minimization with respect to total and partial orders.





Chapter 3

Methodology

Big data is at the foundation of all of the mega-trends
that are happening today, from social to mobile to the
cloud to gaming.

Chris Lynch

This chapter brings our methodological contribution to the proposed idea of
model averaging and multi-objective strategies. The proposed idea has the capacity to
enhance the performance of the learning algorithms ,and should be viewed as one of
the novel methods to construct an ensemble model to achieve superior performances.
We start with a section that provides some background information of the proposed
methodology and then subsequently moves to the core idea in their corresponding
section.

Section 3.1 explores background information on model averaging from Bayesian,
frequentist, and other information criterion. Section 3.3 discusses in detail the
factors that influence any estimation of weights and proposes a different strategy for
estimating weights. Section 3.4 presents an additional discussion in support of the
model averaging approach. Section 3.5 describes possible properties in the context
of the ensemble model.

Section 3.2 contributes the knowledge behind the model averaging that can be
possibly applied to many different fields especially in the field of machine learning
as a beneficial approach to the different predictive tasks. For instance, we applied
the proposed methodology on a credit default prediction analysis in the scope of
this thesis.

Section 3.6 describes our methodological knowledge behind multi-objective opti-
mization from the perspective of the Pareto-based approach, information science ,and

39
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machine learning as an integrated approach to enhance performance and accuracy of
the model. At the best of our knowledge, the idea proposed in this context is novel
and unique that perhaps is not been addressed so far in the literature in the way our
thought process is poised in achieving greater efficiency and accuracy of the learning
model.

3.1 Background Information

Majority of the study on model averaging centers around BMA that comes from
the Bayesian domain where one needs to set a prior since the model parameter is
unknown. The other popular approach is FMA where a prior selection of weights
is important to understand the nature of estimators under repeated sampling and
asymptotic optimality. There are handful of different information criterion beyond
this which takes their own space and carries extended discussion in the context of
model averaging.

Taking inspiration from the model averaging approach, the field of machine
learning has diversified especially the importance of ensemble model where the basic
goal is to combine a set of expert models with low bias and high variance to average
them to achieve superior accuracy. The technique of ensemble learning is used as a
cutting-edge tool in corporations and among practitioners to retrieve an efficient
set of patterns from the data. Our effort in the proposed approach is an attempt to
construct an ensemble model that might find its relevance and importance for many
different problems that depend on data for decision making.

Beyond Bayesian, frequentist ,and information-theoretic approach, there are
other approaches of model averaging whose goal is to choose weights for the model in
such a way to optimize the prediction error. Any simpler way to take average weight
depends on the estimate of the prediction error of every single model that is derived
using CV . The CV method irrespective of how many folds are used approximates
a model performance on hold out data that can be quantified in many ways with
specific distribution using likelihood function as in the following Equation 3.1:

l𝑘
𝑐𝑣 =

𝑘∑︁
𝑖=1

l(𝑓[𝑖]|̂︀𝜃𝑘
𝑓[−𝑖]

) (3.1)

where l is a likelihood function, f is a density function and 𝜃 is a parameter for a
given probability distribution function.

However, the approach just mentioned is prone to overfitting and to penalize any
overfitting from such computation, it is important to understand how to compute
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model weights and in many cases is equivalent to AIC and Kullback Leibler (KL)
distance as follows in the Equation 3.2:

𝑤𝑘
𝑐𝑣 = 𝑒l

𝑘
𝑐𝑣∑︀

𝑖∈𝑘 𝑒l𝑖
𝑐𝑣

(3.2)

We are not going into the details of all the possible CV methods with likelihood
functions that are used for the model fitting task, as dedicated studies on this topic
are available and one can refer to (Stone [119], Hauenstein et al. [74]) for any further
details. Few of the important CV methods in the context of machine learning are
jackknife model averaging and stacking to compute model weights. They are one of
the finest ways to optimize model weights to reduce the error of predictive models on
hold out data.Several authors like Hastie et al. [73], and Wolport [127, 128] finds that
such methodology to optimize model weights is equivalent to Root Mean Squared
Error (RMSE) with likelihood as evident in Equation 3.3:

arg min
𝑤𝑘

{︃
l(𝑓[𝑖]|

∑︁
𝑤𝑘
̂︀𝑓(𝑋𝑖|̂︀𝜃𝑘

[−𝑖])
}︃

(3.3)

It works with a procedure that is repeated many times to derive a vector of
optimized weights that are averaged across repetitions whose sum is equal to 1 after
re-scaling. Refer to [128] and [30] for many interesting case studies that also explore
such topics in the Bayesian context. The stacking and jackknife model averaging
conceptually is the same as they use a similar kinds of optimization function. In
stacking, for each single run, the weights are optimized, while for jackknife only one
optimization function is used for all leave one out cross-validation.

Very similar to our methodological approach, many studies on model averaging
refer to two approaches. One is the use of a minimum variance approach (Bates
and Granger [9]) that puts more weight to models with low-variance predictions.
The other approach is to compute weights using the variance-covariance matrix of
the model predictions in the context of multi-model generalization (Newbold and
Granger [103]) as evident in Equation 3.4:

𝑤𝑚𝑣 = (1
−1∑︁

1)−11
∑︀−1 (3.4)

Certainly, this can be said as one of the analytical solutions that assume no bias,
and weights are considered as random weights since they sum up to 1. Sometimes it
happens that the models among themselves are correlated, which needs adjustment.
One such adjustment method is cos-squared weighting that assigns lower weight to
highly correlated models and if the distribution of weights is identical then it is added
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to the set to optimize weights for reducing prediction error. For any further details
on such a weighting method, refer to the study by Garthwaite,P. et.al (2010) [58] .

The other adjustment method that could be relevant in this context is the idea
of a super-ensemble model where different models are combined in a regression
framework and can take any form like a linear model or a neural network. However,
there are some drawbacks to such approaches, like the high probability of overfitting
due to fitting the same data twice or multiple times. This is a bit unexplored topic
both in theory and practice whose variants strongly depend on how cross-validation
is done for fitting the considered models in the super-ensemble approach. Refer to
Granger and Ramanathan [63] for more details.

Similarly, the other trivial weighting scheme is the use of equal weights that serve
as a reference methodology to know if reducing weights actually reduce prediction
error or not for a set of contributing models. It proves out to be a useful technique
on many occasion with compare to other weighting methods.

A well-known information criterion that is not widely used but is worthy of atten-
tion is Hannan and Quinn criterion [67] and works on the principle of autoregressive
order selection. This is to say if the data is generated by an autoregressive model
of order 𝑛0 and any selected model of order 𝑛0 converges almost surely when the
sample size goes to infinity.

Keeping it short, the method selects a model by minimizing ℎ𝑞𝑡 = −2 ̂︀l𝑛,𝑡 +
2𝑐 𝑑𝑡 log log 𝑛 where ℎ𝑞 refers to a small possible penalty to ensure strong consistency.
Moreover, there exists a bridge criterion to provide additional support that selects
the model 𝑓𝑡 and minimizes the following Equation 3.5:

𝑏𝑐𝑡 = −2 ̂︀l𝑛,𝑡 + 𝑐𝑛(1 + 2−1 + . . . + 𝑑−1
𝑡 ) (3.5)

Many other criteria like Minimum Message Length (MML), Minimum Description
Length (MDL), DIC ,and Generalized Information Criterion (GIC) are motivated
from other perspectives to bring consistency of model selection or model averaging
approach. We explain in brief all these information criteria as follows:

• The MML is a criterion to select model weights that minimizes the following
Equation 3.6:

− log 𝑝(𝜃) − log 𝑝(𝑥|𝜃) + 1
2 log |𝐼(𝜃)| + 𝑡

2(1 + log 𝑡) (3.6)

• The MML criterion also represents one of the ways to describe the best model,
which leads to the best compression of given data ,and the model is selected
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in this framework by minimizing the stochastic complexity as in the following
Equation 3.7:

− log 𝑝𝜃1(𝑓1) −
𝑛∑︁

𝑡=2
log 𝑝𝜃𝑡(𝑓𝑡|𝑓1, . . . , 𝑓𝑡−1) (3.7)

• The DIC was proposed basically as a measure of Bayesian model complexity
and this criterion can be viewed as a Bayesian counterpart of AIC . The
deviance under model can be seen as 𝐷𝑡(𝜃) = −2 log 𝑝𝑡(𝑓 |𝜃) + 𝐶 .

• The Maximum Likelihood Estimation (MLE) and model dimension in AIC
are substituted with posterior mean while DIC substitutes effective number of
parameters.

• DIC enjoys computational advantage concerning AIC over a set of complex
models where the use of likelihood function could not be the right choice.

• The GIC embeds a wide class of criteria whose penalties are linear and mini-
mizes the following Equation 3.8:

𝐺𝐼𝐶𝜆𝑛.𝑡 = ̂︀𝑒𝑡 + 𝜆𝑛
̂︁𝛿𝑛

2
𝑑𝑡

𝑛
(3.8)

we can say Mallow’s criterion is a special case of GIC .

3.2 Model averaging approach

In recent years, several multi-model methods have been proposed to account for
uncertainties arising from input parameters and the definition of the model structure.

In this thesis, we propose a novel methodology for model average that comes as
a solution of a quadratic programming problem. The solution obtained is used as a
weight to achieve a weighted model and these weighted model by construction and
presumed model combination method is considered as an ensemble model to achieve
higher accuracy.

Let us denote 𝑓1, . . . , 𝑓𝑡 as 𝑡 different models. For each model under consideration,
we evaluate the estimation error as 𝜖𝑡 = 𝑓 − ̂︀𝑓𝑡 where ̂︀𝑓𝑡 is the estimated value of 𝑓

for a model 𝑡. Based on 𝜖𝑡, we estimate the covariance or correlation matrix. For this
purpose, the optimization problem can be solved both for co-variance and correlation
matrix.

We need to understand if one of the two provides better results, keeping into
account that preferring the co-variance matrix helps in enhancing the performance
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of the proposed weighted model slightly better concerning to correlation matrix as
evident in their empirical results in chapter 6 . In general, the optimization problem
is indifferent if defined for a non-singular positive definite square matrix of the
models.

We solve the optimization problem finding the vector of weights that minimizes
the co-variance among models.

An average of models can improve the performance of single models when the
errors of the single models are negatively correlated. Roughly speaking, an average
model improves the performance concerning single models when an error of the
single model is counterbalanced by a good prediction of some other model. Following
this idea, the best average model is the one that minimizes the error, given the
co-variance between the errors of the single models. Using the idea of our model
averaging technique, we compare the constructed model with other popular models
(parametric, non-parametric, and ensemble models) and the results at hand in
chapter 6 suggests that our proposed model can enhance model performance.

Let us denote with Σ ∈ R𝑘×𝑘 the co-variance matrix of the errors 𝜖𝑖 with
𝑖 = 1, . . . , 𝑘. Σ is a positive definite, symmetric, and thus a non-singular matrix. 𝑤

is the 𝑘 × 1 vector of the weights. The average model is defined as

̂︁𝑓𝑤 = 𝑤1 ×̂︁𝑓1 + . . . + 𝑤𝑡 ×̂︁𝑓𝑘

where 𝑤𝑡 is the 𝑡-th entry of vector 𝑤. 1 is the 𝑡 × 1 vector of ones.
Following our considered model average technique, we formulate the optimization

problem as in Equation 3.9:

min
𝑤

(︃
𝑤𝑇
∑︁

𝑤

)︃
such that 𝑤𝑇 1 = 1, 𝑤𝑇 ̂︀𝑓 = 𝑓 (3.9)

where 1 is the 𝑘 × 1 vector of ones, and 𝑇 denotes the transpose of a vector or
matrix wherever applicable, ̂︀𝑓 denotes the average value of the predicted model and
𝑓 denotes the average value of the observed model.

The analytical solutions of the optimization problem in equation 3.9 produces
an optimal vector of weights

𝑤* = Σ−1 × (1 ̂︀𝑓) × 𝐴−1 ×

⎡⎣1
𝑓

⎤⎦
where

𝐴 = (1 ̂︀𝑓)𝑇 × Σ−1 × (1 ̂︀𝑓)
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.
For the above-stated optimization problem, the first-order conditions are necessary

and sufficient for the optimality of 𝑤*, which is straightforward due to the assumptions
made on the co-variance matrix Σ . The analytical solution assumes no bias and
therefore ignores the problem that weights are random variates since weights are
constrained to sum to one. Doing this, it does not necessarily ensure weights to be
positive. Moreover, we do not want to use some rarely used method that adjusts for
correlation or co-variance in predictions, such as assigning lower weights to highly
correlated models, dividing weights if any identical model prediction is added to the
set, henceforth reducing weights due to additional inclusion of the model.

