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Abstract

We study two well-known electronic markets: an over-the-counter (OTC) market, in which

each trader looks for the best counterpart through bilateral negotiations, and a double auction

(DA) market, in which traders post their quotes publicly. We focus on the DA-OTC efficiency

gap and show how it varies with different market sizes (10, 20, 40, and 80 traders). We

compare experimental results from a sample of 6,400 undergraduate students in Economics

and Management with zero-intelligence agent-based simulations. Simulation results show that

the traded quantity increases with market size under both DA and OTC. Experimental results

confirm the same tendency under DA, while the share of periods in which the traded quantity

is lower than the efficient one increases with market size under OTC, ultimately leading to a

DA-OTC efficiency gap increasing with the market size. We rationalize these results by putting

forward a simple model of OTC market as a repeated bargaining procedure under incomplete

information on buyers’ valuations and sellers’ costs. We show that efficiency decreases slightly

with size due to two counteracting effects: acceptance rates in earlier interactions decrease

with size, and earlier offers increase, but not always enough to compensate for the decrease in

acceptance rates.
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1 Introduction

Experimental markets have been studied to understand the equilibrium properties and effi-

ciency of different market structures. One of the most common market structures considered

by the experimental literature is the double auction (henceforth, DA) mechanism introduced

by Vernon Smith (1962). This mechanism has so far been used to test the behavior of com-

petitive markets (Friedman and Rust, 1993; Plott, 2008; Cason and Friedman, 2008) and

the impact of public intervention (Cox et al., 2018; Morone et al., 2018), and to prove that

zero-intelligence (ZI) agents can do as well as humans when they trade under simple rules

(see Gode and Sunder, 1993, 1997, 2004, 2018).

In a DA market, buyers and sellers typically trade a single homogeneous good. Buyers

can submit public bids for the good and are free to accept asks from sellers, while sellers can

submit public asks and are free to accept bids from buyers. When a buyer accepts an ask or

a seller accepts a bid, a public transaction takes place at the accepted price, and both the

bid and ask are removed from the market. Given that different units of the commodity can

be traded at different prices, and traders are price makers, DA markets are non-competitive

markets. However, trading prices and traded quantity quickly converge to the competitive

price and quantity, and the efficiency reached by DA markets closely approximates that

reached by competitive markets.

In the literature, also decentralized markets have been studied experimentally, with the

most well-known example represented by over-the-counter (henceforth, OTC) markets (see,

e.g., Chamberlin, 1948; Holt, 1996; List, 2002, 2004). In OTC markets, traders individually

look for their counterparts, and trades happen through private bilateral negotiations. There

exist many types of OTC markets, which differ in features such as the exact process through

which each trader searches for a counterpart or the possible presence of intermediating traders

such as brokers. However, there are two main features characterizing all OTC markets that

make them comparable to DA markets. First, as in DA markets, different buyers and sellers

can trade the same commodity at different prices. Therefore, they are price makers: also

OTC markets are non-competitive markets. Second, differently from DA markets, where

pre-trade is public, under OTC agents’ private bargaining gives little information about

trading opportunities, i.e., bids and asks of the other traders.

Attanasi et al. (2016) have compared the OTC relative performance to DA markets with

40 human traders. They impose public information about trading prices in OTC markets,

a feature that holds by construction in DA markets. They experimentally find that market

decentralization (private trading) determines a loss of efficiency of almost 8 efficiency points

in OTC vs. DA markets. They ascribe this DA-OTC efficiency gap to the lack of pre-trade

price transparency in OTC markets, and highlight the important role of information about

the entire history of bids and asks that characterizes DA (centralized) markets.
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As shown by Smith (1962) and subsequent experimental research (see, e.g., Friedman and

Rust, 1993; Attanasi et al., 2019), the convergence and efficiency properties of DA markets

with human traders are robust to modifications of the market size, i.e., of the number of

buyers and sellers. The same occurs under agent-based simulations with ZI agents (for a

review, see Gode and Sunder, 2018; Rust et al., 2018). To the best of our knowledge, similar

robustness tests to market size modifications are missing for OTC markets in both streams of

research, as mentioned above. Therefore, in this paper, we investigate OTC markets through

the simultaneous use of experiments with human traders and agent-based simulations with

ZI agents, with a threefold aim.

First, we want to understand whether humans may perform as well as ZI agents in

decentralized markets. In this regard, to the best of our knowledge, we are the first to

extend Gode and Sunder (1993) agent-based simulations to OTC markets. Second, we aim

to verify whether the efficiency loss of OTC markets with human agents with respect to

DA markets with human agents varies with the market size. With this, we build on the

work by Attanasi et al. (2016), and depart from it, as they only compare OTC and DA

markets with humans for a fixed number of agents (40), without exploring whether the two

types of markets, and henceforth their comparison, are affected by market size. Third, we

want to determine the trend of the (supposed) efficiency loss of OTC markets with human

agents with respect to OTC markets with ZI agents as a function of the market size. In this

analysis, we consider the efficiency loss between humans and ZI agents in DA markets as a

control.

For what concerns this last aim, we also acknowledge an asymmetry in the theoretical

literature on the effects of market size on efficiency. On the one hand, there is a vast lit-

erature on the effects of market size on the efficiency of DA markets with human agents.

Although the theoretical results on the efficiency of DA markets are sensitive to the insti-

tutional features of the market itself, they go in the direction of showing that, when the

number of traders is small, both efficient and inefficient equilibria might coexist. In con-

trast, as the number of traders grows, the trading outcome converges to the competitive

equilibrium (Friedman, 2018). Theoretically, the analysis of efficiency of DA markets with

one-way traders (sellers and buyers), independent values and single indivisible units has been

developed by Chatterjee and Samuelson (1983), Satterthwaite and Williams (1989), Gresik

and Satterthwaite (1989), Wilson (1985), Cripps and Swinkels (2006). All these papers high-

light how a DA market where all agents simultaneously submit bids and asks converges to

100% efficiency as the number of traders grows (at different rates depending on the specific

institutional characteristics of the market). Wilson (1987) confirms that also continuous DA

markets with a large number of traders tend to 100% efficiency. Specifically, Wilson (1987)

argues that this is due to an increased competitive pressure among traders of the same type
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(buyers or sellers), who accept advantageous offers more quickly to avoid being anticipated

in acceptance by other traders of the same type.

On the other hand, the theoretical literature on how the efficiency of OTC markets is

affected by market size is scarce. Existing models of OTC markets (Duffie et al., 2007,

and follow-up papers) do not focus on the strategic effects which may influence how the

agents’ behavior in OTC markets varies with size. In addition, most of the strategic models

of decentralized markets (see, e.g., Moreno and Wooders, 2002; Blouin and Serrano, 2001;

Lauermann, 2012) do not consider how the behavior of decentralized markets varies with

size. An exception is Wooders (1998), who compares equilibrium behavior of small and large

decentralized markets, without considering however the efficiency issue. For this reason,

we put forward a simple model of OTC markets, which focuses on the strategic effects at

play and their effects on the relationship between efficiency and market size. Our game-

theoretical model shows that the intuition of Wilson (1987) on why DA markets with a large

number of traders become efficient does not apply to OTC markets. As the offer is made

to a single counterpart, increasing the number of traders does not increase the competitive

pressure from traders of the same type, while it increases the probability of receiving more

advantageous offers from traders of the opposite type, thereby leading traders to strategically

wait more before accepting an advantageous offer.1 As a consequence, an increase in market

size reduces efficiency in OTC markets (see Coleff and Garcia, 2017, for a similar result in

procurement auctions with private information).

We run a series of computerized classroom experiments (300 market sessions), by involv-

ing a gender-balanced sample of 6,400 undergraduate students of the same age (19−20 years

old), nationality (mostly Italians), and field of study (Economics and Management), during

a first-year introductory course in Microeconomics at Bocconi University Milan over five

consecutive academic years, namely from 2015 to 2019 (1,280 students per year on average).

We implemented a 2X4 between-subject design, with each student participating in only one

treatment, characterized by one out of 2 trading mechanisms (DA or OTC) and one out of

4 market sizes with an equal number of buyers and sellers (10, 20, 40, or 80 traders). Due

to the massive number of students involved, and as is indeed prevalent in many classroom

experiments (see, e.g., Holt, 1996, 1999; Attanasi et al., 2016), we did not use monetary

incentives. Instead, we incentivized students to play effectively by publicly praising the best

performing traders among them (more details in Section 2). Correspondingly, we ran 800

periods of agent-based simulations for each of the 8 treatments (6,400 periods in total) by

1This finding is in line with a strand of literature on bargaining, which highlights different reasons for
strategic delay (see, for example, Deneckere and Liang, 2006; Ausubel et al., 2002). In this literature, the
study that is closer in spirit to our work is Bochet and Siegenthaler (2018). They propose a theory-driven
experiment on bargaining with finite horizon in the presence of asymmetric information and frictions and
investigate how efficiency responds to changes in the (finite) time horizon.
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implementing algorithms of zero-intelligence computerized trading à la Gode and Sunder

(1993) under each trading mechanism – market size combination. This was meant to dis-

entangle the (automatized) effect of market rules from the (human) effects of e.g. learning

and strategic behavior, thereby providing a control for both DA and OTC efficiency under

different market sizes.

Our results on the comparison between OTC markets and DA markets with different

types of traders (humans vs. ZI traders) and different market sizes (10, 20, 40 and 80

traders) show that, while for ZI traders the two trading mechanisms respond similarly to

changes in market size, for human agents this is not true. In particular, OTC markets

with humans respond to market size in a way that substantially differs from DA markets

with humans and from DA and OTC markets with ZI agents. Referring to the three above

mentioned research questions, first of all we find that, as for DA markets, in OTC markets

human traders reach lower level of efficiency than ZI traders. Furthermore, the DA-OTC

efficiency loss with human agents increases with market size. This is due to the fact that,

while with ZI agents the traded quantity (with respect to the efficient one) increases with

market size under both DA and OTC, with human agents we detect the same tendency

under DA, while the share of periods in which the traded quantity is higher (lower) than the

efficient one decreases (increases) with market size under OTC. The latter result is the key

finding of our game-theoretical model of bargaining under OTC.

The rest of the paper is organized as follows. In Section 2 we illustrate the experimental

design and the corresponding control via ZI agent-based simulations. In Section 3 we present

the experimental hypotheses on traded quantity, trading price, efficiency and sources of

inefficiency, together with the results of simulations of markets with ZI agents that inform

them, and their experimental test. In Section 4 we introduce the theoretical model on OTC

markets that explains their behavior (Section 4.1), and finally verify the link between the

theoretical model and the experimental results (Section 4.2). In Section 5 we conclude and

discuss some policy implications of our experimental findings.

2 Design

In this section we first describe the features of the experimental design with human agents

(Section 2.1). Then, we describe the features of the agent-based simulations with ZI agents

(Section 2.2). As for human agents, the design of computerized DA and OTC markets

represents the electronic version of the corresponding oral DA and OTC markets of the

seminal classroom experiments of respectively Smith (1962) and Chamberlin (1948).2 As for

2Differently from the oral DA of Smith (1962) and the OTC market of Chamberlin (1948), our markets are
fully computerized. Furthermore, as in Smith (1962) and subsequent standard practice in market classroom
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ZI agents, we implement the same agent-based simulations of Gode and Sunder (1993) in

DA markets and we extend their code to OTC markets under comparable conditions.

2.1 Experimental design with human agents

Procedures. The experimental procedures are essentially the same as in Attanasi et al.

