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Abstract

Tuned Mass Damper (TMD) devices are one of the oldest vibration control means
and are widely used in different engineering contexts. Despite the bulk of literature
on various TMD-related issues, the effectiveness of TMDs in reducing the earthquake
response of civil engineering structures is still debated. This paper deals with the
optimum tuning of the free parameters of a passive TMD applied to sample frame
structures subjected to selected seismic excitations. A tuning procedure consisting
of a numerical Minimax optimization algorithm is implemented within MATLAB.
The so-conceived TMD turns-out optimum with respect to the specific seismic event,
hence allowing for optimum reduction in primary seismic response. Both optimization
process and seismic analysis are carried-out in the time domain, through direct inte-
gration of the equations of motion. The method is tested on benchmark single- and
multi-degree-of-freedom shear-type prototype structures from the literature by assum-
ing first the Imperial Valley 1940 seismic input, as a sort of benchmark excitation, and
then additional recent strong motion earthquakes. In essence, this paper shows that,
in principle, with present reference to frame structures, the optimum tuning of TMD
parameters at given seismic input is theoretically possible.

Keywords: Tuned Mass Damper (TMD), Tuning, Minimax optimization, Time integra-
tion, Seismic response, Frame structures.

1 Introduction

This paper concerns the numerical optimization of the free parameters of a Tuned Mass
Damper device added to frame structural systems subjected to given seismic excitations.
Thus, it mainly presents a theoretical concept of TMD tuning at seismic input. The final
purpose of the proposed method is, inter alia, the appropriate design of efficient passive
TMD devices for seismic engineering applications. An on-going research project on this
topic is under development [1–5], whereby basic tuning concepts have been thoroughly
reviewed and a numerical optimization approach has been put in place for canonical force
input considered in the literature. Initial outcomes on seismic tuning have been presented
in [2]; comprehensive results are derived systematically and reported in details here.

Passive TMDs are one of the oldest and most used vibration control devices, usually
composed of an additional (or secondary) mass, an elastic spring and a viscous (or hys-
teretic) damper attached to a primary structure [6]. After the original introduction of
the Tuned Mass Damper concept (probably dated-back to the patent of Frahm in 1911),
Ormondroyd and Den Hartog [7], Brock [8] and Den Hartog [9] further improved and
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codified these studies. This immediately became the fundamental way of TMD tuning, on
which almost all subsequent theories have been based. Afterwards, several studies have
been dedicated to the optimum TMD tuning, based on models that are either dependent,
e.g. [6, 10–25], or independent, e.g. [26–29], of the external actions.

Following Den Hartog’s contribution [9], the approach that contemplates a tuning de-
pendent on the external loadings has been widely studied, especially in the case of damped
structural systems [10,17,22,30]. In this sense, the presence of inherent structural damp-
ing, which appears realistic for actual buildings and structures, appears to not allow for
straight-forward analytical tuning [10, 30]. However, Warburton’s works [19–22] have al-
ready reported progress in connection to Den Hartog’s tuning with respect to harmonic
and stationary random excitations. Comparison has already revealed at that stage that
even for moderately damped structures (viscous damping ratio up to 5%) Den Hartog’s
tuning formulas guarantee an adequate structural response decrease. In this connection,
also monograph [6] should be mentioned. Anyway, the recourse to numerical optimization
algorithms for the TMD tuning in the presence of damped main structures may become
an useful and effective option [13,17,22].

One may observe from the literature that numerical optimization methods based on
Minimax algorithms have been probably the most common computational techniques
adopted to evaluate the optimum TMD parameters in the case of damped primary struc-
tures, when the structural system is subjected to standard ideal loadings, such as harmonic
or Gaussian white noise force or base excitation [11,16,17,24]. In the mainstream litera-
ture, the seismic input has been usually assumed in post-tuning numerical trials, in order
to investigate the effectiveness of a specific tuning theory within the seismic context. Mi-
randa [27] proposed a numerical tuning procedure based on an energy-based model, whose
results confirmed those obtained by Sadek et al. [28]; Marano et al. [31] approached the
TMD tuning problem by means of a stochastic optimization procedure. Presently, the seis-
mic TMD assessment still appears to be an open research topic, with conflicting opinions,
see e.g. [28, 32–34].

Furthermore, a series of recent works considered the given earthquake input as directly
embedded within the tuning process. The main differences among these studies concern
the adopted optimization algorithm and the modeling of the seismic input. Some sig-
nificant works, where the seismic analysis has been carried-out in the frequency domain
and the earthquake record is modeled through the Kanai-Tajimi formula [35], are that of
Hoang et al. [36], where the TMD tuning was carried-out within a numerical optimization
based on the Davidon-Fletcher-Powell algorithm, that of Lee et al. [37], where the Golden
Section method was used in the optimization process, and that of Leung et al. [38], where
the seismic input was modeled as a non-stationary process and TMD tuning was carried-
out within a Particle Swarm Optimization algorithm. Moreover, Farshidianfar et al. [39]
considered a forty-storey frame building subjected to a given earthquake, with seismic
analysis carried-out in the time domain and TMD parameters optimized through an Ant
Colony Optimization method [39]. Adam et al. [40,41] have dealt with an investigation on
two different tuning approaches, one based on literature tuning formulas [22,36] and on the
assumption of simulating the earthquake as a stationary white noise excitation, and the
other which considers the actual earthquake record in the frequency domain and recovers,
as optimum TMD parameters, the median of those obtained for each seismic input; the
so-obtained results pointed-out: (a) a negligible difference between the two adopted ap-
proaches, for the considered structures and seismic records; (b) a remarkable effectiveness
of TMDs in earthquake applications. Bekdas and Nigdeli [42] proposed a tuning in the
frequency domain based on a Harmony Search algorithm, assuming a harmonic load in
the optimization process, which has been further tested with a seismic loading. Mohebbi
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and Joghataie [43] considered an eight-storey frame building subjected to an earthquake
modeled as white noise excitation in the time domain, with a TMD tuned by a Distributed
Genetic Algorithm (DGA) optimization.

