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ABSTRACT  

In this study, a supplier selection problem is first modeled as a multi-objective optimization 

problem with three minimization objectives: price, rejects and lead-time. In reality, the objectives 

may have different relative weights. In addition, due to uncertainty/imprecision, it may be easier 

for decision makers to determine an interval goal or aspiration level for every objective, instead of 

a single one. Also, the decision makers may have other preferences such as the purchasing cost 

not significantly exceeding the budget. For this purpose, a new Multi-Choice Goal Programming 

(MCGP) approach is proposed. One of the main advantages of the proposed model is that it 

provides the decision makers with more control over their preferences. Finally, an illustrative 

example demonstrates the effectiveness of our proposed model.  
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1. Introduction 

Today companies need to take advantage of any opportunity to increase their ability for 

competing with their rivals. They should fulfill the expectations of their customers for acquiring a 

high quality and low price product with a short lead-time delivery. It is also notable that for most 

industries up to 70% of the product cost comes from raw materials and component parts [1]. In 

such an environment, suppliers play a very important role for the companies. When suppliers can 

provide companies with low price and high quality raw materials (or component parts) in a timely 

manner, the companies can also do so for their customers. As a result, different criteria such as 

price, quality and delivery should be considered at the time of evaluating suppliers [2,3]. 

Depending on the companies’ strategy on purchasing, the supplier selection criteria may have 

different priorities [4]. 

Our study assumes that buyers have pre-evaluated all suppliers according to some criteria (such 

as financial strength, performance history, technical capability, geographical location, etc.) and 

now they need to further assess the pre-approved suppliers for order allocation based on some 

quantitative criteria such as price, quality and lead time. The order allocation exercise may result 

in either a single sourcing scenario if the best supplier has enough capacity to fulfill the buyer’s 

demand, or a multi-sourcing scenario when the capacity limitation becomes an issue. The most 

suitable tool for Decision Makers (DMs) to formulate multi-supplier selection problem is 

mathematical programming [5]. Therefore, supplier selection problem (SSP) can be modeled as a 

multi-objective optimization problem subject to some constraints such as suppliers’ capacity, 

buyer’s demand, etc. 

For multi-objective problems, the ideal solution for the DMs is to have the optimal objective 

values for each and every objective. However, this may not happen in reality due to conflicts 

among objectives. Popular approaches for solving multi-objective problems in the literature can 

be categorized into two main groups: (1) fuzzy goal programming, and (2) the general goal 

programming approaches. In the first group, the DMs allow the objectives to take any value 

between their minimum and maximum possible values, and then try to come as close to their best 

point as possible: For minimization objectives, the minimum and maximum possible values can 

be called respectively the positive ideal solution (PIS) and the negative ideal solution (NIS). Kumar 

et al. [6] formulated a mixed integer goal programming for SSPs including three objectives: cost, 

quality and delivery, that are subject to some constraints. They adopted the max–min approach 
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proposed by Zimmermann [7] to solve the multi-objective model. Wadhwa and Ravindran [8] 

modeled the SSP as a multi-objective programming problem, in which price, lead-time and rejects 

were considered as the three conflicting criteria. They presented and compared several multi-

objective optimization methods, including weighted objective method, goal programming (GP) 

method, and compromise programming, in order to solve their multi-objective problem. By the 

weighted objective and compromise programming, the DMs do not need to determine a specific 

goal or aspiration level for the objectives. Throughout this paper, goal and aspiration level are used 

interchangeably. Amid et al. [9,10] formulated a multi-objective model for SSPs including three 

objectives: cost, quality and delivery under the influence of capacity and demand requirement 

constraints. They adopted a weighted additive method, proposed by Tiwari et al. [11], to solve 

their model. In another study, Amid et al. [12] used a weighted max–min approach, proposed by 

Lin [13], for solving a multi-objective SSP with the three objectives: cost, quality and delivery 

subject to suppliers’ capacity and market demand. Amin and Zhang [14] developed an integrated 

multi-objective model for SSP and order allocation, and then employed the compromise 

programming approach for solving the multi-objective model. Shaw et al. [15] proposed an 

integration of the fuzzy-AHP and fuzzy multi-objective linear programming for SSP and order 

allocation, in which purchasing costs, rejects and lead time were considered as some of the main 

objectives. Similar to Amid et al. [9,10], Shaw et al. [15] used the model of Tiwari et al. [11] to 

solve their multi-objective model. Lin [16] developed an integrated fuzzy multi-objective linear 

programming model for SSP and order allocation, and then proposed a two-phase approach, based 

on Zimmermann [7] and Chen and Chou [17] to solve the fuzzy multi-objective model. Nazari-

Shirkouhi et al. [18] developed a fuzzy goal programming approach for solving a fuzzy multi-

objective multi-product SSP with multi-price level, in which cost, quality and delivery were their 

three key objectives.  