(2016), who run their experiments over the six consecutive years 2009 − 2014, while our

data come from the subsequent five years 2015− 2019. All classroom experiments were held

at Bocconi University, Milan, during a first-year introductory course in Microeconomics,

always in the first two weeks of October (first semester). The experiments were computerized

through the z-Tree software (Fischbacher, 2007), run in the same computerized room, and

administered by the same experimenter (G. Attanasi). The five cohorts of participants

were homogeneous in many relevant characteristics: age (almost all students being 19 or

20 years old), gender (45% female), nationality (around 80% Italians), and field of study

(all were students in Economics or Management). Differently from Attanasi et al. (2016),

who performed the DA-OTC comparison under a fixed market size of 40 traders, in our

design market size varies. As a matter of fact, each experimental session was characterized

by a market mechanism (DA or OTC) and a market size of n ∈ {10, 20, 40, 80} traders

(n/2 buyers and n/2 sellers). The computerized room where each classroom experiment

was run had 90 trading positions (PCs), thereby allowing to run at least two experimental

sessions simultaneously. More precisely, in each classroom: (i) only one of the two market

mechanisms – DA or OTC – was implemented; (ii) market sizes were combined so that

more than one market size was simultaneously implemented during the same experiment,

with the total number of traders in each experiment being fixed and equal to the 90 trading

positions (e.g., 1 market of size 80 together with 1 market of size 10, or 1 market of size

40 with 2 markets of size 20 and 1 market of size 10, etc.). Table 1 shows the number of

sessions (300 in total) implemented for each trading mechanism – market size combination,

according to a between-subject design. The 8 market mechanism-size combinations in Table

1 also represent our 8 treatments.

n = 10 n = 20 n = 40 n = 80

DA 80 40 20 10

OTC 80 40 20 10

Table 1: Number of experimental sessions for each market mechanism-size combination (treatment)

experiments (see, e.g., Holt, 1996; Cason and Friedman, 2008), we allow subjects to trade for several periods
so as to gain experience about the trading mechanism. Differently, Chamberlin (1948) let subjects trade for
only one period. Finally, under both DA (as in Smith, 1962) and OTC (differently from Chamberlin 1948),
we always implement post-trade price transparency.

6



Common features. We first summarize the design features that are treatment-independent:

• Market and role assignment. At the beginning of the experiment, each trader (sitting

in front of one of the 90 trading positions) is randomly assigned to one of the markets

(sessions) set up for that experiment (e.g., to the 80-trader or to the 10-trader market).

In each market, the traders are divided equally into buyers and sellers. Market and

role assignments are kept constant during the whole experiment.3

• Number and length of trading periods. Each session consists of three phases. Each

phase is composed of three trading periods of fixed length.4 The length of a period is

120 seconds in the first two phases, and 60 seconds in the third phase.5

• Tradable units. In each trading period, each seller (resp., buyer) owns (resp., can

purchase) one unit of a homogeneous good, so that each subject can only trade one

unit per period, thereby exiting the market after having traded. Hence, in each period

of a market of size n, the maximum number of tradable units is n/2.

• Redemption values. At the beginning of each phase, each trader is exogenously assigned

a different redemption value for the single unit he/she has to buy or sell. A buyer’s

redemption value is the maximum amount he/she can spend for one unit of the good,

i.e., his/her valuation. A seller’s redemption value is the minimum amount he/she has

to receive for his/her unit, i.e., his/her cost.

• Budget constraints. In each period, buyers cannot bid over their own valuation, and

sellers cannot ask under their own cost. Therefore, negative profits are not allowed. If

a subject does not complete the trade within the period, he/she has zero profits.

• Information. At the beginning of the experiment, subjects learn the market size n

and their role (either buyer or seller), which are both kept constant for the whole

experiment. Then, at the beginning of each phase, subjects are given their redemption

values, which are private information, are kept constant during the three periods of

the phase, and reshuffled at the end of it. Subjects do not know the distributions of

3We follow Smith (1962) for DA and Chamberlin (1948) for OTC markets in assigning subjects to one of
the two roles exogenously and randomly. As for experiments on OTC markets where subjects choose their
role as buyer or seller endogenously, see List (2002, 2004).

4Note that, although there is not a per period time constraint in the pioneering studies of Smith (1962)
and Chamberlin (1948), a per period time limit has later become a quite standard feature of both DA and
OTC classroom experiments: see Wells (1991) for DA and Holt (1996) and Ruffle (2003) for OTC. This is a
necessary feature in order to experimentally allow intramarginal inefficiency, which has been shown to be a
relevant source of inefficiency in electronic markets (see, e.g., Cason and Friedman, 1996).

5We took the per period time limit of 110 seconds of electronic markets with n = 8 traders in Cason and
Friedman (1996) as reference for our 120 seconds time limit for markets with n = 10 traders, and maintained
it for the other three greater market sizes in Table 1.
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valuations and costs in the market.6 The last piece of information given to subjects

is their ID number. While subjects’ roles and redemption values remain fixed until

the end of the experiment and the end of the phase, respectively, their ID is randomly

reassigned at the beginning of every period. This prevents subjects from identifying

trading counterparts in a given period on the basis of IDs learned in previous periods.

• Incentives. Individual profits are shown at the end of each trading period as the

difference between valuation and trading price for buyers and between trading price

and cost for sellers. Being in a classroom experiment, subjects are not remunerated

for their participation. However, they are given an incentive to play fairly: at the

end of each phase, the sum of the 3-period profits is corrected so as to compensate

for unlucky draws in redemption values. Subjects are then ranked according to their

corrected phase profit.7 Then, for each market of size n, we ask the n/10 traders

having earned the highest and lowest total profit in that phase to stand up (e.g., the

best 8 and worst 8 traders in markets with size 80, the best and the worst trader in

markets with size 10). The former are praised publicly for their performance. The

latter instead may be flouted by classmates.8

Market mechanisms. As first treatment manipulation (see Table 1), we have two market

mechanisms, DA and OTC:

• DA markets. Their three main features are: (i) public trading : bids and asks are

publicly posted, so that at any point in time every subject knows the current highest

bid and lowest ask; (ii) bid/ask improvement rule: subjects are only allowed to make

offers that improve on the current situation, i.e., higher bids or lower asks; (iii) public

information about trading prices : when a trade is closed, the trading price appears on

every subject’s screen.

6Note that, given the short amount of time of each trading period, we restricted the set of possible bids
and asks to non-negative integer numbers lower than 100. Therefore, at the beginning of the experiment,
subjects are told that they can enter on the computer screen up to two-digit numbers as bids and asks.

7The correction factor is 1 for the two traders with the best possible redemption values (i.e., maximum
valuation and minimum cost) and, for all other traders, is proportionally increasing with the distance between
the individual redemption value and the best possible one.

8Note that even though classroom experiments typically raise issues of post-experimental communication,
we think that in our experiment spillovers between classrooms hardly arose for three reasons, that we share
with Attanasi et al. (2016). First, because of the specific features of the subject pool: Bocconi University
enrolls a quite heterogeneous population of students in terms of geographical background. Second, because
of the timetable of the experiment: all subjects were first-year undergraduate students participating in the
experiment during their first month of classes, students of the same class group participated in the same
time slot, and within an academic year all time slots were allocated within one week only, with 4-5 classroom
experiments per day. Finally, because of experimenter control of the sequence of implemented treatments:
the market mechanism-size combination of two subsequent classroom experiments was never the same.
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• OTC markets. Their three corresponding features are: (i) private trading : each subject

can make only one offer at a time, by indicating its amount and the counterpart’s ID.

This offer can be observed only by the selected counterpart, so that subjects do not

observe the highest bid and lowest ask standing in the market; (ii) no bid/ask improve-

ment rule: there are no restrictions on the amount that a subject can offer, either in

relation to his/her previous offers or to other subjects’ ones; (iii) public information

about trading prices : if an offer is accepted, the trading price appears on every sub-

ject’s screen. Note that the last feature is the same as in DA markets,9 while features

(i)-(ii) constitute the treatment difference. Design feature (i) deserves a more thorough

discussion since there are many possible alternatives to implement private trading in

OTC markets (e.g., random vs. endogenous interactions, fixed vs. endogenous dura-

tion of each interaction). We opted for endogenously generated interactions in order to

match what occurs in oral classroom (Chamberlin, 1948; Holt, 1996; Ruffle, 2003) and

field experiments (List, 2002, 2004) and in general in real OTC trading interactions

(Hendershott and Madhavan, 2015), where buyer-seller interactions are the outcome

of traders’ searches of the best counterpart by milling around the marketplace.10 For

the same reasons, we also opted for an endogenous duration of a buyer-seller interac-

tion, so that a buyer (resp., a seller) is allowed to withdraw his/her bid (resp., ask)

by making the offer disappear from the screen of the trading counterpart at any time

during the trading period. Therefore, an agent can quickly approach all the agents on

the other market side. However, each time he/she approaches a new agent he/she has

to withdraw the offer made to the previous one, i.e., he/she can only approach one

agent per time.11 As in the corresponding oral markets, it is possible that a subject

is approached by more than one agent at the same time, hence getting multiple offers.

In this case, he/she sees them already in order, with the best one appearing at the top

of his/her screen.

Market sizes. As second treatment manipulation (see Table 1), we implement markets of

size n, with n ∈ {10, 20, 40, 80}, with n/2 buyers and n/2 sellers in each of these markets.

Valuations and costs are distributed so that each buyer (seller) has a different valuation

9Given public information about trading prices, it is possible that subjects’ decisions are anchored on
earlier prices in the period, and this may affect inefficiencies.

10Hendershott and Madhavan (2015) study traditional OTC trading based on telephone and voice commu-
nications. In particular, they use data on corporate bond trades between 2010 and 2011 to investigate which
factors influence the transition from voice-based OTC trading to DA trading based on electronic platforms
such as MarketAxess.

11Note that, given the time limit of 120 seconds per period, a fixed time duration for each offer would
have restricted the set of agents’ bargaining strategies in a way that does not apply to DA, where each
agent can make as many as (public) offers he/she likes. More importantly, for the specific goal of our study,
this exogenous restriction would have been differently binding for different market sizes, thus providing an
additional mechanism through which size affects market behavior.
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(cost) from those of all other buyers (sellers). By sorting individual valuations from the

highest to the lowest, and costs from the lowest to the highest, we obtain a demand and

a supply curve, respectively. Independently of the market size n, the maximum buyers’

valuation v and minimum sellers’ cost c are set respectively at max v = 96 and min c = 34.

The only difference between the four market sizes is in the distance between two subsequent

valuations or costs, that is set at 80/n. Therefore, there is a 8-integer, 4-integer, 2-integer,

and 1-integer distance between two subsequent valuations or costs respectively in markets

with 10, 20, 40, and 80 traders, with a finer grid of valuations and costs as n increases. This

leads to the same equilibrium price (p∗ = 64) independently of n, a size-dependent efficient

quantity q∗ = 0.8 · (n/2), i.e., a size-independent ratio of efficient over total quantity (80%

of the available units are traded in equilibrium), and a size-independent average efficient

surplus.

2.2 Design of simulations with ZI agents

We implement agent-based simulations with two groups of zero-intelligence agents, buyers

and sellers, by imposing the same market rules as in the experiments with human agents.

To increase humans-ZI agents comparability, we made these agent-based simulations by

modeling ZI agents within the same z-Tree environment (Fischbacher, 2007) used to run the

classroom experiments described in Section 2.1.12

Common features. Our ZI agents are Gode and Sunder (1993) zero-intelligence traders

with budget constraint: buyers can only bid in an interval between 0 and their own valuation;

sellers can only ask in an interval between their own cost and 100. Being random traders,

bids and asks are drawn from a uniform distribution in the two respective intervals. The

other main difference with respect to human agents is that – given that ZI agents have neither

memory nor learning – they do not care about information. Hence, we ran all trading periods

from the first to the last one without organizing them in 3-period phases. Table 2 shows

the number of periods for each treatment. Note that, looking at Table 1, and considering 9

periods per session with human agents, the highest number of periods we ran with human

agents is 720 (for both DA and OTC with n = 10), which is indeed lower than 800.

n = 10 n = 20 n = 40 n = 80

DA 800 800 800 800

OTC 800 800 800 800

Table 2: Number of ZI trading periods for each market mechanism-size combination (treatment)

12Note that this is not part of the codes we adapted from Attanasi et al. (2016), as they did not implement
agent-based simulations.
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Market mechanisms. In DA markets, agents (randomly) choose only either their ask or

bid, entering the market sequentially. In OTC markets, instead, agents (randomly) choose

both their ask or bid and the counterpart to whom that ask or bid is going to be sent. In

OTC markets, as asks and bids are only received by a single counterpart, agents are allowed

to enter the market simultaneously in order to avoid slowing down transactions artificially.

