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By integrating the classical Boussinesq expression we derive analytically the vertical stress distribution induced by pres-
sures distributed with arbitrary laws, up to the third order, over polygonal domains. Thus, one can evaluate in closed form
either the vertical stress produced by shell elements, modelling raft foundations by finite elements, acting over a Winkler
soil or those induced by a linear pressure distribution simulating axial force and biaxial bending moments over a pad foun-
dation. To this end we include charts and tables, both for rectangular and circular domains, which allow the designer to
evaluate the vertical stresses induced by linear load distributions by hand calculations. The effectiveness of the proposed
approach is witnessed by the comparison between the analytical results obtained with the proposed formulas and the nu-
merical ones of a FEM discretization of the soil associated with the loading distribution induced by a foundation modeled
by plate elements resting on a Winkler soil.
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1 Introduction10

The classical approach to finding stress and displacements in an elastic, homogeneous and isotropic half-space due to11

surface tractions has been first developed by Boussinesq [4] who provided the solution for a point load by making use of12

the potential theory [3].13

The case of uniform pressure applied within a circular domain was addressed by Lamb [19] while Love [20] considered14

the case of isotropic uniform pressure applied within a rectangular region.15

However, even in many natural soils deposited through a geologic process of sedimentation over a period of time stiffness16

becomes greater with depth. Analytical continuum models reflecting this property were first studied by Gibson [16] by17

assuming incompressibility and a linear increase of soil stiffness with depth. In later papers Gibson further refined his18

model and presented on account of his results in a Rankine lecture [17].19

Subsequently Vrettos [30] solved the Boussinesq problem for an half-space exhibiting an exponential behavior of stiff-20

ness yet with a bounded value at infinite depth. Half-spaces of this kind were later studied by Selvadurai in the framework21

of contact static problems and a survey account of his result were presented in [24].22

Since the pioneering work by Gibson an abundant literature has been published on the evaluation of stresses and dis-23

placements in inhomogeneous and/or anisotropic half-spaces, see e.g. [31] for a fairly complete account.24

Nevertheless, Boussinesq solution is still widely used mainly for its elegance and conciseness, for instance to evaluate25

the order of magnitude of the depth of influence of a foundation load [7] and the related settlement. Actually, it is usually26

assumed that the variation of vertical stress with depth below a loaded region on the surface can be predicted with sufficient27

accuracy using linear, homogeneous, isotropic elastic theory.28

Further applications of this theory range, to quote only a few, from space geodesy to contact mechanics, rock mechanics29

and geomechanics.30

For instance, in the former case position-time series recorded by continuous GPS stations exhibit seasonal fluctuations31

due to surface loading associated with changes in atmospheric and sea-floor pressure, shifting masses of snow/ice and32

surface water [8, 21]. Usually, problems with localized loads do have a spatial scale which is very small when compared33

with Earth’s radius so that the problem can be assimilated to that of a half-space.34
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2 M. G. D’Urso and F. Marmo: Vertical stress in isotropic half-spaces

In contact mechanics [18] classical Hertz theory assumes that for the purpose of calculating the local deformations of35

two bodies in contact each body can be regarded as an elastic half-space loaded over a small elliptical region of its plane36

surface.37

In rock mechanics [31] the magnitude and distribution of the displacements and stresses in rocks are predicted by38

using solutions that model rock as a linearly elastic, homogeneous and isotropic continuum. Only for rock masses cut by39

discontinuities, these solutions should account for anisotropy.40

Clearly the most significant field of application of the results contributed by Boussinesq is in geomechanics in order to41

predict stress values in soil masses [6] induced by foundation loads.42

Actually the Boussinesq solutions have been integrated for a large number of load cases of particular interest in applica-43

tions. For example the closed form solution of vertical stress at a depth below the corner of a uniformly loaded rectangular44

region was derived by Newmark [22], a solution further improved by Stainbrenner and presented in form of simple design45

charts [6].46

Vitone and Valsangkar [29] evaluated the vertical stress induced by a linearly distributed loading while the vertical stress47

under the corner of a linearly loaded triangular domain was obtained in [25]. Some of the analytical results were later48

collected by Poulos and Davis [23].49

More recently the closed-form solution of vertical stress distribution associated with a linearly distributed surface pres-50

sure over rectangles was presented by Algin [1, 2] and extended in [10] by addressing surface loadings linearly distributed51

over polygonal regions of arbitrary shape.52

In this paper we consider the case of surface pressure distributions represented by third-order polynomials in both53

coordinates of a 2D reference frame assumed on the surface of the half-space. This is motivated by the kind of loads54

which can be applied on a Winkler soil by shell elements currently employed in finite element softwares for modeling55

raft foundations. Actually the shape functions considered in shell elements for vertical, i.e. out of plane, displacements are56

usually represented by third-order polynomials, as a maximum, so that proportionality of pressures to displacement dictated57

by Winkler model yields a third-order pressure distribution.58

The vertical stress at an arbitrary point within the half-space is obtained analytically by means of formulas expressed59

solely as a function of the coordinates of the vertices of the loaded region, assumed to be of arbitrary polygonal shape. The60

result is obtained by transforming to line integrals the 2D integrals coming out from the application of the superposition61

principles to the loading region.62

Analogously to up-to-date application of potential theory in geodesy [11–14], this has been possible by suitable variants63

of Gauss theorem, some of which are proved for convenience. The same rationale has been exploited to solve the companion64

problem of evaluating the displacements within the half-space induced by surface loads [15].65

To illustrate the practical application of the proposed formulas to the evaluation of the vertical stresses induced in the soil66

by a foundation analyzed by the finite element method we consider a numerical example regarding a wall footing modeled67

by means of plate elements on Winkler soil. The analytical results obtained by the proposed approach are successfully68

compared with the numerical ones obtained by applying the same load pattern to a finite element model of the soil.69

Finally some design aids are included in form of charts and tables, both for rectangular and circular foundations, in order70

to allow the designer to perform hand calculations of vertical stress produced by linearly distributed surface pressures.71

2 Definition of the problem72

Let (O, x, y, z) be an orthonormal reference system andΠ be a homogeneous and isotropic half-space having the plane z = 073

as boundary; we further assume that the z axis is directed downwards.74

According to the classical solution first contributed by Boussinesq [4], a point load Fz, directed vertically and acting at75

the origin of the reference frame induces a vertical stress at a generic point p = (x, y, z)t in the half-space defined by:76

σz(p) = − 3Fz

2π
z3

(p · p)
5
2

= − 3Fz

2π
z3

(x2 + y2 + z2)
5
2

. (1)77

Being interested to the evaluation of the vertical stress induced by rather arbitrary distributions of vertical loads it is78

more convenient to assume a new reference frame in which the origin is given by the intersection of the plane z = 0, i.e.79

the boundary of the half-space, with the vertical along the point at which the stress is going to be evaluated, see e.g. Fig. 1.80

Actually, by the reciprocity theorem [28] we can write:81

σz(0, 0, z) = − 3Fz

2π
z3

(ρ · ρ + z2)
5
2

(2)82

where we have introduced the vector ρ = (x, y)t collecting the coordinates of the applied load.83
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Fig. 1 Reference frame.

