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Abstract

A general analytical solution for the steady-state evaporation from deformed liquid drops is proposed. The

solution is applicable to classes of drop shapes for which 1-D solution exists. The method is used to find the

evaporation rate and local vapour and heat fluxes for general ellipsoidal drops, extending previous available

results on spheroids. A direct dependence of the local vapour flux on the surface Gaussian curvature is evidenced.

A quantitative evaluation of the effect of drop deformation on the total evaporation rate and the local vapour flux

is reported.
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1 Nomenclature

Greek symbols

α species −

β non-dimensional drop surface −

φ, γ, θ deformation parameters m

η, ζ shape parameters −

ρ mass density kg/m3

χ mass fraction −

εy, εz aspect ratios −

ξ ellipsoidal coordinate m

ψ heat flux W/m2
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Roman symbols

A drop surface area m2

ax, ay, az ellipsoid half-axes m

c specific heat J/kgK

CG Gaussian curvature 1/m2

F,E incomplete elliptic integrals −

Dv mass diffusivity m2/s

h scale factors m

kth thermal conductivity W/mK

Le Lewis number −

mev evaporation rate kg/s

M0 constant, equation (13) m

n mass flux kg/m2s

nadev non-dimensional mass flux −

nv ξ-component of the mass flux kg/m2s

Pr Prandtl number −

R0 spherical drop radius m

Req equivalent radius m

Sc Schmidt number −

T temperature K

q energy flux W/m2

Q̇ heat rate W

U velocity m/s

u, v ellipsoidal coordinates m

x, y, z Cartesian coordinates m

Y non-dimensional evaporation rate −
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Subscripts

s surface −

∞ infinite −

Superscripts

g gas −

v vapour −

2 Introduction

The evaporation process from dispersed drops in gaseous flows is of primary importance in many natural and

industrial processes (automotive, aeronautic, fire suppression, painting, medical aerosol, meteorology, etc.) [1], [2].

Although different industrial applications involving drop evaporation are already being developed, still the theoretical

knowledge on the mechanisms governing the phase transition and mass/energy transports within the gas phase is

not fully understood [3].

Over the decades a wide literature on the modelling of drop evaporation became available, urged by the need to

cope with the double aim to relieve on one hand some stringent assumptions imposed by previous models and on the

other hand to be CPU efficient, in order to make available accessible predictive tools to investigate the behaviour of

complex multi-drop systems [4].

The simplest model for the mass transport from a particle immersed in a gas flow was proposed by Maxwell back

in 1877 [5], which suggested that the driving force guiding this mechanism is the difference in vapour concentration

between the particle surface and the free stream and the process is exclusively controlled by species diffusion mech-

anism, but in real gas flow a bulk motion of the vapour and gas mixture surrounding the particle (Stefan flow) is

present and this convective effect on the phase transition rate must be taken into account to correctly predict the

phenomenon [6]. Many other effects on drop evaporation were considered in further studies, for example the heat

and mass diffusion in the droplet interior [7], the liquid composition [8], [9], the effect of gas pressure [10], [11], etc.

In case of dispersed drops immersed in convective flow, the extended film model of Abramzon and Sirignano

[12], developed more than 20 years ago, remains the most commonly used and, due to its numerical efficiency, it is

commonly implemented in CFD codes for multi-drop calculations (particularly for sprays and aerosols).
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These CFD numerical models have been further refined over the decades including more complex physical aspects

(drop composition, shape, interaction with other drops and/or solid surfaces (see [13], [14] for reference). Due to the

complexity of the numerical implementation of these models and the CPU time requested for a single drop test case

simulation, they cannot be used for multi-drop system predictions, but only as benchmarking for simpler models to

be developed.