In Appendix A we report specific details of our DA and OTC random mechanisms.

Market sizes. We set the length of the trading period to be increasing with the market

size. The length is 30 seconds for the markets of size 10, and it grows by a factor of 4

each time we double the market size, so that markets of size 20 have trading periods of

2 minutes length, those of size 40 have trading periods of 8 minutes length, and those of

size 80 have trading periods of 32 minutes length. The choice of these parameters was due

to the following theoretical reasons. First, we checked that 30 seconds was the minimum

amount of time needed for DA markets of size 10 to reach the efficient quantity and obtain 0

intra-marginal inefficiency (as in Gode and Sunder, 1993). The DA market of size 10 is our

baseline for ZI agents. Second, we quadruplicate negotiation time whenever the market size

is doubled because the number of possible buyer-seller pairs grows by a factor of 4 when the

market size doubles. Third, keeping the time length of the trading period fixed across DA

and OTC for the same market size provides a measure of OTC intra-marginal inefficiency

as compared to DA, i.e., only due to market rules and not to (human) agents’ strategic

behavior. Indeed, OTC markets have greater complexity than DA markets for any market

size, since in the former each buyer (resp., seller) must associate the number of the selected

seller (resp., buyer) to his/her private bid (resp., ask). With this, the increase in the number

of possible buyer-seller pairs due to greater market size is by construction more relevant for

OTC than for DA markets.

3 Simulation and experimental results

This section compares the performance of DA and OTC mechanisms by market size in terms

of traded quantity (Section 3.1), trading price (Section 3.2), efficiency (Section 3.3), and

sources of inefficiency (Section 3.4).

Each section both puts forward the hypothesis and tests it. In order to motivate our

hypotheses on the effects of market mechanism and size on human agents’ behavior, we

integrate the known findings in the theoretical and experimental literature with our agent-

based simulations. More precisely, we first indicate the theme of interest and describe the

theoretical and experimental findings in the literature on markets with humans on that

theme. Second, for the same theme, we report the behavior of markets with ZI agents in

our simulations. The latter are useful to elaborate hypotheses when neither the theoretical
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nor experimental literature on markets with humans has yet provided findings. Then, we

formulate the hypothesis.

Each hypothesis is divided into three parts. First, it focuses on the trend of human agents’

behavior as market size increases from 10 to 80 agents under DA. Second, it considers the

corresponding trend under OTC. Finally, it assesses the trend of the DA-OTC gap as market

size increases.

Note that the theoretical and experimental literature on markets with humans has pro-

duced thorough findings as for size trends in DA, and, for fixed market size, also for the DA-

OTC gap. Therefore, our agent-based simulations are mainly meant to develop hypotheses

about size trends in OTC markets, thereby leading us to integrate previous findings on DA

markets in order to elaborate informed predictions on the size trend of the DA-OTC gap.

In the analysis of the results, we first test each part of the hypothesis and then perform

the comparison between ZI and human agents within each market structure. This helps

shading light on the interplay of humans’ strategic behavior and market size, which is our

main focus of interest.

3.1 Traded quantity

The experimental literature on human agents suggests that volumes of trade in DA markets

tend to the efficient quantity when market size increases (Friedman and Rust, 1993; Fried-

man, 2018), and that DA markets induce higher volumes of trade than OTC for markets of

size 40 (Attanasi et al., 2016).

The left panels of Tables 3-4 report the results of simulations with ZI agents. Table 3 shows

the percentage of periods in which the traded quantity is lower, equal, or higher than the

efficient one, by trading mechanism and market size. Table 4 reports the results of probit

regressions where the dependent variables indicate respectively whether the traded quantity

is below and above the efficient one. The explanatory variables are a mechanism dummy

for OTC markets (with DA as baseline), three dummies for market size (with size 10 as

baseline), and the interaction between the mechanism dummy and the market size dummies.

Recall that, in our agent-based simulations, we set the length of trading periods increasing

with the market size so as to compensate for increased complexity of interactions among ZI

agents. With this, Table 3 reports that, in line with previous results of simulations for ZI

agents under DA (for a review, see Gode and Sunder, 2018; Rust et al., 2018), the traded

quantity under DA is higher than the efficient one more often as market size increases.13

13In our DA markets with ZI agents, the traded quantity is never lower than the efficient one. This is a
combination of efficiency of DA markets with ZI agents and the fact that we chose the length of the trading
period for DA markets of size n = 10 with the specific aim of allowing enough time for ZI traders to reach
the efficient quantity (see Gode and Sunder, 1993), at the same time increasing this length for higher size n
proportionally to the increased complexity of ZI agents’ interactions. In this way, the DA market of size 10
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ZI agents

q < q∗ q = q∗ q > q∗

DA

10 agents 0 31.9 68.1
20 agents 0 11.5 88.5
40 agents 0 3.5 96.5
80 agents 0 1.5 98.5

OTC

10 agents 0.3 43.2 56.5
20 agents 2.3 34.1 63.6
40 agents 7.1 23.9 69.0
80 agents 5.9 14.7 79.4

Humans

q < q∗ q = q∗ q > q∗

33.7 49.6 16.7
29.4 47.8 22.8
20.0 28.9 51.1
13.3 11.1 75.6

56.4 32.4 11.2
48.3 30.0 21.7
57.2 23.9 18.9
86.7 7.8 5.5

Table 3: Percentage of periods in which the traded quantity is lower, equal or higher than the
efficient one, q∗ = 0.8 · (n/2), by type of traders, treatment and market size n ∈ {10, 20, 40, 80}

ZI Agents Humans

q < q∗ q > q∗ q < q∗ q > q∗

OTC 3.276 -0.307 0.580 -0.246
(0.981) (0.000) (0.000) (0.003)

20 0.000 0.729 -0.121 0.221
(1.000) (0.000) (0.152) (0.016)

40 0.000 1.340 -0.422 0.995
(1.000) (0.000) (0.000) (0.000)

80 0.000 1.699 -0.691 1.659
(1.000) (0.000) (0.000) (0.000)

OTC × 20 0.802 -0.544 -0.081 0.208
(0.997) (0.000) (0.487) (0.117)

OTC × 40 1.340 -1.008 0.443 -0.663
(0.995) (0.000) (0.004) (0.000)

OTC × 80 1.242 -1.043 1.641 -2.039
(0.995) (0.000) (0.000) (0.000)

Const. 6.083 -0.471 -0.419 -0.967
(0.966) (0.000) (0.000) (0.000)

Table 4: Probit regression of a dummy for quantity below and above the efficient one, q∗ = 0.8·(n/2),
over trading mechanism and market size n ∈ {10, 20, 40, 80} (p-values in brackets)

We verify that this also occurs under OTC. Indeed, also for OTC markets Table 3 shows

that the traded quantity is usually higher than the efficient one (χ2 test for q > q∗ vs.

q ≤ q∗, p-value < 0.001 for each market size), and that the percentage of periods with a

traded quantity higher than the efficient one significantly increases with market size (+23

percentage points moving from size 10 to size 80, this increase being significant at the 0.1%

works as a baseline for the performance of DA markets of larger size and of OTC markets of any size (see
subsection “Market sizes” in the design of simulations with ZI agents of Section 2.2).
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level, χ2 test).

However, we find significantly lower traded quantity under OTC than under DA regardless

of the market size, since the negative coefficient of the OTC dummy for q > q∗ in Table 4

is significant at the 1% level. This is in line with the results of Attanasi et al. (2016) for

human agents with n = 40. We interpret our simulation results as confirmation that the

comparatively greater complexity of the OTC mechanism with respect to the DA mechanism

lowers traded quantity regardless of market size. Furthermore, the DA-OTC gap in the

traded quantity increases with market size, since the negative coefficients of dummies OTC

× 20, OTC × 40 and OTC × 80 for q > q∗ are significant and increasingly larger.14

All this allows us to state hypothesis H1, which summarizes our predictions on traded

quantity for human agents.

H1: (DA) In DA markets the traded quantity is less often lower than the efficient one as

market size increases;

(OTC) In OTC markets the traded quantity is less often lower than the efficient one

as market size increases;

(DA-OTC) OTC markets have lower traded quantity than DA markets for each mar-

ket size, and the DA-OTC gap in traded quantity increases with market size.

Let us now test H1. The right panels of Table 3 and 4 report the results for experimental

markets with humans.

DA markets respond to market size as in the case with ZI agents – see the right panel of

Table 3, especially column q > q∗ for DA (+49 percentage points moving from size 10 to size

80, increase significant at the 0.1% level, χ2 test). Therefore, H1(DA) is confirmed.

OTC markets instead display the opposite behavior than DA markets – see the right panel

of Table 3, especially column q < q∗ for OTC (+30 points moving from size 10 to size 80,

increase significant at the 0.1% level, χ2 test). Therefore, H1(OTC) is rejected.

As for the DA-OTC gap, the OTC coefficient in the right panel of Table 4 is positive (resp.,

negative) and significant for q < q∗ (resp., for q > q∗), thus confirming that the traded

quantity is more likely to be below the efficient one in OTC markets than in DA ones.

Moreover, the coefficients of OTC × 40 e OTC × 80 are positive (resp., negative) and

significant for q < q∗ (resp., q > q∗). Thus, the likelihood of observing a traded quantity

lower than the efficient one increases in OTC markets with respect to DA markets for sizes

n ≥ 40. Hence, H1(DA-OTC) is confirmed.15

14Note that this negative mechanism effect is only of second order with respect to the positive size effect:
for q > q∗, the coefficients of dummies 20, 40 and 80 are positive, significant and significantly higher, in
absolute value, than those of dummies OTC × 20, OTC × 40 and OTC × 80, respectively (Wald test of
difference of coefficients, p-value < 0.01 in the three cases).

15Note that we formulated H1(DA-OTC) by relying on the assumption that traded quantity in OTC
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ZI-human agents comparison. Comparing the right and left panels of Table 3, we see that

under OTC the human-ZI agents (resp., ZI-human agents) difference in the probability of

observing q < q∗ (resp., q > q∗) increases monotonically and significantly from 56 (resp., 45)

percentage points for n = 10 markets to 81 (resp., 74) percentage points for n = 80 markets

(t-test of the difference in percentages, p-value < 0.01). Therefore, for OTC markets, the

ZI-human agents gap in terms of traded quantity is increasing in market size. The control

for DA markets shows the opposite picture, with the ZI-human agents gap in terms of traded

quantity decreasing in market size.16

To summarize, the test of H1 and the ZI-human agents comparison show that in DA markets

humans’ size-dependent behavior is similar to the one of ZI agents, with humans underper-

forming ZI agents in terms of traded quantity less for higher market sizes. Conversely, OTC

markets display the opposite comparative statics: humans’ size-dependent behavior is op-

posite to the one of ZI agents, with humans underperforming ZI agents in terms of traded

quantity more for higher market sizes. This is the first element in support of the need for a

theoretical analysis of strategic incentives in OTC markets (see Section 4).

3.2 Trading price

The experimental literature on human agents suggests that the distance between trading

price and equilibrium price under DA decreases as market size increases (see Chatterjee and

Samuelson, 1983, and follow-up papers) and that this distance is lower than under OTC for

markets of size 40 (Attanasi et al., 2016). More precisely, for n = 40, Attanasi et al. (2016)

detect trading prices under DA closer to the equilibrium price and significantly higher than

under OTC, where agents usually trade at a price lower than the equilibrium one.

Results of our simulations are reported in the left panel of Table 5, which presents the average

difference between trading price and equilibrium price in markets with ZI agents for varying

market sizes. Recall that by construction ZI agents cannot learn through periods. Thus,

their trading price should not converge to the equilibrium one regardless of the market size.

