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Abstract Seismic intensity, measured through the Mer-
calli, Cancani, Sieberg (MCS) scale, provides an assess-

ment of ground shaking level deduced from building

damages, any natural environment changes and from

any observed effects or feelings. Generally, moving away

from the earthquake epicentre, the effects are lower but
intensities may vary in space, as there could be ar-

eas that amplify or reduce the shaking depending on

the earthquake source geometry, geological features and

local factors. Currently, the Istituto Nazionale di Ge-
ofisica e Vulcanologia (INGV) analyzes, for each seis-

mic event, intensity data collected through the online

macroseismic questionnaire available at web-page www.

haisentitoilterremoto.it. Questionnaire responses

are aggregated at the municipality level and analyzed
to obtain an intensity defined on an ordinal categorical

scale.

The main aim of this work is to model macroseismic
attenuation and obtain an intensity prediction equa-

tion, which describes the decay of macroseismic inten-

sity as a function of the magnitude and distance from

the epicentre. To do this we employ an ordered probit

model, assuming that the intensity response variable is
related through the link probit function to some predic-
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tors. Differently from what it is commonly done in the
macroseismic literature, this approach takes properly

into account the qualitative and ordinal nature of the

macroseismic intensity as defined on the MCS scale.

Using Markov chain Monte Carlo (MCMC) methods,

we estimate the posterior probability of the intensity
at each site. Moreover, by comparing observed and es-

timated intensities we are able to detect anomalous ar-

eas in terms of seismic SHAKING. This kind of infor-

mation can be useful for a better assessment of seismic
risk and for promoting effective policies to reduce major

damages.

Keywords Bayesian modeling, Earthquakes, Intensity

prediction equation, Macroseismic attenuation,
Ordered probit model

1 Introduction

Italy is one of the most earthquake prone country of Eu-
rope; its seismic network is composed by hundreds of

seismograph stations (ITalian ACcelerometric Archive,

ITACA http://itaca.mi.ingv.it/) used to estimate mag-

nitude values and other seismological parameters (to
this regard see the Italian Seismological Instrumental

and parametric Data-basE, http://iside.rm.ingv.it). Even

if these empirical data are reliable, obtaining a detailed

definition and description of shaking is still a challenge,

basically due to the high variability of ground motion.
In addition to these instrumental data, there are also

macroseismic data which refer to earthquake intensities

measured by the Mercalli-Cancani-Sieberg scale (MCS;

Sieberg, 1930) or the EuropeanMacroseismic Scale (EMS;
Grünthal, 1998). In particular, macroseismic data re-

gard earthquake effects on buildings, structures and

people, and can be considered as a proxy of ground

PatriziaTosi
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shaking deduced from building damages, from any nat-

ural environment changes and from any observed effects

or feelings. These macroseismic data are usually pro-

vided by expert operators who collect information from

direct observation in each village and evaluate the in-
tensity through a critical analysis. These data are then

collected in historical catalogues which in Italy date

back to 461 B.C.. It is worth to note that both the

MCS and EMS intensity scales are qualitative and or-
dinal with categories ranging from I to XII. This means

that we can surely say that the effects occurred in a mu-

nicipality with intensity VIII are stronger than those

associated with intensity IV, but there is not a well

defined relation between intensity degrees and magni-
tude. In other words, we can not affirm quantitatively

how intensity VIII relates to intensity IV as no precise

numerical function is available to define the difference

between intensity categories.

Concurrently with historical data, since 2007 INGV

has been collecting macroseismic data through a web-

survey available at www.haisentitoilterremoto.it

(“hai sentito il terremoto?”, hereafter HSIT, literally

“did you feel the quake?”). This tool allowed to gather
more than 700000 questionnaires regarding earthquakes

widespread all over the Italian territory and felt by

population. Even if derived from information provided

by non-experts, the accuracy of the HSIT macroseis-
mic intensities was assessed in Sbarra et al. (2010),

Tosi et al. (2015) and Mak et al. (2015), where an

agreement with values coming from traditional surveys

and other internet-based datasets was found. Moreover,

differently from historical macroseismic catalogue, the
HSIT database includes a large amount of low degree in-

tensity data, generally disregarded by traditional macro-

seismic investigation and analysis (Pasolini et al., 2008).