Objective of this paper is to further generalize the results previously contributed in [10] by evaluating analytically the84

vertical stress induced by a load distribution defined by the expression:85

q(ρ) = q0 + g · ρ + A · (ρ ⊗ ρ) +�B · (ρ ⊗ ρ ⊗ ρ) (3)86

where q0, g, A, and � are in turn scalar, vector, second-order and third-order tensors. The second order tensor ρ ⊗ ρ has a87

matrix representation of the kind:88

[ρ ⊗ ρ] =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

x2 xy

xy y2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (4)89

so that, being:90

A · (ρ ⊗ ρ) = A11x2 + 2A12xy + A22y2 (5)91

a quadratic distribution of loads can be assigned on the half space by suitably defining the coefficients of the symmetric92

tensor A.93

Analogously, we introduce the third-order tensors � and ρ ⊗ ρ ⊗ ρ, represented in matrix form as:94

� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B111 B112

B121 B122

B211 B212

B221 B222

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ρ ⊗ ρ ⊗ ρ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

⎡⎢⎢⎢⎢⎢⎢⎢⎣
x2 xy

xy y2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

y

⎡⎢⎢⎢⎢⎢⎢⎢⎣
x2 xy

xy y2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)95

i.e. as vectors of rank-two tensors; they can be used to assign a cubic distribution of loads in the form:96

� · (ρ ⊗ ρ ⊗ ρ) = B111x3 + (B112 + B121 + B211)x2y + (B122 + B212 + B221)xy2 + B222y3 (7)97

by assuming:98

B112 = B121 = B211, B122 = B212 = B221 (8)99

for symmetry of representation.100

The apparently unusual load distribution (3) is motivated by the loads induced on a half-space, modelled as a Winkler101

soil, by a raft foundation analyzed by means of shell elements. Actually the shape functions for the transversal displace-102

ments are usually represented, as a maximum, by third-order polynomials so that assuming a constant Winkler coefficient103

for the soil, the load distribution produced by each element can be represented by formula (3).104

Therefore, according to (2), the vertical stress σq induced at the origin of the reference frame by a load distribution of105

the kind (3) is given by:106

σq = − 3z3

2π

⎡⎢⎢⎢⎢⎢⎣q0

∫
Ω

dΩ

(ρ · ρ + z2)
5
2

+ g ·
∫
Ω

ρdΩ

(ρ · ρ + z2)
5
2

+ A ·
∫
Ω

(ρ ⊗ ρ)dΩ
(ρ · ρ + z2)

5
2

+� ·
∫
Ω

(ρ ⊗ ρ ⊗ ρ)dΩ
(ρ · ρ + z2)

5
2

⎤⎥⎥⎥⎥⎥⎦
= − 3z3

2π
[
q0I0 + g · i1 + A · I2 +� · �3]

(9)107
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4 M. G. D’Urso and F. Marmo: Vertical stress in isotropic half-spaces

where Ω is the domain on which the load distribution (3) is applied.108

We are going to prove that wheneverΩ is polygonal the stressσq can be computed analytically by evaluating the integrals109

I0, i1, I2, and �3 in closed form. To this end we shall assume z � 0 since, otherwise, equilibrium dictates trivially σq = 0 if110

the origin of the reference frame does not belong to Ω and σq = −q(0) in the opposite case.111

In order to evaluate the integrals (9) we shall suitably extend the general approach, based on the application of the Gauss112

theorem, first contributed in [10, 12].113

3 Evaluation of I0114

The first integral in (9) can be evaluated by considering the integral:115

∫
Ω

div

⎡⎢⎢⎢⎢⎢⎣ ρ

(ρ · ρ)(ρ · ρ + z2)
3
2

⎤⎥⎥⎥⎥⎥⎦ dΩ (10)116

where ’div’ stands for the divergence operator.117

Notice that the integrand becomes singular if ρ = 0, i.e. if the origin of the reference frame does belong to the loading118

area Ω. We shall prove, however, that basic results of distribution theory, [27], and of differential calculus, [5], can be119

suitably invoked to derive a well-defined formula for the computation of the integral I0 appearing in (9).120

Invoking the differential identity [27]:121

div(φu) = gradφ · u + φ divu (11)122

where ’grad’ denotes the gradient operator and φ / u a continuous scalar / vector field, one has:123

∫
Ω

div

⎡⎢⎢⎢⎢⎢⎣ ρ

(ρ · ρ)(ρ · ρ + z2)
3
2

⎤⎥⎥⎥⎥⎥⎦ dΩ =
∫
Ω

ρ

ρ · ρ · grad

⎡⎢⎢⎢⎢⎢⎣ 1

(ρ · ρ + z2)
3
2

⎤⎥⎥⎥⎥⎥⎦ dΩ

+

∫
Ω

1

(ρ · ρ + z2)
3
2

div
ρ

ρ · ρ dΩ.

(12)124

Being:125

grad
1

(ρ · ρ + z2)
3
2

= −3
ρ

(ρ · ρ + z2)
5
2

(13)126

the first integral on the right-hand side becomes:127

∫
Ω

ρ

ρ · ρ · grad

⎡⎢⎢⎢⎢⎢⎣ 1

(ρ · ρ + z2)
3
2

⎤⎥⎥⎥⎥⎥⎦ dΩ = −3
∫
Ω

1

(ρ · ρ + z2)
5
2

dΩ. (14)128

The singularity for ρ = 0 in the argument of the divergence operator in (12) can be accounted for by invoking distribution129

theory [27] and the differential identity (11) to get:130

div
ρ

ρ · ρ = 0 if ρ � 0 (15)131

while [10]:132

∫
Ω

φ(ρ)div

[
ρ

ρ · ρ
]
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 0 � Ω

α(0)φ(0) if 0 ∈ Ω
(16)133

where α represents the angular measure, expressed in radians, of the intersection between Ω and a circular neighborhood134

of the singularity point ρ = 0. Hence:135

α(0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2π if 0 ∈ ◦Ω
π if 0 ∈ ∂Ω
f (π) if 0 ∈ ∂Ω\∂Ω

(17)136
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where
◦
Ω denotes the interior ofΩ and ∂Ω the set of the regular points of the boundary ∂Ω, i.e. the points at which the tangent137

is defined. ShouldΩ be polygonal and the origin concide with a vertex of Ω, α(0) simply measures the angle formed by the138

two consecutive sides of ∂Ω intersecting at the origin. A general algorithm for computing α(0) can be found in [9].139

To sum up:140

∫
Ω

1

(ρ · ρ + z2)
3
2

div
ρ

ρ · ρ dΩ =
α(0)
z3

(18)141

which is always well defined for z � 0.142

In conclusion, formula (14) and the previous equation yield:143

∫
Ω

div

⎡⎢⎢⎢⎢⎢⎣ ρ

(ρ · ρ)(ρ · ρ + z2)
3
2

⎤⎥⎥⎥⎥⎥⎦ dΩ =
α(0)
z3
− 3

∫
Ω

1

(ρ · ρ + z2)
5
2

dΩ (19)144

so that, applying the divergence theorem to the integral on the left-hand side of the previous equation one finally has:145

I0 =

∫
Ω

dΩ

(ρ · ρ + z2)
5
2

=
α(0)
3z3
− 1

3

∫
∂Ω

ρ · ν
(ρ · ρ)(ρ · ρ + z2)

3
2

dΩ. (20)146

We shall now proceed to evaluate analytically the previous integral for a polygonal domain.147