Experimental investigation on liquid drops in multi-particle systems has revealed that they are subject to signif-

icant shape deformations while interacting with the carrier phase [15], due to the interaction of surface tension and

fluid-dynamic stresses on the drop surface [16]. While surface tension force induces a spherical shape, fluid-dynamic

forces are the primary sources of drop deformation. This is clearly evident in case of liquid drop with Weber number

above 2, typical of spray combustion applications, which are appreciably non-spherical [17]. These observations were

confirmed by numerical studies on liquid deformed drops [18], [19].

As shown in [20], the gas flow around the drop causes a peak pressure at the leading edge and a minimum pressure

at the equator, that leads to an oblate shape, while the liquid circulation inside the drop induces a deformation towards

the prolate shape. When gas phase viscous effects become predominant a deformation towards dimpled shape is also

observed.

The effect of drop deformation on phase transition was investigated by [15], [21], [22], evidencing that this is not

negligible particularly in case of high Reynolds and Weber numbers, suggesting that it could be taken into account

modelling the continuously evolving interface. Previous studies concluded that the evaporation rates are higher for

deformed drops [21].

Mashayek [15] suggested a correlation for the rate of evaporation of deformed drops based on the results from

numerical simulations, which showed that the mass flux varies along its surface. The author proposed a correlation

to express the mass flux as a function of the surface mean curvature.

Recently, a model to calculate the effect of deviation from spherical shape on heat and mass transfer for oblate

and prolate drops was developed [22], evidencing a direct dependence of the local vapour flux on the drop surface

Gaussian curvature.

Non-spherical shape is an unstable state for a liquid drop and the opposing effects of surface tension and inertia

cause periodic or non-periodic variation of the shape, which is referred to as drop oscillation and it is found to
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strongly influence heat, momentum and mass transfer between the drop and the surrounding gas [21]. Oscillation

can become important in atomisation systems where the liquid is first disintegrated into small ligaments, which then

oscillate towards the asymptotic attainment of an equilibrium spherical shape [23].

Starting from the pioneering work of Lamb [24], a considerable amount of work has been done on the dynamics of

oscillating drops; refer to [25], [26], [27], [28], [29], [30], [31], [32], [33] and [34] for reviews on theoretical, numerical

and experimental contributions to this field. Evaporation was found to be strongly influenced by the drop deformation

dynamics, whereas no substantial effect of drop dynamics on evaporation was found [35]. The evaporation from free

oscillating particles was investigated in [36], showing that the increase in the evaporation rate of an oscillating drop

is proportional to the square of the instantaneous surface disturbance amplitude and it is larger for higher oscillation

modes, and that the period of oscillation is decreased by evaporation, while the dominant mode of oscillation remains

the same as that for a non-evaporating drop.

Recently, the evaporation of spheroidal drops in gaseous atmosphere has been investigated by [37], calculating the

exact solution for the instantaneous vapour flux and sensible heat rate under steady-state conditions as function of the

increment of surface area respect to iso-volumic spherical drops and capturing the different evaporating mechanisms

from oblate and prolate drops.

The aim of the present work, firstly motivated by the necessity to include the above described complex drop

evaporation mechanisms in spray numerical simulations through relatively simple sub-models, is to propose a general

analytic approach to model the evaporation from deformed droplets. The following sections report a mathematical

approach that allows the derivation of analytical expressions for the steady-state evaporation rate and heat rate from

a class of drop shapes that allows a mono-dimensional solution of the governing equations. The local vapour flux

distribution is obtained for that class of drops and an exact relation with the local Gaussian curvature is found. The

solution is then applied to spheroidal and triaxial ellipsoidal drops evaporating in quiescent atmosphere.

3 Modelling the evaporation of deformed droplets

The steady-state evaporation of a liquid drop is usually analysed under some commonly assumed simplifying condi-

tions. Among them, sphericity is one of the most striking, as explained above, and it will be relieved in the present
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approach. Another commonly accepted simplification, which is also assumed in the present work, is to consider

constant gas density. This relatively strong assumption, particularly in high temperature gaseous environment, was

relieved in [37] and [38] for spherical drops, but that analysis cannot at present be extended to non-spherical drops.