In the second group, the general goal programming approach, the DM determines a specific 

goal for every objective and then tries to achieve the goal as much as possible. Ustun and Demirtas 

[19] proposed an integrated multi-period multi-objective model for SSP and order allocation, in 

which ε-constraint method, a reservation level driven Tchebycheff procedure (RLTP) and 

preemptive goal programming were used to solve the multi-objective model. In another study, 

Ustun and Demirtas [20] defined an additive achievement function by combining min–max goal 

programming (MGP) and weighted goal programming (WGP) for their multi-objective problem. 
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Demirtas and Ustun [21] also employed WGP for solving their multi-objective SSP and order 

allocation. Jolai et al. [22] proposed an integrated multi-objective mixed integer linear 

programming model for SSP and order allocation, and used WGP for solving their model. Jadidi 

et al. [23] proposed a new goal programming approach for both deterministic and fuzzy multi-

objective models that guarantees the achieved objectives to be consistent with their goals. They 

also applied the proposed model to multi-objective SSP. In real situations, however, the DMs may 

not always have precise data and information related to their criteria. Therefore, it may be difficult 

for them to specify an exact goal for every objective. Thus, the general goal programming approach 

becomes less favorable unless the DMs are allowed to choose more than one goal or aspiration 

level for each objective. This can be done either by choosing multiple aspiration levels for each 

objective or by specifying a range of values instead of a single aspiration level. Chang [24] 

proposed a new technique so-called multi-choice goal programming (MCGP) approach enabling 

DMs to determine multiple aspiration levels for every objective. Tabrizi [25] extended the model 

proposed by Chang [24] to solve fuzzy MCGP problems considering imprecise aspiration levels. 

In the original MCGP model [24], multiplicative terms of binary variables were used to express 

multiple discrete goals that resulted in an increase in the complexity of the model. To overcome 

this complexity, Chang [26] revised the original MCGP approach and instead of the multiple 

discrete aspiration levels, proposed a range for each aspiration level. Subsequently, Liao and Kao 

[27, 28], Chang et al. [29], Chang et al. [30] and Rouyendegh and Saputro [31] used the revised 

MCGP approach for SSP. In addition, Ustun [32] extended the revised model of Chang [26] to 

propose an alternative MCGP formulation based on the conic scalarizing function. However, 

Chang [33] argued that the revised MCGP model is not able to fully consider the DMs’ preference 

value, and therefore, added general utility functions to this approach in order to maximize the 

DMs’ expected utility. 

In the approaches developed by Chang [26, 33], an interval (upper and lower bounds) is 

introduced for each objective’s aspiration level, in which the aspiration level is a continuous 

decision variable that is able to move between the upper and lower bounds. The MCGP models 

aim at driving (1) the aspiration levels towards their lower bounds for minimization objectives (or 

upper bounds for maximization objectives), and (2) the achieved objectives towards their 

aspiration levels. The mechanism of Chang [26, 33] models is somewhat similar to the general 

goal programming approach: derive the achieved objective towards the aspiration level as much 
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as possible. However, the DMs may be concerned with making the achieved objectives closer to 

their PIS values [23]. The DMs may also prefer that if an achieved objective cannot stay within 

the interval, it would remain in a close proximity to the interval limits. In situations where the 

aspiration level interval is selected at its minimum position (i.e., the lower bound is at PIS), the 

upper bound may be defined as a critical point from which the achieved objective should not be 

significantly exceeded. In this paper, we look at the MCGP from this angle that gives the DMs 

more control on both the inside and the outside of the interval aspiration level. If an objective can 

stay within the interval, it can be driven towards the lower bound (PIS); at the same time, if another 

objective stays outside the interval (due to conflicting objectives), it should be kept not too far 

from its upper bound. The previous MCGP approaches have not been designed for such conditions, 

and here we try to address this kind of problems. The new MCGP approach of this paper is an 

extension of the weighted additive method (a fuzzy multi-objective method) proposed by Tiwari 

et al. [11]. 

We present the rest of the paper as follows. Section 2 formulates the SSP by multi-objective 

mathematical programming and then introduces the model by the goal programming and the 

MCGP approaches [24, 26, 33]. The new MCGP is proposed in section 3, followed by an 

illustrative example in section 4. Finally, concluding remarks are presented in section 5.   

 

2. Multi-objective supplier selection model  

As shown by the literature, the most important criteria for SSP are purchasing cost, rejects and 

lead-time [6,8,9,10,12]. Here, we model a single item SSP in which a set of approved suppliers 

having limitation on their production capacity should satisfy the buyer’s expectations on these 

three criteria and the demand, which is assumed to be known. The notations of the multi-objective 

problem are presented as follows: 

 

k  index for objectives, k=1, 2, …, K 

n   number of suppliers  

Xi   number of units ordered to supplier i  

Vi   capacity of supplier i  

Ci   unit purchasing price from supplier i  

qi   expected defect rate of supplier i  
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Fi  percentage of items delivered late by supplier i  

𝑓𝑘(𝑋)  objective k 

D  demand 

 

The multi-objective SSP is formulated as follows: 

Model 1: 

Min 𝑓1(𝑋) = ∑ 𝐶𝑖𝑋𝑖
𝑛
𝑖=1          (1.1) 

Min 𝑓2(𝑋) = ∑ 𝑞𝑖𝑋𝑖
𝑛
𝑖=1          (1.2) 

Min 𝑓3(𝑋) = ∑ 𝐹𝑖𝑋𝑖
𝑛
𝑖=1          (1.3) 

Subject to: 

∑ 𝑋𝑖
𝑛
𝑖=1 = 𝐷           (1.4) 

𝑋𝑖 ≤ 𝑉𝑖    i = 1, 2, …, n      (1.5) 

𝑋𝑖 ≥ 0    i = 1, 2, …, n.      (1.6) 

 

Eq. (1.1), Eq. (1.2) and Eq. (1.3) minimize the three criteria: purchasing cost, rejects and late 

deliveries, respectively. Constraints (1.4) and (1.5) consider the buyer’s demand and the suppliers’ 

capacity, respectively.  