These data refer to areas far from the epicentre of high
magnitude earthquakes or to areas at a short distance

from low magnitude earthquakes.

The main aim of this work is the definition of a new

intensity prediction equation (IPE) for Italian earth-

quakes using the macroseismic data available through
the HSIT survey. The IPE describes the decay of macro-

seismic intensity as a function of the magnitude and

distance from the epicentre and it is paramount in the

analysis and interpretation of both recent and histor-

ical macroseismic intensity data. Moreover, it can be
useful in seismic vulnerability assessment for prevention

of damages, since it allows to compare expected (esti-

mated by IPE) and observed intensities for detecting ar-

eas at major or minor risk to experience damages. In lit-
erature many IPEs (also named attenuation models or

laws) have been proposed (see for example Gómez Ca-

pera, 2006 and Mak et al., 2015), where the intensity (or

its difference with the epicentral intensity) is a function

of some covariates as epicentral intensity, quake depth

and magnitude, site type, epicentral/hypocentral dis-

tance, etc.. However, these IPEs are based on historical

databases which suffer from lack of accuracy for long
distance and lack of data of low magnitude earthquakes.

The models for intensity decay can be specified us-

ing a deterministic (Atkinson and Wald, 2007) or a
probabilistic approach (Magri et al., 1994; Pasolini et al.,

2008) and, in the latter case, a statistical distribution

is assumed for the response variable or the error term.

Regardless of the adopted approach, so far intensities
have been commonly treated as realizations of a quanti-

tative distribution (continuous or discrete). As a result,

numerical scores are (improperly) assigned to ordered

intensity categories and least squares method are used

to estimate the IPE parameters. Ignoring the ordinal-
ity of the response can yield predicted values which are

not consistent with the ordinal nature of the intensity

scale. More appropriate methodologies, which take into

account the categorical nature of data, are proposed by
Rotondi et al. (2008) and Zonno et al. (2009), even if

applied on a small subset of data from the historical

catalogue. Recently, a similar approach was adopted in

Rotondi et al. (2015) for the large Italian macroseismic

database DBMI11. Finally, Azzaro et al. (2013) pro-
posed an anisotropic probabilistic model for the macro-

seismic intensity attenuation in the Mt. Etna region.

The novel contribution of this work consists in defin-

ing a new intensity prediction equation which takes

properly into account the qualitative and ordinal na-

ture of the macroseismic intensity, by using a large

amount of data provided by HSIT web-survey. To do
this, we adopt an ordered probit model (Agresti, 2010)

where the intensity response variable is related through

the probit link function to some predictors, such as the

distance from the epicentre and the earthquake magni-
tude. Through this method, we are able to estimate the

macroseismic intensity at all the desired locations, thus

obtaining a new reliable IPE. Finally, an evaluation of

anomalous areas, in terms of seismic shaking, is pro-

vided through ad-hoc residual analysis, i.e. by deriving
the probability distribution of the difference between

observed and expected intensities.

The paper is structured as follows: in Section 2 we
introduce the web-based macroseismic survey of www.

haisentitoilterremoto.it. In particular we describe

the macroseismic questionnaire and the kind of data

which are collected through it. The ordered probit model
and the Bayesian estimation procedure via MCMC are

detailed in Section 3, while Section 4 presents the re-

sults of the application with HSIT data. Section 5 con-
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cludes the paper by summarizing the main findings, and

includes some avenues for future research.