The proposed approach has its advantage and disadvantage, which are listed
below.
Pros of the approach:

1. Improvement of the performance compared to single original models

2. Closed-form for the solution of the optimization problem.

3. A simple interpretation of the whole theoretical structure.

Cons of the approach:

1. Interpretation of the negative weights. When the weight associated with a
model is negative, intuitively we are doing the opposite compared to what the
model suggests to do. It is clear that negative weights are useful in order to
artificially create negative co-variances between models providing the possibility
to achieve lower values of co-variance.

2. If ̂︀𝑓𝑖 for 𝑖 = 1, . . . , 𝑘 are bounded (for example in case of probability of default
when modeling credit risk), the proposed approach does not guarantee that̂︁𝑓𝑤 respect the bounds.

In order to overcome the potential shortcomings described above, we can think
to rewrite the optimization problem as follows in Equation 3.10,

min
𝑤

𝑤𝑇 Σ𝑤

such that

𝑤𝑇 1 = 1

𝑤𝑖 ≥ 0 for 𝑖 = 1, . . . , 𝑘

(3.10)
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This helps to overcome both the shortcomings of the interpretation of the negative
weights and the bounded value for ̂︁𝑓𝑤. In this case, it is trivial to prove that ̂︁𝑓𝑤 is
bounded between the minimum and the maximum values of the single models since
the average model is a convex linear combination of the original models.

Two of the possible limitations of the new optimization problem could be the
availability of no closed-form solution for the problem and that a growing number of
restrictions penalizes the performance of the average model.

Moreover, we can make effort to reformulate the optimization problem 3.10 to
solve them with three constraints as in the following Equation 3.11:

min
𝑤

𝑤𝑇 Σ𝑤

such that

𝑤𝑇 1 = 1

𝑤𝑇 ̂︀𝑓 = 𝑓

𝑤𝑖 ≥ 0 for 𝑖 = 1, . . . , 𝑘

(3.11)

The analytic solution of this problem does not guarantee the estimation of
positive weights nor achieving the minimum prediction error but is useful in many
ways to obtain a set of weights that is capable of enhancing the performance of the
model.

Many extensions are possible. One standard extension could be to allow the
weights to be negative that in turn reduces the values of the co-variance matrix.
The lower value assigns a lower weight to the model and compensates for the higher
positive weight of the model.

The other extension could be to use a super-ensemble model also called a supra-
model where each model under consideration is a covariate in a regression framework
to obtain a super-ensemble model. For a deeper discussion of this approach, the
reader can refer to [63] .

In our equal weighting approach, we have adopted a slightly different approach
than the ones used in [82, 88, 59, 109] to put forth a new extension that could
potentially serve as a good reference approach to understand if estimating weights
reduces the prediction error for the given set of models. The good thing about this
approach is that they do not have to depend on data provided no bias method is
implied on the data.

The Majority of the model averaging discussion focuses on one simple thing,
which is how to reduce the prediction error in a sense that for any given estimator ̂︁𝑓𝑘,
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we can at least consider the Mean Squared Error (MSE) for instance among other
sets of error metrics, and decompose them into components of bias and variance as
presented in Equation 3.12:

𝑀𝑆𝐸(̂︁𝑓𝑘) =
(︁
𝑏𝑖𝑎𝑠(̂︁𝑓𝑘)

)︁2
+ 𝑣𝑎𝑟(̂︁𝑓𝑘) (3.12)

The bias in this case refers to error components that arise from the model and
more precisely can be termed as systematic model errors. The bias remains unaffected
for any new addition of data points to the model. The components variance refers
to the possible spread of model predictions and does fit well hypothetically for any
addition of a new dataset in the model.

Using the representation of the Equation 3.12, we can investigate the error of a
weighted average 𝑓 of k plausible models, ̂︁𝑓1,̂︁𝑓2, . . . ,̂︁𝑓𝑘 as

𝑓 =
𝑘∑︁

𝑖=1
𝑤𝑖
̂︀𝑓𝑖

with
∑︀𝑘

𝑖=1 𝑤𝑖 = 1.
From Equation 3.12 we can further infer that the purpose of 𝑤𝑖 ,in general, is to

improve the prediction and reduce error with respect to the simple average having
equal-weighted scheme or only considering one single model having embedded all
the weight onto one model. In any case, the bias 𝑓 − 𝑓* in the model combination
process do matter in reducing the variance among models and to a larger extent
depends on the bias of a single model and their weights.

This contradicts those beliefs that advocates referring to an individual model is
free from any bias and is never considered as a contributing model. This is precisely
different for model averaging approach since reducing bias among them is primarily
a major concern for many of the predictive task.

Any variance arising from 𝑘 hypothetical repeated samplings in the predictive
task is often composed of two terms that are a variance of each model in consideration,
as modeled by Equation 3.13:

𝑣𝑎𝑟
(︁̂︁𝑓𝑘

)︁
= 1

𝑘 − 1

𝑘∑︁
𝑖=1

(︂̂︁𝑓1 −̂︁𝑓2

)︂2
(3.13)

To measure any co-variance between two model 𝑓1, 𝑓2, we can apply the following
Equation 3.14:

𝑐𝑜𝑣
(︁̂︁𝑓1,̂︁𝑓2

)︁
= 1

𝑘 − 1

𝑘∑︁
𝑖=1

(︂̂︁𝑓1 −̂︁𝑓1
𝑖
)︂

·
(︂̂︁𝑓2 −̂︁𝑓2

𝑖
)︂

(3.14)
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While taking the average of predictions ̂︁𝑓1 and ̂︁𝑓2, it infers that

𝑣𝑎𝑟(𝑓) = 𝑤2
1𝑣𝑎𝑟(̂︁𝑓1) + 𝑤2

2𝑣𝑎𝑟(̂︁𝑓2) + 2𝑤1𝑤2𝑐𝑜𝑣(̂︁𝑓1,̂︁𝑓2)

And using a similar method like the one above, we can average several models
as in Equation 3.15:

𝑣𝑎𝑟(𝑓) = 𝑣𝑎𝑟

(︃
𝑘∑︁

𝑖=1
𝑤𝑖
̂︀𝑓𝑖

)︃
=

𝑘∑︁
𝑖=1

𝑓2
𝑖 𝑣𝑎𝑟(̂︁𝑓𝑚) +

𝑘∑︁
𝑖=1

∑︁
𝑖′

𝑤𝑖𝑤𝑖′ 𝑐𝑜𝑣(̂︀𝑓𝑖, ̂︁𝑓𝑖′ ) (3.15)

The task to reduce the error from any of the model averaging technique with the
use of several selected models is interconnected with the relationship of bias and
variance. The error can increase or decrease in the average model with respect to
the best model if there is a larger bias than the variance in selected models.

It is being believed with confidence that the averaging technique can reduce
the error significantly with an increasing number of models if all these selected
models have similar bias and variance. The averaging technique of selected models
can actually make error arbitrarily small if we have a pool of unbiased models with
larger variance.

The usefulness of any model averaging technique to a much larger extent depends
upon the biases of any individual models and therefore prediction error is proportional
to variance (increase or decrease) keeping the assumptions that co-variances are low,
which in turn helps in achieving smaller mean error with respect to the variance of a
single model. In any case, the bias becomes greater in comparison to the variance for
any predictive model. Due to this, model averaging techniques may not be necessarily
reducing variance in every situation.

The same setting can be explained for any predictive model using the correlation
in place of co-variance as if the correlation increases or decreases, the co-variance
plays a decisive role in reducing the overall prediction error.

When we add several models in a model averaging approach, the variance
generally seems to be low as weights 𝑤 become smaller, which can be approximated
as proportional to 1/𝑘 in Equation 3.16:

𝑣𝑎𝑟(𝑓) =
𝑘∑︁

𝑖=1

1
𝑘2 𝑣𝑎𝑟(̂︀𝑓𝑖) + 1

𝑘2

𝑘∑︁
𝑖=1

∑︁
𝑖 ̸=𝑛

𝑐𝑜𝑣(̂︀𝑓𝑖,̂︁𝑓𝑛) ≈ 𝑘
1
𝑘2 (3.16)
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3.3 Estimation of Weights

On a broader sense, the error from any predictive model as an averaged out model
predictions largely depends on the bias of model average, variance, and covariance of
a model for any given set of weights. The weights in many cases are often considered
as fixed and uncertain. Any estimation of weights from data brings a certain amount
of uncertainty, which benefits the model averaging technique to derive optimal or
sub-optimal weights.

The main challenge behind the estimation of weights is how to obtain optimal
weights using the help of a good estimator and there is no closed-form solution
available even for linear models. Moreover, in a purely general sense, the weights
obtained through any Bayesian or information-theoretic criteria is never optimal,
although they help to reduce the prediction error. However, to find more satisfying
weights to enhance the predictive performance is done adopting a different techniques
that is prudent for model averaging. In this way, we can say that bias-variance trade-
off is also applied for the model averaging case since the estimation of model weight
adds additional parameters and higher model complexity in the analysis.

Moreover, the uncertainty around obtaining optimal weights does not necessarily
infer that other weighting approach is superior but offers few of the best solutions
to address challenges in the estimation of weights. For instance, one possible way
to enhance model accuracy is simply averaging variance and bias given that error
between models is small.

It is always complicated to estimate optimally the uncertainty around the model
averaging or estimation of weights for any considered approach like Bayesian, fre-
quentist, and others. One possible way to quantify such uncertainty especially in
the Bayesian method is to use posterior distribution for estimating weights. The
validation of the estimated uncertainty can be summarized by credible intervals
purely in Bayesian sense and 95% certainty is considered to be close to the true value
in the interval. The same is true for the frequentist approach, where 95% confidence
interval refers to 95% true values of the cases under repeated sampling and identical
conditions.

To work with a more Bayesian and frequentist approach in model averaging
techniques, we have to calculate different options for knowing predictive uncertainties
of which one option would be to assume that model average predictions are unbiased
and for computing variance, any bootstrapping technique is used to compute covari-
ances of each predictive model. The other option that potentially produces better
predictive performance is to assume that bias and correlation are more conservative
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in model average prediction. If averaging models are independent of each other then
the covariance-based on bootstrap techniques can actually compute lower variance
to boost performance.

In order to estimate weights properly, we have to often fix poorly fitting models
and improve good performing models to enhance the overall performance of any
average or ensemble models. Although many perspectives exist on estimating weights,
our approach for model averaging is more “probabilistic”, in the sense that model
weights are probabilities considering that 𝑓𝑖 is any true model.

In the context of machine learning, a prudent approach could be to choose weights
somehow chosen that makes the model work to enhance higher performance. The
chosen weights are not considered model parameters and as such, there is no specific
interpretation of the model with respect to model weights. The other benefiting
approach to improve predictions is to consider a portfolio of weights that may be
random, equal, negative, squared, and optimal weight without further adjusting any
difference in the predictive capacity of the model.

3.4 Additional discussion

Various theory suggests that Bayes formula plays a decisive role in choosing the
model among models. The theory works similar to choosing parameter values in
the Bayesian framework where the posterior probability 𝑃 (𝑓𝑖, 𝜃𝑖|𝐷) of any model 𝑓𝑖

with parameter vector 𝜃𝑖 can be stated for any given dataset observations D as

𝑃 (𝑓𝑖, 𝜃𝑖|𝐷) ∝ 𝐿(𝐷|𝑓𝑖, 𝜃𝑖) × 𝑝(𝜃𝑖) × 𝑝(𝑓𝑖)

where 𝐿(𝐷|𝑓𝑖, 𝜃𝑖) is the likelihood function of any model 𝑓𝑖, 𝑝(𝜃𝑖) is prior distribution
of parameters with respect to any model 𝑓𝑖 and 𝑝(𝑓𝑖) is any prior weight attached
to the model 𝑓𝑖.