Nevertheless, it appears that the Minimax optimization method has not been directly
applied to the systematic analysis of tuning at given seismic input. This paper inserts
itself into this specific recent line of research in TMD tuning and innovatively explores the
efficiency of the proposed optimization method through numerical tests on several frame
buildings, characterized by different structural parameters. The main novelty aspect of
the optimum tuning procedure proposed here is the application of a Minimax optimization
algorithm on specific cases of frame structures and of seismic events, so that the so-obtained
TMD parameters turn-out optimum for each considered case.

The contents of the paper are organized as follows. The proposed tuning procedure is
presented and described in detail in Section 2 and Appendix A. In Section 3 the tuning
technique is applied to both SDOF and MDOF structural systems (shear-type frames) from
the literature [28,29,38], which are subjected to a benchmark seismic input. The procedure
is then further validated and confirmed by additional tests with different earthquakes, with
results reported in Section 4.

2 Statement of the optimum tuning procedure

2.1 TMD on a SDOF structure

The system composed of a main SDOF structure, equipped with a TMD located on top
and subjected to a base ground acceleration ẍg (t) is sketched in Fig. 1. The primary
structure (S) is characterized by a mass m

S
, a constant linear elastic stiffness k

S
and a

linear viscous damping coefficient c
S
. The natural angular frequency ω

S
and damping

ratio ζ
S
of the primary structure are defined as usual, i.e. respectively:

ω
S
=

√

k
S

m
S

, ζ
S
=

c
S

2
√

k
S
m

S

. (1)

Figure 1. Structural parameters and absolute (relative to the ground) degrees of freedom of
a 2DOF mechanical system composed of a SDOF primary structure (S) equipped
with a TMD (T) added on top, subjected to seismic base excitation.

Conversely, the parameters of the TMD device (T) are an added secondary mass m
T
,

a stiffness k
T
of an added elastic spring and a damping TMD coefficient c

T
of an added

viscous damper. As above, the TMD angular frequency ω
T

and damping ratio ζ
T

are
respectively:

ω
T
=

√

k
T

m
T

, ζ
T
=

c
T

2
√

k
T
m

T

. (2)

The main free TMD parameters, useful to achieve the most appropriate tuning, are
defined in terms of mass ratio µ, tuning frequency ratio f of the primary structure+TMD
system and damping ratio ζ

T
itself, as:

µ =
m

T

m
S

, f =
ω

T

ω
S

=

√

1

µ

k
T

k
S

. (3)
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The two equations of motion which govern the dynamic behavior of the structural
system represented in Fig. 1, subjected to a seismic base acceleration ẍg(t), can be clas-
sically expressed as follows, in terms of absolute degrees of freedom x

S
, x

T
(x

TS
= x

T
−x

S
):

[

m
S

0
0 m

T

] [

ẍ
S
(t)

ẍ
T
(t)

]

+

[

c
S
+ c

T
−c

T

−c
T

c
T

] [

ẋ
S
(t)

ẋ
T
(t)

]

+

[

k
S
+ k

T
−k

T

−k
T

k
T

] [

x
S
(t)

x
T
(t)

]

= −

[

m
S

m
T

]

ẍg(t) . (4)

2.2 TMD on a MDOF structure

Assuming the given primary structure (Fig. 2) as a MDOF shear-type building with n

storeys (thus, n translational degrees of freedom), under seismic base excitation ẍg(t), its
equations of motion can be written in a standard way as follows (see e.g. [44]):

M
S
ẍ

S
(t) +C

S
ẋ

S
(t) +K

S
x

S
(t) = −M

S
r ẍg(t). (5)

with typical meaning of symbols involved.

Figure 2. Same as Fig. 1. MDOF shear-type frame primary structure.

As often reported in the literature, see e.g. Villaverde and Koyama [29] and Sadek et
al. [28], classical Rayleigh damping is assumed here, specifically by taking the (n × n)
damping matrix C

S
as simply proportional to the stiffness matrix K

S
, with:

C
S
= βK

S
, β =

2 ζ
S,I

ω
S,I

, (6)

where ζ
S,I

and ω
S,I

are respectively the given structural damping ratio and computed
proper angular frequency of the primary structure referred to its first mode of vibration.

The seismic response of the MDOF structures may be evaluated also in terms of energy
indicators, represented here by elastic energy E

S
, kinetic energy T

S
and dissipation power

D
S
of the primary structure, which are defined as follows:

E
S
(t) =

1

2
xT

S
(t)K

S
x

S
(t) , T

S
(t) =

1

2
ẋT

S
(t)M

S
ẋ

S
(t) , D

S
(t) =

1

2
ẋT

S
(t)C

S
ẋ

S
(t) . (7)

In the case of a MDOF primary structure equipped with a TMD added on top of the
top storey (Fig. 2), equations of motion (5) are slightly modified by an added equation
and transform (see structure of Eq. (4)) into the following (n + 1) equations:

Mẍ(t) +Cẋ(t) +Kx(t) = −Mr ẍg (t). (8)

As compared to Eq. (3), in the case of a MDOF primary structure, mass ratio and
tuning frequency ratio are defined here as follows [28]:

µ =
m

T

ΦT
S,I

M
S
Φ

S,I

, f =
ω

T

ω
S,I

, (9)

whereΦ
S,I

is the first mode shape of the primary structure, normalized to have a unit com-
ponent at the top storey [44] and, as stated in Eq. (6), ω

S,I
is the fundamental frequency

of the primary structure. Alternative definitions of the mass ratio would be possible. How-
ever, the definition in Eq. (9) is quite typical in the literature and it looks sufficient for
the present purposes, since it is focused on the first mode of vibration, which is the one
to be object of direct control by the single added TMD. The TMD damping ratio is still
defined as in Eq. (2).
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2.3 Tuning method and numerical algorithm

The proposed tuning procedure is implemented within MATLAB, where the Minimax op-
timization method takes advantage of the available fminimax function [45]. The goal of
this algorithm, developed on a Sequential Quadratic Programming (SQP) method (which
is based on a conjugate gradient algorithm), is the minimization of the worst case, in terms
of maximum values, of a set of multi-variable functions, starting at an initial estimation,
possibly limited by lower and upper bounds on the optimization variables. Besides such
choice, tuning results hold independently of the adopted optimization method. Indeed,
different optimization functions have been tried as well, with the same core algorithm (see
Appendix A and relevant flowchart), with similar results.

Within the present context, the Minimax problem, may be stated as:

min
p

max
R

R(p) , l
b
≤ p ≤ u

b
, (10)

where p is the vector of the tuning variables, R(p) the vector of the objective functions,
l
b
and u

b
are the lower and upper bound vectors of the tuning variables.

Here, the goal of the numerical algorithm consists in the minimization of the maximum
value of a specific quantity representative of the dynamic response of the structural system,
which obviously depends, given the fixed primary structure parameters, on the free TMD
parameters. Although in principle the method could allow for the optimization of all three
TMD parameters µ, f , ζ

T
, the following typical modus operandi has been adopted: for a

given, fixed mass ratio µ, the algorithm seeks the frequency ratio f and the TMD damping
ratio ζ

T
leading to best tuning. Thus, f and ζ

T
are here the two assumed free variables

of the optimization process, listed in a (2 × 1) vector p.
To start the optimization process, it is necessary to initialize the values of the two

variable parameters f and ζ
T
. Such a starting point could be provided by well-known

tuning formulas from the literature, e.g. those from Den Hartog [9]. However, for the
present study a mass ratio µ < 10% has been assumed, consistently with engineering
applications, which is a threshold that leads to assume f = 1, ζ

T
= 0.1 as suitable starting

values. Numerical tests proved that such choice does not alter significantly the performance
of the optimization algorithm, with respect to other options more focused on the specific
value of the mass ratio (e.g. from Den Hartog’s tuning). The lower and upper bound
vectors on the two parameters f and ζ

T
are also taken (in MATLAB vector notation) as

l
b
= [0.5; 0.001] and u

b
= [1.5; 1.0], which provide quite wide intervals for the optimization

process. Further details on the numerical procedure are reported in Appendix A.
The single objective function in Eq. (10) that is finally adopted in all the numerical

tests that will be presented in the next sections is a single scalar measure R, which is
taken as the Root Mean Square displacement of the top storey of the frame structure,
i.e. R = xRMS

S,n
. The motivations of such choice follow below.

First of all, the considered structures have the common property of displaying a dom-
inant first bending mode of vibration; therefore, the maximum displacement is expected
to occur on the top storey. Second, the choice of a RMS indicator assures better efficiency
within the optimization process. Indeed, it was experienced in [2], where different response
indicators, in type (maximum value vs. RMS average, global vs. local, kinematic index
vs. energy value) and location (different floors) have been investigated, that, in case of
seismic excitation, an average response quantity, rather than a maximum value, turns-out
a better objective function towards tuning. Particularly, the present Minimax optimiza-
tion converges consistently and with not much difficulties (conversely, the assumption of
a maximum value as objective function may bring to convergence complications in some
cases). Moreover, one obtains a higher reduction of the global seismic response.
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Also, though the objective function taken here regards only the RMS displacement of
the primary structure (on the top floor), in [2] it has been observed that RMS velocity
and acceleration (on the top floor) are also very suitable objective functions and at similar
computational cost. Further experience gained in handling RMS objective functions has
been reported in [2], where also the RMS average of the kinetic energy of the primary
structure, as defined in Eq. (7), has been considered. It has been demonstrated that this
choice could lead to a quite efficient TMD, but implies higher computational cost in the
simulations.

Finally, simulations with multi-objective functions have been also performed succes-
sively in the context of canonical loading (thus, no seismic input) [2]. In the present
paper, with main focus on demonstrating the concept of optimum tuning at seismic input,
only a single-objective function is considered in what follows.

3 Numerical optimization tests at given seismic input

Four series of numerical tests have been carried-out on different prototype shear-type frame
buildings taken from the literature [28,29,38]. Both SDOF and MDOF primary structures
have been considered. Therefore, besides investigating the validity of the tuning method
at given benchmark seismic input, the effectiveness of a TMD vibration control device, in
different structural situations, can be preliminary assessed.

First, all buildings are supposed to be subjected to the same benchmark seismic exci-
tation, which is the ELC-180 component of May 19, 1940, Imperial Valley ground motion
(recorded at El Centro station), with a time window of dynamic analysis of 40 seconds, a
sampling step of 0.01 s and a PGA of about 0.31 g. The choice of this seismic signal as
benchmark reference for the present theoretical concept of TMD tuning at seismic input
is due to its relevance and frequent adoption in the TMD seismic literature (see e.g. [28]).
Nevertheless, various investigations within this framework have been carried-out as well
with additional seismic input signals [5], with relevant results that have confirmed the
validity of the proposed tuning method, as reported later in Section 4 for three additional
seismic input signals.