2 Macroseismic data from

www.haisentitoilterremoto.it

The online macroseismic questionnaire, which is com-

piled by volunteers after having felt an earthquake, is

composed by questions regarding the effects on the pop-

ulation and buildings evaluated following the MCS and
EMS macroseismic scale (see Tosi et al. (2015) for a

complete description). The questions regard: i) per-

sonal information and geographic location at the time of

the earthquake; ii) transient effects evaluated through
personal reactions, movement and/or fall of objects,

and activity of the observer during the earthquake (sleep-

ing, walking, being still); iii) building damages. In ad-

dition to volunteers, there exists also a permanent and

constantly increasing group of compilers (approximately
25000), who are alerted via e-mail immediately after

the occurrence of an earthquake near their municipal-

ity. Visiting the HSIT web-page of the considered event,

they provide the location at the moment of the occur-
rence and declare if they felt or not the earthquake; in

the first case, the macroseismic questionnaire can be

filled in.

Using the procedure described in Tosi et al. (2015),

an automated procedure controls the reliability of ques-
tionnaires and discharges those which either contain

contradictory answers or insufficient information. Then,

an algorithm is applied to the valid questionnaires in or-

der to assign an unique intensity value (located on the
centroid) for each municipality. Macroseismic intensity

maps (both for MCS and EMS scales) are produced in

real-time from the processing of the questionnaires and

immediately displayed on the HSIT web-site (see Fig-

ure 1 for an example). Through the survey, thus, it is
possible to obtain a real-time and widespread evalua-

tion of earthquake intensities thanks to the amount of

available data which is extremely larger than the one

provided by direct observation of expert operators.
Note that the intensities provided by the HSIT pro-

cedure are given as real numbers, as a result of the

algorithm described in Tosi et al. 2015, and then are ap-

proximated to the nearest integer value in accordance to

the MCS and EMS degrees between II and VIII. More-
over, it is known that intensity web-based data collected

for earthquakes very close in time could be affected by

compilation errors. We thus excluded all aftershocks of

magnitude lower than 4.5 occurred within 8 hours from
each widely felt mainshock (identified as an earthquake

of magnitude greater than or equal to 4.5 having more

than 300 reports). Finally, we discarded the firstly felt

earthquake before the mainshock, because, in case of a

strong event, respondents often fail to choose the right

event from the automatic list that appears on the HSIT

web-site.

3 The ordered probit model

For ordinal data several multinomial models are avail-
able in literature and a comprehensive presentation can

be found in Agresti (2010). Among those, a predomi-

nant role is played by the class of cumulative link mod-

els which link cumulative probabilities to a linear pre-

dictor. The most commonly used link functions are the
logit and probit, the second one being the inverse of

the standard Normal cumulative distribution function

(cdf). The probit link was the most natural solution for

this work as our model includes Gaussian distributions.
Moreover, as specified in Albert and Chib (1993) and

Cowles (1996), this choice gives rise to some computa-

tional benefits from the inferential point of view (see

Section 3.1).
For municipality i = 1, . . . , I and earthquake c =

1, . . . , C let yic be the felt intensity estimated through

the HSIT web-survey. The response yic is one of the val-

ues in the set {II, . . . , V III} of 7 intensity categories.

The value yic can be defined as a realization of the
Multinomial distribution Yic with 7 categories and one

trial; we denote this as

Yic ∼ Multinomial(1, πII , . . . , πV III)

with πj = p(Yic = j) for j ∈ {II, . . . , V III}.

We introduce now a latent (i.e. non observable) con-

tinuous and normally distributed variable Y ⋆
ic defined as

Y ⋆
ic = Xicβ + ǫic

where Xic = (Xic1, . . . , Xick, . . . , XicK) is the vector

of K covariates (i.e. explanatory variables) with coef-

ficients β = (β1, . . . , βk, . . . , βK)T and ǫic is a Gaus-
sian random variable defined as ǫic ∼ N(0, σ2) indepen-

dently for each i and c. The latent variable represents

the actual strength of the ground shaking for which we

can observe only the effects through yic.

The relationship between Yic and Y ⋆
ic is given by























Yic = II if Y ⋆
ic ≤ τ1

. . . . . .