In many real-world examples, we are often interested in knowing simple statistics
about the model such as posterior model probability. This could be high or low
as a result of model prediction and model selection uncertainty. In few cases, the
estimated weights are considered as the relative probability of each model in the
context of marginal likelihood and are equivalent to the average of all the parameters
used in the model as evident in Equation 3.17

𝑃 (𝐷|𝑓𝑖) ∝
∫︀

𝜃𝑖
. . .
∫︀

𝜃𝑘
𝐿(𝐷|𝑓𝑖, 𝜃𝑖)𝑝(𝜃𝑖)𝑑𝜃1, . . . , 𝑑𝜃𝑘 (3.17)
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Kass and Raftery [85] introduced a concept of comparing models through Bayes
factor using marginal likelihoods as evident in Equation 3.18

𝑃 (𝐷|𝑓𝑖)
𝑃 (𝐷|𝑓𝑗) =

∫︀
𝐿(𝐷|𝑓 𝑖,𝜃𝑖)𝑝(𝜃𝑖)𝑑𝜃𝑖∫︀
𝐿(𝐷|𝑓 𝑗 ,𝜃𝑗)𝑝(𝜃𝑗)𝑑𝜃𝑗

(3.18)

The estimation of these ratios in practice can be challenging. To address the
challenge, we rely on two numerical estimations. One option is to use direct samples
from the joint posterior distribution of models and their parameters. There are many
basic and advanced algorithms that exist in support of such computation but in
general, they are not easy to program and therefore could be a topic of research for the
future. Few of such algorithms that already exists are RJMCMC, MCMC, Sequential
Monte Carlo (SMC) . one can refer to Toni et al. [123], Hartig et al. [71] and Green [64]
for any additional details.

3.5 Properties: ensemble model

So far, Our discussion was focused on co-variance and other methods that plays a
crucial role in the estimation of weights and construction of ensemble models. In this
section, the focus of our discussion is how ensemble models behave or vary when
there is correlation or no correlation between models.

Let us assume first the case of uncorrelated models in the ensemble averaging sys-
tem where we refer to the properties of variance and assume models are independent.
One of the possible ways to obtain optimal weight in the ensemble model system if
the models are not correlated is to construct ensemble as a linear combination of
the individual model.

Therefore, we consider ensemble as a linear combination of its members as
𝑓 =

∑︀
𝑗 𝛼𝑗𝑓𝑗 and 𝛼𝑗 are normalized to 1 to achieve the following Equation 3.19:

∑︁
𝑗

𝛼2
𝑗 𝑣(𝑓𝑗) + 𝑣(𝑓𝑘) + 𝑏2 =

∑︁
𝛼2

𝑗 𝛼2
𝑗 + (

∑︁
𝑗

𝛼𝑗𝑏𝑗)2 (3.19)

Using this Equation 3.19, we can find the optimal coefficient as weights to the
model by minimizing error and can be converted into an optimization problem as
evident in the following Equation 3.20

𝑚𝑖𝑛
𝑤1,...,𝑤𝑘

∑︁
𝑗

𝑤2
𝑗 𝜎2

𝑗 + (
∑︁

𝑗

𝑤𝑗𝑏𝑗)2∑︁
𝑗

𝑤𝑗 = 1 (3.20)

This could lead to a lesser extent the underestimation of the statistical properties
of the ensemble model if the optimal weight from the coefficient is not considered.
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So, we can ask ourselves if there is any way that ensures the variance of the ensemble
model is lower than an individual model variance.

To understand more of this, take a case of two models having variance such
that their combined variance is less than a single model variance. The combination
process best works if the variance between models is not too large otherwise it is
not possible to achieve ensemble model variance lower than individual models.

In this respect, We propose the following theorem and make attempt to prove
this with a simplified approach. In short, we can say that

Theorem 3.5.1. If the combined variance of two models is less than single model
variance then the combination process best works only when the variance between
models is minimized else it is not possible to achieve ensemble model variance lower
than individual models. This is true if the models among themselves are not correlated
since it makes possible to obtain the variance of ensemble model lower than single
models as evident in the following inequality where v() simply denotes the variance
of the model.

𝑣(𝑓 𝑡) ≤ 𝑣(𝑓1) ≤ 𝑣(𝑓2) . . . ≤ 𝑣(𝑓 𝑟)

.

Proof. Let us say that (𝑡−1)𝑣(𝑓2
𝑚)

𝑡2 ≤ (𝑡2−1)𝑣(𝑓2
1 )

𝑡2 . Therefore, we can further say that

(1 − 1
𝑡2 )𝑣(𝑓2

1 ) ≥ 𝑡 − 1
𝑡2 𝑣(𝑓2

𝑡 ) ≥ 1
𝑡2 (𝑣(𝑓2

2 ) + . . . + 𝑣(𝑓2
𝑡 ) (3.21)

which in turn proves that 𝑣(𝑓2
1 ) ≥ 𝑣(𝑓2

1 )+...+𝑣(𝑓2
𝑡 )

𝑡2 = 𝑣(𝑓 𝑡)

The idea mentioned in the above theorem can be generalized to models that are
correlated among each other and is possible to obtain general bounds for optimal
variance using the following inequality,

𝑓1
𝑘 ≤ 𝑣(𝑓) ≤ 𝑓𝑘

𝑘 .
The proof sketched in the theorem 3.5.1 for uncorrelated models can equally be

explored for correlated models by showing equivalent estimation for optimal variance
as like in the Equation 3.22:

∑︁
𝑗

1
𝑐𝑜𝑣𝑗

(
∑︁

𝑖

𝑢𝑖𝑗)2 ≥ 1
𝑐𝑜𝑣𝑘

∑︁
𝑗

(
∑︁

𝑖

𝑢𝑖𝑗)2 = 𝑘

𝑐𝑜𝑣𝑘
(3.22)

Following the work of Jagannathan and Ma [81], one can solve the optimization
problem as a global minimum variance problem using additional constraints on
weights and is equivalent to the shrinkage estimate for co-variance matrix. This
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further helps in diversifying the formulation of optimization problem for model
averaging technique.

For instance, if we consider a model space of 𝑡 models and 𝑝 is any vector of
expected accuracy or performance by the model and

∑︀
any respective co-variance

matrix, we can formulate the optimization problem as follows

min 1
2𝑤𝑇

∑︁
𝑤 subject to 1𝑇 𝑤 = 1; 𝑤 ∈ 𝜑 ∩ 𝑠 (3.23)

where 𝑤 is the vector of weights and 𝜑 is the search space. If this search space belongs
to R𝑛 and s is the set of weights constraints, then the established optimization
problem becomes a global minimum variance optimization problem.

We can elaborate the search space as 𝜑 = {𝑤 ∈ R𝑛 : 𝑝𝑇 𝑤 ≥ 𝑝*} that helps to
receive the efficient performance considering the model in search space and 𝑝* is any
desired expected performance that we expect. Since the global minimum variance
optimization problem much depends on the set of weights constraints 𝑠, we can
consider two different definitions of 𝑠.

The first definition is where 𝑠 = R𝑛 and the solution obtained through this is an
unconstrained solution as 𝑤*(𝑝,

∑︀
). The other definition where we impose bounds is

𝑠 = (𝑤−, 𝑤+) as 𝑤−
𝑖 ≤ 𝑤𝑖 ≤ 𝑤+

𝑖 and 𝑤 is the achievable solution of the considered
optimization problem.

We can further deepen the analysis on the impact of weights that may arise in
the structure of optimization problem due to these bounds and it is wise to say that̃︀𝑤 = 𝑤*(̃︀𝑝,̃︁∑︀) are the approximation of observed performance of the model and
co-variance matrix, where ̃︀𝑝 𝑎𝑛𝑑 ̃︁∑︀ .

We can find the solution of the global minimum variance optimization problem
by taking the Lagrange function and first order conditions as follows:

𝑓(𝑤; 𝜆0) = 1
2𝑤𝑇

∑︁
𝑤 − 𝜆0(1𝑇 𝑤 − 1) (3.24)

and their first order conditions can be stated as follows:

⎧⎨⎩
∑︀

𝑤 − 𝜆01 = 0
1𝑇 𝑤 − 1 = 0

(3.25)

Therefore, their optimal solution can be obtained as like 𝑤* = 1
1𝑇
∑︀

1
∑︀−11.

The solution obtained very much depends on the covariance matrix Σ and can be
written as 𝑤* = 𝑤*(

∑︀
). However, it is always a difficult task to obtain an analytical

solution of the global optimization problem if there are constraints on the weights
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imposed and can be solved numerically using any convex or quadratic programming
algorithm.

3.6 Multi-objective optimization approach

In this thesis, we adopted another novel idea to enhance the performance of the
machine learning model that is based on a few different strategies of using the vast
knowledge of multi-objective optimization.

The solutions achieved from solving the defined multi-objective problem in this
thesis is a set of unordered Pareto solutions. Our analysis is interdisciplinary in
nature and the insights drawn from here have the capacity to be resourceful to solve
other real-world problems.

Almost every machine learning algorithm is naturally a multi-objective task
depending on which cost function is adopted. There has been increasing concern in
the use of machine learning methods based on Pareto multi-objective optimization
methodology and the success of such methods is mostly due to the success of
evolutionary algorithms and other stochastic search methods. The advantage of
Pareto based multi-objective learning is many folds. It is a powerful tool with scalar
cost function in addressing different topics of machine learning such as clustering,
feature selection, improvement of generalization ability, knowledge extraction, and
ensemble generation.

Following the idea of multi-objective learning, We can categorize all learning
problems as optimization problem and often it is a task of model selection where
parameter estimation depends on different criteria.

For instance, in supervised learning, the common criteria is an error function that
reflects the approximation quality, whereas in clustering we try to maximize inter-
cluster similarity and minimize intra-cluster similarity. For problems of reinforcement
learning, the criterion is a value function that helps in predicting the reward for an
agent to perform a given action in a given state.

The learning algorithm in this context can be categorized as single objective
learning, scalarized multi-objective learning, and Pareto-based multi-objective learn-
ing.

Single objective learning often minimizes MSE on the training data but other
error measures can be used equally. Let 𝑓 = 1

𝑁

∑︀𝑁
𝑖=1(𝑦(𝑖) − 𝑦𝑑(𝑖))2 where 𝑦(𝑖) and

𝑦𝑑(𝑖) are observed and expected output respectively, 𝑁 is the number of data pairs
in the training data. For instance, in the context of the clustering algorithm, we
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minimize the objective function as follows

𝑓 =
𝑘∑︁

𝑗=1

∑︁
𝑥∈𝐶𝑗

‖𝑥 − 𝑐𝑗‖2 (3.26)

where ‖.‖ is a chosen distance of cluster 𝐶𝑗 between a data point 𝑥 and centre 𝑐𝑗 ,
and k refers to number of clusters.

The interpretation and complexity of the model are strongly interrelated to each
other and in general, the lower is the complexity of the model, the easier it is to
understand the model.

In this case, we have to consider often a second objective reflecting the complexity
of the model which can be aggregated as a scalar objective function keeping 𝑓 =
𝐸 +𝜆Ω where E is a common error function and Ω is a measure for model complexity
that says a number of free parameters in the model, while 𝜆 > 0 is a positive
hyper-parameter defined by the user. It is clear to see through this set up that we
are able to optimize two objectives using a scalar function.

Such an approach is widely used in practice such as regularizing neural networks,
creating interpretable fuzzy rules, and generating negatively correlated ensemble
members. However, there are two main weaknesses in the use of the scalarized
objective function for multi-objective function.

Firstly, it is difficult to make an appropriate choice of hyperparameter 𝜆, and
secondly, only a single solution can be gained from which it is difficult to visualize
any further additional insights into the problem.

To help such a scenario, we have to take advantage of the Pareto-based learning
that may help any learning algorithm to get out of local optima thereby improving
the accuracy of the learning model. The primary advantage of Pareto-based approach
is that the objective function is no longer a scalar but a vector due to which a number
of Pareto optimal solutions can be achieved instead of one single solution.

Let us consider 𝑚-objective minimization problem as follows:

min 𝐹 (𝑥), where 𝐹 = {𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑚(𝑥)} (3.27)

Any solution 𝑋 is said to dominate solution 𝑌 and is Pareto optimal if it
is not dominated by any other feasible solutions. The domination can be stated
as 𝑓𝑗(𝑥) ≤ 𝑓𝑗(𝑦)∀𝑗 = 1, 2, . . . , 𝑚 and there exists 𝑘 ∈ {1, 2, . . . , 𝑚} such that
𝑓𝑘(𝑥) < 𝑓𝑘(𝑦).

In this context, we lay out four important strategies that can serve as a model
enhancing procedure in enhancing the objectives of the machine learning model. To



56 CHAPTER 3. METHODOLOGY

test each of these strategy, we consider a collection of parametric, non-parametric
and ensemble learning models. Let {1, 2, . . . , 𝑛} represents the set of these models
to which we assume the allocation vector of weights 𝑤 = {𝑤1, 𝑤2, . . . , 𝑤𝑛} ∈ R𝑛.