 

2.1. The Weighted Goal Programming (WGP) approach  

Since the previous MCGP approaches [24, 26, 33] were developed based on WGP, the above 

multi-objective model is first introduced using WGP. In the WGP, proposed by Charnes and 

Cooper [34], DMs first determine the aspiration level (𝑓𝑘
∗) for every objective, and then try to 

minimize deviations between the aspiration levels and the achievements as follows: 

Model 2: 

Min. ∑ 𝑤𝑘(𝑑𝑘
− + 𝑑𝑘

+)3
𝑘=1           (2.1) 

Subject to: 

𝑓𝑘(𝑋) + 𝑑𝑘
− − 𝑑𝑘

+ = 𝑓𝑘
∗   k=1,2,3     (2.2) 

𝑑𝑘
−. 𝑑𝑘

+ = 0    k=1,2,3     (2.3) 

𝑑𝑘
−, 𝑑𝑘

+ ≥0     k=1,2,3     (2.4) 

and the constraints of (1.4), (1.5) and (1.6).        
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where 𝑑𝑘
− and 𝑑𝑘

+ are negative and positive goal deviations, respectively, and 𝑤𝑘  is the relative 

importance of the kth objective.  

 

 

2.2. The original MCGP approach 

Chang [24] argued that due to uncertainty/imprecision, the DMs may prefer to set multiple 

aspiration levels for every objective. Since the above WGP approach has not been designed for 

this purpose, Chang [24] proposed the MCGP approach as follows: 

Model 3: 

 Min. ∑ 𝑤𝑘(𝑑𝑘
− + 𝑑𝑘

+)3
𝑘=1          (3.1) 

Subject to: 

 𝑓𝑘(𝑋) + 𝑑𝑘
− − 𝑑𝑘

+ = ∑ 𝑓𝑘𝑗
∗ 𝑆𝑘𝑗(𝐵)𝐽

𝑗=1  k=1,2,3     (3.2) 

 𝑑𝑘
−. 𝑑𝑘

+ = 0    k=1,2,3     (3.3) 

 𝑑𝑘
−, 𝑑𝑘

+ ≥0     k=1,2,3     (3.4) 

 𝑆𝑘𝑗(𝐵) ∈ 𝑅𝑘(𝑥)    k=1,2,3     (3.5) 

 and the constraints of (1.4), (1.5) and (1.6). 

 

where 𝑓𝑘𝑗
∗  (𝑘 = 1,2,3 and 𝑗 = 1,2, … , 𝐽) is the jth aspiration level of the kth objective, 𝑓𝑘,𝑗−1

∗ ≤

𝑓𝑘𝑗
∗ ≤ 𝑓𝑘,𝑗+1

∗ , and 𝑆𝑘𝑗(𝐵) represents a function of binary serial numbers that is defined according 

to the number of goals for each objective and based on resource limitations 𝑅𝑘(𝑥). The main role 

of 𝑆𝑘𝑗(𝐵) is to ensure that each objective chooses only one of the multiple goals. Interested readers 

are referred to Chang [24] for further discussions on 𝑆𝑘𝑗(𝐵).  

 

2.3. The revised MCGP approach 

According to Chang’s [24] model, Chang [26] discussed that the multiplicative terms of binary 

variables that are used to express multiple aspiration levels increase the complexity of the model. 

To address this issue, Chang [26] proposed a revised MCGP approach as follows:  

Model 4: 

 Min. ∑ [𝑤𝑘
𝑑(𝑑𝑘

− + 𝑑𝑘
+) + 𝑤𝑘

𝑒(𝑒𝑘
− + 𝑒𝑘

+)]3
𝑘=1        (4.1) 

Subject to: 

 𝑓𝑘(𝑋) + 𝑑𝑘
− − 𝑑𝑘

+ = 𝑦𝑘    k=1,2,3     (4.2) 
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 𝑦𝑘 + 𝑒𝑘
− − 𝑒𝑘

+ = 𝑓𝑘,𝑚𝑖𝑛      k=1,2,3     (4.3)

 𝑓𝑘,𝑚𝑖𝑛 ≤ 𝑦𝑘 ≤ 𝑓𝑘,𝑚𝑎𝑥      k=1,2,3     (4.4) 

 𝑑𝑘
−. 𝑑𝑘

+ = 0    k=1,2,3     (4.5) 

 𝑒𝑘
−. 𝑒𝑘

+ = 0    k=1,2,3     (4.6) 

 𝑑𝑘
−, 𝑑𝑘

+, 𝑒𝑘
−, 𝑒𝑘

+ ≥0     k=1,2,3     (4.7) 

 and the constraints of (1.4), (1.5) and (1.6). 

 

where 𝑓𝑘,𝑚𝑖𝑛  and 𝑓𝑘,𝑚𝑎𝑥 are the range of kth aspiration level, 𝑦𝑘 , which is the continuous decision 

variable. 𝑑𝑘
+ and 𝑑𝑘

− are respectively the positive and negative deviations of 𝑓𝑘(𝑋) from 𝑦𝑘 . 𝑒𝑘
+ 

and 𝑒𝑘
−  are the positive and negative deviations of 𝑦𝑘  from 𝑓𝑘,𝑚𝑖𝑛 . Lastly, 𝑤𝑘

𝑑  and 𝑤𝑘
𝑒  are the 

relative importance connecting (𝑑𝑘
+, 𝑑𝑘

−) and (𝑒𝑘
+, 𝑒𝑘

−), respectively. 