Yic = j if τr(j)−2 < Y ⋆
ic ≤ τr(j)−1 for j = III, . . . , V II

. . . . . .
Yic = V III if Y ⋆

ic > τ6

(1)

where r(·) is the rank function (e.g. r(II) = 2) and

τ = (τ1, . . . , τ6) is the vector of ordered thresholds to
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Fig. 1 Macroseismic intensity map from the HSIT web-site concerning the L’Aquila earthquake (April, 6th 2009, magnitude
5.8).

Yic
*

τ1 τ2 τ3 τ4

p(Yic = II)
p(Yic = III)
p(Yic = IV)
p(Yic = V)
p(Yic = VI)

Fig. 2 Latent variable Y ⋆

ic
and corresponding intensity prob-

abilities.

be estimated. The number of thresholds is given by the
number of intensity categories minus 1. To illustrate

this relationship, we consider a simple example with a

limited number of intensities ranging from II to VI, thus

involving 5 categories and 4 thresholds τ = (τ1, . . . , τ4).
Figure 2 displays the distribution of the latent variable

Y ⋆
ic and the corresponding intensity probabilities ob-

tained using the relationship defined in Equation (1).

To compute the probability of having an intensity

equal to II we proceed as follows:

p(Yic = II) = p(Y ⋆
ic ≤ τ1) = p(Xicβ + ǫic ≤ τ1)

= p(ǫic ≤ τ1 −Xicβ) = Φ

(

τ1 −Xicβ

σ

)

where Φ(·) is the cumulative distribution function of
the standard Normal distribution. In the same way the

probability for a generic intensity j ∈ {III, . . . , V II}

is given by

p(Yic = j) = p(τr(j)−2 < Y ⋆
ic ≤ τr(j)−1)

= p(τr(j)−2 < Xicβ + ǫic ≤ τr(j)−1)

= Φ

(

τr(j)−1 −Xicβ

σ

)

− Φ

(

τr(j)−2 −Xicβ

σ

)

.

Moreover, for the last intensity it holds that p(Yic =
V III) = 1− p(Yic ≤ V II), where the cumulative prob-

ability for j ∈ {II, . . . , V II} is defined as

p(Yic ≤ j) = Φ

(

τr(j)−1 −Xicβ

σ

)

, (2)

with the property that 0 < p(Yic ≤ II) < p(Yic ≤

III) < . . . < p(Yic ≤ V III) = 1.
Following Agresti (2010), the cumulative probit model

is defined as

Φ−1(p(Yic ≤ j)) =
τr(j)−1 −Xicβ

σ
(3)

for j ∈ {II, . . . , V II}, where Φ−1(·) is the inverse of
the Gaussian cdf which represents the so called probit

function that links the cumulative probability to the

linear predictor given by
τr(j)−1−Xicβ

σ
.
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For identifiability reason1, for probit models it is

common to fix the first threshold τ1 equal to 0. More-

over, as mentioned in Agresti (2010), since the observed

ordinal scale provides no information about the vari-

ability of the latent variable Y ⋆
ic, without loss of gener-

ality, we can set its standard deviation σ equal to 1. So

Equation (3) becomes

Φ−1(p(Yic ≤ j)) = probit(p(Yic ≤ j)) = τr(j)−1 −Xicβ

for j ∈ {II, . . . , V II}.

To illustrate the cumulative probit model and the

interpretation of the covariate coefficients, we get back

to the simple example introduced before with 5 cate-

gories (from II to VI) by assuming to have just one

explanatory variable (thus K = 1 and Xic is a scalar
simply denoted by xic) which can take real values in the

interval [−6,+6]. Moreover, we assume that the covari-

ate coefficient β is positive. The top plot in Figure 3 de-

picts the cumulative probabilities p(Yic ≤ j) for differ-
ent values of the covariate. It is worth noting that each

curve (each one corresponds to a differ intensity) has

the same shape since the coefficient β is common to all

the categories, i.e. the covariate effect does not change

according to the intensity. Moreover, it can be observed
that for a given intensity j, when xic increases, the cor-

responding cumulative probability decreases, hence Yic

is less likely to assume a value lower or equal to cat-

egory j (and therefore values greater than j are more
likely to occur). In fact, the bottom plot in Figure 3,

which displays the probability p(Yic = j) for different

values of the covariate, shows that for small values of

xic the lowest category occurs with the highest proba-

bility and the highest category happens for high values
of xic. Note that for a given value of xic the sum of the