For each considered structure, results have been organized as follows. Plots of the
trends of the optimum TMD parameters f and ζ

T
as a function of assumed mass ratio µ

are depicted, for a wide range of values of mass ratio delimited by a minimum value of
µ = 0.0025 and a maximum value of µ = 0.1, internally spaced as ∆µ = 0.0025, which
basically includes all possible civil engineering applications, where a value of mass ratio
µ < 0.05 is generally contemplated, and theoretically even beyond:

µ = [0.0025 : 0.0025 : 0.1] . (11)

This interval (again represented in MATLAB notation) allows to provide an exhaustive
and accurate representation of the trend of the optimum TMD parameters. Comparisons
to typical trends resulting from known literature proposals are displayed as well. Further,
optimization process and evaluation of seismic response have been developed for typical
values of mass ratio: µ = [0.01, 0.02, 0.05, 0.1]. Here, relevant results are gathered in bar
charts for µ = 0.05, where the percentage variation in response reduction with respect
to the case with no TMD can be clearly appreciated. The same set of results, but ob-
tained through classical Den Hartog’s tuning, are also presented for useful comparison.
Specifically, the contents of the bar charts are the following:

• Kinematic response of the main structure in terms of absolute (relative to the ground)
displacement, velocity and acceleration of the top storey, referred to both maximum
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and average (RMS) values (total accelerations have been computed as well, with
similar trends, but not reported in the following);

• Energy response of the main structure in terms of kinetic energy referred to both
maximum and average (RMS) values;

• Kinematic response of the Tuned Mass Damper, in terms of maximum value of
relative (to the primary structure) displacement, velocity and acceleration.

In the case of the test carried-out on the single-storey building, the optimum TMD
parameters have been obtained also through closed-form optimum design formulas pro-
posed in the literature [9, 12, 13, 28, 30]. On the other hand, for the tests carried-out on
MDOF structures, only classical Den Hartog’s tuning [9] will be considered for comparison
purposes, by reading mass and frequency ratios through the first mode of vibration, as
outlined in Eq. (9). This modus operandi is motivated by the general validity of Den
Hartog’s tuning, which is actually going to be confirmed by the present numerical results.

3.1 Numerical optimization tests on a SDOF structure

The first numerical tests regard the SDOF frame system proposed by Leung and Zhang [38].
The trends of the obtained optimum TMD parameters evaluated through the proposed
method, i.e. optimum frequency ratio and TMD damping ratio, are represented respec-
tively in Fig. 3 and Fig. 4, with comparisons to typical tuning formulas as cited above.
The results reported in Figs. 3–4 lead to the following observations.

The optimum frequency ratio f opt in Fig. 3, obtained at seismic input through the
present tuning method, displays a trend with higher values with respect to those proposed
in the literature. Particularly, the optimum frequency ratio takes values above 1 for
µ < 0.03, with a maximum discrete value at around µ = 0.01; then displays decreasing
values for µ > 0.03. The minimum distance to the theoretical predictions is found
at around µ = 0.05; the maximum distance at near µ = 0.01. The obtained trend
appears to be nearer to Asami et al. [30] estimation of best tuning, while the largest
difference is recorded with respect to Leung and Zhang [13] prediction. For µ < 0.01
a noticeable increase is achieved, may be due to numerical uncertainties: for a limit case
of optimization, i.e. for µ → 0, fluctuations of the optimum values may be expected.
Corresponding to µ = 0.01, the frequency ratio assumes its highest value, at around
1.03, then it decreases by taking a curvilinear trend until µ = 0.05. For µ > 0.05
the proposed trend assumes a regular decreasing pattern, similar to those coming from
the literature. Notice that, to appreciate differences among them, all trends in Fig. 3 are
zoomed in a quite tight f opt window between 0.85 and 1.05; less spreadings would be
noticed in a typical wider f opt window between 0 and 1.

The proposed optimum TMD damping ratio ζ opt
T

in Fig. 4 constantly takes values
lower than those obtainable from canonical design formulas, with quite regular increasing
trend at increasing µ, that is rather in line with those coming from tuning formulas.
In a sense, the new trends of f opt and ζ opt

T
on the opposite extremes compensate each

other, while leading globally to optimum tuning and attached best reduction of primary
structure seismic response. Smaller discrepancies are recorded with respect to almost all
predictions, especially with respect to the trends obtained by Leung and Zhang [13] and
Asami et al. [30], while a larger difference is obtained from Sadek et al. [28] estimate,
which is anyhow a bit far from all other analytical predictions. Indeed, this latter tuning
method is based on the idea of implementing high TMD damping ratios, descending from
the work of Villaverde and Koyama [29]. The smallest difference is recorded at around
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µ = 0.035. The trend for µ < 0.03 is reciprocal to that experienced by f opt, with a
decrease in ζ opt

T
that occurs together with the increase in the f opt estimate. As previously

observed for the obtained optimum frequency ratio, the proposed TMD damping ratio
takes also a rather irregular trend for µ < 0.01. As a general concluding remark, from
the trends of the optimum parameters it appears that the proposed method conceives
like optimum a Tuned Mass Damper that is almost resonant with respect to the primary
structure (f near 1) and characterized by a quite low damping ratio, especially for small
mass ratios (µ < 0.05).

Figure 3. Optimum frequency ratio as a function of mass ratio (obtained at seismic in-
put with the proposed method) for the single-storey building (ζ

S
= 5%), with

comparison to trends from well-known tuning formulas.

Figure 4. Optimum TMD damping ratio as a function of mass ratio (obtained at seismic
input with the proposed method) for the single-storey building (ζ

S
= 5%), with

comparison to trends from well-known tuning formulas.