The species balance equations can be written in general form for a binary (pure liquid) system as [39]:

∇jn
(α)
j = 0 (1)

where the specie mass flux n
(α)
j (α = g, v for gas and vapour, respectively) can be written under the form:

n
(α)
j = ρUjχ

(α) − ρDv∇jχ
(α) (2)

where χ(α) = ρ(α)

ρ is the mass ratio, Dv the mass diffusivity (Dv = DAB = DBA in binary systems [39] ) and Uj is

the Stefan flow velocity. Substituting equations (2) into equations (1) and summing over the index α, accounting for

χ(v) + χ(g) = 1, yields the usual mass conservation equation:

∇jρUj = 0 (3)

Assuming still drop surface and neglecting gas diffusion through the liquid drop, the gas flux is nil at drop surface

and consequently it must be nil everywhere; then defining G = ln
�
χ(g)

�
equation (2) for α = g yields:

Uj = Dv∇jG (4)

and under the further assumption of constant diffusion coefficients, equation (3) yields the Laplace equation:

∇2G = 0 (5)

that in a orthogonal curvilinear coordinate system becomes (see, for example, [40]):

�

j

∂

∂xj
g1/2

h2j

∂G

∂xj
= 0 (6)

where hj are the scale factors and g1/2 = h1h2h3.

In this work, only the cases where the heat and mass fluxes are orthogonal to the drop surface are studied (1-

D problems), then the analysis will be restricted to curvilinear orthogonal coordinate systems (ξ, u, v) where the

deformed drop surface is a coordinate surface, defined by the equation ξ = ξ0. Then equation (6) becomes:

∂

∂ξ

�
huhv
hξ

∂G

∂ξ

�
= 0 (7)
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where G is only function of ξ.

The boundary conditions imposed here assume uniform vapour partial pressure on the drop surface and at infinity,

i.e.:

G = Gs = ln
�
1− χ(v)s

�
on the drop surface (8)

G = G∞ = ln
�
1− χ(v)∞

�
at infinity (9)

Integration of equation (7) yields the solution:

∂G

∂ξ
=

hξ
huhv

K (u, v) (10)

G = K (u, v)

� ξ

ξ0

hξ
huhv

dξ +Gs (11)

where K (u, v) is an arbitrary function of the coordinates (u, v) and (8) was used. Since ∂G
∂ξ is a function only of ξ,

hξ
huhv

is separable, i.e.:

hξ
huhv

= H (u, v) f (ξ) (12)

and substituting into equantion (10) yields:

H (u, v)K (u, v) =
1

f (ξ)

∂G

∂ξ
=M0 (13)

where M0 is a constant. The general solution (11) then becomes:

G =M0

� ξ

ξ0

f (ξ) dξ +Gs (14)

and the constant M0 can be found from the B.C. (9):

M0 =
1	∞

ξ0
f (ξ) dξ

ln



1− χ(v)∞
1− χ(v)s

�

(15)

3.1 Evaporating flux and mass rate

From equations (2) it easily stems that n
(v)
j + n

(g)
j = ρUj and since n

(g)
j = 0, the ξ-component of the vapour flux is

then:

nv = ρDv
K (u, v)

huhv
= ρDv

f (ξ)

hξ
	∞
ξ0
f (ξ) dξ

ln



1− χ(v)∞
1− χ(v)s

�

(16)

where equations (4), (10), (13) and (15) have been used.
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The evaporation rate is found by integrating the vapour flux over the entire surface:

mev =

�

A

nvdA = 4πρDv Req ln



1− χ(v)∞
1− χ(v)s

�

(17)

where dA = huhv du dv and:

Req =
1

4π

	 	
1

H(u,v)dudv	∞
ξ0
f (ξ) dξ

(18)

is a constant length that only depends on the scale factors (since H (u, v) and f (ξ) only depend on the coordinate

system) and on the constant ξ0 that defines the drop surface.