5 probabilities is equal to 1. For the case β < 0 (not

reported here) the opposite happens: the cumulative

probabilities increase as the covariate increases and the
lowest category is more likely to happen for high values

of xic.

3.1 Estimation procedure in a Bayesian framework

The parameter vector for the cumulative probit model
defined in the previous section is given by θ = (τ ,β).

Bayesian inference via MCMC is carried out following

the approach of Albert and Chib (1993) which is based

on the data augmentation method (Tanner and Wong,
1987) that treats the latent variable Y ⋆ as an additional

parameter.

1The model parameters β, τ , σ are not identified as any
change in the scale parameter σ can be offset by changes in
τ and β.
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Fig. 3 Cumulative probabilities (top) and category probabil-
ity distribution (bottom) for different values of the covariate
when considering 6 categories and β > 0.

Let X =
(

XT
1 , . . . ,X

T
n , . . . ,X

T
N

)T
be the (N ×K)

covariate matrix, y = (y1, . . . , yn, . . . , yN )
T
the (N ×1)

vector of observations and Y ⋆ = (Y ⋆
1 , . . . , Y

⋆
n , . . . , Y

⋆
N )T

the (N × 1) latent variable vector. Note that the total

number of cases N ≤ I × C (I and C being the n. of

municipalities and earthquakes respectively) since not

all the earthquakes are felt in all the municipalities. The
index n = 1, . . . , N refers to the case identified by the

couple (i, c) with i ∈ {1, . . . , I} and c ∈ {1, . . . , C}.

Given this notation and following the Gibbs sampler
algorithm described in Albert and Chib (1993), the fol-

lowing full conditionals are derived when diffuse prior

for β and τ are used:

1. p (β | Y ⋆,y) = N
(

(XTX)−1XTY ⋆, (XTX)−1
)

,
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2. p (Y ⋆
ic | β, τ , yic) = N(Xicβ, 1)

truncated at the left by τr(j)−1 and at the right by

τr(j) (with j ∈ {II, . . . , V II}),

3. p
(

τr(j) | Y
⋆,β,y, {τr(k), k 6= j}

)

= Unif (γ, δ), where
γ = max{max {Y ⋆

ic : Yic = j}, τr(j)−2},

δ = min{min {Y ⋆
ic : Yic = j + 1}, τr(j)}, where

j ∈ {II, . . . , V II}, τ0 = −∞ and τ7 = +∞.

To simulate values from the joint posterior p(θ |

y) the Gibbs sampler draws values iteratively from all
the conditional distributions. For implementing such a

procedure we resort to the MCMCoprobit function of

the MCMCpack R package (R Core Team, 2015), whose

details are reported in Andrew et al. (2011).

4 Application

4.1 Data and model specification

The considered data refer to C = 1917 earthquakes

occurred in the Italian territory from January 2009 to

August 2015 with magnitude (ML, measured by Richter
scale) ranging from to 2 to 5.9 and depth lower than

35 km. Most of the events had ML between 2 and 4

(about 95%) while the percentage of earthquakes with a

magnitude greater than 5 is about 0.5%. The intensities
(on the MCS scale) range from II to VII with the modal

intensity II occurring in 46% of the cases.

In order to have more reliable data, we selected the
macroseismic intensities of the municipalities having

more than ten questionnaires for each seismic event,

resulting in I = 945 municipalities. Each municipality

may have experienced more than one seismic event, so

that the finals database consists of N = 6723 cases. Be-
sides intensity, for each municipality and earthquake,

the log10-hypocentral distance (logD) and the magni-

tude are available. Thus, the covariate vector for each

case is given byXic = (1,MLic, logDic), where the term
1 refers to the intercept with β0 coefficients. As there

are 6 intensity categories (from II to VII) we have 5

thresholds τ = (τ1 = 0, τ2, . . . , τ5) and the vector of

unknown parameters is θ = (τ , β0, βML
, βlogD).