For SSP, deviations may have different units that cause unintentional bias among the 

objectives. Some techniques that aim to transferring different units of the deviations to a common 

unit in order to remove the incommensurability were reviewed by Tamiz et al. [35]. Here, we 

normalize the deviations of the Chang’s [26] model as follows: 

 

   Min. ∑ [𝑤𝑘
𝑑 (𝑑𝑘

++𝑑𝑘
−)

(𝑓𝑘
−−𝑓𝑘

+)
+ 𝑤𝑘

𝑒 (𝑒𝑘
++𝑒𝑘

−)

(𝑓𝑘,𝑚𝑎𝑥−𝑓𝑘,𝑚𝑖𝑛)
]3

𝑘=1    

 

where 𝑓𝑘
+ = {min

𝑋
𝑓𝑘(𝑋)}   𝑘, and 𝑓𝑘

− = {max
𝑋

𝑓𝑘(𝑋)}   𝑘.  

 

From here on, we refer to the normalized revised MCGP (Model 4) as NR-MCGP. 

 

2.4. The MCGP approach considering utility function 

Chang [33] argued that the NR-MCGP model cannot consider the DMs’ preference value, and 

therefore, he added a general utility function to the revised approach in order to maximize the 

DMs’ expected utility. Chang [33] considered linear and S-shape utility functions. In this paper, 

we only review the linear utility function; however, the discussion can be extended to the S-shape 

utility function as well. The new model of Chang [33] is presented as follows: 
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Model 5: 

 Min. ∑ [𝑤𝑘
𝑑(𝑑𝑘

− + 𝑑𝑘
+) + 𝑤𝑘

𝛿𝛿𝑘
−]3

𝑘=1         (5.1) 

Subject to: 

 𝜆𝑘 ≤
𝑓𝑘,𝑚𝑎𝑥−𝑦𝑘

𝑓𝑘,𝑚𝑎𝑥−𝑓𝑘,𝑚𝑖𝑛
   k=1,2,3     (5.2) 

 𝑓𝑘(𝑋) + 𝑑𝑘
− − 𝑑𝑘

+ = 𝑦𝑘    k=1,2,3     (5.3) 

 𝜆𝑘 + 𝛿𝑘
− = 1    k=1,2,3     (5.4) 

 𝑓𝑘,𝑚𝑖𝑛 ≤ 𝑦𝑘 ≤ 𝑓𝑘,𝑚𝑎𝑥      k=1,2,3     (5.5) 

 𝑑𝑘
−. 𝑑𝑘

+ = 0    k=1,2,3     (5.6) 

 𝑑𝑘
−, 𝑑𝑘

+, 𝛿𝑘
−, 𝜆𝑘 ≥0     k=1,2,3     (5.7) 

 and the constraints of (1.4), (1.5) and (1.6). 

 

where 𝛿𝑘
− represents the normalized deviation of 𝑦𝑘  from 𝑓𝑘,𝑚𝑖𝑛 , 𝑤𝑘

𝛿  is the weight associated with 

𝛿𝑘
−, and 𝜆𝑘 is the utility value. Other variables are defined as before. 

If needed, the objective function of Chang [33] can be also normalized as follows: 

 

Min. ∑ [𝑤𝑘
𝑑 (𝑑𝑘

−+𝑑𝑘
+)

(𝑓𝑘
−−𝑓𝑘

+)
+ 𝑤𝑘

𝛿𝛿𝑘
−]3

𝑘=1   

 

where 𝛿𝑘
− does not need to be normalized because 0 ≤ 𝛿𝑘

− ≤ 1 ∀𝑘. 

 

From here on, we refer to the above MCGP that considers the utility function (Model 5) as 

MCGP-U. In the following section, we propose a new version of the MCGP model that we call, 

the New-MCGP. 

 

3. The New-MCGP approach 

In addition to the significant improvement on the original MCGP, the NR-MCGP and MCGP-

U models contribute to the general goal programming approach by considering an interval goal 

instead of a single goal. By regulating 𝑤𝑘
𝑑 in both methods, the achieved objective, 𝑓𝑘(𝑋), is driven 

towards the aspiration level, 𝑦𝑘 , that is bounded within the interval goal, [𝑓𝑘,𝑚𝑖𝑛,𝑓𝑘,𝑚𝑎𝑥]. At the 

same time, 𝑦𝑘  is also driven towards 𝑓𝑘,𝑚𝑖𝑛  by adjusting 𝑤𝑘
𝛿  in MCGP-U (or 𝑤𝑘

𝑒 in NR-MCGP). 