3.2 The triaxial ellipsoidal drop and a generalisation of previous results

In this section an original application of the above developed theory is reported. Consider a general triaxial ellipsoidal

drop, described by the equation: x2

a2x
+ y2

a2y
+ z2

a2z
= 1 where it will always be assumed that ax ≥ ay ≥ az (see Figure 1).

It is worth to notice that this case generalises the classical model for a spherical drop (ax = ay = az = R0), and

the available results for spheroidal drops [22], for the prolate (ax > ay = az) and the oblate (ax = ay > az) cases.

The radius R0 of a spherical drop having the same volume of the ellipsoidal one is given by the relation:

R30 = axayaz (19)

and, defining the two deformation parameters εy =
ay
ax

and εz =
az
ax

(to notice that 1 ≥ εy ≥ εz), the half-axes

become:

ax =
R0

(εyεz)
1/3
; ay = εy

R0

(εyεz)
1/3
; az = εz

R0

(εyεz)
1/3

(20)

The natural coordinate system to solve the problem is the ellipsoidal coordinate system [40]:

x2 =
ξ2u2v2

φ2γ2

y2 =

�
ξ2 − γ2

� �
u2 − γ2

� �
γ2 − v2

�

θ2γ2
(21)

z2 =

�
ξ2 − φ2

� �
φ2 − u2

� �
φ2 − v2

�

θ2φ2

with:

0 ≤ v2 ≤ γ2 ≤ u2 ≤ φ2 ≤ ξ2 < +∞; θ2 = φ2 − γ2 (22)
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the parameters θ, φ, γ can be related to the ellipsoid axes (ξ20 = a
2
x, ξ

2
0−γ2 = a2y, ξ20−φ2 = a2z) and to the deformation

parameters:

γ2 =
R20
�
1− ε2y

�

(εyεz)
2/3

; φ2 =
R20
�
1− ε2z

�

(εyεz)
2/3

; θ2 =
R20
�
ε2y − ε2z

�

(εyεz)
2/3

(23)

In this coordinate system,
hξ

huhv
is separable [40] and from equation (12):

f (ξ) =
1

��
ξ2 − φ2

� �
ξ2 − γ2

� ; H (u, v) =

��
φ2 − v2

�
(γ2 − v2)

�
φ2 − u2

�
(u2 − γ2)

(u2 − v2) (24)

From the previous section, the separability of hξ
huhv

implies the existence of a 1-D solution given by equation

(14), which in the present case can be written in terms of the incomplete elliptic integral of first kind F (x, k) =

	 x

0
dt√

(1−k2t2)(1−t2)
(see [41]):

G = −
F
�
φ
ξ , k

�
− F

�
φ
ξ0
, k
�

F
�

φ
ξ0
, k
� ln



1− χ(v)∞
1− χ(v)s

�

+Gs (25)

The vapour flux can then be evaluated by the general relation (16):

nv = ρDv
φ

��
ξ2 − u2

� �
ξ2 − v2

�
F
�

φ
ξ0
, k
� ln



1− χ(v)∞
1− χ(v)s

�

(26)

and the evaporation rate is calculated from equation (17), where:

Req =
φ

F
�

φ
ξ0
, k
� = R0



(1− ε2z)

(εyεz)
1/3 F





(1− ε2z),

�
(1−ε2y)
(1−ε2z)

� (27)

see also the Appendix for the calculation of
	 	

1
H(u,v)dudv.

As previously mentioned, this result generalises the spherical and spheroidal cases, and Table 1 summarises the

available results for the non-dimensional ratio
Req

R0
in terms of the deformation parameters. It is easy to show that

the results for spherical and spheroidal drops are limiting case of that for the triaxial ellipsoidal drop.