3.1 Closed form evaluation of I0 for a polygonal domain148

Let us suppose that the boundary ∂Ω of the loading area is a polygon defined by nv vertices whose position is defined in the149

given reference frame by vectors ρi = (xi, yi), i = 1, ..., nv.150

The integral I0 can thus be written as:151

I0 =
α(0)
3z3
− 1

3

nv∑
i=1

∫ li

0

ρ(si) · νi

[ρ(si) · ρ(si)][ρ(si) · ρ(si) + z2]
3
2

dsi (21)152

where si is the curvilinear abscissa along the i-th edge of the polygon, measured from the vertex i, li = |ρi+1 − ρi| is the153

length of the i-th edge, defined by means of the initial (ρi) and the end vertex (ρi+1), and νi is the outward unit vector to the154

i-th edge of ∂Ω. This last one can be evaluated as:155

νi =
ρ⊥i+1 − ρ⊥i

li
(22)156

where (·)⊥ stands for a vector orthogonal to (·). In particular, assuming a counter-clockwise circulation sense along the157

boundary of Ω, (·)⊥ denotes a clockwise rotation of the vector (·); hence, making reference to ρi = (xi, yi) to fix the ideas,158

ρ⊥i = (yi,−xi).159

To evaluate the integral (21) we introduce the parameter representation of the i-th edge of ∂Ω in the form:160

ρ[λi(si)] = [1 − λi(si)]ρi + λi(si)ρi+1 λi(si) ∈ [0, 1] (23)161

where λi(si) = si/li.162

Accordingly, the expression of I0 in (21) becomes:163

I0 =
α(0)
3z3
− 1

3

nv∑
i=1

(ρi · ρ⊥i+1)H0i (24)164

where:165

H0i =

∫ 1

0

1

(aiλ
2
i + 2 biλi + ci)(aiλ

2
i + 2 biλi + di)

3
2

dλi (25)166

and:167

ai = (ρi+1 − ρi) · (ρi+1 − ρi); bi = ρi · (ρi+1 − ρi);

ci = ρi · ρi; di = ρi · ρi + z2.
(26)168
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6 M. G. D’Urso and F. Marmo: Vertical stress in isotropic half-spaces

Provided that ρi � ρi+1, i.e. no vertex of the polygon is counted twice, it turns out to be ai > 0; furthermore ci ≥ 0 and169

di > 0 since it has been assumed z � 0.170

Performing the change of variable:171

ti = λi +
bi

ai
(27)172

and setting:173

ti0 =
bi

ai
; ti1 = 1 +

bi

ai
;

Ai =
ci

ai
− b2

i

a2
i

; Bi =
di

ai
− b2

i

a2
i

(28)174

the integral (25) becomes:175

H0i =
1

a
5
2
i

∫ ti1

ti0

1

(Ai + t2
i )(Bi + t2

i )
3
2

dti (29)176

which yields:177

H0i =
1

a
5
2
i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ti

Bi(Ai − Bi)
√

Bi + t2
i

+

arctan
[

ti
√

Bi−Ai√
Ai(Bi+t2

i )

]
√

Ai(Bi − Ai)
3
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ti1

ti0

=
1

a
5
2
i

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ti1

Bi(Ai − Bi)
√

Bi + t2
i1

− ti0

Bi(Ai − Bi)
√

Bi + t2
i0

+

arctan
[

ti1
√

Bi−Ai√
Ai(Bi+t2

i1)

]
− arctan

[
ti0
√

Bi−Ai√
Ai(Bi+t2

i0)

]
√

Ai(Bi − Ai)
3
2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

(30)178

The square roots
√

Bi + t2
i1 and

√
Bi + t2

i0 are always well defined since (26) and (28) imply that Bi > Ai ≥ 0, the last179

inequality following from Cauchy-Schwarz inequality [27]. However Ai may become zero if the origin of the reference180

frame coincides with a vertex or belongs to an edge of the boundary ∂Ω.181

In the former case, the condition ρi = 0 would imply bi = ci = 0 in (26), Ai = 0 in (28) and an undefined value for H0i.182

However, in this case H0i needs not to be computed since ρi = 0 in (24).183

If 0 does not coincide with a vertex of ∂Ω but belongs to one of its edges Ai = 0 as well. This condition can be184

equivalently stated as ρi · ρ⊥i+1 = 0 so that the relevant addend in (24) is zero and the computation of H0i irrilevant.185

In conclusion formula (24) must be corrected as follows:186

I0 =
α(0)
3z3
− 1

3

nv∑
i=1,i� j

(ρi · ρ⊥i+1)H0i if ρi = 0 or ρi · ρ⊥i+1 = 0. (31)187

Invoking (28) the integral H0i can be written as :188

H0i =
bi

z2(aidi − b2
i )
√

di

− ai + bi

z2(aidi − b2
i )
√

ai + 2bi + di

+
a

z3
√

aici − b2
i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣arctan
z(ai + bi)√

aici − b2
i

√
ai + 2bi + di

− arctan
zbi√

aici − b2
i

√
di

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(32)189

which is well defined since it is easy to verify that:190

ai + 2bi + di = ρi+1 · ρi+1 + z2 > 0 (33)191
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while the condition:192

ai ci − b2
i > 0 (34)193

holds true since it is equivalent to the previously stated condition Bi > Ai.194

4 Evaluation of i1195

Let us now illustrate the analytical evaluation of the second integral in (9). It is straightforward to verify that:196

i1 =
∫
Ω

ρ dΩ

(ρ · ρ + z2)
5
2

= − 1
3

∫
Ω

grad

⎡⎢⎢⎢⎢⎢⎣ 1

(ρ · ρ + z2)
3
2

⎤⎥⎥⎥⎥⎥⎦ dΩ (35)197

where ’grad’ stands for the gradient operator.198

Invoking for the last integral a special form of the divergence theorem [5] one gets:199

i1 = − 1
3

∫
∂Ω

ν ds

(ρ · ρ + z2)
3
2

. (36)200

Remark 1. Although well-known in classical textbooks of tensor analysis it is instructive to provide a simple proof of201

the previous result since it represents the rationale to derive less standard results exploited in the sequel.202

Considering the rank-two identity tensor I, a scalar field φ(ρ) and adopting the indicial notation the divergence of the203

composition of I and φ is given by:204

div(Iφ) = [Ii jφ], j = δi jφ, j = φ,i = gradφ (37)205

Hence, integrating overΩ and applying the divergence theorem:206

∫
Ω

gradφ dΩ =
∫
Ω

div(Iφ)dΩ =
∫
∂Ω

Iφνds =
∫
∂Ω

φνds (38)207

which is the identity used to derive (36).208

4.1 Closed form evaluation of i1 for a polygonal domain209

In the case of a polygonal domain the integral (36) can be expressed as sum of nv line integrals by applying the same path210

of reasoning illustrated in Sect. 3.1. Thus,211

i1 = − 1
3

nv∑
i=1

∫ li

0

νi

[ρi(si) · ρi(si) + z2]
3
2

dsi (39)212

or, equivalently,213

i1 = − 1
3

nv∑
i=1

(ρ⊥i+1 − ρ⊥i )
∫ 1

0

1

(aiλ
2
i + 2biλi + di)

3
2

dλi = − 1
3

nv∑
i=1

(ρ⊥i+1 − ρ⊥i )H1i (40)214

where ai, bi, and di have been defined in (26). The integral H1i is given by:215

H1i =

∫ 1

0

1

(aiλ
2
i + 2biλi + di)

3
2

dλi = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
bi + aiλi

(b2
i − aidi)