However, it might be worthwhile to consider the MCGP from a different angle: (1) setting the 

lower bound, 𝑓𝑘,𝑚𝑖𝑛, at the PIS, 𝑓𝑘
+, which may be the DMs’ preference [23], and (2) considering 
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the upper bound, 𝑓𝑘,𝑚𝑎𝑥 , as a critical point so that the achieved objective should not significantly 

exceed it. For example, manufacturers such as Toyota and Honda, before selecting their suppliers, 

may determine the maximum price of components and raw materials that they can afford to pay 

[36] (i.e., they predetermine the maximum purchasing cost). In this case, the predetermined cost 

can be considered as a critical point. In other words, if an objective stays within the interval goal, 

[𝑓𝑘,𝑚𝑖𝑛 , 𝑓𝑘,𝑚𝑎𝑥], the lower bound, 𝑓𝑘,𝑚𝑖𝑛, should be considered as a pivot point which magnetizes 

the objective towards itself. If at the same time another objective falls outside the interval goal 

(due to conflicting objectives), the upper bound, 𝑓𝑘,𝑚𝑎𝑥, should be considered as a new pivot point 

which keeps the objective as close as possible to itself. The structure of the two previous methods 

does not support this type of conditions while it may happen in reality.   

In order to address such conditions in SSP, we propose a New-MCGP approach inspired by the 

fuzzy model of Tiwari et al. [11]. This new approach will pay special attention to 𝑓𝑘,𝑚𝑖𝑛  and 𝑓𝑘,𝑚𝑎𝑥  

as two pivot points that enables the DMs to have control on both the inside and the outside of the 

interval. Applying the original Tiwari et al. [11] approach to Model 1 results in: 

 

 Model 6: 

 Max. ∑ 𝑤𝑘𝛼𝑘
3
𝑘=1           (6.1) 

Subject to: 

 
𝑓𝑘

−−𝑓𝑘(𝑋)

𝑓𝑘
−−𝑓𝑘

+ = 𝛼𝑘      k=1,2,3     (6.2)  

 0 ≤ 𝛼𝑘 ≤ 1       k=1,2,3     (6.3) 

 and the constraints of (1.4), (1.5) and (1.6).  

   

 

where 𝛼𝑘  is a continuous coefficient, 0 ≤ 𝛼𝑘 ≤ 1, that represents the normalized distance of 

the achieved objective from 𝑓𝑘
−. Constraint (6.2) can be rewritten as: 

 

𝑓𝑘(𝑋) = 𝛼𝑘𝑓𝑘
+ + (1 − 𝛼𝑘)𝑓𝑘

−  k=1,2,3     (6.2a) 

 

As the range for each aspiration level [𝑓𝑘,𝑚𝑖𝑛 , 𝑓𝑘,𝑚𝑎𝑥] is decided by the DMs, here we propose 

that the lower bound of the range, 𝑓𝑘,𝑚𝑖𝑛 , be set equal to 𝑓𝑘
+, while the upper bound, 𝑓𝑘,𝑚𝑎𝑥 , can 

be less than or equal to 𝑓𝑘
− . The rationalization for this suggestion is that in a minimization 

problem, the DMs would normally prefer the lowest value for the objective. As a result, the range 



11 
 

[𝑓𝑘
+, 𝑓𝑘

−] is divided into two sub-ranges of [𝑓𝑘,𝑚𝑖𝑛 , 𝑓𝑘,𝑚𝑎𝑥] and [𝑓𝑘,𝑚𝑎𝑥 , 𝑓𝑘
−] that we call, the more 

desirable range (MDR), and the less desirable range (LDR). 

We also propose that 𝛼𝑘  be the normalized distance of the achieved objective k from 𝑓𝑘,𝑚𝑎𝑥 so 

that by maximizing this coefficient, we approach to 𝑓𝑘,𝑚𝑖𝑛 . Therefore, Eq. (6.2) can be written as: 

𝛼𝑘 =
𝑓𝑘,𝑚𝑎𝑥−𝑓𝑘(𝑋)

𝑓𝑘,𝑚𝑎𝑥−𝑓𝑘,𝑚𝑖𝑛
    k=1,2,3  

 

Realizing that by moving the upper limit of 𝛼𝑘  to 𝑓𝑘,𝑚𝑎𝑥  the range for each objective is 

tightened; therefore, we allow the achieved objective to take a value outside this tightened range 

subject to penalty. We do so by introducing another variable, 𝛽𝑘 , that represents the normalized 

distance of the achieved objective k from 𝑓𝑘,𝑚𝑎𝑥 when it is greater than 𝑓𝑘,𝑚𝑎𝑥. Thus: 

𝛽𝑘 =
𝑓𝑘(𝑋)−𝑓𝑘,𝑚𝑎𝑥

𝑓𝑘
−−𝑓𝑘,𝑚𝑎𝑥

     k=1,2,3 

 

As both 𝛼𝑘  and 𝛽𝑘  determine the position of a single objective k, only one of them can be non-

zero. Therefore, we employ a binary variable, 𝑦𝑘 , as follows: 

𝛼𝑘 ≤ 𝑦𝑘 < 1 + 𝛼𝑘    k=1,2,3   

 𝛽𝑘 + 𝑦𝑘 ≤ 1    k=1,2,3   

 𝑦𝑘 ∈ {0, 1}    k=1,2,3   

 0 ≤ 𝛼𝑘, 𝛽𝑘 ≤ 1      k=1,2,3 

 

when 𝛼𝑘 > 0 then 𝑦𝑘 = 1 that results in 𝛽𝑘 = 0; when 𝛼𝑘 = 0 then 𝑦𝑘 = 0 that allows 𝛽𝑘  to 

assume any value between 0 and 1. 