The results obtained from the numerical tests for mass ratio µ = 0.05 are further
reported in Fig. 5. The first apparent observation that can be extracted regarding the
kinematic response of the primary structure is the following: consistently with the as-
sumed objective function as RMS of the top floor displacement, the response reduction on
each RMS quantity is significantly higher than the response reduction achieved on each
corresponding maximum quantity. One may observe that, on the maximum values of seis-
mic response, the greater reduction is read, as expected, for the displacement values, while
velocities and accelerations appear to be less reduced. On the other hand, all the RMS
indicators show a remarkable reduction. In short, as expected, the best performance is ob-
viously recorded for the RMS displacement, since here it represents the assumed objective
function of the optimization process.

The remarks reported above are valid also on the energy response. Indeed, the effec-
tiveness of the Tuned Mass Damper is higher in reducing the RMS energy response vs. the
maximum response (for instance, for the assumed µ = 0.05 one can obtain respectively
about 45% vs. 25% of response reduction). The parallel comparison to Den Hartog’s tun-
ing indicates the greater efficiency of the proposed TMD, for all the considered cases and
energy response indexes. Surveying the percentage results, one may note that, in general,
the effect of the TMD in reducing the seismic response is more sensible on energy response
indexes rather than on kinematic response indicators.

The bar charts in Fig. 5 also report explicitly on the achieved reduction in seismic
response of the primary structure. It can be noticed that, despite that the present optimum
tuning may give optimum values f opt, ζ opt

T
that are singularly quite different from classical

Den Hartog’s best estimates, the final response results are actually very near, with a small
gain in response reduction by the present approach. In a sense, the present seismic tuning
approach confirms, for the considered seismic input, the validity of Den Hartog’s tuning
also in the case of seismic input and for frames that display (small) inherent structural
damping.

Figure 5. Seismic response of the single-storey building (ζ
S

= 5%), with or without TMD
(µ = 5%).

An important issue revealed by the present tuning concept is the dynamic response
of the TMD device, represented in Fig. 5 through its kinematic response, that is read in
terms of relative displacement x

TS
= x

T
− x

S
, velocity ẋ

TS
= ẋ

T
− ẋ

S
and acceleration
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ẍ
TS

= ẍ
T
− ẍ

S
between the Tuned Mass Damper itself and the underneath top storey. In

this sense, the most important and noticeable fact is the considerable relative movement.
This should be a consequence of the following facts: first of all, the assumed objective
function intentionally refers only to the primary structure and does not take into account
the dynamic behavior of the TMD; hence, its seismic response has not been optimized (just
that of the primary structure). Second, as previously observed in Fig. 4, the optimum TMD
is characterized by small damping ratios, thus its kinematic response cannot be damped
significantly. This latter situation is also confirmed by the comparison to the response
achieved from Den Hartog’s tuning, which provides a higher TMD damping ratio: the
TMD displays larger movement in the present case of best tuning based on the response
of the primary structure only. Indeed, in practical engineering applications, optimum TMD
parameters may be intentionally impaired (e.g. TMD damping is increased) to reduce the
resulting stroke (TMD displacement relative to its point of attachment to the primary
structure) [28,29,40].

In general, as expected, best results on response reduction at variable µ are achieved
on RMS rather than on maximum values. This is due first to the fact that the assumed
objective function is a RMS quantity itself. Nevertheless, the maximum response quanti-
ties are also fairly reduced. The increment in terms of TMD effectiveness is much sensible
for values of mass ratio µ < 0.05. Indeed, it could be observed that much increase in mass
ratio, i.e. from µ = 5% to µ = 10%, does not improve significantly the response reduc-
tion. Hence, the best compromise between increase of mass ratio and dynamic response
reduction is obtained for µ = 0.05, which is a value that allows for a global reduction
of the seismic response of about 40% (Fig. 5). However, also a typical practical value of
mass ratio of around 2% is already enough to obtain a considerable reduction in structural
response, approximately at around 30%.

Finally, as a sample of the typical time responses recorded in the present numerical
analyses, Figs. 6–7 display the seismic response of the primary structure, respectively in
terms of floor displacement and kinetic energy, for µ = 0.05. Figs. 6–7 clearly show sig-
nificant reduction of seismic response, especially referring to both local peaks and average
values. It is interesting to observe that for the very first seconds of seismic event, the
TMD is somehow reluctant to sort appreciable effects, most-likely due to its own inertia
and viscous damping. However, once activated, the TMD becomes effective in downing
the seismic response within the entire duration of the seismic event, with appreciable ef-
fects. This appears quite encouraging in supporting the use of TMD devices in seismic
engineering applications.

Figure 6. Kinematic response in terms of displacement of the top storey of the single-storey
building (ζ

S
= 5%), with or without TMD (µ = 5%).

Figure 7. Energy response in terms of total kinetic energy of the primary structure of the
single-storey building (ζ

S
= 5%), with or without TMD (µ = 5%).

3.2 Numerical optimization tests on MDOF structures

In this section, the proposed tuning method is further employed for numerical tests con-
cerning shear-type frame MDOF structures equipped with a TMD added on top. Such
structures are three shear-type buildings previously studied by Villaverde and Koyama [29]
and Sadek et al. [28]: a three-, a six- and a ten-storey building. The frames have differ-
ent inherent damping ratios, as referred to their fundamental mode of vibration, namely
ζ
S
= 0 for the three-storey building (ideal case of no inherent damping), ζ

S
= 0.05 for
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the six-storey frame and ζ
S
= 0.02 for the ten-storey structure. Recall that the damping

matrix of each damped structure is assumed to be proportional to the stiffness matrix, as
previously described in Section 2.2, Eq. (6). Also, µ and f are read through Eq. (9).