In order to ensure convergence of the Gibbs sam-

pler, we ran chains of 2500000 iterations, with a burn-

in of 500000 and a thin interval of 200. Convergence

was assessed by monitoring the mixing of the chains,
through trace plots, together with the Gelman-Rubin

and Geweke diagnoses (Gelman and Rubin, 1992, Geweke,

1992).

Table 1 Posterior parameter estimates of the ordered probit
model: mean, stand deviation (Sd) and 95% highest posterior
density interval (HPD).

Mean Sd Lower HPD Upper HPD
β0 -0.837 0.070 -0.976 -0.700
βML

2.464 0.038 2.391 2.541
βlogD -5.229 0.089 -5.408 -5.059
τ2 1.385 0.030 1.330 1.444
τ3 4.981 0.091 4.804 5.160
τ4 6.628 0.143 6.356 6.911
τ5 7.912 0.220 7.497 8.348

4.2 Results

Convergence diagnoses indicated a good chain mixing

for all parameters. In particular, the Geweke z statis-

tics (in absolute value) range from 0.24 to 0.78 with

p-values bigger than 0.43, thus confirming the conver-
gence achievement. Similarly, the Gelman-Rubin diag-

noses, computed by running two independent chains for

each parameter, produce a potential scale reduction fac-

tor lower than 1.1 for all parameters.

The posterior parameter estimates are reported in

Table 1. It can be seen that all the parameters are sig-

nificantly different from zero (95% credible intervals do
not include zero). Moreover, the magnitude coefficient

βML
is positive with posterior mean equal to 2.464.

This means that (keeping all the other covariates fixed)

a change in the magnitude of 1 degree causes an in-
crease in the latent variable Y ⋆ of 2.464 (on average).

Concerning the influence of ML on the response vari-

able (i.e. the intensity), we can conclude that when the

magnitude increases the cumulative probability of ob-

serving an intensity lower than or equal to the generic
category decreases (and the probability of observing a

higher intensity increases). This is a situation similar

to the one plotted in Figure 3. Differently, the poste-

rior mean of the distance coefficient βlogD is equal to
-5.229. This means that (keeping all the other covari-

ates fixed) a change distance of 1 (on the kilometer

logarithmic scale) causes an average change in the la-

tent variable of -5.229. As expected, with respect to the

response variable, when the distance increases, the cu-
mulative probability of observing a given intensity, or

one lower, increases (and the probability of observing

a higher intensity decreases). This is reasonable and in

line with the nature and the geophysical characteristic
of the phenomenon under study (Schubert, 2015).

Once the model parameters have been estimated,

it is possible to compute, for any desired value of the
log-hypocentral distance and of the magnitude, the in-

tensity posterior distribution, i.e. the posterior prob-

abilities of occurrence for every intensity value j ∈
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Fig. 4 Probability distribution of intensity given some values
of magnitude (3.5 and 5) and logD (1.01, 2). The star denotes
the highest probability intensity (modal intensity).

{II, . . . , V II} using the following formula:

p(Yic = j) =

Φ

(

τ̂r(j)−1 − (β̂0 + β̂ML
·MLic + β̂logD · logDic)

σ

)

−

Φ

(

τ̂r(j)−2 − (β̂0 + β̂ML
·MLic + β̂logD · logDic)

σ

)

,(4)

where the hat notation is used to denote the posterior

parameter mean. As mentioned in Section 3, here σ is

fixed equal to 1 and for the first and last category the

formula is adapted accordingly.