Figure 1 illustrates the relationship between 𝛼𝑘  and 𝛽𝑘 . If the achieved objective 𝑓𝑘 (𝑋) falls 

within the MDR (e.g., point 1), then 𝛼𝑘 > 0. However, if it falls outside (e.g., point 2), then 𝛽𝑘 >

0. While the aim is to obtain a value within the range and as close as possible to the lower bound 

𝑓𝑘,𝑚𝑖𝑛 , the model allows the objective to take a value outside the range subject to penalty in order 

to avoid infeasible solutions. Therefore, the objective of the new model is to maximize 𝛼𝑘  and to 

minimize 𝛽𝑘 . 
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Fig. 1. The relationships among model parameters.   

 

Using these new variables, we can re-write Eq. (6.2a) as follows: 

 

𝑓𝑘(𝑋) = 𝛼𝑘𝑓𝑘,𝑚𝑖𝑛 + (1 − 𝛼𝑘)𝑓𝑘,𝑚𝑎𝑥 + 𝛽𝑘(𝑓𝑘
− − 𝑓𝑘,𝑚𝑎𝑥)  k=1,2,3  (6.2b) 

 

Therefore, the New-MCGP approach for the multi-objective SSP of Model 1 is formulated as 

follows: 

Model 7: 

 Max. ∑ (𝑤𝑘
𝛼𝛼𝑘 − 𝑤𝑘

𝛽
𝛽𝑘)3

𝑘=1          (7.1) 

Subject to: 

 𝑓𝑘(𝑋) = 𝛼𝑘𝑓𝑘,𝑚𝑖𝑛 + (1 − 𝛼𝑘)𝑓𝑘,𝑚𝑎𝑥 + 𝛽𝑘(𝑓𝑘
− − 𝑓𝑘,𝑚𝑎𝑥)  k=1,2,3  (7.2) 

 𝛼𝑘 ≤ 𝑦𝑘 < 1 + 𝛼𝑘       k=1,2,3  (7.3) 

 𝛽𝑘 + 𝑦𝑘 ≤ 1       k=1,2,3  (7.4) 

 𝑦𝑘 ∈ {0, 1}       k=1,2,3  (7.5) 

 0 ≤ 𝛼𝑘, 𝛽𝑘 ≤ 1         k=1,2,3  (7.6)    

 and the constraints of (1.4), (1.5) and (1.6).  

 

As illustrated in Figure 1, the New-MCGP approach enables DMs to have control on both the 

MDR and the LDR. This will increase the effectiveness of the New-MCGP by involving some 

certain DMs’ preferences.  

The New-MCGP approach guarantees a feasible solution as 𝑓𝑘 (𝑋)  moves between its 

minimum, 𝑓𝑘
+, and maximum, 𝑓𝑘

−, values. Furthermore, since 0 ≤ 𝛼𝑘 , 𝛽𝑘 ≤ 1, it can facilitate the 

DMs’ preference modeling by eliminating the incommensurability caused by scale differences 

among objectives.  

    

𝑓𝑘,𝑚𝑖𝑛  

𝑓𝑘
+ 𝑓𝑘(𝑋) 

1 2 

𝑓𝑘,𝑚𝑎𝑥  

𝑓𝑘
− 𝑓𝑘(𝑋) 

𝛼𝑘 𝛽𝑘  

𝛼𝑘 > 0 
𝛽𝑘 = 0 

𝛼𝑘 = 0 
𝛽𝑘 > 0 

MDR LDR 
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Discussion on 𝑓𝑘,𝑚𝑎𝑥: 

Since 𝑓𝑘,𝑚𝑎𝑥  is a user-selected parameter, it is worthwhile to have some guidelines for choosing 

an appropriate value for this parameter. The purpose of 𝑓𝑘,𝑚𝑖𝑛 and 𝑓𝑘,𝑚𝑎𝑥  is to determine a focus 

area between 𝑓𝑘
+ and 𝑓𝑘

−. As we make 𝑓𝑘,𝑚𝑖𝑛 = 𝑓𝑘
+, 𝑓𝑘,𝑚𝑎𝑥  divides the range of 𝑓𝑘

+ and 𝑓𝑘
− into 

two sections: (1) more desirable one (MDR) that is on the left side of 𝑓𝑘,𝑚𝑎𝑥, and (2) less desirable 

one (LDR) that is between 𝑓𝑘,𝑚𝑎𝑥  and 𝑓𝑘
−. One consideration in determining 𝑓𝑘,𝑚𝑎𝑥 is whether the 

objectives are conflicting or not. In case of conflicting objectives, it is recommended that if one 

𝑓𝑘,𝑚𝑎𝑥  is close to 𝑓𝑘
−, the other 𝑓𝑘,𝑚𝑎𝑥  must be chosen relatively close to 𝑓𝑘

+. In other words, if the 

range of one objective [𝑓𝑘,𝑚𝑖𝑛 , 𝑓𝑘,𝑚𝑎𝑥] is chosen tightly, the range for the other objective should 

be chosen wider to allow more movement for conflicting objectives. In the following example, the 

first and second objectives are in conflict, and since the range of first objective is chosen more 

tightly, the range for the second objective is not as tight as the first one (see Figure 2). 

 

4. An illustrative example 

The following numerical example is going to illustrate how the New-MCGP can solve multi-

objective SSPs. This example considers a situation in which six suppliers, whose information is 

presented in Table 1, should meet the buyer’s demand of 16 units. 