The optimum TMD parameters, i.e. frequency ratio f opt and TMD damping ratio ζ opt
T

obtained through the present algorithm are represented respectively in Fig. 8 and Fig. 9
as a function of mass ratio µ, with comparison to those obtained in the previous case of
a SDOF primary structure and to those obtainable from Den Hartog’s tuning [9]. The
quantitative numerical results of the optimization process, for a given typical value of
mass ratio (µ = 0.05), are displayed in the form of bar charts in Figs. 10–12. For all these
results, the comparison with the outcomes from reference Den Hartog’s tuning has been
also reported.

The first considerations arising from the achieved results are dedicated to the optimum
TMD parameters. Fig. 8 indicates that, for small values of mass ratio µ, the optimum
frequency ratio f opt takes values near 1, except for the six-storey building (ζ

S
= 5%),

whose values are a bit lower. As the mass ratio increases, in general the frequency ratio
slightly decreases, but with different trends for each structure. Considering first the three-
storey building (ζ

S
= 0), the frequency ratio takes the highest trend, with values above

unity for µ < 0.04 and constant decreasing, especially for µ > 0.06. Moreover, a curvilinear
trend is obtained for µ < 0.02, similar to that obtained for the single-storey structure.

Figure 8. Optimum frequency ratio as a function of mass ratio (obtained at seismic input
with the proposed method) for the various frame buildings, with comparison to
trends from reference Den Hartog’s tuning.

Figure 9. Optimum TMD damping ratio as a function of mass ratio (obtained at seismic
input with the proposed method) for the various frame buildings, with comparison
to trends from reference Den Hartog’s tuning.

The six-storey building (ζ
S
= 5%) is marked by the lowest values of f opt and a re-

markable decrease for µ > 0.03. In the case of the ten-storey building (ζ
S
= 2%), the

experienced trend is almost flat, with an average value of around 0.975, meaning that f opt

is not that sensitive to µ. In general, it is interesting to note that at increasing structural
damping ζ

S
, the values of optimum frequency ratio f opt appear to decrease. Indeed, the

highest values are displayed by the three-storey building (ζ
S
= 0), results for the ten-storey

building (ζ
S
= 2%) are placed halfway and outcomes for the six-storey building (ζ

S
= 5%)

sit on the lower trend. Notice again that, as in previous Fig. 3, the apparent dissimilar
trends of f opt in Fig. 8 are actually inspected in a tight f opt window between 0.85 and
1.05.

Fig. 9 shows that, for very small values of mass ratio, the optimum TMD damping
ratio ζ opt

T
takes also values near zero. For all the structures, values strongly variable of

ζ opt
T

are achieved for µ < 0.005, may be due to numerical uncertainties. As the mass
ratio increases, the optimum TMD damping ratio also increases, in different ways for each
structure: larger values are recorded for the three-storey building (ζ

S
= 0), followed by the

ten-storey building (ζ
S
= 2%) and the six-storey building (ζ

S
= 5%). Indeed, for instance,

by assuming µ = 0.10, for the three structures one obtains respectively a TMD damping
ratio of about 17.5%, 13% and 11%. In general, a reasonable possible rule for ζ opt

T
can be

pointed-out: it appears that the higher the structural damping, the lower the optimum
TMD damping ratio. This fact seems to confirm the relevance of structural damping in
the context of TMD tuning. Moreover, it can be noticed that all the obtained trends are
below that traced by Den Hartog’s tuning.
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The bar charts results gathered in Figs. 10–12 lead to the comprehensive considerations
presented in the following. The kinematic response of the primary structure is considered
first. Once again, the effectiveness of the TMD in reducing the seismic response is greater
for RMS indicators rather than for max indexes. Particularly, except for the three-storey
building that represents a sort of limit case (ζ

S
= 0), for the other structures a larger

decrease has been obtained for the displacement, as compared to velocity and acceleration.
Besides this general consideration, the degree of reduction is variable for the different
structures. In fact, the cutting of seismic response of the primary structure is the highest
for the three-storey building, a bit lower for the six- and the ten-storey buildings (e.g. for
µ = 0.05, reductions of 50–80%, 20–35% and 20–50% are respectively achieved for the three
structures). In this context as well, it appears that the relationship between structural
damping ratio and TMD efficiency is recovered, as discussed previously for the case of the
single-storey building.

The context of energy response confirms somehow the better performance on RMS
rather than on max responses. The obtained results remark the significant effectiveness of
the TMD against the selected seismic event, in terms of energy response indexes. Besides
the limit case of the undamped three-storey building, which is subjected to a huge cut of
response, i.e. of about 70–90%, also the six-storey building, with 25–50%, and the ten-
storey building, with 30–60% of seismic response decrease take great advantage from the
TMD insertion.

The aspect of the considerable kinematic response of the TMD, already detected in the
case of the single-storey building, is still visible in this framework, where high levels of
TMD response occur. In this sense, Den Hartog’s tuning allows for a much limited TMD
response, probably because of the larger TMD damping ratio (recall results in Fig. 9).

Figure 10. Seismic response of the three-storey building (ζ
S

= 0), with or without TMD
(µ = 5%).

Figure 11. Seismic response of the six-storey building (ζ
S

= 5%), with or without TMD
(µ = 5%).

Figure 12. Seismic response of the ten-storey building (ζ
S

= 2%), with or without TMD
(µ = 5%).