These weights are preferential choice where 𝑤𝑖 is any specific weight attached with
any model 𝑖 for 𝑖 = 1, 2, . . . , 𝑛 constrained as

∑︀𝑛
𝑖=1 𝑤𝑖 = 1. Let 𝑝 = {1, 2, . . . , 𝑛} ∈ R𝑛

be the performance associated with each of the model and we can represent them by
following function

𝑓1(𝑤) = 𝑤𝑝𝑇 =
𝑛∑︁

𝑖=1
𝑤𝑖𝑝𝑖 (3.28)

For any given model 𝑖 and 𝑗 and covariance matrix Σ, we can formulate error of
the model as follows

𝑓2(𝑤) = 𝑤
∑︁

𝑤𝑇 (3.29)

Using the above equation, we can further construct any multi-objective optimiza-
tion problem as a bi-objective problem with the help of the following equation

𝑚𝑖𝑛
𝑤∈𝐶

⎡⎣ 𝑤 𝑝𝑇

𝑤
∑︀

𝑤𝑇

⎤⎦ (3.30)

where 𝐶 = {𝑤 ∈ R𝑛;
∑︀𝑛

𝑖=1𝑤𝑇 1 = 1; 𝑤𝑇 ̂︀𝑦 = 𝑦 𝑓𝑜𝑟 𝑖 = 1, 2, . . . , 𝑛} and 1 is a unitary
matrix.

Obtaining a solution for such a minimization problem is not that easy with
respect to single-objective problems and therefore a scalarized approach can be used
to aggregate function in a meaningful way.

One such approach is goal programming which is a special case of the multi-
objective problem where we fix a goal value for each objective function and measure
the deviations of the values of the objective function from their goal value over the
feasible region.

The advantage of using such a methodology is that we are able to optimize a goal
as a target value for each and then minimize the difference between each function
and its goal rather than optimizing objective function directly.

Formally, the stated bi-objective problem can be reformulated as goal program-
ming problem by assigning to each 𝑓𝑖 a goal value 𝑔𝑖 and minimizing the deviation
(𝑓𝑖 − 𝑔𝑖)+𝑓𝑜𝑟𝑖 = 1, 2 over a feasible region where + refers to the positive part of the
function.
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In order to simplify our methodology, let us define 𝑔1 = 𝑝*, 𝑔2 = 0 where 𝑝*
denotes the desired level of performance on the model and we do not expect our
goal vector 𝑔 = (𝑝*, 0) ∈∈ R2 to lie in the objective space.

Therefore, we propose four different strategies that help to reformulate multi-
objective problems into a single objective problems to enhance not only the perfor-
mance of the model but also the objectives of any given model.

The strategic use of weighted sum of deviations and Chebyshev goal programming
with goal vector 𝑔 = (𝑔1, 𝑔2, . . . , 𝑔𝑁 ) ∈ R𝑁 and weight vector 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑁 ) ∈
(0, 1) is to minimize deviation and support the constructed objective function of any
given problem. These weights can be either equal or fixed and depends on how many
functions are considered for multi-objective problem.

Strategy 1. The first strategy we consider is Weighted Sum of Deviations (WSD)
and formally we can write them as follows

min
𝑤∈𝐶

𝑁∑︁
𝑗=1

𝑤𝑗 (𝑓𝑗(𝑤) − 𝑔𝑗)+ (3.31)

where 𝐶 is a set of constraints.
A scalarized or aggregated function can be written as 𝐹 =

∑︀𝑁
𝑗=1 𝑤𝑗(𝑓𝑗 − 𝑔𝑗)+

which can further be formulated as convex combinations that can help us to generate
a new curve as a weighted average of deviations for each objective from its goal.

Strategy 2. The second strategy we use here is called Chebyshev goal programming
and there is not much significant difference with respect to previous strategy as
we try to minimize only the maximum weighted deviation instead of minimizing
the sum of deviations. When this is done, this helps in minimizing other deviations
which are smaller. More formally, we can write them as follows

min
𝑥∈𝐶

[︂
max

𝑗
𝑤𝑗 (𝑓𝑗(𝑥) − 𝑔𝑗)+

]︂
for 𝑗 = 1, 2, . . . , 𝑁 (3.32)

where 𝐶 is any constraint defined in Equation 3.27.

Strategy 3. This strategy, called joint entropy, helps us to understand the uncer-
tainty or divergence associated between two models. The joint entropy of 𝑛 models
can be formulated as follows

𝐻(𝑥1, . . . , 𝑥𝑛) = −
∑︀

𝑥1∈𝜒1 . . .∑︀
𝑥𝑛∈𝜒𝑛

𝑃 (𝑥1, . . . , 𝑥𝑛) log2 [𝑃 (𝑥1, . . . , 𝑥𝑛)]
(3.33)
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More formally, to understand how much each of these models diverge from
each other, we can formalize them as 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝑝𝑛, 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈
𝑞𝑛𝑡ℎ𝑒𝑛𝑓𝑜𝑟𝑖 = 2, . . . , 𝑛, it holds as follows

𝑧𝑖 = min

⎧⎨⎩
𝑖∑︁

𝑗=1
𝑝𝑗 ,

𝑖∑︁
𝑗=1

𝑞𝑗

⎫⎬⎭−
𝑖−1∑︁
𝑗=1

𝑧𝑗 (3.34)

for any 𝑧 = 𝑥 ∧ 𝑦 and 𝑝𝑛 𝑞𝑛 are respective marginal probability distributions. We
have to keep in mind that such measure helps in understanding the diversification
in a better way and is non-negative and concave.

Strategy 4. Another variant of strategy 3 is to use cross entropy rather than joint
entropy for understanding diversification among models. The idea of using cross
entropy is based on importance sampling. For instance, if we take a random sample
𝑥1, . . . , 𝑥𝑛 based on importance sampling with density 𝑔 on 𝜒 and using unbiased
estimator l and likelihood ratio, we can evaluate to minimize the distance of cross
entropy which is equivalent to solving maximization problem as follows

𝑚𝑎𝑥
𝑣

∫︁
𝑔*(𝑥) ln 𝑓(𝑥; 𝑣) 𝑑𝑥 (3.35)

where 𝑔*(𝑥) = 𝐼{𝑆(𝑥)≥𝛾} 𝑓(𝑥;𝑢)
l

is the density measure and 𝑓(.; 𝑣) is a family of densities.
So far, we have been asserting that it is possible to formulate the given bi-objective

problem into a goal programming problem to generate an optimal solution.
But we do not know any such optimal solution obtained for the goal programming

problem is also the optimal solution to the bi-objective problem. We can formalize a
theorem in this context to see if it is true.

Theorem 3.6.1. If 𝑥* is the optimal solution for goal programming then this also
serves as a unique minimizer or Pareto optimal point for the bi-objective problem.

Proof. Using weighted sum of deviations method, we can approach to prove this
theorem for the goal programming problem assuming that 𝑥* is the unique global
minimizer of

𝑚𝑖𝑛
𝑥∈𝐶

[︃
𝑤1(𝑥𝑝𝑇 − 𝑝*)+ + 𝑤2(𝑥

∑︁
𝑥𝑇 )

]︃
(3.36)

Let us assume further that 𝑥* is not a global optimal solutions or Pareto optimal
solution for the bi-objective problem, ∃ a point ̂︀𝑥 ∈ 𝐶 with condition either ̂︀𝑥𝑝𝑇 <

𝑥*𝑝𝑇 𝑜𝑟̂︀𝑥∑︀ ̂︀𝑥 < 𝑥*∑︀ 𝑥*𝑇 . Therefore, we can say that 𝑤1(̂︀𝑥𝑝𝑇 − 𝑝*)+ + 𝑤2(̂︀𝑥∑︀ ̂︀𝑥) <

𝑤1(𝑥*𝑝𝑇 − 𝑝*)+ + 𝑤2(𝑥*∑︀ 𝑥*𝑇 ) which implies that ̂︀𝑥 is a global minimizer of bi-
objective problem and this is a contraction to what we assumed.



Chapter 4

Dataset and Implementation

In this chapter, we dedicate our discussion to the dataset, the strategies that were
adopted to treat data, and the software interface in which the task on this dataset
was performed. We begin our discussions in section 4.1 on the dataset followed by
other related discussion in section.

4.1 Data description

The dataset comes from one of the leading financial institutions which consist of 39970
data points as a loan application. The exact source of the data is not available with
us since it was once hosted on a Italian University website as a public competition.
We have no further information regarding this if the dataset once hosted on a Italian
university website is still present or deleted after the competition. We received this
dataset while collaborating with a University Professor and doctoral students.

Each record in the dataset reflects characteristics of loan applicant in 30 variables
that are set of information on socio-demographic (table 4.3), client equipment
(table 4.4), client history (table 4.5) and other characteristics related to customer
behavior (table 4.6). The target variable "ClientStatus" in the dataset is primarily
of three categories as follows,

• The category 0 is labeled as a regular client which is considered to be a good
loan applicant.

• The category 1 is labeled as a client with some kind of litigation and is
considered as a bad loan applicant.

• The category 2 is labeled as a client with recovery status and is also considered
as a bad applicant.
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The table 4.1 shows a distribution of the target variable without variable trans-
formation and the subsequent table 4.2 shows the distribution of transformed target
variable as a binary response variable (category 1 and category 2 was merged as
one label). All other covariates in the dataset that are categorical were transformed
using the label encoding procedure for predictive modeling purposes.

Table 4.1: Distribution of target variable without transformation.

Client label Number of clients

0 38442
1 1254
2 304

Table 4.2: Distribution of target variable after transformation.

Client label Number of clients

0 38442
1 1558

Table 4.3: Socio-economic variable description.

Variable Description Type

AGE loan applicant age discrete
REGIONE Location details categorical
ANZ_BAN Age of the current account (expressed in years) discrete

RESIDENZA Type of Residence (owner or tenant) categorical
ANZ_RES Seniority of residence in the current residence (expressed in years) discrete

STA_CIVILE Marital status (married, single, divorced . . . ) categorical
NUM_FIGLI Number of child discrete

SESSO Gender categorical
REDDITO_CLT Applicant income continuous
REDDITO_FAM Family income continuous
PROFESSIONE profession categorical
NAZ_NASCITA Country of birth categorical

ANZ_PROF Working seniority (expressed in years) discrete

A prior probability for the target variable shows that 96.11% of class label 0 and
3.9% of class label 1. Based on the results about the target variable, we underline
that the data is composed of 39970 observations and 30 explanatory variables.

There are several ways to do feature selection or feature engineering and in this
respect, we choose to sketch variable importance plots using in-built functions of
boosted classification trees. The features are ranked on an importance scale of 1
to 100. We restricted to include only the top 10 ranked features in the model for
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Table 4.4: Client equipment variable description.

Variable Description Type

CANALE_FIN Financing channel (agency, web, telephone . . . ) categorical
NUM_PRA_PP Current Personal Loans - number of practices discrete
esposizione_pp Current personal loans - residual amount on the balance continuous

durata_residua_pp Current personal loans - residual duration to balance continuous
NUM_PRA_CC Total finalized loans in progress - number of practices discrete
esposizione_CC Total finalized loans in progress - remaining balance continuous

durata_residua_CC Total finalized loans in progress - residual maturity at the balance continuous
NUM_PRA_CP Card - Customer holding card discrete
esposizione_CP Card - Credit Card Display continuous

Table 4.5: Client history variable description.

Variable Description Type

NUM_SAL_PP Personal loans paid in the last 24 months - number of files discrete
NUM_SAL_CC Finalized loans paid in the last 24 months - number of practices discrete

Table 4.6: Client behavior variable description.

Variable Description Type

num_men_rit number of late payments from origin (in months) discrete
score_cmp_qe internal behavioral score continuous
score_cmp_cb credit bureau behavioral score categorical
num_sal_rec number of recovery ascents in the last 12 months discrete
num_mes_rec number of months to recovery in the last 12 months discrete
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getting better performance after evaluating different possibilities of feature inclusion.
The features ranked are reported in figure 4.1 .

Figure 4.1: Feature importance graphical presentation.

We see the distribution of those important variables that are ranked highest
on the variable importance scale and are also considered for the modeling purpose.
Figure 4.2 shows the distribution of the considered variables on the diagonal. The
lower inside of the diagonal shows bi-variate scatters plots with their fitted line
and the upper part of the diagonal shows value of correlation and significance level
indicated by stars. The stars associating to significance level takes range of p-values(0,
0.001, 0.01, 0.05, 0.1, 1).
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Figure 4.2: Correlation graph of the 10 highest important variable.
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4.2 Data Handling

The explanatory variable in the dataset is few set of information that reflects socio-
demographic characteristics, customer equipment, customer history, and other things
related to customer behavior. It is obvious to see from section 4.1 the dataset has
a class imbalance problem and any attempt to approach modeling tasks on this
dataset would lead to over-fitting results. Therefore, it is important to treat the data
with any kind of statistical technique that resolves the class imbalance problem.