 

 
Table 1. The data for the numerical example 

Supplier i Price, Ci Rejection Rate, qi 

(%) 

Late Delivery Rate, Fi 

(%) 

Capacity, Vi 

S1 3 0.40 0.25 5 

S2 3.5 0.35 0.30 4 

S3 4 0.30 0.15 3.5 

S4 4.5 0.25 0.20 6 

S5 5 0.20 0.40 5.5 

S6 6 0.15 0.35 5 

 

 

Using the above data, we can obtain 𝑓1
+= 58.75, 𝑓2

+= 0.03225, 𝑓3
+= 0.03425, 𝑓1

−= 82.25, 𝑓2
−= 

0.05325 and 𝑓3
−= 0.05525. Furthermore, it can be seen that the first and second objectives are in 

conflict. That is, the suppliers with a better price have poor quality and vice versa. The third 

objective, while not directly in conflict with the other two objectives, shows the best delivery in 

mid range of price and quality. 
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Here, we assume there are three conditions that the DMs are going to incorporate in their 

decisions for suppliers’ evaluation and order allocation:  

 

Condition 1: 𝑓𝑘,𝑚𝑖𝑛 = 𝑓𝑘
+  and 𝑓𝑘,𝑚𝑎𝑥 < 𝑓𝑘

− , ∀𝑘 , so that 𝑓1,𝑚𝑎𝑥 =68, 𝑓2,𝑚𝑎𝑥 =0.0461 and 

𝑓3,𝑚𝑎𝑥=0.04475. That is, each objective has a critical point, 𝑓𝑘,𝑚𝑎𝑥  ∀𝑘, and two 

ranges, MDR and LDR. 

Condition 2: The second objective is more important than the first one: its achievement, 

𝑓2(𝑋), should be more preferable in MDR and as close as possible to 𝑓2,𝑚𝑖𝑛 . 

Condition 3: The first objective, while being less important than the second one, should not 

significantly exceed 𝑓1,𝑚𝑎𝑥 : its achievement, 𝑓1(𝑋), may be in the LDR but 

should be preferably close as possible to 𝑓1,𝑚𝑎𝑥. 

Here, we apply the New-MCGP model to the above example.  

 

The New-MCGP model: 

We first set 𝑓𝑘,𝑚𝑖𝑛  and 𝑓𝑘,𝑚𝑎𝑥  ∀𝑘 as defined in Condition 1. In order to consider Condition 2 

(i.e., the second objective is the most important one), we should have 𝑤2
𝛼 ≫ 𝑤1

𝛼 which in turn will 

cause 𝛼2 to increase and 𝑓2(𝑋) to approach 𝑓2,𝑚𝑖𝑛 . Since the first and second objectives are in 

conflict, 𝑓1(𝑋) approaches 𝑓1
−. For taking into account Condition 3 (i.e., the first objective should 

not significantly exceed 𝑓1,𝑚𝑎𝑥), we should have 𝑤2
𝛽

≪ 𝑤1
𝛽

 that causes 𝛽1 to decrease and 𝑓1(𝑋) 

to get far from 𝑓1
−  and towards 𝑓1,𝑚𝑎𝑥 . As a result, the weights may be allocated as 𝑤1

𝛼 =0.1, 

𝑤2
𝛼=0.8, 𝑤3

𝛼=0.1, 𝑤1
𝛽

=0.8, 𝑤2
𝛽

=0.1 and 𝑤3
𝛽

=0.1. We employ Solver in Excel to solve this problem 

by the New-MCGP model. The results are as follows: 

 

𝑓1(𝑋) = 68 = 𝑓1,𝑚𝑎𝑥 that holds the second condition, 

𝑓2(𝑋) = 0.044 (within MDR) that holds the first condition, 

𝑓3(𝑋) = 0.039, 

X1=2.75, X2=0, X3=3.5, X4=6, X5=3.75, X6=0, 
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Here, we see that the first objective did not exceed 𝑓1,𝑚𝑎𝑥. As demonstrated here, the New-

MCGP model allows the DMs to adjust 𝑤𝑘
𝛼 and 𝑤𝑘

𝛽
 to move one objective closer to its 𝑓𝑘,𝑚𝑖𝑛, and 

at the same time, to keep another objective not far from its 𝑓𝑘,𝑚𝑎𝑥 .  

Analysis of weights: 

The weights, 𝑤𝑘
𝛼and 𝑤𝑘

𝛽
, are user-selected parameters by which the DMs can incorporate their 

strategies in SSP. For instance, if the strategy is to produce a high quality product, the weight of 

quality (rejects in this numerical example) should be higher than others. In this model, the more 

important objective is assigned a higher 𝑤𝑘
𝛼 that results in the objective to stay in MDR and to 

approach 𝑓𝑘,𝑚𝑖𝑛 . If the less important objective is in conflict with the first one, it may fall in LDR 

and far from 𝑓𝑘,𝑚𝑎𝑥. In this case, we can assign a higher 𝑤𝑘
𝛽

 to this objective so that it stays closer 

to 𝑓𝑘,𝑚𝑎𝑥. When an equal value is assigned to all 𝑤𝑘
𝛽

, it means the DMs are not concerned with the 

objectives moving far from 𝑓𝑘,𝑚𝑎𝑥. In order to investigate the effect of different weight values on 

the results, we gradually increase 𝑤1
𝛽

. In Table 2, as we increase 𝑤1
𝛽

 from 0.33 to 0.80, we 

distribute the remaining values equally among the other two weights. We solve the model for 

different combinations of weights as presented in Table 2. 