√
aiλ

2
i + 2biλi + di

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
1

0

=
1

b2
i − aidi

(
bi√
di

− ai + bi√
ai + 2bi + di

) (41)216

and is well defined due to (26) and (33).217
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5 Evaluation of I2218

Let us now turn our attention to the third integral in (9):219

I2 =

∫
Ω

ρ ⊗ ρ
(ρ · ρ + z2)

5
2

dΩ. (42)220

To this end we first recall the differential identity [5]:221

grad(φu) = u ⊗ gradφ + φgradu (43)222

where φ and u are in turn scalar and vector fields; we thus infer:223

grad

⎡⎢⎢⎢⎢⎢⎣ ρ

(ρ · ρ + z2)
3
2

⎤⎥⎥⎥⎥⎥⎦ = −3
ρ ⊗ ρ

(ρ · ρ + z2)
5
2

+
I

(ρ · ρ + z2)
3
2

. (44)224

Hence:225

I2 = − 1
3

∫
Ω

grad

⎡⎢⎢⎢⎢⎢⎣ ρ

(ρ · ρ + z2)
3
2

⎤⎥⎥⎥⎥⎥⎦ dΩ +
I
3

∫
Ω

dΩ

(ρ · ρ + z2)
3
2

= − 1
3

∫
∂Ω

ρ ⊗ ν
(ρ · ρ + z2)

3
2

dΩ +
I
3

∫
Ω

dΩ

(ρ · ρ + z2)
3
2

(45)226

Remark 2. Following the same path of reasoning illustrated in Remark 1 the previous identity can be obtained by227

applying the divergence theorem to the composition of the rank-four tensor � whose indicial notation is given by [�]i jkl =228

δilδ jk and a vector field u. Actually, one has:229

div(�u) = δilδ jkul,k = ui, j = gradu (46)230

so that the integration over Ω of the previous identity yields the desired result.231

To compute the last integral above we invoke (11) to get:232

div

⎡⎢⎢⎢⎢⎢⎣ ρ

(ρ · ρ + z2)
1
2

⎤⎥⎥⎥⎥⎥⎦ = − ρ · ρ
(ρ · ρ + z2)

3
2

+
2

(ρ · ρ + z2)
1
2

(47)233

or, equivalently, adding and subtracting z2 to the numerator of the first addend on the right-hand side:234

div

⎡⎢⎢⎢⎢⎢⎣ ρ

(ρ · ρ + z2)
1
2

⎤⎥⎥⎥⎥⎥⎦ = z2

(ρ · ρ + z2)
3
2

+
1

(ρ · ρ + z2)
1
2

. (48)235

Hence, by the Gauss theorem:236 ∫
Ω

dΩ

(ρ · ρ + z2)
3
2

=
1
z2

∫
∂Ω

ρ · ν
(ρ · ρ + z2)

1
2

ds − 1
z2

∫
Ω

dΩ

(ρ · ρ + z2)
1
2

. (49)237

The last integral above has been calculated in formula (18) of [12] and is provided by:238

∫
Ω

dΩ

(ρ · ρ + z2)
1
2

=

∫
∂Ω

(ρ · ρ + z2)
1
2 (ρ · ν)

ρ · ρ ds − zα(0). (50)239

In conclusion, combining formulas (45), (49), and (50) one finally gets:240

I2 =

∫
Ω

ρ ⊗ ρ
(ρ · ρ + z2)

5
2

= − 1
3

∫
∂Ω

ρ ⊗ ν ds

(ρ · ρ + z2)
3
2

+
I

3z2

∫
∂Ω

ρ · ν
(ρ · ρ + z2)

1
2

− I
3z2

∫
∂Ω

(ρ · ρ + z2)
1
2 (ρ · ν) ds

ρ · ρ +
I

3z
α(0)

= − 1
3

A2 +
I

3z2
(B2 −C2) +

I
3z
α(0)

(51)241

i.e. an expression which allows one to compute I2 solely by means of integrals extended to ∂Ω.242
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5.1 Closed form evaluation of I2 for a polygonal domain243

Assuming Ω to be polygonal, formula (51) is the starting point to express I2 as linear combination of rank-two quantities244

depending solely upon the coordinates of the vertices of ∂Ω.245

To this end let us proceed to compute separately the tensor A2 and the scalars B2 and C2 appearing in (51). One has:246

A2 =

∫
∂Ω

ρ ⊗ ν ds

(ρ · ρ + z2)
3
2

=

nv∑
i=1

⎧⎪⎪⎨⎪⎪⎩
∫ li

0

ρ(si)

[ρ(si) · ρ(si) + z2]
3
2

⎫⎪⎪⎬⎪⎪⎭ ⊗ νi (52)247

or equivalently, by means of (23):248

A2 =

nv∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎣ρi ⊗ (ρ⊥i+1 − ρ⊥i )
∫ 1

0

dλi

(aiλ
2
i + 2biλi + di)

3
2

+ (ρi+1 − ρi) ⊗ (ρ⊥i+1 − ρ⊥i )
∫ 1

0

λidλi

(aiλ
2
i + 2biλi + di)

3
2

⎤⎥⎥⎥⎥⎥⎥⎦
=

nv∑
i=1

[
ρi ⊗ (ρ⊥i+1 − ρ⊥i )HA2

1i + (ρi+1 − ρi) ⊗ (ρ⊥i+1 − ρ⊥i )HA2
2i

]
.

(53)249

It turns out to be:250

HA2
1i =

1

b2
i − aidi

(
bi√
di

− ai + bi√
ai + 2bi + di

)
(54)251

and:252

HA2
2i =

1

b2
i − aidi

(
bi + di√

ai + 2bi + di

− √
di

)
(55)253

where ai, bi, and di are defined in (26). Both the previous integrals are well defined due to (33).254

Furthermore:255

B2 =

∫
∂Ω

ρ · ν
(ρ · ρ + z2)

1
2

=

nv∑
i=1

∫ li

0

ρ(si) · νi

[ρ(si) · ρ(si) + z2]
1
2

dsi

=

nv∑
i=1

(ρi · ρ⊥i+1)
∫ 1

0

dλi

(aiλ
2
i + 2biλi + di)

1
2

=

nv∑
i=1

(ρi · ρ⊥i+1)HB2
i

(56)256

where:257

HB2
i =

1√
ai

ln
ai + bi +

√
ai(ai + 2bi + di)

bi +
√

aidi

. (57)258

As repeatedly specified above ai and di are positive as well as ai + 2bi + di.259

Finally:260

C2 =

∫
∂Ω

(ρ · ρ + z2)
1
2 (ρ · ν)ds

ρ · ρ =

nv∑
i=1

∫ li

0

[ρ(si) · ρ(si) + z2]
1
2 [ρ(si) · νi]dsi

ρ(si) · ρ(si)

=

nv∑
i=1

(ρi · ρ⊥i+1)
∫ 1

0

(aiλ
2
i + 2biλi + di)

1
2

(aiλ
2
i + 2biλi + ci)

dλi =

nv∑
i=1

(ρi · ρ⊥i+1)HC2
i .