In confirmation of that, in all mechanism-size combinations of the left panel of Table 5 we

detect a trading-equilibrium price average distance significantly different from zero.

Interestingly, our simulations show that while greater complexity induces a significantly

greater average distance between trading and equilibrium price under DA (ANOVA, p-value

markets was increasing with market size (H1(OTC)) but at a slower pace than in DA markets. The rejection
of H1(OTC) on the basis of traded quantity in OTC markets decreasing with market size made H1(DA-OTC)
hold a fortiori.

16The human-ZI agents (resp., ZI-human agents) difference in the probability of observing q < q∗ (resp.,
q > q∗) decreases monotonically from 34 (resp., 51) percentage points for n = 10 markets to 13 (resp., 23)
percentage points for n = 80 markets (t-test of the difference in percentages, p-value < 0.01).
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ZI Agents Humans

DA OTC DA OTC

10 agents 0.35 0.65 1.71 −0.44
(0.23) (0.22) (0.14) (0.14)

20 agents 1.28 0.89 0.14 −1.59
(0.16) (0.15) (0.11) (0.12)

40 agents 1.72 1.08 0.42 −2.55
(0.12) (0.11) (0.11) (0.12)

80 agents 1.58 0.70 −0.03 −3.31
(0.09) (0.08) (0.12) (0.13)

Table 5: Average difference between trading price and equilibrium price (standard errors in brack-
ets)

= 0.003), this does not occur under OTC, where the trading-equilibrium price average dis-

tance is invariant to the market size (ANOVA, p-value = 0.101), and never greater than

under DA (it is even significantly smaller at the 10% level for n = 20 and at the 1% level for

n ≥ 40). Therefore, our simulations provide no evidence that under OTC a greater complex-

ity generates a greater distortion on trading price than under DA. This finding let us predict

that, with humans, the trading-equilibrium price distance in OTC should depend on market

size in the same way as in DA markets, where both the theoretical and the experimental

literature indicate a decreasing pattern.

This reasoning also applies when formulating the hypothesis on the DA-OTC gap as market

size increases. In fact, ZI simulations provide no evidence of a worse performance of OTC

compared to DA markets as market size increases – if anything, the opposite is true –, and

the literature indicates that DA markets with humans converge to the equilibrium price as

market size increases. With this, the DA-OTC gap in the distance between trading price and

equilibrium price, experimentally detected with human subjects by Attanasi et al. (2016)

for n = 40, should be invariant to the market size.

All this allows us to state hypothesisH2, which summarizes our predictions on trading prices

for human agents.

H2: (DA) In DA markets the distance between trading price and equilibrium price de-

creases as market size increases;

(OTC) In OTC markets the distance between trading price and equilibrium price de-

creases as market size increases;

(DA-OTC) DA markets have trading prices closer to the equilibrium price than OTC

markets, and the DA-OTC gap in the distance between trading price and equilibrium

price is constant with market size.

We now test H2 relying on the experimental results reported in the right panel of Table 5.
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For DA markets, the average trading price is significantly higher than the equilibrium price

for market size n = 10 (t-test, p-value < 0.001). As market size increases, the positive

difference between the average trading price and the equilibrium price decreases and the

former essentially coincides with the latter for the highest market size (t-test, p-value =

0.773). Therefore, H2(DA) is confirmed.

On the contrary, in OTC markets the average trading price is significantly lower than the

equilibrium price independently of the size n (p-value < 0.001 for each n), and the absolute

value of this difference is increasing in market size (p-value < 0.01 for each comparison 10 vs.

20, 20 vs. 40, and 40 vs. 80). With this, H2(OTC) is rejected, which is further evidence

that in OTC markets humans perform increasingly worse as market size grows.

Finally, while for market size n ≥ 10 there is a positive DA-OTC gap in the distance between

trading price and equilibrium price, this gap becomes negative for each n ≥ 20. With this,

H2(DA-OTC) is confirmed as for the sign of the DA-OTC gap. However, the DA-

OTC gap decreases monotonically from 2.15 for markets of size 10 to −3.28 for markets

of size 80 (the difference in the trading-price distance between DA and OTC in markets

with 80 agents vs. markets with 10 agents is significant: t-test, p-value < 0.001). With this,

H2(DA-OTC) is rejected as for the market size-dependency of the DA-OTC gap.

ZI-human agents comparison. We note that under OTC the human-ZI agents difference

in the average distance between trading price and equilibrium price increases monotonically

and significantly from −0.21 for markets of size 10 to 2.61 for markets of size 80 (t-test for the

difference in the trading-equilibrium price distance between humans and ZI agents in markets

with 80 agents vs. markets with 10 agents is significant at the 1% level). In DA markets, we

find an opposite trend, with the human-ZI agents difference in the average distance between

trading price and equilibrium price decreasing monotonically and significantly from 1.36 for

markets of size 10 to −1.55 for markets of size 80 (t-test for the difference in the trading-

equilibrium price distance between humans and ZI agents in markets with 80 agents vs.

markets with 10 agents is significant at the 1% level).

3.3 Efficiency

The existing theoretical literature on DA markets with human agents shows that efficiency

increases with market size (Chatterjee and Samuelson, 1983; Satterthwaite and Williams,

1989; Gresik and Satterthwaite, 1989; Wilson, 1985). The experimental literature on human

agents reports that OTC markets are less efficient than DA markets for n = 40 (Attanasi

et al., 2016).

As in Gode and Sunder (1993) and Cason and Friedman (1996), we measure efficiency as the

surplus realized from trade over the potential surplus (Market Efficiency Index). The values

of this index obtained through our agent-based simulations are reported in the left panel of
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Table 6, which shows that market efficiency slightly decreases as market size increases both

under DA and under OTC. Therefore, DA and OTC markets with ZI agents react similarly

in terms of efficiency to variations of market size, as it happened when we looked at traded

quantity and trading price. With this, we have no reason against the assumption that, with

humans, OTC markets respond to size as DA markets, where efficiency increases with size.

ZI Agents Humans

DA OTC DA OTC

10 agents 99.1% 98.7% 93.2% 85.6%

20 agents 97.9% 97.6% 93.2% 87.2%

40 agents 97.6% 97.2% 94.9% 87.0%

80 agents 97.6% 97.1% 94.7% 82.6%

Table 6: Market efficiency index, by trading mechanism and market size

As for between-mechanism comparison, the left panel of Table 6 reports that efficiency is

higher under DA than under OTC for each market size (Mann-Whitney test; only non-

significant difference detected for market size 10, p-value = 0.108, second highest p-value for

market size 20, p-value= 0.001). This confirms what we already know for human subjects

with n = 40 (Attanasi et al., 2016). Moreover, given that efficiency is constant across market

sizes under both mechanisms, the DA-OTC gap in efficiency is invariant to market size.

All these predictions are summarized in hypothesis H3.

H3: (DA) In DA markets, efficiency is increasing with market size;

(OTC) In OTC markets, efficiency is increasing with market size;

(DA-OTC) Efficiency is higher in DA markets than in OTC markets, and this DA-

OTC gap is constant with market size.

We now proceed to test H3 relying on the experimental results in the right panel of Table 6

and in Table 7. The latter reports the results of a beta regression of the efficiency index by

trading mechanism over the normalized difference between traded and equilibrium quantity

(from Section 3.1), the distance between average trading and equilibrium price (from Section

3.2), three dummies for market size (with size 10 as baseline), and a dummy indicating

whether the sender of the accepted offer was a seller.

We find that DA markets and OTC markets behave in a very different fashion also in terms

of efficiency. Specifically, the efficiency index for DA markets in the right panel of Table 6 is

monotonically increasing in the market size and the dummy variables of market sizes 20, 40

and 80 in Table 7 have a significant positive effect on DA market efficiency, thereby allowing

us to conclude that H3(DA) is confirmed.

The opposite holds for OTC market efficiency, which is significantly lower for n = 80 than

for n = 10 in the right panel of Table 6, with the dummy variables of market sizes 20, 40
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DA OTC

(q − q∗)/q∗ 3.658 3.676
(0.000) (0.000)

|p̄− p∗| 0.009 -0.003
(0.209) (0.593)

20 0.310 -0.105
(0.000) (0.013)

40 0.438 -0.127
(0.000) (0.017)

80 0.244 -0.297
(0.003) (0.000)

Seller Sender 0.044 -0.165
(0.604) (0.027)

Const. 2.323 2.529
(0.000) (0.000)

Table 7: Humans: Beta regressions of efficiency by trading mechanism over all trading periods
(p-values in brackets)

and 80 in Table 7 having a significant negative effect. Furthermore, in OTC markets the

fact that the sender of the accepted offer is a seller rather than a buyer decreases market

efficiency (significant and negative coefficient of dummy variable Seller Sender in the second

column of Table 7). This is a signal of the pressure on sellers which makes them increase

their willingness to sell, ultimately leading to lower-than-equilibrium trading prices reported

in Section 3.2 for each n-size OTC markets (second column of the right panel of Table 5).

The Seller Sender dummy variable is instead not significant in DA markets (first column of

Table 7). Therefore, H3(OTC) is rejected.

Finally, to compare efficiency in DA vs. OTC markets, we rely on the left column of Table

8. This reports the results of a regression of the market efficiency index over a mechanism

dummy for OTC markets (with DA as baseline), three dummies for market size (with size

10 as baseline), and the interaction between the mechanism dummy and the market size

dummies. This regression analysis confirms that DA markets are more efficient than OTC

markets for each market size (OTC coefficient negative and significant), and that the DA-

OTC gap is constant with market size for n ≤ 40. The negative and significant coefficient of

OTC × 80, however, suggests that the DA-OTC gap could be increasing with size for larger

market sizes. With this, we conclude that H3(DA-OTC) is only partially confirmed.

ZI-human agents comparison. The comparison of the left and right panels of Table 6

shows that the DA-OTC efficiency gap is significantly lower for ZI agents than for humans

at any market size n ∈ {10, 20, 40, 80} (t-test, highest p-value = 0.001). As for the size-

dependent behavior, in DA markets the ZI-human agents gap in efficiency is decreasing

in size from 5.88 for markets of size 10 to 2.92 for markets of size 80 (t-test, n = 80 vs.
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Efficiency IM-inefficiency

OTC -0.487 0.135
(0.000) (0.052)

20 0.051 -0.040
(0.720) (0.849)

40 0.522 -0.245
(0.003) (0.368)

80 0.679 -1.573
(0.002) (0.000)

OTC × 20 0.131 0.169
(0.128) (0.193)

OTC × 40 -0.117 0.090
(0.271) (0.562)

OTC × 80 -0.388 0.682
(0.004) (0.003)

Const. 2.539 0.344
(0.000) (0.002)

Table 8: Humans: Comparison of efficiency and intra-marginal (IM) inefficiency for DA vs OTC
and various market sizes (p-values in brackets)

n = 10, p-value < 0.001). In OTC markets, instead, the ZI-human agents gap in efficiency is

decreasing monotonically with size for n ≤ 40, from 13.14 for markets of size 10 to 10.16 for

markets of size 40 (t-test, n = 40 vs. n = 10, p-value < 0.001), but it is increasing to 14.47

for markets of size 80 (t-test, the null hypothesis of greater or equal efficiency in n = 80 vs.

n = 40 cannot be rejected, p-value = 1.000). We see this as further confirmation that, with

human traders, OTC performance becomes problematic for large enough market sizes.

3.4 Sources of inefficiency

Following Gode and Sunder (1993) and Cason and Friedman (1996), we decompose the loss

of efficiency into two possible sources of inefficiency. We distinguish between the inefficiency

that comes from extra-marginal units being traded (EM-inefficiency) and the inefficiency

that comes from intra-marginal units not being traded (IM-inefficiency). We investigate the

effects of market size on the share of IM-inefficiency.

Attanasi et al. (2016) find that, in markets with n = 40 human agents, inefficiency of OTC

markets is a mixture of IM-inefficiency and EM-inefficiency, while inefficiency of DA markets

is mostly associated with EM-inefficiency, the share of IM-inefficiency being negligible.