 

 

Table 2. The weight analysis for 𝑤1
𝛽
.  

𝒘𝟏
𝜷

 0.33 0.60 0.80 

𝑤2
𝛽

 0.33 0.20 0.10 

𝑤3
𝛽

 0.33 0.20 0.10 

𝑓1(𝑋) 82.00 76.45 68.00 

𝑓2(𝑋) 0.032 0.036 0.044 

𝑓3(𝑋) 0.050 0.045 0.039 

 

 

Table 2 shows that as 𝑤1
𝛽

 increases from 0.33 to 0.80, 𝑓1(𝑋) improves from 𝑓1
− to 𝑓1,𝑚𝑎𝑥. The 

gain for the first objective comes at a slow loss for the second objective; i.e.,  𝑓2(𝑋) moves farther 

from 𝑓1,𝑚𝑖𝑛  but it does not surpass 𝑓2,𝑚𝑎𝑥 . Figure 2 depicts the above analysis. 
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Fig. 2. The sensitivity of 𝑓1(𝑋) and 𝑓2(𝑋) to increased 𝑤1
𝛽

 and decreased 𝑤2
𝛽

 in the New-MCGP 

 

This analysis shows that the New-MCGP enables DMs to better incorporate their preferences 

in the model for making a more desirable decision on supplier selection and order allocation. DMs 

are able to consider interval goals or aspiration levels, while also accurately taking into account 

their relative importance.  

 

5. Operationalization of the proposed model 

In reality, apart from the quantitative criteria, some of which were considered by the proposed 

multi-objective model, qualitative criteria also influence the SSP. However, multi-objective 

models cannot normally take into account the qualitative criteria, such as performance history, 

technical capability and geographical location. Multi-attribute decision making (MADM) 

techniques, such as analytic network process (ANP) and analytic hierarchy process (AHP), are 

able to consider both the qualitative and quantitative factors. Therefore, a two-stage process is 

developed for SSP in practice. The first stage is a tree-step procedure. In step 1, DMs select the 

criteria, and then, express their preferences on the criteria weight. In step 2, they evaluate and 

grade the suppliers for each criterion. Finally, a MADM technique is used to rank the suppliers 

based on the information gathered in the first two steps. In the second stage, the suppliers’ score, 

 

 

𝑓2,𝑚𝑎𝑥  𝑓2,𝑚𝑖𝑛  𝑓2
− 𝑓2(𝑋) 

𝑓1,𝑚𝑎𝑥  𝑓1,𝑚𝑖𝑛  𝑓1
− 𝑓1(𝑋) 

𝑓𝑘(𝑋) when 𝑤1
𝛽

=0.33 𝑓𝑘(𝑋) when 𝑤1
𝛽

=0.60 𝑓𝑘(𝑋) when 𝑤1
𝛽

=0.80 
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obtained in the first stage, is used as one of the objectives of the multi-objective model. In this 

stage once again the DMs express their preferences on the criteria weight. By solving the multi-

objective model, the optimum order allocation of each supplier is calculated. 

The integration of ANP and the multi-objective model developed by Ustun and Demirtas [19, 

20] and Demirtas and Ustun [21] is a real case of SSP that tells us how to operationalize our model. 

In fact, we can use our New-MCGP approach to solve the multi-objective model in their study. 

 

6. Conclusions   

In this paper, a single product supplier selection problem (SSP) was formulated as a multi-

objective optimization model. It was assumed that: (1) the objectives can have different relative 

importance levels, and (2) it may be easier for decision makers to determine an interval goal or 

aspiration level for every objective. In order for these two assumptions to be incorporated into the 

solution methodology, the New-MCGP approach was then proposed. In comparison with the 

previous studies, we set the lower bound of the interval goal at the positive ideal solution (PIS) 

that drives the objective towards itself if it falls within the interval goal, and at the same time, set 

the upper bound as a magnetic point if the objective exceeds it. The numerical example illustrated 

that variation in priority of criteria will change the order quantities assigned to the suppliers. This 

means that our proposed model effectively incorporates DMs’ preferences and conditions for SSP 

and order allocation by providing the DMs with control on both of the more desirable range (MDR) 

and the less desirable range (LDR).  

As discussed in the introduction section, due to the imprecise data and information in real 

situations, determining an interval aspiration level for objectives makes the new approach one step 

closer to reality. In addition, this type of model can be used in situations, for example, when 

managers try to determine their maximum purchasing price for their components and raw materials 

before selecting their suppliers. Then, this maximum cost can be considered as the upper bound 

from which the achieved objective should not be significantly exceeded. 

In this paper, we assumed that the demand and suppliers’ capacities are known. However, these 

two parameters may be uncertain in practice. The study of SSP where the demand and suppliers’ 

capacities are uncertain can be considered for direction in future research. In addition, the SSP can 

be integrated with the supply chain coordination. The supply chain coordination, which generally 

concentrates on inventory management, tries to improve the whole supply chain profitability by 



18 
 

aligning the partners’ strategies and goals. However, to the best of our knowledge, supplier 

selection studies have mainly considered the buyers’ strategies and preferences rather than those 

of the entire supply chain. Taking supply chain coordination into account can open SSP up for 

further studies in the future. 
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