It can be also observed that, for all the three cases, one can recover a situation similar
to that previously observed for the SDOF structure: the proposed TMD leads to an
effectiveness in reducing the seismic response that is very similar to that achievable in the
case of Den Hartog’s tuning. Therefore, these results seem to strengthen the validity of Den
Hartog’s tuning also for a context (damped primary structures subjected to base seismic
excitation) that is quite different from that typical of Den Hartog’s tuning (undamped
primary structure under harmonic point force). On the other hand, these considerations
in comparison to Den Hartog’s tuning should be further supported by additional studies
considering large databases of seismic events. Additional seismic input is first considered
next, with similar results. Also, different typologies of structures and possible implications
of Eqs. (6) and (9) could be further analyzed.

4 Numerical optimization tests with additional seismic in-

put signals

Given the previous effective analysis based on a single benchmark earthquake record (Im-
perial Valley 1940), the present section considers three further seismic cases, showing
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the robustness of the optimization procedure and the relevant vibration reduction that
can be obtained in the presence of a seismic-tuned optimum TMD. The 10-storey shear
frame building presented in [29] is assumed here as benchmark primary structure. The
strong motions considered in the present analysis are the Kobe (Japan) 1995 earthquake
(recorded at the Takarazuka station, 90 component), the L’Aquila (Italy) 2009 earthquake
(recorded at the Valle Aterno station) and the Tohoku (Japan) 2011 earthquake (recorded
at the Tsukidate station, N-S component). The tuning procedure is successfully applied
as earlier, giving rise to results exposed as follows (Table 1, Figs. 13–15).

Table 1. Optimum TMD parameters for the Imperial Valley 1940 (I), Kobe 1995 (K),
L’Aquila 2009 (A) and Tohoku 2011 (T ) earthquakes, compared to Den Hartog’s (DH)

tuning parameters, for different values of mass ratio µ.

Figure 13. Seismic response of the ten-storey building (ζ
S

= 2%), with or without TMD
(µ = 5%), Kobe 1995 earthquake.

Figure 14. Seismic response of the ten-storey building (ζ
S

= 2%), with or without TMD
(µ = 5%), L’Aquila 2009 earthquake.

Figure 15. Seismic response of the ten-storey building (ζ
S

= 2%), with or without TMD
(µ = 5%), Tohoku 2011 earthquake.

First, the optimum TMD parameters have been gathered in Table 1, including also the
relevant outcomes obtained for the Imperial Valley earthquake considered in the previous
section. For the case of the Kobe earthquake, the frequency ratio f opt evaluated with
the proposed tuning procedure takes values slightly smaller than those suggested by Den
Hartog’s tuning, and outlines with those a sort of parallel trend. A similar situation
is recovered for the L’Aquila earthquake, even if the parameter f opt decreases much at
increasing µ, while for the Tohoku earthquake takes values always at about one, i.e. it
approaches the resonance conditions, apparently without dependance on the mass ratio.
On the other hand, the optimum TMD damping ratio ζopt

T
is characterized by very similar

trends for both the considered seismic input signals, with values again a bit smaller with
respect to those obtained by Den Hartog’s tuning. However, slightly smaller values are
recovered for the Kobe seismic event, while for L’Aquila and Tohoku the parameter ζopt

T

takes almost the same values. In general, it is confirmed the general main trend that
provides, at increasing µ, a decreasing f opt and an increasing ζopt

T
. However, this latter

TMD parameter appears to assume more regular values, with less sensitivity on the seismic
input.

The seismic response reduction, represented in Figs. 13–15, optimally tuned for Kobe
1995, L’Aquila 2009 and Tohoku 2011 earthquakes respectively, provided the following
indications. First, by considering the kinematic indices, the peak responses are in general
less reduced than the RMS quantities (whose displacement was taken as objective func-
tion). Such a fact is more evident for the case of the Kobe and L’Aquila earthquakes, while
for the Tohoku seismic input remarkable abatement is obtained also for the peak displace-
ment and velocity. As recovered for the previous seismic event (Imperial Valley 1940), the
acceleration is the less reduced among the considered kinematic response quantities. A
significant reduction of the kinetic energy is obtained for all the considered earthquakes,
in particular for the case of the Tohoku seismic input.

The TMD response, for all the considered kinematic quantities, exhibits again higher
values with the proposed tuning method with respect to those coming from Den Hartog’s
tuning. Such a fact is likely the direct consequence of the proposed TMD optimization,
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entirely devoted to the minimization of the primary structure motion only, therefore re-
gardless of the TMD stroke.

The effectiveness of Den Hartog’s tuning is confirmed for the three additional earth-
quake events. The outcomes of these further numerical optimization tests first reiterate
the validity of the proposed tuning concept, meaning that the optimum tuning at given
seismic input is possible. Then, also remarkable effectiveness of the so-conceived passive
TMD is confirmed, in reducing the primary structure seismic response.

In conclusions, the optimization procedure is acknowledged to be effective with these
additional seismic signals and, moreover, with further ones [5]. Hence, the robustness of
the present theoretical tuning process is assessed at different seismic input.

5 Conclusions

In this work, the concept of TMD tuning at given seismic input has been investigated.
A numerical procedure for the systematic optimum tuning of the free TMD parameters
towards seismic engineering applications, based on a Minimax algorithm, has been pre-
sented. The main feature of the proposed tuning method is the direct application of the
algorithm to specific cases of primary structure subjected to selected seismic input sig-
nals, so that the tuning of the added TMD turns-out the most efficient for each considered
case. The optimization process has been carried-out in the time domain, whereby the
seismic response has been evaluated numerically by performing a step-by-step time in-
tegration based on the classical Newmark’s average acceleration method. A closed loop
between time solver and optimization routine has been put in place within a numerical
MATLAB environment, which allows to obtain the tuning parameters for best anti-seismic
performance. By locating the most appropriate objective function, which finally has been
experienced to be a Root Mean Square (RMS) measure, of the displacement of the top
floor, the algorithm converges efficiently and rapidly. This work has further proved that,
in principle, best tuning at given seismic input is theoretically possible.