The left panel of Table 9 reports the results of our agent-based simulations in terms of the

composition of inefficiency, i.e., the share of EM-inefficiency and the one of IM-inefficiency,

by trading mechanism and market size.

Note that IM-inefficiency plays no role under DA for each market size. This is by construction
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ZI agents

EM-Ineff. IM-Ineff.

DA

10 agents 100.0 0.0
20 agents 100.0 0.0
40 agents 100.0 0.0
80 agents 100.0 0.0

OTC

10 agents 99.0 1.0
20 agents 98.0 2.0
40 agents 96.3 3.7
80 agents 98.0 2.0

Humans

EM-Ineff. IM-Ineff.

71.8 28.2
74.8 25.2
90.6 9.4
94.9 5.1

51.1 48.9
65.0 35.0
67.6 32.4
49.1 50.9

Table 9: Share of sources of inefficiency (extra-marginal and intra-marginal)

for DA markets of size 10, for which we chose the length of the trading period so as to allow

enough time to ZI agents to reach the efficient quantity, i.e., zero IM-inefficiency (as in Gode

and Sunder, 1993). Absence of IM-inefficiency also in DA markets with n ≥ 20 confirms that

the exogenous increase of the negotiation time with market size, which was meant to account

for the increase in the number of possible buyer-seller pairs, was able to compensate for the

whole increase in complexity of agents’ interactions under the DA trading mechanism.

We maintained the same length of the trading period for the OTC market of the correspon-

dent size, to check whether OTC greater complexity with respect to DA may lead to some

IM-inefficiency, and how this might depend on the market size. Indeed, we detect a positive

share of IM-inefficiency for OTC markets (t-test for the mean IM-inefficiency equal to 0 for

each market size: the null hypothesis is rejected at the 5% level for every market size, with

highest p-value = 0.014 for n = 10). However, this share of IM-inefficiency is negligible for

each market size, with no detected monotonicity (it is significantly smaller than 5% regard-

less of the market size: the null hypothesis of a mean IM-inefficiency greater or equal to 5%

is rejected, highest p-value < 0.001). Irrelevance of IM-inefficiency in OTC markets and its

insensitivity to market size confirm that the exogenous increase of the negotiation time with

market size was able to compensate for the increase in complexity of agents’ interactions not

only under DA but also under OTC. Therefore, moving to human agents, we assume that

OTC markets behave as DA markets, i.e., IM-inefficiency decreases with market size.

Finally, as for between-mechanism comparison, given the same allowed trading time, the

slight DA-OTC gap – consistently with what we already know for human agents with n = 40

(Attanasi et al., 2016) – seems to be independent from the market size (it increases up to

n = 40, with p-values < 0.01 for both 20 vs. 10 and 40 vs. 20 positive differences, and

decreases from 40 to 80, with p-value < 0.01).

All these predictions are summarized in hypothesis H4.
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H4: (DA) In DA markets, the share of IM-inefficiency is decreasing with market size;

(OTC) In OTC markets, the share of IM-inefficiency is decreasing with market size;

(DA-OTC) The share of IM-inefficiency is lower in DA than in OTC markets, and

this DA-OTC gap is constant with market size.

We test H4 relying on the experimental results in the right panel of Table 9 and in the right

column of Table 8. The latter reports the results of a regression of the share of IM-inefficiency

over a mechanism dummy for OTC markets (with DA as baseline), three dummies for market

size (with size 10 as baseline), and the interaction between the mechanism dummy and the

market size dummies.

In DA markets, the weight of IM-inefficiency over EM-inefficiency decreases dramatically

with the number of agents. In fact, differences in the share of IM-inefficiency between a

market size and a smaller one are all negative for DA markets. We use a difference-in-

means test to assess whether these differences are statistically significant. At the 1% level of

significance, the differences are not equal to zero in DA markets, with the exception of the

difference between the market of size 20 and the one of size 10, which is negative but not

significant (p-value = 0.519). Therefore, H4(DA) is confirmed.

As for OTC markets, the weight of IM-inefficiency over EM-inefficiency does not decrease

monotonically with market size. Furthermore, a difference-in-means test assesses that the

difference in the shares of IM-inefficiency between size 80 and size 10 is positive and significant

at the 1% level (p-value < 0.01), and that the difference between size 80 and size 40 is positive

and significant at the 1% level (p-value < 0.01). Therefore, H4(OTC) is rejected: for OTC

markets, IM-inefficiency does not disappear as market size increases. This is, once again,

evidence of the strategic differences of the two trading mechanisms when used by humans.

As for the DA-OTC gap, the right column of Table 8 confirms that the share of IM-inefficiency

is lower in DA than in OTC markets (OTC coefficient positive and weakly significant). More-

over, the DA-OTC gap in the share of IM-inefficiency is constant for n ≤ 40. However, the

gap seems to be increasing for larger markets (OTC × 80 coefficient positive and significant).

Hence, we conclude that H4(DA-OTC) is only partially confirmed.

ZI-human agents comparison. In DA markets, IM-inefficiency is null for each market size

with ZI agents (second column of Table 9) and it is positive and significantly decreasing in the

market size with humans (fourth column of Table 9). Hence, although the human-ZI agents

gap in terms of IM-inefficiency is positive for each market size, it decreases significantly

with market size under DA. In OTC markets, IM-inefficiency is small and constant for each

market size with ZI agents (second column of Table 9) and it is positive but relatively stable

in market size with humans (fourth column of Table 9), even significantly higher for market

size 80 than for any other market size (highest p-value < 0.001 for the comparison with

market size 10). Hence, the positive human-ZI agents gap in terms of IM-inefficiency is
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not decreasing with market size under OTC. This is a final confirmation that, with human

traders, OTC markets do not respond well to increases in market size.

4 Strategic interactions in OTC markets with humans

Results in Section 3 highlight a consistent pattern. While the existing theoretical literature

and the predictions obtained by looking at the simulations of markets with ZI agents allow us

to formulate accurate predictions of the behavior of DA markets with human agents, they do

not help to describe the behavior of OTC markets with humans. In fact, our experimental

results show that OTC markets respond to size differently both from DA markets with

humans and from OTC markets with ZI agents. This implies that agent-based models

are not the appropriate tool to predict human behavior in OTC markets as they fail to

take into account how characteristics of the market, such as its size, affect the strategic

behavior of agents. Therefore, in Section 4.1 we put forward a simple model that accounts

for the strategic mechanisms at play in OTC markets with humans, and we show how the

model explains the findings of Sections 3.1-3.4 that concern size-dependent behavior in OTC

markets. Then, in Section 4.2 we further formulate a specific hypothesis (H5) which focuses

on the strategic mechanisms described by our model and test it.

4.1 A simple model of OTC markets

We propose a model of OTC market in which sellers and buyers meet to trade a good. In the

literature, OTC markets have been modeled by Duffie et al. (2007) and follow-up papers17

with a search model where agents with high and low valuations of an asset trade. However,

in their model, whenever a profitable match occurs, there is a trade. As a consequence, the

search model does not take into account the fact that individual bargaining strategies in

every interaction are affected by expectations of future payoffs, which in turn are affected by

the market size. We, therefore, introduce a simple bargaining model of OTC markets that

explicitly models this feature of the strategic interaction, which mostly distinguishes human

agents from ZI agents.

Specifically, we model the bargaining process as a sequence of take-it-or-leave-it offers.

Each seller has one unit to sell, and each buyer is willing to purchase one unit only. We con-

sider the market size n = 10, with 5 buyers and 5 sellers. Buyers privately evaluate the object

v ∈ {0, 1, 2, 3, 4}, while sellers have a cost of production c ∈ {0, 1, 2, 3, 4}. Buyers’ valuations

(and sellers’ costs) are their private information. As in our experiment, there is exactly one

buyer (resp., seller) with each valuation (resp., cost), so that each valuation (resp., cost) is

17Duffie (2010, 2012); Ashcraft and Duffie (2007); Duffie et al. (2005, 2007); Duffie and Manso (2007);
Duffie et al. (2009, 2010a,b, 2014).

23



equally likely.18 Let β ∈ {0, 1, 2, 3, 4} be the type of buyer, and σ ∈ {0, 1, 2, 3, 4} be the

type of seller. With a slight abuse of notation, we call β (resp., σ) not only buyers’ (resp.,

sellers’) types but also their valuations (resp., costs).

We consider the following sequential bargaining protocol. Agents interact for 2 stages.19

All the traders are present in the market at the beginning of the game. In every stage, each

buyer is randomly matched to a seller (recall that there is the same number of buyers and

sellers). Given the match, each trader is selected with probability 1/2 to be the proposer.

The selection of the proposer happens independently in every match. The proposer makes

a take-it-or-leave-it offer. If the offer is accepted, the good is traded, and the two traders

leave the market. If the offer is rejected, the partnership dissolves, and the traders move

to the following stage in which a new random matching occurs. Proposition 1 characterizes

a subgame perfect equilibrium of this game in terms of stage t offers pkt and acceptance

strategies skt , with t = 1, 2 and k = β, σ. The proof is contained in Appendix B.

Proposition 1 The following is a subgame perfect equilibrium of the bargaining game.

• Stage 1 offers are:

pβ1 =











0 if β ∈ {0, 1}

1 if β = 2

2 if β ∈ {3, 4},

pσ1 =











2 if σ ∈ {0, 1}

3 if σ = 2

4 if σ ∈ {3, 4}.

• Stage 1 acceptance strategies are:

sβ1 =

{

Yes if p2 ≤ max{0, β − 1}

No otherwise;
sσ1 =

{

Yes if p2 ≥ min{σ + 1, 4}

No otherwise.

• Stage 2 offers are:

pβ2 =











0 if β ∈ {0, 1}

1 if β ∈ {2, 3}

2 if β = 4,

pσ2 =











2 if σ = 0

3 if σ ∈ {1, 2}

4 if σ ∈ {3, 4}.
18The theoretical analysis is the same even if we assume that buyers’ valuations and sellers’ costs are

randomly drawn from a discrete uniform distribution over {0, 1, 2, 3, 4}. We chose to model the market as
described above because it corresponds more closely to the specifics of our experimental environment.

19Note that what we call stage in the model is not the trading period of the experiment. The trading
period in the model is the union of the two stages in which the agents interact.
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• Stage 2 acceptance strategies are:

sβ2 =

{

Yes if p2 ≤ β

No otherwise;
sσ2 =

{

Yes if p2 ≥ σ

No otherwise.

Note that in stage 1 buyers and sellers strategically reject more offers than in stage 2,

because they anticipate they may have higher payoffs in the future, either because they will

be the proposers or because they will end up in a better match. This delay is in line with

what observed in other bargaining models with incomplete information (see, for example,

Bochet and Siegenthaler, 2018; Deneckere and Liang, 2006; Ausubel et al., 2002). Our model,

however, highlights a novel rationale for the existence of strategic delay, i.e., the existence

of a pool of potential traders. Therefore, the effect is sensitive to their characteristics, and,

importantly, to market size. Note that the strategic waiting effect decreases the number

of trades in the first stage. Furthermore, offers are also higher in stage 1 than in stage 2,

to compensate for lower acceptance rates. As a matter of fact, trades happen in the cases

described in Table 10.