3.3 Effect of surface curvature on the local vapour flux

In a previous work [22], it was shown that, for spheroidal drops, a general relation exists between the local mass

flux and the local Gaussian curvature of the surface. In an orthogonal curvilinear coordinate system, the Gaussian

curvature of a surface defined by ξ = ξ0 can generally be calculated as (see [42]):

CG = −
1

2g1/2

�
∂

∂u

�
1

g1/2
∂h2v
∂u

�
+
∂

∂v

�
1

g1/2
∂h2u
∂u

��
(28)
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Table 2 reports the values of CG for the ellipsoidal drop and the limiting cases.

From equations (16) and (17) the local vapour flux at drop surface (ξ = ξ0) can be written as:

nv = mev
f (ξ0)

hξ
	 	

1
H(u,v)dudv

(29)

For ellipsoidal, spheroidal and spherical drops the integral
	 	

1
H(u,v)dudv is always equal to 4π (see Appendix).

The scale factor hξ, evaluated for ξ = ξ0, the function f (ξ0) and the non-dimensional heat flux nadv =
4πR2

0 f(ξ0)

hξ
	 	

1
H(u,v)dudv

,

written in terms of deformation parameters, are reported in Table 2.

A simple inspection shows that for all the cases the general form of the non-dimensional local vapour flux is:

nadv =
�
R20CG

�1/4
(30)

This proportionality between the local vapour flux and the fourth root of the non-dimensional Gaussian curvature

R20CG, already observed in [22] for spheroidal drops, may lead to the conjecture that equation (30) could hold for a

wider class of drop shapes.

3.4 The thermal problem

The evaluation of the gas temperature distribution and the heat rate exchanged by the deformed drop with its

surroundings can be treated in a way similar to that used for the mass transfer problem. The energy equation,

neglecting minor terms like dissipation by viscous stress, species excess kinetic energy and work of pressure forces

(see [39], p.465 for the complete equation), can be written as:

Uj∇jT =
kth
ρc
∇2T (31)

Using equations (4) and (10), the integration of equation (31), accounting for equations (12) and (13), yields the

1-D solution:

T = e
M0
Le

	 ξ
ξ0

f(ξ)dξ
B (u, v) +

C (u, v)

k

Le

M0
(32)

where Le = Sc
Pr =

kth
ρcDv

, and B (u, v) and C (u, v) are generic functions of u and v.

Setting the B.C. as :

T (ξ0) = Ts; T (ξ∞) = T∞ (33)
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yields (using equation 15) the solution:

T = e
M0
Le

	
ξ
ξ0

f(ξ)dξ (Ts − T∞)�
1− eG0Le

� +
Tse

G0
Le − T∞�
e
G0
Le − 1

� (34)

where G0 = ln
�
1−χ(v)

∞

1−χ
(v)
s

�
. The heat flux at drop surface is then:

ψξ = −kth
1

hξ

∂T

∂ξ
= −kth

M0

Le

f (ξ)

hξ



Ts −
Tse

G0
Le − T∞�
e
G0
Le − 1

�



 (35)

and the integration over the drop surface yields the heat rate Q̇ =
	
A
ψξdA; defining the non-dimensional heat rate

as Q̂ = Q̇
4πR0kT∞

, the following relation is found:

Q̂ =



T̂s − 1

1− e−Y
R0
Req

�

e
−Y

R0
Req Y (36)

where T̂s =
Ts
T∞

and Y = mev

4πρDvR0Le
. This formula generalises in a remarkably simple way what already found for

spherical drops at Re = 0 (see for example [37]).

4 Results and discussions

The case of a triaxial ellipsoidal drop can be seen as a generalization of the spheroidal (and spherical) drop cases.

Figure 2(a) shows the εy − εz plane where, since εz ≤ εy, only the gray region represents possible ellipsoids.