Figure 4 displays the intensity probability distribu-

tion for two given values of ML (3.5, 5) and logD (1.01,

2); the category with the highest probability (i.e. the
modal intensity) is depicted by a star. As we can see,

with a moderate magnitude (ML=3.5) and with a short

distance (logD=1.01) the modal intensity is IV (with a

probability of about 0.85); instead, when logD=2, the

modal intensity becomes II. Coherently, with a higher
magnitude (ML=5) the modal intensity (with a prob-

ability of about 0.5) is V for the shorter distance and

decreases down to III at the longer distance.

We focus now on the main objective of this work,

i.e. the definition of a new intensity prediction equation

based on the intensity probability distribution. In par-

ticular, we analyze the effect of a distance change on the

intensity distribution (computed using Equation (4)) by

determining the modal intensity for different values of

ML (3.5 and 5) and logD (100 values between 0.5 and

3). Figure 5 displays the modal intensity according to
distance (i.e. the estimated IPE). Each point represents

the modal intensity with its corresponding probability

(using the classes [0,0.5], (0.5,0.8], (0.8,1]). In particu-

lar, with ML=3.5 and logD≃1 the intensity IV (dark
gray point) has a probability of occurrence in (0.8, 1];

the same probability class is reached for distance larger

than 1.7 by intensity II. Notably, we consider the prob-

ability associated to each intensity as a measure of un-

certainty. The segments departing from each point in-
dicate which intensities have to be accounted, together

with the modal one, for reaching an occurrence proba-

bility of at least 0.8. Looking, for example, at the bot-

tom panel of Figure 5, with logD=2 the modal inten-
sity is III with a probability lower than 0.5 (light gray

point). From this point a light gray segment departs

toward intensity IV, that has an occurrence probabil-

ity of about 0.38 (see bottom-right panel of Figure 4):

this means that the probabilities of degree III and IV
together reach at least 0.8. In this sense, points with

no segment refer to very reliable intensities (i.e., prob-

ability bigger than 0.8), whereas point with one or two

segments refer to more uncertain modal intensity.

By comparing several IPEs (note reported here), we

can conclude that with lower magnitudes the IPEs de-

crease more rapidly and show less uncertainty with re-
spect to those generated from earthquakes with higher

magnitudes.

4.3 Analysis of residuals

Once IPE is defined for a given magnitude, it can be

used as an operative tool to compute expected intensi-
ties (and probabilities) as a function of the hypocentral

distance. Computing the residuals between observed

and expected intensities is paramount in defining anoma-

lous areas, with positive (negative) residuals possibly

associated with seismic waves amplification (attenua-
tion) (Papoulia and Stavrakakis, 1990).

Considering the range of observed macroseismic in-

tensities (from II to VII), in order to improve the seis-
mic interpretability of residuals, we exclude from the

analysis the cases with estimated modal intensity equal

to the minimum and maximum values (II and VII) be-

cause they would give rise to residuals which are al-
ways positive/negative or equal to zero. For each mu-

nicipality i, where a number of mi earthquakes were

felt, mi observed intensities IObs are available from
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Fig. 5 IPE for some values of magnitude (3.5 and 5) and
logD (100 values between 0.5 and 3). The color of points rep-
resents the probability (in classes) associated with the modal
intensity. The segments of each point indicate which intensi-
ties have to be accounted, together with modal intensity, for
reaching an occurrence probability of at least of 0.8.

the HSIT web-site, together with mi intensity proba-

bility distributions with modal category Î obtained by

the ordered probit model. It is thus possible to derive

for each municipality mi residual probability distribu-

tions, each being a discrete random variable defined as
(IObs

ic − Îic) with probabilities pic obtained by Equation

(4) and c = 1, . . . ,mi. Then we calculate the random

variable sum of residuals denoted by Ri, obtained by

summing the mi residual probability distributions. Fi-
nally, for each municipality we are able to estimate the

mean residual and its corresponding variance as the ex-

pected value and variance of the random variable mean

of residuals Ri/mi.