Stage Proposer (β, σ) pairs who trade

1 Buyer {(2, 0), (3, 0), (4, 0), (3, 1), (4, 1)}

Seller {(3, 0), (4, 0), (3, 1), (4, 1), (4, 2)}

2 Buyer {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (2, 1), (3, 1), (4, 1), (4, 2)}

Seller {(2, 0), (3, 0), (4, 0), (3, 1), (4, 1), (3, 2), (4, 2), (4, 3), (4, 4)}

Table 10: Feasible trades, by stages and role of the proposer

Effects of market size. Our model suggests a channel through which market size may

affect efficiency and volumes of trade in OTC markets. Recall that, as discussed in the

Introduction, Wilson (1987) tackles the theoretical analysis of the efficiency of DA markets

as their size grows, showing that they converge to efficiency. Wilson (1987) argues that

this is due to an increase in the competitive pressure by the same type of traders, which

is particularly effective in DA markets, where offers are made publicly to all traders of one

side of the market. In OTC markets, this effect does not apply. As a matter of fact, offers

in OTC markets are made only to a single trader. Therefore, the trader who receives the

offer does not compete with other traders of his/her type (buyers or sellers) for that specific

offer. Market size, therefore, has the opposite effect. Instead of pushing traders to accept

advantageous offers more quickly, it increases their expected gains from future trades and

induces them to wait longer and/or for better offers. Thus, only more advantageous trades

happen in earlier stages, and this reduces the efficiency of the market. This explains why,

in OTC markets, there is a non-negligible share of IM-inefficiency, which does not disappear

as market size increases. In fact, trades between best buyers and best sellers that happen
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early worsen the pool of potential traders, decrease overall traded quantity and generate

inefficiency due to infra-marginal units not being traded. Importantly, this structural effect

of OTC markets does not vanish with increases in market size.

To better understand the effects of size on OTC markets, we can compare the n = 10

market described above with an n = 6 market where we have 3 buyers with valuations

β ∈ {0, 2, 4} and 3 sellers with costs σ ∈ {0, 2, 4}. Appendix B contains the formal analysis

of both the n = 6 market and the comparison between markets of size 6 and 10. This

comparison of the two markets highlights the two mechanisms at play: first, as market size

increases, traders are less willing to accept bad offers in the first stage; second, traders an-

ticipate this effect and increase first-stage offers when the market size increases. Overall, the

first effect dominates, and we find that, when moving from the smaller to the larger market,

the probability of observing a number of trades lower than the efficient one increases, and

expected efficiency, measured as total surplus over efficient surplus, decreases, consistently

with the findings of Section 3.1 and Section 3.3, respectively.

4.2 Strategic effects in OTC markets with humans

Let us now test our strategic explanation of the behavior of human agents in OTC markets.

We argued above that OTC markets with human agents are exposed to an increase in

inefficiency due to the strategic behavior of traders who are less willing to accept offers

in earlier interactions because they anticipate possibly higher gains from trade in future

interactions. Therefore, contrary to DA markets (Wilson, 1987), in OTC markets an increase

in size is not associated to higher competitive pressure from same-type traders, while it is

associated, at least in earlier interactions, to higher expected continuation profits if a trader

does not accept an offer. This means that acceptance rates of traders who receive an offer

are lower in earlier interactions as market size grows. We formulate hypothesis H5 to test

this strategic mechanism that underlies the model we introduced in Section 4.1.

H5: In OTC markets, only the most advantageous offers are accepted in earlier interactions,

and this effect is stronger as market size increases. All this does not hold in DA markets.

Table 11 shows the average difference between trading price and equilibrium price in

the first n/5 trades in a period, by trading mechanism and market size n. It differs from

Table 5 where all trades are considered. We note that, in OTC markets, the absolute value

of the average difference between trading and equilibrium price in the first n/5 trades is

increasing in market size (second column of Table 11, p-value < 0.01 for each comparison

10 vs. 20, 20 vs. 40, and 40 vs. 80). The observation that in OTC markets the majority

of the offers leading to a trade are proposed by sellers (between 55% and 61% depending

on market size, significantly higher than 50% at the 1% level) helps understanding why the
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average difference between trading and equilibrium price is negative for each market size. In

fact, only the most advantageous asks – i.e., those being much lower than the equilibrium

price – are accepted by buyers in earlier interactions. The fact that the average trading price

decreases monotonically from 1 point below to 4 points below the equilibrium price as OTC

market size increases from 10 to 80 agents confirms that the aforementioned strategic effect

is stronger for greater market sizes.

DA OTC

10 agents 0.81 -0.93
(0.28) (0.28)

20 agents -0.42 -2.26
(0.17) (0.16)

40 agents 0.02 -3.22
(0.18) (0.17)

80 agents -0.04 -4.02
(0.20) (0.18)

Table 11: Humans: Average difference between trading price and equilibrium price for the first n/5
trades in a period, for markets of size n ∈ {10, 20, 40, 80} (standard errors in brackets)

As a control, the first column of Table 11 shows that the same does not occur for DA markets.

In fact, the average difference between trading and equilibrium price for the first n/5 trades

does not decrease in market size: it is significantly higher than 0 for market size 10 (p-value

< 0.01), significantly lower than 0 for market size 20 (p-value < 0.01), and basically null for

the two biggest market sizes (lowest p-value = 0.849). Furthermore, the fraction of offers

leading to a trade due to sellers’ asks is not significantly higher than the fraction due to

buyers’ bids (t-test of the difference in the two average fractions of offers, p-value = 0.447).

With this, we conclude that H5 is confirmed.

5 Conclusions

The sequential bargaining approach analyzed in this paper is an over-the-counter (OTC)

market as it “does not use a centralized trading mechanism, such as an auction, specialist,

or limit-order book, to aggregate bids and offers and to allocate trades.” (Duffie, 2012,

p. 20).20 Thus, price transparency is lower than in exchange markets. In our setting, in

particular, only post-trade price transparency is enforced, but agents are in the dark about

the full history of asks and bids. With this, our main focus is on behavior of OTC markets

of varying size both when the interaction occurs among humans and when the interaction

occurs among zero-intelligence (ZI) agents. To the best of our knowledge, this is the first

20For equivalent definitions of OTC markets and a discussion of the economic relevance of these trading
mechanisms, see, e.g., Duffie et al. (2005), Duffie et al. (2007), Hendershott and Madhavan (2015).
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theory-driven experimental study of OTC markets that compares such decentralized market

mechanisms with centralized trading institutions (DA), controlling for human vs. ZI agents

performance under different market sizes.

Exploring electronic OTC mechanisms with public information about trading prices is

worth doing. Nowadays such trading institutions have significant economic applications. In

a large number of financial markets, negotiations and transactions occur on a bilateral basis

rather than, as in auction markets, through publicly posted bids and asks. Moreover, these

negotiations and transactions occur via computer rather than, as in pit markets, orally. Many

types of government and corporate bonds, real estate, currencies, and bulk commodities are

typically traded electronically over the counter. Furthermore, in a number of these markets,

such as those for U.S. corporate and municipal bonds, financial regulators have mandated

post-trade price transparency, often implemented through a program called Trade Reporting

and Compliance Engine (TRACE) (see Bessembinder and Maxwell, 2008; Edwards et al.,

2007; Goldstein et al., 2006; Green et al., 2007a,b, 2010, for empirical analyses).21 The

increase in OTC financial transactions “would not have been possible without the dramatic

advances in information and computer technologies that have occurred” from 1980 to 2000

(Schinasi et al., 2000, p. 1). The increasingly common use of OTC trading mechanisms in

today’s digital world thus justifies the focus of our study.

Our paper highlights how inefficiencies in OTC markets originate not only from the higher

complexity of the market structure but also from the strategic interaction between agents,

in a twofold manner.

The first contribution is experimental. Relying on a large experimental dataset of 6,400

undergraduate students in Economics and Management, we show that while DA markets

with humans behave according to the predictions derived from the theoretical literature and

the agent-based simulations with ZI agents, OTC markets do not. The simulations with ZI

agents show that these results are not merely due to OTC market rules given that OTC

markets with ZI agents show performances similar to those of DA markets with ZI agents,

in terms of traded quantity, price dispersion and market efficiency when the market size

increases. Rather, the result is due to the fact that human agents’ strategic response differs

across market structures.

The second contribution is theoretical: in the literature, OTC markets have often been

framed as search models with agents with high and low valuations who want to trade an asset

(see Duffie et al., 2007, and follow-up papers). We think that this approach disregards some

key strategic features of OTC markets. To account for these features, we introduce a simple

21However, differently from the OTC market of our experiment, in these OTC markets, agents usually
trade multiple units of the asset; and the traded quantity is reported only if lower than a stipulated threshold.
Other OTC markets include credit default swaps markets, in which traders can select from a menu of bids
and asks, and therefore have a different information set than in our experimental market (Feldhütter, 2012).
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bargaining model that explicitly describes agents’ strategic interaction in OTC markets.22

In fact, not only learning but also strategic interaction distinguishes human agents from ZI

agents’ behavior. As for the latter, humans’ bargaining strategies in every period are affected

by expectations of future payoffs, which in turn are affected by market size. Relying on this

intuition, the model explains our main experimental findings – lower trading quantity, higher

price dispersion and lower market efficiency when OTC market size increases – which were

not in line with the behavior of markets with ZI agents. Furthermore, with human traders,

the DA-OTC efficiency gap increases as market size increases. We interpret this as further

confirmation that it is agents’ strategic sophistication the main cause of the OTC markets’

efficiency failure. In fact, as our model predicts, under incomplete information on buyers’

valuations and sellers’ costs, an increase in market size leads to two counteracting effects:

agents’ acceptance rates in earlier interactions decrease and earlier offers increase, but the

second effect is not always enough to compensate the decrease in acceptance rates. It may

be interesting to explore theoretically and experimentally whether our results still hold when

goods are heterogeneous along the lines of Bos (2019).

The main limitation of our study relies on the methodology of classroom experiments.

In fact, due to the large subject pool and to the fact that participants in our experiments

could not be paid (each of the 300 market sessions took place before tutorials of the first-year

introductory course in Microeconomics), we were constrained not to use monetary incentives.

We are aware that there are some experimental studies questioning the issue of whether

monetary incentives are really necessary to motivate experimental subjects (see, e.g., Holt,

1999, Guala, 2005, and Bardsley et al., 2009).23 However, we acknowledge that monetary

incentives are important in market experiments. On the other side, we stress the point that

our study is comparative: behavior in OTC markets is analyzed in contrast to behavior

in DA markets and behavior of human agents in OTC markets is analyzed in contrast to

behavior of ZI agents in OTC markets. Hence, the absence of monetary incentives should

not affect our main comparative results.

Our theory-driven experimental study could be easily extended to analyze other specific

features of OTC markets that have been previously analyzed in other markets but not yet

in OTC. For example, one may check whether our results hold with asymmetric number of

buyers and sellers. Testing OTC trading institutions in markets with few sellers might help

understand whether the OTC bargaining rules are able to discipline monopolistic behavior,

a feature that is not shared by DA trading mechanisms (see, e.g., Muller et al., 2002).

22Indeed, negotiations in OTC markets may be interpreted as a combination of bilateral seller-buyer
negotiations, hence several of the theoretical features of bilateral and multilateral non-cooperative bargaining
models apply (see Gomes, 2020; Konrad and Thum, 2020, and references therein).

23For example, Camerer and Hogarth (1999) reviewed 74 experiments with no, low, or high performance-
based monetary incentives and found that the modal result has no effect on mean performance.
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Another interesting extension could be to test whether the experimentally detected DA-

OTC efficiency gap holds under different ratios of intra-marginal over extra-marginal agents.

Recall that all our experimental sessions were characterized by a 80-20 fraction of intra-

marginal over extra-marginal agents regardless of the market size. We find that under

this condition prices in the OTC market with human agents are generally lower than the

competitive equilibrium price, mainly because of a persistent selling pressure: when public

information about existing bids and asks is not available, sellers feel much more pressure

than buyers to find a trading counterpart. This, in turn, leaves room for positive surplus

for buyers who would be excluded from trades if the competitive equilibrium were obtained.

Here our intuition is that with a mirrored ratio (20-80) of intra-marginal over extra-marginal

agents, the few intra-marginal buyers would also feel a sort of (buying) pressure, thereby

disclosing more information about their redemption values to sellers. This could ultimately

lead to an increase in the trading prices, which might better converge to the equilibrium,

eventually leading to full efficiency. In that case, a regulator protecting (or compensating)

intra-marginal sellers would not be needed: agents’ strategic behavior itself would provide

the necessary level of transparency that OTC market institutions need in order to fill the

efficiency gap with more centralized trading mechanisms.