(58)261

Adopting the change of variable (27) and the definitions (28) one has:262

HC2
i =

1√
ai

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
√

Bi − Ai√
Ai

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣arctan
ti1
√

Bi − Ai√
Ai(Bi + t2

i1)
− arctan

ti0
√

Bi − Ai√
Ai(Bi + t2

i0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + ln
ti1 +

√
B + t2

i1

ti0 +
√

B + t2
i0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(59)263
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or, equivalently:264

HC2
i =

z√
aici − b2

i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣arctan
z(ai + bi)√

aici − b2
i

√
ai + 2bi + di

− arctan
zbi√

aici − b2
i

√
di

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

1√
ai

ln
ai + bi +

√
ai(ai + 2bi + di)

bi +
√

aidi

.

(60)265

Notice that the addends in the square parentheses do coincide with the analogous terms in (32) contributing to the266

expression of H0i while the last term coincides with HB2
i in (57).267

6 Evaluation of �3268

The evaluation of the vertical stresses σq provided by (9) requires finally the evaluation of the integral �3 defined by:269

�3 =

∫
Ω

ρ ⊗ ρ ⊗ ρ
(ρ · ρ + z2)

5
2

dΩ. (61)270

It can be evaluated by invoking the differential identity:271

grad(φA) = A ⊗ gradφ + φgradA (62)272

which generalizes the identity (43) to the case of third-order tensors.273

In particular:274

grad
ρ ⊗ ρ

(ρ · ρ + z2)
3
2

= −3
ρ ⊗ ρ ⊗ ρ

(ρ · ρ + z2)
5
2

+
grad(ρ ⊗ ρ)
(ρ · ρ + z2)

3
2

(63)275

where:276

grad(ρ ⊗ ρ) = Î ⊗ ρ + ρ ⊗ I (64)277

and Î ⊗ ρ is the third order tensor expressed in indicial notation as:278

(Î ⊗ ρ)i jk = Iikρ j. (65)279

Hence, formulas (63) and (64) yield:280

∫
Ω

ρ ⊗ ρ ⊗ ρ
(ρ · ρ + z2)

5
2

dΩ =
1
3

⎡⎢⎢⎢⎢⎢⎣
∫
Ω

ρdΩ

(ρ · ρ + z2)
3
2

⊗ I + Î ⊗
∫
Ω

ρdΩ

(ρ · ρ + z2)
3
2

−
∫
∂Ω

ρ ⊗ ρ ⊗ ν
(ρ · ρ + z2)

3
2

ds

⎤⎥⎥⎥⎥⎥⎦ (66)281

where the Gauss theorem has been applied to the left-hand side of (63).282

Remark 3. The previous unusual form of the Gauss theorem stems from the following considerations. Let us consider283

the sixth-order identity tensor �6 expressed in indicial notation as [�6]i jklmn = δinδ jmδkl and an arbitrary tensor field T(ρ).284

Evaluating the divergence of the composition �6T:285

div[�6T] = δinδ jmδklTnm,l = Ti j,k = gradT (67)286

and integrating overΩ yields the result exploited in (66) upon the application of the divergence theorem.287

To compute the first and second integrals on the right-hand sied of (66) we observe that:288 ∫
Ω

ρdΩ

(ρ · ρ + z2)
3
2

= −
∫
Ω

grad
1

(ρ · ρ + z2)
1
2

dΩ = −
∫
∂Ω

νds

(ρ · ρ + z2)
1
2

. (68)289

To sum up it turns out to be:290

�3 = − 1
3

⎡⎢⎢⎢⎢⎢⎣
∫
∂Ω

νds

(ρ · ρ + z2)
1
2

⊗ I + Î ⊗
∫
∂Ω

νds

(ρ · ρ + z2)
1
2

+

∫
∂Ω

ρ ⊗ ρ ⊗ ν
(ρ · ρ + z2)

3
2

ds

⎤⎥⎥⎥⎥⎥⎦ (69)291

so that �3 is expressed solely by means of boundary integrals.292
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6.1 Closed form evaluation of �3 for a polygonal domain293

For a polygonal domainΩ formula (69) specializes as follows. The first two integrals on the right-hand side of (69) become:294

a3 =

∫
∂Ω

νds

(ρ · ρ + z2)
1
2

=

nv∑
i=1

νi

∫ li

0

dsi

[ρ(si) · ρ(si) + z2]
1
2

=

nv∑
i=1

(ρ⊥i+1 − ρ⊥i )
∫ 1

0

dλi

(aiλ
2
i + 2biλi + di)

1
2

.

(70)295

Being:296

Ha3
i =

∫ 1

0

dλi

(aiλ
2
i + 2biλi + di)

1
2

=
1√
ai

ln
ai + bi +

√
ai(ai + 2bi + di)

bi +
√

aidi

(71)297

it turns out to be:298

a3 = (ρ⊥i+1 − ρ⊥i )Ha3
i . (72)299

Furthermore, invoking (23):300

�3 =

∫
∂Ω

ρ ⊗ ρ ⊗ ν
(ρ · ρ + z2)

3
2

ds =
nv∑

i=1

⎡⎢⎢⎢⎢⎢⎣
∫ li

0

ρ(si) ⊗ ρ(si)

[ρ(si) · ρ(si) + z2]
3
2

dsi

⎤⎥⎥⎥⎥⎥⎦ ⊗ νi

=

nv∑
i=1

⎧⎪⎪⎨⎪⎪⎩ρi ⊗ ρi

∫ 1

0

dλi

(aiλ
2
i + 2biλi + di)

3
2

+[ρi ⊗ (ρi+1 − ρi) + (ρi+1 − ρi) ⊗ ρi]
∫ 1

0

λidλi

(aiλ
2
i + 2biλi + di)

3
2

+(ρi+1 − ρi) ⊗ (ρi+1 − ρi)
∫ 1

0

λ2
i dλi

(aiλ
2
i + 2biλi + di)

3
2

⎫⎪⎪⎬⎪⎪⎭ ⊗ (ρ⊥i+1 − ρ⊥i ).

(73)301

The first two integrals above have been already computed in (54):302

HB3

1i = HA2
1i =

∫ 1

0

dλi

(aiλ
2
i + 2biλi + di)

3
2

=
1

b2
i − aidi

(
bi√
di

− ai + bi√
ai + 2bi + di

)
(74)303

and (55):304

HB3

2i = HA2
2i =

∫ 1

0

λidλi

(aiλ
2
i + 2biλi + di)

3
2

=
1

b2
i − aidi

(
bi + di√

ai + 2bi + di

− √
di

)
. (75)305

The last integral in (73) is given by:306

HB3

3i =

∫ 1

0

λ2
i dλi

(aiλ
2
i + 2biλi + di)

3
2

=
2b2

i − aidi + bidi − bi
√

di(ai + 2bi + di)

ai(aidi − b2
i )
√

ai + 2bi + di

+
1

a
3
2
i

ln
ai + bi +

√
ai(ai + 2bi + di)

bi +
√

aidi

(76)307

so that we get finally:308

�3 = − 1
3

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎢⎣

nv∑
i=1

Ha3
i (ρ⊥i+1 − ρ⊥i )

⎤⎥⎥⎥⎥⎥⎥⎦ ⊗ I + Î ⊗
⎡⎢⎢⎢⎢⎢⎢⎣

nv∑
i=1

Ha3
i (ρ⊥i+1 − ρ⊥i )

⎤⎥⎥⎥⎥⎥⎥⎦
+

nv∑
i=1

{
(ρi ⊗ ρi)H

B3

1i + [ρi ⊗ (ρi+1 − ρi) + (ρi+1 − ρi) ⊗ ρi]H
B3

2i

+(ρi+1 − ρi) ⊗ (ρi+1 − ρi)H
B3
3i

}
⊗ (ρ⊥i+1 − ρ⊥i )

⎫⎪⎪⎬⎪⎪⎭ .