Figure 6 shows the obtained mean residuals and
standard deviations. Blue circles correspond to munic-

ipalities where observed intensities are lower than esti-

mated intensities, suggesting seismic attenuation; while

red points, with positive residuals, point out seismic
amplification. Gray shaded areas correspond to high

values of the residual standard deviation. Interestingly,

positive (red) and negative (blue) values tend to be spa-

tially aggregated, whereas the areas of high standard

deviation correspond to a greater uncertainty of the
municipality intensity data. The prevalence of orange

circles in North Italy highlights an amplification area

localized in between the Alps chain and the Padana

plain. This could be caused by the presence of sedi-
mentary basin trapping and amplifying seismic waves.

The greater part of municipalities near the North Apen-

nines have negative residuals revealing an attenuation

area. Furthermore, we can highlight other two areas

with prevalence of positive mean residuals: one in cen-
tral Italy with a North-South elongation, and the sec-

ond one located at the south of Naples.

5 Discussion

Italy, as one of the most seismically active countries,

needs an effective and reliable analysis of seismic risk.

The possibility of defining zones of high seismic shak-

ing is a crucial goal for promoting effective policy to
prevent major damages. In this regard, a reliable IPE

definition is the necessary step. It offers an operative

way to calculate the expected intensity given the earth-

quake magnitude and the hypocentral distance. On the

other hand, it is worth to note that the intensity eval-
uation based only on the IPE is not complete, due to

several factors which may significantly change the ob-

served shaking. For this reason a common procedure

consists in performing a residual analysis with observed
and estimated intensity data. If these residuals are spa-

tially homogeneous they can be caused by the influence

of regional geological condition or by the predominating
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Fig. 6 Map of the mean and standard deviation of residuals. Geographic coordinates are between 6.6◦ and 20◦ East longitude
and between 36.6◦ and 46.7◦ North latitude. Colored circles represent the municipality and the gray shaded contours represent
the corresponding standard deviations.

source mechanism (Sbarra et al., 2012). Analyzing sev-

eral events for each municipality, the source mechanism
contribution to the intensity is reduced, thus evidencing

a possible local effect related, for example, to geological

characteristics which could be included in the model as

covariates. However, note that for low magnitude earth-

quakes (which constitute the major part of the HSIT
dataset), the focal mechanism solutions are almost un-

known.

Further confirmation are necessary to validate our

findings because of the short length of the HSIT data

series (2009-2015) which could not be fully representa-
tive of a seismicity of long period. However, our results

are consistent with those found in previous works (see

e.g. Albarello et al., 2002) and, at the same time, pro-

vide an interesting new benchmark for comparison with
any other risk maps carried out for these kind of data.

In this sense, our work can be considered as a first step

to detect local responses to seismic shaking in Italy.

From a methodological point of view, we employed

the ordered probit model using a Bayesian approach.
Although this model is well established in the statistical

literature, its application to a large amount of macro-

seismic intensity data is original and unavoidable for

defining a reliable IPE which takes properly into ac-

count the ordinal nature of data.

A possible extension of this work could deal with

the spatial structure of the data, by including a spa-

tial process in the model equations. In literature, mod-

els for spatially correlated ordered categorical data are

relatively new (Brewer et al., 2004, Higgs and Hoet-
ing, 2010). The main obstacle to implement such mod-

els concerns the computational burden that can nega-

tively impact the performance of MCMC model-fitting

algorithms (Berrett and Calder, 2012), making the es-
timation procedure for large data set unfeasible. Un-

fortunately, as far as we know, not even other more

efficient algorithms alternative to MCMC, such as the
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Integrated Nested Laplace Approximation (INLA, Ban-

giardo and Cameletti, 2015), can be applied as they are

not available for ordinal response data. Thus, the devel-

opment of computationally effective ad-hoc algorithms

needs to be addressed in the future research for an-
alyzing the complete HSIT dataset through a spatial

model. Another possibility would consist in restricting

the analysis to a small target area - identified for ex-

ample using the residual map in Figure 6 - in order
to apply the algorithm proposed by Higgs and Hoeting

(2010).
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