For instance, Some of the well-known methods for treating the class imbalance
problem is to re-sample the training set either using the under-sampling or over-
sampling technique. Moreover, applying q-fold cross-validation in the right way,
ensemble different re-sampled datasets, re-sample with different ratios, cluster the
majority class, or design any different model are a few of the many alternatives to
deal with the data imbalance problem.

In this contribution, Synthetic Minority Oversampling Technique (SMOTE)
strategy is appealing to treat the imbalance problem of data. SMOTE (Chawla
et.al.,2002) [24] creates synthetic observations based on available minority observa-
tions that work on the principle of k-nearest neighbors. It generates new instances
that are not just copies of the available minority class, but a basic rule is to take
samples of feature space for each target class and its nearest neighbors. In this way,
it increases the features available to each class and makes the samples more general.
The following steps explain in brief how SMOTE works,

• A total number of observations from the given dataset is set up.

• Assuming that binary class distribution is 1:1, the iterative procedure of the
algorithm selects positive class randomly.

• By default, 5 is considered as the nearest neighbor of the selected positive
class.

• As a next step, the algorithm generates synthetic classes of the selected class.

• To generate synthetic class, a distance metric is used between variable class
and its neighbor.

• The difference obtained is multiplied by a random value from 0 to 1 which is
added to the selected variable class.

Traditionally sampling methods until 1997 held a special position in many relevant
studies as the goal was to create a dataset that is balanced class distribution so that
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any chosen classifier can work well to distinguish between majority and minority
classes. Much research over the years has proved that sampling techniques are a
useful way to achieve overall accuracy from the deployed classifier.

Few of the main sampling methods that we discuss in this context are the
following:

• Undersampling and Oversampling are random sampling procedures where
class distribution for majority instances in undersampling is discarded at
random to achieve a more balanced distribution of the considered class, while
in oversampling techniques, the class instances for minority class distribution
are copied and repeated until a more balanced distribution of the whole sample
is achieved. However, both of these methods have serious drawbacks that bias
decision making since the majority of the data are discarded and hampers
the performance of classification methods. The limitations imposed in these
methods are addressed by other sophisticated methods, unlike SMOTE .

• SMOTE in an appealing technique to treat the imbalance of data. Such a
method creates synthetic observations based on existing minority observations
that work on the principle of k-nearest neighbors. It generates new instances
that are not just copies of the existing minority class, the rule is to take samples
of feature space for each target class and its nearest neighbors. In this way,
it increases the features available to each class and makes the samples more
general. The training set due to SMOTE therefore is changed by adding up
synthetically generated minority class distribution to achieve balanced samples.

• Cost-sensitive learning is another method that helps in handling classification
problems dealing with an imbalanced dataset. The method handles the cost
associated with misclassifying observations. Rather than creating balanced
data distributions, it assigns cost matrices which help in handling misclas-
sification cost as a way to solve the problem of working on an imbalanced
dataset. For more details on such methods, refer to the study of Lopéz and
Fernández,2013 [94] .

• Random Oversampling Examples (ROSE) is a different technique based on the
bootstrap method that helps in the task of binary classification for handling
minority classes and is capable of dealing with continuous or categorical data
by assigning synthetic examples using conditional estimates of two classes.
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The context of data handling in this thesis is purely based on SMOTE for
generating a balanced dataset.

4.3 Software environment

The primary programming environment for the execution of tasks was carried in R
software using functionalities of the following packages as a shortlist apart from others.
All of these packages can be referred to the CRAN list https://cran.r-project.

org/web/packages/available_packages_by_name.html which is a database of R
software packages. Few other adjunct software were used to support the overall
analysis in this thesis.

• caret stands for classification and regression training and is used for many
tasks on predictive modeling. The package contains many in-built functions
that are used for data splitting, pre-processing, feature selection and feature
importance, model tunning parameter.

• randomForest is a package that can be used for classification and regression
tasks in supervised settings. It can be also used to assess proximities among
data points in unsupervised settings.

• hmeasure is a performance metric that is used to assess the performance of
classification tasks and is capable of assessing performance across multiple
scenarios. It also addresses the limitations of other performance variants like
AUC and the Gini coefficient.

• entropy is a package that has various in-built estimator to measure similarity
and difference of probability distributions of a random variable.

• mlbench is a package that has collections of several real-world and artificial
machine learning problems to practice and learn.

• PerformanceAnalytics is a package that supports the performance and risk
analysis through different functions.

• DMwR is a package that handles the various tasks of data processing and
mining.

• ISLR is a package that has various in-built functions for statistical learning.

https://cran.r-project.org/web/packages/available_packages_by_name.html
https://cran.r-project.org/web/packages/available_packages_by_name.html
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• caTools is a package that mostly used for faster calculation of AUC apart from
other additional functions.

• SDMTools is a package that includes various functions for model comparison
based on different threshold settings.

• MASS is a package that supports various functionalities of modern applied
statistics.

• pracma is a package that supports the various computations of mathematical
optimization, linear algebra, and other mathematical calculation.

• stats is a package that supports statistical calculations and random number
generation.

• e1071 is a package that supports miscellaneous functions of probability and
statistics.

• gbm is a package considered as an extension of the Adaboost algorithm and
supports various functions of regression, loss measure, and statistical distribu-
tions.

• BAS is a package that supports Bayesian Model averaging based on stochastic
or deterministic sampling without replacement for any considered posterior
distribution.

• BMA is a Bayesian model averaging package and variable selection used for
linear models, generalized linear models and survival models.

• mgcv is a package that supports various functions for generalized additive
modeling and generalized additive mixed modeling.

• gam is a package that uses a back-fitting algorithm to combine different
smoothing or fitting methods which helps in fitting a generalized additive
model.

• class is a package that supports various functions for classification tasks.

• gmodels is a package that supports various functions for model fitting.

• klaR is a package that supports various functions for classification and visual-
ization.
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• bnlearn is a package that supports constructing the Bayesian network, Bayesian
inference, and includes various functions for Bayesian analysis.

• BART is a package that supports non-parametric modeling as Bayesian additive
regression trees for continuous, binary, and categorical covariates.

• bartMachine is a package that has extended features for building Bayesian
additive regression trees.

• optim is an optimization package that supports various minimization and
maximization functions.

• quadprog is a package that supports to solve quadratic programming.

• tidymodels is a package that supports the various tasks of machine learning
and is an integrated framework of the tidyverse package.

• tidyverse is a collection of various packages and dependencies of R that supports
many functions and tasks for data science.

• GPareto is a collection of packages that supports various functions of multi-
objective optimization.



Chapter 5

Classifiers, optimization model
and performance metrics

In this chapter, we discuss a set of classifiers and optimization models that were
studied, reviewed and used to support the overall analysis to produce results in this
thesis. We start with a brief description of each classifiers in section 5.1 followed
by discussion on optimization model in section 5.2. The performance metrics is
discussed in section 5.3 for assessing and comparing the studied models with respect
to proposed models in this thesis.

5.1 A set of classifiers for predictive task

Many models fit for the analysis on imbalanced dataset and parametric models is
one of the few that gives better performance. However, this is not always true as the
enhanced performance on imbalanced dataset is achieved often with a smaller set of
models.

Our approach in this thesis is rather different as we take an heterogeneous set of
models in performing the analysis on imbalanced dataset. This heterogeneous set of
models include parametric, non-parametric and ensemble models.

The analysis carried on imbalanced dataset (see section 4.1) were evaluated
against different set of performance metrics. These performance metrics are briefly
described in section 5.3. We start the following section with brief explanation of
models that were taken in consideration for our analysis on imbalanced dataset.

69



70CHAPTER 5. CLASSIFIERS, OPTIMIZATION MODEL AND PERFORMANCE METRICS

5.1.1 Parametric model

Parametric models are a family of distributions that can be described using a finite
number of parameters. In this case, we can know which kind of model would fit the
data exactly. For instance, the equation

𝑓𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖

infers that regression will take a linear line. The term 𝑓𝑖 simply denotes the idea of
response or target variable of any arbitrary data in the real world where supervised
learning could be a good fit for analysis. This kind of model is often the choice for a
predictive model as it helps to estimate better statistical properties.

Generalized linear model. As per Nelder et al. [102], the generalized linear model
often helps to understand binary response variables that have error distributions
other than a normal distribution. More precisely, each outcome of a given target
variable is considered to be distributed as per the exponential family.

For any binary response variable data, for instance, we can say that 𝑐 = 0
indicates false classes of prediction, and 𝑐 = 1 indicates true classes of prediction.
The variable 𝑐 is a general notation to denote or represent any class values of target
variable from a given arbitrary dataset. So, we assume 𝑥 is a column vector of 𝑃

predictors whose response probability can be modeled as 𝜋 = 𝑃𝑟(𝑐 = 1|𝑥) and this
further can be written like logistic regression model using the link function logit as,

logit(𝜋) = log
(︂

𝜋

1 − 𝜋

)︂
= 𝛼 + 𝛽𝑇 𝑥 (5.1)

where 𝛼 is the intercept parameter and 𝛽𝑇 represents the coefficients of the corre-
sponding variable.

Naive Bayes. It is simply a probabilistic classifier based on Bayes theorem [108]
having strong independence assumptions between the features. The decision rule
in this classifier is known to be Maximum a Posteriori (MAP) . The classifier is a
function that assigns a class label as follows

̂︀𝑓 = argmax
𝑘∈{1,...,𝐾}

𝑝(𝑐𝑘)
∏︀𝑛

𝑖=1 𝑝(𝑥𝑖|𝑐𝑘) (5.2)

for any K possible outcomes or classes.
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5.1.2 Non-parametric model

In this kind of model, the model structure is specified from data and it is not
determined a priori. For instance, 𝑓𝑖 = 𝑓(𝑥𝑖) + 𝑒𝑖 where the function is unknown
and takes the structural form from data. The statistical estimation of such a model
depends on the smoothness of the chosen function.

Decision Trees. In this context, referring to Breiman et.al. [15], we have selected
both Recursive Partitioning and Regression Trees (RPART) and Conditional Infer-
ence Trees (CTREE) for supporting our analysis. The criteria of univariate splits of
a dependent variable based on a set of covariates are quite similar in both RPART
and CTREE . However, RPART usually employs information measures (such as
Gini Coefficient (GC)) for choosing the co-variate while CTREE uses a significance
test to select variables. The information gain in the majority of the tree algorithms
is defined as

𝐻(𝑇 ) = 𝐼𝐸(𝑝1, 𝑝2, . . . , 𝑝𝐽) = −
𝐽∑︁

𝑖=1
𝑝𝑖 log2 𝑝𝑖 (5.3)

where 𝑝1, 𝑝2, . . . , 𝑝𝐽 are properties of class values in sample 𝑇 .

Generalized Additive Model. This is a special case of the generalized linear
model (Hastie, T.J, 1986 [72]) where the predictor has dependencies among each
other using some kind of smooth functions. The relation of the response variable
concerning predictors is captured through

𝑔(𝐸(𝑓)) = 𝛽0 + 𝑓1(𝑥1) + 𝑓2(𝑥2) + . . . + 𝑓𝑚(𝑥𝑚) (5.4)

where the functions 𝑓1, 𝑓2, . . . , 𝑓𝑚 could be any specified parametric or non-
parametric form.

K Nearest Neighbor. This method is one of the standard non-parametric meth-
ods used for classification and regression tasks. The input has 𝑘 closest examples
scattered in any feature space and output as a class object decides whether it can
be used for classification or regression. Due to this nature of the algorithm, it is also
called instance-based learning or lazy learning to compute all the functions locally at
the cost of retarded function. For any given data pairs (𝑋1, 𝐹1), (𝑋2, 𝐹2), . . . , (𝑋𝑛, 𝐹𝑛)
such that 𝑋, 𝐹 ∈ R𝑑 𝑥{1, 2}. These data pairs can be reordered under a given
probability distributions and norm as ‖𝑋1 − 𝑥‖ ≤ . . . ≤ ‖𝑋𝑛 − 𝑥‖ where 𝐹 is the
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class label of 𝑋. This is the primary setting of 𝑘 nearest neighbor. For more details
on this classifier, refer to the study by Cover,T.(1968) [36] .

5.1.3 Ensemble Models

Ensemble models is a technique based on considering multiple models and combining
them to enhance the predictive performance rather than relying on the single best
model. Ensemble models are not based on a simple average but a weighted sum as
represented in the following equation

̃︀𝑓(𝑥; 𝛼) =
𝑝∑︁

𝑗=1
𝛼𝑗𝑓𝑗(𝑥) (5.5)

where 𝑓 denotes any response variable and 𝑥 denotes co-variates. There exist many
types of ensembles as an averaging technique which is computationally demanding
but provides better results in critical decision making task (for instance, predicting
business failure). The considered ensemble models are described below.