Introducing the parameters:

η2 =
1− ε2y
1− ε2z

; ζ = εyεz =

�
R0
ax

�3
(37)

both ranging between 0 and 1, it is possible to classify the various drop shapes in a simpler way. Figure 2(b) shows

the η − ζ plane: i) ζ = 1 corresponds to the spherical drop, since in this case εy = εz = 1; ii) η = 0 corresponds

to the oblate spheroid, since εy = 1, and for ζ → 0 (i.e. εz → 0) the shape becomes similar to a disk; iii) η = 1

corresponds to the prolate spheroid, since εy = εz, and for ζ → 0 (i.e. εy, εz → 0) the shape becomes similar to a

wire. The limiting cases (disk and wire) may represent the evaporation of a liquid drop exposed to high velocity flow

(disk) rather then the evaporation of a liquid ligament (wire).

The evaporation rate is proportional to the non-dimensional parameter
Req

R0
(see equation 17, where R0 is the

radius of a spherical drop having the same volume) and it can be expressed as a function of η and ζ.
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The surface of a general triaxial ellipsoid, having the same volume of a sphere of radius R0, can be calculated as

[41]:

S (R0, εy, εz) = 2π
R20

(εyεz)
2/3

�

ε2z +E (ϕ,m) εy


(1− ε2z) + F (ϕ,m)

εyε
2
z


(1− ε2z)

�

(38)

where E (ϕ, k) is the incomplete elliptical integral of second kind and:

ϕ = arcsin


1− ε2z; m2 =

�
ε2y − ε2z

�

ε2y (1− ε2z)
(39)

which can be also expressed as a function of ζ and η using equations (37). Figure 3 shows the values of
Req

R0
as a

function of the non-dimensional drop surface β = S
4πR2

0
for different values of the shape parameter η.

The results show that the non-dimensional parameter
Req

R0
monotonically increases with the non-dimensional drop

surface, β, and with the shape parameter η. Thus, for a non-spherical drop of given volume and surface, the maximum

evaporation rate is obtained with the prolate drop (η = 1), the minimum value with the oblate drop (η = 0), as

reported in [22], whereas intermediate values are found for all the other drop shapes.

The effect of drop shape is shown in Figure 4, which presents the variation of Req

R0
with the shape parameter

η for given values of the non-dimensional drop surface, β. The results show that for drops with shape parameter

lower than about 0.8 the evaporation rate is almost independent of η (with variations from the corresponding values

obtained with the oblate drops lower than 2%) and it only increases with the parameter β. The increase of
Req

R0
with

η, for η larger than 0.8, is more evident for drops with higher values of β (i.e. very deformed drops). The maximum

difference between the evaporation rates for the prolate drop and the corresponding oblate drops is about 15%, for

the range of the parameter β investigated here.

4.1 Local vapour flux

The non-dimensional local vapour flux at drop surface nadv is shown in the three graphs of Figure 5, along the x− y,

x−z and y−z planes, respectively, for different drop shapes having the same volumes; the drawings on top of figure

indicate the line along which the local vapour distribution is calculated. The non-dimensional local vapour flux along

the three lines for the simplest case of a spherical drop is represented by the solid-thick line nadv = 1. The figure also

reports the local vapour flux for two spheroidal drops corresponding to the oblate drop with (εy, εz) = (1, 0.25) and

the prolate drop with (εy, εz) = (0.5, 0.5), plotted with dashed-thick and dot-thick lines, respectively. On the same
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figure the non-dimensional local vapour flux for three triaxial ellipsoidal drops is reported. The first one (solid-thin

line) corresponds to the case with (εy, εz) = (0.5, 0.35). The dash-thin line describes the local vapour flux for again a

triaxial ellipsoidal drop characterised by (εy, εz) = (0.75, 0.25), which shape is closer to the above mentioned oblate

case. Finally the dot-thin line describes the local vapour flux for a triaxial ellipsoidal drop with (εy, εz) = (0.75, 0.5),

which shape is closer to the above mentioned prolate case.