The achieved results lead to the following considerations. The proposed optimum TMD
parameters in the case of the SDOF primary structure appear to be almost in line with
those obtainable from tuning proposals. However, for the assumed reference seismic input
signal, the frequency ratio turns-out larger than classical results, while the TMD damping
ratio smaller. The proposed TMD allows for a significant reduction of seismic response
of the primary structure in the considered case, with respect to the case without TMD,
i.e. from a minimum of 20% to a maximum of 50%, depending on the response index. The
comparison to Den Hartog’s tuning pointed-out very interesting outcomes, since all the
obtained results indicate a minimal difference in gain.

The effectiveness of the optimum TMD obtained with the present procedure appears
to be confirmed also by the numerical tests performed on MDOF structures. By first
considering the results for the case of Imperial Valley earthquake, one may observe that,
as the structural damping ratio increases, the value of the optimum TMD damping ratio
decreases and, above all, the TMD efficiency in reducing the seismic response decreases.
Nevertheless, the so-conceived TMD is demonstrated to be quite efficient, since the struc-
tural response is heavily reduced (from 30% for the six-storey structure with ζ

S
= 0.05, to

80% for the three-storey building with ideal ζ
S
= 0), also in cases of structural damping

ratios suitable for real buildings. The considerations outlined above have been somehow
confirmed, with little differences, also for the additional considered seismic input signals,
from both points of view of optimum TMD parameters and TMD effectiveness in reducing
the seismic response.
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An important feature, that might have practical implications in terms of TMD imple-
mentation, is revealed by their dynamic behavior. Indeed, a considerable TMD dynamic
response has been recorded. This should be a consequence of two main facts: first of all,
the present optimization has been applied (intentionally) to the primary structure only,
in view of assessing the maximum theoretical gain of vibration reduction of the primary
structure at given seismic input. Second, the optimum values obtained for the TMD
damping ratio are relatively small. Thus, the TMD itself might take benefit from a higher
TMD damping ratio, so that its dynamic response may also be mitigated, as often adopted
in the engineering practice.

In conclusion, the proposed tuning procedure, which is based on a Minimax numerical
algorithm at given seismic input, proofs to yield efficient and systematic tuning of the
free TMD parameters. In this sense, the choice of an average (RMS) response quantity
as objective function allows to optimize effectively the TMD performance all over the
time window of analysis (and specifically for strong motion and long duration data), in
the context of seismic engineering applications. Most of all, the adopted approach should
confirm that, in principle, best tuning at given seismic input is theoretically possible.
Moreover, the effectiveness of Den Hartog’s tuning appears to be confirmed in the present
analyzed seismic context. Despite that only passive TMD devices are considered in this
study, these findings should have important theoretical implications also in the context of
adaptive, semi-active and active TMDs.
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Appendix A. Further details on the numerical procedure

The dynamic response of the structural system is computed in the time domain, by inte-
gration of the equations of motion through the implicit Newmark’s average acceleration
method, see e.g. [44]. The Newmark time solver has been linked to a Minimax optimiza-
tion process in a closed-loop algorithm that allows for optimum tuning at given seismic
input. A synoptical flowchart of the tuning algorithm is sketched in Fig. A.1 and can be
briefly resumed as follows below.

First, a preliminary analysis is carried-out (initialization): the primary structure pa-
rameters are defined, by operating a modal analysis of the main structure and the starting
values of the TMD tuning parameters are set, as defined above. A first time integration of
the equations of motion gives the initial seismic response. The optimization process is then
started. The Minimax algorithm takes control of the iterative procedure by varying the
TMD parameters within the chosen admissible bounds and calls iteratively the Newmark
time solver to update the system response and to relate it to the previous one. Once all set
tolerances on both TMD parameters and response indexes assumed as objective functions
are fulfilled, the final optimum TMD parameters are obtained and the corresponding seis-
mic response is recorded. The iterative loops may continue only until when the maximum
number of iterations is not exceeded (Fig. A.1).

Figure A.1. Flowchart of the proposed numerical tuning algorithm.

List of Tables

Table 1. Optimum TMD parameters for the Imperial Valley 1940 (I), Kobe 1995 (K),
L’Aquila 2009 (A) and Tohoku 2011 (T ) earthquakes, compared to Den Hartog’s
(DH) tuning parameters, for different values of mass ratio µ.

µ 0.01 0.02 0.03 0.05 0.07 0.10

f opt
I

0.957898 0.956986 0.958019 0.955752 0.947851 0.926501

f opt
K

0.977322 0.963653 0.951598 0.929784 0.912712 0.893788

f opt
A

0.995269 0.976977 0.956931 0.926849 0.905619 0.874973

f opt
T

0.996199 0.998503 1.00099 1.00218 0.998433 0.993220

f opt
DH

0.990099 0.980392 0.970874 0.952381 0.934579 0.909091

ζopt
T, I

0.0368123 0.0615395 0.0804232 0.106659 0.127375 0.156231

ζopt
T,K

0.0440783 0.0630736 0.0767950 0.0966662 0.110433 0.127288

ζopt
T, A

0.0477160 0.0698723 0.0852191 0.101883 0.115379 0.136223

ζopt
T, T

0.0444066 0.0648976 0.0794594 0.102858 0.113224 0.134765

ζopt
T,DH

0.0609333 0.0857493 0.104510 0.133631 0.156629 0.184637
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