Finally, both our theoretical and experimental results show that large OTC markets with

human agents have inefficiency problems. This is a serious concern, as typically real-life ap-

plications of OTC markets have a size substantially larger than those of our experimental

markets (e.g., OTC derivatives markets totaled approximately US$601 trillion in 2010).

Therefore it would be interesting to investigate whether changes in the design of OTC mar-

kets may soften this issue. One possible suggestion is the introduction of some form of

assortative matching, which would be easily implemented in experiments, but more hardly

so in real markets. An alternative route could be the introduction of an endogenous matching

procedure in the spirit of Kim (2012), which could induce assortative matching endogenously.

Intuitively, these matching procedures should help increase the efficiency of large OTC mar-

kets in a twofold manner: first, they should save agents’ searching time, making it more likely

that an agent meets a suitable counterpart. Second, they should prevent early trade between

the best agents, i.e., buyers with the highest valuations and sellers with the lowest costs.

Due to the agents’ strategic behavior, these are the only trades that can happen early in the

period, but when they happen they significantly worsen the pool of agents, making further

trade less likely. Whether these theoretical intuitions will be confirmed experimentally is a

relevant question for future research.
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Appendix

Appendix A: Details of simulations

A.1 Simulation of Double Auction markets with ZI agents

We set a bid-ask improvement rule as in Brewer (2008, pp. 32-34). The buyer with the

current best bid and the seller with the current best ask close the trade. Then the market

is reset to allow for more trades between the remaining ZI.

During each trading period, every 0.005 seconds, only one ZI agent – randomly selected

according to a uniform distribution – enters the market. The procedure that ZI agents

follow in order to enter the market can be described according to subsequent rounds of 0.005

seconds each:

Round 1: The first ZI agent enters the market and generates a random ask, if it is a seller,

or bid, if it is a buyer.24 Then it becomes inactive, and its offer stays on the market.

Round 2: Another ZI agent enters the market. Four cases can arise:

• The current offer on the market is a bid, and the entering ZI agent is a buyer. It

generates a new bid. If this new bid is higher than the current one, it becomes the new

best bid; otherwise, the agent exits, and the market stays unchanged.

• The current offer on the market is a bid, and the entering ZI agent is a seller. It

generates a new ask. If the ask is lower or equal to the current bid, then the deal

is closed at the current bid; the unit is traded, the two corresponding ZI agents are

removed from the pool of possible traders, and the market clears. If the ask is higher

than the current bid, it remains as the best ask, and the agent becomes inactive.

• The current offer on the market is an ask, and the entering ZI agent is a seller. It

generates a new ask. If this new ask is lower than the current one, it becomes the new

best ask; otherwise the agent exits and the market stays unchanged.

• The current offer on the market is an ask, and the entering ZI agent is a buyer. It

generates a new bid. If the bid is higher or equal to the current ask, then the deal

is closed at the current ask; the unit is traded, the two corresponding ZI agents are

removed from the pool of possible traders, and the market clears. If the bid is lower

than the current ask, it remains as the best bid, and the agent becomes inactive.

24The random ask (or bid) generation process may involve multiple random draws. When this is the case,
each new random draw happens after 0.005 seconds from the previous one.
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Round 3: Another ZI agent enters the market. If the market has cleared in round 2, then

round 3 is equivalent to round 1. If instead in the market an unmatched bid and/or ask are

posted, two cases can arise:

• The new entering ZI agent is a buyer and generates a new random bid. If this bid is

higher than the current bid and higher or equal to the current ask, the deal is closed at

the current ask, the two corresponding ZI agents are removed from the pool of possible

traders, and the market clears. If the bid is higher than the current bid but lower than

the current ask, it simply replaces the best bid on the market. If the bid is lower than

the current bid, nothing happens.

• The new entering ZI agent is a seller and generates a new random ask. If this ask is

lower than the current ask and lower or equal to the current bid, the deal is closed at

the current bid, the two corresponding ZI agents are removed from the pool of possible

traders, and the market clears. If the ask is lower than the current ask but higher than

the current bid, it simply replaces the best ask on the market. If the ask is higher than

the current ask, nothing happens.

Rounds r > 3: The market proceeds as in round 3 with rounds of 0.005 seconds each until

there are no more available trades, or the trading period expires.

A.2 Simulation of Over-the-Counter markets with ZI agents

We report here only the differences with respect to the DA treatment with ZI agents. The

procedure that ZI agents follow in order to enter the OTC market can be described according

to subsequent rounds (each round lasting 0.005 seconds, as for DA markets):

Round 1 : All ZI agents send random offers. ZI buyers send a random bid to a ZI seller

randomly selected according to a uniform distribution over the set of all ZI sellers; ZI sellers

send a random ask to a ZI buyer randomly selected according to a uniform distribution over

the set of all ZI buyers.

Round 2 : Three cases can arise:

• ZI buyers that received one or more asks in round 1, compare their bid at round 1 with

the lowest ask received. If the former is higher or equal to the latter, the unit is traded

at a price equal to the lowest ask (as in Brewer 2008, Section 1.4.2), and the traders

are removed from the market. Otherwise, the unit is not traded.

• ZI sellers that received one or more bids in round 1, compare their ask at round 1 with

the highest bid received. If the former is lower or equal to the latter, the unit is traded
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at a price equal to the highest bid (as in Brewer 2008, Section 1.4.3), and the traders

are removed from the market. Otherwise, the unit is not traded.

• ZI buyers and ZI sellers that did not receive any offer do nothing.

At the end of round 2, all bids and asks that did not end in a trade are cancelled. Thus, at

the end of round 2, for ZI buyers and ZI sellers still on the market, the situation is identical

to the situation at the beginning of round 1.

Odd Rounds r ≥ 3: Though restricted to ZI buyers and ZI sellers still on the market, odd

rounds t ≥ 3 are identical to round 1, i.e., in odd rounds random offers are made to randomly

selected counterparts.

Even Rounds r ≥ 4: Though restricted to ZI buyers and ZI sellers still on the market, even

rounds t ≥ 4 are identical to round 2, i.e., in even rounds, feasible trades are closed and, at

the end of each even round, the remaining bids and asks are cancelled.

Rounds of 0.005 seconds each continue until there are no more ZI buyers or ZI sellers on

the market, or the trading period expires.

Appendix B: Theoretical Appendix

B.1 Proof of Proposition 1

Second stage: acceptance strategies. In the second stage, if an agent receives an offer,

he/she accepts it, provided that the offer induces a non-negative payoff. Therefore the

acceptance strategies are:

sβ2 =

{

Yes if p2 ≤ β

No otherwise;
sσ2 =

{

Yes if p2 ≥ σ

No otherwise.

Consider now the offer of the second stage.

Second stage: buyers’ offers. Let us first analyze the buyers’ optimal strategies, from

the lowest to the highest valuation.

• A buyer with valuation β = 0 knows that he/she can only trade if he/she meets the

seller with cost 0 and he/she proposes p2 = 0 (which the seller accepts given the

acceptance strategies described above). Hence, p2(β = 0) = 0.

• A buyer with valuation β = 1 knows that he/she can trade only with sellers of type

σ ∈ {0, 1}. If he/she proposes p2 = 1 he/she makes zero profit, hence he/she proposes

p2(β = 1) = 0 and makes expected profit P2[σ = 0].
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• A buyer with valuation β = 2, knows he/she can trade with sellers of type σ ∈ {0, 1, 2}.

If he/she proposes p2 = 2 he/she makes zero profit. If he/she proposes p2 = 1 he/she

only trades with sellers of type σ ∈ {0, 1} and makes expected profits P2[σ = 0]+P2[σ =

1]. If he/she proposes p2 = 0 he/she only trades with sellers of type σ = 0 and makes

profit 2 when doing so, hence his/her expected profit is 2 ·P[σ = 0]. Therefore, he/she

will offer

p2(β = 2) =

{

0 if P2[σ = 0] > P2[σ = 1]

1 otherwise.

• A buyer with valuation β = 3 knows he/she can trade with sellers of type σ ∈

{0, 1, 2, 3}. If he/she offers p2 = 3 he/she makes zero profits; if he/she offers p2 = 2

he/she makes an expected profit of P2[σ = 0] + P2[σ = 1] + P2[σ = 2]; if he/she offers

p2 = 1 he/she makes an expected profit of 2 (P2[σ = 0] + P2[σ = 1]); finally, if he/she

offers a price p2 = 0 he/she makes an expected profit of 3 ·P2[σ = 0]. Therefore, he/she

will offer

p2(β = 3) =















0 if P2[σ = 1] < min
{

P2[σ=0]
2

, 2P2[σ = 0]− P2[σ = 2]
}

1 if P2[σ = 1] > max
{

P2[σ=0]
2

,P2[σ = 2]− P2[σ = 0]
}

2 otherwise.

• A buyer with valuation β = 4 knows he/she can trade with all sellers. If he/she offers

p2 = 4 he/she makes zero profits; if he/she offers p2 = 3 he/she makes an expected profit

of P2[σ = 0]+P2[σ = 1]+P2[σ = 2]+P2[σ = 3]; if he/she offers p2 = 2 he/she makes an

expected profit of 2 (P2[σ = 0] + P2[σ = 1] + P2[σ = 2]); if he/she offers p2 = 1 he/she

makes an expected profit of 3 (P2[σ = 0] + P2[σ = 1]); finally, if he/she offers a price

p2 = 0 he/she makes an expected profit of 4 · P2[σ = 0]. Therefore, he/she will offer

p2(β = 4) =



































0 if P2[σ = 0] > max
{

3P2[σ = 1],P2[σ = 1] + P2[σ = 2], P2[σ=1]+P2[σ=2]+P2[σ=3]
3

}

1 if P2[σ = 1] > max
{

P2[σ=0]
3

, 2P2[σ = 2]− P2[σ = 0], P2[σ=2]+P2[σ=3]−2P2[σ=0]
2

}

2 if P2[σ = 2] > max

{

P2[σ = 0]− P2[σ = 1], P2[σ=0]+P2[σ=1]
2

,

P2[σ = 3]− P2[σ = 0]− P2[σ = 1]

}

3 otherwise.

Second stage: sellers’ offers. We can symmetrically derive the optimal offers for the

sellers, from the highest to the lowest cost.

• A seller with cost σ = 4 proposes p2(σ = 4) = 4 and makes zero profits.

• A seller with cost σ = 3 proposes p2(σ = 3) = 4 and makes expected profit P2[β = 4].
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• A seller with cost σ = 2 proposes

p2(σ = 2) =

{

4 if P2[β = 4] > P2[β = 3]

3 otherwise.

• A seller with cost σ = 1 proposes

p2(σ = 1) =















4 if P2[β = 3] < min
{

P2[β=4]
2

, 2P2[β = 4]− P2[β = 2]
}

3 if P2[β = 3] > max
{

P2[β=4]
2

,P2[β = 2]− P2[β = 4]
}

2 otherwise.

• A seller with cost σ = 0 proposes

p2(σ = 0) =



































4 if P2[β = 4] > max
{

3P2[β = 3],P2[β = 3] + P2[β = 2], P2[β=3]+P2[β=2]+P2[β=1]
3

}

3 if P2[β = 3] > max
{

P2[β=4]
3

, 2P2[β = 2]− P2[β = 4], P2[β=2]+P2[β=1]−2P2[β=4]
2

}

2 if P2[β = 2] > max

{

P2[β = 4]− P2[β = 3], P2[β=4]+P2[β=3]
2

,

P2[β = 1]− P2[β = 4]− P2[β = 3]

}

1 otherwise.

First stage: acceptance strategies. Note that the second-stage expected payoff of types

β = 0 and σ = 4 is zero, the expected payoff of all other types is positive but (weakly)

smaller than 1. We show this for buyers, and the result can be derived symmetrically for

sellers. In order to compute this, recall that the expected payoff from stage 2 is the average

between the expected payoff of making an offer, and the expected payoff of receiving an offer.

• A buyer of type β = 0 has zero payoff.