(77)309
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7 Numerical examples310

We illustrate hereafter some applications of the general approach outlined in the previous sections in order to solve practical311

problems in foundation engineering.312

In particular, the formulas derived thus far are intended mainly as a programming tool for evaluating the vertical stress313

induced by vertical loads distributed with the law (3) over polygonal domains. Nevertheless such formulas have been applied314

for plotting charts which can be used for evaluating the vertical stress induced by simple load cases by hand calculations;315

in particular, we shall make reference to the cases of a rectangular or a circular loaded region by adopting the superposition316

principle. Such data can also be used to solve more complex loading cases as illustrated in the sequel.317

As last example we consider a more complex case represented by the foundation of a wall with an arbitrary geometry.318

Aim of the example is to evaluate the vertical stress induced in the soil by the foundation and comparing the values predicted319

by the analytical formulas contributed in the paper with the numerical ones obtained by a FEM discretization of the soil.320

7.1 Rectangular domain subject to a linear pressure distribution321

Let us evaluate the vertical stress at depth z under the corner of a rectangle of size DL × DB loaded with a uniform pressure322

distribution, as shown in Fig. 2(a), or a linear pressure distribution acting on a rectangle having size DV × DC , shown in323

Fig. 2(b).324

x

y

z

q0

DL

DB

(a) Rectangular region with a constant
pressure distribution

x

y

z

q(0) = 0 qmax

DV
DC

(b) Rectangular region with a pressure lin-
early distributed along DV

Fig. 2 Elementary load cases for a rectangular loaded region.

The chart plotting the adimensional valueσz/q0 for a uniform pressure distribution as a function of different values of the325

ratio DB/DL is reported in Fig. 3(a); analogously the value σz/qmax for a linear pressure distribution is plotted in Fig. 3(b)326

as function of the ratio DC/DV . For the reader’s convenience, the data plotted in Figs. 3(a) and 3(b) are also reported in327

Tables 1 and 2, respectively.328

Clearly, the solution for any linear load distribution over a rectangular domain, see e.g. Fig. 4(a), can be obtained by329

super-imposing the effects of three elementary load cases as in Figs. 4(b)–4(d). In particular the case of Fig. 4(b) is evaluated330

by using the chart in Fig. 3(a) by setting q0 = qa. Similarly the chart in Fig. 3(b) can be used twice, by properly selecting331

the values qmax, DV , and DC , for addressing the pressure distributions of Fig. 4(c) and Fig. 4(d).332

Data reported in Fig. 3 can also be used when one needs to evaluate the stress at a point Q which is not located under a333

corner of the rectangular region. In this case, two different situations may occur: P inside the loaded rectangle, see Fig. 5(a),334

or P outside the rectangle, see Fig. 5(b).335

In order to evaluate the vertical stress at the point Q in Fig. 5(a) the approach illustrated in Fig. 4 can be applied to the336

four rectangles PFCG, PGDH, PHAE, and PEBF in Fig. 6 and the contribution of each rectangle shall then be summed337

up to obtain the final result:338

σABCD
z = σPFCG

z + σPGDH
z + σPHAE

z + σPEBF
z . (78)339

In particular the four addends on the right-hand side can be evaluated by using the charts of Fig. 3 together with the data340

of Table 3 in which it has to be set:341

qp = qa +
qb − qa

L1 + L2
L1 +

qd − qa

B1 + B2
B1. (79)342

A similar method applies to the case of Fig. 5(b). The actual load, distributed over the rectangle ABCD and defined343

by the pressure values qa, qb, qc, and qd, is supposed to be extended to the rectangle AEPH in Fig. 7 so as to exploit the344

solution plotted in Fig. 4.345
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- Fig. 8 and 9 should be placed within the same page; to this end Table 5 can be moved after Fig. 9.
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Table 1 Stress ratios σz/q0 due to a uniform pressure distribution over the rectangle of Fig. 2(a).

DB/DL

z/DL 0.1 0.2 0.5 1 2 5 10

0 0.25 0.25 0.25 0.25 0.25 0.25 0.25

0.25 1.1527E-1 1.8469E-1 2.3912E-1 2.4729E-1 2.4836E-1 2.4846E-1 2.4846E-1

0.5 6.1001E-2 1.1342E-1 1.9994E-1 2.3247E-1 2.3912E-1 2.3985E-1 2.3987E-1

0.75 3.9578E-2 7.6414E-2 1.5611E-1 2.0598E-1 2.2172E-1 2.2390E-1 2.2397E-1

1 2.7935E-2 5.4714E-2 1.2018E-1 1.7522E-1 1.9994E-1 2.0440E-1 2.0457E-1

1.5 1.5793E-2 3.1273E-2 7.3216E-2 1.2104E-1 1.5611E-1 1.6649E-1 1.6700E-1

2 9.9453E-3 1.9775E-2 4.7533E-2 8.4027E-2 1.2018E-1 1.3628E-1 1.3736E-1

3 4.8608E-3 9.6956E-3 2.3796E-2 4.4734E-2 7.3216E-2 9.5926E-2 9.8677E-2

4 2.8368E-3 5.6650E-3 1.4013E-2 2.7021E-2 4.7533E-2 7.1197E-2 7.5845E-2

6 1.2962E-3 2.5905E-3 6.4454E-3 1.2676E-2 2.3796E-2 4.3111E-2 5.0560E-2

8 7.3639E-4 1.4722E-3 3.6705E-3 7.2709E-3 1.4013E-2 2.8334E-2 3.6733E-2

10 4.7349E-4 9.4674E-4 2.3627E-3 4.6963E-3 9.1685E-3 1.9775E-2 2.7935E-2

12 3.2965E-4 6.5918E-4 1.6460E-3 3.2778E-3 6.4454E-3 1.4469E-2 2.1881E-2

15 2.1142E-4 4.2279E-4 1.0561E-3 2.1065E-3 4.1671E-3 9.6956E-3 1.5793E-2

18 1.4698E-4 2.9395E-4 7.3447E-4 1.4661E-3 2.9099E-3 6.9126E-3 1.1841E-2

20 1.1912E-4 2.3822E-4 5.9528E-4 1.1887E-3 2.3627E-3 5.6650E-3 9.9453E-3

Table 2 Stress ratios σz/qmax due to a linear pressure distribution over the rectangle of Fig. 2(b).