Random Forest. This method of tree generation is sort of ensemble learning
(Breiman L, 2001) [18] which is used for both classification and regression purposes
based on bootstrap samples of the training data and random feature selection. After
training, predictions for unseen samples 𝑥

′ can be made by averaging predictions from
all the individual regression trees on 𝑥

′ or simply using a majority vote technique in
case of a classification problem. The general form of bootstrap aggregation can be
presented as

̂︀𝑓 = 1
𝐵

𝐵∑︁
𝑏=1

𝑓𝑏(𝑥
′) (5.6)

Bagging. It is an approach to improve the stability and accuracy of a machine
learning algorithm for any classification or regression task (Breiman L, 1996) [16] .
Assuming that a learning set L consists of data {(𝑓𝑛, 𝑥𝑛), 𝑛 = 1, . . . , 𝑁} where 𝑓 is
a response variable and 𝜙(𝑥, 𝐿) can become a procedure for using this learning set.
The repeated bootstrap samples can be developed from learning set given that the
response variable is numerical 𝜙𝐵(𝑥) = 𝑎𝑣𝐵𝜙(𝑥, 𝐿𝐵) where 𝑎𝑣𝐵 is the average or
expected value of any bootstrapped samples. In general, they are a model averaging
approach that helps to reduce variance and avoid over-fitting results.
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Gradient Boosting Machine. This technique produces a predictive model in
the form of an ensemble of weak prediction models (Breiman L, 1999 [17], Friedman,
J. H,2001 [55]) mainly as decision trees. Unlike any general boosting methods, it
develops models in each stage by generalizing them using some arbitrary differentiable
loss function. The core idea behind this algorithm is that it assumes a real-valued
function for response variable 𝑓 and seeks an approximation ̂︀𝑓(𝑥) using a weighted
sum of functions ℎ𝑖(𝑥) for some class of weak learners as the following

̂︀𝑓(𝑥) =
𝑀∑︁

𝑖=1
𝛾𝑖ℎ𝑖(𝑥) + const (5.7)

where 𝛾𝑖 is a sort of multiplier in the form of coefficient values.

Bayesian Moving Average. This approach to predictive models is simply based
on selecting and combining models (Fragoso et.al, 2018 [53]) based on their posterior
probabilities. The choice of a single best model may lead to overconfident inference
and henceforth riskier decision. Therefore, the Bayesian approach for predictive
models is desirable in handling model uncertainty. The core of each model selection
is based on posterior distribution using Bayes Theorem resulting in

𝜋(𝜃𝑙|𝐹, 𝐾𝑙) = 𝐿(𝐹 |𝜃𝑙, 𝐾𝑙)𝜋(𝜃𝑙|𝐾𝑙)∫︀
𝐿(𝐹 |𝜃𝑙, 𝐾𝑙)𝜋(𝜃𝑙|𝐾𝑙)𝑑𝜃𝑙

(5.8)

In the above equation, 𝜃1 are model specific parameters for any observed data 𝐹

for any given model 𝐾 and likelihood function 𝐿.

Bayesian additive regression trees. They are the "sum of trees" model where
each tree is constrained by a regularization prior (HA Chipman, 2008 [26]) and
is very similar to Gradient Boosting which uses Bayesian back-fitting to execute
MCMC sampling from a general additive model posterior distribution. The selection
of combining multiple models is very desirable as it avoids overconfident and riskier
decisions arising from one particular model. Using the Bayesian Additive Regression
Trees (BART) model, we can obtain posterior distribution based on Bayes Theorem
resulting in

𝜋(𝜃𝑙|𝐹, 𝐾𝑙) = 𝐿(𝐹 |𝜃𝑙, 𝐾𝑙)𝜋(𝜃𝑙|𝐾𝑙)∫︀
𝐿(𝐹 |𝜃𝑙, 𝐾𝑙)𝜋(𝜃𝑙|𝐾𝑙)𝑑𝜃𝑙

(5.9)

as the integral in the denominator for each prior distribution represents a marginal
distribution of the dataset overall parameter values specified in model 𝐾𝑙. Moreover,
𝜃1 are model specific parameters for any observed data F for any given model 𝐾

and likelihood function 𝐿.
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5.2 Optimization Model

The optimization problem that we have considered in the context of our research
problem is not exactly convex since they do not follow Disciplined Convex Program-
ming (DCP) rule-set and as a result to achieve an optimal solution, one has to look
for the solution of the problem from the quadratic programming techniques. We
studied and implemented many different optimization algorithms like Nelder-mead
algorithm, BFGS algorithm, L-BFGS-B algorithm, CG algorithm, SANN algorithm.

All of these algorithms provide a common optimal solution as a globally optimal
solution in each case that converges to zero with an increasing number of iterations. In
the following paragraph, we discuss a short description of each of these optimization
algorithms.

• The Nelder-mead algorithm, also known as the downhill simplex method, is
a numerical method technique to find a minimum or maximum point of an
objective function. It is one of the non-linear optimization technique and it is
a direct search method that can converge to non-stationary points. For any
given non-linear function 𝑓 : R𝑛 → R, it deploys only function values at some
points in R𝑛 and does not necessarily approximate gradient values at any of
these points. In simpler terms, it is a simplex method defined on a convex hull
of 𝑛 + 1 points 𝑥0, . . . , 𝑥𝑛 ∈ R𝑛 that forms triangles or other geometric shapes.
Any set of functions 𝑓𝑗 := 𝑓(𝑥𝑗) is a non-degenerate and does not lie in the
same hyperplane. The function value decreases at points after a sequence of
transformations and is terminated when it is sufficiently small. Refer to [101]
for further details.

• BFGS is an iterative technique or hill-climbing optimization techniques that
search for stationary points of an objective function and the gradient is zero
for necessary conditions of optimality. For any given or defined optimization
problem, the basic goal is to minimize a scalar function 𝑓(𝑥), 𝑥 ∈ R𝑛, which
produces a quasi-newton method that approximates ∇2𝑓(𝑥*) as the sequence
of iteration progress, where 𝑥* is the new value of 𝑥 obtained from iteration.

The following steps give a short guide to do any transition from the current
state of approximation to new approximation using a line search paradigm
method (refer to [52] for additional details):

– Computing a search direction 𝑑 = −𝐻−1
𝑐 ∇𝑓(𝑥𝑐). The 𝐻𝑐 is the current

state of approximation.
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– Finding 𝑥𝑛 = 𝑥𝑐 + 𝜆𝑑 using a line search paradigm, where 𝑥𝑛 is a new
approximated value and 𝜆 is a scalar factor.

– Using the current approximation 𝑥𝑐 and new approximation 𝑥𝑛 to update
𝐻𝑐 and obtain 𝐻𝑛. The term 𝐻𝑛 is the new state of approximation.

• L-BFGS-B is a technique that is popular for parameter estimation in machine
learning. Unlike BFGS, L-BFGS-B uses the inverse Hessian matrix for finding
solutions through the search space. The algorithm initially estimates an initial
value 𝑥0 and finds a better estimate of this initial value in a sequence of
estimates as a derivative of the function 𝑔𝑘 := ∇𝑓(𝑥𝑘) . Thus this algorithm
works like BFGS with the difference that it uses the inverse Hessian matrix
for computation. The method is more adequate for working with bounded
constraints as it tries to find fixed and free variables at every single step based
on a simpler gradient method to achieve higher accuracy. Refer to the study
by Zhu et al. (1997) [130] for any further details.

• The CG method is one of the numerical techniques for solving a system of linear
equations. It is an iterative algorithm for various minimization tasks using
some kind of quadratic function as 𝑓(𝑋) = 1

2𝑋𝑇 𝐴𝑋 − 𝑋𝑇 𝑏 where 𝑋 ∈ R𝑛,
where 𝐴 is a positive definite symmetric matrix and 𝑋 is a non-zero vector
of 𝑛 dimension. The second derivative for any symmetric positive definite
matrix acts as a unique minimizer and solves the initial problem. We can use
this algorithm to solve any optimization problem both as a direct method
or iterative method. The majority of the experts view this algorithm as a
direct method as it is able to produce exact solutions after a few number
of iterations and the solutions obtained are highly unstable with respect to
small changes. It is further possible to set up the convergence of approximate
solution to an exact solution using convergence theorem. Refer to the study
by Hestenus,M.(1952) [76] for additional details.

• SANN is a probabilistic technique by which we can approximate the global
optimal solution of a given objective function and is a more preferable approach
in many cases compared to gradient descent. SANN is a variant of the simulated
annealing and relates widely to the class of stochastic global optimization
methods. This algorithm is relatively slow since it uses only function values, and
for achieving any acceptance probability as a value it uses Metropolis function.
Such a kind of algorithm is popular in solving combinatorial optimization
problems. Refer to Dimitris [12] for further details on this topic.
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5.3 Performance assessment

In this section we briefly describe the performance metrics reflecting the accuracy and
error of classification models. The accuracy metrics used to assess the classification
models discussed in this thesis are the following:

• H is an alternative to the popular ROC curve performance measure for any
classification or diagnostic task. It is being believed that misclassification cost
is not handled properly by ROC or AUC measures, which in turn H proves to
be a better metric for assessing the performance task. Furthermore, the AUC
measure is classifier dependent, and generally we should choose a weight prior.
This is not the case with H, as it is classifier independent and controls the cost
prior to a better way. For more details on this measure, one can refer David
(2009) [65] .

• AUC is a diagnostic tool or performance measure metrics associated with ROC
and is measured at various threshold settings. AUC value signifies the degree
of separability and helps to discriminate between class labels. The higher the
value of AUC, the better is the performance of the classifier.

• AUCH is a geometrical representation ROC curve that allows us to select points
on the curve under some optimality conditions of cost and class distribution. It
is very much similar to Pareto-front in the case of multi-objective optimization.
We can also say that the convex hull can be seen as a discretization of the
scores that achieve higher AUC . It can also be inferred as a hybrid classifier
that reaches any random point on the convex hull by stochastic interpolation
between two neighboring classifiers. For additional details, one can refer to
Provost and Fawcett, 2001 [107] .

• MER is a sort of decision rule that helps in minimizing the probability of error
or simply error rate. The loss function considered is symmetrical or zero-one loss
function which helps in minimizing error by maximizing posterior probability.
For more details on this measure, one can refer H., David (2009) [65] .

• MWL is a technique of weighting the error for the different cost associated
with misclassification. A weighting function is used either to define the cost
matrix or response vector for classification. The lower is the weighting error, the
better is a contribution to decision making. For more details on this measure,
one can refer David (2009) [65] .
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There are other metrics, like Kolmogorov Statistics (KS), GC, Sensitivity at 95
percent Specificity (Sens.Spec95), Specificity at 95 percent Sensitivity (Spec.Sens95)
but is not used in the current scope of analysis as most of the performance assessment
and their inference is already captured through other metrics in use. For more details
on this measure, one can refer David (2009) [65] .





Chapter 6

Results

An ensemble model is a winning formula for almost
all data science and machine learning competitions.

Anonymous

This chapter discusses the results obtained from the proposed idea in chap-
ter 3 . The solutions from the proposed approach are considered as weights to
build a weighted ensemble model which is a linear combination of parametric, non-
parametric, and ensemble models. The proposed weighted ensemble model WTM and
its robustness were checked against all well-known parametric, non-parametric, and
ensemble models. The robustness check of WTM was subsequently carried against
different weighting procedure like Weighted method using correlation (WMCOR),
Optimal Weighted Method (OWM), Squared Weighted Method (SWM), Negative
Weighted Method (NWM) and Equally Weighted Method (EWM) and the results
at hand infers that our proposed method WTM provides better performance.

6.1 Model averaging results

The main motivation to develop a novel way of ensemble model using the knowledge
of model averaging is to bring an approach that seeks to minimize the error between
models. We have been able to do so by measuring and minimizing the co-variance
of the error between models concerning to a set of constraints as stated in the
equation 3.9.

To be more precise, the difference between observed and predicted value for each
model were considered as error of the model. Both co-variance and correlation were
used to understand which of these two provides a better minimization of the error

79
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between models. The results of ROC in figure 6.2 and 6.5 advocates the idea that
development of ensemble model based on co-variance approach outperforms all other
considered approach in this thesis.

The weighted ensemble model is then evaluated against the existing popular ma-
chine learning models (parametric, non-parametric and ensemble model as discussed
in 5.1) using a set of different performance metrics. The idea to use different metrics
to assess both accuracy and error of the model is to understand overall how well the
proposed model is doing concerning to existing models.