The graphs show that for the highly deformed triaxial ellipsoidal drop (solid-thin line, (εy, εz) = (0.5, 0.35)),

the maximum value of the vapour flux corresponds to the point of maximum surface curvature, which is located at

(x, y, z) = (1, 0, 0), while the minimum is located at the point of minimum curvature, at (x, y, z) = (0, 0, 1).

Modifying the drop shape (dash-thin line, (εy, εz) = (0.75, 0.25)) to get closer to the spheroidal oblate drop, the

vapour flux distribution becomes similar to that of the oblate drop (dash-thick line), except on the x − y plane,

where the triaxial drop has a non-uniform curvature and consequently the local vapour distribution increases along

the x-axis and it reaches its maximum at (x, y, z) = (1, 0, 0).

Modifying the drop shape (dot-thin line, (εy, εz) = (0.75, 0.5)) to get closer to the spheroidal prolate drop, the

local vapour flux curve moves towards the prolate drop curve (dot-thick line).

Table 3 reports the non-dimensional surface area (β) and the non-dimensional parameter (Req

R0
) for the above

selected deformed drops. To notice that the surface areas differ by less than 43% compared to the surface area of the

spherical drop having the same volume, whereas the increase of the total non-dimensional evaporation rate due to

the drop deviation from the spherical shape is less than 17%. It is important to point out that the maximum local

vapour flux is instead almost doubled for deformed drops compared to the spherical case and the maximum local

flux for one shape may be up to four times the minimum value.

5 Conclusions

A new analytical model for heat and mass transfer from deformed drops was developed, solving the species and

energy conservation equations under steady state conditions.

The total evaporation rate and the local vapour and heat fluxes are predicted for various drop shapes that allow

the existence of a 1-D solution. Explicit equations to predict the vapour mass fraction and temperature distribution
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for the general 1-D problem, the local vapour flux, the heat and evaporation rates are proposed.

The model is applied to spherical, spheroidal and triaxial ellipsoidal drops having the same volume and/or surface

area. The results show that the drop deformation enhances both the total and local mass and heat transfer. The

evaporation rate from deformed drops having the same volume and surface is maximum for the prolate drop and

minimum for the oblate drop, while intermediate values of evaporation rate are found for the various ellipsoidal drops.

For this class of drop shapes the local vapour flux is found to be proportional to the fourth root of the surface

Gaussian curvature. Large variations of local vapour flux along the drop surface are found in case of highly deformed

drops, and they should be taken into account when local heat and mass transfer phenomena occur.

6 Appendix

For the ellipsoidal case, the integral:

I =

� �
1

H (u, v)
dudv = 8

� β

γ

� γ

0

�
u2 − v2

�
��
β2 − u2

�
(u2 − γ2)

��
β2 − v2

�
(γ2 − v2)

dv du (A.1)

can be calculated referring to the definition of the complete elliptic integrals of first and second kind [41]:

K (k) =

� 1

0

dt√
1− t2

√
1− k2t2

= F (1, k) ; E (k) =

� 1

0

√
1− k2t2√
1− t2

dt (A.2)

Splitting the integral I as:

I = 8 (Iv1Iu2 − Iu1Iv2) (A.3)

and defining k = γ
β and k′ =

√
1− k2:

Iv1 =

� γ

0

dv
��
β2 − v2

�
(γ2 − v2)

=
1

β
K (k) (A.4a)

Iu1 =

� β

γ

du
��
β2 − u2

�
(u2 − γ2)

=
1

β
F (1, k′) (A.4b)

Iv2 =

� γ

0

v2
��
β2 − v2

�
(γ2 − v2)

dv = β [K (k)−E (k)] (A.4c)

Iu2 =

� β

γ

u2
��
β2 − u2

�
(u2 − γ2)

du = βE (k′) (A.4d)

Since (see [41], equation 19.7.1):