DC/DV

z/DV 0.1 0.2 0.5 1 2 5 10

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.25 1.4551E-2 2.4410E-2 3.4567E-2 3.6971E-2 3.7401E-2 3.7447E-2 3.7448E-2

0.5 1.4189E-2 2.6752E-2 4.9772E-2 6.0566E-2 6.3309E-2 6.3651E-2 6.3661E-2

0.75 1.2349E-2 2.3967E-2 5.0253E-2 6.8649E-2 7.5326E-2 7.6357E-2 7.6392E-2

1 1.0224E-2 2.0070E-2 4.4650E-2 6.6595E-2 7.7378E-2 7.9491E-2 7.9572E-2

1.5 6.7264E-3 1.3328E-2 3.1322E-2 5.2254E-2 6.8222E-2 7.3185E-2 7.3437E-2

2 4.5188E-3 8.9872E-3 2.1633E-2 3.8393E-2 5.5314E-2 6.3083E-2 6.3618E-2

3 2.3246E-3 4.6369E-3 1.1384E-2 2.1423E-2 3.5156E-2 4.6244E-2 4.7608E-2

4 1.3828E-3 2.7613E-3 6.8312E-3 1.3177E-2 2.3205E-2 3.4846E-2 3.7152E-2

6 6.4070E-4 1.2805E-3 3.1861E-3 6.2662E-3 1.1767E-2 2.1339E-2 2.5044E-2

8 3.6582E-4 7.3135E-4 1.8234E-3 3.6121E-3 6.9622E-3 1.4083E-2 1.8267E-2

10 2.3576E-4 4.7141E-4 1.1765E-3 2.3385E-3 4.5655E-3 9.8492E-3 1.3918E-2

12 1.6435E-4 3.2864E-4 8.2061E-4 1.6342E-3 3.2135E-3 7.2147E-3 1.0913E-2

15 1.0551E-4 2.1100E-4 5.2710E-4 1.0513E-3 2.0797E-3 4.8391E-3 7.8831E-3

18 7.3398E-5 1.4678E-4 3.6676E-4 7.3212E-4 1.4531E-3 3.4520E-3 5.9135E-3

20 5.9496E-5 1.1898E-4 2.9733E-4 5.9374E-4 1.1801E-3 2.8296E-3 4.9678E-3

Accordingly, the contribution of the rectangles PHDF and PGBE need to be subtracted from the value of the stress346

relevant to the rectangle PHAE. Finally, since the area of the rectangle PGCF is included both into the rectangles PHDF347

and PGBE, its contribution has to be further summed to the result:348

σABCD
z = σPHAE

z − σPHDF
z − σPGBE

z + σPGCF
z . (80)349
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Fig. 3 Stress ratios for the rectangular loaded region of Fig. 2.
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Fig. 4 Rectangular region with an arbitrary bi-linear load distribution and its decomposition into simple load cases.

The four addends on the right-hand side can be evaluated by using the charts of Fig. 3 with the data of Table 4 where:350

qp = qa +
qb − qa

L
(L + L3) +

qd − qa

B
(B + B3). (81)351

In conclusion the charts of Fig. 3 allow one to evaluate by hand the vertical stress due to any rectangular distribution of352

pressures, a very common situation in civil engineering.353

7.2 Circular domain subject to a linear pressure distribution354

Let us now address the case of a linear pressure distribution acting on a circular domain of radius R and suppose that one355

wants to evaluate the vertical stress at a distance L from the center of the loaded region. According to formula (3) σz can356

be evaluated by superimposing two elementary cases.357
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Fig. 5 Evaluation of the stress at points arbitrarily placed with respect to the loaded region.

Table 3 Data for the evaluation of σz for the load distribution in of Fig. 6.

Fig. 3(a) Fig. 3(b) Fig. 3(b)

σPFCG
z q0 = qp qmax =

qb − qa

L1 + L2
L2 qmax =

qd − qa

B1 + B2
B2

DB = B2 DC = B2 DC = L2

DL = L2 DV = L2 DV = B2

σPGDH
z q0 = qp qmax =

qd − qa

B1 + B2
B2 qmax = − qb − qa

L1 + L2
L1

DB = L1 DC = L1 DC = B2

DL = B2 DV = B2 DV = L1

σPHAE
z q0 = qp qmax = − qb − qa

L1 + L2
L1 qmax = − qd − qa

B1 + B2
B1

DB = B1 DC = B1 DC = L1

DL = L1 DV = L1 DV = B1

σPEBF
z q0 = qp qmax = − qd − qa

B1 + B2
B1 qmax =

qb − qa

L1 + L2
L2

DB = L2 DC = L2 DC = B1

DL = B1 DV = B1 DV = L2

Table 4 Data for the evaluation of σz for the load distribution of Fig. 7.

Fig. 3(a) Fig. 3(b) Fig. 3(b)

σPHAE
z q0 = qp qmax = − qb − qa

L
(L3 + L) qmax = − qd − qa

B
(B3 + B)

DB = B3 + B DC = B3 + B DC = L3 + L

DL = L3 + L DV = L3 + L DV = B3 + B

σPHDF
z q0 = qp qmax = − qb − qa

L
(L3 + L) qmax = − qd − qa

B
B3

DB = B3 DC = B3 DC = L3 + L

DL = L3 + L DV = L3 + L DV = B3

σPGBE
z q0 = qp qmax = − qb − qa

L
L3 qmax = − qd − qa

B
(B + B3)

DB = B3 + B DC = B3 + B DC = L3

DL = L3 DV = L3 DV = B3 + B

σPGCF
z q0 = qp qmax = − qb − qa

L
L3 qmax = − qd − qa

B
B3

DB = B3 DC = B3 DC = L3

DL = L3 DV = L3 DV = B3

The first one is a constant pressure distribution of value q0, see Fig. 8(a). The relevant stress ratios σz/q0, evaluated for358

several values of L/R and z/R, are reported in Table 5 and plotted in Fig. 9(a).359

www.zamm-journal.org c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



16 M. G. D’Urso and F. Marmo: Vertical stress in isotropic half-spaces

x

y

z

L1
L2

B1

B2

qa

qb

qc

qd

qp

A B

CD

E

F

G

H P

P

x

y

z

L3

B3
qa

qb

qc

qd qp

A B

B

CD

E

F

GH

L

P

P
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Fig. 7 Composition of loaded regions to address the case of
Fig. 5(b).
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Fig. 9 Stress ratios for the circular loaded region of Fig. 8.

The second elementary case, addressing a linear pressure distribution, is illustrated in Fig. 8(b). In this respect we remark360

that, g⊥ and the z axis define an antisymmetric plane for such a pressure distribution; hence the effects of this load case have361
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Table 5 Stress ratios σz/q0 due to a uniform pressure distribution over the circle of Fig. 8(a).

L/R

z/R 0 0.2 0.5 1 2 5 10

0 1.0 1.0 1.0 0.5 0.0 0.0 0.0

0.25 9.8573E-1 9.8369E-1 9.6583E-1 4.6062E-1 1.6463E-3 8.4597E-6 2.4146E-7

0.5 9.1056E-1 9.0158E-1 8.3956E-1 4.1849E-1 1.0472E-2 6.6272E-5 1.9224E-6

0.75 7.8400E-1 7.7047E-1 6.9155E-1 3.7546E-1 2.5567E-2 2.1607E-4 6.4363E-6

1 6.4644E-1 6.3313E-1 5.6222E-1 3.3325E-1 4.1809E-2 4.8842E-4 1.5087E-5

1.5 4.2396E-1 4.1584E-1 3.7504E-1 2.5725E-1 6.5018E-2 1.4470E-3 4.9331E-5

2 2.8446E-1 2.8020E-1 2.5889E-1 1.9701E-1 7.3334E-2 2.8916E-3 1.1194E-4

3 1.4618E-1 1.4491E-1 1.3844E-1 1.1912E-1 6.6630E-2 6.3640E-3 3.3491E-4

4 8.6924E-2 8.6452E-2 8.4027E-2 7.7077E-2 5.2605E-2 9.2280E-3 6.7698E-4

6 4.0265E-2 4.0160E-2 3.9615E-2 3.8763E-2 3.1374E-2 1.1245E-2 1.5239E-3

8 2.2988E-2 2.2953E-2 2.2772E-2 2.3156E-2 1.9850E-2 1.0274E-2 2.2490E-3

10 1.4815E-2 1.4800E-2 1.4724E-2 1.5472E-2 1.3459E-2 8.5604E-3 2.6640E-3

12 1.0327E-2 1.0320E-2 1.0283E-2 1.1166E-2 9.6531E-3 6.9560E-3 2.7933E-3

15 6.6298E-3 6.6269E-3 6.6116E-3 7.5711E-3 6.3468E-3 5.1062E-3 2.6594E-3

18 4.6118E-3 4.6104E-3 4.6030E-3 5.5904E-3 4.4734E-3 3.8342E-3 2.3619E-3

20 3.7383E-3 3.7374E-3 3.7325E-3 4.7289E-3 3.6469E-3 3.2151E-3 2.1450E-3

to be antisymmetric as well. Accordingly, the vertical stress σz is zero at every point lying on the vertical plane containing362