What happens if we do not consider the idea of diverse weighting options to
build an ensemble model and stick to just one optimal value. We explored this
inquisitiveness solving the optimization algorithm discussed in section 5.2 and we
obtained a unique value of 0.24 as an approximated solution for all mentioned
optimization algorithm. The figure 6.1 geometrically shows the location of optimal
value around its other neighboring solutions.

This unique value was considered as an optimal weight for all the considered
models to develop the proposed ensemble model. How well the ensemble model
performs using an optimal weight with respect to other weighting strategies is
assessed using ROC in figure 6.5 .

Figure 6.1: Optimal solution of the Nelder-mead, BFGS, L-BFGS-B, CG and
SANN algorithm.
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The set of models that were studied and compared in the analysis are CTREE,
RPART, Generalized Linear Models (GLM), Random Forest (RF), Bootstrap Ag-
gregating (BAGG), Boosting (BOOST), BMA, Generalized Additive Model (GAM),
K Nearest Neighbor (KNN), Naive Bayes (NB), BART, and proposed weighted
model based on minimizing co-variance between errors of the models. The proposed
weighted model in addition were evaluated against other weighting methods like
optimal weight, equal weight, weight obtained from correlation, squared weight and
negative weight.

The modeling approach for having predicted value from each of these models
mentioned just above was kept the same and their training process was built on
𝑘 = 10 cross-validation criteria. The performance metrics to assess accuracy and
error for each of these models has been computed on out of sample data and are
reported in table 6.1, table 6.2, figure 6.3, figure 6.4 .

From table 6.1, Analyzing the accuracy measure performance metrics for different
models is reported as follows,

• For H metrics, it infers that BMA and GAM is the best performing model
whereas NB is the worst performing model.

• For AUC and AUCH metrics, it infers that CTREE, RF, BAGG and WTM
are few of the best performing model including performance overlap whereas
GLM, BMA and GAM are worst performing model including performance
overlap.

• For Sens.Spec95 and Spec.Sens95 metrics, RF is the best performing model
and KNN is the worst performing model.

Table 6.1: Performance metrics capturing accuracy of the model.

Metrics CTREE RPART GLM RF BAGG BOOST BMA GAM KNN NB BART WTM

H 0.62 0.59 0.67 0.64 0.61 0.57 0.78 0.78 0.39 0.38 0.50 0.60
AUC 0.94 0.80 0.67 0.94 0.92 0.91 0.67 0.67 0.79 0.77 0.82 0.92

AUCH 0.94 0.80 0.67 0.94 0.92 0.91 0.67 0.67 0.79 0.77 0.82 0.92
Sens.Spec95 0.24 0.15 0.04 0.63 0.50 0.48 0.20 0.20 0.03 0.05 0.04 0.58
Spec.Sens95 0.10 0.07 0.05 0.78 0.77 0.73 0.06 0.06 0.03 0.06 0.04 0.73

Referring to results in table 6.2, Analyzing the error measure performance metrics
for different models is reported as follows,

• For MER metrics, it infers that WTM is the best performing model whereas
GLM and NB is the worst performing model.
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• For MWL metrics, it infers that WTM is the best performing model whereas
GLM is the worst performing model.

Table 6.2: Performance metrics reflecting error in the model

Metics CTREE RPART GLM RF BAGG BOOST BMA GAM KNN NB BART WTM

MER 0.16 0.16 0.26 0.13 0.14 0.15 0.15 0.25 0.16 0.26 0.16 0.14
MWL 0.18 0.19 0.29 0.12 0.14 0.15 0.16 0.26 0.19 0.28 0.19 0.14

However, the proposed model WTM in the overall accuracy and error metrics
analysis is better compare to well-known parametric, non-parametric, and ensemble
models.

The label mentioned in the legend of figure 6.2 is as follows,

• CTREE infers conditional tree model.

• RPART infers recursive partitioning tree model.

• GLM infers generalized linear model.

• RF infers random forest model.

• BAGG infers bagging model.

• BOOST infers gradient boosting model.

• BMA infers Bayesian moving average model.

• GAM infers generalized additive model.

• KNN infers k-nearest neighbor model.

• NB infers Naive Bayes model.

• BART infers Bayesian additive regression trees.

• WMCOR infers proposed model based on the idea of measuring the correlation
of error between the models.

• EWM infers the proposed model based on the idea of equal weighting.

• WTM infers proposed model based on the idea of measuring co-variance of
error between the models.

Similarly, the label mentioned in the legend of figure 6.5 is as follows,
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• WTM infers proposed model based on the idea of measuring co-variance of
error between the models.

• WMCOR infers the proposed model based on the idea of measuring the
correlation of error between the models.

• OWM infers the idea of using optimal weight.

• SWM infers the idea of squared weight.

• NWM infers the idea of negative weight.

• EWM infers the idea of equal weighting.

An additional inference that is evident from the figure 6.2 and 6.5 is the perfor-
mance overlap in a few of the performance metrics. To sort out or rank the classifiers
when ROC intersects at different points is a challenging problem. It is being believed
that stochastic dominance can be an effective tool for ranking the classifier or models
based on different criteria.

However, such a solution is limited to address the issue of intersecting ROC at
two different points on the curve and is not generalizable to multiple intersections of
ROC at multiple points. For details on such topics, refer to the study by Figini et.
al [61], Hand [66], and Muliere [99] .

Following table 6.3, Analyzing the accuracy measure performance metrics for
different weighting methods is reported as follows,

• For H, AUC, and AUCH metrics, it infers that WTM is the best performing
weighting method for developing ensemble model whereas OWM is the worst
performing weighting method.

• For Spec.Sens95 and Sens.Spec95, it infers that WTM is the best weighting
method whereas SWM and OWM is the worst performing weighting method
including performance overlap.

Table 6.3: Accuracy assessment of different weighting methods.

Metrics WTM WMCOR EWM OWM SWM NWM

H 0.60 0.06 0.27 0.01 0.12 0.27
AUC 0.92 0.63 0.78 0.55 0.67 0.78

AUCH 0.92 0.63 0.78 0.55 0.67 0.78
Spec.Sens95 0.58 0.15 0.25 0.10 0.10 0.25
Sens.Spec95 0.73 0.11 0.33 0.05 0.05 0.33
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Figure 6.2: ROC curve of parametric, non-parametric, ensemble and proposed
weighted model.
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Figure 6.3: Accuracy metrics graphical representation.

Figure 6.4: Error metrics graphical representation.
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Following table 6.4, Analyzing the error measure performance metrics for different
weighting methods is reported as follows,

• For MER metrics, it infers that WTM is the best performing weighting method
for developing ensemble model whereas OWM is the worst performing weighting
method.

• For MWL, it infers that WTM is the best weighting method whereas OWM is
the worst performing weighting method.

Table 6.4: Error assessment of different weighting methods.

Metrics WTM WMCOR EWM OWM SWM NWM

MER 0.14 0.40 0.28 0.44 0.35 0.28
MWL 0.14 0.40 0.28 0.46 0.36 0.28

The weighted model using co-variance technique WTM is compared against other
weighting methods like WMCOR based on correlation, EWM based on co-variance,
OWM based on different optimization algorithm, SWM based on co-variance and
NWM based on co-variance. Looking at the results in hand in table 6.3 and in
figure 6.5, it infers that WTM satisfies the optimization constraints in equation 3.9
and is a better way to achieve enhanced performance from proposed ensemble model.

The idea to test the performance of the proposed model against all other weighting
methods is to advocate the robustness of WTM . Moreover, the robustness check
of WTM was also done looking at the predicted score distribution on a sample of
the customer from the dataset mentioned in chapter 4 . Looking at the distribution
of predicted default score in figure 6.6, 6.7, 6.8 and 6.9, it is clear that the score
distribution obtained using WTM has a better discriminating status of defaulted or
not defaulted customer in respect to other well-known methods of score distribution
from parametric, non-parametric and an ensemble model.
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Figure 6.5: ROC curve with different weighting strategy.
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Figure 6.6: Predicted score distribution of customers using proposed model WTM.

Figure 6.7: Predicted score distribution of customers using one of the well-known
ensemble model.
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Figure 6.8: Predicted score distribution of customers using one of the well-known
non-parametric model.
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Figure 6.9: Predicted score distribution of customers using one of the well-known
parametric model.
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6.2 Multi-objective optimization strategies results

In this section, we discuss results that were obtained from the proposed idea of a
multi-objective optimization strategy in chapter 3 . The solution obtained from the
proposed idea is used as a weight to construct an ensemble model and compare
performance with a well-known machine learning model. The performance evaluation
is a robust indicator to see how well our proposed model is doing against other
considered machine learning models.

Solving each of these strategies using a minimization framework provides a set
of non-dominated solutions that are not ordered but sufficiently serves as local
and global optimal values for the considered objective functions. They are Pareto
efficient solutions which is used to rank the performance of machine learning models
(parametric, non-parametric, and ensemble). This, in turn, helps us in mapping the
relation between our objective functions which further can be changed sequentially
by varying weights especially in the strategic approach of a weighted sum of deviation
and Chebyshev goal programming.

The ordering analysis of the Pareto optimal solution is not considered in this
scope of study in terms of no preference method, a priori method, posterior method,
hybrid method, and interactive method since these are broadly defined topics meeting
the different purpose of solving a multi-objective problem. Our approach is, to some
extent, very similar to the no-preference method where we have been able to scalarize
the problem taking the objectives that are normalized into a uniform dimensionless
scale. For detailed insights on the ordering of Pareto solutions, refer to the study of
Branke, et. al [14] .

Each of the proposed strategies is tested against parametric models (GLM, NB),
non-parametric models (decision tree, GAM) and ensemble model average (RF,
BAGG, BOOST, BMA, BART) .

A similar approach is adopted for all strategies when comparing with some key
performance metrics such as H, AUC, AUCH, MER and MWL that helps to examine
predictive capability, discriminatory power, and stability of the results.

Figure 6.10 presents Pareto front as an unordered point with two local minimum
optimal solutions and a set of various points as a globally optimal solution with
respect to strategy 1 that is based on a weighted sum of deviations. The solution
achieved through this strategy is useful for the direct comparison of objectives as we
know that unnecessary deviations are multiplied with weights to form a single sum
for the goal or achievement function. How to set up weights or select weights is one
of the active topics for research in the context of goal programming.
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The idea behind each of these proposed strategies is explained in section 3.6.
The solutions achieved from solving the defined multi-objective strategies in this
thesis is a set of unordered Pareto solutions.

Figure 6.10: Multi-objective strategy based on weighted sum of deviations 3.6.

Figure 6.11 presents the Pareto front with respect to strategy 2 where we can
see a peak at some point in their objective function value and being flattened at
many other points with the intuition to minimize maximum deviation in the goal
programming approach i.e to reduce maximum covariance among the chosen machine
learning models. These peak points are the local minimum optimal solution and
flattened points are the global minimum optimal solution.

Figure 6.12 indicates the Pareto front unordered solution of minimization problem
referring to strategy 3 that is based on joint entropy and we can see multiple local
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Figure 6.11: Multi-objective strategy based on chebyshev goal programming ap-
proach 3.6.
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and global optimal points.

Figure 6.12: Multi-objective strategy based on joint entropy approach 3.6.

Figure 4 indicates the unordered solution of cross-entropy referring to strategy 4
that shows many local optimal solutions and one global optimal solution.

The solutions achieved through different strategies serve as an optimal weight
to construct an ensemble model using the model average technique proposed in
chapter 3 . They are assessed against a set of performance metrics to evaluate the
possibilities to enhance the model accuracy.

Referring to the accuracy-related performance metrics in table 6.5, strategy 3 3.6
is the best performing strategy including performance overlap for AUC and AUCH
metrics whereas strategy 4 3.6 is the worst performing strategy. On the other hand,
for error related measures in table 6.6, strategy 3 3.6 is the obvious choice among all
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Figure 6.13: Multi-objective strategy based on cross entropy approach 3.6.

other strategies.

Table 6.5: Performance of different strategy with respect to accuracy metrics.

Strategies H AUC AUCH

Strategy 1 0.60 0.92 0.92
Strategy 2 0.48 0.93 0.93
Strategy 3 0.64 0.94 0.94
Strategy 4 0.06 0.63 0.63
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Table 6.6: Performance of different strategy with respect to error of the model.

Strategies MER MWL

Strategy 1 0.14 0.14
Strategy 2 0.12 0.12
Strategy 3 0.11 0.11
Strategy 4 0.28 0.28

6.3 Additional Results

This section bring additional insights into the results specifically from the risk
analysis perspective as it helps to understand casual relationship and probabilistic
inference among given set of variables in the dataset.