• A buyer of type β = 1 has expected payoff from making an offer equal to P2[σ = 0] < 1,

and expected payoff from receiving an offer smaller than 1, so that the average is smaller

than 1.

• A buyer of type β = 2 has expected payoff from making an offer P2[σ = 0]+max{P2[σ =

0] + P2[σ = 1]}, which is always (weakly) smaller than 1, as sellers of type σ ∈ {3, 4}

never trade in the proposed equilibrium, and therefore both P2[σ = 0] and P2[σ = 1]

are at most 1
3
; the expected payoff from receiving an offer is also smaller than 1, so

that the average is smaller than 1.

• A buyer of type β = 3 has expected payoff from making an offer either equal to
∑2

k=0 P[σ = k] < 1, or 2 (P2[σ = 0] + P2[σ = 1]), which is smaller than 1 because

sellers of type σ ∈ {3, 4} never trade in the proposed equilibrium, and therefore both
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P2[σ = 0] and P2[σ = 1] are at most 1
3
; or 3 · P2[σ = 0] < 1 for the same reason. The

expected payoff from receiving an offer is also smaller than 1, so that the average is

smaller than 1.

• Consider now a buyer of type β = 4. Recall that in equilibrium sellers of type σ ∈

{2, 3, 4} never trade in the first stage. As a consequence, choosing p2 = 2 leads to

the (weakly) highest payoff of 2
(
∑2

k=0 P[σ = k]
)

, which is (weakly) higher than 1 (but

smaller than 2). The maximum value that this expected payoff can take is 6
5
, which

happens when all the sellers of type σ ∈ {0, 1, 2} are still in the market in stage 2.

As for the expected payoff from receiving an offer, the maximum expected payoff from

stage 2 is 4
5
, which happens when all the sellers of type σ ∈ {0, 1, 2} are still in the

market in stage 2. Therefore, the expected continuation payoff of a buyer of type β = 4

is bounded above by 1
2

(

6
5
+ 4

5

)

= 1.

Therefore, in the first stage, the acceptance strategies are:

sβ1 =

{

Yes if p2 ≤ max{0, β − 1}

No otherwise;
sσ1 =

{

Yes if p2 ≥ min{σ + 1, 4}

No otherwise.

Consider now the offer of the first stage.

First stage: buyers’ offers. Let us first analyze the buyers’ optimal strategies, from the

lowest to the highest valuation.

• A buyer with valuation β = 0 knows that he/she can never trade in the first stage.

Therefore he/she proposes p1(β = 0) = 0, as any other price may induce a negative

payoff.

• A buyer with valuation β = 1 knows he/she can trade if he/she meets a seller with

cost σ = 0. However, his/her only opportunity to trade with a seller of type σ = 0 is

to offer p1 = 1. In this case, he/she would forego the possible positive payoffs of stage

2, therefore p1(β = 1) = 0.

• A buyer with valuation β = 2 maximizes his/her profits by offering p1(β = 2) = 1.

• A buyer with valuation β = 3 maximizes his/her profits by making an offer p1(β =

3) = 2.

• A buyer with valuation β = 4 maximizes his/her profits by making an offer p1(β =

3) = 2.
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First stage: sellers’ offers. Sellers’ offers can be derived symmetrically.

Therefore, buyers and sellers’ first-stage equilibrium offers are, respectively:

pβ1 =











0 if β ∈ {0, 1}

1 if β = 2

2 if β ∈ {3, 4},

pσ1 =











2 if σ ∈ {0, 1}

3 if σ = 2

4 if σ ∈ {3, 4}.

�

B.2 The case of n = 6 and the effect of market size

Section 4.1 contains the analysis of the market with n = 10. Here we analyze the n = 6

market and compare the strategic behavior of the two markets. Note that we model the

change in market size in a manner which is as close as possible to our experimental conditions

(see subsection “Market sizes” in the experimental design of human agents of Section 2.1):

the lowest and highest redemption values are unchanged across markets, but the distance

between values increases in the smaller market (2 instead of 1).25

The case of six traders

We consider a n = 6 market with the same structural characteristics as the n = 10 market

described in Section 3. The market is now composed by 3 buyers and 3 sellers. Buyers

privately evaluate the object v ∈ {0, 2, 4}, while sellers have a production cost c ∈ {0, 2, 4}.

As for the case n = 10 (and as in our experiment), there is exactly one buyer (seller) with

each valuation (cost), so that each valuation (cost) is equally likely.

Proposition 2 The following is the subgame perfect equilibrium of the bargaining game.

• Stage t offers, for t = 1, 2, are:

pβt =

{

0 if β ∈ {0, 2}

2 if β = 4,
pσt =

{

2 if σ = 0

4 if σ ∈ {2, 4}.

• Stage 1 acceptance strategies are:

sβ1 =

{

Yes if p2 ≤ max{0, β − 2}

No otherwise,
sσ1 =

{

Yes if p2 ≥ min{σ + 2, 4}

No otherwise.

25Note that the relation between market size and efficiency crucially depends on the assumptions on how
market size changes.
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• Stage 2 acceptance strategies are:

sβ2 =

{

Yes if p2 ≤ β

No otherwise;
sσ2 =

{

Yes if p2 ≥ σ

No otherwise.

Proof:

Second stage: acceptance strategies. In the second stage, if an agent receives an offer,

he/she accepts it, provided that the offer induces a non-negative payoff. Therefore the

acceptance strategies are:

sβ2 =

{

Yes if p2 ≤ β

No otherwise;
sσ2 =

{

Yes if p2 ≥ σ

No otherwise.

Consider now the offer of the second stage.

Second stage: buyers’ offers. Let us first analyze the buyers’ optimal strategies.

• A buyer with valuation β = 0 knows that he/she can only trade if he/she meets the

seller with cost 0 and he/she proposes p2 = 0 (which the seller accepts given the

acceptance strategies described above). Hence, p2(β = 0) = 0.

• A buyer with valuation β = 2 knows that he/she can trade only with sellers of type

σ ∈ {0, 2}. If he/she proposes p2 = 2 he/she makes zero profit, hence he/she proposes

p2(β = 2) = 0 and makes expected profit 2 · P2[σ = 0].

• A buyer with valuation β = 4 knows he/she can trade with all sellers. If he/she offers

p2 = 4 he/she makes zero profits; if he/she offers p2 = 2 he/she makes an expected

profit of 2 (P2[σ = 0] + P2[σ = 2]); finally, if he/she offers a price p2 = 0 he/she makes

an expected profit of 4 · P2[σ = 0]. Therefore, he/she will offer

p2(β = 4) =

{

0 if P2[σ = 0] > P2[σ = 1]

2 otherwise.

Second stage: sellers’ offers. We can symmetrically derive the following optimal offers

for the sellers.

• A seller with cost σ = 4 proposes p2(σ = 4) = 4 and makes zero profits.

• A seller with cost σ = 2 proposes p2(σ = 2) = 4 and makes expected profit 2·P2[β = 4].

• A seller with cost σ = 0 proposes

p2(σ = 2) =

{

4 if P2[β = 4] > P2[β = 2]

2 otherwise.

43



First stage: acceptance strategies. Note that the second-stage expected payoff of types

β = 0 and σ = 4 is zero, the expected payoff of all other types is positive but (weakly)

smaller than 2. We show this for buyers, and the result can be derived symmetrically for

sellers. In order to compute this, recall that the expected payoff from stage 2 is the average

between the expected payoff of making an offer, and the expected payoff of receiving an offer.

• A buyer of type β = 0 has zero payoff.

• A buyer of type β = 2 has expected payoff from making an offer equal to 2 · P2[σ =

0] < 2, as P2[σ = 0] < 1
2
, because the seller of type σ = 4 never trades in the first

stage. Moreover, the expected payoff from receiving an offer is smaller than 2, so that

the average is smaller than 2.

• A buyer of type β = 4 has expected payoff from making an offer

2 (P2[σ = 0] + max{P2[σ = 0] + P2[σ = 1]})

which is always smaller than 2, as the seller of type σ = 4 never trades in the proposed

equilibrium, and therefore both P2[σ = 0] and P2[σ = 1] are at most 1
2
, and their sum

is at most 1
3
; the expected payoff from receiving an offer is also smaller than 2, so that

the average is smaller than 2.

Therefore, in the first stage, the acceptance strategies are:

sβ1 =

{

Yes if p2 ≤ max{0, v(β)− 2}

No otherwise;
sσ1 =

{

Yes if p2 ≥ min{c(σ) + 2, 4}

No otherwise.

Consider now the offer of the first stage.

First stage: buyers’ offers. Let us first analyze the buyers’ optimal offers in the first

stage, from the lowest to the highest valuation.

• A buyer with low valuation, β = 0, knows that he/she can never trade in the first

stage. Therefore he/she proposes p1(β = 0) = 0, as any other price may induce a

negative payoff.

• A buyer with intermediate valuation, β = 2, knows he/she can trade if he/she meets a

seller with low cost. However, his/her only opportunity to trade with a seller of type

σ = 0 is to offer p1 = 2. In this case, he/she would forego the possible positive payoffs

of stage 2, therefore p1(β = 2) = 0.

• A buyer with high valuation, β = 4, knows he/she can trade with any potential seller.

However, in order to trade with sellers of type σ ∈ {2, 4} he/she has to offer p1 = 4
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which gives zero payoff. Given that his/her expected payoff from stage 2 is positive

and smaller than 2, his/her optimal choice is to offer p1 = 2 which gives him/her a

payoff of 2 in case the offer is accepted (which happens with probability P1[σ = 0] = 1
3
).

Therefore p1(β = 4) = 2.

First stage: sellers’ offers. We can symmetrically derive the sellers’ optimal offers in the

first stage, from the highest to the lowest cost.

• A seller with high cost, σ = 4, offers p1(σ = 4) = 4, as any other price may induce a

negative payoff.

• A seller with intermediate cost, σ = 2, offers p1(σ = 2) = 4.

• A seller with low cost, σ = 0, offers p1(σ = 0) = 2.

Therefore, buyers and sellers’ first-stage equilibrium offers are, respectively:

pβ1 =

{

2 if β = 4

0 otherwise,
pσ1 =

{

2 if σ = 0

4 otherwise.

Note that in the first stage trade happens only if a buyer of type β = 4 meets with a

seller of type σ = 0, regardless of the proposer. Therefore, given that all types are equally

likely before trade happens, it is always the case that P2[β = 4] ≤ P2[β = 2] and that

P2[σ = 0] ≤ P2[σ = 2]. As a consequence, p2(β = 4) = p2(σ = 0) = 2. �

Effects of market size: the comparison between n = 6 and n = 10

If we compare Proposition 1 with Proposition 2 we first notice that, for a given redemption

value, traders are less willing to accept less advantageous offers in the first stage when the

market size increases. Second, traders anticipate this effect and modify first-stage offers

when the market size increases, so that buyers’ offers are weakly higher and sellers’ ones are

weakly lower when n = 10 with respect to the market with n = 6.

We now ask ourselves how this translates into changes of the market features that we

test experimentally. Table B.1 shows the expected probability of observing, in equilibrium,

a number of trades lower, equal or greater than the efficient one (which is 2 for the n = 6

market, and 3 for the n = 10 market). It also shows the expected value of the efficiency

index (expected surplus over efficient surplus, where the efficient surplus is 4 for the n = 6

market and 7 for the n = 10 market).26

26The expected performance has been computed by means of a Python code which is available upon
request from the authors.
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n = 6 n = 10

q < q∗ 75.01% 84.83%
q = q∗ 24.99% 15.13%
q > q∗ 0.00% 0.04%

Efficiency 77.77% 64.10%

Table B.1: Expected performance of the theoretical OTC market, by market size

We notice that the expected probability of having a lower than efficient trading volume

increases with market size, and that the expected efficiency decreases. Therefore, the simu-

lations in Table B.1 show that the first strategic effect of a market size increase – i.e., traders

being less willing to accept less advantageous offers in stage 1 – is stronger than the second

one – i.e., buyers’ (resp., sellers’) offers being weakly higher (resp., lower) in stage 1.
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