g⊥. Conversely, if Q lies in the plane g− z the stress σz at Q is different from zero and the stress ratios σz/qmax are reported363

in Table 6 and Fig. 9(b) for several values of the ratios L/R and z/R.364

Table 6 Stress ratios σz/qmax due to a linear pressure distribution over the circle of Fig. 8(b).

L/R

z/R 0 0.2 0.5 1 2 5 10

0 0.0 0.2 0.5 1.0 0.0 0.0 0.0

0.25 0.0 1.9245E-1 4.6775E-1 3.8591E-1 9.5798E-4 2.0920E-6 3.0101E-8

0.5 0.0 1.5816E-1 3.5545E-1 2.8745E-1 5.7779E-3 1.6263E-5 2.3920E-7

0.75 0.0 1.1233E-1 2.3961E-1 2.0967E-1 1.3020E-2 5.2359E-5 7.9833E-7

1 0.0 7.3945E-2 1.5557E-1 1.5129E-1 1.9285E-2 1.1632E-4 1.8632E-6

1.5 0.0 3.0750E-2 6.6303E-2 7.8665E-2 2.3865E-2 3.2844E-4 6.0173E-6

2 0.0 1.3662E-2 3.0522E-2 4.2255E-2 2.1130E-2 6.1609E-4 1.3423E-5

3 0.0 3.5780E-3 8.3870E-3 1.4426E-2 1.2044E-2 1.1547E-3 3.8308E-5

4 0.0 1.2621E-3 3.0315E-3 6.2850E-3 6.2873E-3 1.3879E-3 7.2743E-5

6 0.0 2.7045E-4 6.6328E-4 2.2534E-3 1.9131E-3 1.1386E-3 1.3961E-4

8 0.0 8.8113E-5 2.1786E-4 1.4326E-3 7.1887E-4 7.1473E-4 1.7084E-4

10 0.0 3.6589E-5 9.0818E-5 1.1908E-3 3.2029E-4 4.2493E-4 1.6596E-4

12 0.0 1.7778E-5 4.4221E-5 1.1006E-3 1.6190E-4 2.5580E-4 1.4267E-4

15 0.0 7.3265E-6 1.8257E-5 1.0498E-3 6.8966E-5 1.2715E-4 1.0203E-4

18 0.0 3.5451E-6 8.8428E-6 1.0313E-3 3.3985E-5 6.8464E-5 6.9488E-5

20 0.0 2.3293E-6 5.8126E-6 1.0253E-3 2.2508E-5 4.7166E-5 5.3527E-5

The charts of Fig. 9 have been obtained by modeling the circular region by means of a regular polygon of 1000 sides365

and adopting the formulas described in the previous sections. Such charts can can be used for the hand evaluation of the366

vertical stress induced by arbitrary linear pressure distributions over circular domains, see Fig. 10.367
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Fig. 10 General case of a circular loaded re-
gion.

Suppose, for instance, that a linear pressure distribution q(ρ) = q0 + g · ρ is assigned in a reference frame whose axis368

x connects the center of loaded region with the point P along the vertical at which the vertical stress has to be computed.369

Such a distribution can be seen as the superposition of three elementary load cases: a constant pressure distribution of value370

q0 and two linear pressure distributions with a gradient gx and gy, where gx and gy are the components of g.371

Comparing the y axis with g⊥ in Fig. 8(b) one recognizes that the linear pressure distribution having gradient gy does372

not induce any σz at Q. Hence the vertical stress at Q can be computed by using the charts of Fig. 9, by setting qmax = gxR.373

7.3 Wall foundation374

Let us consider the finite element model of a wall and its footing depicted in Fig. 11(a). The walls and the footing have375

thickness equal to 20 cm, Young modulus Es = 35 kPa, and Poisson ratio νs = 0.2. Walls have been modeled by means of376

shell elements and are loaded by nodal forces, expressed in kN in the plot of Fig. 11(a). The footing has been modeled by377

plate elements on Winkler soil whose stiffness has been assumed equal to kw = 20 N/cm3.378
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Winkler soil (blue elements). Forces are expressed in kN.
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(b) Computed load distribution on the soil.

Fig. 11 L-shaped footing.

Since the transverse (out–of–plane) displacements of triangular plate elements are represented by third-order polynomi-379

als and a constant Winkler coefficient has been assumed for the soil, the load applied to the soil by each element is actually380

represented by formula (3). The load distribution is contour-plotted in Fig. 11(b) and is used as input for evaluating the381

vertical stresses induced in the half-space by means of the proposed formulas.382

The results have been obtained at a grid of approximatively 1500 points of the half-space whose coordinates uniformly383

span the intervals:384

x ∈ [−100, 500], y ∈ [−100, 500], z ∈ [−400, 0] (82)385
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Fig. 12 L-shaped footing: analytical vertical
stress distribution within the half-space.
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(b) FEM discretization of the soil

Fig. 13 L-shaped footing: Analytical vs. FEM evaluation of the vertical stresses at the points of the plane x = 100 in Fig. 12.

where lengths are expressed in centimeters. The vertical stress σz has been represented by means of isostress surfaces386

reported in the 3D view of Fig. 12.387

The same problem has been solved by adopting a finite element model of the soil in which a mesh of 3600 solid elements388

of size 50 × 50 × 50 cm and 4400 nodes has been adopted. The load distribution of Fig. 11(b) has been applied to the top389

surface of the model and the vertical stresses have been computed at the Gauss points of each element.390

In order to perform a comparison between the results obtained by the proposed formulas and the 3D FEM model, we391

report in Fig. 13 the contour plot of the vertical stresses computed at the points of the plane x = 100 in Fig. 12. Although the392

results of both analyses are almost coincident, the superiority of the proposed formulas stems from the fact that they allow393

for an analytical evaluation of the vertical stress at any point of the half space without the need of any soil discretization,394

what necessarily introduces modeling approximations whose order of magnitude is function of the mesh size.395

www.zamm-journal.org c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



20 M. G. D’Urso and F. Marmo: Vertical stress in isotropic half-spaces

8 Conclusions396

By exploiting concepts and results of potential theory it has been illustrated a general methodology to evaluate analytically397

the vertical stress within a homogeneous isotropic elastic half-space due to pressures distributed with a nonlinear law over398

polygonal domains of arbitrary shape. Charts have been provided as design aids in order to allow one for the evaluation of399

vertical stress by hand calculations in the case of rectangles or circles loaded by a linear pressure distribution.400
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