6.3.1 Additional results using Bayesian Network

The Bayesian Network is a technique that explores independence relations among
data variables and distribution of data under the probability framework. The learning
from Bayesian Network for modeling or predictive task is done through many different
approaches but we focus mainly on the so-called constraint-based and score-based
approach. To know details on such topic, refer to [105] and [75] . The constraint-
based approach helps to understand the resulting network through in-dependencies of
data and the score-based approach describes the data in Bayesian Network through
probability distribution. The constraint-based approach uses in-built statistical tests
that help the network to find a set of nodes or links that are not independent. On
the other hand, the score-based approach simply works on the principle of general
optimization technique where the objective is to maximize the score of node in
the network. In short, the Bayesian Network is a model of in-dependencies and
parametrization of the joint distribution. Each of the nodes in the network due to the
score-based approach has probability distribution like multinomial distribution and
conditional Gaussian distribution. These probability distributions are nothing but
posterior probabilities that can be averaged out for all in degree bounded network
to achieve better predictive accuracy through the Bayesian Network modeling. For
more details on such topic, refer to Friedman et. al [56] .

Our approach proposed in chapter 3 on the model averaging technique can
be applied in this context of the Bayesian Network using a score-based approach
and posterior probability distribution. This probability distribution can be used as
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a weight to construct an ensemble model to achieve enhanced predictive capacity.
Figure 6.14 is a Bayesian Network that reflects the connection of the constraint-based
approach and score-based approach (also known as Hill Climbing Algorithm). Both
the algorithms are search algorithms for structural learning but the score-based
approach is the more preferred choice since a large amount of data is required for a
fully connected network using the constraint-based approach.

Figure 6.14: Bayesian Network using score-based and constraint-based algorithm.

The connection of each node in the network is conditionally dependent on other
nodes through a joint or conditional probability distribution that gives an intuitive
understanding of the causal relationship of the event and their cause.

For instance, the figure in 6.15 shows the distribution of the response variable
"ClientStatus" from the dataset discussed in chapter 4 that explains the causality of



98 CHAPTER 6. RESULTS

the default status of the client in the whole network considering the co-variates are
randomly placed.

The graph explains the distribution of each label (denoted as a light blue bar) of
the response variable with respect to a set of features that could be placed at random
in the network. This is our approach as an experiment to add randomization in the
network in terms of probability distribution and each number simply denotes the
random positioning of nodes considered as covariates in the model. Such an approach
could be useful to understand the risk dynamics of a person or any occurrence of an
event from a network analysis perspective or as probabilistic inference.

Figure 6.15: Conditional probability distribution of response variable.
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6.3.2 Additional result using threshold criteria

Apart from the performance assessment metrics discussed in section 5.3, we evaluated
the model based on different criteria of thresholds for comparing models as a measure
of accuracy. This idea is quite helpful in understanding the ex-post analysis after
the occurrence of events.

Before presenting this assessment in table 6.7, it is important to understand in
brief the intuition behind threshold settings. Each of these thresholds can take values
between 0 and 1. The singular value for threshold can be considered as optimal
value and dual values can be considered as a range of values that might be equal for
the very particular threshold selection method. The idea of using such performance
metrics is based on different threshold criteria and is described in brief as follows:

• Minimum Occurence Prediction (MOP) is the value that refers to the minimum
prediction for the correct predicted labels.

• Mean Occurence Prediction (MEP) is the value that refers to the mean predic-
tion for the correct predicted labels.

• 10 Percent Omission (10PO) is the value or range that leaves 10 percent of
the correct predicted labels.

• Sensitivity Equal to Specificity (SS) refers to the value at which sensitivity is
equal to specificity.

• Maximum Sensitivity and Specificity (MSS) refers to the value which maximizes
sensitivity and specificity.

• Maximum Kappa (MK) refers to the value that reflects the maximum kappa
statistic.

• Maximum Proportion Correct (MPC) refers to the value that reflects the
maximum proportion of correct and incorrect predicted labels.

• Minimum ROC Plot Distance (MRPD) refers to the threshold value where the
ROC curve is a perfect fit.

They are important analysis if we want to understand the post-processing of any
events that occurred, as in this case, it helps to understand the risk distribution after
the default has finally occurred from a set of customers over time. This is a step to
understand risk dynamics ex-post quasi distribution or analysis. Using thresholds
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reported in the table 6.7, it helps to compare models and track any changes in
distribution over time.

The robustness of our proposed weighted ensemble model WTM is reflected
in the ex-post distribution analysis in table 6.7 where a few numbers of threshold
criteria values supports that WTM is better at predicting class labels with compare
to well-known parametric, non-parametric, and ensemble models.

Table 6.7: Performance assessment of the model based on different threshold value.

Threshold CTREE RPART GLM RF BAGG BOOST BMA GAM KNN NB BART WTM

MOP 0 0 0.05 0 0 0.01 0.01 0.02 0 0.38 0.05 0.05
MEP 0.46 0.46 0.46 0.23 0.21 0.26 0.58 0.58 0.44 0.32 0.45 0.60
10PO 0, 0.04 0,0.31 0.29 0.01 0,0.04 0.04 0.42 0.42 0.17 0.03 0.01 0,0.35

SS 0.46 0.44,0.6 0.43 0.54 0.53,0.56 0.50 0.56 0.56 0.42,0.43 0.2 0.5 0.50
MSS 0.12 0.32,0.35 0.74 1 0.97,1 0,1 0.55 0.56 0.46,0.47 0.39 0.64 0.88
MK 0.12 0.32,0.35 0.74 1 0.97,1 0,1 0.55 0.56 0.46,0.47 0.39 0.64 1

MPC 0,0.04 0,0.31 0.13,0.18 0,0.01 0.46 0.47 0,0.04 0.46 0.47 0,0.04 0 0.60
MRPD 0.39,0.40 0.61,0.65 0.43 0.97 0.97,1 0.91 0.56 0.56 0.44 0.21 0.5 0.78

The model outcome in most of the tasks is a probability distribution, and these
distributions differ or diverge from each other. There are various methods to estimate
the divergence of such distributions but we restrict our insights in the context of
Kullback-Leibler divergence here to calculate relative entropy and cross-entropy
between two probability distributions. These measure helps to understand the
uncertainty among model and also can be used as a loss function for optimizing
classification models.

we know that by adopting different modeling approaches, we predicted default
probabilities from the given true or observed distribution. The idea carried in table 6.8
helps in understanding how similar or different is the predicted distribution from the
observed distribution. The lesser is the values in the table, the better is the model
in explaining the distribution closer to the observed distribution. Looking at the
values in table 6.8, WTM stands to be a better model in explaining the difference
of predicted and observed distribution in comparison to well-known parametric,
non-parametric, and ensemble models. For more details on such topic, refer to [100] .

Table 6.8: Divergence assesssment using cross-entropy.

CTREE RPART GLM RF BAGG BOOST BMA GAM KNN NB BART WTM

Cross-Entropy 12.63 12.90 13.22 12.86 12.75 12.96 13.23 13.23 13.11 12.66 12.78
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Conclusions

In conclusion, our proposed idea on model averaging and Pareto-based multi-objective
optimization is one of the useful techniques that have the potential to enhance the
performance of machine learning or any statistical model. The proposed idea can
be applied to many different problems where data analysis represents the core task,
and it is not only limited to classification tasks.

The conclusion drawn from the proposed idea is based on the single dataset and
any generalization of this idea could be specific to the problem of interest at hand
which should be checked on several further case studies.

The model averaging approach is primarily useful in reducing prediction errors
but not necessarily may do so in every context. The reason for this is due to the fact
few individual models among the pool of models do not contribute to the decrease of
co-variance and average bias. This can be offset using a proper or diverse technique
for estimating weights that in turn helps in adjusting the additional variance from
weaker models.

The literature is full of different information criteria that advocate the right way
of estimating weights. In our opinion, however, none of the information criteria is
ideal to be applicable to every single problem. Therefore, a continuous discussion on
evolving the theories and techniques of information criteria will be an important
step in this direction.

The traditional approach suggests using the single best model and therefore
ignores model uncertainty that may arise due to model structure and assumptions.
Therefore, relying on the single best model with confidence is not a good idea as it
may have adverse consequences. The committee of diverse models offers enhanced
performance if it is based on model average techniques.

Model averaging studies are dominated by two approaches, that are the Bayesian

101
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and the frequentist approach. Any different approach like the one proposed in this
thesis is an attempt to offer a technique that is effective to solve the diverse problems
of classification. Our proposed model averaging technique can be considered as a
cutting tool that does not take parameter values for averaging. In this sense, we
make the approach flexible to work on many different problems.

There is contradicting opinion if the model averaging technique is any ensemble
technique unlike boosting and bagging. Such belief is mostly because model averaging
is not straightforward from the computational point of view and lacks generalization
abilities that can solve different problems.

However, our work in this thesis strongly supports the argument that model
averaging technique outperforms bagging and boosting in many situations especially if
there is model uncertainty, model bias, high variance, and if the dataset is imbalanced.
Further to emphasize our proposed idea, we can say that it is similar to the ensemble
technique and offers various possibilities to enhance the performance of any machine
learning model.

The main idea of any ensemble technique is to weigh individual classifier and com-
bine in a way to produce output that is better than individual classifier at predicting
the task. Our proposed ensemble technique is characterized by diverse classifiers
which makes any ensemble technique efficient to enhance predictive performance.
The diversity of classifiers offers a serious advantage in developing an effective model
averaging or ensemble technique but its inter-relationship with predictive output and
errors will be an important point of investigation from a future perspective. Making
an effort to keep understanding of the ensemble model simple to non-technical people
would be also a wise step in this direction.

Moreover, until today, model averaging studies favor non-parametric methods for
correctly estimating predictive errors, any reliable analytical method in this respect
is lacking to compute frequentist confidence intervals(P-values) on averaged model
predictions.

Parametric methods based on AIC and BIC may give better performance. How-
ever, this is not always true as non-parametric methods have an advantage under
general considerations. Parametric methods improve predictive error if any fixed or
estimated weights are used.

A major part of applied machine learning is to understand the tricks and tips
around the model selection. Given a large choice of models for selection, how one
model statistically differs from other models is a question of continuous investigation
and testing.
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The field of machine learning is evolving rapidly with its inter-connection to
optimization theories and multi-objective optimization. Optimization plays a crucial
role in minimizing or maximizing the different objective functions of interest that
influence the performance of the learning algorithm.

The proposed idea in this thesis with respect to multi-objective optimization is
evolutionary in the sense that it tries to find Pareto-optimal solutions. Researching
about developing wide options of solvers would be the progressive step in the
evolutionary computation of multi-objective optimization from a future point of view.
Finding concrete application of multi-objective to the problems in other domains
and fields would be an important development in this direction. For instance, the
knowledge of multi-objective optimization to solve and understand complex systems
would pave a new area of research.

One of the drawbacks of multi-objective optimization problems is that it requires
a larger computational effort and often it is solved with a larger number of iterations.
Reducing the computational effort and iterations would be an important development
in this direction.

All the state of the art algorithms on multi-objective optimization have advantage
and disadvantage. For instance, while achieving Pareto-optimal solutions, it is
difficult to measure convergence and regular spacing of solutions. Explaining the
computational complexity of multi-objective optimization and generalizing them as
approximate solutions would be novel development from a future perspectives in
this active field of research.

Incorporating the Pareto-based approach to the machine learning problem pro-
vides a new perspective to enhance the objectives of the machine learning model
although this topic is discussed with their recent developments in their relevance to
a limited area of research problems. What we tried in this thesis is to give a new
perspective in connecting the use of the Pareto-based approach to machine learning
algorithms proposing different strategies borrowing insightful knowledge from an
interdisciplinary field. The approach developed here can add a new perspective to
understand as to how to generate interpretable models, retrieve new insight for
model selection, and model uncertainty.

In this thesis, we adopted a different strategies to assess Pareto-optimal solutions
and relate with different performance metrics in order to make a comparison across
a diversified pool of models. However, this comes at the cost of some advantages and
disadvantages. For instance, it is difficult to guarantee and measure convergence to
achieve regular spacing of solutions largely due to the dominance and diverse nature
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of Pareto-based approaches.
The research activity concentrated in the area of multi-objective optimization

is an active field with many challenging problems remain open in the context of
uncertainty handling, computational complexity, and robustness. For instance, one
such intriguing question is the influences of learning behavior or simply a property
of learning curve due to the Pareto-based approach to machine learning.
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