K (k)E (k′)−K (k′)K (k) +K (k′)E (k) = π
2

(A.5)
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the integral I is:

I =

� �
1

H (u, v)
dudv = 4π (A.6)
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7 List of Tables

shape εy =
ay
ax

εz =
az
ax

Req

R0

sphere 1 1 1

prolate spheroid 1
ε

1
ε < 1

|1−ε2|1/2
ε1/3

1

ln
��

ε+1
ε−1−1

�
−ln

��
ε+1
ε−1+1

�

oblate spheroid 1 ε < 1
|1−ε2|1/2

ε1/3
1�

π−2 arctan
��

1+ε
1−ε

��

triaxial ellipsoid εy < 1 εz < 1

√
(1−ε2z)

(εyεz)
1/3F




√
(1−ε2z),

�
(1−ε2y)
(1−ε2z)





Table 1. Non-dimensional ratio Req

R0
for different drop shapes. The parameter ε is equal to the ratio between the

spheroid half length along the symmetry axis and the maximum radius.
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shape f (ξ0)
1
hξ

nadv CG

sphere 1
R2
0

1 1 1
R2
0

oblate spheroid ε1/3

R0

ε1/3

R0|1−ε2|1/2
��

1
1−ε2

−sin2 u
�

ε2/3

|1−ε2|1/2
��

1
1−ε2

−sin2 u
�

ε8/3

R2
0|1−ε2|2

�
1

1−ε2
−sin2 u

�2

prolate spheroid ε1/3

R0

ε1/3

R0|1−ε2|1/2
��

1
ε2−1

+sin2 u
�

ε2/3

|1−ε2|1/2
��

1
ε2−1

+sin2 u
�

ε8/3

R2
0(ε

2−1)2
�

1
ε2−1

+sin2 u
�2

triaxial ellipsoid 1
R2
0(εzεy)

1/3

(εzεy)��
1−
�

u
ξ0

�2��
1−
�

v
ξ0

�2�
(εzεy)

2/3

��
1−
�

u
ξ0

�2��
1−
�

v
ξ0

�2�
1
R2
0

(εyεz)
8/3

�
1− v2

ξ2
0

�2�
1−u2

ξ2
0

�2

Table 2. Scale factor parameters, non-dimensional local vapour flux and local Gaussian curvature for spherical,

spheroidal and triaxial ellipsoidal drops.

Shape (εy, εz) β R0

Req

sphere (1, 1) 1 1

oblate spheroid (1, 0.25) 1.43 1.17

prolate spheroid (0.5, 0.5) 1.08 1.04

triaxial ellipsoid (0.5, 0.35) 1.14 1.08

triaxial ellipsoid (0.75, 0.25) 1.34 1.14

triaxial ellipsoid (0.6, 0.5) 1.06 1.04

Table 3. Aspect ratio, non-dimensional surface (β) and non-dimensional parameter ( R0

Req
) for five selected drops

of Figure 5.

8 List of Figures

Figure 1. Schematic of triaxial ellipsoidal drop axes.

Figure 2. Schematic representation of ellipsoidal class in terms of aspect ratio parameters: (a) εy − εz plane,

since εz ≤ εy only the grey region represents a possible ellipsoid, (b) η − ζ plane.

Figure 3. Dependence of Req/R0 on drop surface area and shape.

Figure 4. Dependence of Req/R0 on the shape parameter η for different values of drops surface area.
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Figure 5. Local vapour flux along x− y, x− z and y − z planes for different drop shapes. The thick lines on the

three drawings on top of figure schematically indicate where the local vapour flux is calculated.
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Research Highlights

1. A 1-D analytical model for deformed drop evaporation is proposed.
2. The model calculates the evaporation rate for general ellipsoidal drops.
3. The local vapour and heat fluxes are calculated for these classes of drop shapes.
4. A relation of the local vapour flux with the surface Gaussian curvature is found. 
5. A comparative analysis is reported for various drop shapes.
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